JP2015145329A - Casting explosive composition - Google Patents

Casting explosive composition Download PDF

Info

Publication number
JP2015145329A
JP2015145329A JP2015011407A JP2015011407A JP2015145329A JP 2015145329 A JP2015145329 A JP 2015145329A JP 2015011407 A JP2015011407 A JP 2015011407A JP 2015011407 A JP2015011407 A JP 2015011407A JP 2015145329 A JP2015145329 A JP 2015145329A
Authority
JP
Japan
Prior art keywords
explosive
explosive composition
cast
casting
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015011407A
Other languages
Japanese (ja)
Other versions
JP6169628B2 (en
Inventor
ロナルド・エドワード・ホーランズ
Edward Hollands Ronald
イアン・エワート・パターソン・マーレイ
Ewart Paterson Murray Ian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
BAE Systems PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAE Systems PLC filed Critical BAE Systems PLC
Publication of JP2015145329A publication Critical patent/JP2015145329A/en
Application granted granted Critical
Publication of JP6169628B2 publication Critical patent/JP6169628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0058Shaping the mixture by casting a curable composition, e.g. of the plastisol type
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/009Wetting agents, hydrophobing agents, dehydrating agents, antistatic additives, viscosity improvers, antiagglomerating agents, grinding agents and other additives for working up
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/10Compositions containing a nitrated organic compound the compound being nitroglycerine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a casting explosive composition having reduced sensitiveness to factors such as friction, impact and heat by reducing the number of void and/or total volume in the casting explosive composition without reducing performance, and a method for reducing the number of void and/or total volume.SOLUTION: There is provided a casting explosive composition containing a polymer bound explosive and an antifoaming agent. There is provided a casting explosive composition containing a binder resin such as cellulose and polybutadiene, the polymer bound explosive such as RDX, FOX-7, nitroglycerine, DNAN trinitrotoluene and ammonium perchlorate, the antifoaming agent and metal powder such as Al, Mg and W. There is provided a method for reducing the number of void and/or total volume in the casting explosive composition including a process of mixing the polymer bound explosive and the antifoaming agent to cast the explosive composition.

Description

本発明は注型爆薬組成物、その調製および使用に関する。具体的には、本発明はポリマー結合爆薬組成物に関する。   The present invention relates to cast explosive compositions, their preparation and use. Specifically, the present invention relates to polymer-bonded explosive compositions.

爆薬組成物は一般的に、意図する目的によって必要とされる形に成形される。成形は注型、加圧成形、押し出し成形または鋳造によるものであってよく;注型および加圧成形は最も一般的な成形技術である。しかしながら、注型は加圧成形よりも大きな設計柔軟性を提供するので一般的には爆薬組成物を注型することが望ましい。   Explosive compositions are generally shaped into the shape required by the intended purpose. Molding may be by casting, pressure molding, extrusion or casting; casting and pressure molding are the most common molding techniques. However, it is generally desirable to cast an explosive composition because casting provides greater design flexibility than pressure molding.

ポリマー結合爆薬(プラスチック結合爆薬およびPBXとしても知られてもいる)は典型的に、ポリマーマトリックスに結合した爆薬粉末である。マトリックスの存在は爆薬の物理的性質と化学的性質を変え、しばしば高融点爆薬の注型および硬化を促進する。さもなければ、このような爆薬はメルトキャスティング技術を用いて注型できるのみであるかもしれない。メルトキャスティング技術は一般的に溶融性バインダーを含むので高いプロセス温度を必要とする可能性がある。このバインダーの融点が高いほど、潜在的な危険はより大きい。加えて、マトリックスは摩擦、衝撃および熱にあまり敏感でないポリマー結合爆薬を調製するために用いられることがあり、たとえば、弾性マトリックスはこれらの性質を提供するであろう。マトリックスはまた、衝撃、衝突、熱的および他の危険な刺激に対するその反応に関して損傷を受けにくい炸薬の製造を促進する。あるいは、硬いポリマーマトリックスは、得られるポリマー結合爆薬をたとえば旋盤を用いる機械加工により成形することを可能にし、必要に応じて複雑な構造を有する爆薬物質の製造を可能にするであろう。   Polymer bonded explosives (also known as plastic bonded explosives and PBX) are typically explosive powders bonded to a polymer matrix. The presence of the matrix changes the physical and chemical properties of the explosive, often promoting the casting and curing of high melting point explosives. Otherwise, such explosives could only be cast using melt casting technology. Melt casting techniques typically involve a fusible binder and may require high process temperatures. The higher the melting point of this binder, the greater the potential danger. In addition, the matrix may be used to prepare polymer-bonded explosives that are less sensitive to friction, impact and heat, for example, an elastic matrix will provide these properties. The matrix also facilitates the manufacture of glazes that are not susceptible to damage with respect to their response to shock, impact, thermal and other dangerous stimuli. Alternatively, a hard polymer matrix will allow the resulting polymer-bonded explosive to be shaped, for example, by machining using a lathe, and allow for the production of explosive materials with complex structures if necessary.

US 6,893,516 は、結晶性爆薬をポリシロキサンでコーティングして粒状製品を製造する爆薬混合物を記載している。それぞれの結晶へのこのコーティングの塗布は、さもなければ爆薬の望まない反応を引き起こすであろう細孔をなくして結晶の表面を滑らかにする。それ自体、ポリシロキサンコーティングは粒状爆薬の感度を低下させ、取扱いおよび任意の続く成形工程中での安全性を改善する。   US 6,893,516 describes an explosive mixture in which a crystalline explosive is coated with polysiloxane to produce a granular product. Application of this coating to each crystal smooths the surface of the crystal by eliminating pores that would otherwise cause unwanted reactions of the explosive. As such, the polysiloxane coating reduces the sensitivity of the particulate explosive and improves safety during handling and any subsequent molding steps.

従来の注型技術はしばしば固化した組成物をもたらし、これは材料の混合中およびモールドへの組成物の配置により取り込まれる気泡を保持する。典型的にこのようなモールドへの配置は組成物の注入によるものであろう。単位体積あたりに存在する爆薬が少ないほど、これらの空隙は組成物の性能を低下させることがある。加えて、十分な量で存在する場合に孔あるいは空隙は組成物の衝撃感度に影響を及ぼし、組成物を衝撃波による衝撃または発火に対してより不安定にすることがある。   Conventional casting techniques often result in a solidified composition that retains bubbles that are entrained during mixing of the material and by placement of the composition in the mold. Typically such placement in the mold will be by injection of the composition. The fewer explosives present per unit volume, the more these voids can degrade the performance of the composition. In addition, pores or voids, when present in sufficient amounts, can affect the impact sensitivity of the composition and can make the composition more unstable to shock or ignition by shock waves.

本発明は組成物の安定性が改善された注型爆薬組成物を提供しようとしており、このことは空隙の数および/若しくは総体積の低減によるか、または他の手段、たとえば存在する揮発性成分の数の低減等のためであろう。このような組成物は改善された安定性を提供するだけでなく、摩擦、衝撃および熱等のファクタに対して低下した感度をも提供するであろう。つまり、爆薬の不慮の起爆のリスクを軽減する。   The present invention seeks to provide a cast explosive composition with improved composition stability, either by reducing the number of voids and / or the total volume, or by other means such as volatile components present This may be due to a reduction in the number of the like. Such compositions will not only provide improved stability, but will also provide reduced sensitivity to factors such as friction, impact and heat. In other words, reduce the risk of accidental explosion of explosives.

本発明の1つの態様において、ポリマー結合爆薬と消泡剤とを含む注型爆薬組成物が提供される。   In one aspect of the invention, a cast explosive composition comprising a polymer-bound explosive and an antifoaming agent is provided.

消泡剤の存在は、組成物中にしばしば残存するであろう空隙を実質的になくすことができる。従って、本明細書で用いられる場合に「消泡剤」という語は、注型爆薬組成物のポリマーバインダーの内部から空隙をなくすように作用する界面活性特性を有する添加物を意味するものと意図される。この作用を有さないあらゆる添加物は、本発明の意味内では消泡剤を構成するものとみなさない。当該技術において、このような添加物は「泡止め剤」、「脱気剤」および「脱泡剤」としても知られている。   The presence of the antifoaming agent can substantially eliminate voids that will often remain in the composition. Accordingly, as used herein, the term “antifoam” is intended to mean an additive having surface active properties that act to eliminate voids from the interior of the polymeric binder of the cast explosive composition. Is done. Any additive that does not have this action is not considered to constitute an antifoam within the meaning of the present invention. In the art, such additives are also known as “antifoaming agents”, “degassing agents” and “defoaming agents”.

空隙は、バインダーおよび爆薬成分との界面においてよりはむしろ、ポリマー結合爆薬のバインダー成分の本体内に典型的に見出される。爆薬の意図される用途が高い重力加速度にさらすことをもたらす場合(たとえば大砲の砲弾、臼破弾またはミサイルの場合がありうる)、これらの空隙の除去は特に望まれる。このような条件下では、空隙の断熱圧縮は空隙周囲の領域を早く発火しがちにさせることを生じることが見出されることが考えられる。空隙の除去が特に重要である他の用途は、爆薬の意図される用途がターゲットと衝突すると同時に急な減速をもたらしうるが、軍需品を爆発させる前にターゲット貫通を必要とする場合である。このことは爆弾およびミサイルに関する場合であろう。空隙が存在すると、ターゲット貫通が起こる前に、これらの断熱圧縮は衝撃時に発火をもたらすであろう。   The voids are typically found within the body of the binder component of the polymer-bound explosive, rather than at the interface with the binder and explosive component. The removal of these voids is particularly desirable when the intended use of the explosives results in exposure to high gravitational accelerations (which can be, for example, cannon shells, mortars or missiles). Under such conditions, it is conceivable that adiabatic compression of the voids is found to cause the area surrounding the voids to tend to ignite quickly. Another application where air gap removal is particularly important is when the intended use of the explosive can impact the target and at the same time cause a sudden slowdown, but require a target penetration before exploding the munitions. This may be the case with bombs and missiles. In the presence of voids, these adiabatic compressions will ignite upon impact before target penetration occurs.

加えて、消泡剤は組成物の粘度を下げ、この添加物がない場合と比較して、注型工程をより迅速に行うことを可能にする。さらに、消泡剤を含有する組成物は、この添加物が存在しない場合に得られる%TMDの点で、場合によってより高い密度を有することが分かった。この密度の増加は爆薬の改善された安定性および感度の低下にも関係している。多くの場合、空隙の減少は密度の増加と関連しうる;しかしながら、本発明の組成物は複雑なので、密度の増加を、空隙数が減少したという指標とみなすことができるにすぎない。
多くの場合他の方法、たとえばX線撮影を用いて空隙を直接的に視覚化し、消泡剤の効果を判断する。
In addition, the antifoaming agent lowers the viscosity of the composition and allows the casting process to be performed more quickly compared to the absence of this additive. Furthermore, it has been found that compositions containing antifoam agents have a higher density in some cases in terms of the% TMD obtained in the absence of this additive. This increase in density is also associated with improved stability and reduced sensitivity of the explosives. In many cases, void reduction can be associated with increased density; however, because the compositions of the present invention are complex, the increase in density can only be taken as an indication that the number of voids has decreased.
In many cases, other methods, such as radiography, are used to visualize the voids directly to determine the effectiveness of the antifoam.

本発明のさらなる態様において、注型爆薬組成物中の空隙の数および/または総体積を減少するための方法であって、以下の工程を含む方法が提供される:
ポリマー結合爆薬と消泡剤とを混合し;
爆薬組成物を注型する。
In a further aspect of the invention, there is provided a method for reducing the number and / or total volume of voids in a cast explosive composition comprising the following steps:
Mixing polymer-bonded explosive and antifoam agent;
Cast the explosive composition.

本発明の他の態様は、爆薬製品における本明細書に記載される注型爆薬組成物の使用に関し、本発明のさらなる態様は本明細書に記載される注型爆薬組成物を含む爆薬製品に関する。   Another aspect of the present invention relates to the use of the cast explosive composition described herein in an explosive product, and a further aspect of the present invention relates to an explosive product comprising the cast explosive composition described herein. .

ポリマー結合爆薬はポリマーバインダーを含み、これはその中でマトリックス結合している爆薬粒子を形成する。従ってバインダーは、爆薬が用いられるであろう用途に応じて、広範囲のポリマーから選択されうる。しかしながら、一般にバインダーの少なくとも一部は、ポリウレタン、セルロース系材料たとえば酢酸セルロース、ポリエステル、ポリブタジエン、ポリエチレン、ポリイソブチレン、PVA、塩化ゴム、エポキシ樹脂、2液ポリウレタン系、アルキド/メラニン、ビニル樹脂、アルキド、自己架橋アクリラート、熱可塑性エラストマーたとえばブタジエン−スチレンブロックコポリマー、および配合物、コポリマー並びに/またはこれらの組み合わせから選択されるであろう。エネルギーポリマー(energetic polymer)を単独でまたは組み合わせて用いてもよく、これらはポリNIMMO(ポリ(3−ニトラトメチル−3−メチルオキセタン)、ポリGLYN(ポリグリシジルニトラート)およびGAP(グリシジルアジドポリマー)を含む。バインダー成分が、単独でまたは組み合わせて上記バインダーのリストからもっぱら選択されることが好ましい。いくつかの実施形態において、バインダーは少なくとも一部分はポリウレタンを含んでいて、しばしばバインダーは50〜100wt%のポリウレタン、場合により、80〜100wt%のポリウレタンを含むであろう。いくつかの実施形態において、バインダーはポリウレタンからなるであろう。MDI(メチレンジフェニルジイソシアナート)およびTDI(トルエンジイソシアナート)およびIPDI(イソホロンジイソシアナート)に由来するポリウレタンを用いてもよい。液体であり、従って供するのが容易であるためIPDIが一般的に好ましい;これは比較的ゆっくりと反応し、長いポットライフおよび反応中により遅い温度変化をもたらす;並びに殆どの他のイソシアナートと比較して比較的低い毒性を有する。バインダーがポリウレタンを含む場合には、ポリウレタンバインダーはヒドロキシ末端を有するポリブタジエンを含有することも好ましい。   The polymer-bonded explosive includes a polymer binder that forms explosive particles that are matrix-bonded therein. Thus, the binder can be selected from a wide range of polymers depending on the application for which the explosive will be used. However, in general, at least a part of the binder is polyurethane, cellulosic material such as cellulose acetate, polyester, polybutadiene, polyethylene, polyisobutylene, PVA, chlorinated rubber, epoxy resin, two-component polyurethane system, alkyd / melanin, vinyl resin, alkyd, It will be selected from self-crosslinking acrylates, thermoplastic elastomers such as butadiene-styrene block copolymers, and blends, copolymers and / or combinations thereof. Energetic polymers may be used alone or in combination, which include poly NIMMO (poly (3-nitratomethyl-3-methyloxetane), poly GLYN (polyglycidyl nitrate) and GAP (glycidyl azide polymer). It is preferred that the binder components be selected solely from the above list of binders, alone or in combination.In some embodiments, the binder comprises at least a portion of polyurethane, often the binder is 50-100 wt%. Polyurethane, optionally including 80-100 wt% polyurethane, In some embodiments, the binder will comprise polyurethane, MDI (methylene diphenyl diisocyanate) and TDI ( Polyurethanes derived from (endiisocyanate) and IPDI (isophorone diisocyanate) may be used, IPDI is generally preferred because it is liquid and thus easy to serve; Results in longer pot life and slower temperature changes during the reaction, and has relatively low toxicity compared to most other isocyanates.If the binder includes polyurethane, the polyurethane binder contains polybutadiene having hydroxy termination It is also preferable to do.

ポリマー結合爆薬の爆薬成分は、ある実施形態においては、1種以上の複素脂環式ニトロアミン化合物を含んでいてもよい。ニトロアミン化合物は少なくとも1つのN−NO基を有するものである。複素脂環式ニトロアミンはN−NO基を含有する環を有する。
このような環はたとえば2から10個の炭素原子と2から10個の環窒素原子を含みうる。好ましい複素脂環式ニトロアミンの例は、RDX(シクロ−1,2,3−トリメチレン−2,4,6−トリニトロアミン,ヘキソーゲン)、HMX(シクロ−1,3,5,7−テトラメチレン−2,4,6,8−テトラニトロアミン,オクトーゲン)、およびこれらの混合物である。爆薬成分はさらにまたはあるいは、TATND(テトラニトロ−テトラアミノデカリン)、HNS(ヘキサニトロスチルベン)、TATB(トリアミノトリニトロベンゼン)、NTO(3−ニトロ−1,2,4−トリアゾール−5−オン)、HNIW(2,4,6,8,10,12−ヘキサニトロヘキサアザイソウルチタン)、GUDN(グアニルジル(guanyldyl)ウレアジニトリド)、FOX−7(1,1−ジアミノ−2,2−ジニトロエタン)、およびこれらの組み合わせから選択されてもよい。
The explosive component of the polymer-bound explosive may, in some embodiments, include one or more heteroalicyclic nitroamine compounds. Nitroamine compounds are those having at least one N—NO 2 group. Heteroalicyclic nitramine having a ring containing a N-NO 2 group.
Such a ring may contain, for example, 2 to 10 carbon atoms and 2 to 10 ring nitrogen atoms. Examples of preferred heteroalicyclic nitroamines are RDX (cyclo-1,2,3-trimethylene-2,4,6-trinitroamine, hexogen), HMX (cyclo-1,3,5,7-tetramethylene- 2,4,6,8-tetranitroamine, octogen), and mixtures thereof. The explosive component may additionally or alternatively TATND (tetranitro-tetraaminodecalin), HNS (hexanitrostilbene), TATB (triaminotrinitrobenzene), NTO (3-nitro-1,2,4-triazol-5-one), HNIW (2,4,6,8,10,12-hexanitrohexaazai Seoul titanium), GUDN (guanyldyl urea dinitride), FOX-7 (1,1-diamino-2,2-dinitroethane), And a combination thereof.

他の高エネルギー物質を上記した化合物の代わりにまたは加えて用いてもよい。他の適切な既知の高エネルギー物質の例は、ピクライト(ニトログアニジン)、芳香族ニトロアミンたとえばテトリル、エチレンジニトロアミン、およびニトラートエステルたとえばニトログリセリン(グリセロールトリニトラート)、ブタントリオールトリニトラート若しくはペンタエリトリトールテトラニトラート、DNAN(ジニトロアニソール)、トリニトロトルエン(TNT),無機酸化剤たとえばアンモニウム塩、例として硝酸アンモニウム、アンモニウムジニトロアミド(ADN)または過塩素酸アンモニウム、並びにエネルギー(energetic)アルカリ金属塩およびアルカリ土類金属塩を含む。   Other high energy materials may be used in place of or in addition to the compounds described above. Examples of other suitable known high energy substances are picrite (nitroguanidine), aromatic nitroamines such as tetril, ethylenedinitroamine, and nitrate esters such as nitroglycerin (glycerol trinitrate), butanetriol trinitrate or pentaerythritol tetra Nitrate, DNAN (dinitroanisole), trinitrotoluene (TNT), inorganic oxidants such as ammonium salts such as ammonium nitrate, ammonium dinitroamide (ADN) or ammonium perchlorate, and energetic alkali metal salts and alkaline earths Contains metal salts.

ポリマー結合爆薬の爆薬成分を、燃料として機能しうるまたは特有の末端効果を得るために含まれうる金属粉末と混合してもよい。金属粉末はアルミニウム、マグネシウム、タングステン、これらの金属の合金およびこれらの組み合わせを含む金属の幅広い範囲から選択されてよい。たいてい燃料はアルミニウムまたはその合金であろうし、多くの場合燃料はアルミニウム粉末であろう。   The explosive component of the polymer-bound explosive may be mixed with a metal powder that can function as a fuel or can be included to obtain a unique end effect. The metal powder may be selected from a wide range of metals including aluminum, magnesium, tungsten, alloys of these metals and combinations thereof. Usually the fuel will be aluminum or an alloy thereof, and in many cases the fuel will be aluminum powder.

いくつかの実施形態において、ポリマー結合爆薬はRDXを含む。ポリマー結合爆薬はRDXを爆薬成分としてのみ含んでもよいし、またはHMXのような第2の爆薬成分と組み合わせて含んでもよい。好ましくは、RDXは爆薬成分の50〜100wt%を構成する。   In some embodiments, the polymer-bound explosive comprises RDX. The polymer-bound explosive may contain RDX only as an explosive component or in combination with a second explosive component such as HMX. Preferably, RDX constitutes 50-100 wt% of the explosive component.

多くの場合、バインダーはポリマー結合爆薬のうち約5〜20wt%、多くの場合約5〜15wt%、または約8〜12wt%の範囲で存在するであろう。ポリマー結合爆薬は約88wt%のRDXおよび約12wt%のポリウレタンバインダーを含みうる。しかしながら、RDXとポリウレタンバインダーの相対レベルは、約75〜95wt%RDXおよび5〜25wt%ポリウレタンバインダーの範囲にあるであろう。この組成のポリマー結合爆薬は市販されており、たとえば Rowanex 1100TM である。   In many cases, the binder will be present in the range of about 5-20 wt%, often about 5-15 wt%, or about 8-12 wt% of the polymer bound explosive. The polymer-bonded explosive may include about 88 wt% RDX and about 12 wt% polyurethane binder. However, the relative levels of RDX and polyurethane binder will be in the range of about 75-95 wt% RDX and 5-25 wt% polyurethane binder. Polymer-bonded explosives of this composition are commercially available, for example Rowanex 1100 ™.

多くの消泡剤が知られていて、一般的に爆薬と化学的に反応しないあらゆる消泡剤またはこれらの組み合わせを用いることができる。しかし、多くの場合に消泡剤はポリシロキサンであろう。多くの実施形態において、ポリシロキサンは、ポリアルキルシロキサン、ポリアルキルアリールシロキサン、ポリエーテルシロキサンコポリマー、およびこれらの組み合わせから選択される。多くの場合にポリシロキサンはポリアルキルシロキサンであることが好ましい;ポリジメチルシロキサンを典型的に用いられるであろう。あるいは、消泡剤はシリコーンを含まない界面活性ポリマー、またはこれらとポリシロキサンとの組み合わせであってよい。このようなシリコーンを含まないポリマーは、アルコキシ化アルコール、トリイソブチルホスファート、およびヒュームドシリカを含む。用いることができる市販されている製品は、BYK 088, BYK A500, BYK 066N および BYK A535,それぞれ BYK Additives and Instruments から入手可能,Altana の一部;TEGO MR2132,Evonik から入手可能;および BASF SD23 と SD40,両方ともBASFから入手可能、を含む。これらのうち、BYK A535 と TEGO MR2132 を多くの場合用いる。これらは良好な空隙減少特性を有する無溶媒製品であるためである。   Many antifoaming agents are known, and any antifoaming agent or combination thereof that generally does not chemically react with the explosive can be used. However, in many cases the antifoam will be polysiloxane. In many embodiments, the polysiloxane is selected from polyalkyl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and combinations thereof. In many cases it is preferred that the polysiloxane is a polyalkylsiloxane; polydimethylsiloxane will typically be used. Alternatively, the antifoaming agent may be a silicone free surfactant polymer, or a combination of these with a polysiloxane. Such silicone-free polymers include alkoxylated alcohols, triisobutyl phosphate, and fumed silica. Commercially available products that can be used are BYK 088, BYK A500, BYK 066N and BYK A535, available from BYK Additives and Instruments, respectively, part of Altana; available from TEGO MR2132, Evonik; and BASF SD23 and SD40 , Both available from BASF. Of these, BYK A535 and TEGO MR2132 are often used. This is because these are solventless products having good void reduction characteristics.

消泡剤を溶媒キャリヤ中の組成物に加えてもよい。しかしながら、溶媒は存在しないことが一般的に好ましい。溶媒中に保有されない消泡剤の使用、さらにはもっぱら無溶媒系の使用が有利であることが分かった。組成物の処理中に存在する揮発性成分が殆ど存在せず(または実質的に存在せず)、必要とされる安全措置および/またはプラント変更を軽減するためである。さらに、溶媒の排除は、貯蔵中の組成物からの残存する揮発物の分離(たとえば蒸発または漏れによる)であって、揮発性の蒸発の結果としての空隙形成のような組成物特性の予測できない変化をもたらすことのリスクをなくす。   An antifoaming agent may be added to the composition in the solvent carrier. However, it is generally preferred that no solvent be present. It has been found advantageous to use an antifoaming agent that is not retained in the solvent, and more particularly to use a solvent-free system. This is because there are few (or substantially no) volatile components present during processing of the composition to mitigate required safety measures and / or plant changes. Furthermore, solvent elimination is the separation of residual volatiles from the composition during storage (eg, by evaporation or leakage), and composition properties such as void formation as a result of volatile evaporation cannot be predicted. Eliminate the risk of bringing about change.

消泡剤は約0.01〜2wt%、時には約0.03〜1.5wt%、しばしば約0.05〜1wt%、多くの場合約0.25または0.5〜1wt%の範囲で存在することが多い。これ未満のレベルにおいては(すなわち、0.01wt%未満)、組成物中の不十分な消泡剤はポリマー結合爆薬の特性を著しく変化させることが多く、一方このレベルより高いと(すなわち、約2wt%)、注型溶液の粘度がとても低いため、混合物中で起こる沈殿および分離過程の結果として組成物が不均質となる。   Antifoam is present in the range of about 0.01-2 wt%, sometimes about 0.03-1.5 wt%, often about 0.05-1 wt%, often about 0.25 or 0.5-1 wt% Often done. At levels below this (ie, less than 0.01 wt%), insufficient antifoam in the composition often significantly changes the properties of the polymer-bound explosive, while above this level (ie, about 2 wt.%), The viscosity of the casting solution is so low that the composition becomes inhomogeneous as a result of precipitation and separation processes occurring in the mixture.

理論で束縛されないが、消泡剤は粘度を下げる働きをして注型工程および注型中の組成物からの空隙の排除を促進するのみならず、消泡剤は空隙−組成物界面における界面活性を有して空隙泡を合体させて生じたより大きい泡のより大きい浮力の結果として組成物から放出させることが考えられる。このことは殆ど目に見える空隙のない組成物をもたらし、これは既知の爆薬組成物よりも安定である。   While not being bound by theory, the antifoaming agent not only serves to reduce the viscosity and promotes the elimination of voids from the casting process and the composition during casting, but the antifoaming agent is an interface at the void-composition interface. It is conceivable to release from the composition as a result of the greater buoyancy of the larger bubbles produced by coalescence of the void bubbles with activity. This results in a composition with almost no visible voids, which is more stable than known explosive compositions.

爆薬組成物は溶媒を含んでいてもよく、少なくとも1種の成分が溶解し、最終製品の安全性に悪影響を及ぼさないあらゆる溶媒を用いてもよく、当業者に理解されるとおりである。しかしながら、上記した理由のために、いくつかの実施形態において溶媒が存在しないことが好ましい。   The explosive composition may include a solvent, and any solvent in which at least one component dissolves and does not adversely affect the safety of the final product, as will be understood by those skilled in the art. However, for reasons described above, it is preferred that in some embodiments no solvent is present.

存在する場合は、溶媒を消泡剤のためのキャリヤまたは組成物の他の成分として加えてよい。溶媒は典型的に、注型工程中に爆薬組成物から除去されるであろうが、溶媒残渣が、処理技術における不完全さのためまたは組成物から残存する溶媒を除去することが不経済となる場合に残ることがある。結果的に、いくつかの実施形態において、ポリマー結合爆薬および消泡剤を溶媒の存在下で混合する。多くの場合、溶媒はジイソブチルケトン、ポリプロピレングリコール、イソパラフィン、プロピレングリコール、シクロヘキサノン、ブチルグリコール、エチルヘキサノール、ホワイトスピリット、イソパラフィン、キシレン、メトキシプロピルアセタート、ブチルアセタート、ナフテン、グリコール酸ブチルエステル、アルキルベンゼンおよびこれらの組み合わせから選択されるであろう。ある場合には、溶媒はジイソブチルケトン、ポリプロピレングリコール、イソパラフィン、プロピレングリコール、イソパラフィン、およびこれらの組み合わせから選択される。   If present, the solvent may be added as a carrier for the antifoam or other component of the composition. Although the solvent will typically be removed from the explosive composition during the casting process, it is uneconomical that solvent residues are due to imperfections in processing techniques or to remove residual solvent from the composition. It may remain if it becomes. As a result, in some embodiments, the polymer-bound explosive and the antifoam are mixed in the presence of a solvent. In many cases, the solvents are diisobutyl ketone, polypropylene glycol, isoparaffin, propylene glycol, cyclohexanone, butyl glycol, ethyl hexanol, white spirit, isoparaffin, xylene, methoxypropyl acetate, butyl acetate, naphthene, butyl glycolate, alkylbenzene and It will be selected from these combinations. In some cases, the solvent is selected from diisobutyl ketone, polypropylene glycol, isoparaffin, propylene glycol, isoparaffin, and combinations thereof.

メルトキャスティングプロセスが本発明に適合するが、典型的に、本発明の組成物を「注型および硬化」技術を用いて注型してもよい。従って、注型爆薬組成物の成分が本質的に硬化しない場合(たとえば、すべてのポリマー成分が熱可塑性ポリマーである場合)は、硬化剤が任意に存在してもよい。多くの実施形態において、用いる注型技術は真空注型である。というのも、生じる製品が一般的に、対応する空気注型製品よりも大きな密度のものでおよび目に見える空隙がないものであるためである。一般に、硬化工程は、注型工程が行われた後に行われるであろう。   Although a melt casting process is compatible with the present invention, typically the compositions of the present invention may be cast using a “cast and cure” technique. Thus, if the components of the cast explosive composition do not inherently cure (eg, if all polymer components are thermoplastic polymers), a curing agent may optionally be present. In many embodiments, the casting technique used is vacuum casting. This is because the resulting product is generally of greater density than the corresponding air cast product and has no visible voids. Generally, the curing process will be performed after the casting process has been performed.

組成物は、爆薬組成物中に通例用いられる、少量の他の添加物を含んでいてもよい。これらの例は、微結晶ワックス、エネルギー可塑剤、非エネルギー可塑剤、酸化防止剤、触媒、硬化剤、金属燃料、カップリング剤、界面活性剤、染料およびこれらの組み合わせを含む。エネルギー可塑剤は、アルキルニトロベンゼン(たとえばジニトロ−およびトリニトロ−エチルベンゼン)、直鎖ニトロアミンのアルキル誘導体(たとえばN−アルキルニトラトエチル−ニトロアミン、たとえばブチル−NENA)、およびグリシジルアジドジゴマー(digomer)の共融混合物から選択されてもよい。   The composition may contain small amounts of other additives commonly used in explosive compositions. Examples include microcrystalline waxes, energy plasticizers, non-energy plasticizers, antioxidants, catalysts, curing agents, metal fuels, coupling agents, surfactants, dyes and combinations thereof. The energy plasticizer is a combination of alkyl nitrobenzene (eg, dinitro- and trinitro-ethylbenzene), alkyl derivatives of linear nitroamine (eg, N-alkylnitratoethyl-nitroamine, eg, butyl-NENA), and glycidyl azide digomer. It may be selected from a melt mixture.

爆薬組成物を注型することは、加圧技術で得ることができるよりも、工程設計の大きな柔軟性を提供する。これは、1つの注型モールドの他のものへの単純な取り替えにより、異なる形状の注型を容易にすることができるためである。言い換えれば、注型工程は過去の加工器具に逆行して適合する。反対に、加圧技術を用いて製品形状の変化を必要とする場合には、典型的に、モールドとの適合のために製造器具のかなりの部分、または充填しようとする軍需品を再設計する必要があって、時間およびコスト上の不利益につながる。
さらに、圧縮を引き起こす鋳造粉を通じての圧力の伝達に左右される加圧技術と比較して、注型技術はサイズ制限が殆どない。上記圧力は距離により急速に低下し、大きな長さと径の比での均質な弾薬(たとえば多くの砲弾充填物)はより製造困難となる。
Casting explosive compositions provides greater flexibility in process design than can be obtained with pressure techniques. This is because casting of different shapes can be facilitated by a simple replacement of one casting mold with another. In other words, the casting process adapts backwards to past processing tools. On the contrary, if a change in product shape is required using pressurization techniques, typically a significant portion of the manufacturing equipment or munitions to be filled are redesigned for compatibility with the mold. There is a need for time and cost penalties.
Furthermore, the casting technique has little size limitation compared to the pressing technique, which depends on the transmission of pressure through the casting powder that causes compression. The pressure drops rapidly with distance, making uniform ammunition with a large length-to-diameter ratio (eg, many shell fills) more difficult to manufacture.

加えて、本発明の注型工程は、注型ごとに要求される形状に関わらず比較的に均一な充填で鋳造製品(記載した注型爆薬組成物)を提供する。このことは注型技術の使用に部分的には起因するであろうし、また消泡剤の存在に部分的に起因するであろう。消泡剤は実質的に、バインダー中のひいては注型爆薬組成物中の空隙数を減少させる。場合により、空隙は実質的に除去されている。注型を現場で行うことができ、充填しようとするハウジング(たとえば軍需品)はモールドとしての役割を果たす;または組成物を鋳造して、別の工程でハウジング中に移すことができる。多くの場合、注型をその場で行うであろう。   In addition, the casting process of the present invention provides a cast product (the described casting explosive composition) with a relatively uniform filling regardless of the shape required for each casting. This may be due in part to the use of casting techniques and in part due to the presence of antifoam. Antifoaming agents substantially reduce the number of voids in the binder and thus in the cast explosive composition. In some cases, the voids are substantially removed. Casting can be done on-site and the housing to be filled (eg, munitions) can serve as a mold; or the composition can be cast and transferred into the housing in a separate process. In many cases, casting will be done on the spot.

さらに、ポリマー結合爆薬およびヒドロキシ末端を有するポリブタジエンバインダーを含む組成物は特に、加圧した場合と比較して注型した際により弾性である。このことは、予想外の刺激にさらされた際に、これらを爆燃から爆発への移行を起こしにくくする。それどころか、このような系は爆発することなく燃焼して、加圧系と比較してこれらの使用をより安全にする。   Furthermore, compositions comprising a polymer-bonded explosive and a hydroxy-terminated polybutadiene binder are particularly more elastic when cast compared to when pressurized. This makes them less prone to transition from deflagration to explosion when exposed to unexpected stimuli. On the contrary, such systems burn without exploding, making their use safer compared to pressurized systems.

さらに、加圧プロセスを確実に適用できる形状はいっそう限られている。たとえば、加圧技術を用いて円錐形状の完全な充填を達成することはしばしば困難である。というのも、空気が円錐の頂点においてまたは頂点側にしばしば閉じ込められるためである。本質的には「流動」プロセスである注型工程はこのように制限されない。   In addition, the shapes that can reliably apply the pressing process are even more limited. For example, it is often difficult to achieve full conical filling using pressure techniques. This is because air is often trapped at or at the apex of the cone. The casting process, which is essentially a “flow” process, is not thus limited.

本発明の方法は必要に応じて連続工程であってもバッチ工程であってもよい。多くの既知の注型工程は本発明との使用に適合するであろう。ポリマー結合爆薬への消泡剤の添加を可能にして消泡剤が注型中にその消泡機能を果たすことを可能にするこれらの方法の変更は当業者の能力の範囲内であるためである。連続工程を用いる場合は、これは EP 1485669 に記載される技術である静的混合技術を用いることができる。   The method of the present invention may be a continuous process or a batch process as required. Many known casting processes will be compatible for use with the present invention. These method modifications that allow the addition of an antifoam to the polymer-bound explosive and allow the antifoam to perform its antifoam function during casting are within the ability of one skilled in the art. is there. If a continuous process is used, a static mixing technique can be used, which is the technique described in EP 1485669.

工程は出発材料としてプレミックスまたはプレキュア(precure)を利用してもよいが、これらは必須ではない。プレミックスは典型的に、爆薬成分とバインダー成分、通常可塑剤との混合物であろう。時には、爆薬成分はプレミックスの形成前に水で鈍感にする、ウエッティングまたはフレグマタイゼーション(phlegmatization)として知られるプロセスである。しかしながら、プレミックス中に水が保持されることは一般的に望ましくないので、これを典型的にさらなる加工前に、たとえば爆薬成分と可塑剤との混合中での加熱によって、プレミックスから除去してもよい。   The process may utilize a premix or precure as a starting material, but these are not essential. The premix will typically be a mixture of an explosive component and a binder component, usually a plasticizer. Sometimes the explosive component is a process known as wetting or phlegmatization that desensitizes with water before the premix is formed. However, since it is generally undesirable to retain water in the premix, it is typically removed from the premix prior to further processing, for example by heating in the mixture of explosive components and plasticizer. May be.

場合によっては、可塑剤は存在しなくてもよい;しかしながら、可塑剤は典型的に、可塑剤および爆薬プレミックスのうち0〜10wt%の範囲、しばしば0.01〜8wt%の範囲、時には0.5〜7wt%または4〜6wt%で存在するであろう。可塑剤は多くの場合に、非エネルギー可塑剤であろうし、多くは当該技術において知られている;しかしながらエネルギー可塑剤を時には用いてもよい。プレキュアは典型的に、プレミックスと、触媒および硬化剤を除く組成物の他の成分との組み合わせであってよい。ある場合には、消泡剤はプレキュアに存在していなくてもよい。   In some cases, a plasticizer may not be present; however, the plasticizer is typically in the range of 0-10 wt% of the plasticizer and explosive premix, often in the range of 0.01-8 wt%, sometimes 0 It will be present at 5-7 wt% or 4-6 wt%. The plasticizer will often be a non-energy plasticizer and many are known in the art; however, an energy plasticizer may sometimes be used. Precure can typically be a combination of a premix and other components of the composition excluding the catalyst and curing agent. In some cases, the antifoaming agent may not be present in the precure.

本発明の注型爆薬組成物は爆薬製品中での主爆薬または伝爆薬としての実用性を有する。多くの場合、組成物は主爆薬であろう。空隙の存在が安全性または機能上の問題を引き起こす場合には、本発明の組成物を任意の「エネルギー」用途において用いることができる。このような使用は上記した臼破弾や大砲の爆弾を含む。さらに、本発明の組成物を砲発射機用途のための爆薬、爆弾や弾頭、複合発射火薬、ベースブリード組成物、銃発射火薬およびガス発生器を含む発射火薬のための爆薬充填物を調製するのに用いることができる。   The cast explosive composition of the present invention has utility as the main explosive or explosive in explosive products. In many cases, the composition will be the main explosive. The composition of the present invention can be used in any “energy” application where the presence of voids causes safety or functional problems. Such uses include mortar bombs and cannon bombs described above. In addition, the composition of the present invention is used to prepare explosive fillings for projectiles including gunpowder explosives, bombs and warheads, composite projectiles, base bleed compositions, gun projectiles and gas generators Can be used.

例、または他に明白に指示する場合を除き、材料の量または反応条件、材料の物理的性質および/または使用量を示す本記載におけるすべての数字は、「約」という語によって修飾されると理解されたい。すべての量は、他に明記しない限り、最終組成物の重量による。さらに、注型爆薬組成物は、他に明示的に指示されない限り、上記記載および特許請求の範囲に記載の成分の任意の可能な組み合わせを含む、実質的にからなる、またはからなることができる。組成物中の空隙を減少する方法は、上記したおよび特許請求の範囲に明記した工程を含む、実質的にからなる、またはからなることができる。   Except where noted or otherwise explicitly indicated, all numbers in this description that indicate material amounts or reaction conditions, material physical properties and / or amounts used are modified by the word “about”. I want you to understand. All amounts are by weight of the final composition unless otherwise stated. Further, the cast explosive composition can comprise, consist essentially of, or consist of any possible combination of the components described above and in the claims, unless explicitly indicated otherwise. . The method of reducing voids in the composition can comprise, consist essentially of, or consist of the steps described above and as specified in the claims.

以下の限定されない例により本発明を説明する。   The following non-limiting examples illustrate the invention.


例1
一連の市販の消泡剤を Rowanex 1100(88wt%RDXおよび12wt%ポリウレタン試薬)と共に注型して硬化させた。硬化を5日間にわたり65℃で行った。生じた組成物を用いて調製した105mmおよび155mmの砲弾は探知できる空隙を有さないことが分かり、ポリマー結合爆薬の化学的性質または機械的性質への悪影響は観察されなかった。以下の表1は、組成物の粘度および密度への、バインダーの種類およびレベルの影響を示す。

Figure 2015145329
Figure 2015145329
Example Example 1
A series of commercially available antifoams were cast and cured with Rowanex 1100 (88 wt% RDX and 12 wt% polyurethane reagent). Curing was performed at 65 ° C. for 5 days. The 105 mm and 155 mm shells prepared with the resulting composition were found to have no detectable voids, and no adverse effects on the chemical or mechanical properties of the polymer-bound explosives were observed. Table 1 below shows the effect of binder type and level on the viscosity and density of the composition.
Figure 2015145329
Figure 2015145329

理解されるように、0.1wt%を超えるレベルでのそれぞれの消泡剤の存在は、組成物の粘度を低下させて注型しやすくする。さらに、消泡剤のレベルが1.0wt%まで上昇すると、組成物の粘度はさらに低下する。   As will be appreciated, the presence of each antifoam at a level above 0.1 wt% reduces the viscosity of the composition and facilitates casting. Furthermore, as the antifoam level increases to 1.0 wt%, the viscosity of the composition further decreases.

消泡剤の存在は密度をも高め、空隙数が減少したことの指標を提供する。TMDの計算はさらなる指標を提供し、添加物が存在しない場合に得られるものに対するTMDの上昇はサンプル中の空隙数が添加物を含まない組成物と比較して減少したことを示す。   The presence of the antifoam also increases the density and provides an indication that the number of voids has decreased. The calculation of TMD provides an additional indication that the increase in TMD relative to that obtained in the absence of additive indicates that the number of voids in the sample has decreased compared to the composition without additive.

ジブチルケトンのみの添加(すなわち、溶媒のみ)は真空注型技術により調製されようと空気注型技術により調製されようと組成物の密度を低下させるので、密度上昇効果を有するのは消泡剤であることは明らかである。   The addition of dibutyl ketone alone (ie solvent only) reduces the density of the composition, whether prepared by vacuum casting or air casting techniques, so it is the defoamer that has the effect of increasing density. It is clear that there is.

上記データは、消泡剤が存在する場合に、真空注型は一般的に空気注型技術よりも高い相対密度の組成物を製造することを示す。さらに、真空注型技術は一般的に、添加物がないか溶媒のみの組成物と比較して、消泡剤を含有する組成物の密度へのより顕著な影響を有する。   The above data show that vacuum casting generally produces higher relative density compositions than air casting technology when antifoam is present. Furthermore, vacuum casting techniques generally have a more pronounced effect on the density of compositions containing antifoaming agents compared to compositions with no additive or solvent alone.

しかしながら、空気注型技術を用いた場合でも、各消泡剤は添加物がないか溶媒のみを含む対照組成物よりも高い密度のものであるか高いTMDを有する組成物を提供するため、試験した組成物中の空隙数を減少させるように消泡剤が作用することは明らかである。   However, even when using air casting techniques, each antifoam is tested to provide a composition with a higher or higher TMD than the control composition with no additive or solvent alone. It is clear that the antifoaming agent acts to reduce the number of voids in the composition.

例2
Rowanex 1100 と消泡剤の適合性を試験し、結果を以下の表2に記述する。

Figure 2015145329
Example 2
The compatibility of Rowanex 1100 with the defoamer was tested and the results are described in Table 2 below.
Figure 2015145329

適合性を STANAG 4147 Test 1 に従って測定した:手法B,100℃の温度において40時間。試験した材料のそれぞれが、5gのサンプルについて1ml/g未満のガスを発生することを示す上記の表における結果により示されるように、試験した消泡剤のすべてはこの試験の必要条件に合致し、従って Rowanex 1100 PBX 製品と適合することが分かった。不利な反応はどの消泡剤でも観察されなかったが、特に良好な適合性が Rowanex 1100 と BYK A535 間で観察された。確かに、無溶媒消泡剤であるBYK A535 の使用は、空隙除去に関して条件を満たす活性を有する特に安定な製品を提供することが分かった。   Suitability was measured according to STANAG 4147 Test 1: Method B, 40 hours at a temperature of 100 ° C. All of the tested antifoams met the requirements of this test, as shown by the results in the table above showing that each of the tested materials generates less than 1 ml / g of gas for a 5 g sample. Therefore, it was found to be compatible with the Rowanex 1100 PBX product. No adverse reaction was observed with any antifoam, but a particularly good compatibility was observed between Rowanex 1100 and BYK A535. Indeed, the use of BYK A535, a solvent-free antifoam, has been found to provide a particularly stable product with activity that meets the requirements for void removal.

例3
Rowanex 1100 と消泡剤の混合物の感度を、機械的衝撃(ロッター衝撃)に対する感度について試験して、純粋なPBX製品と対比して混合物を用いることに伴う相対的な危険を判断した。結果を表3に記載する。

Figure 2015145329
Example 3
The sensitivity of the Rowanex 1100 and antifoam mixture was tested for sensitivity to mechanical impact (rotter impact) to determine the relative risks associated with using the mixture versus pure PBX products. The results are listed in Table 3.
Figure 2015145329

試験は、試験サンプルについて50%落下高さを決定した。これは、刺激−レベル関係に対しての発火の全体の確率を調べる。対数目盛上で均等に間隔を空けた7つの試験高さを選択し、紙火薬(cap)を試験して発火が起こるかどうかを調べる。結果を鈍感式(F
of I)で基準RDXと比較して示す。すべての試験を、粉末化した材料のサンプルについて行う。ロッター衝撃試験法を用いて、LSMロッター機を用いたF of Iを決定した。
The test determined a 50% drop height for the test sample. This examines the overall probability of firing for a stimulus-level relationship. Select seven test heights evenly spaced on a logarithmic scale and test the paper explosive (cap) to see if ignition occurs. Insensitive results (F
of I) compared to the reference RDX. All tests are performed on powdered material samples. Using the rotter impact test method, F of I using an LSM rotter machine was determined.

Rowanex 1100/消泡剤サンプルのすべてについてのF of I値は、Rowanex 1100単独についてのF of I値よりも大きいか等しいことが分かった。このことは、消泡剤の存在は機械的衝撃に対するPBXの感度に悪影響を有さず、また結果として、混合製品はRowanex 1100 単独よりも使用するのにそれ以上危険であることはなく、場合によっては殆ど危険でない。理論に束縛されないが、このことは、消泡剤の存在のためのバインダーのわずかな増加と、結果として起こるニトロアミン含量の低下に起因するであろう。
Rowanex 1100/消泡剤サンプルは、未処理の Rowanex 1100 と比較して発火に対してそれ以上敏感にはならないと見込まれることがさらに示される。
The F of I value for all of the Rowanex 1100 / antifoam samples was found to be greater than or equal to the F of I value for Rowanex 1100 alone. This means that the presence of an antifoam does not adversely affect the sensitivity of PBX to mechanical shock, and as a result, the mixed product is no more dangerous to use than Rowanex 1100 alone, Depending on the situation, there is little danger. Without being bound by theory, this may be due to a slight increase in binder due to the presence of antifoam and the resulting decrease in nitroamine content.
It is further shown that the Rowanex 1100 / antifoam sample is not expected to be more sensitive to ignition compared to the untreated Rowanex 1100.

例4
RDXを含む一連の組成物を調製し、これらの組成物のうちの3つは消泡剤を含む。

Figure 2015145329
Example 4
A series of compositions containing RDX are prepared, three of these compositions containing an antifoam agent.
Figure 2015145329

組成物を例1に記載したように注型および硬化プロセスを用いて調製し、空隙は検知されなかった。化学性質および機械的性質に対する悪影響は、消泡剤を含まないRDX組成物と比較しても観察されなかった。   The composition was prepared using a casting and curing process as described in Example 1 and no voids were detected. No adverse effects on chemical and mechanical properties were observed when compared to RDX compositions that did not contain an antifoam agent.

例5
以下の例は本発明のPBX組成物、たとえば例4の組成物を調製する方法を示し、プレミックスを用いる。用いた技術は当業者には周知であろう。
Example 5
The following example shows how to prepare a PBX composition of the invention, such as the composition of Example 4, using a premix. The technique used will be well known to those skilled in the art.

水ジャケットを有する縦型ミキサーであって回転撹拌ブレードを有するものを組成物の調製に用いた。すべての混合を減圧下10mmHg未満の圧力で行った。本例の組成物を、上記例4に記載した成分の相対比率を用いて5Kgスケールで調製した。   A vertical mixer having a water jacket and having a rotating stirring blade was used for the preparation of the composition. All mixing was performed under reduced pressure at a pressure of less than 10 mmHg. The composition of this example was prepared on a 5 Kg scale using the relative proportions of the ingredients described in Example 4 above.

プレミックスを水で鈍感にしたRDXから調製した。その後に水を当該技術分野において一般的な技術を用いて除去した。続いて、鈍感にしたRDX(94wt%)をDOA可塑剤(6wt%)と混合してプレミックスを形成した。   A premix was prepared from RDX which was insensitive with water. The water was then removed using techniques common in the art. Subsequently, the insensitive RDX (94 wt%) was mixed with a DOA plasticizer (6 wt%) to form a premix.

ミキサーを60±2℃まで予熱し、以下の成分をミキサー中に順番に、上記例2に記載した相対量で量って入れた:
1. HTPB
2. DOA
3. レシチン
4. AO 2246
5. プレミックス(第1の4分の1ポーション、すなわち、加えようとする全プレミックスの25wt%)。
The mixer was preheated to 60 ± 2 ° C. and the following ingredients were weighed into the mixer in order, in relative amounts as described in Example 2 above:
1. HTPB
2. DOA
3. Lecithin 4. AO 2246
5. Premix (first quarter portion, ie 25 wt% of the total premix to be added).

組成物を15分間混合した。続いて、プレミックスの第2の、第3のおよび第4の4分の1ポーションを加えて、各添加間でおよび最終添加後に10分間混合した。混合ブレードとボウルをこすって、あらゆる未混合の材料をボウルの混合領域に移すことを確実にし、組成物をさらに60分間混合した。   The composition was mixed for 15 minutes. Subsequently, the second, third and fourth quarter portions of the premix were added and mixed for 10 minutes between each addition and after the final addition. The mixing blade and bowl were rubbed to ensure that any unmixed material was transferred to the mixing area of the bowl and the composition was mixed for an additional 60 minutes.

続いて消泡剤を加え、組成物への消泡剤の添加中に粘度の最大の低下が観察されるまで混合した。この場合に混合は25分間であり、粘度低下をミキサーに取り付けたトルク計を用いて測定し、トルクが安定化した混合を達成することを消泡剤の添加前よりも低いレベルで要する場合は、粘度の最大低下が観察されたとみなす。   Subsequently, the antifoam was added and mixed until the maximum decrease in viscosity was observed during the addition of the antifoam to the composition. In this case, mixing is for 25 minutes, and when the viscosity drop is measured using a torque meter attached to the mixer, it is necessary to achieve a torque-stabilized mixing at a lower level than before addition of the antifoaming agent. Consider the maximum decrease in viscosity observed.

DBTLを加えて組成物を15分間混合し、その後IPDIを加えて組成物をさらに15分間混合した。混合後、ブルックフィールド粘度計を用いて組成物の粘度を記録した(60℃)。   DBTL was added and the composition was mixed for 15 minutes, after which IPDI was added and the composition was mixed for an additional 15 minutes. After mixing, the viscosity of the composition was recorded using a Brookfield viscometer (60 ° C.).

組成物を注型して、あらゆる過剰な混合物を砲弾ハウジングから除去した。砲弾を振動試験台上に置いて5分間振動させた。弾薬を5日間65±2℃で硬化した。   The composition was cast to remove any excess mixture from the shell housing. The shell was placed on a vibration test bench and vibrated for 5 minutes. The ammunition was cured at 65 ± 2 ° C. for 5 days.

例6
以下の例は本発明のPBX組成物、たとえば例4の組成物を、プレキュアから調製する方法を示す。用いる技術は当業者に周知であろう。
Example 6
The following example shows how to prepare a PBX composition of the invention, such as the composition of Example 4, from a precure. The techniques used will be well known to those skilled in the art.

混合条件は例5の通りであった。プレキュアを上記例5に記載したプレミックスから調製した。このプレミックスに、消泡剤、触媒および硬化剤以外の例5の組成物の成分のすべてを加えた。   Mixing conditions were as in Example 5. Precure was prepared from the premix described in Example 5 above. To this premix was added all of the components of the composition of Example 5 except the antifoam, catalyst and curing agent.

ミキサーを60±2℃に予熱してプレキュアの成分を加えて15分間加熱した。続いてプレキュアを30分間混合して混合ブレードおよびボウルをこすってあらゆる混ざっていない材料をボウルの混合領域へと移すことを確実にした。消泡剤を加えて組成物を消泡剤の粘度低下に対する効果が観察されるまで混合し、これは例5に記載したように測定し、本例においては25分間の撹拌を要した。DBTLを加えて組成物を15分間混合し、続いてIPDIを加えて組成物をさらに15分間混合した。ミキサーブレードおよびボウルをこすってあらゆる混合されていない材料をボウルの混合領域に移すことを確実にした。
混合後、ブルックフィールド粘度計を用いて組成物の粘度を記録した(60℃)。
The mixer was preheated to 60 ± 2 ° C., precure ingredients were added and heated for 15 minutes. The precure was then mixed for 30 minutes to rub the mixing blade and bowl to ensure that any unmixed material was transferred to the mixing area of the bowl. Antifoam was added and the composition was mixed until an effect on viscosity reduction of the antifoam was observed, which was measured as described in Example 5 and required 25 minutes of stirring in this example. DBTL was added and the composition was mixed for 15 minutes, followed by IPDI and the composition was mixed for an additional 15 minutes. The mixer blade and bowl were rubbed to ensure that any unmixed material was transferred to the mixing area of the bowl.
After mixing, the viscosity of the composition was recorded using a Brookfield viscometer (60 ° C.).

組成物を注型して、あらゆる過剰な混合物を砲弾ハウジングから除去した。弾薬を5日間65±2℃で硬化した。   The composition was cast to remove any excess mixture from the shell housing. The ammunition was cured at 65 ± 2 ° C. for 5 days.

本発明の組成物を種々の実施形態の形で取り込むことができ、その少数を説明しおよび上記したにすぎないことを理解すべきである。   It should be understood that the compositions of the present invention can be incorporated in the form of various embodiments, only a few of which have been described and described above.

本発明の組成物を種々の実施形態の形で取り込むことができ、その少数を説明しおよび上記したにすぎないことを理解すべきである。
以下に、本願発明の実施態様を付記する。
1. ポリマー結合爆薬と消泡剤とを含む注型爆薬組成物。
2. 前記ポリマー結合爆薬は、ポリウレタン、セルロース系材料たとえば酢酸セルロース、ポリエステル、ポリブタジエン、ポリエチレン、ポリイソブチレン、PVA、塩化ゴム、エポキシ樹脂、2液ポリウレタン系、アルキド/メラニン、ビニル樹脂、アルキド、自己架橋アクリラート、ブタジエン−スチレンブロックコポリマー、ポリNIMMO、ポリGLYN、GAP、および配合物、コポリマー並びに/またはこれらの組み合わせから選択されるバインダーを含む1に記載の注型爆薬組成物。
3. 前記ポリマー結合爆薬は、RDX、HMX、FOX−7、TATND、HNS、TATB、NTO、HNIW、GUDN、ピクライト、芳香族ニトロアミンたとえばテトリル、エチレンジニトロアミン、ニトログリセリン、ブタントリオールトリニトラート、ペンタエリトリトールテトラニトラート、DNANトリニトロトルエン、無機酸化剤たとえば硝酸アンモニウム、ADN、過塩素酸アンモニウム、エネルギー(energetic)アルカリ金属塩、エネルギーアルカリ土類金属塩、およびこれらの組み合わせから選択される1または2に記載の注型爆薬組成物。
4. アルミニウム、マグネシウム、タングステン、これら金属の合金およびこれらの組み合わせから選択される金属粉末を前記ポリマー結合爆薬と混合してさらに含む1ないし3のいずれかに記載の注型爆薬組成物。
5. 前記ポリマー結合爆薬は約75〜95wt%の範囲でRDXをおよび約5〜25wt%の範囲でポリウレタンバインダーを含む3に記載の注型爆薬組成物。
6. 前記消泡剤がポリシロキサンである1ないし5のいずれかに記載の注型爆薬組成物。
7. ポリシロキサンはポリアルキルシロキサン、ポリアルキルアリールシロキサン、ポリエーテルシロキサンコポリマーおよびこれらの組み合わせから選択される6に記載の注型爆薬組成物。
8. 前記消泡剤が0.05〜1wt%の範囲で存在する注型爆薬組成物。
9. 注型爆薬組成物中の空隙の数および/または総体積を減少させる方法であって、以下の工程を含む方法:
ポリマー結合爆薬と消泡剤とを混合し;
前記爆薬組成物を注型する。
10. 前記注型爆薬組成物を硬化する9に記載の方法。
11. 前記ポリマー結合爆薬および前記消泡剤を溶媒の存在下で混合する9または10に記載の方法。
12. 前記注型は真空注型を含む9ないし11のいずれかに記載の方法。
13. 爆薬製品における、1ないし8のいずれかに記載の注型爆薬組成物の使用。
14. 1ないし8のいずれかに記載の注型爆薬組成物を含む爆薬製品。
15. 注型爆薬組成物中の空隙の数および/または総体積を減少させるための消泡剤の使用。
16. 例に関連して本明細書に実質的に記載されている注型爆薬組成物。
It should be understood that the compositions of the present invention can be incorporated in the form of various embodiments, only a few of which have been described and described above.
In the following, embodiments of the present invention are appended.
1. A cast explosive composition comprising a polymer-bound explosive and an antifoaming agent.
2. The polymer-bonded explosive includes polyurethane, cellulosic materials such as cellulose acetate, polyester, polybutadiene, polyethylene, polyisobutylene, PVA, chlorinated rubber, epoxy resin, two-component polyurethane, alkyd / melanin, vinyl resin, alkyd, self-crosslinking acrylate, The cast explosive composition of 1, comprising a butadiene-styrene block copolymer, poly NIMMO, poly GLYN, GAP, and a binder selected from blends, copolymers and / or combinations thereof.
3. The polymer-bonded explosives are RDX, HMX, FOX-7, TATND, HNS, TATB, NTO, HNIW, GUDN, picrite, aromatic nitroamines such as tetril, ethylenedinitroamine, nitroglycerin, butanetriol trinitrate, pentaerythritol tetrani 3. Casting according to 1 or 2, selected from trat, DNAN trinitrotoluene, inorganic oxidants such as ammonium nitrate, ADN, ammonium perchlorate, energetic alkali metal salts, energy alkaline earth metal salts, and combinations thereof Explosive composition.
4). 4. The cast explosive composition according to any one of 1 to 3, further comprising a metal powder selected from aluminum, magnesium, tungsten, alloys of these metals, and combinations thereof mixed with the polymer-bonded explosive.
5. The cast explosive composition of 3, wherein the polymer-bound explosive comprises RDX in the range of about 75-95 wt% and a polyurethane binder in the range of about 5-25 wt%.
6). 6. The cast explosive composition according to any one of 1 to 5, wherein the antifoaming agent is polysiloxane.
7). 7. The cast explosive composition according to 6, wherein the polysiloxane is selected from polyalkyl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and combinations thereof.
8). A cast explosive composition in which the antifoaming agent is present in a range of 0.05 to 1 wt%.
9. A method of reducing the number and / or total volume of voids in a cast explosive composition comprising the following steps:
Mixing polymer-bonded explosive and antifoam agent;
Cast the explosive composition.
10. 10. The method according to 9, wherein the casting explosive composition is cured.
11. The method according to 9 or 10, wherein the polymer-bonded explosive and the antifoaming agent are mixed in the presence of a solvent.
12 The method according to any one of 9 to 11, wherein the casting includes vacuum casting.
13. Use of the cast explosive composition according to any one of 1 to 8 in an explosive product.
14 An explosive product comprising the cast explosive composition according to any one of 1 to 8.
15. Use of an antifoam to reduce the number and / or total volume of voids in a cast explosive composition.
16. A cast explosive composition substantially as herein described with reference to the examples.

Claims (16)

ポリマー結合爆薬と消泡剤とを含む注型爆薬組成物。   A cast explosive composition comprising a polymer-bound explosive and an antifoaming agent. 前記ポリマー結合爆薬は、ポリウレタン、セルロース系材料たとえば酢酸セルロース、ポリエステル、ポリブタジエン、ポリエチレン、ポリイソブチレン、PVA、塩化ゴム、エポキシ樹脂、2液ポリウレタン系、アルキド/メラニン、ビニル樹脂、アルキド、自己架橋アクリラート、ブタジエン−スチレンブロックコポリマー、ポリNIMMO、ポリGLYN、GAP、および配合物、コポリマー並びに/またはこれらの組み合わせから選択されるバインダーを含む請求項1に記載の注型爆薬組成物。   The polymer-bonded explosive includes polyurethane, cellulosic materials such as cellulose acetate, polyester, polybutadiene, polyethylene, polyisobutylene, PVA, chlorinated rubber, epoxy resin, two-component polyurethane, alkyd / melanin, vinyl resin, alkyd, self-crosslinking acrylate, The cast explosive composition of claim 1 comprising a binder selected from butadiene-styrene block copolymers, poly NIMMO, poly GLYN, GAP, and blends, copolymers and / or combinations thereof. 前記ポリマー結合爆薬は、RDX、HMX、FOX−7、TATND、HNS、TATB、NTO、HNIW、GUDN、ピクライト、芳香族ニトロアミンたとえばテトリル、エチレンジニトロアミン、ニトログリセリン、ブタントリオールトリニトラート、ペンタエリトリトールテトラニトラート、DNANトリニトロトルエン、無機酸化剤たとえば硝酸アンモニウム、ADN、過塩素酸アンモニウム、エネルギー(energetic)アルカリ金属塩、エネルギーアルカリ土類金属塩、およびこれらの組み合わせから選択される請求項1または2に記載の注型爆薬組成物。   The polymer-bonded explosives are RDX, HMX, FOX-7, TATND, HNS, TATB, NTO, HNIW, GUDN, picrite, aromatic nitroamines such as tetril, ethylenedinitroamine, nitroglycerin, butanetriol trinitrate, pentaerythritol tetrani 3. The trait, DNAN trinitrotoluene, inorganic oxidant such as ammonium nitrate, ADN, ammonium perchlorate, energetic alkali metal salt, energetic alkaline earth metal salt, and combinations thereof according to claim 1 or 2. Casting explosive composition. アルミニウム、マグネシウム、タングステン、これら金属の合金およびこれらの組み合わせから選択される金属粉末を前記ポリマー結合爆薬と混合してさらに含む請求項1ないし3のいずれかに記載の注型爆薬組成物。   The cast explosive composition according to any one of claims 1 to 3, further comprising a metal powder selected from aluminum, magnesium, tungsten, alloys of these metals, and combinations thereof mixed with the polymer-bonded explosive. 前記ポリマー結合爆薬は約75〜95wt%の範囲でRDXをおよび約5〜25wt%の範囲でポリウレタンバインダーを含む請求項3に記載の注型爆薬組成物。   The cast explosive composition of claim 3, wherein the polymer-bonded explosive comprises RDX in the range of about 75-95 wt% and a polyurethane binder in the range of about 5-25 wt%. 前記消泡剤がポリシロキサンである請求項1ないし5のいずれかに記載の注型爆薬組成物。   The casting explosive composition according to any one of claims 1 to 5, wherein the antifoaming agent is polysiloxane. ポリシロキサンはポリアルキルシロキサン、ポリアルキルアリールシロキサン、ポリエーテルシロキサンコポリマーおよびこれらの組み合わせから選択される請求項6に記載の注型爆薬組成物。   7. The cast explosive composition according to claim 6, wherein the polysiloxane is selected from polyalkyl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers and combinations thereof. 前記消泡剤が0.05〜1wt%の範囲で存在する注型爆薬組成物。   A cast explosive composition in which the antifoaming agent is present in a range of 0.05 to 1 wt%. 注型爆薬組成物中の空隙の数および/または総体積を減少させる方法であって、以下の工程を含む方法:
ポリマー結合爆薬と消泡剤とを混合し;
前記爆薬組成物を注型する。
A method of reducing the number and / or total volume of voids in a cast explosive composition comprising the following steps:
Mixing polymer-bonded explosive and antifoam agent;
Cast the explosive composition.
前記注型爆薬組成物を硬化する請求項9に記載の方法。   The method of claim 9, wherein the casting explosive composition is cured. 前記ポリマー結合爆薬および前記消泡剤を溶媒の存在下で混合する請求項9または10に記載の方法。   The method according to claim 9 or 10, wherein the polymer-bound explosive and the antifoaming agent are mixed in the presence of a solvent. 前記注型は真空注型を含む請求項9ないし11のいずれかに記載の方法。   The method according to claim 9, wherein the casting includes vacuum casting. 爆薬製品における、請求項1ないし8のいずれかに記載の注型爆薬組成物の使用。   Use of the cast explosive composition according to any one of claims 1 to 8 in an explosive product. 請求項1ないし8のいずれかに記載の注型爆薬組成物を含む爆薬製品。   An explosive product comprising the cast explosive composition according to any one of claims 1 to 8. 注型爆薬組成物中の空隙の数および/または総体積を減少させるための消泡剤の使用。   Use of an antifoam to reduce the number and / or total volume of voids in a cast explosive composition. 例に関連して本明細書に実質的に記載されている注型爆薬組成物。   A cast explosive composition substantially as herein described with reference to the examples.
JP2015011407A 2008-08-29 2015-01-23 Cast explosive composition Expired - Fee Related JP6169628B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0815936.0 2008-08-29
GBGB0815936.0A GB0815936D0 (en) 2008-08-29 2008-08-29 Cast Explosive Composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011524450A Division JP2012500774A (en) 2008-08-29 2009-08-27 Cast explosive composition

Publications (2)

Publication Number Publication Date
JP2015145329A true JP2015145329A (en) 2015-08-13
JP6169628B2 JP6169628B2 (en) 2017-07-26

Family

ID=40289469

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011524450A Withdrawn JP2012500774A (en) 2008-08-29 2009-08-27 Cast explosive composition
JP2015011407A Expired - Fee Related JP6169628B2 (en) 2008-08-29 2015-01-23 Cast explosive composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011524450A Withdrawn JP2012500774A (en) 2008-08-29 2009-08-27 Cast explosive composition

Country Status (9)

Country Link
US (2) US20110168306A1 (en)
EP (1) EP2318330B1 (en)
JP (2) JP2012500774A (en)
KR (2) KR101731409B1 (en)
AU (1) AU2009286497B2 (en)
CA (1) CA2735320C (en)
GB (2) GB0815936D0 (en)
WO (1) WO2010023450A1 (en)
ZA (1) ZA201101331B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058449A1 (en) * 2022-09-13 2024-03-21 국방과학연구소 Polysiloxane binder-based castable high-energy composition, core explosive composition, shell fuel composition, single thermobaric explosive composition, and warhead including same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044344A1 (en) * 2010-09-03 2012-03-08 Rheinmetall Waffe Munition Gmbh Plastic-bound explosive formulation
FR2983194B1 (en) * 2011-11-29 2014-06-13 Nexter Munitions METHOD FOR MANUFACTURING PELLETS OF A COMPRESSABLE EXPLOSIVE COMPOSITION AND EXPLOSIVE MATERIAL OBTAINED WITH SUCH A METHOD
JP6115040B2 (en) * 2012-08-22 2017-04-19 日油株式会社 Method for producing glaze composition and glaze composition produced by the production method
US10731062B2 (en) * 2012-10-15 2020-08-04 Sekisui Chemical Co., Ltd. Gas-generating material and micropump
PL2978731T3 (en) 2013-03-27 2020-12-28 Bae Systems Plc Non-phthalate propellants
EP2784054A1 (en) * 2013-03-27 2014-10-01 BAE SYSTEMS plc Insensitive munition propellants
EP3838877A1 (en) * 2013-03-27 2021-06-23 BAE SYSTEMS plc Insensitive munition propellants
KR101714736B1 (en) * 2015-04-22 2017-03-09 국방과학연구소 Preparation method for submicron and micron size- spherical rdx particles
EP3319928B1 (en) 2015-07-07 2022-04-20 BAE Systems PLC Pbx composition
KR102597650B1 (en) 2015-07-07 2023-11-01 배 시스템즈 피엘시 Molded explosive composition
KR102237677B1 (en) * 2019-05-13 2021-04-07 주식회사 한화 Solid propellant composition
CN110240532A (en) * 2019-07-08 2019-09-17 中国工程物理研究院化工材料研究所 A kind of preparation method of low ignition threshold value aluminium base particle
CN110240531A (en) * 2019-07-18 2019-09-17 中国工程物理研究院化工材料研究所 Low sense aluminum composition of a kind of high energy and preparation method thereof
CN110256181A (en) * 2019-07-27 2019-09-20 广东宏大韶化民爆有限公司 A kind of novel primer formula and preparation method thereof
RU2770805C1 (en) * 2021-09-14 2022-04-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Casting insensitive explosive composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343353B2 (en) * 1980-08-08 1988-08-30 Nippon Kayaku Kk
JPH02271987A (en) * 1989-04-13 1990-11-06 Tech Res & Dev Inst Of Japan Def Agency Casting type composition for explosive
JPH04114990A (en) * 1990-08-30 1992-04-15 Chugoku Kayaku Kk Plastic explosive composed of polyurethane and nitramine
JPH0794359B2 (en) * 1991-11-01 1995-10-11 旭化成工業株式会社 Ammonium perchlorate composite propellant
JP2673687B2 (en) * 1986-06-18 1997-11-05 アイレコ インコ−ポレイテツド Cast gunpowder composition and its compounding method
JP2000510088A (en) * 1996-05-03 2000-08-08 イーストマン ケミカル カンパニー Explosive formulations
JP3140533B2 (en) * 1992-02-10 2001-03-05 ダイセル化学工業株式会社 High energy binder-based composite propellants
JP2006117444A (en) * 2004-10-19 2006-05-11 Asahi Kasei Chemicals Corp Solid propellant composition
WO2007123120A1 (en) * 2006-04-19 2007-11-01 Nipponkayaku Kabushikikaisha Explosive composition, explosive composition molded body, and their production methods

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643240A (en) * 1950-04-13 1953-06-23 Union Carbide & Carbon Corp Polysiloxane antifoam agents
US3035006A (en) * 1954-11-22 1962-05-15 Phillips Petroleum Co Method of preparing butadiene polymercarbon black masterbatch
US3245849A (en) * 1959-07-20 1966-04-12 Aerojet General Co Solid propellant compositions containing polyurethane resins of low cure temperature
GB1605257A (en) * 1960-10-31 1986-09-24 Aerojet General Co Sustainer propellant
US3035066A (en) * 1961-07-06 1962-05-15 Syntex Sa Quaternary ammonium salts of 3beta, 20beta-diamino-allopregnanes
US3200092A (en) * 1962-05-15 1965-08-10 Du Pont Process for producing small particles of nitrocellulose
US3260631A (en) * 1962-12-17 1966-07-12 Aerojet General Co Polyurethane propellants containing inorganic oxidizers with organo-silicon coating
GB1075462A (en) * 1964-03-11 1967-07-12 English Electric Co Ltd Dry cooling towers
US3264993A (en) * 1965-04-22 1966-08-09 Atlantic Res Corp Combustible cartridge case composition and process
US4047990A (en) * 1967-08-01 1977-09-13 The United States Of America As Represented By The Secretary Of The Navy Plastic bonded explosive composition
US3761330A (en) * 1968-07-29 1973-09-25 Aerojet General Co Filler rich powder and method of making
US4163681A (en) * 1970-04-15 1979-08-07 The United States Of America As Represented By The Secretary Of The Navy Desensitized explosives and castable thermally stable high energy explosive compositions therefrom
US3706609A (en) * 1970-12-29 1972-12-19 Us Army Tnt composition containing a cellulosic resin which is free from oily exudation upon storage
CA1084715A (en) * 1978-02-07 1980-09-02 Jean-Francois Drolet High-energy explosive or propellant composition
ZA792356B (en) * 1978-05-25 1980-05-28 Ici Australia Ltd Products and processes
DE4127757A1 (en) * 1991-02-06 1992-08-13 Hoechst Ag NEW PLANT PROTECTIVE FORMULATIONS
DE4324739C1 (en) * 1993-07-23 1994-09-08 Deutsche Aerospace Cast polymer-bonded explosive charge
GB9424785D0 (en) * 1994-12-08 1995-02-08 Armitage Shanks Ltd Filled polymeric compositions and articles cast therefrom
CA2235198A1 (en) * 1997-04-21 1998-10-21 Masahiro Takahashi Polyoxethylene alkyl ether fatty acid amide modified organopolysiloxane composition
DE69841422D1 (en) * 1997-10-15 2010-02-11 Univ South Florida COATING OF PARTICLE MATERIAL BY MEANS OF SUPERCRITICAL LIQUID
DE10058705C1 (en) * 2000-11-25 2002-02-28 Rheinmetall W & M Gmbh Pourable bursting charge consisting of crystalline explosive embedded in a polymer matrix, containing finely divided metal powder, e.g. vanadium, as solid lubricant to provide low viscosity at high solids content
US6673172B2 (en) * 2001-05-07 2004-01-06 Atlantic Research Corporation Gas generant compositions exhibiting low autoignition temperatures and methods of generating gases therefrom
DE10155885A1 (en) * 2001-11-14 2003-06-05 Diehl Munitionssysteme Gmbh Insensitive, compressible explosives
FR2835519B1 (en) * 2002-02-01 2004-11-19 Poudres & Explosifs Ste Nale SEMI-CONTINUOUS TWO-COMPONENT PROCESS FOR OBTAINING A COMPOSITE EXPLOSIVE CHARGE WITH A POLYURETHANE MATRIX
US7011722B2 (en) * 2003-03-10 2006-03-14 Alliant Techsystems Inc. Propellant formulation
US7964045B1 (en) * 2003-06-11 2011-06-21 The United States Of America As Represented By The Secretary Of The Army Method for producing and using high explosive material
DE10356437A1 (en) * 2003-12-03 2005-07-07 Clariant Gmbh defoamers
US8168016B1 (en) * 2004-04-07 2012-05-01 The United States Of America As Represented By The Secretary Of The Army High-blast explosive compositions containing particulate metal
FR2893613B1 (en) * 2005-11-24 2008-04-04 Eurenco France Sa SEMICONDUCTOR BICOMPONENT PROCESS FOR IMPROVED POLYURETHANE MATRIX COMPOSITE EXPLOSIVE LOADING
EP2072946B1 (en) * 2007-12-18 2011-04-06 Saab Ab Improved warhead casing
US10329480B2 (en) * 2013-07-05 2019-06-25 National University Corporation Hokkaido University Sheet integrated rare earth complex and use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343353B2 (en) * 1980-08-08 1988-08-30 Nippon Kayaku Kk
JP2673687B2 (en) * 1986-06-18 1997-11-05 アイレコ インコ−ポレイテツド Cast gunpowder composition and its compounding method
JPH02271987A (en) * 1989-04-13 1990-11-06 Tech Res & Dev Inst Of Japan Def Agency Casting type composition for explosive
JPH04114990A (en) * 1990-08-30 1992-04-15 Chugoku Kayaku Kk Plastic explosive composed of polyurethane and nitramine
JPH0794359B2 (en) * 1991-11-01 1995-10-11 旭化成工業株式会社 Ammonium perchlorate composite propellant
JP3140533B2 (en) * 1992-02-10 2001-03-05 ダイセル化学工業株式会社 High energy binder-based composite propellants
JP2000510088A (en) * 1996-05-03 2000-08-08 イーストマン ケミカル カンパニー Explosive formulations
JP2006117444A (en) * 2004-10-19 2006-05-11 Asahi Kasei Chemicals Corp Solid propellant composition
WO2007123120A1 (en) * 2006-04-19 2007-11-01 Nipponkayaku Kabushikikaisha Explosive composition, explosive composition molded body, and their production methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058449A1 (en) * 2022-09-13 2024-03-21 국방과학연구소 Polysiloxane binder-based castable high-energy composition, core explosive composition, shell fuel composition, single thermobaric explosive composition, and warhead including same

Also Published As

Publication number Publication date
EP2318330A1 (en) 2011-05-11
CA2735320A1 (en) 2010-03-04
KR20110058826A (en) 2011-06-01
AU2009286497A2 (en) 2011-04-14
WO2010023450A1 (en) 2010-03-04
GB201103090D0 (en) 2011-04-06
JP6169628B2 (en) 2017-07-26
CA2735320C (en) 2017-03-28
US20190023628A1 (en) 2019-01-24
GB2475198A (en) 2011-05-11
ZA201101331B (en) 2012-04-25
KR20150085536A (en) 2015-07-23
KR101731409B1 (en) 2017-04-28
AU2009286497B2 (en) 2014-03-27
GB2475198B (en) 2013-05-29
GB0815936D0 (en) 2009-01-14
JP2012500774A (en) 2012-01-12
AU2009286497A1 (en) 2010-03-04
EP2318330B1 (en) 2020-04-15
US20110168306A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP6169628B2 (en) Cast explosive composition
EP3319929B1 (en) Cast explosive composition
AU2018248004B2 (en) Resonant acoustic mixing (RAM) of an explosive composition
EP3385246A1 (en) Resonant acoustic mixing (ram) of an explosive composition
GB2540158A (en) Cast explosive composition
GB2561172A (en) Ram mixing
EP3115348A1 (en) Cast explosive composition
GB2572372A (en) Improved PBX composition
EP3115349A1 (en) Pbx composition
GB2540159A (en) PBX composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170628

R150 Certificate of patent or registration of utility model

Ref document number: 6169628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees