WO2007123120A1 - Explosive composition, explosive composition molded body, and their production methods - Google Patents

Explosive composition, explosive composition molded body, and their production methods Download PDF

Info

Publication number
WO2007123120A1
WO2007123120A1 PCT/JP2007/058339 JP2007058339W WO2007123120A1 WO 2007123120 A1 WO2007123120 A1 WO 2007123120A1 JP 2007058339 W JP2007058339 W JP 2007058339W WO 2007123120 A1 WO2007123120 A1 WO 2007123120A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosive composition
molded article
nitrate
mass
adhesive
Prior art date
Application number
PCT/JP2007/058339
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Sasamoto
Yasuhiro Tanaka
Original Assignee
Nipponkayaku Kabushikikaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipponkayaku Kabushikikaisha filed Critical Nipponkayaku Kabushikikaisha
Priority to JP2008512117A priority Critical patent/JPWO2007123120A1/en
Priority to US12/297,496 priority patent/US20090159163A1/en
Priority to EP07741775A priority patent/EP2022770A1/en
Publication of WO2007123120A1 publication Critical patent/WO2007123120A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/001Fillers, gelling and thickening agents (e.g. fibres), absorbents for nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Definitions

  • the present invention relates to an explosive composition, an explosive composition molded body, and a method for producing the same. Specifically, for example, an automobile safety device such as an air bag, a seat belt pretensioner, or a hood raising device is operated.
  • the present invention relates to an explosive composition suitable for use in a gas generator.
  • the explosive composition for a gas generator includes, for example, a gas generating agent, an engineering agent, an igniting agent, and a toughening agent.
  • gas generating agents, ensemble agents, and toy-foaming agents are usually used as molded products, so they are adhesives that dissolve in the solvents used, such as water and organic solvents ( Binder) is added (Japanese Patent Laid-Open No. 2000-95592).
  • Binder organic solvents
  • an extrudable ignition composition using a water-soluble or water-swellable binder Japanese Patent Publication No. 2003-524565.
  • an explosive composition using an aqueous suspension of ethylene / butyrate copolymer as an aqueous adhesive is known (Japanese Patent Laid-Open No. 2003-238285).
  • An explosive composition using synthetic hydrotalcite as an inorganic binder is also known (Japanese Patent Laid-Open No. 2001-192288).
  • JP 2003-238285 In the composition described in the publication No., a molded body cannot be obtained even by extrusion molding.
  • the binder used in JP-A-2001-19 2288 is effective as a binder for tableting, it is not suitable as a binder for extrusion molding, and an extruded product cannot be obtained.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to provide an explosive composition and explosive that have better water resistance and less manufacturing problems than conventional ones.
  • the object is to provide a molded article of the composition.
  • Another object of the present invention is to provide a profitable explosive composition and a method for producing an explosive composition molded body.
  • the gist of the present invention is as follows.
  • a group strength is also selected in which the nitrogen-containing compound is composed of guanidine, tetrazole, bitetrazole, triazole, hydrazine, triazine, azodicarbonamide, dicyanamide and their derivatives, and nitramine compounds.
  • the oxidant component is at least one selected from the group consisting of chlorate, perchlorate, nitrate and basic nitrate
  • 9 At least one selected from the group consisting of ammonium perchlorate, potassium perchlorate, sodium perchlorate, potassium nitrate, sodium nitrate, strontium nitrate and basic copper nitrate.
  • a method for producing an explosive composition which comprises kneading a fuel component and an oxidant component using an aqueous emulsion of a hydrophobic adhesive and drying the mixture with water.
  • a method for producing an explosive composition molded article wherein a fuel component and an oxidant component are kneaded using an aqueous emulsion of a hydrophobic adhesive, then molded and then dried and solidified. .
  • the explosive composition of the present invention can easily disintegrate the agglomerated chemicals after drying with little adhesion between the molded articles after molding. Further, the obtained dried molded article has good moisture absorption resistance and water resistance, and is suitable as an explosive composition for a gas generator for operating an automobile safety device that dislikes moisture. Further, in producing a molded product of the explosive composition of the present invention, a hydrophobic adhesive is dispersed in water in an emulsion state and used as an aqueous emulsion, whereby a kneaded mixture of a fuel component and an oxidant component is obtained. It becomes sticky and extrudates. Furthermore, the kneaded product is difficult to adhere to the manufacturing machine, and it is easy to clean the machine after manufacturing.
  • the explosive composition of the present invention comprises a fuel component and an oxidant component as main components, and these are kneaded using an aqueous emulsion of a hydrophobic adhesive, molded as necessary, and then dried.
  • the pressure-sensitive adhesive used in the present invention is a hydrophobic pressure-sensitive adhesive, and forms an aqueous emulsion by being dispersed in water. Examples of such hydrophobic pressure-sensitive adhesives include rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives. Acrylic pressure-sensitive adhesives are also preferable in terms of combustion speed and cleanliness of combustion gas.
  • the amount used is preferably 2 to 15% by mass as a solid content in the explosive composition.
  • the power to contain 3 to 9% by mass as a solid content. More preferable.
  • the thermal decomposition temperature of the pressure-sensitive adhesive is higher than the self-decomposition temperature of the explosive composition.
  • Examples of the fuel component used in the present invention include nitrogen-containing compounds and boron.
  • nitrogen-containing compounds include guanidine, tetrazole, bitetrazole, triazole, hydrazine, triazine, azodicarbonamide, dicyanamide and derivatives thereof. Mention may be made of at least one of the body and the group powers that will be the strength of the traminy compound.
  • 5-oxo 1, 2, 4 triazole tetrazole, 5-amino tetrazole, aminotetrazole nitrate, nitroaminotetrazole, bitetrazole (5, 5, be 1H-tetrazole), 5, 5, 1 be 1H —Tetrazole diammonium salt, azobistetrazole, 5,5'-tetrazodazole guanidine salt, guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, guanidine nitrate, aminoguanidine nitrate, Biuret, azodicarbonamide, carbohydrazide, carbohydrazide nitrate complex, oxalic hydrazide, hydrazine nitrate complex, ammine complex and the like can be mentioned.
  • nitroguanidine and guanidine nitrate are preferred because they are inexpensive, reactive, and relatively easy to handle, and therefore one or more selected from tetrazole derivatives and guanidine derivatives are preferred.
  • One or more selected from bistetrazole, azobistetrazole and 5-aminotetrazole are particularly preferred.
  • the content (mixing ratio) of the fuel component in the explosive composition of the present invention is preferably about 15 to 50% by mass, more preferably about 20 to 45% by mass.
  • the content (mixing ratio) of the fuel component is less than 15% by mass, the number of moles of gas generated per lOOg of the explosive composition when the explosive composition is used as the gas generating agent decreases, and the amount of NOx generated due to excess oxygen It tends to increase.
  • the fuel component content (mixing ratio) exceeds 50% by mass, the fuel component with a low specific gravity increases, so the true specific gravity of the explosive composition as the gas generating agent decreases.
  • the filling amount per volume to gas generators such as those used for seat belt pretensioners is reduced.
  • the use ratio is more preferably 0.1 to 10 parts by mass of boron when the nitrogen-containing compound is 1 part by mass. Means that the boron content is 0.5 to 5 mass%.
  • Examples of the oxidant component used in the present invention include chlorate, perchlorate, nitrate, or basic nitrate.
  • Examples of chlorates include alkali metal salts of chloric acid such as potassium chlorate and sodium chlorate, alkaline earth metal salts of chloric acid such as barium chlorate and calcium chlorate, and chloric acid such as ammonium chlorate. Ammonium salt I can get lost.
  • Examples of perchlorates include alkali metal salts of perchloric acid such as potassium perchlorate and sodium perchlorate, alkaline earth metal salts of perchloric acid such as barium perchlorate and calcium perchlorate, and perchlorate. Ammonium salts of perchloric acid such as acid ammonium.
  • nitrates include ammonium nitrates such as ammonium nitrate, alkali metal salts of nitric acid such as sodium nitrate and potassium nitrate; alkaline earth metal salts of nitric acid such as barium nitrate and strontium nitrate.
  • basic nitrates that can be used include basic copper nitrate, basic manganese nitrate, basic iron nitrate, basic molybdenum nitrate, basic bismuth nitrate, and basic cerium nitrate.
  • perchlorates in which perchlorate, nitrate or basic nitrate is preferred ammonium perchlorate or potassium perchlorate having a high generated gas amount and high reactivity are preferred.
  • metal nitrates selected from alkali metals and alkaline earth metals are preferred for reasons such as reactivity and handling, and potassium nitrate and strontium nitrate are particularly preferred.
  • the basic nitrates the thermal stability is low and the combustion temperature is low.
  • Basic copper nitrate is preferred.
  • the content (mixing ratio) of the oxidant component in the explosive composition of the present invention is preferably about 40 to 80% by mass.
  • the content of oxidant component (mixing ratio) is less than 40% by mass, there is a tendency to generate more CO gas due to lack of oxygen, while when it exceeds 80% by mass, There is a tendency for NOx generation to increase due to excess oxygen.
  • the explosive composition of the present invention may contain a metal powder, a silicon nitride, or a metal nitride in order to further increase the combustion rate and further improve the ignitability.
  • the metal powder include aluminum, magnesium, madanalium, titanium, and zirconium.
  • silicon nitride or metal nitride examples include silicon nitride, boron nitride, aluminum nitride, magnesium nitride, molybdenum nitride, tungsten nitride, calcium nitride, barium nitride, strontium nitride, zinc nitride, sodium nitride, copper nitride, Examples include titanium nitride, manganese nitride, vanadium nitride, nickel nitride, cobalt nitride, iron nitride, zirconium nitride, chromium nitride, tantalum nitride, niobium nitride, cerium nitride, strontium nitride, yttrium nitride, and germanium nitride.
  • Metal powder key nitrogen The content of the fluoride or metal n
  • the explosive composition of the present invention may further contain a surfactant in order to further improve the kneadability of the fuel component, the oxidant component and the hydrophobic pressure-sensitive adhesive and to further enhance the extrusion moldability.
  • a surfactant for example, any of nonionic surfactants, ionic surfactants, and cationic surfactants can be used, but nonionics such as Neugen (Daiichi Kogyo Seiyaku Co., Ltd.) can be used.
  • a surfactant is desirable.
  • the HLB Hydrophile Balance
  • the HLB value is calculated using a weighted average. If the HLB is too low, the water dispersibility in the water system is poor. On the other hand, if the HLB is too high, the moisture absorption resistance of the explosive composition will decrease.
  • the content of the surfactant is preferably 0 to 5% by mass in the explosive composition.
  • the explosive composition of the present invention may contain an extrusion aid as a water retention agent / lubricant.
  • Extrusion aids include carboxymethyl cellulose (CMC), carboxymethylcellulose sodium salt (CMCNa), carboxymethylcellulose potassium salt, carboxymethylcellulose ammonium salt, cellulose acetate, cenololose acetate butyrate (CAB), methylcellulose ( MC), ethinoresenoreose (EC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), ethylhydroxyethylcellulose (EHEC), hydroxypropylcellulose (HPC), carboxymethylethylcellulose (CMEC).
  • the content of the extrusion aid is preferably 0 to 1% by mass in the explosive composition.
  • acid clay kaolin-based slag forming agents
  • chlorine neutralizing agents such as alkali metals or alkali earth metals, molybdenum oxide, vanadium oxide, iron oxide, copper oxide, acid chrome
  • a combustion catalyst such as cobalt oxide or aluminum oxide can be blended.
  • the explosive composition preferably used as a molded product can be used as a gas generating agent, an autoidation agent or an engineer agent.
  • a gas generating agent it is preferable to use a nitrogen-containing compound as a fuel.
  • Enhansa Agent is used to increase the flame generated by the igniter and make it easier to burn the gas generant. Therefore, a nitrogen-containing compound or boron is preferable as the fuel.
  • Autoidation agents have the property of self-ignition at a temperature lower than the ignition temperature of the gas generating agent, for example, around 180 ° C. Those used are mentioned (see JP-A-2001-80986).
  • the explosive composition molded body of the present invention is used for, for example, parts for automobile safety devices.
  • parts for automobile safety devices include a gas generator for an air bag, a gas generator for a seat belt pretensioner, and a small gas generator for a bonnet lifting device.
  • the explosive composition molded body of the present invention is used in these gas generators in combination as a gas generating agent, an autoidation agent and an engineering agent as necessary.
  • the explosive composition molded article of the present invention exhibits a powdery or granular form.
  • examples of the shape of the molded body include an extruded molded body and a tablet.
  • examples of the shape of the extrusion-molded body include granules, columns, cylinders, prisms, porous cylinders, and porous prisms.
  • Examples of tablets include tableting pellets.
  • the explosive composition of the present invention is produced by kneading and drying a fuel component and an oxidant component with an aqueous emulsion of a hydrophobic adhesive.
  • a fuel component and an oxidant component with an aqueous emulsion of a hydrophobic adhesive.
  • the above-described metal powder, silicon nitride, metal nitride, surfactant, extrusion aid, combustion catalyst, etc. are appropriately selected within a range that does not impair the object of the present invention. Can be selected and blended.
  • the fuel component and the oxidant component are kneaded with an aqueous emulsion of a hydrophobic adhesive, then molded, and then dried and solidified. .
  • a kneaded product obtained by kneading each component with a molding machine, and mixing and kneading may be performed with a molding machine, particularly an extruder.
  • the molding machine include a tableting machine, a compression molding machine, an extrusion molding machine, a drawing machine, and a granulating machine. Among these, an extrusion molding machine is preferable.
  • the surfactant Neugen TDS-30 (made by Daiichi Kogyo Seiyaku Co., Ltd.) is mixed in a rocking mixer, and the mixture is 9% by mass with a water-based emulsion of acrylic pressure-sensitive adhesive in a kneading machine.
  • the HLB value is 8.0.
  • 15 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly.
  • the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm by applying a predetermined pressure with an extruder.
  • the extruded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
  • the combustion rate (40% -70%) dpZdt which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 2.32 MPaZms.
  • Combustion rate (40% —70%) dpZdt is a pressure sensor that measures the internal pressure of a bomb when 0.3 g of an enhancer agent and 2.5 g of a gas generating agent are combusted in an 18 cc bomb. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%, obtained from the combustion curve.
  • the combustion rate (40% -70%) dpZdt which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 2.27 MPaZms.
  • Combustion rate (40% —70%) dpZdt is a pressure sensor that measures the internal pressure of a bomb when 0.3 g of an enhancer agent and 2.5 g of a gas generating agent are combusted in an 18 cc bomb. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%, obtained from the combustion curve.
  • Example 3 5-aminotetrazole 10 mass 0/0 and potassium nitrate 68 mass 0/0 were mixed with a rocking mixer, 12 wt% of boron with a kneading machine, 9 wt% of an aqueous emulsion of the acrylic pressure-sensitive adhesive solid content, surfactant Noigen 1% by mass of TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) was mixed, and 16 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems, and kneaded uniformly.
  • the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.8 mm.
  • the extruded explosive composition molded body was cut into a length of 2.5 mm, and dried to obtain a cylindrical explosive composition molded body for an enno and sensor.
  • the combustion rate (30% -70%) dpZdt which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for an enhancer was 10.3 MPaZms.
  • Combustion rate (30% 70%) The dpZdt measurement method uses a pressure sensor to measure the internal pressure of the bomb when 1200 mg of enhancer agent is combusted in an 18 cc bomb, and obtain it from the combustion curve between the combustion time and the combustion pressure. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%.
  • Ammonium perchlorate 26% by mass, strontium nitrate 26% by mass, and 4% by mass of copper oxide as a combustion catalyst were mixed in a rocking mixer, and in a kneader, 34 mass% of trologin, acrylic adhesive 9% by mass of aqueous emulsion of the agent and 1% by mass of surfactant Nogen TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) as a solid content, and further to 100 parts by mass of these component systems, ion-exchanged water 13 Mass parts were added and kneaded uniformly.
  • the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.5 mm.
  • the extruded explosive composition molded body was cut into a length of 2.0 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
  • the combustion rate (30% -70%) dpZdt which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 13. IMPaZms. Combustion rate (30%-70%)
  • the dpZdt measurement method uses a pressure sensor to measure the internal pressure of the bomb when 1250 mg of the explosive composition for gas generant is burned in the lOcc bomb, and The combustion curve force is also obtained, and is the slope of the curve from 40% to 70% when the maximum pressure is 100%.
  • 5-aminotetrazole 28 mass 0/0, potassium nitrate 61 mass 0/0, and 4 wt% molybdenum trioxide were mixed in a rocking mixer, 6 wt% of an aqueous emulsion of the acrylic pressure-sensitive adhesive solid content, surfactant Noigen 1% by mass of TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) was mixed, and 16 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly.
  • the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.8 mm.
  • the extruded explosive composition molded body was cut into a length of 2.5 mm and dried to obtain a cylindrical explosive composition molded body for an auto-idanization agent.
  • the thermal shock test was performed using the molded explosive composition molding for Ennoenser obtained in Example 3 at a temperature change from 40 ° C to 10 7 ° C for 200 cycles, and at 107 ° C for 400 hours. A heat resistance test was allowed to stand for 1500 hours and 3000 hours, and the weight loss rate was measured. In addition, the internal pressure of the bomb when 1200 mg of the gunpowder composition for an energizer was burned in an 18 cc bomb was measured with a pressure sensor, and the relationship between the combustion time before and after the test and the combustion pressure (30% —70%) Asked. The results are shown in Table 1. From this result, it can be seen that an explosive composition molded article with good environmental resistance and a low weight loss rate and a small change in the burning rate in the thermal shock test and heat resistance test was obtained. .
  • Example 7 Guadine nitrate 40 mass%, strontium nitrate 25 mass%, and basic copper nitrate 25 mass% are mixed in a rocking mixer, and the acrylic adhesive aqueous emulsion is 9 mass% in solid content with a kneader, HLB value 13.3% of the surfactant Neugen TDS-80 (Daiichi Kogyo Seiyaku Co., Ltd.) with 13.3 is added, and 15 parts by weight of ion-exchanged water is added to 100 parts by weight of these components. Kneaded uniformly.
  • the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm by applying a predetermined pressure with an extruder.
  • the extruded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
  • Guadine nitrate 40 mass%, strontium nitrate 25 mass%, and basic copper nitrate 25 mass% are mixed in a rocking mixer, and the acrylic adhesive aqueous emulsion is 9 mass% in solid content with a kneader, HLB value 16.3% of the surfactant Neugen TDS-200D (Daiichi Kogyo Seiyaku Co., Ltd.) with 16.3 is mixed, and 15 parts by weight of ion exchange water is added to 100 parts by weight of these components. Kneaded. Next, the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 2.5 mm. The molded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
  • Guanidine nitrate 41% by mass, strontium nitrate 25% by mass, basic copper nitrate 25% by mass, hydroxypropylmethylcellulose 6% by mass, and polybulurpyrrolidone 3% by mass are mixed in a mouth mixer, and these component systems 100% by mass 15 parts by mass of ion exchange water was added to the part and kneaded uniformly.
  • the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm under a predetermined pressure with an extruder.
  • the molded product of the extruded gas generant composition was cut into a length of 6.5 mm and dried to obtain a cylindrical gas generant composition molded product.
  • a moisture absorption experiment was performed using the explosive composition molded article for gas generant obtained in Examples 7 and 8 and the gas generant composition molded article obtained in Comparative Example 1.
  • the moisture absorption test method was as follows: the composition of the explosive composition for gas generant was set in an atmosphere of 31%, 52%, 80%, 93% relative humidity at 25 ° C. The features were exposed and the weight gain over time was measured. Table 2 shows the results of the weight change rate before and after exposure in the measured atmosphere. From this result, when comparing the example and the comparative example, the weight change rate after 48 hours was 1.42% at the maximum in the example, whereas 1.530% in the comparative example 1. It can be seen that the example shows less moisture absorption.
  • the HLB value of the nonionic surfactant is 8.0
  • Example 7 the HLB value is 13.3
  • Example 7 the HLB value is 16.3. It can be seen that the rate of weight change gradually increases, and that moisture absorption increases as the HLB value increases.
  • 5-aminotetrazole 11 mass 0/0, potassium nitrate 68 mass 0/0, hydroxypropylmethyl cellulose 6% by weight, and polyacrylamide 3 wt% were mixed in a rocking mixer, a mixture of boron 12% by mass in the kneader, further To 100 parts by mass of these component systems, 17 parts by mass of ion exchange water was added and kneaded uniformly. Next, the obtained kneaded product was extruded into a predetermined shape by extruding it through a die having a diameter of 1.8 mm with a predetermined pressure by an extruder. The extruded molded body of the ennno and sensory agent composition was cut into a length of 2.5 mm and dried to obtain a cylindrical shaped erno and sensory agent composition molded body.
  • Example (Comparative example) Extrudability Adhesion between molded products Cleanability of molding machine
  • Example 1 ⁇ None ⁇
  • Example 3 ⁇ None ⁇
  • Example 4 ⁇ None ⁇
  • Example 8 ⁇ None ⁇ Comparative Example 1 ⁇ Yes X Comparative Example 2 Yes Yes X Comparative Example 3 Yes Yes X

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Disclosed is an explosive composition which is obtained by kneading a fuel component and an oxidant component by using an aqueous emulsion of a hydrophobic adhesive and then drying the kneaded material. The explosive composition exhibits high water resistance, good extrusion moldability and good cleanability from molding machines, while having only a few production problems. A molded body of this explosive composition is preferably applied to gas generants, auto igniters, enhancers and the like, and is particularly preferably used for a gas generator for activating an automobile safety system.

Description

明 細 書  Specification
火薬組成物及び火薬組成物成形体、並びにそれらの製造方法  Explosive composition, explosive composition molded body, and production method thereof
技術分野  Technical field
[0001] 本発明は、火薬組成物及び火薬組成物成形体、並びにそれらの製造方法に関し、 具体的には、例えばエアバッグやシートベルトプリテンショナ一、ボンネット上昇装置 等の自動車安全装置を作動させるためのガス発生器用に供して好適な火薬組成物 に関する。  TECHNICAL FIELD [0001] The present invention relates to an explosive composition, an explosive composition molded body, and a method for producing the same. Specifically, for example, an automobile safety device such as an air bag, a seat belt pretensioner, or a hood raising device is operated. The present invention relates to an explosive composition suitable for use in a gas generator.
背景技術  Background art
[0002] ガス発生器用火薬組成物には、例えばガス発生剤、ェンノヽンサ一剤、点火剤、ォ 一トイグ-ッシヨン剤等がある。これらの薬剤のうち、ガス発生剤、ェンノヽンサ一剤、ォ 一トイグ-ッシヨン剤は、通常成形体として使用されるため、水や有機溶媒等の、使用 される溶剤に溶解する接着剤 (バインダー)が添加されている(特開 2000— 95592 号公報)。また、水を溶剤とした水性接着剤として、水溶性または、水膨潤性のバイン ダーを使用した押出成形可能な点火組成物が知られている(特表 2003— 524565 号公報)。さらに、水性接着剤として、エチレン/ビュルアセテートコポリマーの水性 懸濁液を使用した火薬組成物が知られている(特開 2003— 238285号公報)。そし て、無機バインダーとして、合成ヒドロタルサイトを使用した火薬組成物も知られてい る(特開 2001— 192288号公報)。  [0002] The explosive composition for a gas generator includes, for example, a gas generating agent, an engineering agent, an igniting agent, and a toughening agent. Of these chemicals, gas generating agents, ensemble agents, and toy-foaming agents are usually used as molded products, so they are adhesives that dissolve in the solvents used, such as water and organic solvents ( Binder) is added (Japanese Patent Laid-Open No. 2000-95592). Further, as an aqueous adhesive using water as a solvent, there is known an extrudable ignition composition using a water-soluble or water-swellable binder (Japanese Patent Publication No. 2003-524565). Furthermore, an explosive composition using an aqueous suspension of ethylene / butyrate copolymer as an aqueous adhesive is known (Japanese Patent Laid-Open No. 2003-238285). An explosive composition using synthetic hydrotalcite as an inorganic binder is also known (Japanese Patent Laid-Open No. 2001-192288).
発明の開示  Disclosure of the invention
[0003] しかし、特開 2000— 95592号公報に記載の有機溶媒を溶剤とするバインダーの 場合、安全性に配慮する必要があり、かつ VOC (volatile organic compounds :揮発 性有機化合物)排出規制に対応しなければならないという欠点がある。また、特開 20 00 - 95592号公報ゃ特表 2003 - 524565号公報に記載の水を溶剤とするバイン ダ一の場合、安全性は良好であるが、吸湿性を低下させることができず、また成形後 、成形体同士が固着するという欠点がある。さらに、成形機への薬剤付着により洗浄 に手間が力かる等の製造上の問題が多い。また、薬剤付着により成形機の洗浄に溶 剤を必要とするという製造装置メインテナンス上の問題もある。特開 2003— 238285 号公報に記載の組成物では、押出成形しても成形体は得られない。特開 2001— 19 2288号公報に使用されるバインダーは、打錠用のバインダーとして有効であるが、 押出成形用バインダーとしては適当ではなく押出成形体が得られない。 [0003] However, in the case of a binder using an organic solvent as a solvent described in Japanese Patent Application Laid-Open No. 2000-95592, it is necessary to consider safety and comply with VOC (volatile organic compounds) emission regulations. There is a drawback that must be done. In addition, in the case of a binder using water as a solvent described in Japanese Patent Application Laid-Open No. 2000-95592 and Special Table 2003-524565, safety is good, but hygroscopicity cannot be reduced, In addition, after molding, there is a drawback that the molded bodies are fixed to each other. In addition, there are many manufacturing problems such as the labor required for cleaning due to the chemicals adhering to the molding machine. In addition, there is a problem in maintenance of the manufacturing apparatus that a solvent is required for cleaning the molding machine due to the adhesion of the chemical. JP 2003-238285 In the composition described in the publication No., a molded body cannot be obtained even by extrusion molding. Although the binder used in JP-A-2001-19 2288 is effective as a binder for tableting, it is not suitable as a binder for extrusion molding, and an extruded product cannot be obtained.
[0004] 本発明は、上記課題を解決するためになされたものであって、その目的とするところ は、従来と比較して、耐水性が良好で製造上の問題の少ない火薬組成物及び火薬 組成物成形体を提供することにある。また、本発明の他の目的は、カゝかる火薬組成 物及び火薬組成物成形体の製造方法を提供することにある。 [0004] The present invention has been made to solve the above-described problems, and the object of the present invention is to provide an explosive composition and explosive that have better water resistance and less manufacturing problems than conventional ones. The object is to provide a molded article of the composition. Another object of the present invention is to provide a profitable explosive composition and a method for producing an explosive composition molded body.
[0005] 即ち、本発明の要旨構成は次のとおりである。  That is, the gist of the present invention is as follows.
[0006] 1.燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンの存在下に、 混練し、乾燥して得たことを特徴とする火薬組成物。  [0006] 1. An explosive composition obtained by kneading and drying a fuel component and an oxidant component in the presence of an aqueous emulsion of a hydrophobic adhesive.
[0007] 2.前記疎水性粘着剤の含有量が、 2乃至 15質量%であることを特徴とする上記 1〖こ 記載の火薬組成物。 [0007] 2. The explosive composition as described in 1 above, wherein the content of the hydrophobic adhesive is 2 to 15% by mass.
[0008] 3.前記疎水性粘着剤が、ゴム系粘着剤、アクリル系粘着剤およびシリコーン系粘着 剤からなる群力 選択される少なくとも 1種類であることを特徴とする上記 1又は 2に記 載の火薬組成物。  [0008] 3. The hydrophobic adhesive described in 1 or 2 above, wherein the hydrophobic adhesive is at least one selected from the group consisting of a rubber adhesive, an acrylic adhesive, and a silicone adhesive. Gunpowder composition.
[0009] 4.前記疎水性粘着剤が、アクリル系粘着剤であることを特徴とする上記 3に記載の 火薬組成物。  [0009] 4. The explosive composition as described in 3 above, wherein the hydrophobic adhesive is an acrylic adhesive.
[0010] 5.前記疎水性粘着剤は、熱分解温度が 200°C以上であることを特徴とする上記 3ま たは 4に記載の火薬組成物。  [0010] 5. The explosive composition according to 3 or 4 above, wherein the hydrophobic adhesive has a thermal decomposition temperature of 200 ° C or higher.
[0011] 6.前記燃料成分が、含窒素化合物および Zまたはホウ素であることを特徴とする上 記 1乃至 5のいずれか 1項に記載の火薬組成物。 [0011] 6. The explosive composition according to any one of 1 to 5, wherein the fuel component is a nitrogen-containing compound and Z or boron.
[0012] 7.前記含窒素化合物が、グァ-ジン、テトラゾール、ビテトラゾール、トリァゾール、ヒ ドラジン、トリアジン、ァゾジカルボンアミド、ジシアナミド及びそれらの誘導体、並びに ニトラミンィ匕合物からなる群力も選択される少なくとも 1種類であることを特徴とする上 記 6に記載の火薬組成物。 [0012] 7. A group strength is also selected in which the nitrogen-containing compound is composed of guanidine, tetrazole, bitetrazole, triazole, hydrazine, triazine, azodicarbonamide, dicyanamide and their derivatives, and nitramine compounds. The explosive composition as described in 6 above, which is at least one kind.
[0013] 8.前記酸化剤成分が、塩素酸塩、過塩素酸塩、硝酸塩および塩基性硝酸塩からな る群力 選択される少なくとも 1種類であることを特徴とする上記 1乃至 7のいずれか 1 項に記載の火薬組成物。 [0014] 9.前記酸化剤成分が、過塩素酸アンモニゥム、過塩素酸カリウム、過塩素酸ナトリウ ム、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウムおよび塩基性硝酸銅力もなる群 カゝら選択される少なくとも 1種類であることを特徴とする上記 8に記載の火薬組成物。 [0013] 8. Any one of the above 1 to 7, wherein the oxidant component is at least one selected from the group consisting of chlorate, perchlorate, nitrate and basic nitrate The explosive composition according to item 1. [0014] 9. At least one selected from the group consisting of ammonium perchlorate, potassium perchlorate, sodium perchlorate, potassium nitrate, sodium nitrate, strontium nitrate and basic copper nitrate. The explosive composition as described in 8 above, which is of a kind.
[0015] 10.更に、金属粉末、ケィ素窒化物および金属窒化物の内から選択される少なくとも 1種類を含むことを特徴とする上記 1乃至 9のいずれか 1項に記載の火薬組成物。  [0015] 10. The explosive composition according to any one of 1 to 9, further comprising at least one selected from a metal powder, a silicon nitride, and a metal nitride.
[0016] 11.更に、界面活性剤を含むことを特徴とする上記 1乃至 10のいずれか 1項に記載 の火薬組成物。  [0016] 11. The explosive composition according to any one of the above 1 to 10, further comprising a surfactant.
[0017] 12.前記界面活性剤は、 HLB値が 15以下であるノ-オン界面活性剤であることを特 徴とする上記 11に記載の火薬組成物。  [0017] 12. The explosive composition as described in 11 above, wherein the surfactant is a non-one surfactant having an HLB value of 15 or less.
[0018] 13.上記 1乃至 9のいずれか 1項に記載の燃料成分および酸化剤成分を、疎水性粘 着剤の水性エマルシヨンの存在下に混練し、成形し、乾燥することを特徴とする火薬 組成物成形体。 [0018] 13. The fuel component and the oxidizer component according to any one of 1 to 9 above are kneaded, molded, and dried in the presence of an aqueous emulsion of a hydrophobic adhesive. Gunpowder Composition molded body.
[0019] 14.前記成形体が、ガス発生剤、オートイダ-ッシヨン剤およびェンノヽンサ一剤のい ずれかであることを特徴とする上記 13に記載の火薬組成物成形体。  [0019] 14. The explosive composition molded article according to the above 13, wherein the molded article is any one of a gas generating agent, an autoidation agent, and an engineered agent.
[0020] 15.前記成形体が、自動車安全装置用であることを特徴とする上記 13又は 14に記 載の火薬組成物成形体。 [0020] 15. The explosive composition molded article according to item 13 or 14, wherein the molded article is for an automobile safety device.
[0021] 16.前記成形体の形状が、顆粒状、錠剤状、円柱状、円筒状、角柱状、多孔円筒状 および多孔角柱状のいずれかであることを特徴とする上記 13乃至 15のいずれか 1 項に記載の火薬組成物成形体。 [0021] 16. The shape according to any one of the above 13 to 15, wherein the shape of the molded body is any of a granular shape, a tablet shape, a columnar shape, a cylindrical shape, a prismatic shape, a porous cylindrical shape, and a porous prismatic shape. The explosive composition molded article according to item 1.
[0022] 17.更に、金属粉末、ケィ素窒化物および金属窒化物の内から選択される少なくとも[0022] 17. Further, at least selected from metal powder, silicon nitride, and metal nitride
1種類を含むことを特徴とする上記 13乃至 16のいずれか 1項に記載の火薬組成物 成形体。 The explosive composition molded article according to any one of the above 13 to 16, wherein the explosive composition comprises one kind.
[0023] 18.更に、界面活性剤を含むことを特徴とする上記 13乃至 17のいずれか 1項に記 載の火薬組成物成形体。  [0023] 18. The explosive composition molded article according to any one of 13 to 17, further comprising a surfactant.
[0024] 19.前記界面活性剤は、 HLB値が 15以下であるノ-オン界面活性剤であることを特 徴とする上記 18に記載の火薬組成物成形体。 [0024] 19. The explosive composition molded article as described in 18 above, wherein the surfactant is a non-one surfactant having an HLB value of 15 or less.
[0025] 20.燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンを用いて混 練し、つ!、で乾燥させることを特徴とする火薬組成物の製造方法。 [0026] 21.燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンを用いて混 練し、ついで成形した後、乾燥 '固化させることを特徴とする火薬組成物成形体の製 造方法。 [0025] 20. A method for producing an explosive composition, which comprises kneading a fuel component and an oxidant component using an aqueous emulsion of a hydrophobic adhesive and drying the mixture with water. [0026] 21. A method for producing an explosive composition molded article, wherein a fuel component and an oxidant component are kneaded using an aqueous emulsion of a hydrophobic adhesive, then molded and then dried and solidified. .
[0027] 22.前記成形が、押出成形であることを特徴とする上記 17に記載の火薬組成物成 形体の製造方法。  [0027] 22. The method for producing an explosive composition molded article according to the above 17, wherein the molding is extrusion molding.
[0028] 本発明の火薬組成物は、成形後の成形体同士の付着が少なぐ乾燥後に、凝集し た薬剤同士の解砕も容易である。また、得られた乾燥成形体は、耐吸湿性、耐水性 が良好で、水分を嫌う自動車安全装置を作動させるためのガス発生器用火薬組成 物として好適である。また、本発明の火薬組成物の成形体を製造するに当たり、疎水 性粘着剤を、エマルシヨンの状態で水中に分散させ、水性エマルシヨンとして使用す ることにより、燃料成分と酸化剤成分の混練物はもち状となり、押出成形がしゃすくな る。さらに、上記混練物は製造機械に対し、付着し難ぐ製造後の機械の洗浄も容易 である。  [0028] The explosive composition of the present invention can easily disintegrate the agglomerated chemicals after drying with little adhesion between the molded articles after molding. Further, the obtained dried molded article has good moisture absorption resistance and water resistance, and is suitable as an explosive composition for a gas generator for operating an automobile safety device that dislikes moisture. Further, in producing a molded product of the explosive composition of the present invention, a hydrophobic adhesive is dispersed in water in an emulsion state and used as an aqueous emulsion, whereby a kneaded mixture of a fuel component and an oxidant component is obtained. It becomes sticky and extrudates. Furthermore, the kneaded product is difficult to adhere to the manufacturing machine, and it is easy to clean the machine after manufacturing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 本発明の火薬組成物は、燃料成分および酸化剤成分を主成分とし、これらを疎水 性粘着剤の水性エマルシヨンを用いて混練し、必要に応じて成形した後、乾燥して 得られるものである。本発明で使用する粘着剤は、疎水性の粘着剤であって、水中 に分散させることにより水性エマルシヨンを形成するものである。かような疎水性粘着 剤としては、例えばゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤が挙げら れるが、燃焼速度、燃焼ガスのクリーン性力もアクリル系粘着剤が好ましい。その使用 量は、火薬組成物中に固形分として 2乃至 15質量%含有させるのが好ましぐ特に 成形性や燃焼ガスのクリーン性の面からは固形分として 3乃至 9質量%含有させるの 力 り好ましい。粘着剤の熱分解温度は、火薬組成物の自己分解温度より高いことが 望ましぐ例えば 200°C以上が好ましい。また、成形前の火薬組成物がもち状態にな るようなアクリル系粘着剤を使用するのが押出成形する上で好ましい。  [0029] The explosive composition of the present invention comprises a fuel component and an oxidant component as main components, and these are kneaded using an aqueous emulsion of a hydrophobic adhesive, molded as necessary, and then dried. Is. The pressure-sensitive adhesive used in the present invention is a hydrophobic pressure-sensitive adhesive, and forms an aqueous emulsion by being dispersed in water. Examples of such hydrophobic pressure-sensitive adhesives include rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, and silicone-based pressure-sensitive adhesives. Acrylic pressure-sensitive adhesives are also preferable in terms of combustion speed and cleanliness of combustion gas. The amount used is preferably 2 to 15% by mass as a solid content in the explosive composition. In particular, from the viewpoint of moldability and cleanliness of combustion gas, the power to contain 3 to 9% by mass as a solid content. More preferable. Desirably, the thermal decomposition temperature of the pressure-sensitive adhesive is higher than the self-decomposition temperature of the explosive composition. In addition, it is preferable to use an acrylic pressure-sensitive adhesive that allows the explosive composition before molding to have a sticky state in terms of extrusion molding.
[0030] 本発明で使用する燃料成分としては、含窒素化合物およびホウ素を挙げることがで きる。含窒素化合物としては、例えばグァ-ジン、テトラゾール、ビテトラゾール、トリア ゾール、ヒドラジン、トリアジン、ァゾジカルボンアミド、ジシアナミド及びそれらの誘導 体、並びに-トラミンィ匕合物力もなる群力も選択される少なくとも 1種類を挙げることが できる。より具体的には、 5—ォキソ 1, 2, 4 トリァゾール、テトラゾール、 5 ァミノ テトラゾール、硝酸アミノテトラゾール、ニトロアミノテトラゾール、ビテトラゾール(5, 5, ビー 1H—テトラゾール)、 5, 5,一ビー 1H—テトラゾールジアンモ-ゥム塩、ァゾビ ステトラゾール、 5, 5'ーァゾテトラゾールジグァ-ジゥム塩、グァ-ジン、ニトログァ- ジン、シァノグァニジン、トリアミノグァ二ジン硝酸塩、硝酸グァニジン、硝酸アミノグァ 二ジン、ビウレット、ァゾジカルボンアミド、カルボヒドラジド、カルボヒドラジド硝酸塩錯 体、シユウ酸ヒドラジド、ヒドラジン硝酸塩錯体、アンミン錯体などを挙げることができる 。これらの含窒素有機化合物の中でも、安価で反応性が良く比較的取扱いが容易で あることから、テトラゾール誘導体およびグァ-ジン誘導体力 選ばれる 1種以上が好 ましぐニトログァ-ジン、硝酸グァ-ジン、ビテトラゾール、ァゾビステトラゾールおよ び 5 アミノテトラゾールカ 選ばれる 1種以上が特に好ましい。 [0030] Examples of the fuel component used in the present invention include nitrogen-containing compounds and boron. Examples of nitrogen-containing compounds include guanidine, tetrazole, bitetrazole, triazole, hydrazine, triazine, azodicarbonamide, dicyanamide and derivatives thereof. Mention may be made of at least one of the body and the group powers that will be the strength of the traminy compound. More specifically, 5-oxo 1, 2, 4 triazole, tetrazole, 5-amino tetrazole, aminotetrazole nitrate, nitroaminotetrazole, bitetrazole (5, 5, be 1H-tetrazole), 5, 5, 1 be 1H —Tetrazole diammonium salt, azobistetrazole, 5,5'-tetrazodazole guanidine salt, guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, guanidine nitrate, aminoguanidine nitrate, Biuret, azodicarbonamide, carbohydrazide, carbohydrazide nitrate complex, oxalic hydrazide, hydrazine nitrate complex, ammine complex and the like can be mentioned. Among these nitrogen-containing organic compounds, nitroguanidine and guanidine nitrate are preferred because they are inexpensive, reactive, and relatively easy to handle, and therefore one or more selected from tetrazole derivatives and guanidine derivatives are preferred. One or more selected from bistetrazole, azobistetrazole and 5-aminotetrazole are particularly preferred.
[0031] 本発明の火薬組成物中における燃料成分の含有率 (配合割合)は、 15〜50質量 %程度とするのが好ましぐ 20〜45質量%程度とするのがより好ましい。燃料成分の 含有率 (配合割合)が 15質量%未満では、ガス発生剤として火薬組成物を用いた場 合の火薬組成物 lOOg当りの発生ガスモル数が減少し、酸素過剰で NOxの発生量 が増加するという傾向にある。一方、燃料成分の含有率 (配合割合)が 50質量%を超 える場合には、低比重の燃料成分が多くなるためにガス発生剤としての火薬組成物 の真比重が減少し、例えばエアバッグやシートベルトプリテンショナ一用等のガス発 生器への体積当りの充填量が減少してしまう。また酸化剤成分が不足するために CO ガスが多く発生するという傾向にあるためである。燃料成分として、含窒素化合物とホ ゥ素を併用する場合、その使用割合は、含窒素化合物を 1質量部とした場合、ホウ素 を 0. 1乃至 10質量部とすることが好ましぐより好ましくは、ホウ素を 0. 5乃至 5質量 咅とすることである。 [0031] The content (mixing ratio) of the fuel component in the explosive composition of the present invention is preferably about 15 to 50% by mass, more preferably about 20 to 45% by mass. When the content (mixing ratio) of the fuel component is less than 15% by mass, the number of moles of gas generated per lOOg of the explosive composition when the explosive composition is used as the gas generating agent decreases, and the amount of NOx generated due to excess oxygen It tends to increase. On the other hand, when the fuel component content (mixing ratio) exceeds 50% by mass, the fuel component with a low specific gravity increases, so the true specific gravity of the explosive composition as the gas generating agent decreases. In addition, the filling amount per volume to gas generators such as those used for seat belt pretensioners is reduced. It is also because there is a tendency to generate a lot of CO gas due to the lack of oxidant components. When a nitrogen-containing compound and fluorine are used in combination as a fuel component, the use ratio is more preferably 0.1 to 10 parts by mass of boron when the nitrogen-containing compound is 1 part by mass. Means that the boron content is 0.5 to 5 mass%.
[0032] 本発明で使用する酸化剤成分としては、例えば塩素酸塩、過塩素酸塩、硝酸塩ま たは塩基性硝酸塩が挙げられる。塩素酸塩としては、例えば塩素酸カリウム、塩素酸 ナトリウム等の塩素酸のアルカリ金属塩、塩素酸バリウム、塩素酸カルシウム等の塩 素酸のアルカリ土類金属塩、塩素酸アンモニゥム等の塩素酸のアンモニゥム塩が挙 げられる。過塩素酸塩としては、例えば過塩素酸カリウム、過塩素酸ナトリウム等の過 塩素酸のアルカリ金属塩、過塩素酸バリウム、過塩素酸カルシウム等の過塩素酸の アルカリ土類金属塩、過塩素酸アンモニゥム等の過塩素酸のアンモニゥム塩が挙げ られる。硝酸塩としては、例えば硝酸アンモ-ゥム等の硝酸のアンモ-ゥム塩、硝酸 ナトリウム、硝酸カリウム等の硝酸のアルカリ金属塩;硝酸バリウム、硝酸ストロンチウ ム等の硝酸のアルカリ土類金属塩等が挙げられる力 塩基性硝酸塩としては、例え ば塩基性硝酸銅、塩基性硝酸マンガン、塩基性硝酸鉄、塩基性硝酸モリブデン、塩 基性硝酸ビスマス、塩基性硝酸セリウム等が挙げられる。これらの中でも、過塩素酸 塩、硝酸塩または塩基性硝酸塩が好ましぐ過塩素酸塩の中では、発生ガス量が高 ぐ反応性の高い過塩素酸アンモニゥムまたは過塩素酸カリウムが好ましい。また硝 酸塩の中では、反応性及び取扱い性などの理由から、アルカリ金属およびアルカリ 土類金属から選ばれる金属硝酸塩であることが好ましぐ特に、硝酸カリウム、硝酸ス トロンチウムが好ましい。または、塩基性硝酸塩の中では、燃焼温度が低ぐ熱安定 性が良 ヽ塩基性硝酸銅が好まし ヽ。 [0032] Examples of the oxidant component used in the present invention include chlorate, perchlorate, nitrate, or basic nitrate. Examples of chlorates include alkali metal salts of chloric acid such as potassium chlorate and sodium chlorate, alkaline earth metal salts of chloric acid such as barium chlorate and calcium chlorate, and chloric acid such as ammonium chlorate. Ammonium salt I can get lost. Examples of perchlorates include alkali metal salts of perchloric acid such as potassium perchlorate and sodium perchlorate, alkaline earth metal salts of perchloric acid such as barium perchlorate and calcium perchlorate, and perchlorate. Ammonium salts of perchloric acid such as acid ammonium. Examples of nitrates include ammonium nitrates such as ammonium nitrate, alkali metal salts of nitric acid such as sodium nitrate and potassium nitrate; alkaline earth metal salts of nitric acid such as barium nitrate and strontium nitrate. Examples of basic nitrates that can be used include basic copper nitrate, basic manganese nitrate, basic iron nitrate, basic molybdenum nitrate, basic bismuth nitrate, and basic cerium nitrate. Among these, among perchlorates in which perchlorate, nitrate or basic nitrate is preferred, ammonium perchlorate or potassium perchlorate having a high generated gas amount and high reactivity are preferred. Among nitrates, metal nitrates selected from alkali metals and alkaline earth metals are preferred for reasons such as reactivity and handling, and potassium nitrate and strontium nitrate are particularly preferred. Or, among the basic nitrates, the thermal stability is low and the combustion temperature is low. Basic copper nitrate is preferred.
[0033] 本発明の火薬組成物中における酸化剤成分の含有率 (配合割合)は 40〜80質量 %程度とするのが好ましい。酸化剤成分の含有率 (配合割合)が 40質量%未満であ る場合には、酸素不足となるために COガスが多く発生するという傾向にあり、一方、 80質量%を超える場合には、酸素過剰で NOxの発生量が増加するという傾向にあ る。  [0033] The content (mixing ratio) of the oxidant component in the explosive composition of the present invention is preferably about 40 to 80% by mass. When the content of oxidant component (mixing ratio) is less than 40% by mass, there is a tendency to generate more CO gas due to lack of oxygen, while when it exceeds 80% by mass, There is a tendency for NOx generation to increase due to excess oxygen.
[0034] 本発明の火薬組成物中には、さらに燃焼速度を高め、着火性をより向上させるため に、金属粉末、ケィ素窒化物または金属窒化物を含ませることができる。金属粉末と しては、例えばアルミニウム、マグネシウム、マダナリウム、チタン及びジルコニウムな どが挙げられる。ケィ素窒化物または金属窒化物としては、例えば、窒化珪素,窒化 硼素,窒化アルミニウム,窒化マグネシウム,窒化モリブデン,窒化タングステン,窒 化カルシウム,窒化バリウム,窒化ストロンチウム,窒化亜鉛,窒化ナトリウム,窒化銅 ,窒化チタン,窒化マンガン,窒化バナジウム,窒化ニッケル,窒化コバルト,窒化鉄 ,窒化ジルコニウム,窒化クロム,窒化タンタル,窒化ニオブ,窒化セリウム,窒化ス力 ンジゥム,窒化イットリウム,窒化ゲルマニウム等が挙げられる。金属粉末、ケィ素窒 化物または金属窒化物の含有量は、火薬組成物中 0乃至 10質量%が好ましい。 [0034] The explosive composition of the present invention may contain a metal powder, a silicon nitride, or a metal nitride in order to further increase the combustion rate and further improve the ignitability. Examples of the metal powder include aluminum, magnesium, madanalium, titanium, and zirconium. Examples of the silicon nitride or metal nitride include silicon nitride, boron nitride, aluminum nitride, magnesium nitride, molybdenum nitride, tungsten nitride, calcium nitride, barium nitride, strontium nitride, zinc nitride, sodium nitride, copper nitride, Examples include titanium nitride, manganese nitride, vanadium nitride, nickel nitride, cobalt nitride, iron nitride, zirconium nitride, chromium nitride, tantalum nitride, niobium nitride, cerium nitride, strontium nitride, yttrium nitride, and germanium nitride. Metal powder, key nitrogen The content of the fluoride or metal nitride is preferably 0 to 10% by mass in the explosive composition.
[0035] 本発明の火薬組成物中には、さらに燃料成分、酸化剤成分及び疎水性粘着剤の 混練性を高め、且つ押出成形性をより高めるために界面活性剤を含ませることができ る。界面活性剤としては、例えばノ-オン界面活性剤、ァ-オン性界面活性剤、カチ オン界面活性剤の ヽずれも使用できるが、ノィゲン (第一工業製薬社製)等のノ-ォ ン界面活性剤が望ましい。ノ-オン界面活性剤の中でも、 HLB(Hydrophile Lipophile Balance)値が、 15以下であることが好ましい。より好ましくは、 3乃至 15である。 2種 類以上の界面活性剤を併用した場合は、加重平均にて HLB値を算出する。 HLBが あまりに低い場合には、水系での分散能力が悪ぐ逆に高すぎる場合には火薬組成 物の耐吸湿性が低下してしまう。界面活性剤の含有量は、火薬組成物中 0乃至 5質 量%が好ましい。 [0035] The explosive composition of the present invention may further contain a surfactant in order to further improve the kneadability of the fuel component, the oxidant component and the hydrophobic pressure-sensitive adhesive and to further enhance the extrusion moldability. . As the surfactant, for example, any of nonionic surfactants, ionic surfactants, and cationic surfactants can be used, but nonionics such as Neugen (Daiichi Kogyo Seiyaku Co., Ltd.) can be used. A surfactant is desirable. Among non-ionic surfactants, the HLB (Hydrophile Lipophile Balance) value is preferably 15 or less. More preferably, it is 3 to 15. When two or more surfactants are used in combination, the HLB value is calculated using a weighted average. If the HLB is too low, the water dispersibility in the water system is poor. On the other hand, if the HLB is too high, the moisture absorption resistance of the explosive composition will decrease. The content of the surfactant is preferably 0 to 5% by mass in the explosive composition.
[0036] 本発明の火薬組成物中には、さらに押出性を改善させるために、保水剤 ·潤滑剤と して押出助剤を含ませることができる。押出助剤としては、カルボキシメチルセルロー ス(CMC)、カルボキシメチルセルロースナトリウム塩(CMCNa)、カルボキシメチル セルロースカリウム塩、カルボキシメチルセルロースアンモ-ゥム塩、酢酸セルロース 、セノレロースアセテートブチレート (CAB)、メチルセルロース(MC)、ェチノレセノレロー ス(EC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシェチルセルロース (HEC)、ェチルヒドロキシェチルセルロース(EHEC)、ヒドロキシプロピルセルロース (HPC)、カルボキシメチルェチルセルロース(CMEC)などが挙げられる。押出助剤 の含有量は、火薬組成物中 0乃至 1質量%が好ましい。  [0036] In order to further improve the extrudability, the explosive composition of the present invention may contain an extrusion aid as a water retention agent / lubricant. Extrusion aids include carboxymethyl cellulose (CMC), carboxymethylcellulose sodium salt (CMCNa), carboxymethylcellulose potassium salt, carboxymethylcellulose ammonium salt, cellulose acetate, cenololose acetate butyrate (CAB), methylcellulose ( MC), ethinoresenoreose (EC), hydroxypropylmethylcellulose (HPMC), hydroxyethylcellulose (HEC), ethylhydroxyethylcellulose (EHEC), hydroxypropylcellulose (HPC), carboxymethylethylcellulose (CMEC). The content of the extrusion aid is preferably 0 to 1% by mass in the explosive composition.
[0037] その他必要に応じ、酸性白土、カオリン系等のスラグ形成剤、アルカリ金属またはァ ルカリ土類金属等の塩素中和剤、酸化モリブデン、酸化バナジウム、酸化鉄、酸化銅 、酸ィ匕クロム、酸化コバルト、酸ィ匕アルミニウム等の燃焼触媒等を配合することができ る。  [0037] In addition, acid clay, kaolin-based slag forming agents, chlorine neutralizing agents such as alkali metals or alkali earth metals, molybdenum oxide, vanadium oxide, iron oxide, copper oxide, acid chrome In addition, a combustion catalyst such as cobalt oxide or aluminum oxide can be blended.
[0038] 本発明の火薬組成物は、成形体として使用することが好ましぐ該火薬組成物の成 形体をガス発生剤、オートイダ-ッシヨン剤またはェンノヽンサ一剤として使用できる。 ガス発生剤の場合、燃料として含窒素化合物を使用することが好ましい。ェンハンサ 一剤は、点火器カゝら発生した火炎を大きくしてガス発生剤を燃焼しやすくするための もので、燃料として含窒素化合物またはホウ素が好適である。オートイダ-ッシヨン剤 は、ガス発生剤の発火温度よりも低い温度で、例えば 180°C付近で自己発火する性 質を有するもので、例えば 5—アミノテトラゾール、硝酸アルカリ金属塩、三酸化モリブ デンを使用したものが挙げられる(特開 2001— 80986号公報参照)。 [0038] In the explosive composition of the present invention, the explosive composition preferably used as a molded product can be used as a gas generating agent, an autoidation agent or an engineer agent. In the case of a gas generating agent, it is preferable to use a nitrogen-containing compound as a fuel. Enhansa Agent is used to increase the flame generated by the igniter and make it easier to burn the gas generant. Therefore, a nitrogen-containing compound or boron is preferable as the fuel. Autoidation agents have the property of self-ignition at a temperature lower than the ignition temperature of the gas generating agent, for example, around 180 ° C. Those used are mentioned (see JP-A-2001-80986).
[0039] また、本発明の火薬組成物成形体は、例えば自動車安全装置用の部品に使用さ れる。自動車安全装置用の部品としては、例えばエアバッグ用ガス発生器、シートべ ルトプリテンショナ一用ガス発生器、ボンネット上昇装置用小型ガス発生器が挙げら れる。本発明の火薬組成物成形体は、必要に応じてガス発生剤、オートイダ二ッショ ン剤およびェンノヽンサ一剤として組み合わせてこれらのガス発生器に使用される。  [0039] The explosive composition molded body of the present invention is used for, for example, parts for automobile safety devices. Examples of parts for automobile safety devices include a gas generator for an air bag, a gas generator for a seat belt pretensioner, and a small gas generator for a bonnet lifting device. The explosive composition molded body of the present invention is used in these gas generators in combination as a gas generating agent, an autoidation agent and an engineering agent as necessary.
[0040] 本発明の火薬組成物成形体は、粉状または顆粒状を呈して!ヽる。また、成形体とし た場合の形状としては、押出成形体、錠剤が挙げられる。押出成形体の形状として は、顆粒状、円柱状、円筒状、角柱状、多孔円筒状、多孔角柱状などが挙げられる。 錠剤としては、打錠ペレットなどが挙げられる。  [0040] The explosive composition molded article of the present invention exhibits a powdery or granular form. Further, examples of the shape of the molded body include an extruded molded body and a tablet. Examples of the shape of the extrusion-molded body include granules, columns, cylinders, prisms, porous cylinders, and porous prisms. Examples of tablets include tableting pellets.
[0041] 本発明の火薬組成物は、燃料成分および酸化剤成分を、疎水性粘着剤の水性ェ マルシヨンにより、混練し、乾燥させることで製造される。ここで、各成分の他に、例え ば、上記した金属粉末、ケィ素窒化物、金属窒化物、界面活性剤、押出助剤、燃焼 触媒等を、本発明の目的を害しない範囲内で適宜選択して配合することができる。ま た、本発明の火薬組成物を成形体として製造するには、燃料成分および酸化剤成分 を、疎水性粘着剤の水性エマルシヨンにより、混練し、ついで成形した後、乾燥'固化 させれば良い。ここで、各成分を混練して得た混練物を成形機により成形させること が好ましぐまた、成形機、特に押出機によって混合、混練を行ってもよい。上記成形 機としては、例えば打錠機、圧縮成形機、押出成形機、圧伸成形機、造粒機などが 挙げられるが、これらの中でも、押出成形機が好ましい。  [0041] The explosive composition of the present invention is produced by kneading and drying a fuel component and an oxidant component with an aqueous emulsion of a hydrophobic adhesive. Here, in addition to the respective components, for example, the above-described metal powder, silicon nitride, metal nitride, surfactant, extrusion aid, combustion catalyst, etc. are appropriately selected within a range that does not impair the object of the present invention. Can be selected and blended. In order to produce the explosive composition of the present invention as a molded article, the fuel component and the oxidant component are kneaded with an aqueous emulsion of a hydrophobic adhesive, then molded, and then dried and solidified. . Here, it is preferable to form a kneaded product obtained by kneading each component with a molding machine, and mixing and kneading may be performed with a molding machine, particularly an extruder. Examples of the molding machine include a tableting machine, a compression molding machine, an extrusion molding machine, a drawing machine, and a granulating machine. Among these, an extrusion molding machine is preferable.
[0042] < <実施例 > >  [0042] << Example >>
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例 に何ら限定されるものではな 、。  Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[0043] (実施例 1)  [0043] (Example 1)
硝酸グァ-ジン 40質量%、硝酸ストロンチウム 25質量%、及び塩基性硝酸銅 25質 量%をロッキングミキサーで混合し、混練機でアクリル系粘着剤の水性エマルシヨン を固形分として 9質量%、 HLB値が 8. 0である界面活性剤ノィゲン TDS— 30 (第一 工業製薬社製)を 1質量%混合し、さらにこれらの成分系 100質量部に対し、イオン 交換水 15質量部を加え、均一に混練した。次に、得られた混練物を押出機で所定 の圧力をカ卩ぇ直径 2. 5mmのダイスを通しながら所定の形状に押出した。押出された 火薬組成物の成形体を長さ 6. 5mmに裁断し、乾燥して円柱状のガス発生剤用の火 薬組成物成形体を得た。 Guadine nitrate 40% by mass, strontium nitrate 25% by mass, and basic copper nitrate 25% The surfactant Neugen TDS-30 (made by Daiichi Kogyo Seiyaku Co., Ltd.) is mixed in a rocking mixer, and the mixture is 9% by mass with a water-based emulsion of acrylic pressure-sensitive adhesive in a kneading machine. The HLB value is 8.0. Then, 15 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly. Next, the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm by applying a predetermined pressure with an extruder. The extruded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
[0044] 得られたガス発生剤用火薬組成物成形体の着火性および燃焼性を示すパラメータ である燃焼速度 (40%— 70%)dpZdtは、 2. 32MPaZmsであった。燃焼速度 (40 %— 70%)dpZdtは、 18ccボンブ内でェンハンサー剤 0. 3gとガス発生剤 2. 5gを 燃焼させたときのボンブ内圧を圧力センサで測定し、燃焼時間と燃焼圧力との間の 燃焼曲線から求められた、最大圧力を 100%とした場合に 40%から 70%に達するま での曲線の傾きのことである。  [0044] The combustion rate (40% -70%) dpZdt, which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 2.32 MPaZms. Combustion rate (40% —70%) dpZdt is a pressure sensor that measures the internal pressure of a bomb when 0.3 g of an enhancer agent and 2.5 g of a gas generating agent are combusted in an 18 cc bomb. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%, obtained from the combustion curve.
[0045] (実施例 2)  [0045] (Example 2)
硝酸グァニジン 40質量%、硝酸ストロンチウム 25質量%、塩基性硝酸銅 25質量% 、及びヒドロキシプロピルメチルセルロース 1質量%をロッキングミキサーで混合し、混 練機でアクリル系粘着剤の水性エマルシヨンを固形分として 8質量%混合し、さらにこ れらの成分系 100質量部に対し、イオン交換水 15質量部を加え、均一に混練した。 次に、得られた混練物を押出機で所定の圧力を加え直径 2. 5mmのダイスを通しな 力 所定の形状に押出した。押出された火薬組成物の成形体を長さ 6. 5mmに裁断 し、乾燥して円柱状のガス発生剤用の火薬組成物成形体を得た。  Mix guanidine nitrate 40% by mass, strontium nitrate 25% by mass, basic copper nitrate 25% by mass, and hydroxypropylmethylcellulose 1% by mass with a rocking mixer, and use an acrylic adhesive aqueous emulsion as a solid content in a kneader. Furthermore, 15 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly. Next, the obtained kneaded material was extruded into a predetermined shape by applying a predetermined pressure with an extruder and passing through a die having a diameter of 2.5 mm. The extruded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
[0046] 得られたガス発生剤用火薬組成物成形体の着火性および燃焼性を示すパラメータ である燃焼速度 (40%— 70%)dpZdtは、 2. 27MPaZmsであった。燃焼速度 (40 %— 70%)dpZdtは、 18ccボンブ内でェンハンサー剤 0. 3gとガス発生剤 2. 5gを 燃焼させたときのボンブ内圧を圧力センサで測定し、燃焼時間と燃焼圧力との間の 燃焼曲線から求められた、最大圧力を 100%とした場合に 40%から 70%に達するま での曲線の傾きのことである。  [0046] The combustion rate (40% -70%) dpZdt, which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 2.27 MPaZms. Combustion rate (40% —70%) dpZdt is a pressure sensor that measures the internal pressure of a bomb when 0.3 g of an enhancer agent and 2.5 g of a gas generating agent are combusted in an 18 cc bomb. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%, obtained from the combustion curve.
[0047] (実施例 3) 5 アミノテトラゾール 10質量0 /0及び硝酸カリウム 68質量0 /0をロッキングミキサーで 混合し、混練機でボロンを 12質量%、アクリル系粘着剤の水性エマルシヨンを固形分 として 9質量%、界面活性剤ノィゲン TDS— 30 (第一工業製薬社製)を 1質量%混合 し、さらにこれらの成分系 100質量部に対し、イオン交換水 16質量部を加え、均一に 混練した。次に、得られた混練物を押出機で所定の圧力を加え直径 1. 8mmのダイ スを通しながら所定の形状に押出した。押出された火薬組成物の成形体を長さ 2. 5 mmに裁断し、乾燥して円柱状のェンノ、ンサ一剤用の火薬組成物成形体を得た。 [0047] (Example 3) 5-aminotetrazole 10 mass 0/0 and potassium nitrate 68 mass 0/0 were mixed with a rocking mixer, 12 wt% of boron with a kneading machine, 9 wt% of an aqueous emulsion of the acrylic pressure-sensitive adhesive solid content, surfactant Noigen 1% by mass of TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) was mixed, and 16 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems, and kneaded uniformly. Next, the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.8 mm. The extruded explosive composition molded body was cut into a length of 2.5 mm, and dried to obtain a cylindrical explosive composition molded body for an enno and sensor.
[0048] 得られたェンハンサー剤用火薬組成物成形体の着火性および燃焼性を示すパラメ ータである燃焼速度(30%— 70%) dpZdtは 10. 3MPaZmsであった。燃焼速度( 30% 70%) dpZdt測定方法は、 18ccボンブ内でェンハンサー剤 1200mgを燃 焼させたときのボンブ内圧を圧力センサで測定し、燃焼時間と燃焼圧力との間の燃 焼曲線から求められた、最大圧力を 100%とした場合に 40%から 70%に達するまで の曲線の傾きのことである。  [0048] The combustion rate (30% -70%) dpZdt, which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for an enhancer was 10.3 MPaZms. Combustion rate (30% 70%) The dpZdt measurement method uses a pressure sensor to measure the internal pressure of the bomb when 1200 mg of enhancer agent is combusted in an 18 cc bomb, and obtain it from the combustion curve between the combustion time and the combustion pressure. It is the slope of the curve from 40% to 70% when the maximum pressure is 100%.
[0049] (実施例 4)  [0049] (Example 4)
過塩素酸アンモ-ゥム 26質量%、硝酸ストロンチウム 26質量%、及び燃焼触媒とし て酸化銅 4質量%をロッキングミキサーで混合し、混練機で-トログァ-ジンを 34質 量%、アクリル系粘着剤の水性エマルシヨンを固形分として 9質量%、界面活性剤ノ ィゲン TDS - 30 (第一工業製薬社製)を 1質量%混合し、さらにこれらの成分系 100 質量部に対し、イオン交換水 13質量部を加え、均一に混練した。次に、得られた混 練物を押出機で所定の圧力を加え直径 1. 5mmのダイスを通しながら所定の形状に 押出した。押出された火薬組成物の成形体を長さ 2. 0mmに裁断し、乾燥して円柱 状のガス発生剤用の火薬組成物成形体を得た。  Ammonium perchlorate 26% by mass, strontium nitrate 26% by mass, and 4% by mass of copper oxide as a combustion catalyst were mixed in a rocking mixer, and in a kneader, 34 mass% of trologin, acrylic adhesive 9% by mass of aqueous emulsion of the agent and 1% by mass of surfactant Nogen TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) as a solid content, and further to 100 parts by mass of these component systems, ion-exchanged water 13 Mass parts were added and kneaded uniformly. Next, the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.5 mm. The extruded explosive composition molded body was cut into a length of 2.0 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
[0050] 得られたガス発生剤用火薬組成物成形体の着火性および燃焼性を示すパラメータ である燃焼速度(30%— 70%) dpZdtは 13. IMPaZmsであった。燃焼速度(30 % - 70%) dpZdt測定方法は、 lOccボンブ内でガス発生剤用火薬組成物 1250m gを燃焼させたときのボンブ内圧を圧力センサで測定し、燃焼時間と燃焼圧力との間 の燃焼曲線力も求められた、最大圧力を 100%とした場合に 40%から 70%に達する までの曲線の傾きのことである。 [0051] (実施例 5) [0050] The combustion rate (30% -70%) dpZdt, which is a parameter indicating the ignitability and combustibility, of the obtained explosive composition molded article for gas generant was 13. IMPaZms. Combustion rate (30%-70%) The dpZdt measurement method uses a pressure sensor to measure the internal pressure of the bomb when 1250 mg of the explosive composition for gas generant is burned in the lOcc bomb, and The combustion curve force is also obtained, and is the slope of the curve from 40% to 70% when the maximum pressure is 100%. [0051] (Example 5)
5—アミノテトラゾール 28質量0 /0、硝酸カリウム 61質量0 /0、及び三酸化モリブデン 4 質量%をロッキングミキサーで混合し、アクリル系粘着剤の水性エマルシヨンを固形 分として 6質量%、界面活性剤ノィゲン TDS― 30 (第一工業製薬社製)を 1質量%混 合し、さらにこれらの成分系 100質量部に対し、イオン交換水 16質量部を加え、均一 に混練した。次に、得られた混練物を押出機で所定の圧力を加え直径 1. 8mmのダ イスを通しながら所定の形状に押出した。押出された火薬組成物の成形体を長さ 2. 5mmに裁断し、乾燥して円柱状のオートイダニッシヨン剤用の火薬組成物成形体を 得た。 5-aminotetrazole 28 mass 0/0, potassium nitrate 61 mass 0/0, and 4 wt% molybdenum trioxide were mixed in a rocking mixer, 6 wt% of an aqueous emulsion of the acrylic pressure-sensitive adhesive solid content, surfactant Noigen 1% by mass of TDS-30 (Daiichi Kogyo Seiyaku Co., Ltd.) was mixed, and 16 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly. Next, the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 1.8 mm. The extruded explosive composition molded body was cut into a length of 2.5 mm and dried to obtain a cylindrical explosive composition molded body for an auto-idanization agent.
[0052] 得られたオートイダ-ッシヨン剤用火薬組成物成形体の性能を評価するために、 20 0°Cにおける発火時間の計測と TG— DTA熱天秤 Z示差熱分析機による分解開始 温度を測定した。 200°Cにおける発火時間は 2秒であり、分解開始温度は 175°Cで めつに。  [0052] In order to evaluate the performance of the obtained explosive composition molded product for autoidation agent, measurement of ignition time at 200 ° C and measurement of decomposition start temperature with TG-DTA thermobalance Z differential thermal analyzer did. The ignition time at 200 ° C is 2 seconds and the decomposition start temperature is 175 ° C.
[0053] (実施例 6)  [0053] (Example 6)
実施例 3で得られたェンノヽンサ一剤用火薬組成物成形体を用いて— 40°Cから 10 7°Cの温度変化を 200サイクル行う熱衝撃試験を行い、また 107°Cで 400時間、 150 0時間及び 3000時間放置する耐熱試験を行い、重量減少率を測定した。また 18cc ボンブ内でェンノヽンサ一剤用火薬組成物 1200mgを燃焼させたときのボンブ内圧を 圧力センサで測定し、試験前後の燃焼時間と燃焼圧力との関係 (30%— 70%) dp Zdtを求めた。結果を表 1に示す。この結果から、熱衝撃試験および耐熱試験にお いて重量減少率が小さぐまた燃焼速度の変化も小さい、耐環境性の良好なェンノヽ ンサー剤用火薬組成物成形体が得られたことがわかる。  The thermal shock test was performed using the molded explosive composition molding for Ennoenser obtained in Example 3 at a temperature change from 40 ° C to 10 7 ° C for 200 cycles, and at 107 ° C for 400 hours. A heat resistance test was allowed to stand for 1500 hours and 3000 hours, and the weight loss rate was measured. In addition, the internal pressure of the bomb when 1200 mg of the gunpowder composition for an energizer was burned in an 18 cc bomb was measured with a pressure sensor, and the relationship between the combustion time before and after the test and the combustion pressure (30% —70%) Asked. The results are shown in Table 1. From this result, it can be seen that an explosive composition molded article with good environmental resistance and a low weight loss rate and a small change in the burning rate in the thermal shock test and heat resistance test was obtained. .
[0054] ¾1 [0054] ¾1
Figure imgf000012_0001
Figure imgf000012_0001
[0055] (実施例 7) 硝酸グァ-ジン 40質量%、硝酸ストロンチウム 25質量%、及び塩基性硝酸銅 25質 量%をロッキングミキサーで混合し、混練機でアクリル系粘着剤の水性エマルシヨン を固形分として 9質量%、 HLB値が 13. 3である界面活性剤ノィゲン TDS— 80 (第 一工業製薬社製)を 1質量%混合し、さらにこれらの成分系 100質量部に対し、ィォ ン交換水 15質量部を加え、均一に混練した。次に、得られた混練物を押出機で所定 の圧力をカ卩ぇ直径 2. 5mmのダイスを通しながら所定の形状に押出した。押出された 火薬組成物の成形体を長さ 6. 5mmに裁断し、乾燥して円柱状のガス発生剤用の火 薬組成物成形体を得た。 [Example 7] Guadine nitrate 40 mass%, strontium nitrate 25 mass%, and basic copper nitrate 25 mass% are mixed in a rocking mixer, and the acrylic adhesive aqueous emulsion is 9 mass% in solid content with a kneader, HLB value 13.3% of the surfactant Neugen TDS-80 (Daiichi Kogyo Seiyaku Co., Ltd.) with 13.3 is added, and 15 parts by weight of ion-exchanged water is added to 100 parts by weight of these components. Kneaded uniformly. Next, the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm by applying a predetermined pressure with an extruder. The extruded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
[0056] (実施例 8) [Example 8]
硝酸グァ-ジン 40質量%、硝酸ストロンチウム 25質量%、及び塩基性硝酸銅 25質 量%をロッキングミキサーで混合し、混練機でアクリル系粘着剤の水性エマルシヨン を固形分として 9質量%、 HLB値が 16. 3である界面活性剤ノィゲン TDS— 200D ( 第一工業製薬社製)を 1質量%混合し、さらにこれらの成分系 100質量部に対し、ィ オン交換水 15質量部を加え、均一に混練した。次に、得られた混練物を押出機で所 定の圧力を加え直径 2. 5mmのダイスを通しながら所定の形状に押出した。押出さ れた火薬組成物の成形体を長さ 6. 5mmに裁断し、乾燥して円柱状のガス発生剤用 火薬組成物成形体を得た。  Guadine nitrate 40 mass%, strontium nitrate 25 mass%, and basic copper nitrate 25 mass% are mixed in a rocking mixer, and the acrylic adhesive aqueous emulsion is 9 mass% in solid content with a kneader, HLB value 16.3% of the surfactant Neugen TDS-200D (Daiichi Kogyo Seiyaku Co., Ltd.) with 16.3 is mixed, and 15 parts by weight of ion exchange water is added to 100 parts by weight of these components. Kneaded. Next, the obtained kneaded material was extruded into a predetermined shape while applying a predetermined pressure with an extruder and passing through a die having a diameter of 2.5 mm. The molded explosive composition molded body was cut into a length of 6.5 mm and dried to obtain a cylindrical explosive composition molded body for a gas generating agent.
[0057] (比較例 1) [0057] (Comparative Example 1)
硝酸グァニジン 41質量%、硝酸ストロンチウム 25質量%、塩基性硝酸銅 25質量% 、ヒドロキシプロピルメチルセルロース 6質量%、及びポリビュルピロリドン 3質量%を口 ッキングミキサーで混合し、さらにこれらの成分系 100質量部に対してイオン交換水 1 5質量部を加え均一に混練した。次に、得られた混練物を押出機で所定の圧力をカロ え直径 2. 5mmのダイスを通しながら所定の形状に押出した。押出されたガス発生剤 組成物の成形体を長さ 6. 5mmに裁断し、乾燥して円柱状のガス発生剤組成物成 形体を得た。  Guanidine nitrate 41% by mass, strontium nitrate 25% by mass, basic copper nitrate 25% by mass, hydroxypropylmethylcellulose 6% by mass, and polybulurpyrrolidone 3% by mass are mixed in a mouth mixer, and these component systems 100% by mass 15 parts by mass of ion exchange water was added to the part and kneaded uniformly. Next, the obtained kneaded product was extruded into a predetermined shape while passing through a die having a diameter of 2.5 mm under a predetermined pressure with an extruder. The molded product of the extruded gas generant composition was cut into a length of 6.5 mm and dried to obtain a cylindrical gas generant composition molded product.
[0058] 実施例 7、 8で得られたガス発生剤用火薬組成物成形体と比較例 1で得られた ガス発生剤組成物成形体を用いて、吸湿実験を行った。吸湿実験方法は、 25°Cに おいて相対湿度 31%、 52%、 80%、 93%雰囲気中にガス発生剤用火薬組成物成 形体を曝露して一定時間ごとの重量増加を測定した。測定した雰囲気下での曝露前 との重量変化率の結果を表 2に示す。この結果から、実施例と比較例を対比すると、 48時間後の重量変化率において、実施例では最大でも 1. 42%の重量変化率にす ぎないのに対し、比較例 1では 1. 530%であり、実施例のほうが吸湿の少ないことが わかる。また、実施例どうしを比較すると、ノ-オン界面活性剤の HLB値が 8. 0の実 施例 1、HLB値が 13. 3の実施例 7、 HLB値が 16. 3の実施例 8の順に重量変化率 大きくなつており、 HLB値が高くなると吸湿も大きくなることがわかる。 表 2 [0058] A moisture absorption experiment was performed using the explosive composition molded article for gas generant obtained in Examples 7 and 8 and the gas generant composition molded article obtained in Comparative Example 1. The moisture absorption test method was as follows: the composition of the explosive composition for gas generant was set in an atmosphere of 31%, 52%, 80%, 93% relative humidity at 25 ° C. The features were exposed and the weight gain over time was measured. Table 2 shows the results of the weight change rate before and after exposure in the measured atmosphere. From this result, when comparing the example and the comparative example, the weight change rate after 48 hours was 1.42% at the maximum in the example, whereas 1.530% in the comparative example 1. It can be seen that the example shows less moisture absorption. In addition, when the Examples are compared, the HLB value of the nonionic surfactant is 8.0, Example 7, the HLB value is 13.3, Example 7, and the HLB value is 16.3. It can be seen that the rate of weight change gradually increases, and that moisture absorption increases as the HLB value increases. Table 2
Figure imgf000014_0001
Figure imgf000014_0001
(比較例 2) (Comparative Example 2)
過塩素酸アンモ-ゥム 26質量%、硝酸ストロンチウム 26質量%、及び燃焼触媒とし て酸化銅 4質量0 /0、ヒドロキシプロピルメチルセルロース 6質量0 /0、及びポリアクリルァ ミド 3質量%をロッキングミキサーで混合し、混練機で-トログァ-ジン 35質量%を混 合し、さらにこれらの成分系 100質量部に対してイオン交換水 14質量部を加え均一 に混練した。次に、得られた混練物を押出機で所定の圧力を加え直径 1. 5mmのダ イスを通しながら押出することにより所定の形状に押出した。押出されたガス発生剤 組成物の成形体を長さ 2. Ommに裁断し、乾燥して円柱状のガス発生剤組成物成 形体を得た。 Perchlorate ammonium - © arm 26 wt%, mixed strontium nitrate 26% by weight, and as a combustion catalyst of copper oxide 4 mass 0/0, hydroxypropylmethylcellulose 6 mass 0/0, and Poriakurirua bromide 3% by mass in a rocking mixer And mixing 35% by mass of trologin in a kneader Furthermore, 14 parts by mass of ion-exchanged water was added to 100 parts by mass of these component systems and kneaded uniformly. Next, the obtained kneaded material was extruded into a predetermined shape by applying a predetermined pressure with an extruder and extruding it through a die having a diameter of 1.5 mm. The extruded product of the gas generant composition was cut into a length of 2. Omm and dried to obtain a cylindrical gas generant composition formed product.
[0061] (比較例 3) [0061] (Comparative Example 3)
5—アミノテトラゾール 11質量0 /0、硝酸カリウム 68質量0 /0、ヒドロキシプロピルメチル セルロース 6質量%、及びポリアクリルアミド 3質量%をロッキングミキサーで混合し、 混練機でボロン 12質量%を混合し、さらにこれらの成分系 100質量部に対してィォ ン交換水 17質量部を加え均一に混練した。次に、得られた混練物を押出機で所定 の圧力をカ卩ぇ直径 1. 8mmのダイスを通しながら押出することにより所定の形状に押 出した。押出されたェンノ、ンサ一剤組成物の成形体を長さ 2. 5mmに裁断し、乾燥 して円柱状のェンノ、ンサ一剤組成物成形体を得た。 5-aminotetrazole 11 mass 0/0, potassium nitrate 68 mass 0/0, hydroxypropylmethyl cellulose 6% by weight, and polyacrylamide 3 wt% were mixed in a rocking mixer, a mixture of boron 12% by mass in the kneader, further To 100 parts by mass of these component systems, 17 parts by mass of ion exchange water was added and kneaded uniformly. Next, the obtained kneaded product was extruded into a predetermined shape by extruding it through a die having a diameter of 1.8 mm with a predetermined pressure by an extruder. The extruded molded body of the ennno and sensory agent composition was cut into a length of 2.5 mm and dried to obtain a cylindrical shaped erno and sensory agent composition molded body.
[0062] 実施例 3で得られたガス発生剤用火薬組成物成形体と比較例 1、 2で得られた ガス発生剤組成物成形体を用いて、また、実施例 4で得られたェンハンサー剤用火 薬組成物成形体と比較例 3で得られたェンハンサー剤組成物成形体を用いて、更に 、実施例 8で得られたガス発生剤用火薬組成物成形体を用いて、押出成形性、成形 物同士の固着、成形機の清掃性について観察した。結果を表 3に示す。この結果か ら、実施例と比較例を対比すると、いずれの実施例も押出成形性、成形機の清掃性 において良好であり、また成形物同士の固着も見られな力つた。これに対し比較例で は、押出成形性は良好であるものの、成形機の清掃性が悪ぐまた成形物同士の固 着も見られた。なお、表 3中の各記号は次のことを意味する。  [0062] By using the explosive composition molded article for gas generant obtained in Example 3 and the gas generant composition molded article obtained in Comparative Examples 1 and 2, and the enhancer obtained in Example 4. Extrusion molding using the explosive composition molded article for the agent and the enhancer agent composition molded article obtained in Comparative Example 3, and further using the explosive composition molding for the gas generating agent obtained in Example 8. Properties, adhesion between molded products, and cleanability of the molding machine. The results are shown in Table 3. From these results, when comparing the example and the comparative example, all of the examples were excellent in the extrusion moldability and the cleaning property of the molding machine, and the adhesion between the molded products was not observed. On the other hand, in the comparative example, although the extrusion moldability was good, the molding machine was poorly cleaned and the molded products were firmly adhered to each other. The symbols in Table 3 mean the following.
[0063] 押出成形性: 〇 押出機により成形できた  [0063] Extrudability: 〇 Could be formed by an extruder
X 押出機により成形できな力つた  X Force that cannot be formed by an extruder
成形機の清掃性: 〇 手で押出機の付着物を除去できた  Cleanability of the molding machine: 〇 The deposits on the extruder could be removed by hand
X 手では押出機の付着物を除去できず、各部品に付着した 付着物を湯で湿潤状態にした後、スクレーバを使用しないと除 去できなかった 表 3 X The deposits on the extruder could not be removed by hand, and the deposits adhered to each part could not be removed without using a scraper after wetting the deposits with hot water. Table 3
実施例 (比較例) 押出成形性 成形物同士の固着 成形機の淸掃性 実施例 1 〇 なし 〇 実施例 3 〇 なし 〇 実施例 4 〇 なし 〇 実施例 8 〇 なし 〇 比較例 1 〇 あり X 比較例 2 〇 あり X 比較例 3 〇 あり X Example (Comparative example) Extrudability Adhesion between molded products Cleanability of molding machine Example 1 ○ None ○ Example 3 ○ None ○ Example 4 ○ None ○ Example 8 ○ None ○ Comparative Example 1 ○ Yes X Comparative Example 2 Yes Yes X Comparative Example 3 Yes Yes X

Claims

請求の範囲 The scope of the claims
[I] 燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンの存在下に、混 練し、乾燥して得たことを特徴とする火薬組成物。  [I] An explosive composition obtained by kneading and drying a fuel component and an oxidizer component in the presence of an aqueous emulsion of a hydrophobic adhesive.
[2] 前記疎水性粘着剤の含有量が、 2乃至 15質量%であることを特徴とする請求項 1 に記載の火薬組成物。  [2] The explosive composition according to claim 1, wherein the content of the hydrophobic adhesive is 2 to 15% by mass.
[3] 前記疎水性粘着剤が、ゴム系粘着剤、アクリル系粘着剤およびシリコーン系粘着剤 力 なる群力 選択される少なくとも 1種類であることを特徴とする請求項 1又は 2に記 載の火薬組成物。  [3] The hydrophobic adhesive according to claim 1 or 2, wherein the hydrophobic adhesive is at least one kind selected from a rubber adhesive, an acrylic adhesive, and a silicone adhesive. Gunpowder composition.
[4] 前記疎水性粘着剤が、アクリル系粘着剤であることを特徴とする請求項 3に記載の 火薬組成物。  [4] The explosive composition according to claim 3, wherein the hydrophobic adhesive is an acrylic adhesive.
[5] 前記疎水性粘着剤は、熱分解温度が 200°C以上であることを特徴とする請求項 3 または 4に記載の火薬組成物。  [5] The explosive composition according to claim 3 or 4, wherein the hydrophobic adhesive has a thermal decomposition temperature of 200 ° C or higher.
[6] 前記燃料成分が、含窒素化合物および Zまたはホウ素であることを特徴とする請求 項 1乃至 5のいずれか 1項に記載の火薬組成物。 6. The explosive composition according to any one of claims 1 to 5, wherein the fuel component is a nitrogen-containing compound and Z or boron.
[7] 前記含窒素化合物が、グァ-ジン、テトラゾール、ビテトラゾール、トリァゾール、ヒド ラジン、トリアジン、ァゾジカルボンアミド、ジシアナミド及びそれらの誘導体、並びに ニトラミンィ匕合物からなる群力も選択される少なくとも 1種類であることを特徴とする請 求項 6に記載の火薬組成物。 [7] At least one in which the nitrogen-containing compound is selected from the group power consisting of guanidine, tetrazole, bitetrazole, triazole, hydrazine, triazine, azodicarbonamide, dicyanamide and their derivatives, and nitramine compounds. The explosive composition according to claim 6, wherein the explosive composition is of a type.
[8] 前記酸化剤成分が、塩素酸塩、過塩素酸塩、硝酸塩および塩基性硝酸塩からなる 群力 選択される少なくとも 1種類であることを特徴とする請求項 1乃至 7のいずれか[8] The oxidant component is at least one selected from the group power consisting of chlorate, perchlorate, nitrate, and basic nitrate.
1項に記載の火薬組成物。 The explosive composition according to item 1.
[9] 前記酸化剤成分が、過塩素酸アンモニゥム、過塩素酸カリウム、過塩素酸ナトリウム[9] The oxidant component is ammonium perchlorate, potassium perchlorate, sodium perchlorate.
、硝酸カリウム、硝酸ナトリウム、硝酸ストロンチウムおよび塩基性硝酸銅力もなる群か ら選択される少なくとも 1種類であることを特徴とする請求項 8に記載の火薬組成物。 The explosive composition according to claim 8, wherein the explosive composition is at least one selected from the group consisting of potassium nitrate, sodium nitrate, strontium nitrate and basic copper nitrate.
[10] 更に、金属粉末、ケィ素窒化物および金属窒化物の内から選択される少なくとも 1 種類を含むことを特徴とする請求項 1乃至 9のいずれか 1項に記載の火薬組成物。 10. The explosive composition according to any one of claims 1 to 9, further comprising at least one selected from metal powder, silicon nitride, and metal nitride.
[II] 更に、界面活性剤を含むことを特徴とする請求項 1乃至 10のいずれか 1項に記載 の火薬組成物。 [II] The explosive composition according to any one of claims 1 to 10, further comprising a surfactant.
[12] 前記界面活性剤は、 HLB値が 15以下であるノ-オン界面活性剤であることを特徴 とする請求項 11に記載の火薬組成物。 12. The explosive composition according to claim 11, wherein the surfactant is a non-one surfactant having an HLB value of 15 or less.
[13] 上記 1乃至 9のいずれか 1項に記載の燃料成分および酸化剤成分を、疎水性粘着 剤の水性エマルシヨンにより、混練し、成形し、乾燥することを特徴とする火薬組成物 成形体。 [13] An explosive composition molded article, wherein the fuel component and the oxidizer component according to any one of 1 to 9 above are kneaded, molded, and dried with an aqueous emulsion of a hydrophobic adhesive .
[14] 前記成形体が、ガス発生剤、オートイダ-ッシヨン剤およびェンノヽンサ一剤の 、ず れかであることを特徴とする請求項 13に記載の火薬組成物成形体。  14. The explosive composition molded article according to claim 13, wherein the molded article is any one of a gas generating agent, an autoidation agent, and an engineered agent.
[15] 前記成形体が、自動車安全装置用であることを特徴とする請求項 13又は 14に記 載の火薬組成物成形体。 15. The explosive composition molded article according to claim 13 or 14, wherein the molded article is for an automobile safety device.
[16] 前記成形体の形状が、顆粒状、錠剤状、円柱状、円筒状、角柱状、多孔円筒状お よび多孔角柱状のいずれかであることを特徴とする請求項 13乃至 15のいずれか 1 項に記載の火薬組成物成形体。 [16] The shape of the molded body is any one of granules, tablets, columns, cylinders, prisms, perforated cylinders, and perforated prisms, The explosive composition molded article according to item 1.
[17] 更に、金属粉末、ケィ素窒化物および金属窒化物の内から選択される少なくとも 1 種類を含むことを特徴とする請求項 13乃至 16のいずれか 1項に記載の火薬組成成 形体物。 [17] The explosive composition formed article according to any one of claims 13 to 16, further comprising at least one selected from metal powder, silicon nitride, and metal nitride. .
[18] 更に、界面活性剤を含むことを特徴とする請求項 13乃至 17のいずれか 1項に記載 の火薬組成物成形体。  [18] The explosive composition molded article according to any one of claims 13 to 17, further comprising a surfactant.
[19] 前記界面活性剤は、 HLB値が 15以下であるノ-オン界面活性剤であることを特徴 とする請求項 18に記載の火薬組成物成形体。  19. The explosive composition molded article according to claim 18, wherein the surfactant is a non-ionic surfactant having an HLB value of 15 or less.
[20] 燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンを用いて混練し[20] The fuel component and the oxidizer component are kneaded using a hydrophobic adhesive aqueous emulsion.
、つ 1、で乾燥させることを特徴とする火薬組成物の製造方法。 1. A method for producing an explosive composition, characterized in that it is dried in step 1.
[21] 燃料成分および酸化剤成分を、疎水性粘着剤の水性エマルシヨンを用いて混練し[21] The fuel component and the oxidizer component are kneaded using a hydrophobic adhesive aqueous emulsion.
、ついで成形した後、乾燥 '固化させることを特徴とする火薬組成物成形体の製造方 法。 Next, a method for producing an explosive composition molded article characterized by drying and solidifying after molding.
[22] 前記成形が、押出成形であることを特徴とする請求項 21に記載の火薬組成物成形 体の製造方法。  22. The method for producing an explosive composition molded article according to claim 21, wherein the molding is extrusion molding.
PCT/JP2007/058339 2006-04-19 2007-04-17 Explosive composition, explosive composition molded body, and their production methods WO2007123120A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008512117A JPWO2007123120A1 (en) 2006-04-19 2007-04-17 Explosive composition, explosive composition molded body, and production method thereof
US12/297,496 US20090159163A1 (en) 2006-04-19 2007-04-17 Explosive Composition and Explosive Composition Shaped Body as Well as Method for Producing the Same
EP07741775A EP2022770A1 (en) 2006-04-19 2007-04-17 Explosive composition, explosive composition molded body, and their production methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-115153 2006-04-19
JP2006115153 2006-04-19

Publications (1)

Publication Number Publication Date
WO2007123120A1 true WO2007123120A1 (en) 2007-11-01

Family

ID=38625020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058339 WO2007123120A1 (en) 2006-04-19 2007-04-17 Explosive composition, explosive composition molded body, and their production methods

Country Status (5)

Country Link
US (1) US20090159163A1 (en)
EP (1) EP2022770A1 (en)
JP (1) JPWO2007123120A1 (en)
CN (1) CN101466653A (en)
WO (1) WO2007123120A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500774A (en) * 2008-08-29 2012-01-12 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Cast explosive composition
JP2012106882A (en) * 2010-11-17 2012-06-07 Nippon Kayaku Co Ltd Enhancer agent composition and gas generator using the same
CN103739416A (en) * 2013-12-17 2014-04-23 江西省李渡烟花集团有限公司 Novel firework silver willow powder
JP2015024681A (en) * 2013-07-24 2015-02-05 オートリブ ディベロップメント エービー Inflator for airbag

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257347B (en) * 2008-11-05 2013-12-25 日本化药株式会社 Ignition system and gas generating device for airbag loaded with same
WO2011045942A1 (en) * 2009-10-15 2011-04-21 日本化薬株式会社 Gas generating agent composition, molded product of the composition, and gas generation device equipped with the molded product
CN103254025B (en) * 2013-04-26 2015-10-28 西安近代化学研究所 A kind of High-flammability aluminium powder composition and preparation method thereof
GB2555764B (en) * 2015-10-12 2022-06-15 Lewtas Science & Tech Ltd Improvements in or relating to energetic materials
CN109153620B (en) * 2016-05-09 2021-08-17 德力能欧洲有限公司 High-temperature exploder
CN109438150B (en) * 2018-11-30 2021-07-13 湖北航鹏化学动力科技有限责任公司 Automatic ignition medicament composition, preparation method, application and gas generator
US20210032180A1 (en) * 2019-08-02 2021-02-04 Autoliv Asp, Inc. Ignition booster compositions and methods of making the same
CN114736084A (en) * 2022-03-09 2022-07-12 江西星火军工工业有限公司 Stable and efficient novel combustion agent and preparation method thereof
CN115286476B (en) * 2022-06-30 2024-03-29 湖北航鹏化学动力科技有限责任公司 Automatic ignition powder composition for gas generator and preparation method and application thereof
CN116082103B (en) * 2022-12-27 2024-01-02 西安近代化学研究所 TKX-50-based high-energy composite explosive and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271987A (en) * 1989-04-13 1990-11-06 Tech Res & Dev Inst Of Japan Def Agency Casting type composition for explosive
JPH10265290A (en) * 1997-03-24 1998-10-06 Daicel Chem Ind Ltd Gas generating agent composition and its molding
JP2000095592A (en) 1998-09-18 2000-04-04 Daicel Chem Ind Ltd Gas generating agent molding
JP2001080986A (en) 1999-07-09 2001-03-27 Nippon Kayaku Co Ltd Self-ignitable enhancer composition
JP2001192288A (en) 1999-06-25 2001-07-17 Nippon Kayaku Co Ltd Gas generating agent composition
JP2003112991A (en) * 2001-10-04 2003-04-18 Nof Corp Gas generating agent composition and air bag
JP2003524565A (en) 1997-07-22 2003-08-19 アライアント・テクシステムズ・インコーポレーテッド Extrudable igniter composition
JP2003238285A (en) 2001-12-14 2003-08-27 Livbag Snc Process for preparation of electropyrotechnic initiator by use of aqueous adhesive

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775431A (en) * 1987-11-23 1988-10-04 Atlas Powder Company Macroemulsion for preparing high density explosive compositions
JP2005139011A (en) * 2003-11-04 2005-06-02 Nof Corp Explosive raw material and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271987A (en) * 1989-04-13 1990-11-06 Tech Res & Dev Inst Of Japan Def Agency Casting type composition for explosive
JPH10265290A (en) * 1997-03-24 1998-10-06 Daicel Chem Ind Ltd Gas generating agent composition and its molding
JP2003524565A (en) 1997-07-22 2003-08-19 アライアント・テクシステムズ・インコーポレーテッド Extrudable igniter composition
JP2000095592A (en) 1998-09-18 2000-04-04 Daicel Chem Ind Ltd Gas generating agent molding
JP2001192288A (en) 1999-06-25 2001-07-17 Nippon Kayaku Co Ltd Gas generating agent composition
JP2001080986A (en) 1999-07-09 2001-03-27 Nippon Kayaku Co Ltd Self-ignitable enhancer composition
JP2003112991A (en) * 2001-10-04 2003-04-18 Nof Corp Gas generating agent composition and air bag
JP2003238285A (en) 2001-12-14 2003-08-27 Livbag Snc Process for preparation of electropyrotechnic initiator by use of aqueous adhesive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500774A (en) * 2008-08-29 2012-01-12 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Cast explosive composition
JP2015145329A (en) * 2008-08-29 2015-08-13 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc Casting explosive composition
JP2012106882A (en) * 2010-11-17 2012-06-07 Nippon Kayaku Co Ltd Enhancer agent composition and gas generator using the same
JP2015024681A (en) * 2013-07-24 2015-02-05 オートリブ ディベロップメント エービー Inflator for airbag
CN103739416A (en) * 2013-12-17 2014-04-23 江西省李渡烟花集团有限公司 Novel firework silver willow powder
CN103739416B (en) * 2013-12-17 2016-08-24 江西省李渡烟花集团有限公司 A kind of Novel firework silver willow powder

Also Published As

Publication number Publication date
EP2022770A1 (en) 2009-02-11
CN101466653A (en) 2009-06-24
JPWO2007123120A1 (en) 2009-09-03
US20090159163A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2007123120A1 (en) Explosive composition, explosive composition molded body, and their production methods
US7335270B2 (en) Gas generating composition and gas generator
JP5719763B2 (en) GAS GENERATOR COMPOSITION, MOLDED BODY THEREOF, AND GAS GENERATOR USING THE SAME
JP2007534587A (en) Gas generation system
EP1142853B1 (en) Gas generator composition
JP3848257B2 (en) Propellant for gas generant
JP2002187790A (en) Gas generating agent composition and gas generator using the same
JP4575395B2 (en) Especially combustible gas generating compositions and ignition products for automobile safety devices
JP2004067424A (en) Gas generator composition for inflator containing melamine cyanurate
JP2005231907A (en) Gas producing agent for use in air bag
JP2008115030A (en) Gas generating agent composition
JP2002160992A (en) Gas generating agent
JPH10259085A (en) Gas generating agent composition for air bag having low residue content
JP6562659B2 (en) Gas generant composition
JP7266956B2 (en) Gas generant composition
JP2015086095A (en) Gas generating agent composition
JP4318238B2 (en) Gas generant composition
JP2019182729A (en) Gas generating agent composition
JP3476771B2 (en) Manufacturing method of molded article of gas generating agent for airbag
JP2958529B1 (en) Gas generator for airbag
JP4500586B2 (en) Gas generant composition
JPH11314992A (en) Gas generator composition
JP2019206473A (en) Gas generating agent composition
JPH10120484A (en) Gas-generation agent composition for protecting riding person of vehicle, its molded material and production of molded material
JPH08183419A (en) Gas generating agent composite and air bag inflator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021645.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008512117

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12297496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007741775

Country of ref document: EP