WO2007125618A1 - オーロラ発生装置及びオーロラ発生方法 - Google Patents

オーロラ発生装置及びオーロラ発生方法 Download PDF

Info

Publication number
WO2007125618A1
WO2007125618A1 PCT/JP2006/321531 JP2006321531W WO2007125618A1 WO 2007125618 A1 WO2007125618 A1 WO 2007125618A1 JP 2006321531 W JP2006321531 W JP 2006321531W WO 2007125618 A1 WO2007125618 A1 WO 2007125618A1
Authority
WO
WIPO (PCT)
Prior art keywords
aurora
vacuum vessel
gas
vacuum
electrode
Prior art date
Application number
PCT/JP2006/321531
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Minami
Kazuhiko Mori
Yuji Kurose
Ayumu Watanabe
Hideyuki Saito
Yasuhiro Ono
Original Assignee
Kabushikikaisha Iidasangyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushikikaisha Iidasangyo filed Critical Kabushikikaisha Iidasangyo
Publication of WO2007125618A1 publication Critical patent/WO2007125618A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/18Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to an aurora generating device and aurora generating method for supplying gas into a vacuum vessel and generating plasma to express a generation state of aurora.
  • an aurora generating apparatus which supplies gas into a vacuum vessel to generate plasma and reproduce the aurora generating situation.
  • a conventional aurora generator utilizing such a vacuum discharge supplies a gas into the vacuum vessel and applies a high voltage to the internal electrode to discharge the gas. To generate plasma. Furthermore, the aurora-generating device moves the plasma by changing the magnetic field with a vacuum vessel external force coil or the like to reproduce the aurora generation situation.
  • the present invention has been proposed in view of such circumstances, and it is an object of the present invention to provide an aurora generating device and aurora generating method capable of finer color expression as compared with the prior art.
  • an aurora generator comprises a vacuum container, a maintaining means for maintaining the inside of the vacuum container at a predetermined degree of vacuum, and a plasma is generated in the vacuum container.
  • Means for supplying the gas, an electrode provided in the vacuum vessel for generating plasma in the vacuum vessel, and a mark for applying a voltage to the electrode Control means for controlling the maintaining means and the applying means, and the supply means supplies a plurality of types of gas into the vacuum vessel from the plurality of gas supply ports provided in the vacuum vessel.
  • the control means is configured to maintain the degree of vacuum maintained by the vacuum maintaining means, the voltage value applied by the voltage applying means, and the voltage value according to the color of the aurora generated in the vacuum vessel. The current value flowing between the electrodes is controlled accordingly.
  • the supplied gas is applied by applying a voltage to an electrode for generating plasma provided in a vacuum vessel maintained at a predetermined degree of vacuum, thereby supplying the gas.
  • Method for generating an aurora of a color according to the type of the gas wherein a plurality of types of gas are supplied into the vacuum container from the plurality of gas supply ports provided in the vacuum container, and The degree of vacuum in the vacuum vessel, the voltage value applied to the electrode, and the current value flowing between the electrodes are controlled in accordance with the color of the aurora to be generated.
  • the degree of vacuum in the vacuum vessel, the voltage value applied to the electrode, and the flow between the electrodes according to the voltage value according to the color of the aurora generated in the vacuum vessel Since the current value is controlled, it is possible to finely represent the color change specific to the aurora occurrence situation.
  • FIG. 1 is a block diagram schematically showing an aurora generator.
  • FIG. 2 is a perspective view showing a configuration provided in a vacuum vessel.
  • FIG. 3 is a view schematically showing a vacuum vessel.
  • FIG. 4A is a diagram showing the kind of color developed by controlling the kind of gas, the degree of vacuum and the voltage value applied between the discharge electrodes
  • FIG. 4B shows the kind of gas
  • FIG. 6 is a diagram showing the type of color to be developed by controlling the degree of vacuum and the voltage applied between the discharge electrodes.
  • FIG. 5 is a view schematically showing a vacuum vessel.
  • FIG. 6 is a view schematically showing the flow of electrons in the gas in a discharge state.
  • FIG. 7A is a view schematically showing a process of emitting aurora of two colors.
  • FIG. 8 is a diagram showing a specific configuration of an aurora generator for generating aurora of two colors.
  • FIG. 9 is a view schematically showing an aurora generator.
  • FIG. 10 is a perspective view showing the shape of a flexible discharge electrode.
  • FIG. 11 is a perspective view showing an arrayed electrode group.
  • FIG. 12 is a perspective view showing a vacuum vessel provided with a deflection coil.
  • FIG. 13A is a perspective view showing the shape and dimensions of a vacuum vessel actually applied to an aurora generator
  • FIG. 13B is a perspective view showing a configuration provided around the vacuum vessel. Best form to carry out
  • the aurora generator 1 supplies, for example, a rectangular parallelepiped vacuum vessel 10, a gas exhaust unit 11 for maintaining the inside of the vacuum vessel 10 at a predetermined degree of vacuum, and a gas in the vacuum vessel 10.
  • a gas supply unit 12, a power supply unit 14 for applying a voltage to two discharge electrodes 13a and 13b provided in the vacuum vessel 10, a gas exhaust unit 11, a gas supply unit 12 and a control unit for controlling the power supply unit 14 And consists of
  • the shape of the vacuum vessel 10 shown in FIG. 1 is schematically shown, and is not limited to a rectangular parallelepiped.
  • discharge electrodes 13a and 13b are disposed, a gas exhaust port 16 and a gas supply port 17 are formed, and a shaping coil 18 is provided on the outer wall surface of the vessel.
  • the discharge electrodes 13a and 13b are disposed in the vacuum vessel 10 at positions facing the Z axis.
  • one of the discharge electrodes 13a and 13b has, for example, a plate shape disposed on the XY plane, and the other has a bar shape in which the X axis is a longitudinal direction.
  • plate-shaped The electrode is a discharge electrode 13a
  • the rod-shaped electrode is a discharge electrode 13b.
  • the discharge electrodes 13a and 13b are connected to the power supply unit 14, respectively.
  • the shapes of the discharge electrodes 13a and 13b are not limited to the rod and plate shapes.
  • the gas exhaust port 16 is connected to the gas exhaust unit 11 via a predetermined pipe. That is, in the vacuum vessel 10, the gas in the vacuum vessel 10 is exhausted from the gas exhaust port 16 to maintain the inside of the vacuum vessel 10 at a predetermined degree of vacuum.
  • the gas supply port 17 is connected to the gas supply unit 12 via a predetermined pipe.
  • a plurality of gas supply ports 17 are provided on the wall surface in the vacuum vessel 10, and different types of gases are supplied from the gas supply unit 12. That is, the gas supply unit 12 is provided with, for example, gas cylinders filled with a plurality of types of gases, and different types of gases are supplied into the vacuum vessel 10, respectively.
  • the shaping coil 18 is formed to cover the outer wall surface of the vacuum vessel 10 with the Z-axis direction as an axis. That is, the shaping coil 18 generates a line of magnetic force m in the Z-axis direction between the discharge electrode 13a and the discharge electrode 13b by flowing a current.
  • the magnetic force line m acts on the flow of the plasma current generated in the vacuum vessel 10 to generate an electromagnetic force, so that the shape of the plasma can be made flat. Also, the thickness dimension of the flat-plate shaped plasma changes in accordance with the strength of the magnetic force line m.
  • the gas is supplied from the gas supply port 17 to the vacuum vessel 10 reduced in pressure to a degree (for example, 0.10-0.02 mmHg) at which the vacuum discharge is generated by the gas exhaust port 16 and the discharge electrode
  • a degree for example, 0.10-0.02 mmHg
  • the color development of the plasma 19 generated in the vacuum vessel 10 changes depending on the type of gas supplied from the gas supply port 17.
  • control unit 15 selects the type of gas supplied from the gas supply port 17 into the vacuum vessel 10. Furthermore, in order to generate plasma 19 of a desired color, the control unit 15 sets the degree of vacuum in the vacuum vessel 10 and the discharge electrodes 13a, 13b according to the type of gas supplied into the vacuum vessel 10. Control the current value flowing between the discharge electrodes 13a and 13b according to the voltage value to be applied. Specifically, the control unit 15 controls the gas exhaust unit 11 to The degree of vacuum in the vacuum vessel 10 is changed, and the power supply unit 14 is controlled to change the voltage value applied between the discharge electrodes 13a and 13b. Further, a variable resistor (not shown) is connected in series between the power supply unit 14 and the discharge electrodes 13a, 13b.
  • control unit 15 changes the value of the current flowing between the discharge electrodes 13a and 13b by controlling the resistance value of the variable resistor.
  • aurora generator 1 The operation of will be described in detail by dividing into Examples 1 to 3.
  • two gas supply ports 17a and 17b are provided substantially in the center between the discharge electrodes 13a and 13b. Then, the control unit 15 causes the gas supply unit 12 to supply different types of gas from the two gas supply ports 17a and 17b.
  • the types of gas supplied into the vacuum vessel 10 used in the present embodiment are helium, oxygen, carbon dioxide, argon and neon.
  • the color development of the plasma discharged by supplying these gases alone to the vacuum vessel 10 is as shown in FIG. 4A. That is, the color developments of the corresponding plasmas of helium, oxygen, carbon dioxide, argon and neon are green, yellow, blue-purple, orange and pink.
  • the control unit 15 determines the degree of vacuum, the voltage value, the current value, and the like according to the type of gas supplied. By controlling each value of the gas injection amount, plasma of a desired color is generated.
  • the control unit 15 controls each value of the degree of vacuum, the voltage value, the current value, the gas injection amount, and the mixing ratio according to the gas injection amount according to the type of the supplied gas. Generate a plasma of the desired color Ru.
  • the aurora generator 1 selects a desired color from among many types of plasma coloring by controlling the type of gas, the degree of vacuum, and the voltage value applied between the discharge electrodes 13 by the control unit 15. As a result, the color change specific to the aurora's occurrence can be finely expressed.
  • the gas supply port 17a is disposed between the discharge electrodes 13a and 13b, and the gas supply port 17b is disposed in the vicinity of the discharge electrode 13b.
  • the gas supply port 17b disposed in the vicinity of the discharge electrode 13b also has the same rod shape force as the discharge electrode 13b.
  • the gas supply port is not limited to the case where the gas supply port is provided in two places in the vacuum vessel, but may be provided in the vicinity of the electrode and other parts and provided in a plurality of places.
  • the control unit 15 controls the supply of gas, and the voltage value applied between the degree of vacuum in the vacuum vessel 10 and the discharge electrode 13 and the current value corresponding to this voltage value. Control.
  • the helium atoms are made to collide with the electrons easily by injecting helium gas from the gas supply port 17b with the direction in which the electrons flow, that is, the force-sword electrode as the discharge electrode 13b.
  • the top side of the device is the anode electrode and the bottom side is the force-sword electrode.
  • FIGS. 7A and 7B schematically show the aurora generator 1 for emitting plasma of two different colors
  • the aurora generator 1 having the configuration shown in FIG. 8 actually generates two different color plasmas. It has been confirmed to emit light. Therefore, each configuration of the aurora generator 1 shown in FIG. 8 will be specifically described below.
  • the shape of the vacuum vessel 10 is a cylindrical shape having a longitudinal direction of 3,000 [mm] and a diameter of 150 [mm].
  • Discharge electrodes 13a and 13b are disposed at both ends of the vacuum vessel 10, respectively.
  • gas supply ports 17a and 17b are disposed, respectively.
  • a gas exhaust port 16 is provided at one end of the vacuum vessel 10, for example, the end where the discharge electrode 13b is provided as shown in FIG.
  • six shaping coils 18 are disposed on the outer peripheral surface thereof. The shaping coils 18 are disposed at equal intervals (530 mm) in the longitudinal direction of the vacuum vessel 10.
  • the distance from the shaping coil 18 disposed at the position closest to the end of the vacuum vessel 10 to this end is 175 mm at both ends.
  • the shaping coil 18 generates magnetic lines m in the vacuum vessel 10 by being supplied with power from the coil power supply unit 18 a.
  • the gas exhaust unit 11 includes a vacuum pump l la, a valve l ib for adjusting an exhaust flow rate from the gas exhaust port 16 to the vacuum pump 11 a, and a pressure gauge 11 c for measuring the degree of vacuum in the vacuum vessel 10 There is.
  • the gas supply unit 12 supplies gas injection amounts supplied to the gas supply ports 17a and 17b from the gas cylinders 12a and 12b filled with different gases and the gas cylinders 12a and 12b, respectively.
  • the adjusting valves 12c, 12d and force are also configured.
  • the discharge electrodes 13 a and 13 b are disposed at both ends of the vacuum vessel 10 respectively.
  • gas supply ports 17 a and 17 b are also disposed at both ends of the vacuum vessel 10, respectively. That is, the gas supply ports 17a and 17b are disposed in the vicinity of the discharge electrodes 13a and 13b.
  • the power supply unit 14 is provided with a current / voltage adjustment unit 14a for adjusting a voltage value applied between the discharge electrode 13a and the discharge electrode 13b and a current value flowing therebetween.
  • the aurora generator 1 by configuring the aurora generator 1 to generate plasmas of two different colors, it is possible to finely represent the color change peculiar to the aurora occurrence phenomenon.
  • the aurora generator 1 is provided with the vacuum vessel 10 according to the first embodiment and the second embodiment, and plural types of gas injected into the gas supply port 17 shown in FIG.
  • a switching unit 12e is provided to switch the gas.
  • the gas supply unit 12 includes a plurality of types of gases such as helium, oxygen, carbon dioxide, nitrogen, argon, and neon, and the switching unit 12e allows any two types of gas to be selected from the plurality of types of gas carriers. Is selected and supplied into the vacuum vessel 10 from the gas supply port 17.
  • the operation of the switching unit 12 e is controlled by the control unit 15 in the same manner as the gas supply unit 12. Then, the control unit 15 can emit plasma of different colors in time series by sequentially changing the type of gas supplied to the gas supply port 17.
  • the aurora generator 1 can generate aurora of various colors depending on the combination of the types of gas supplied into the vacuum vessel 10. Furthermore, as shown in the second embodiment, the aurora generator 1 more finely expresses the color change specific to the aurora occurrence situation by the control unit 15 controlling the type and the injection amount of the gas. It is possible to change the color in time series by using the switching unit 12e according to the third embodiment.
  • the aurora generator 1 has a portion corresponding to the discharge electrodes 13a and 13b as shown in FIG.
  • a flexible discharge electrode 20 is used.
  • the flexible discharge electrode 20 has an electrode drive unit 21 connected to a plurality of locations in the X-axis direction of the electrode.
  • the electrode drive unit 21 displaces the connection point with the flexible discharge electrode 20 in the Y-axis direction by performing expansion and contraction using, for example, a cylinder mechanism or the like. That is, the flexible discharge electrode 20 can freely fold this electrode in the Y-axis direction by the electrode drive unit 21.
  • the electrode drive unit 21 is not limited to the cylinder mechanism, and any mechanism capable of mechanically winding the flexible discharge electrode 20 in the Y-axis direction may be used.
  • a link mechanism or a cam mechanism is driven by a stepping motor to You may be tempted.
  • the aurora generator 1 generates a so-called curtain-shaped plasma in which one end of the flat plasma is stagnant in the vacuum vessel 10 by bending the flexible discharge electrode 20 in the Y-axis direction. Can express more realistic aurora movements.
  • the aurora generator 1 uses the array electrode group 22 in a portion corresponding to the bar-shaped discharge electrodes 13a and 13b.
  • the array electrode group 22 is formed by arranging a large number of electrode elements in a lattice.
  • the array electrode group 22 substantially functions as an electrode that draws a sine curve with the Y axis in the amplitude direction. Therefore, by changing the dot portion acting as an electrode in the array electrode group 22, it is possible to form a plasma having a curtain shape as in the case of the flexible discharge electrode 20 described above.
  • the aurora generator 1 includes a shaping coil 18 for forming a flat plate of plasma provided on the outer wall surface of the vacuum vessel 10 and a deflection coil 23 for generating magnetic lines M and M 'in the Y-axis direction as shown in FIG. Arrange the
  • the deflection coils 23 are arranged in 3 ⁇ 3 on the outer wall surface of the vacuum vessel 10 on the X-Y plane, and give magnetic lines M and M ′ in the Y-axis direction to the generated plasma.
  • the plasma generated between the electrodes can be bent to express actual aurora motion.
  • the aurora generator 1 changes the shape of plasma by deforming the discharge electrode or changing the magnetic field.
  • the aurora generator 1 is a discharge electrode It is also possible to control the deformation of the magnetic field and the change of the magnetic field to deform the aurora to the music.
  • the aurora generator 1 is capable of finely changing the color change and the movement specific to the aurora occurrence status by the color change of plasma according to the first embodiment and the shape change of plasma according to the second embodiment. Can be expressed. Therefore, since the flare generating device 1 according to the present embodiment makes the occurrence of the aurora more realistic as compared to the conventional one, it is possible to provide the observer with a powerful simulated aurora phenomenon. it can.
  • FIG. 13A length 3, OOO mm ⁇ width 3, OOO mm ⁇ depth 1, 500 mm
  • the discharge electrodes 13a and 13b disposed in the vacuum vessel 10 are not shown in FIG. 13A, but the longitudinal length of each electrode is 2,000 mm and the distance between the two electrodes is 3,000 mm. It has become.
  • the vacuum vessel 10 has its outer frame supported by a support frame 27, and the shaping coil 18 is provided in the longitudinal direction of the vacuum vessel 10, and the deflection coil is deflected in the depth direction of the vacuum vessel 10. 23 are provided. Further, the vacuum vessel 10 is provided with an acrylic plate 25 closely attached to the outer wall surface to observe the aurora phenomenon from the front of the vacuum vessel 10, and an acrylic plate retainer 26 for preventing the acrylic plate 25 from falling. It is done.
  • the acrylic plate 25 has a thickness that can withstand the degree of vacuum in the vacuum vessel 10.
  • Each corner of the support frame is provided with a turnbuckle to prevent distortion.
  • an iron plate 28 covering the front face of the vacuum vessel 10, that is, the face made of the acrylic plate 25 and the face other than the back face opposite to the front face is installed. Be done.
  • the iron plate 28 prevents the diffusion of the magnetic lines of force m generated by the shaping coil 18 and generates uniform magnetic lines of force m in the vacuum vessel 10, thereby making it possible to make the plasma into a uniform planar shape.
  • any other metal plate may be used as long as uniform magnetic lines of magnetic force m can be generated in the vacuum vessel 10 by preventing diffusion of the magnetic lines of force m.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Description

明 細 書
オーロラ発生装置及びオーロラ発生方法
技術分野
[0001] 本発明は、真空容器内にガスを供給しプラズマを発生させてオーロラの発生状況 を表現するオーロラ発生装置及びオーロラ発生方法に関する。
本出願は、日本国において 2006年 4月 10日に出願された日本特許出願番号 200 6— 107990を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。
背景技術
[0002] オーロラを人工的に発生させるための装置として、真空容器内にガスを供給してプ ラズマを発生させてオーロラの発生状況を再現するオーロラ発生装置がある。
このような真空放電を利用した従来のオーロラ発生装置は、特開平 10— 63180号 公報に示すように、真空容器内にガスを供給するとともに内部電極に高電圧を印加 してガスを放電状態にすることによってプラズマを発生させる。さらにオーロラ発生装 置は、真空容器外部力 コイル等によって磁界を変化させることによりプラズマを移 動させ、オーロラの発生状況を再現している。
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、従来のオーロラ発生装置では、オーロラの発生状況特有の色彩変化 をきめ細力べ表現することができな 、。
本発明は、このような実情に鑑みて提案されたものであり、従来に比べてきめ細か い色彩表現を可能とするオーロラ発生装置及びオーロラ発生方法を提供することを 目的とする。
上述の課題を解決するために、本発明に係るオーロラ発生装置は、真空容器と、 上記真空容器の内部を所定の真空度に維持する維持手段と、上記真空容器内にプ ラズマを発生させるためのガスを供給する供給手段と、上記真空容器内にプラズマを 発生させるため上記真空容器内に設けられた電極と、上記電極に電圧を印加する印 加手段と、上記維持手段と上記印加手段とを制御する制御手段とを備え、上記供給 手段は、上記真空容器に設けられた複数のガス供給口から上記真空容器内に複数 種類のガスを供給し、上記制御手段は、上記真空容器内に発生させるオーロラの色 に応じて、上記真空維持手段が維持する上記真空度、及び、上記電圧印加手段が 印加する電圧値、及び、上記電圧値に応じて上記電極間に流れる電流値を制御す る。
また、本発明に係るオーロラ発生方法は、所定の真空度に維持された真空容器内 に設けられたプラズマを発生させるための電極に電圧を印加するとともにガスを供給 することにより、上記供給したガスの種類に応じた色のオーロラを発生させるオーロラ 発生方法であって、上記真空容器に設けられた複数のガス供給口から上記真空容 器内に複数種類のガスを供給し、上記真空容器内に発生させるオーロラの色に応じ て、上記真空容器内の真空度、及び、上記電極に印加する電圧値、及び、上記電圧 値に応じて上記電極間に流れる電流値を制御する。
本発明は、上記真空容器内に発生させるオーロラの色に応じて、上記真空容器内 の真空度、及び、上記電極に印加する電圧値、及び、上記電圧値に応じて上記電 極間に流れる電流値を制御するので、オーロラの発生状況特有の色彩変化をきめ細 力べ表現することができる。
本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明さ れる実施の形態の説明から一層明らかにされる。
図面の簡単な説明
[図 1]図 1は、オーロラ発生装置を模式的に示すブロック図である。
[図 2]図 2は、真空容器に設けられる構成を示す斜視図である。
[図 3]図 3は、真空容器を模式的に示す図である。
[図 4]図 4Aは、ガスの種類、真空度及び放電電極間に印加する電圧値を制御するこ とによって、発色される色の種類を示す図であり、図 4Bは、ガスの種類の組み合わせ 、真空度及び放電電極間に印加する電圧値を制御することによって、発色される色 の種類を示す図である。
[図 5]図 5は、真空容器を模式的に示す図である。 [図 6]図 6は、放電状態のガスにおける電子の流れを模式的に示す図である。
[図 7]図 7Aは、 2色のオーロラを発光させる工程を模式的に示す図であり、 図 7Bは
、 2色のオーロラを発光させる工程を模式的に示す図である。
[図 8]図 8は、 2色のオーロラを発生させるオーロラ発生装置の具体的構成を示す図 である。
[図 9]図 9は、オーロラ発生装置を模式的に示す図である。
[図 10]図 10は、フレキシブル放電電極の形状を示す斜視図である。
[図 11]図 11は、配列電極群を示す斜視図である。
[図 12]図 12は、偏向コイルが設けられた真空容器を示す斜視図である。
[図 13]図 13Aは、実際にオーロラ発生装置に適用される真空容器の形状、寸法を示 す斜視図であり、図 13Bは、真空容器の周囲に設けられる構成を示す斜視図である 発明を実施するための最良の形態
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細 に説明する。
< <第 1の実施形態 > >
オーロラ発生装置 1は、図 1に示すように、例えば、直方体形状の真空容器 10と、 真空容器 10内を所定の真空度に維持するガス排気部 11と、真空容器 10内にガスを 供給するガス供給部 12と、真空容器 10内に設けられた 2つの放電電極 13a、 13bに 電圧を印加する電源部 14と、ガス排気部 11、ガス供給部 12及び電源部 14を制御 する制御部 15とから構成されている。なお、図 1に示す真空容器 10の形状は、模式 的に示したものであって、直方体に限定されるものではない。
次に、真空容器 10の構成について、図 2に示す直交座標 X、 Y、 Ζを用いて説明す る。真空容器 10には、放電電極 13a、 13bが配設されるとともに、ガス排気口 16とガ ス供給口 17が形成され、さらに容器外壁面に整形コイル 18が設けられている。 放電電極 13a、 13bは、真空容器 10内に、 Z軸に対向した位置に配設されている。 さらに、放電電極 13a、 13bは、例えば、一方が X—Y平面上に配設された板形状で あって、他方が X軸を長手方向とした棒形状を有している。ここで、便宜上、板形状の 電極は放電電極 13aとし、棒形状の電極は放電電極 13bとする。また、放電電極 13a 、 13bは、それぞれ電源部 14に接続されている。なお、放電電極 13a、 13bの形状は 、棒及び板形状に限定されるものではない。
ガス排気口 16は、所定の管を介してガス排気部 11に接続されている。すなわち、 真空容器 10では、ガス排気口 16から真空容器 10内のガスが排気されることにより真 空容器 10内部を所定の真空度に維持している。
ガス供給口 17は、所定の管を介してガス供給部 12に接続されている。ここで、ガス 供給口 17は、真空容器 10内の壁面に複数設けられており、それぞれ異なる種類の ガスがガス供給部 12から供給される。すなわち、ガス供給部 12には、例えば、複数 種類のガスが充填されたガスボンベ等が設けられており、それぞれ異なる種類のガス を真空容器 10内に供給する。
整形コイル 18は、 Z軸方向を軸として真空容器 10の外壁面を覆うように形成されて いる。すなわち、整形コイル 18は、電流が流されることにより、放電電極 13aと放電電 極 13bとの間に Z軸方向の磁力線 mを発生させる。ここで、磁力線 mは、真空容器 10 内に発生するプラズマの電流の流れと作用して電磁力が生じ、プラズマの形状を平 板にすることができる。また、平板形状のプラズマの厚さ寸法は、磁力線 mの強さに 応じて変化する。
オーロラ発生装置 1では、ガス排気口 16により真空放電が発生される程度 (例えば 、 0. 01〜0. 02mmHg)程度に減圧された真空容器 10にガス供給口 17からガスを 供給させるとともに放電電極 13a、 13bに高電圧を印加させることにより電極間にブラ ズマ 19を発生させて、オーロラの発生状況を再現する。
ここで、真空容器 10内で発生されるプラズマ 19の発色は、ガス供給口 17から供給 されるガスの種類によって変化する。
よって、制御部 15は、ガス供給口 17から真空容器 10内へ供給されるガスの種類を 選択する。さらに、制御部 15は、所望とする色のプラズマ 19を発生させるため、真空 容器 10内に供給されたガスの種類に応じて、真空容器 10内の真空度、及び、放電 電極 13a、 13b間に印加させる電圧値、及び、当該電圧に応じた放電電極 13a、 13b 間に流れる電流値を制御する。具体的に、制御部 15は、ガス排気部 11を制御して 真空容器 10内の真空度を変化させ、電源部 14を制御して放電電極 13a、 13b間に 印加する電圧値を変化させる。また、電源部 14と放電電極 13a、 13bとの間には、図 示しない可変抵抗体が直列接続されている。よって、制御部 15は、この可変抵抗体 の抵抗値を制御することにより、放電電極 13a、 13b間に流れる電流値を変化させる 以下では、制御部 15の制御方法に注目してオーロラ発生装置 1の動作について実 施例 1〜3に分けて詳述する。
<実施例 1 >
本実施例の真空容器 10は、図 3に示すように、放電電極 13a、 13bの電極間の略 中央部分に 2つのガス供給口 17a、 17bを設けるものとする。そして、制御部 15は、 ガス供給部 12に、 2つのガス供給口 17a、 17bからそれぞれ異なる種類のガスを供 給させる。
具体的に本実施形態で用いる真空容器 10内に供給されるガスの種類は、ヘリウム 、酸素、二酸化炭素、アルゴン、ネオンである。実際に、これらのガスを単独で真空容 器 10に供給して放電させたプラズマの発色は、それぞれ図 4Aに示すようになる。す なわち、ヘリウム、酸素、二酸化炭素、アルゴン、ネオンのそれぞれ対応するプラズマ の発色は、緑色、黄色、青紫色、橙色、ピンクである。ここで、上述したガスの種類と プラズマの発色との間に一義的な対応関係がないが、制御部 15は、供給されるガス の種類に応じて、真空度、電圧値、電流値、及びガス注入量の各値を制御すること により、所望とする色のプラズマを発生させる。
一方、これらのガスから 2種類を選択して、ガス供給口 17a、 17bから供給して放電 したプラズマの発色は、図 4Bに示すようになる。すなわち、真空容器内に酸素とヘリ ゥムを供給した場合には、プラズマが黄緑色に発色する。真空容器内に酸素とアル ゴンを供給した場合には、プラズマが白色に発色する。真空容器内にヘリウムとネオ ンを供給した場合には、プラズマが肌色に発色する。真空容器内にヘリウムと二酸化 炭素を供給した場合には、プラズマが青白色に発色する。ここで、制御部 15は、供 給されるガスの種類に応じて、真空度、電圧値、電流値、ガス注入量及びガスの注入 量に応じた混合比の各値を制御することにより、所望とする色のプラズマを発生させ る。
このように、オーロラ発生装置 1は、制御部 15がガスの種類、真空度及び放電電極 13間に印加する電圧値をそれぞれ制御することにより、多くのプラズマの発色種類 から所望とする色を選択して発色するので、オーロラの発生状況特有の色彩変化を きめ細力べ表現することができる。
<実施例 2 >
本実施例に係るオーロラ発生装置 1には、図 5に示すように、例えば放電電極 13a 、 13bの電極間にガス供給口 17aを配設し、放電電極 13bの近傍にガス供給口 17b を配設する。具体的に、放電電極 13bの近傍に配設されたガス供給口 17bは、放電 電極 13bと同じ棒形状力もなるものとする。なお、ガス供給口は、真空容器内に 2箇 所配設される場合に限らず、電極近傍及びそれ以外に分け、複数箇所に設けるよう にしても良い。
そして、真空容器 10内に、ガス供給口 17aから窒素を注入している状態で、ガス供 給口 17bからヘリウムを注入した場合には、放電電極 13a側が放電状態の窒素によ り赤紫色に発色し、放電電極 13b側が放電状態のヘリウムにより緑色に発色する。ま た、このプラズマの発色現象は、ヘリウムの注入量の増加に応じて、緑色に発色する 範囲が拡大する。なお、制御部 15は、実施例 1の場合と同様、ガスの供給を制御す るとともに、真空容器 10内の真空度と放電電極 13間に印加する電圧値とこの電圧値 に応じた電流値を制御して 、る。
ところで、真空容器 10内に、ガス供給口 17aからヘリウムを注入している状態で、ガ ス供給口 17bから窒素を注入した場合には、上述したように 2つの放電電極 13a、 13 b側でそれぞれのガスの種類に応じた発色が分離せずに混ざり合ってしまう。この原 因としては、図 6に示すように、ヘリウム原子 Heの大きさが窒素原子 Nに比べて非常 に小さぐヘリウム原子 Heよりも窒素原子 Nの方に電子 e一が多く衝突するため、ヘリ ゥム原子 Heのほとんどが放電状態にならないと考えられる。
したがって、電子が流れる方向、すなわち力ソード電極を放電電極 13bとして、ガス 供給口 17bからヘリウムガスを注入させることにより、ヘリウム原子を電子と衝突しや すくする。このよう〖こすると、装置の上部側をアノード電極、底部側を力ソード電極とし て電極間から窒素を注入した状態で力ソード電極近傍カゝらヘリウムガスを注入させた 場合には、図 7Aに示すように、上部側が赤紫色 (プラズマ 19a)に底部側が緑色 (プ ラズマ 19b)のオーロラ現象を再現することができる。これと同様に、装置の上部側を 力ソード電極、底部側をアノード電極として電極間から窒素を注入した状態でカソー ド電極近傍カゝらヘリウムガスを注入させた場合には、図 7Bに示すように、上部側が緑 色 (プラズマ 19b)に底部側が赤紫色 (プラズマ 19a)のオーロラ現象を再現すること 力 Sできる。図 7A及び図 7Bでは、プラズマ 19aとプラズマ 19bの色の違いを、便宜上、 互 ヽに斜線方向が異なる図形で表して 、る。
ここで、図 7A及び図 7Bでは 2つの異なる色のプラズマを発光させるオーロラ発生 装置 1を模式的に示しているが、図 8に示す構成のオーロラ発生装置 1によって実際 に 2つの異なる色のプラズマを発光することが確認されている。よって、以下では図 8 に示すオーロラ発生装置 1の各構成につ 、て具体的に説明する。
真空容器 10の形状は、長手方向が 3, 000 [mm]で直径が 150 [mm]の円筒形状 からなる。真空容器 10の両端部には、それぞれ放電電極 13a, 13bが配設されてい る。そして、真空容器 10内の放電電極 13a, 13b近傍には、それぞれガス供給口 17 a, 17bが配設されている。また、真空容器 10の何れか一方の端部、例えば、図 8に 示すように放電電極 13bが配設されてなる端部には、ガス排気口 16が配設されてい る。さらに、真空容器 10には、例えば、その外周面に 6個の整形コイル 18が配設され ている。整形コイル 18は、真空容器 10の長手方向に対してそれぞれ等間隔(530m m)毎に配設されている。また、真空容器 10の端部に最も近い位置に配設されている 整形コイル 18からこの端部までの距離は、両端ともに 175mmとなっている。整形コィ ル 18は、コイル用電源部 18aから電力が供給されることにより、真空容器 10内に磁 力線 mを発生させる。
ガス排気部 11は、真空ポンプ l la、ガス排気口 16から真空ポンプ 11aへの排気流 量を調節するバルブ l ib、及び真空容器 10内の真空度を計測する圧力計 11cとか ら構成されている。
ガス供給部 12は、それぞれ異なるガスが充填されているガスボンベ 12a, 12bと、 ガスボンベ 12a, 12bからそれぞれガス供給口 17a, 17bへ供給するガスの注入量を 調節するバルブ 12c, 12dと力も構成されている。
放電電極 13a、 13bは、真空容器 10の両端部にそれぞれ配設されている。同様に 、ガス供給口 17a, 17bも真空容器 10の両端部にそれぞれ配設されている。すなわ ち、ガス供給口 17a, 17bは放電電極 13a, 13b近傍に配設されている。
電源部 14は、放電電極 13aと放電電極 13bとの間に印加される電圧値、及び、こ の間に流れる電流値を調節する電流 ·電圧調節部 14aが設けられて 、る。
以上のように、オーロラ発生装置 1を構成することによって、 2色の異なるプラズマを 発生させることにより、オーロラの発生現象特有の色彩変化をきめ細力べ表現できる。
<実施例 3 >
本実施例に係るオーロラ発生装置 1は、実施例 1及び実施例 2に係る真空容器 10 を備えるものであって、ガス供給部 12に、図 9に示すガス供給口 17へ注入される複 数種類のガスを切り換える切換部 12eが設けられている。具体的に、ガス供給部 12 は、ヘリウム、酸素、二酸化炭素、窒素、アルゴン、ネオンなどの複数種類のガスを備 え、切換部 12eにより、これら複数種類のガスカゝらいずれか 2種類のガスが選択され てガス供給口 17から真空容器 10内へ供給する。ここで、切換部 12eは、ガス供給部 12と同様に、制御部 15によって、その動作が制御される。そして、制御部 15は、ガス 供給口 17へ供給させるガスの種類を順次変更することにより、時系列的に異なる色 のプラズマを発光させることができる。
実施例 1に示すように、オーロラ発生装置 1は、真空容器 10内に供給するガスの種 類の組み合わせに応じて多種類の色のオーロラを発生することができる。さらに、実 施例 2に示すように、オーロラ発生装置 1は、制御部 15がガスの種類や注入量を制 御することにより、オーロラの発生状況特有の色彩変化をよりきめ細力べ表現すること ができ、実施例 3に係る切換部 12eを用いることにより、時系列的に色彩を変化させる ことちでさる。
< <第 2の実施形態 > >
真空容器 10内で発生されるオーロラに動きを与えるため、第 1の実施形態のォ一口 ラ発生装置 1の構成に変形を加えた第 2の実施形態について以下説明する。
オーロラ発生装置 1は、図 10に示すような、放電電極 13a、 13bに該当する部分に フレキシブル放電電極 20を用いる。フレキシブル放電電極 20は、この電極の X軸方 向の複数箇所に接続された電極駆動部 21を有する。電極駆動部 21は、例えばシリ ンダ機構などを用いて伸縮動作をすることにより、フレキシブル放電電極 20との接続 点を Y軸方向に変位させる。すなわち、フレキシブル放電電極 20は、電極駆動部 21 により、この電極を自由に Y軸方向に橈ませることができる。
なお、電極駆動部 21は、シリンダ機構に限らず、フレキシブル放電電極 20を Y軸 方向に機械的に橈ませられる機構であれば良ぐ例えばリンク機構やカム機構などを ステッピングモータによって駆動して機械的に橈ませるようにしても良い。
したがって、オーロラ発生装置 1は、フレキシブル放電電極 20を Y軸方向に撓ませ ることにより、真空容器 10内において平板状のプラズマの一方の端部が橈む、いわ ゆるカーテン形状のプラズマを発生させ、より現実的なオーロラの動きを表現すること ができる。
また、オーロラ発生装置 1は、棒形状の放電電極 13a、 13bに該当する部分に配列 電極群 22を用いる。ここで、配列電極群 22は、図 11に示すように、多数の電極素子 を格子状に配列して形成されたものである。具体例として、配列電極群 22は、図 11 に示すドット部分の電極が電源に接続されると、実質的に Y軸を振幅方向としたサイ ンカーブを描く電極として作用する。したがって、配列電極群 22において電極として 作用するドット部分を変化させることにより、上述したフレキシブル放電電極 20と同様 にカーテン形状力もなるプラズマを形成することができる。
また、オーロラ発生装置 1は、真空容器 10の外壁面に備えられるプラズマを平板状 にする整形コイル 18とともに、図 12に示すように Y軸方向の磁力線 M、 M'を発生さ せる偏向コイル 23を配設する。
具体的に、偏向コイル 23は、真空容器 10の X—Y平面上の外壁面に 3 X 3に配列 し、発生されたプラズマに対してそれぞれ Y軸方向に磁力線 M、 M'を与えることによ り電極間に発生されるプラズマを屈曲させ、実際のオーロラの動きを表現することが できる。
このように、オーロラ発生装置 1は、放電電極を変形させたり、磁界の変化させること によって、プラズマの形状を変化させる。例えば、オーロラ発生装置 1は、放電電極 の変形、及び、磁界の変化を制御して、音楽に合わせてオーロラを変形させることも できる。
以上のように、オーロラ発生装置 1は、第 1の実施形態によるプラズマの発色変化と 、第 2の実施形態によるプラズマの形状変化により、オーロラの発生状況特有の色彩 変化及び動きをきめ細力べ表現することができる。したがって、本実施形態に係るォ 一口ラ発生装置 1は、従来のものに比べて、オーロラの発生状況をより現実的なもの とするので、観察者に迫力のある擬似オーロラ現象を提供することができる。
ところで、上述したように、オーロラ発生装置 1に係る真空容器を模式的に示したが 、例えば、実際にガスを放電して図 4A及び図 4Bに示す結果が得られたオーロラ発 生装置 1では、図 13Aに示す形状、寸法(縦 3, OOOmm X横 3, OOOmm X奥行き 1 , 500mm)の真空容器 10が用いられている。また、真空容器 10内に配設される放 電電極 13a、 13bは、図 13Aに示さないが、各電極の長手方向の長さが 2, 000mm 、 2つの電極間の距離が 3, 000mmとなっている。
また、真空容器 10は、図 13Bに示すように、その外枠が支持フレーム 27によって支 持され、真空容器 10の縦方向に整形コイル 18が設けられ、真空容器 10の奥行き方 向に偏向コイル 23が設けられている。さらに、真空容器 10には、この真空容器 10の 正面からオーロラ現象を見るために外壁面に密接したアクリル板 25と、このアクリル 板 25が転倒するのを防止するためのアクリル板押さえ 26が設けられている。このァク リル板 25は、真空容器 10内の真空度に耐圧可能な程度の厚みとなっている。支持 フレームの各角には、ゆがみを防止するためのターンバックルが設けられている。さら に、支持フレーム 27を含む真空容器 10の周囲には、真空容器 10の正面、すなわち アクリル板 25からなる面、及び、この正面に相対向する背面以外の周囲の面を覆う 鉄板 28が設置される。この鉄板 28は、整形コイル 18が発生する磁力線 mの拡散を 防いで真空容器 10内に一様の磁力線 mを生じさせ、プラズマを均一な平面形状に することができる。なお、鉄板 28に限らず、磁力線 mの拡散を防いで真空容器 10内 に一様の磁力線 mを生じさせるものであれば、他の金属製の板を用いるようにしても よい。
なお、本発明は上述した実施の形態のみに限定されるものではなぐ本発明の要 旨を逸脱しない範囲において種々の変更が可能であることは勿論である。

Claims

請求の範囲
[1] 1. 真空容器と、
上記真空容器の内部を所定の真空度に維持する維持手段と、
上記真空容器内にプラズマを発生させるためのガスを供給する供給手段と、 上記真空容器内にプラズマを発生させるため上記真空容器内に設けられた電極と 上記電極に電圧を印加する印加手段と、
上記維持手段と上記印加手段とを制御する制御手段とを備え、
上記供給手段は、上記真空容器に設けられた複数のガス供給口から上記真空容 器内に複数種類のガスを供給し、
上記制御手段は、上記真空容器内に発生させるオーロラの色に応じて、上記維持 手段により維持される上記真空度、及び、上記電圧印加手段により印加される電圧 値、及び、上記電圧値に応じて上記電極間に流れる電流値を制御することを特徴と するオーロラ発生装置。
[2] 2.上記制御手段は、上記真空容器内に供給するガスの種類の組み合わせに応じた 色のオーロラを発生させるため上記維持手段と上記印加手段とを制御することを特 徴とする請求の範囲第 1項記載のオーロラ発生装置。
[3] 3.上記供給手段は、上記真空容器内にヘリウムと酸素を供給して、黄緑色のォ一口 ラを発生させることを特徴とする請求の範囲第 2項記載のオーロラ発生装置。
[4] 4. 上記供給手段は、上記真空容器内にヘリウムと二酸化炭素を供給して、青白色 のオーロラを発生させることを特徴とする請求の範囲第 2項記載のオーロラ発生装置
[5] 5.上記供給手段は、上記真空容器内にヘリウムとネオンを供給して肌色のオーロラ を発生させることを特徴とする請求の範囲第 2項記載のオーロラ発生装置。
[6] 6.上記供給手段は、上記真空容器内に酸素とアルゴンを供給して、白色のオーロラ を発生させることを特徴とする請求の範囲第 2項記載のオーロラ発生装置。
[7] 7.上記供給手段は、上記真空容器内に供給するガスの種類の組み合わせに応じて 、空間的に異なる色のオーロラを発生させることを特徴とする請求の範囲第 1項記載 のオーロラ発生装置。
[8] 8.上記供給手段は、上記電極の近傍に設けられたガス供給口と上記電極から離れ た位置に設けられたガス供給ロカ 上記真空容器内にヘリウムと窒素を供給し、ヘリ ゥムによる緑色と窒素による赤紫色のオーロラを発生させることを特徴とする請求の 範囲第 7項記載のオーロラ発生装置。
[9] 9.上記供給手段は、上記真空容器内に供給するガスの種類を変えることにより、時 系列的に異なる色のオーロラを発生させることを特徴とする請求の範囲第 1項記載の オーロラ発生装置。
[10] 10.上記供給手段は、ヘリウム、酸素、二酸化炭素、窒素、アルゴン、ネオン、のい ずれか二種類のガスを上記真空容器内に順次供給することにより、時系列的に異な る色のオーロラを発生させることを特徴とする請求の範囲第 9項記載のオーロラ発生 装置。
[11] 11.所定の真空度に維持された真空容器内に設けられたプラズマを発生させるため の電極に電圧を印加するとともにガスを供給することにより、上記供給したガスの種類 に応じた色のオーロラを発生させるオーロラ発生方法であって、
上記真空容器に設けられた複数のガス供給口から上記真空容器内に複数種類の ガスを供給し、上記真空容器内に発生させるオーロラの色に応じて、上記真空容器 内の真空度及び上記電極に印加する電圧値、及び、上記電圧値に応じて上記電極 間に流れる電流値を制御することを特徴とするオーロラ発生方法。
PCT/JP2006/321531 2006-04-10 2006-10-27 オーロラ発生装置及びオーロラ発生方法 WO2007125618A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-107990 2006-04-10
JP2006107990A JP4707065B2 (ja) 2006-04-10 2006-04-10 オーロラ発生装置及びオーロラ発生方法

Publications (1)

Publication Number Publication Date
WO2007125618A1 true WO2007125618A1 (ja) 2007-11-08

Family

ID=38655162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321531 WO2007125618A1 (ja) 2006-04-10 2006-10-27 オーロラ発生装置及びオーロラ発生方法

Country Status (2)

Country Link
JP (1) JP4707065B2 (ja)
WO (1) WO2007125618A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123350A (ja) * 2009-12-11 2011-06-23 Shigeyuki Minami オーロラ発生装置及びオーロラ発生方法
CN105679159A (zh) * 2016-03-17 2016-06-15 上海理工大学 利用极光的水晶球
RU170691U1 (ru) * 2016-04-21 2017-05-03 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Газоразрядное устройство для демонстрации ионного распыления металла

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813549A (zh) * 2013-04-16 2014-05-21 杜志刚 等离子氮气高压气体发热装置方法
CN103841681A (zh) * 2013-04-16 2014-06-04 杜志刚 等离子氮气高压气体发热装置
CN103247204B (zh) * 2013-05-03 2015-04-29 西南大学 一种探究气体放电现象的演示平台
CN103648199A (zh) * 2013-12-06 2014-03-19 阳泉市新鑫科技研究所有限责任公司 等离子氦气和二氧化碳高压气体发热装置
CN103648200A (zh) * 2013-12-06 2014-03-19 阳泉市新鑫科技研究所有限责任公司 等离子氙气高压气体发热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259686A (ja) * 1989-03-30 1990-10-22 Mitsubishi Heavy Ind Ltd 人工オーロラ発生装置
JPH02282780A (ja) * 1989-04-25 1990-11-20 Mitsubishi Heavy Ind Ltd 人工オーロラ発生装置
JPH0479198A (ja) * 1990-07-20 1992-03-12 Mitsubishi Heavy Ind Ltd 観賞用プラズマ装置
JPH1063180A (ja) * 1996-08-14 1998-03-06 Mitsubishi Heavy Ind Ltd オーロラ発生装置
JPH11282340A (ja) * 1998-03-30 1999-10-15 Mitsubishi Heavy Ind Ltd オーロラ発生装置
JP2001175163A (ja) * 1999-12-17 2001-06-29 Mitsubishi Heavy Ind Ltd オーロラ発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259686A (ja) * 1989-03-30 1990-10-22 Mitsubishi Heavy Ind Ltd 人工オーロラ発生装置
JPH02282780A (ja) * 1989-04-25 1990-11-20 Mitsubishi Heavy Ind Ltd 人工オーロラ発生装置
JPH0479198A (ja) * 1990-07-20 1992-03-12 Mitsubishi Heavy Ind Ltd 観賞用プラズマ装置
JPH1063180A (ja) * 1996-08-14 1998-03-06 Mitsubishi Heavy Ind Ltd オーロラ発生装置
JPH11282340A (ja) * 1998-03-30 1999-10-15 Mitsubishi Heavy Ind Ltd オーロラ発生装置
JP2001175163A (ja) * 1999-12-17 2001-06-29 Mitsubishi Heavy Ind Ltd オーロラ発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123350A (ja) * 2009-12-11 2011-06-23 Shigeyuki Minami オーロラ発生装置及びオーロラ発生方法
CN105679159A (zh) * 2016-03-17 2016-06-15 上海理工大学 利用极光的水晶球
RU170691U1 (ru) * 2016-04-21 2017-05-03 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Газоразрядное устройство для демонстрации ионного распыления металла

Also Published As

Publication number Publication date
JP4707065B2 (ja) 2011-06-22
JP2007279522A (ja) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2007125618A1 (ja) オーロラ発生装置及びオーロラ発生方法
JP4250526B2 (ja) 磁界強度を調節可能なスパッタリングマグネトロン装置
CN103562549B (zh) 霍耳效应推进器
TW201511619A (zh) 用於形成磁場之裝置及其使用方法
US8786192B2 (en) Plasma generator and method for controlling a plasma generator
CN1806063B (zh) 偏转磁场型真空电弧蒸镀装置
JP3083475B2 (ja) 補正磁場発生装置
KR20050095823A (ko) 평판형 코일과 스프링형 특성을 갖춘 평판 선형 보이스코일 액추에이터
CA2616114A1 (en) Aurora curtain generation device and aurora curtain generation method
JP5581045B2 (ja) オーロラ発生装置及びオーロラ発生方法
JP2008147703A (ja) スパッタリング装置の磁界発生装置
KR20100131978A (ko) 필라멘트 전기 방전 이온 소스
JP5700695B2 (ja) プラズマ発生装置および蒸着装置並びにプラズマ発生方法
WO2018189804A1 (ja) 三次元積層造形装置および積層造形方法
Bilek et al. Magnetic system for producing uniform coatings using a filtered cathodic arc
TWI420562B (zh) 離子佈植機與調整離子束的方法
JP5850713B2 (ja) マグネトロンスパッタリング装置及びマグネトロンスパッタリング方法
JP2511990B2 (ja) 偏向マグネット、及びその励磁装置
CN111315915A (zh) 具有受限磁场的电弧源
JPH06349593A (ja) シートプラズマ生成方法及びその装置
JP2019192387A (ja) 電磁石制御装置および電磁石システム
KR100611833B1 (ko) 플라즈마 디스플레이 패널의 에이징 방법 및 에이징 장치
JP2772121B2 (ja) 観賞用プラズマ装置
KR200217866Y1 (ko) 인공 지구자계를 이용한 브라운관 조정장치
JP3287911B2 (ja) カラ−受像管ネックの磁気リングの磁化方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822492

Country of ref document: EP

Kind code of ref document: A1