WO2007129188A1 - Composé de cyclopropanecarboxamide - Google Patents
Composé de cyclopropanecarboxamide Download PDFInfo
- Publication number
- WO2007129188A1 WO2007129188A1 PCT/IB2007/001143 IB2007001143W WO2007129188A1 WO 2007129188 A1 WO2007129188 A1 WO 2007129188A1 IB 2007001143 W IB2007001143 W IB 2007001143W WO 2007129188 A1 WO2007129188 A1 WO 2007129188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pain
- disease
- compound
- formula
- pharmaceutically acceptable
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
Definitions
- This invention relates to novel substituted N ⁇ N-sulfonylaminoarylmethyOcyclopropanecarboxamide compound and to their use in therapy.
- This compound is particularly useful as an antagonist of the VR1 (Type I Vanilloid) receptor, and is thus useful for the treatment of pain, neuralgia, neuropathies, nerve injury, bums, migraine, carpal tunnel syndrome, fibromyalgia, neuritis, sciatica, pelvic hypersensitivity, bladder disease, inflammation, or the like in mammals, especially humans.
- the present invention also relates to a pharmaceutical composition comprising the above compound.
- the Vanilloid receptor 1 is a ligand gated non-selective cation channel. It is believed to be a member of the transient receptor potential super family. VR1 is recognized as a polymodal nociceptor that integrates multiple pain stimuli, e.g., noxious heat, protons, and vanilloids (European Journal of Physiology 451:151-159, 2005). A major distribution of VR1 is in the sensory (A ⁇ - and C-) fibers, which are bipolar neurons having somata in sensory ganglia. The peripheral fibers of these neurons innervate the skin, the mucosal membranes, and almost all internal organs.
- VR1 exists in bladder, kidney, brain, pancreas, and various kinds of organs.
- Patent Application Number WO200216318 discloses a variety of sulfonylaminobenzylthiourea derivatives and N-sulfonylaminobenzyl-2-phenoxyacetamide derivatives as modulators for vanilloid receptor.
- International Patent Application Number WO2006098554 discloses a variety of thioamide derivatives as modulators for vanilloid receptor.
- VR1 selective antagonist with enhanced binding activity with the VR1 receptor by systemic administration and with a good half-life.
- Other potential advantages include less toxicity, good absorption, good solubility, low protein binding affinity, less drug-drug interaction, a reduced inhibitory activity at HERG channel, reduced QT prolongation and good metabolic stability.
- a difluoro substituted N-(N-sulfonylaminoarylmethyl)- cyclopropanecarboxamide compound is a potent VR1 antagonist with analgesic activity when given by systemic administration.
- the compound of the present invention may show less toxicity, good absorption, good half-life, good solubility, low protein binding affinity, less drug-drug interaction, a reduced inhibitory activity at HERG channel, reduced QT prolongation and good metabolic stability.
- the present invention provides a compound of the following formula (I):
- the compound of formula (I), being a VR1 antagonist, is potentially useful in the treatment of a range of disorders, particularly the treatment of acute cerebral ischemia, pain, chronic pain, acute pain, nociceptive pain, neuropathic pain, inflammatory pain, post herpetic neuralgia, neuropathies, neuralgia, diabetic neuropathy, HIV-related neuropathy, nerve injury, rheumatoid arthritic pain, osteoarthritic pain, burns, back pain, visceral pain, cancer pain, dental pain, headache, migraine, carpal tunnel syndrome, fibromyalgia, neuritis, sciatica, pelvic hypersensitivity, pelvic pain, menstrual pain, bladder disease, such as incontinence, micturition disorder, renal colic and cystitis, inflammation, such as burns, rheumatoid arthritis and osteoarthritis, neurodegenerative disease, such as stroke, post stroke pain and multiple sclerosis, pulmonary disease, such as asthma, cough, chronic obstructive pulmonary disease (COPD
- Physiological pain is an important protective mechanism designed to warn of danger from potentially injurious stimuli from the external environment.
- the system operates through a specific set of primary sensory neurones and is activated by noxious stimuli via peripheral transducing mechanisms (see Millan, 1999, Prog. Neurobiol., 57, 1-164 for a review).
- These sensory fibres are known as nociceptors and are characteristically small diameter axons with slow conduction velocities. Nociceptors encode the intensity, duration and quality of noxious stimulus and by virtue of their topographically organised projection to the spinal cord, the location of the stimulus.
- nociceptive nerve fibres of which there are two main types, A-delta fibres (myelinated) and C fibres (non-myelinated).
- A-delta fibres myelinated
- C fibres non-myelinated.
- the activity generated by nociceptor input is transferred, after complex processing in the dorsal horn, either directly, or via brain stem relay nuclei, to the ventrobasal thalamus and then on to the cortex, where the sensation of pain is generated.
- Pain may generally be classified as acute or chronic. Acute pain begins suddenly and is short-lived (usually twelve weeks or less). It is usually associated with a specific cause such as a specific injury and is often sharp and severe. It is the kind of pain that can occur after specific injuries resulting from surgery, dental work, a strain or a sprain. Acute pain does not generally result in any persistent psychological response. In contrast, chronic pain is long-term pain, typically persisting for more than three months and leading to significant psychological and emotional problems. Common examples of chronic pain are neuropathic pain (e.g. painful diabetic neuropathy, postherpetic neuralgia), carpal tunnel syndrome, back pain, headache, cancer pain, arthritic pain and chronic post-surgical pain.
- neuropathic pain e.g. painful diabetic neuropathy, postherpetic neuralgia
- carpal tunnel syndrome e.g. painful diabetic neuropathy, postherpetic neuralgia
- back pain e.g. painful diabetic neuropathy, postherpetic neuralgia
- Clinical pain is present when discomfort and abnormal sensitivity feature among the patient's symptoms. Patients tend to be quite heterogeneous and may present with various pain symptoms. Such symptoms include: 1) spontaneous pain which may be dull, burning, or stabbing; 2) exaggerated pain responses to noxious stimuli (hyperalgesia); and 3) pain produced by normally innocuous stimuli (allodynia - Meyer et al., 1994, Textbook of Pain, 13-44). Although patients suffering from various forms of acute and chronic pain may have similar symptoms, the underlying mechanisms may be different and may, therefore, require different treatment strategies. Pain can also therefore be divided into a number of different subtypes according to differing pathophysiology, including nociceptive, inflammatory and neuropathic pain.
- Nociceptive pain is induced by tissue injury or by intense stimuli with the potential to cause injury. Pain afferents are activated by transduction of stimuli by nociceptors at the site of injury and activate neurons in the spinal cord at the level of their termination. This is then relayed up the spinal tracts to the brain where pain is perceived (Meyer et al., 1994, Textbook of Pain, 13-44). The activation of nociceptors activates two types of afferent nerve fibres. Myelinated A-delta fibres transmit rapidly and are responsible for sharp and stabbing pain sensations, whilst unmyelinated C fibres transmit at a slower rate and convey a dull or aching pain.
- Moderate to severe acute nociceptive pain is a prominent feature of pain from central nervous system trauma, strains/sprains, burns, myocardial infarction and acute pancreatitis, post-operative pain (pain following any type of surgical procedure), posttraumatic pain, renal colic, cancer pain and back pain.
- Cancer pain may be chronic pain such as tumour related pain (e.g. bone pain, headache, facial pain or visceral pain) or pain associated with cancer therapy (e.g. postchemotherapy syndrome, chronic postsurgical pain syndrome or post radiation syndrome). Cancer pain may also occur in response to chemotherapy, immunotherapy, hormonal therapy or radiotherapy.
- Back pain may be due to herniated or ruptured intervertebral discs or abnormalities of the lumber facet joints, sacroiliac joints, paraspinal muscles or the posterior longitudinal ligament. Back pain may resolve naturally but in some patients, where it lasts over 12 weeks, it becomes a chronic condition which can be particularly debilitating.
- Neuropathic pain is currently defined as pain initiated or caused by a primary lesion or dysfunction in the nervous system. Nerve damage can be caused by trauma and disease and thus the term 'neuropathic pain' encompasses many disorders with diverse aetiologies. These include, but are not limited to, peripheral neuropathy, diabetic neuropathy, post herpetic neuralgia, trigeminal neuralgia, back pain, cancer neuropathy, HIV neuropathy, phantom limb pain, carpal tunnel syndrome, central post-stroke pain and pain associated with chronic alcoholism, hypothyroidism, uremia, multiple sclerosis, spinal cord injury, Parkinson's disease, epilepsy and vitamin deficiency. Neuropathic pain is pathological as it has no protective role.
- neuropathic pain are difficult to treat, as they are often heterogeneous even between patients with the same disease (Woolf & Decosterd, 1999, Pain Supp., 6, S141-S147; Woolf and Mannion, 1999, Lancet, 353, 1959-1964). They include spontaneous pain, which can be continuous, and paroxysmal or abnormal evoked pain, such as hyperalgesia (increased sensitivity to a noxious stimulus) and allodynia (sensitivity to a normally innocuous stimulus).
- the inflammatory process is a complex series of biochemical and cellular events, activated in response to tissue injury or the presence of foreign substances, which results in swelling and pain (Levine and Taiwo, 1994, Textbook of Pain, 45-56).
- Arthritic pain is the most common inflammatory pain.
- Rheumatoid disease is one of the commonest chronic inflammatory conditions in developed countries and rheumatoid arthritis is a common cause of disability. The exact aetiology of rheumatoid arthritis is unknown, but current hypotheses suggest that both genetic and microbiological factors may be important (Grennan & Jayson, 1994, Textbook of Pain, 397-407).
- Visceral pain is pain associated with the viscera, which encompass the organs of the abdominal cavity. These organs include the sex organs, spleen and part of the digestive system. Pain associated with the viscera can be divided into digestive visceral pain and non-digestive visceral pain.
- Gl gastrointestinal
- FBD functional bowel disorder
- IBD inflammatory bowel disease
- Gl disorders include a wide range of disease states that are currently only moderately controlled, including, in respect of FBD, gastro-esophageal reflux, dyspepsia, irritable bowel syndrome (IBS) and functional abdominal pain syndrome (FAPS), and, in respect of IBD, Crohn's disease, ileitis and ulcerative colitis, all of which regularly produce visceral pain.
- Other types of visceral pain include the pain associated with dysmenorrhea, cystitis and pancreatitis and pelvic pain.
- pain have multiple aetiologies and thus can be classified in more than one area, e.g. back pain and cancer pain have both nociceptive and neuropathic components.
- Other types of pain include: • pain resulting from musculoskeletal disorders, including myalgia, fibromyalgia, spondylitis, sero-negative (non-rheumatoid) arthropathies, non-articular rheumatism, dystrophinopathy, glycogenoiysis, polymyositis and pyomyositis;
- heart and vascular pain including pain caused by angina, myocardical infarction, mitral stenosis, pericarditis, Raynaud's phenomenon, scleredoma and skeletal muscle ischemia;
- head pain such as migraine (including migraine with aura and migraine without aura), cluster headache, tension-type headache mixed headache and headache associated with vascular disorders; and
- orofacial pain including dental pain, otic pain, burning mouth syndrome and temporomandibular myofascial pain.
- the present invention provides a pharmaceutical composition including a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, together with a pharmaceutically acceptable excipient.
- the composition is preferably useful for the treatment of the disease conditions defined above.
- the present invention further provides a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, for use as a medicament.
- the present invention provides a method for the treatment of the disease conditions defined above in a mammal, preferably a human, which includes administering to said mammal a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof.
- the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, in the manufacture of a medicament for the treatment of the disease conditions defined above.
- the present invention provides a combination of a compound of the formula (I), or a pharmaceutically acceptable salt or solvate thereof, and another pharmacologically active agent.
- the compound of the present invention may be prepared by a variety of processes well known for the preparation of compound of this type, for example as shown in Example 1.
- Method for assessing biological activities Human VR1 antagonist assay
- VR1 antagonistic activity can be determined by the Ca 2+ imaging assay using human VR1 highly expressing cells.
- the cells that highly express human VR1 receptors are obtainable from several different conventional methods. The one standard method is cloning from human Dorsal Root Ganglion (DRG) or kidney according to the methods such as described in the journal article; Nature, 389, pp816-824, 1997.
- VR1 receptors highly expressing human keratinocytes are also known and published in the journal article (Biochemical and Biophysical Research Communications, 291 , pp124-129, 2002). In this article, human keratinocytes demonstrated VR1 mediated intracellular Ca 2+ increase by addition of capsaicin.
- the method to up regulate the human VR1 gene which is usually a silent gene or doesn't produce a detectable level of VR1 receptors, is also available to obtain appropriate cells.
- Such genetic modification method is described in detail; Nat. Biotechnol., 19, pp440-445, 2001.
- the cells that express human VR1 receptors are maintained in a culture flask at 37 °C in an environment containing 5% CO 2 until use in the assay.
- the intracellular Ca 2+ imaging assay to determine VR1 antagonistic activities may be done by following procedures.
- the culture medium is removed from the flask and fura-2/AM fluorescent calcium indicator is added to the flask at a concentration of 5 ⁇ M in the medium.
- the flask is placed in a CO 2 incubator and incubated for 1 hour.
- the cells expressing the human VR1 receptors are detached from the flask follow by washing with phosphate buffer saline, PBS(-) and re-suspended in assay buffer.
- 80 ⁇ l of an aliquot of cell suspension (3.75 ⁇ 10 5 cells/ml) is added to the assay plate and the cells are spun down by centrifuge (950 rpm, 20 °C, 3 minutes).
- the capsaicin-induced changes in the intracellular calcium concentration are monitored using FDSS 6000 (Hamamatsu Photonics, Japan), a fluorometric imaging system.
- FDSS 6000 Hamamatsu Photonics, Japan
- the cell suspension in Krebs-Ringer HEPES (KRH) buffer (115 mM NaCI, 5.4 mM KCI, 1 mM MgSO 4 , 1.8 mM CaCI 2 , 11 mM D-Glucose, 25 mM HEPES, 0.96 mM Na 2 HPO 4 , pH 7.3) are pre-incubated with varying concentrations of the test compounds or KRH buffer (buffer control) for 15 minutes at room temperature under the dark condition. Then a capsaicin solution, which gives 300 nM in assay mixture, is automatically added to the assay plate by the FDSS 6000.
- Acid stimulation assay 115 mM NaCI, 5.4 mM KCI, 1 mM MgSO 4 , 1.8
- the Acid-induced changes in the intracellular calcium concentration are monitored using FDSS 6000 (Hamamatsu Photonics, Japan), a fluorometric imaging system.
- the cell suspension in resting buffer (HBSS supplemented with 1OmM HEPES, pH 7.4) are pre-incubated with varying concentrations of the test compounds or resting buffer (buffer control) for 15 minutes at room temperature under the dark condition.
- the cells are automatically added the stimulating solution (HBSS supplemented with MES, final assay buffer pH5.8) by the FDSS 6000.
- the IC 50 values of VR1 antagonists are determined from the half of the increase demonstrated by buffer control samples after acidic stimulation. Determination of antagonist activity
- mice Male Sprague-Dawley rats (270-300 g; B.W., Charles River, Tsukuba, Japan) are used.
- the chronic constriction injury (CCI) operation is performed according to the method described by Bennett and Xie (Bennett, GJ. and Xie, Y.K. Pain, 33:87-107, 1988). Briefly, animals are anesthetized with sodium pentobarbital (64.8 mg/kg, i.p.) and the left common sciatic nerve is exposed at the level of the middle of the thigh by blunt dissection through biceps femoris.
- sodium pentobarbital (64.8 mg/kg, i.p.
- the donor plate Transport Receiver plate (MATRNPS50, Millipore) was filled with 300 ⁇ L of MES buffered HBSS (pH 6.5) containing 10 ⁇ M of the test compounds.
- the acceptor plate was placed onto the donor plate to form a "sandwich" and was incubated at 30 c C for 2.5 hours. After the incubation period, acceptor, donor and initial donor solution (reference) were analyzed via LC-MS/MS. Data were reported as the effective permeability value in cm X 10 '6 /sec and the membrane retention value.
- the Example 1 showed 10.2 x 10 "6 cm/sec. Human dofetilide binding
- Cell paste of HEK-293 cells expressing the HERG product can be suspended in 10-fold volume of 50 mM Tris buffer adjusted at pH 7.5 at 25 0 C with 2 M HCI containing 1 mM MgCI 2 , 10 mM KCI.
- the cells are homogenized using a Polytron homogenizer (at the maximum power for 20 seconds) and centrifuged at 48,00Og for 20 minutes at 4°C.
- the pellet is resuspended, homogenized and centrifuged once more in the same manner. The resultant supernatant is discarded and the final pellet is resuspended (10-fold volume of 50 mM Tris buffer) and homogenized at the maximum power for 20 seconds.
- the membrane homogenate is aliquoted and stored at -8O 0 C until use. An aliquot is used for protein concentration determination using a Protein Assay Rapid Kit and ARVO SX plate reader (Wallac). throughout the entire procedure, the stock solution and equipment are kept on ice at all time. For saturation assays, experiments are conducted in a total volume of 200 ⁇ l. Saturation is determined by incubating 20 ⁇ l of [ 3 H]-dofetilide and 160 ⁇ l of membrane homogenates (20-30 ⁇ g protein per well) for 60 min at room temperature in the absence or presence of 10 ⁇ M dofetilide at final concentrations (20 ⁇ l) for total or nonspecific binding, respectively.
- compounds are diluted in 96 well polypropylene plates as 4-point dilutions in semi-log format. All dilutions are performed in DMSO first and then transferred into 50 mM Tris buffer (pH 7.5 at 25 0 G) containing 1 mM MgCI 2 , 10 mM KCI so that the final DMSO concentration can become equal to 1%.
- Compounds are dispensed in triplicate in assay plates (4 ⁇ l). Total binding and nonspecific binding wells are set up in 6 wells as vehicle and 10 ⁇ M dofetilide at final concentration, respectively.
- the radioligand is prepared at 5.6x final concentration and this solution is added to each well (36 ⁇ l).
- the assay is initiated by addition of YSi poly-L-lysine Scintillation Proximity Assay (SPA) beads (50 ⁇ l, 1 mg/well) and membranes (110 ⁇ l, 20 ⁇ g/well). Incubation is continued for 60 min at room temperature. Plates are incubated for a further 3 hours at room temperature for beads to settle. Receptor-bound radioactivity is quantified by counting with a Wallac MicroBeta plate counter. Example 1 showed more than 10 uM as IC 50 in the condition of HPLC solubility of 19 ⁇ M at 30 ⁇ M. IHFRK assay
- SPA YSi poly-L-lysine Scintillation Proximity Assay
- HEK 293 cells which stably express the HERG potassium channel are used for electrophysiological study.
- the methodology for stable transfection of this channel in HEK cells can be found elsewhere (Z.Zhou et al., 1998, Biophysical Journal, 74, pp230-241).
- MEM Minimum Essential Medium
- FCS Fetal Calf Serum
- a standard voltage protocol is applied to the cell to evoke membrane currents.
- the voltage protocol is as follows. The membrane is depolarized from a holding potential of -8OmV to +4OmV for 1000ms. This is followed by a descending voltage ramp (rate 0.5mV msec '1 ) back to the holding potential. The voltage protocol is applied to a cell continuously throughout the experiment every 4 seconds (0.25Hz). The amplitude of the peak current elicited around -4OmV during the ramp is measured.
- vehicle (0.5% DMSO in the standard external solution) is applied for 10-20 min by a peristalic pump.
- the test compound of either 0.3, 1 , 3, 10 ⁇ M is applied for a 10 min period.
- the 10 min period includes the time which supplying solution is passing through the tube from the solution reservoir to the recording chamber via the pump. Exposure time of cells to the compound solution is more than 5min after the drug concentration in the chamber well reaches the attempting concentration. There is a subsequent wash period of a 10-20min to assess reversibility. Finally, the cells are exposed to a high dose of dofetilide (5 ⁇ M), a specific IKr blocker, to evaluate the insensitive endogenous current.
- dofetilide 5 ⁇ M
- IKr blocker a specific IKr blocker
- This method essentially involves determining the percent inhibition of product formation from fluorescence probe at 3 ⁇ M of the each compound.
- the assay is carried out as follows.
- the compounds are pre-incubated with recombinant CYPs, 100 mM potassium phosphate buffer and fluorescence probe as substrate for 5min.
- Reaction is started by adding a warmed NADPH generating system, which consists of 0.5 mM NADP (expect for 2D6 0.03 mM), 10 mM MgCI 2 , 6.2 mM DL-lsocitric acid and 0.5 U/ml lsocitric Dehydrogenase (ICD).
- the assay plate is incubated at 37°C (except; for 1 A2 and 3A4 at 30°C) and fluoresce readings are taken every minute over 20 to 30min.
- Example 1 showed 0% inhibition against 1A2, 2C9, 2D6 at 3uM,. and 1% inhibition against 3A4 at 3uM.
- Test compounds (1 ⁇ M) were incubated with 1 mM MgCI 2 , 1 mM NADP+, 5 mM isocitric acid, 1U/mL isocitric dehydrogenase and 0.8 mg/mL HLM(human liver microsomes) in 100 mM potassium phosphate buffer (pH 7.4) at 37 0 C on a number of 384-well plates. At several time points, a plate was removed from the incubator and the reaction was terminated with two incubation volumes of acetonitrile. The compound concentration in supernatant was measured by LC/MS/MS system.
- MIA Mono-lodoacetate
- Rats are trained to measure the WB once a week until 20 days post MIA-injection. Analgesic effects of compounds are measured at 21 days after the MIA injection. Before the compound administration, the "pre value" of WB deficit is measured. After the administration of compounds, attenuation of WB deficits is determined as analgesic effects.
- CFA Complete Freund's adjuvant
- CFA Complete Freund's adjuvant
- Ml Mycobacterium Tuberculosis H37RA
- liquid paraffin Wako, Osaka, Japan
- thermal hyperalgesia is determined by method described previously (Hargreaves et al., 1988) using the plantar test apparatus (Ugo-Basil, Varese, Italy). Rats are adapted to the testing environment for at least 15 min prior to any stimulation. Radiant heat is applied to the plantar surface of hind paw and paw withdrawal latencies (PWL, seconds) are determined. The intensity of radiant heat is adjusted to produce the stable PWL of 10 to 15 seconds.
- the test compound is administered in a volume of 0.5 mL per 100 g body weight. PWL are measured after 1 , 3 or 5 hours after drug administration.
- Mechanical hyperalgesia is administered in a volume of 0.5 mL per 100 g body weight. PWL are measured after 1 , 3 or 5 hours after drug administration.
- CFA 300 ⁇ g of Mycobacterium Tuberculosis H37RA (Difco, Ml) in 100 ⁇ L of liquid paraffin (Wako, Osaka, Japan)
- PWT paw withdrawal threshold
- the animals are gently restrained, and steadily increasing pressure is applied to the dorsal surface of a hind paw via a plastic tip. The pressure required to elicit paw withdrawal is determined.
- the test compound is administered in a volume of 0.5 mL per 100 g body weight. PWT are measured after 1 , 3 or 5 hours after drug administration.
- Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition and base salts thereof.
- Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include acetate, aspartate, benzoate, besylate, bicarbonate/carbonate, bisulphate/sulphate, borate, camsylate, citrate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride/chloride, hydrobromide/bromide, hydroiodide/iodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, 2-napsylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, saccharate, stearate, succinate, tartrate, tosylate and trifluoro
- Suitable base salts are formed from bases which form non-toxic salts. Examples include the aluminum, arginine, benzathine, calcium, choline, diethylamine, diolamine, glycine, lysine, magnesium, meglumine, olamine, potassium, sodium, tromethamine and zinc salts.
- a pharmaceutically acceptable salt of a compound of formula (I) may be readily prepared by mixing together solutions of the compound of formula (I) and the desired acid or base, as appropriate.
- the salt may precipitate from solution and be collected by filtration or may be recovered by evaporation of the solvent.
- the degree of ionization in the salt may vary from completely ionized to almost non-ionized.
- the compounds of the invention may exist in both unsolvated and solvated forms.
- 'solvate' is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol.
- solvent molecules for example, ethanol.
- 'hydrate' is employed when said solvent is water.
- complexes such as clathrates, drug-host inclusion complexes wherein, in contrast to the aforementioned solvates, the drug and host are present in stoichiometric or non-stoichiometric amounts.
- complexes of the drug containing two or more organic and/or inorganic components which may be in stoichiometric or non-stoichiometric amounts.
- the resulting complexes may be ionized, partially ionized, or non-ionized.
- references to compounds of formula (I) include references to salts, solvates and complexes thereof and to solvates and complexes of salts thereof.
- the compounds of the invention include compounds of formula (I) as hereinbefore defined, polymorphs, prodrugs, and isomers thereof (including optical, geometric and tautomeric isomers) as hereinafter defined and isotopically-labeled compounds of formula (I).
- the invention includes all polymorphs of the compounds of formula (I) as hereinbefore defined.
- 'prodrugs' of the compounds of formula (I) are so-called 'prodrugs' of the compounds of formula (I).
- certain derivatives of compounds of formula (I) which may have little or no pharmacological activity themselves can, when administered into or onto the body, be converted into compounds of formula (I) having the desired activity, for example, by hydrolytic cleavage.
- Such derivatives are referred to as 'prodrugs'.
- Further information on the use of prodrugs may be found in 'Pro-drugs as Novel Delivery Systems, Vol. 14, ACS Symposium Series (T Higuchi and W Stella) and 'Bioreversible Carriers in Drug Design', Pergamon Press, 1987 (ed. E B Roche, American Pharmaceutical Association).
- Prodrugs in accordance with the invention can, for example, be produced by replacing appropriate functionalities present in the compounds of formula (I) with certain moieties known to those skilled in the art as 'pro-moieties' as described, for example, in "Design of Prodrugs” by H Bundgaard (Elsevier, 1985).
- prodrugs in accordance with the invention include: (i) where the compound of formula (I) contains a carboxylic acid functionality (-COOH), an ester thereof, for example, replacement of the hydrogen with (C r C 8 )alkyl; (ii) where the compound of formula (I) contains an alcohol functionality (-OH), an ether thereof, for example, replacement of the hydrogen with (Ci-C 6 )alkanoyloxymethyl; and
- Cis/trans isomers may be separated by conventional techniques well known to those skilled in the art, for example, chromatography and fractional crystallization.
- racemate (or a racemic precursor) may be reacted with a suitable optically active compound, for example, an alcohol, or, in the case where the compound of formula (I) contains an acidic or basic moiety, an acid or base such as tartaric acid or 1-phenylethylamine.
- a suitable optically active compound for example, an alcohol, or, in the case where the compound of formula (I) contains an acidic or basic moiety, an acid or base such as tartaric acid or 1-phenylethylamine.
- the resulting diastereomeric mixture may be separated by chromatography and/or fractional crystallization and one or both of the diastereoisomers converted to the corresponding pure enantiomer(s) by means well known to a skilled person.
- Chiral compounds of the invention may be obtained in enantiomerically-enriched form using chromatography, typically HPLC, on an asymmetric resin with a mobile phase consisting of a hydrocarbon, typically heptane or hexane, containing from 0 to 50% isopropanol, typically from 2 to 20%, and from 0 to 5% of an alkylamine, typically 0.1% diethylamine. Concentration of the eluate affords the enriched mixture.
- Stereoisomeric conglomerates may be separated by conventional techniques known to those skilled in the art - see, for example, "Stereochemistry of Organic Compounds" by E L Eliel (Wiley, New York, 1994).
- the present invention includes all pharmaceutically acceptable isotopically-labelled compounds of formula (I) wherein one or more atoms are replaced by atoms having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes suitable for inclusion in the compounds of the invention include isotopes of hydrogen, such as 2 H and 3 H, carbon, such as 11 C, 13 C and 14 C, chlorine, such as 36 CI, fluorine, such as 18 F, iodine, such as 123 I and 125 I, nitrogen, such as 13 N and 15 N, oxygen, such as 15 0, 17 O and 18 O, phosphorus, such as 32 P, and sulphur, such as 35 S.
- isotopically-labelled compounds of formula (I), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies.
- the radioactive isotopes tritium, i.e. 3 H, and carbon-14, i.e. 14 C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
- substitution with heavier isotopes such as deuterium, i.e. 2 H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
- Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the accompanying Examples and Preparations using an appropriate isotopically-labeled reagents in place of the non-labeled reagent previously employed.
- solvates in accordance with the invention include those wherein the solvent of crystallization may be isotopically substituted, e.g. D 2 O, d 6 -acetone, d 6 -DMSO.
- Compounds of the invention intended for pharmaceutical use may be administered as crystalline or amorphous products. They may be obtained, for example, as solid plugs, powders, or films by methods such as precipitation, crystallization, freeze drying, or spray drying, or evaporative drying. Microwave or radio frequency drying may be used for this purpose.
- excipient is used herein to describe any ingredient other than the compound(s) of the invention. The choice of excipient will to a large extent depend on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
- compositions suitable for the delivery of compounds of the present invention and methods for their preparation will be readily apparent to those skilled in the art. Such compositions and methods for their preparation may be found, for example, in 'Remington's Pharmaceutical Sciences', 19th Edition (Mack Publishing Company, 1995). ORAL ADMINISTRATION
- the compounds of the invention may be administered orally.
- Oral administration may involve swallowing, so that the compound enters the gastrointestinal tract, or buccal or sublingual administration may be employed by which the compound enters the blood stream directly from the mouth.
- Formulations suitable for oral administration include solid formulations such as tablets, capsules containing particulates, liquids, or powders, lozenges (including liquid-filled), chews, multi- and nano-particulates, gels, solid solution, liposome, films (including muco-adhesive), ovules, sprays and liquid formulations.
- Liquid formulations include suspensions, solutions, syrups and elixirs. Such formulations may be employed as fillers in soft or hard capsules and typically comprise a carrier, for example, water, ethanol, polyethylene glycol, propylene glycol, methylcellulose, or a suitable oil, and one or more emulsifying agents and/or suspending agents. Liquid formulations may also be prepared by the reconstitution of a solid, for example, from a sachet. The compounds of the invention may also be used in fast-dissolving, fast-disintegrating dosage forms such as those described in Expert Opinion in Therapeutic Patents, 11 (6), 981-986 by Liang and Chen (2001).
- the drug may make up from 1 wt% to 80 wt% of the dosage form, more typically from 5 wt% to 60 wt% of the dosage form.
- tablets generally contain a disintegrant.
- disintegrants include sodium starch glycolate, sodium carboxymethyl cellulose, calcium carboxymethyl cellulose, croscarmellose sodium, crospovidone, polyvinylpyrrolidone, methyl cellulose, microcrystalline cellulose, lower alkyl-substituted hydroxypropyl cellulose, starch, pregelatinised starch and sodium alginate.
- the disintegrant will comprise from 1 wt% to 25 wt%, preferably from 5 wt% to 20 wt% of the dosage form.
- Binders are generally used to impart cohesive qualities to a tablet formulation. Suitable binders include microcrystalline cellulose, gelatin, sugars, polyethylene glycol, natural and synthetic gums, polyvinylpyrrolidone, pregelatinised starch, hydroxypropyl cellulose and hydroxypropyl methylcellulose. Tablets may also contain diluents, such as lactose (monohydrate, spray-dried monohydrate, anhydrous and the like), mannitol, xylitol, dextrose, sucrose, sorbitol, microcrystalline cellulose, starch and dibasic calcium phosphate dihydrate.
- lactose monohydrate, spray-dried monohydrate, anhydrous and the like
- mannitol xylitol
- dextrose sucrose
- sorbitol microcrystalline cellulose
- starch dibasic calcium phosphate dihydrate
- Tablets may also optionally comprise surface active agents, such as sodium lauryl sulfate and polysorbate 80, and glidants such as silicon dioxide and talc.
- surface active agents such as sodium lauryl sulfate and polysorbate 80
- glidants such as silicon dioxide and talc.
- surface active agents may comprise from 0.2 wt% to 5 wt% of the tablet, and glidants may comprise from 0.2 wt% to 1 wt% of the tablet.
- Tablets also generally contain lubricants such as magnesium stearate, calcium stearate, zinc stearate, sodium stearyl fumarate, and mixtures of magnesium stearate with sodium lauryl sulphate.
- Lubricants generally comprise from 0.25 wt% to 10 wt%, preferably from 0.5 wt% to 3 wt% of the tablet.
- ingredients include anti-oxidants, colorants, flavouring agents, preservatives and taste-masking agents.
- Exemplary tablets contain up to about 80% drug, from about 10 wt% to about 90 wt% binder, from about O wt% to about 85 wt% diluent, from about 2 wt% to about 10 wt% disintegrant, and from about 0.25 wt% to about 10 wt% lubricant.
- Tablet blends may be compressed directly or by roller to form tablets. Tablet blends or portions of blends may alternatively be wet-, dry-, or melt-granulated, melt congealed, or extruded before tabletting.
- the final formulation may comprise one or more layers and may be coated or uncoated; it may even be encapsulated.
- Solid formulations for oral administration may be formulated to be immediate and/or modified controlled release.
- Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release.
- Suitable modified release formulations for the purposes of the invention are described in US Patent No. 6,106,864. Details of other suitable release technologies such as high energy dispersions and osmotic and coated particles are to be found in Verma et al, Pharmaceutical Technology On-line, 25(2), 1-14 (2001 ). The use of chewing gum to achieve controlled release is described in WO 00/35298. PARENTERAL ADMINISTRATION
- the compounds of the invention may also be administered directly into the blood stream, into muscle, or into an internal organ.
- Suitable means for parenteral administration include .intravenous, intraarterial, intraperitoneal, intrathecal, intraventricular, intraurethral, intrastemal, intracranial, intramuscular and subcutaneous.
- Suitable devices for parenteral administration include needle (including microneedle) injectors, needle-free injectors and infusion techniques.
- Parenteral formulations are typically aqueous solutions which may contain excipients such as salts, carbohydrates and buffering agents (preferably, to a pH of from 3 to 9), but, for some applications, they may be more suitably formulated as a sterile non-aqueous solution or as powdered a dried form to be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water.
- excipients such as salts, carbohydrates and buffering agents (preferably, to a pH of from 3 to 9)
- a suitable vehicle such as sterile, pyrogen-free water.
- parenteral formulations under sterile conditions may readily be accomplished using standard pharmaceutical techniques well known to those skilled in the art.
- solubility of compounds of formula (I) used in the preparation of parenteral solutions may be increased by the use of appropriate formulation techniques, such as the incorporation of solubility-enhancing agents.
- Formulations for use with needle-free injection administration comprise a compound of the invention in powdered form in conjunction with a suitable vehicle such as sterile, pyrogen-free water.
- Formulations for parenteral administration may be formulated to be immediate and/or modified controlled release.
- Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release.
- compounds of the invention may be formulated as a solid, semi-solid, orthixotropic liquid for administration as an implanted depot providing modified release of the active compound. Examples of such formulations include drug-coated stents and PGLA microspheres.
- the compounds of the invention may also be administered topically to the skin or mucosa, that is, dermally or transdermally.
- Typical formulations for this purpose include gels, hydrogels, lotions, solutions, creams, ointments, dusting powders, dressings, foams, films, skin patches, wafers, implants, sponges, fibres, bandages and microemulsions. Liposomes may also be used.
- Typical carriers include alcohol, water, mineral oil, liquid petrolatum, white petrolatum, glycerin, polyethylene glycol and propylene glycol. Penetration enhancers may be incorporated - see, for example, J Pharm Sci, 88 (10), 955-958 by Finnin and Morgan (October 1999).
- topical administration include delivery by electroporation, iontophoresis, phonophoresis, sonophoresis and microneedle or needle-free (e.g. PowderjectTM, BiojectTM, etc.) injection.
- Formulations for topical administration may be formulated to be immediate and/or modified controlled release.
- Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release.
- INHALED/INTRANASAL ADMINISTRATION The compounds of the invention can also be administered intranasally or by inhalation, typically in the form of a dry powder (either alone, as a mixture, for example, in a dry blend with lactose, or as a mixed component particle, for example, mixed with phospholipids, such as phosphatidylcholine) from a dry powder inhaler or as an aerosol spray from a pressurized container, pump, spray, atomiser (preferably an atomiser using electrohydrodynamics to produce a fine mist), or nebuliser, with or without the use of a suitable propellant, such as 1 ,1 ,1 ,2-tetrafluoroethane or 1 ,1 ,1 ,2,3,3,3-heptafluoro
- the pressurised container, pump, spray, atomizer, or nebuliser contains a solution or suspension of the compound(s) of the invention comprising, for example, ethanol, aqueous ethanol, or a suitable alternative agent for dispersing, solubilising, or extending release of the active, a propellant(s) as solvent and an optional surfactant, such as sorbitan trioleate, oleic acid, or an oligolactic acid.
- a solution or suspension of the compound(s) of the invention comprising, for example, ethanol, aqueous ethanol, or a suitable alternative agent for dispersing, solubilising, or extending release of the active, a propellant(s) as solvent and an optional surfactant, such as sorbitan trioleate, oleic acid, or an oligolactic acid.
- the drug product Prior to use in a dry powder or suspension formulation, the drug product is micronised to a size suitable for delivery by inhalation (typically less than 5 microns). This may be achieved by any appropriate comminuting method, such as spiral jet milling, fluid bed jet milling, supercritical fluid processing to form nanoparticles, high pressure homogenisation, or spray drying.
- comminuting method such as spiral jet milling, fluid bed jet milling, supercritical fluid processing to form nanoparticles, high pressure homogenisation, or spray drying.
- Capsules made, for example, from gelatin or HPMC
- blisters and cartridges for use in an inhaler or insufflator may be formulated to contain a powder mix of the compound of the invention, a suitable powder base such as lactose or starch and a performance modifier such as /-leucine, mannitol, or magnesium stearate.
- the lactose may be anhydrous or in the form of the monohydrate, preferably the latter.
- Other suitable excipients include dextran, glucose, maltose, sorbitol, xylitol, fructose, sucrose and trehalose.
- a suitable solution formulation for use in an atomiser using electrohydrodynamics to produce a fine mist may contain from 1 ⁇ g to 20mg of the compound of the invention per actuation and the actuation volume may vary from 1 ⁇ l to 100 ⁇ l.
- a typical formulation may comprise a compound of formula (I), propylene glycol, sterile water, ethanol and sodium chloride.
- Alternative solvents which may be used instead of propylene glycol include glycerol and polyethylene glycol.
- Suitable flavours such as menthol and levomenthol, or sweeteners, such as saccharin or saccharin sodium, may be added to those formulations of the invention intended for inhaled/intranasal administration.
- Formulations for inhaled/intranasal administration may be formulated to be immediate and/or modified controlled release using, for example, poly(DL-lactic-coglycolic acid (PGLA).
- Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release.
- the dosage unit is determined by means of a valve which delivers a metered amount.
- Units in accordance with the invention are typically arranged to administer a metered dose or "puff' containing from 1 ⁇ g to 10mg of the compound of formula (I).
- the overall daily dose will typically be in the range 1 ⁇ g to 10 mg which may be administered in a single dose or, more usually, as divided doses throughout the day.
- the compounds of the invention may be administered rectally or vaginally, for example, in the form of a suppository, pessary, or enema.
- Cocoa butter is a traditional suppository base, but various alternatives may be used as appropriate.
- Formulations for rectal/vaginal administration may be formulated to be immediate and/or modified controlled release.
- Modified release formulations include delayed-, sustained-, pulsed-, controlled-, targeted and programmed release.
- the compounds of the invention may be combined with soluble macromolecular entities, such as cyclodextrin and suitable derivatives thereof or polyethylene glycol-containing polymers, in order to improve their solubility, dissolution rate, taste-masking, bioavailability and/or stability for use in any of the aforementioned modes of administration.
- soluble macromolecular entities such as cyclodextrin and suitable derivatives thereof or polyethylene glycol-containing polymers
- Drug-cyclodextrin complexes are found to be generally useful for most dosage forms and administration routes. Both inclusion and non-inclusion complexes may be used.
- the cyclodextrin may be used as an auxiliary additive, i.e. as a carrier, diluent, or solubiliser. Most commonly used for these purposes are alpha-, beta- and gamma-cyclodextrins, examples of which may be found in International Patent Applications Nos. WO
- the total daily dose of the compounds of the invention is typically in the range 0.1 mg to 3000 mg, preferably from 1mg to 500mg, depending, of course, on the mode of administration.
- oral administration may require a total daily dose of from 0.1 mg to 3000 mg, preferably from 1mg to 500mg, while an intravenous dose may only require from 0.1 mg to 1000 mg, preferably from 0.1 mg to 300mg.
- the total daily dose may be administered in single or divided doses.
- These dosages are based on an average human subject having a weight of about 65kg to 70kg. The physician will readily be able to determine doses for subjects whose weight falls outside this range, such as infants and the elderly.
- references herein to "treatment” include references to curative, palliative and prophylactic treatment.
- a VR1 antagonist may be usefully combined with another pharmacologically active compound, or with two or more other pharmacologically active compounds, particularly in the treatment of pain.
- a VR1 antagonist particularly a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as defined above, may be administered simultaneously, sequentially or separately in combination with one or more agents selected from:
- an opioid analgesic e.g. morphine, heroin, hydromorphone, oxymorphone, levorphanol, levallorphan, methadone, meperidine, fentanyl, cocaine, codeine, dihydrocodeine, oxycodone, hydrocodone, propoxyphene, nalmefene, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine or pentazocine;
- NSAID nonsteroidal antiinflammatory drug
- NSAID nonsteroidal antiinflammatory drug
- diclofenac diflusinal, etodolac
- fenbufen fenoprofen
- flufenisal flurbiprofen
- ibuprofen indomethacin
- ketoprofen ketorolac
- meclofenamic acid mefenamic acid
- meloxicam nabumetone, naproxen, nimesulide, nitroflurbiprofen, olsalazine, oxaprozin, phenylbutazone, piroxicam, sulfasalazine, sulindac, tolmetin or zomepirac
- NSAID nonsteroidal antiinflammatory drug
- a barbiturate sedative e.g. amobarbital, aprobarbital, butabarbital, butabital, mephobarbital, metharbital, methohexital, pentobarbital, phenobartital, secobarbital, talbutal, theamylal or thiopental;
- a benzodiazepine having a sedative action e.g. chlordiazepoxide, clorazepate, diazepam, flurazepam, lorazepam, oxazepam, temazepam or triazolam;
- an Hi antagonist having a sedative action e.g. diphenhydramine, pyrilamine, promethazine, chlorpheniramine or chlorcyclizine;
- a sedative such as glutethimide, meprobamate, methaqualone or dichloralphenazone
- a skeletal muscle relaxant e.g. baclofen, carisoprodol, chlorzoxazone, cyclobenzaprine, methocarbamol or orphrenadine;
- an NMDA receptor antagonist e.g. dextromethorphan ((+)-3-hydroxy-N-methylmorphinan) or its metabolite dextrorphan ((+)-3-hydroxy-N-methylmorphinan), ketamine, memantine, pyrroloquinoline quinine, cis-4-(phosphonomethyl)-2-piperidinecarboxylic acid, budipine, EN-3231 (MorphiDex®, a combination formulation of morphine and dextromethorphan), topiramate, neramexane or perzinfotel including an NR2B antagonist, e.g.
- an NMDA receptor antagonist e.g. dextromethorphan ((+)-3-hydroxy-N-methylmorphinan) or its metabolite dextrorphan ((+)-3-hydroxy-N-methylmorphinan), ketamine, memantine, pyrroloquinoline quinine, cis-4-(phosphonomethyl)-2
- an alpha-adrenergic e.g. doxazosin, tamsulosin, clonidine, guanfacine, dexmetatomidine, modafinil, or
- a tricyclic antidepressant e.g. desipramine, imipramine, amitriptyline or nortriptyline;
- an anticonvulsant e.g. carbamazepine, lamotrigine, topiratmate or valproate;
- a tachykinin (NK) antagonist particularly an NK-3, NK-2 or NK- 1 antagonist, e.g. ( ⁇ R,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1 ,4]diazocino[2, 1 -g][1 ,7]-naphthyridine-6-13-dione (TAK-637), '
- a muscarinic antagonist e.g oxybutynin, tolterodine, propiverine, tropsium chloride, darifenacin, solifenacin, temiverine and ipratropium;
- COX-2 selective inhibitor e.g. celecoxib, rofecoxib, parecoxib, valdecoxib, deracoxib, etoricoxib, or lumiracoxib;
- a neuroleptic such as droperidol, chlorpromazine, haloperidol, perphenazine, thioridazine, mesoridazine, trifluoperazine, fluphenazine, clozapine, olanzapine, risperidone, ziprasidone, quetiapine, sertindole, aripiprazole, sonepiprazole, blonanserin, iloperidone, perospirone, raclopride, zotepine, bifeprunox, asenapine, lurasidone, amisulpride, balaperidone, palindore, eplivanserin, osanetant, rimonabant, meclinertant, Miraxion® or sarizotan;
- a vanilloid receptor agonist e.g. resinferatoxin
- antagonist e.g. capsazepine
- a beta-adrenergic such as propranolol
- a corticosteroid such as dexamethasone
- a 5-HT receptor agonist or antagonist particularly a 5-HT 1B /i D agonist such as eletriptan, sumatriptan, naratriptan, zolmitriptan or rizatriptan;
- a 5-HT 2A receptor antagonist such as
- a cholinergic (nicotinic) analgesic such as ispronicline (TC-1734), (E)-N-methyl-4-(3-pyridinyl)-3-buten-1-amine (RJR-24u3), (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594) or nicotine;
- a PDEV inhibitor such as
- an alpha-2-delta ligand such as gabapentin, pregabalin, 3-methylgabapentin, (1 ⁇ ,3 ⁇ ,5 ⁇ )(3-amino-methyl-bicyclo[3.2.0]hept-3-yl)-acetic acid,
- mGluRI metabotropic glutamate subtype 1 receptor
- a serotonin reuptake inhibitor such as sertraline, sertraline metabolite demethylsertraline, fluoxetine, norfluoxetine (fluoxetine desmethyl metabolite), fluvoxamine, paroxetine, citalopram, citalopram metabolite desmethylcitalopram, escitalopram, d,l-fenfluramine, femoxetine, ifoxetine, cyanodothiepin, litoxetine, dapoxetine, nefazodone, cericlamine and trazodone;
- a noradrenaline (norepinephrine) reuptake inhibitor such as maprotiline, lofepramine, mirtazepine, oxaprotiline, fezolamine, tomoxetine, mianserin, buproprion, buproprion metabolite hydroxybuproprion, nomifensine and viloxazine (Vivalan®), especially a selective noradrenaline reuptake inhibitor such as reboxetine, in particular (S,S)-reboxetine;
- a dual serotonin-noradrenaline reuptake inhibitor such as venlafaxine, venlafaxine metabolite O-desmethylvenlafaxine, clomipramine, clomipramine metabolite desmethylclomipramine, duloxetine, milnacipran and imipramine;
- an inducible nitric oxide synthase (iNOS) inhibitor such as S-[2-[(1-iminoethyl)amino]ethyl]-L-homocysteine, S-[2-[(1-iminoethyl)-amino]ethyl]-4,4-dioxo-L-cysteine, S-[2-[(1-iminoethyl)amino]ethyl]-2-methyl-L-cysteine,
- iNOS inducible nitric oxide synthase
- an acetylcholinesterase inhibitor such as donepezil
- a 5-lipoxygenase inhibitor such as zileuton
- a sodium channel blocker such as lidocaine
- a 5-HT3 antagonist such as ondansetron
- pharmaceutically acceptable salts and solvates thereof • a 5-HT3 antagonist, such as ondansetron; and the pharmaceutically acceptable salts and solvates thereof.
- two or more pharmaceutical compositions may conveniently be combined in the form of a kit suitable for coadministration of the compositions.
- the kit of the invention comprises two or more separate pharmaceutical compositions, at least one of which contains a compound of formula (I) in accordance with the invention, and means for separately retaining said compositions, such as a container, divided bottle, or divided foil packet.
- a container, divided bottle, or divided foil packet An example of such a kit is the familiar blister pack used for the packaging of tablets, capsules and the like.
- the kit of the invention is particularly suitable for administering different dosage forms, for example, oral and parenteral, for administering the separate compositions at different dosage intervals, or for titrating the separate compositions against one another.
- the kit typically comprises directions for administration and may be provided with a so-called memory aid.
- Flash column chromatography was carried out using Merck silica gel 60 (230-400 mesh ASTM) or Fuji Silysia amino bounded silica (Chromatorex, 30-50 uM) or Biotage amino bounded silica (35-75 ⁇ m, KP-NH) or Biotage silica (32-63 ⁇ m, KP-SiI).
- the purification using HPLC was perfomed by the following apparatus and conditions.
- Apparatus UV-trigger preparative HPLC system, Waters (Column: XTerra MS C18, 5 urn, 19 x 50 mm or 30 x 50 mm), Detector: UV 254 nm Conditions : CH 3 CN/0.05% HCOOH aqueous solution or CH 3 CN/0.01 % NH 3 aqueous solution; 20ml/min (19 x 50 mm) or 40ml/min (30 x 50 mm) at ambient temperature. Microwave apparatus used in the reaction was Emrys optimizer (Personal chemistry). Optical rotation was measured by P-1020 (Jasco). Low-resolution mass spectral data (El) were obtained on a Integrity (Waters) mass spectrometer.
- ESI mass spectral data
- ZMD Micromass mass spectrometer
- IR spectra were measured by a Shimazu infrared spectrometer (IR-470). Chemical symbols have their usual meanings; bp (boiling point), mp (melting point), L (liter(s)), ml (milliliter(s)), g (gram(s)), mg (milligram(s)), mol (moles), mmol (millimoles), eq. (equivalent(s)), quant, (quantitative yield), sat.(saturated), aq (aqua).
- the crude material was purified by silica gel column chromatography, eluting with gradually from hexane/EtOAc (2:1) to hexane/EtOAc (1 :1), to give the title compound (214 mg, 49%) as a white solid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
L'invention concerne un nouveau composé de N-(N-sulfonylaminoarylmethyl)cyclopropanecarboxamide substitué ainsi que son utilisation en thérapie. L'invention concerne un 2-(6-tert-butylpyridin-3-yl)-N-((1R)-1-{3,5-difluoro-4-[(méthylsulfonyl)amino]phényl}éthyl)-2-méthylcyclopropanecarboxamide, ou un sel ou un solvant pharmaceutiquement acceptables de ce dernier. Ledit composé est particulièrement utile en tant qu'antagoniste du récepteur VR1 (vanilloïde de type I), et est ainsi utile pour le traitement de la douleur, de la névralgie, de neuropathies, de lésions nerveuses, de brûlures, de la migraine, du syndrome du canal carpien, de la fibromyalgie, de la névrite, de la sciatique, de l'hypersensibilité pelvienne, de la vessie, de l'inflammation, ou analogues chez les mammifères, notamment chez les humains. La présente invention concerne également une composition pharmaceutique comprenant le composé susmentionné.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79961406P | 2006-05-10 | 2006-05-10 | |
US60/799,614 | 2006-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007129188A1 true WO2007129188A1 (fr) | 2007-11-15 |
Family
ID=38510403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2007/001143 WO2007129188A1 (fr) | 2006-05-10 | 2007-04-27 | Composé de cyclopropanecarboxamide |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007129188A1 (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009021740A2 (fr) | 2007-08-15 | 2009-02-19 | Sanofis-Aventis | Nouvelles tétrahydronaphtalines substituées, leurs procédés de préparation et leur utilisation comme médicaments |
WO2011044195A1 (fr) * | 2009-10-07 | 2011-04-14 | Bristol-Myers Squibb Company | Modulateurs du récepteur 88 couplé à une protéine g |
WO2012120056A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine tétra-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120054A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine di- et tri-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120052A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés d'oxathiazine substitués par des carbocycles ou des hétérocycles, leur procédé de préparation, médicaments contenant ces composés et leur utilisation |
WO2012120055A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine di- et tri-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120053A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine ramifiés, procédé pour leur préparation, utilisation en tant que médicament, agents pharmaceutiques contenant ces dérivés et leur utilisation |
US8268848B2 (en) | 2010-09-22 | 2012-09-18 | Eisai R&D Management Co., Ltd. | Cyclopropane compound |
US8304577B2 (en) | 2009-10-09 | 2012-11-06 | Bristol-Myers Squibb Company | Modulators of G protein-coupled receptor 88 |
US8426414B2 (en) | 2009-10-09 | 2013-04-23 | Bristol-Myers Squibb Company | Modulators of G protein-coupled receptor 88 |
KR20160101554A (ko) | 2015-02-17 | 2016-08-25 | (주)아모레퍼시픽 | N-[4-(1-아미노에틸)-페닐]-메탄술폰아미드 유도체의 카이랄 분할 방법 |
KR20170003261A (ko) | 2015-06-30 | 2017-01-09 | (주)아모레퍼시픽 | N-(4-아세틸-2,6-디플루오로페닐)메탄술폰아미드의 제조방법 |
CN106660949A (zh) * | 2015-02-17 | 2017-05-10 | 株式会社爱茉莉太平洋 | N‑[4‑(1‑氨基乙基)‑苯基]‑磺酰胺衍生物的手性拆分方法 |
KR20170081315A (ko) | 2016-01-04 | 2017-07-12 | (주)아모레퍼시픽 | 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법 |
KR20180034884A (ko) | 2016-09-28 | 2018-04-05 | (주)아모레퍼시픽 | (r)-n-[4-(1-아미노-에틸)-2,6-다이플루오로-페닐]-메테인설폰아마이드의 제조방법 |
KR20180073113A (ko) | 2016-12-22 | 2018-07-02 | (주)아모레퍼시픽 | N-[4-(1-아미노-에틸)-2,6-다이플루오로-페닐]-메테인설폰아마이드의 거울상 이성질체들의 라세미화 방법 |
US10188652B2 (en) | 2014-10-23 | 2019-01-29 | Eisai R&D Management Co., Ltd. | Compositions and methods for treating insomnia |
CN117442737A (zh) * | 2023-11-01 | 2024-01-26 | 河北医科大学口腔医院 | α2-肾上腺素受体激动剂与阿片受体激动剂的联合应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047738A2 (fr) * | 2002-11-22 | 2004-06-10 | Bristol-Myers Squibb Company | Amides arylcyclopropylcarboxyliques utilises en tant qu'agents d'ouverture des canaux potassiques |
WO2006097817A1 (fr) * | 2005-03-17 | 2006-09-21 | Pfizer Japan Inc. | Derives de n-(n-sulfonylaminomethyl)cyclopropanecarboxamide utilises pour traiter une douleur |
-
2007
- 2007-04-27 WO PCT/IB2007/001143 patent/WO2007129188A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004047738A2 (fr) * | 2002-11-22 | 2004-06-10 | Bristol-Myers Squibb Company | Amides arylcyclopropylcarboxyliques utilises en tant qu'agents d'ouverture des canaux potassiques |
WO2006097817A1 (fr) * | 2005-03-17 | 2006-09-21 | Pfizer Japan Inc. | Derives de n-(n-sulfonylaminomethyl)cyclopropanecarboxamide utilises pour traiter une douleur |
Non-Patent Citations (2)
Title |
---|
SZALLASI A ET AL: "Vanilloid receptor TRPV1 antagonists as the next generation of painkillers. Are we putting the cart before the horse?", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 47, no. 11, 3 April 2004 (2004-04-03), pages 2717 - 2723, XP002400521, ISSN: 0022-2623 * |
WESTWAY, S.M.: "The Potential of Transient Receptor Potential Vanilloid Type 1 Channel Modulators for the Treatment of Pain", JOURNAL OF MEDICINAL CHEMISTRY, vol. 50, 2007, pages 2589 - 2596, XP002452089 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009021740A2 (fr) | 2007-08-15 | 2009-02-19 | Sanofis-Aventis | Nouvelles tétrahydronaphtalines substituées, leurs procédés de préparation et leur utilisation comme médicaments |
WO2011044195A1 (fr) * | 2009-10-07 | 2011-04-14 | Bristol-Myers Squibb Company | Modulateurs du récepteur 88 couplé à une protéine g |
CN102686575A (zh) * | 2009-10-07 | 2012-09-19 | 百时美施贵宝公司 | G蛋白偶联受体88的调节剂 |
US8497271B2 (en) | 2009-10-07 | 2013-07-30 | Bristol-Myers Squibb Company | Modulators of G protein-coupled receptor 88 |
US8304577B2 (en) | 2009-10-09 | 2012-11-06 | Bristol-Myers Squibb Company | Modulators of G protein-coupled receptor 88 |
US8426414B2 (en) | 2009-10-09 | 2013-04-23 | Bristol-Myers Squibb Company | Modulators of G protein-coupled receptor 88 |
US8268848B2 (en) | 2010-09-22 | 2012-09-18 | Eisai R&D Management Co., Ltd. | Cyclopropane compound |
WO2012120056A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine tétra-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120054A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine di- et tri-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120052A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés d'oxathiazine substitués par des carbocycles ou des hétérocycles, leur procédé de préparation, médicaments contenant ces composés et leur utilisation |
WO2012120055A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine di- et tri-substitués, procédé pour leur préparation, utilisation en tant que médicament, agent pharmaceutique contenant ces dérivés et utilisation |
WO2012120053A1 (fr) | 2011-03-08 | 2012-09-13 | Sanofi | Dérivés oxathiazine ramifiés, procédé pour leur préparation, utilisation en tant que médicament, agents pharmaceutiques contenant ces dérivés et leur utilisation |
US10188652B2 (en) | 2014-10-23 | 2019-01-29 | Eisai R&D Management Co., Ltd. | Compositions and methods for treating insomnia |
US10702529B2 (en) | 2014-10-23 | 2020-07-07 | Eisai R&D Management Co., Ltd. | Compositions and methods for treating insomnia |
US11026944B2 (en) | 2014-10-23 | 2021-06-08 | Eisai R&D Management Co., Ltd. | Compositions and methods for treating insomnia |
KR20160101554A (ko) | 2015-02-17 | 2016-08-25 | (주)아모레퍼시픽 | N-[4-(1-아미노에틸)-페닐]-메탄술폰아미드 유도체의 카이랄 분할 방법 |
US10479763B2 (en) | 2015-02-17 | 2019-11-19 | Amorepacific Corporation | Chiral resolution method of N-[4-(1-aminoethyl)-phenyl]-sulfonamide derivatives |
KR101791119B1 (ko) * | 2015-02-17 | 2017-11-20 | (주)아모레퍼시픽 | N-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법 |
EP3162793A4 (fr) * | 2015-02-17 | 2018-01-03 | Amorepacific Corporation | Procédé de résolution chirale de dérivés n-[4-(1-aminoéthyl)-phényl]-sulfonamide |
CN106660949A (zh) * | 2015-02-17 | 2017-05-10 | 株式会社爱茉莉太平洋 | N‑[4‑(1‑氨基乙基)‑苯基]‑磺酰胺衍生物的手性拆分方法 |
CN106316893B (zh) * | 2015-06-30 | 2021-03-12 | 株式会社爱茉莉太平洋 | N-(4-乙酰基-2,6-二氟苯基)甲磺酰胺的制造方法 |
KR20170003261A (ko) | 2015-06-30 | 2017-01-09 | (주)아모레퍼시픽 | N-(4-아세틸-2,6-디플루오로페닐)메탄술폰아미드의 제조방법 |
CN106316893A (zh) * | 2015-06-30 | 2017-01-11 | 株式会社爱茉莉太平洋 | N-(4-乙酰基-2,6-二氟苯基)甲磺酰胺的制造方法 |
KR20170081315A (ko) | 2016-01-04 | 2017-07-12 | (주)아모레퍼시픽 | 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법 |
KR102565407B1 (ko) | 2016-01-04 | 2023-08-10 | (주)아모레퍼시픽 | 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법 |
KR20180034884A (ko) | 2016-09-28 | 2018-04-05 | (주)아모레퍼시픽 | (r)-n-[4-(1-아미노-에틸)-2,6-다이플루오로-페닐]-메테인설폰아마이드의 제조방법 |
US10858315B2 (en) | 2016-09-28 | 2020-12-08 | Amorepacific Corporation | Method for preparing (R)-N-[4-(1-amino-ethyl)-2,6-difluoro-phenyl]-methanesulfonamide |
KR20180073113A (ko) | 2016-12-22 | 2018-07-02 | (주)아모레퍼시픽 | N-[4-(1-아미노-에틸)-2,6-다이플루오로-페닐]-메테인설폰아마이드의 거울상 이성질체들의 라세미화 방법 |
CN117442737A (zh) * | 2023-11-01 | 2024-01-26 | 河北医科大学口腔医院 | α2-肾上腺素受体激动剂与阿片受体激动剂的联合应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7566739B2 (en) | Substituted N-sulfonylaminophenylethyl-2-phenoxyacetamide compounds as VR1 receptor antagonists | |
US7514457B2 (en) | Substituted aryloxymethyl bicyclicmethyl acetamide compounds | |
WO2007129188A1 (fr) | Composé de cyclopropanecarboxamide | |
US7214824B2 (en) | Substituted N-sulfonylaminobenzyl-2-phenoxyacetamide compounds as VR1 receptor agonists | |
US7649004B2 (en) | Pyridine derivatives | |
EP1824837B1 (fr) | Composes de n-sulfonylaminobenzyl-2-phenoxy acetamide substitue | |
US8134004B2 (en) | Substituted N-bicyclicalkyl bicycliccarboxyamide compounds | |
US20100035880A1 (en) | Substituted sulfonylaminoarylmethyl cyclopropanecarboxamide as vr1 receptor antagonists | |
US7964732B2 (en) | Substituted bicyclocarboxyamide compounds | |
EP2222631B1 (fr) | Composés de phénylméthyl bicyclocarboxyamide substitués | |
US20110152326A1 (en) | Substituted aryloxoethyl cyclopropanecarboxamide compounds as vr1 receptor antagonists | |
WO2007125398A2 (fr) | Sulfonamides | |
WO2008090434A1 (fr) | Composés n-bicyclicalkyle bicyclique carboxyamide substitués | |
EP2069302B1 (fr) | Composés de pyridiylméthyle bicyclocarboxyamide substitué |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07734460 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07734460 Country of ref document: EP Kind code of ref document: A1 |