JP4318238B2 - Gas generant composition - Google Patents

Gas generant composition Download PDF

Info

Publication number
JP4318238B2
JP4318238B2 JP17638799A JP17638799A JP4318238B2 JP 4318238 B2 JP4318238 B2 JP 4318238B2 JP 17638799 A JP17638799 A JP 17638799A JP 17638799 A JP17638799 A JP 17638799A JP 4318238 B2 JP4318238 B2 JP 4318238B2
Authority
JP
Japan
Prior art keywords
weight
gas
combustion
oxalate
gas generant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17638799A
Other languages
Japanese (ja)
Other versions
JP2001010888A (en
Inventor
英史 佐藤
大理 久保
了意 児玉
健治郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP17638799A priority Critical patent/JP4318238B2/en
Publication of JP2001010888A publication Critical patent/JP2001010888A/en
Application granted granted Critical
Publication of JP4318238B2 publication Critical patent/JP4318238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Description

【0001】
【発明の属する技術分野】
本発明はエアバッグを膨張させるために燃焼してガス成分を供給するガス発生剤組成物、及びその製造法に関する。更に詳細には、自動車、航空機等に搭載される人体保護を目的としたエアバッグシステムにおいて作動ガスとなるガス発生剤組成物にあって、良好な燃焼性、燃焼ガスを提供する新規なガス発生剤組成物、及びその製造法に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
これまでエアバッグ用ガス発生剤は、アジ化ナトリウム、アジ化カリウムに代表されるアジ化金属を主成分とするものが一般的であり、このガス発生剤は瞬時に燃焼し、且つ燃焼ガス成分が実質的に窒素のみであり、COやNOx等の有害ガス成分を発生させないこと、及び熱安定性に優れていることなどの利点から多用されてきた。しかしながら、アジ化ナトリウム自体に毒性、及び不純物存在下で不安定性という問題が存在し、ガス発生剤の製造上、或いは未作動のガス発生器を廃棄処理する段階で種々の問題点を生じ、アジ化ナトリウムを使用しない非アジ化系ガス発生剤の開発が求められている。
そこでアジ化金属に代わるものとして、特開平3−208878、特開平5−213687、特開平5−254977、特開平6−227884、特開平7−206570等には、燃料成分にテトラゾール類、グアニジン誘導体、アゾジカルボンアミド等を用いる例が開示されている。しかしながら、これらはいずれも燃料成分の毒性上の問題点を回避しただけで、エアバッグ用ガス発生剤に要求される良好な燃焼特性、無害な燃焼ガス、耐環境性等の必要不可欠な性能のすべてを満足するものではない。
エアバッグシステムは衝突をセンサーで感知し、数十ミリ秒で作動を完了させなければならない。したがって、エアバッグ用ガス発生剤はガス発生器内において適度な燃焼速度を示すことが必要であり、速すぎても遅すぎても不適当となる。ガス発生剤組成物において燃焼速度を左右する要因としては、1)燃料成分と酸化剤成分の組み合わせ方、及び2)燃焼触媒の有無等が挙げられる。燃料成分と酸化剤の組み合わせ方で、燃焼速度を上げる方策としては、反応性の高い燃料成分、例えばトリアミノグアニジン硝酸塩、ニトロテトラゾール等、或いは反応性の高い酸化剤、例えば塩素酸塩、過塩素酸塩を用いるのが一般的である。しかしながら、これらの組成物は火薬の燃焼速度を表すr=aP(rは燃焼速度、Pは圧力、aはガス発生剤組成物に依存する定数、nは圧力指数)のうち、aとnが大きく、燃焼速度を十分に制御することが出来ない。一方、燃焼触媒により燃焼速度を改善した例は、特開平6−32690、特開平6−227884、特開平6−239683、特開平8−12482、特開平8−151288、特開平8−169792、特開平9−87079、特開平10−72273等に開示されている。これらは何れも金属酸化物、酸化性無機塩を用いるものであり、燃焼触媒自体は作動ガスとしては全く寄与しない。また、特開平10−158086では金属炭酸塩を用いた例が開示されているが、ガス発生剤の燃焼触媒としては満足いくものでははい。
【0003】
【課題を解決するための手段】
本発明者らは前記の問題点を解決すべく鋭意研究をかさねた結果、エアバッグ用ガス発生剤の燃焼触媒として蓚酸金属塩が優れていることを見出し、本発明に至ったものである。即ち、本発明は蓚酸換算で0.5〜10%の蓚酸金属塩を必須成分とし、燃料成分として含窒素有機化合物を25〜60重量%、酸化剤を30〜70重量%含み、これら含窒素有機化合物、及び酸化剤は少なくとも1種以上が固結防止剤を0.1〜10重量%含有させて、個数基準50%平均粒径で80μmよりも細かく調整されたものであり、更には、成形用助剤を0.1〜10%含有するガス発生剤組成物に関するものである。本発明によれば、作動ガスを減少させることなく適度な燃焼速度を有するガス発生剤組成物を提供することができる。更に、燃焼ガス中の有害成分も少ないという特徴がある。
【0004】
【発明の実施の形態】
以下に本発明について詳細に説明する。本発明のガス発生剤は蓚酸金属塩を必須成分とし、燃料成分として含窒素有機化合物、酸化剤を含み、更には成形用バインダーを含有する。
【0005】
先ず本発明に必須成分の蓚酸金属塩について説明する。本発明に用いる蓚酸金属塩は蓚酸換算で0.5〜10重量%含有されていることが好ましい。特に好ましくは2〜8重量%である。蓚酸金属塩としては蓚酸銅、蓚酸コバルト、蓚酸鉄、蓚酸ニッケル、蓚酸マンガンが好ましい。蓚酸金属塩はガス発生剤の燃焼でそれ自身、熱分解し、二酸化炭素を発生し、作動ガスとしてバッグ展開に寄与する。また、蓚酸金属塩の塩部分は燃焼後、金属単体、或いは金属酸化物を生成し、容易に濾過可能な固形残渣となる。これら蓚酸金属塩は燃焼中、金属単体、金属酸化物を生成する過程において、酸化状態が変化(例えば、Cu2+からCu+への酸化数の変化)することで、燃焼触媒効果、或いは燃焼ガス改善効果を発揮する。例えば、蓚酸銅の如きは、燃焼後、銅単体或は酸化銅(I)を生成する。
【0006】
次に燃料成分である含窒素有機化合物について説明する。本発明で使用できる含窒素有機化合物の例としては、トリアゾール誘導体、テトラゾール誘導体、グアニジン誘導体等が挙げられる。トリアゾール誘導体の具体例としては5−オキソ−1,2,4−トリアゾールを、テトラゾール誘導体の具体例としてはテトラゾール、5−アミノテトラゾール、ビテトラゾール及びビテトラゾールアンモニウム塩を、グアニジン誘導体の具体例としてはグアニジン、ニトログアニジン、シアノグアニジン、トリアミノグアニジン硝酸塩、硝酸グアニジンを、それぞれ挙げることができ、これらは1種で又は2種以上を混合して使用しうる。好ましいものは5−アミノテトラゾール、ビテトラゾールアンモニウム塩、ニトログアニジン、硝酸グアニジンであり、これらは分子中の炭素原子の割合が小さいことから、一酸化炭素の如き有害なガスを発生せず、又入手が容易である。これら含窒素有機化合物はガス発生剤組成物中に25〜60重量%含まれることが好ましい。25重量%より少ないとバッグ展開時にガス量不足となり、又、60重量%を超えるとガス発生剤組成物中の酸化剤成分が不足し、不完全燃焼を起こし、一酸化炭素の如き有害ガスを生成する恐れがある。上記含窒素有機化合物の内、硝酸グアニジンは他の含窒素有機化合物と比較して酸化剤との反応性に劣るが、酸素バランスが−26.2%であることから、酸化剤を少なく抑えることができ、結果的に高ガス化率のガス発生剤とすることができる。したがって、硝酸グアニジンを使用する場合には5−アミノテトラゾール、ビテトラゾールアンモニウム塩、ニトログアニジン等との組合せにより使用することが好ましい。
【0007】
次に、本発明のガス発生剤で使用しうる酸化剤は、ガス発生剤組成物中に30〜70重量%含まれることが好ましい。30重量%より少ないと不完全燃焼を起こし、一酸化炭素の如き有害ガスを生成し、又、70重量%を超えるとガス発生剤組成物中の酸素過剰となり、窒素酸化物の如き有害ガスを生成する恐れがある。酸化剤としては、相安定化硝酸アンモニウム、過塩素酸アンモニウム、アルカリ金属又はアルカリ土類金属の硝酸塩、過塩素酸塩、及び塩素酸塩が挙げられ、更に具体的な硝酸塩としては硝酸ストロンチウム、硝酸バリウム、硝酸カリウム及び硝酸ナトリウムを、過塩素酸塩としては過塩素酸カリウム及び過塩素酸ナトリウムを、塩素酸塩としては塩素酸カリウム及び過酸素酸ナトリウムモを挙げることが出来る。これら酸化剤は良好な燃焼特性を得る目的で2種以上を混合して用いても良い。
【0008】
相安定化硝酸アンモニウムとは硝酸アンモニウムが−18〜170℃の間に存在する複数の相転移点において体積変化を起こし、ガス発生剤成形体の破壊を引き起こす恐れがあることから、硝酸アンモニウム中に相安定化剤を添加したものである。相安定化剤は特に限定されるものではなく、本発明で用いた相安定化硝酸アンモニウムは硝酸アンモニウム中に10〜20重量%の硝酸カリウムを相安定化剤として含有させたものを使用した。
【0009】
酸化剤に相安定化硝酸アンモニウムを用いたガス発生剤は一般的に燃焼速度が遅く、エアバッグ用ガス発生剤として用いることが困難であったが、燃焼触媒として蓚酸金属塩を用いることで相安定化硝酸アンモニウムを用いたガス発生剤の燃焼特性をも改善することができることが分かった。
【0010】
本発明における燃料成分、酸化剤は使用に当たって、事前に固結防止剤を0.1〜10重量%の添加して粉砕し、粒度を調整しておくのが好ましく、個数基準50%平均粒径で80μmよりも細かいものが好ましい。ここで言う個数基準50%平均粒径とは、個数基準で粒度分布を表わす方法であり、全粒子の個数を100としたとき、小さい方から積算して50個に達したときの粒度をいう。使用しうる固結防止剤としては微粒子シリカ、微粒子アルミナ、微粒子酸化チタン、窒化珪素、炭化珪素、燐酸カルシウム等が挙げられる。好ましいものは微粒子シリカ、窒化珪素、炭化珪素である。これら珪素含有化合物は燃焼反応中、上記酸化剤より生成する固形残渣とのスラグ形成反応により、容易に濾過可能な燃焼残渣を形成する。この固結防止剤のガス発生剤組成物中に0.1〜10重量%含有することが好ましく、10重量%を超えるとガス発生剤の燃焼の妨げとなり、また0.1重量%よりも少ない場合には固結防止剤としての効果を発揮せず、又スラグ形成反応により、容易に濾過可能な燃焼残渣を形成する事が困難となる。
【0011】
本発明に用いる燃料成分、及び酸化剤の個数基準50%平均粒径は80μmよりも細かいものが好ましい。80μmより大きいと所望の燃焼速度よりも遅くなり、エアバッグシステムとしての目的を発揮しない恐れがある。
【0012】
本発明で必要により使用する成形用助剤について説明する。本発明のガス発生剤は過酷な環境条件に耐えるべく、また燃焼制御の目的でプレス成形、或は押し出し成形することが望ましく、その意味で成形用助剤を添加するのが好ましい。成形用助剤の含有量は0.1〜10重量%が好ましい。含有量は10重量%を超えると燃焼速度を低下させ、0.1重量%以下では成形体の強度不足、燃焼中の異常燃焼の原因となる恐れがある。好ましくは8重量%以下である。使用しうる成形用助剤の具体例として、合成ヒドロタルサイト類、タルク、ベントナイト、珪酸ナトリウム、グラファイト、多糖類、ポリビニルアルコール、ポリビニルピロリドン、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、カルボキシメチルセルロース及びその金属塩、ヒドロキシエチルセルロース、酢酸セルロース、プロピオン酸セルロース、酪酸酢酸セルロース、水溶性セルロースエーテル、ポリアクリル酸ナトリウム、澱粉等が挙げられる。これらの成形用助剤は2種以上を混合して用いることも出来る。
【0013】
次に、本発明のガス発生剤組成物における各成分の好ましい組合せについて説明する。蓚酸金属塩としては蓚酸銅、蓚酸コバルトが最適であり、ガス発生剤組成物中に蓚酸換算で0.5〜10重量%含まれていることが好ましい。燃料成分としては含窒素有機化合物の内、具体的には5−アミノテトラゾール、ビテトラゾールアンモニウム塩、ニトログアニジン、硝酸グアニジンが最適であり、これらは1種以上で用いられることが好ましく、ガス発生剤組成物中に25〜60重量%含まれることが好ましい。又、酸化剤としては硝酸ストロンチウム、相安定化硝酸アンモニウムが最適であり、これらは単独で用いられるか、或いは任意の割合で混合し、用いることが好ましく、ガス発生剤組成物中に30〜70重量%含まれることが好ましい。
【0014】
燃料成分、及び酸化剤のうち少なくとも一種以上が、固結防止剤を0.1〜10重量%含有させて個数基準50%平均粒径で80μmより細かく調整されたものを使用することが好ましい。固結防止剤としては微粒子シリカ、窒化珪素が最適であり、これらは単独、或いは混合して用いられることが好ましい。
【0015】
成形用助剤としては、プレス成形する場合、ポリビニルアルコール、合成ヒドロタルサイト、ステアリン酸マグネシウムの組合せが好ましく、ガス発生剤組成物中に0.1〜10重量%含まれることが好ましい。また押し出し成形を行う場合にはカルボキシメチルセルロースの金属塩、水溶性セルロースエーテルが最適であり、これらは単独、或いは混合して用いることが好ましく、ガス発生剤組成物中に0.1〜10重量%含まれることが好ましい。
【0016】
次に本発明のガス発生剤組成物の製造法について説明する。本発明のガス発生剤組成物は、プレス成形、押し出し成形の何れの方法にても実施可能である。なお、成形後に熱処理を行うことで、ガス発生剤組成物を充分に乾燥させ、水分に起因する着火遅れの防止や耐環境性の向上の果たすことができる。
【0017】
プレス成形を行う場合、まず、燃料成分、及び酸化剤に固結防止剤を添加し、V型混合機で混合した後に粉砕を行う。蓚酸金属塩、粉砕済み燃料成分、粉砕済み酸化剤、成形用助剤を所定量計り取り、V型混合機で均一に混合した後、プレス成形機に投入した後、熱処理を行う。得られたガス発生剤成形体はガス発生剤組成物として用いられる。
【0018】
押し出し成形を行う場合、同様に燃料成分、酸化剤を粉砕し、各成分をスパイラルミキサに計り取り、外割りで8〜25重量%の水を加え、十分に混練し、粘性を有する湿薬にする。その後、真空混練押出成形機を用いて、所望の形状に押し出し成形し、適宜切断した後、熱処理を行う。このようにして得られた押し出し成形体はガス発生剤組成物として用いられる。
【0019】
【実施例】
以下に本発明を実施例によりより具体的に説明する。
各種ガス発生剤は実施例に記述の通り調製し、それらを図1に示されるようなガス発生器に充填し、60リットルタンクテストを行った。
図1において、ガス発生器1は、点火器2と伝火薬3とが配置された中央点火室7と、その周囲のガス発生剤4が充填された燃焼室8と、更に、その外側の金属フィルター5が配置された冷却フィルター室9とから構成され、燃焼ガスは、冷却フィルター室9を経て、ハウジングのガス噴出孔6から外部に噴出するようになっている。
60リットルタンクテストは、内容積60リットルの高圧容器内にガス発生器を装着して作動させ、容器内にガスを放出させて、図2に示す如き容器内圧力の時間的変化と、燃焼ガス成分を測定するものである。尚、図2においては、縦軸は容器内圧力P、横軸は時間tであり、P1は容器内の最大到達圧力[KPa]、t1は点火器2への通電からガス発生器の作動開始までの時間[ms:ミリ秒]、t2はガス発生器の作動からP1に至るまでの所要時間[ms]を示している。
【0020】
[実施例1]
燃料成分として5−アミノテトラゾールを33.0重量部、酸化剤として硝酸ストロンチウムを58.7重量部、燃焼触媒としての蓚酸銅を4.0重量部、成形用助剤として合成ヒドロタルサイトを4.0重量部を計り取り、V型混合機で10分間混合した。尚、計量に際し、予め硝酸ストロンチウムには固結防止剤として窒化珪素(個数基準50%平均粒径で0.2枚μm)を3重量%添加し、個数基準50%平均粒径で12μm程度に粉砕処理した。又、5−アミノテトラゾールについても同様に個数基準50%平均粒径で10μm程度に粉砕処理し、使用した。前記混合粉末をロータリーミキサにて、成形用助剤としてのポリビニルアルコール水溶液を噴霧して湿式混練造粒を行い、粒径1mm以下の顆粒に成形した。この際に噴霧したポリビニルアルコールの量は、ガス発生剤組成物中の0.1重量部である。この顆粒を80℃で5時間熱処理させた後、更に成形用助剤としてステアリン酸マグネシウムをガス発生剤組成物中の0.2重量部添加混合し、回転式打錠剤機でプレス成形し、次いで100℃で10時間熱処理を行い、直径5mm、厚み2mm、重量88mgのガス発生剤組成物の錠剤を得た。得られた錠剤40gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0021】
[実施例2]
実施例1と同様に、燃料成分としてをビテトラゾールアンモニウム塩を25.4重量部、硝酸グアニジンを12.6重量部、酸化剤として硝酸ストロンチウムを53.7重量部、燃焼触媒としての蓚酸銅を4.0重量部、成形用助剤として合成ヒドロタルサイトを4.0重量部、ポリビニルアルコールを0.1重量部、ステアリン酸マグネシウムを0.2重量部を用いて、直径5mm、厚み2mm、重量88mgのガス発生剤組成物の錠剤を得た。得られた錠剤40gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0022】
[実施例3]
燃料成分としてビテトラゾールアンモニウム塩を26.5重量部、酸化剤として硝酸ストロンチウムを40.5重量部、及び相安定化硝酸アンモニウムを24.0重量部、燃焼触媒としての蓚酸銅を4.5重量部、成形用助剤としてカルボキシメチルセルロースのナトリウム塩を4.5重量部(和光純薬工業(株)製化学用)を夫々スパイラルミキサに計り取り、10分間混合した後、混合粉末に対し、10重量%の水を加え混練した。尚、計量に際し、予め硝酸ストロンチウムには固結防止剤として窒化珪素(個数基準50%平均粒径で0.2枚μm)を3重量%添加し、個数基準50%平均粒径で12μm程度に粉砕処理した。又、相安定化硝酸アンモニウムについても同様に個数基準50%平均粒径で35μm程度に粉砕処理し、使用した。十分に混練し、粘土状塊になった湿状薬を真空混練押し出し成形機に通して切断し、次いでこの押し出し成形体を60℃で24時間熱処理を行い、外形3mm、内径1mm、全長3mmの単孔円筒状のガス発生剤組成物成形体を得た。得られた成形体31gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0023】
[実施例4]
実施例3と同様に、燃料成分としてビテトラゾールアンモニウム塩を26.5重量部、酸化剤として硝酸ストロンチウムを40.5重量部、及び相安定化硝酸アンモニウムを24.0重量部、燃焼触媒としての蓚酸コバルトを4.5重量部、成形用助剤としてカルボキシメチルセルロースのナトリウム塩を4.5重量部用い、外形3mm、内径1mm、全長3mmの単孔円筒状のガス発生剤組成物成形体を得た。得られた成形体31gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0024】
[実施例5]
実施例3と同様に、燃料成分としてニトログアニジンを37.5重量部、酸化剤として硝酸ストロンチウムを41.4重量部、及び相安定化硝酸アンモニウムを12.1重量部、燃焼触媒としての蓚酸銅を4.5重量部、成形用助剤としてカルボキシメチルセルロースのナトリウム塩4.5重量部を用い、外形3mm、内径1mm、全長3mmの単孔円筒状のガス発生剤組成物成形体を得た。得られた成形体31gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0025】
[比較例1]
実施例1と同様に、燃料成分にジシアンジアミドを21.7重量部、酸化剤として硝酸カリウムを69.0重量部、燃焼触媒として酸化銅を9.0重量部、成形用助剤としてポリビニルアルコールを0.1重量部、ステアリン酸マグネシウムを0.2重量部用い、直径5mm、厚み2mm、重量88mgの錠剤を得た。得られた成形体40gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0026】
[比較例2]
実施例3と同様に、燃料成分としてビテトラゾールアンモニウム塩を27.7重量部、酸化剤として硝酸ストロンチウムを42.4重量部、及び相安定化硝酸アンモニウムを25.2重量部、成形用助剤としてカルボキシメチルセルロースのナトリウム塩を4.7重量部を用い、外形3mm、内径1mm、全長3mmの単孔円筒状に成形した。得られた成形体31gを、図1に示す構造のガス発生器に充填した。試験結果を表1に示した。
【0027】
【表1】

Figure 0004318238
【0028】
一般に衝突後、バッグが展開し、動作を完了するまでの時間は50ミリ秒と言われている。実施例1〜4では燃焼完了(tPmaxに相当)が45ミリ秒程度であり、ガス発生剤の燃焼速度としては特に問題はない。また、燃焼ガス成分についてもCO濃度、NOx濃度とも問題はない。比較例1では特開平9―87079で開示の含窒素有機化合物としてジシアンジアミド、酸化剤として硝酸カリウム、燃焼触媒として酸化銅を用いたガス発生剤組成物の60リットルタンクテストを実施した。この場合、tPmaxが遅く、更に有害ガス成分であるCOが多量に発生している。これは燃焼触媒として添加された酸化銅がガス発生剤用の燃焼触媒として満足いくものでないことを示している。また、比較例2では実施例3の組成から燃焼触媒を削除した系の60リットルタンクテストを行った。これらの結果より、本来燃焼速度の遅い硝酸アンモニウムの系についても燃焼触媒として蓚酸銅を添加することで燃焼性を改善できることが分かる。
【0029】
【発明の効果】
本発明のガス発生剤組成物では含窒素有機化合物、酸化剤を含有するガス発生剤において、燃焼触媒として、蓚酸換算で0.1〜10重量%の蓚酸金属塩を含有させることを特徴とするものである。ガス発生剤組成物中において、蓚酸金属塩は燃焼触媒として機能し、適度な燃焼速度を提供する。更には、蓚酸金属塩自体、燃焼後、作動ガスとして寄与し、燃焼ガス中の有害ガスの低減効果も兼ね備えている。
【図面の簡単な説明】
【図1】本発明の実施例で使用したエアバッグ用ガス発生器1の概略図である。
【図2】高圧容器を用いた燃焼試験における時間(t)と容器内圧力(P)との関係を示すグラフである。
【符号の説明】
1 エアバッグ用ガス発生器
2 点火器
3 伝火薬
4 ガス発生剤
5 冷却フィルター部材
6 ガス放出孔
7 中央点火室
8 燃焼室
9 冷却フィルター室
P1 最大到達圧力
t 作動開始までの時間
t 作動からP1に到るまでの時間[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas generating composition for supplying a gas component by combustion in order to inflate an airbag, and a method for producing the same. More specifically, the present invention relates to a gas generating composition that serves as a working gas in an air bag system for protecting a human body mounted on an automobile, an aircraft, etc., and has a novel gas generation that provides good combustion properties and combustion gas. It is related with an agent composition and its manufacturing method.
[0002]
[Prior art and problems to be solved by the invention]
Until now, gas generators for airbags have been mainly composed of metal azide typified by sodium azide and potassium azide. This gas generator burns instantaneously and has a combustion gas component. Is substantially only nitrogen, and has been frequently used because it does not generate harmful gas components such as CO and NOx and has excellent thermal stability. However, sodium azide itself has problems of toxicity and instability in the presence of impurities, and various problems occur in the production of the gas generant or at the stage of disposal of the inactive gas generator. Development of a non-azide gas generating agent that does not use sodium hydride is required.
Therefore, as an alternative to metal azide, JP-A-3-208878, JP-A-5-213687, JP-A-5-254777, JP-A-6-227784, JP-A-7-206570, etc. disclose tetrazole and guanidine derivatives as fuel components. Examples using azodicarbonamide and the like are disclosed. However, they all avoid the toxic problems of fuel components, and have essential performance such as good combustion characteristics, harmless combustion gas, and environmental resistance required for air bag gas generating agents. Not satisfying everything.
The airbag system must detect the collision with a sensor and complete the operation in tens of milliseconds. Therefore, it is necessary for the gas generating agent for an air bag to show an appropriate combustion speed in the gas generator, and it is inappropriate whether it is too fast or too slow. Factors that influence the combustion rate in the gas generant composition include 1) how to combine the fuel component and oxidant component, and 2) the presence or absence of a combustion catalyst. In order to increase the combustion rate by combining the fuel component and the oxidizer, a reactive fuel component such as triaminoguanidine nitrate or nitrotetrazole, or a highly reactive oxidizer such as chlorate or perchlorine is used. It is common to use acid salts. However, these compositions represent a and n of r = aP n (r is the burning rate, P is the pressure, a is a constant depending on the gas generant composition, and n is the pressure index) representing the burning rate of the explosive. The combustion rate cannot be controlled sufficiently. On the other hand, examples in which the combustion rate is improved by a combustion catalyst are disclosed in JP-A-6-32690, JP-A-6-227484, JP-A-6-239683, JP-A-8-12482, JP-A-8-151288, JP-A-8-169792, This is disclosed in Kaihei 9-87079, Japanese Patent Laid-Open No. 10-72273, and the like. These all use metal oxides and oxidizing inorganic salts, and the combustion catalyst itself does not contribute at all as a working gas. Japanese Patent Laid-Open No. 10-158086 discloses an example using a metal carbonate, but it is not satisfactory as a combustion catalyst for a gas generating agent.
[0003]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a metal oxalate salt is excellent as a combustion catalyst for a gas generating agent for an air bag, and have reached the present invention. That is, the present invention contains 0.5 to 10% oxalic acid metal salt as an essential component in terms of oxalic acid, contains 25 to 60% by weight of a nitrogen-containing organic compound as a fuel component, and 30 to 70% by weight of an oxidizing agent. At least one organic compound and an oxidizing agent contain 0.1 to 10% by weight of an anti-caking agent, and the number-based 50% average particle size is adjusted to be finer than 80 μm. The present invention relates to a gas generant composition containing 0.1 to 10% of a molding aid. According to the present invention, it is possible to provide a gas generant composition having an appropriate combustion rate without reducing the working gas. Furthermore, there is a feature that there are few harmful components in the combustion gas.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. The gas generating agent of the present invention contains a metal oxalate as an essential component, a nitrogen-containing organic compound and an oxidizing agent as fuel components, and further contains a molding binder.
[0005]
First, an oxalic acid metal salt that is an essential component of the present invention will be described. The oxalic acid metal salt used in the present invention is preferably contained in an amount of 0.5 to 10% by weight in terms of oxalic acid. Particularly preferred is 2 to 8% by weight. As the oxalate metal salt, copper oxalate, cobalt oxalate, iron oxalate, nickel oxalate, and manganese oxalate are preferable. The oxalic acid metal salt itself is thermally decomposed by the combustion of the gas generating agent to generate carbon dioxide, which contributes to the development of the bag as a working gas. In addition, the salt portion of the metal oxalate salt forms a simple metal or a metal oxide after combustion, and becomes a solid residue that can be easily filtered. These oxalic acid metal salts undergo a combustion catalytic effect or combustion by changing the oxidation state (for example, the change in the oxidation number from Cu 2+ to Cu + ) during the process of producing a simple metal or metal oxide during combustion. Demonstrate gas improvement effect. For example, copper oxalate or the like produces simple copper or copper (I) oxide after combustion.
[0006]
Next, the nitrogen-containing organic compound that is a fuel component will be described. Examples of nitrogen-containing organic compounds that can be used in the present invention include triazole derivatives, tetrazole derivatives, and guanidine derivatives. Specific examples of triazole derivatives include 5-oxo-1,2,4-triazole, specific examples of tetrazole derivatives include tetrazole, 5-aminotetrazole, bitetrazole and bitetrazole ammonium salts, and specific examples of guanidine derivatives. Examples thereof include guanidine, nitroguanidine, cyanoguanidine, triaminoguanidine nitrate, and guanidine nitrate, and these may be used alone or in combination of two or more. Preferred are 5-aminotetrazole, bitetrazole ammonium salt, nitroguanidine, and guanidine nitrate, which do not generate harmful gases such as carbon monoxide because they have a small proportion of carbon atoms in the molecule, and are also available. Is easy. These nitrogen-containing organic compounds are preferably contained in an amount of 25 to 60% by weight in the gas generant composition. If the amount is less than 25% by weight, the amount of gas will be insufficient when the bag is deployed. If the amount exceeds 60% by weight, the oxidant component in the gas generant composition will be insufficient, causing incomplete combustion, and harmful gases such as carbon monoxide. There is a risk of generating. Of the above nitrogen-containing organic compounds, guanidine nitrate is inferior in reactivity with oxidants compared to other nitrogen-containing organic compounds, but the oxygen balance is -26.2%, so the oxidants should be kept low. As a result, a gas generating agent having a high gasification rate can be obtained. Therefore, when guanidine nitrate is used, it is preferably used in combination with 5-aminotetrazole, bitetrazole ammonium salt, nitroguanidine or the like.
[0007]
Next, the oxidizing agent that can be used in the gas generating agent of the present invention is preferably contained in an amount of 30 to 70% by weight in the gas generating composition. If the amount is less than 30% by weight, incomplete combustion occurs and a harmful gas such as carbon monoxide is generated. If the amount exceeds 70% by weight, oxygen in the gas generant composition becomes excessive, and harmful gases such as nitrogen oxides are generated. There is a risk of generating. Examples of the oxidizing agent include phase-stabilized ammonium nitrate, ammonium perchlorate, alkali metal or alkaline earth metal nitrate, perchlorate, and chlorate, and more specific nitrates include strontium nitrate and barium nitrate. Potassium nitrate and sodium nitrate, potassium perchlorate and sodium perchlorate as perchlorates, and potassium chlorate and sodium peroxyacid as chlorates. Two or more kinds of these oxidizing agents may be mixed for the purpose of obtaining good combustion characteristics.
[0008]
What is phase-stabilized ammonium nitrate? Ammonium nitrate undergoes volume changes at a plurality of phase transition points existing between -18 to 170 ° C, and may cause destruction of the gas generant molded product. The agent is added. The phase stabilizer is not particularly limited, and the phase-stabilized ammonium nitrate used in the present invention was prepared by adding 10 to 20% by weight of potassium nitrate as a phase stabilizer in ammonium nitrate.
[0009]
Gas generators that use phase-stabilized ammonium nitrate as the oxidizer generally have a slow combustion rate and are difficult to use as gas generators for airbags, but phase stability is achieved by using metal oxalate as a combustion catalyst. It was found that the combustion characteristics of the gas generant using ammonium nitrate can also be improved.
[0010]
The fuel component and oxidizer in the present invention are preferably pulverized by adding 0.1 to 10% by weight of an anti-caking agent in advance before use, and the particle size is preferably adjusted. And those smaller than 80 μm are preferable. The number-based 50% average particle size referred to here is a method of expressing the particle size distribution on the number basis. When the number of all particles is 100, it means the particle size when 50 particles are accumulated from the smallest. . Examples of the anti-caking agent that can be used include fine particle silica, fine particle alumina, fine particle titanium oxide, silicon nitride, silicon carbide, and calcium phosphate. Preferred are fine-particle silica, silicon nitride, and silicon carbide. These silicon-containing compounds form an easily filterable combustion residue by a slag forming reaction with a solid residue generated from the oxidant during the combustion reaction. The content of the anti-caking agent in the gas generant composition is preferably 0.1 to 10% by weight, and if it exceeds 10% by weight, the gas generant is prevented from burning and less than 0.1% by weight. In such a case, the effect as an anti-caking agent is not exhibited, and it is difficult to form a combustion residue that can be easily filtered by a slag formation reaction.
[0011]
The fuel component and oxidizer used in the present invention preferably have a number-based 50% average particle size smaller than 80 μm. If it is larger than 80 μm, it becomes slower than the desired combustion rate, and there is a possibility that the purpose of the airbag system is not exhibited.
[0012]
The molding aid used as necessary in the present invention will be described. The gas generating agent of the present invention is desirably press-molded or extruded for the purpose of enduring harsh environmental conditions and for the purpose of combustion control. In this sense, a molding aid is preferably added. The content of the molding aid is preferably 0.1 to 10% by weight. If the content exceeds 10% by weight, the burning rate is lowered, and if it is 0.1% by weight or less, the molded body may have insufficient strength and may cause abnormal combustion during combustion. Preferably it is 8 weight% or less. Specific examples of molding aids that can be used include synthetic hydrotalcites, talc, bentonite, sodium silicate, graphite, polysaccharides, polyvinyl alcohol, polyvinylpyrrolidone, magnesium stearate, zinc stearate, calcium stearate, carboxymethylcellulose and The metal salt, hydroxyethyl cellulose, cellulose acetate, cellulose propionate, cellulose butyrate acetate, water-soluble cellulose ether, sodium polyacrylate, starch and the like can be mentioned. These molding aids can be used in combination of two or more.
[0013]
Next, a preferred combination of components in the gas generant composition of the present invention will be described. As the oxalic acid metal salt, copper oxalate and cobalt oxalate are optimal, and it is preferable that 0.5 to 10% by weight in terms of oxalic acid is contained in the gas generant composition. As the fuel component, among the nitrogen-containing organic compounds, specifically, 5-aminotetrazole, bitetrazole ammonium salt, nitroguanidine, and guanidine nitrate are optimal, and these are preferably used as one or more kinds, and a gas generating agent The composition preferably contains 25 to 60% by weight. As the oxidizing agent, strontium nitrate and phase-stabilized ammonium nitrate are optimal, and these are preferably used alone or mixed and used at an arbitrary ratio, and 30 to 70% by weight in the gas generant composition. % Is preferably included.
[0014]
It is preferable that at least one of the fuel component and the oxidizer contains 0.1 to 10% by weight of an anti-caking agent and is adjusted more finely than 80 μm with a number-based 50% average particle size. As the anti-caking agent, fine particle silica and silicon nitride are optimal, and these are preferably used alone or in combination.
[0015]
As the molding aid, in the case of press molding, a combination of polyvinyl alcohol, synthetic hydrotalcite and magnesium stearate is preferable, and it is preferably contained in the gas generant composition in an amount of 0.1 to 10% by weight. In addition, when performing extrusion molding, a metal salt of carboxymethyl cellulose and a water-soluble cellulose ether are optimal, and these are preferably used alone or in combination, and 0.1 to 10% by weight in the gas generant composition. It is preferably included.
[0016]
Next, the manufacturing method of the gas generant composition of this invention is demonstrated. The gas generant composition of the present invention can be carried out by any method of press molding and extrusion molding. In addition, by performing heat treatment after molding, the gas generant composition can be sufficiently dried to prevent ignition delay due to moisture and improve environmental resistance.
[0017]
When performing press molding, first, an anti-caking agent is added to the fuel component and the oxidizer, and they are mixed by a V-type mixer and then pulverized. A predetermined amount of oxalic acid metal salt, pulverized fuel component, pulverized oxidant, and molding aid are weighed out and uniformly mixed with a V-type mixer, and then charged into a press molding machine, followed by heat treatment. The obtained gas generant molded product is used as a gas generant composition.
[0018]
When extruding, the fuel component and oxidizer are crushed in the same way, each component is weighed into a spiral mixer, and 8-25% by weight of water is added externally, and kneaded thoroughly to obtain a viscous moisturizer. To do. Then, it is extruded into a desired shape using a vacuum kneading extrusion molding machine, cut as appropriate, and then heat treated. The extruded product thus obtained is used as a gas generant composition.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Various gas generants were prepared as described in the Examples, filled in a gas generator as shown in FIG. 1, and subjected to a 60 liter tank test.
In FIG. 1, a gas generator 1 includes a central ignition chamber 7 in which an igniter 2 and a charge transfer agent 3 are arranged, a combustion chamber 8 in which the surrounding gas generating agent 4 is filled, and a metal on the outside thereof. A cooling filter chamber 9 in which the filter 5 is disposed is configured so that the combustion gas is jetted to the outside through the cooling filter chamber 9 and from the gas ejection hole 6 of the housing.
In the 60-liter tank test, a gas generator is installed in a high-pressure vessel having an internal volume of 60 liters, and the gas is discharged into the vessel. As a result, the change in pressure inside the vessel as shown in FIG. The component is measured. In FIG. 2, the vertical axis represents the pressure P in the container, the horizontal axis represents the time t, P 1 represents the maximum ultimate pressure [KPa] in the container, and t 1 represents the gas generator from the energization to the igniter 2. Time to start operation [ms: milliseconds], t 2 indicates a required time [ms] from the operation of the gas generator to P 1 .
[0020]
[Example 1]
33.0 parts by weight of 5-aminotetrazole as a fuel component, 58.7 parts by weight of strontium nitrate as an oxidizing agent, 4.0 parts by weight of copper oxalate as a combustion catalyst, and 4 synthetic hydrotalcites as a molding aid 0.0 part by weight was weighed and mixed with a V-type mixer for 10 minutes. In the measurement, 3% by weight of silicon nitride (0.2 μm in terms of number based on 50% number) is added to strontium nitrate in advance as an anti-caking agent, so that the number based on number based on 50% average particle size is about 12 μm. Grinded. Similarly, 5-aminotetrazole was used after being pulverized to about 10 μm with a number-based 50% average particle size. The mixed powder was wet kneaded and granulated by spraying a polyvinyl alcohol aqueous solution as a molding aid with a rotary mixer to form granules having a particle size of 1 mm or less. The amount of polyvinyl alcohol sprayed at this time is 0.1 parts by weight in the gas generant composition. This granule was heat-treated at 80 ° C. for 5 hours, further mixed with 0.2 parts by weight of magnesium stearate as a molding aid in the gas generating composition, press-molded with a rotary tableting machine, Heat treatment was performed at 100 ° C. for 10 hours to obtain a gas generant composition tablet having a diameter of 5 mm, a thickness of 2 mm, and a weight of 88 mg. 40 g of the obtained tablets were filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0021]
[Example 2]
As in Example 1, 25.4 parts by weight of bitetrazole ammonium salt, 12.6 parts by weight of guanidine nitrate, 53.7 parts by weight of strontium nitrate as an oxidant, and copper oxalate as a combustion catalyst were used. 4.0 parts by weight, 4.0 parts by weight of synthetic hydrotalcite as a molding aid, 0.1 parts by weight of polyvinyl alcohol, 0.2 parts by weight of magnesium stearate, 5 mm in diameter, 2 mm in thickness, A tablet of the gas generant composition weighing 88 mg was obtained. 40 g of the obtained tablets were filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0022]
[Example 3]
26.5 parts by weight of bitetrazole ammonium salt as a fuel component, 40.5 parts by weight of strontium nitrate as an oxidizing agent, 24.0 parts by weight of phase-stabilized ammonium nitrate, and 4.5 parts by weight of copper oxalate as a combustion catalyst Then, 4.5 parts by weight of sodium salt of carboxymethylcellulose (for chemical use, manufactured by Wako Pure Chemical Industries, Ltd.) as a molding aid was weighed in a spiral mixer, mixed for 10 minutes, and then 10 weights with respect to the mixed powder. % Water was added and kneaded. In the measurement, 3% by weight of silicon nitride (0.2 μm in terms of number based on 50% number) is added to strontium nitrate in advance as an anti-caking agent, so that the number based on number based on 50% average particle size is about 12 μm. Grinded. Similarly, the phase-stabilized ammonium nitrate was pulverized to about 35 μm with a 50% average particle diameter based on the number and used. Thoroughly kneaded and the wet medicine in the form of a clay-like lump is cut through a vacuum kneading extrusion molding machine, and then this extrusion-molded body is heat treated at 60 ° C. for 24 hours. A single-hole cylindrical gas generant composition molded body was obtained. The obtained molded body 31g was filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0023]
[Example 4]
As in Example 3, 26.5 parts by weight of bitetrazole ammonium salt as a fuel component, 40.5 parts by weight of strontium nitrate as an oxidant, 24.0 parts by weight of phase-stabilized ammonium nitrate, and oxalic acid as a combustion catalyst Using 4.5 parts by weight of cobalt and 4.5 parts by weight of sodium carboxymethylcellulose as a molding aid, a single-hole cylindrical gas generant composition molded body having an outer diameter of 3 mm, an inner diameter of 1 mm, and a total length of 3 mm was obtained. . The obtained molded body 31g was filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0024]
[Example 5]
As in Example 3, 37.5 parts by weight of nitroguanidine as a fuel component, 41.4 parts by weight of strontium nitrate as an oxidizing agent, 12.1 parts by weight of phase-stabilized ammonium nitrate, and copper oxalate as a combustion catalyst Using 4.5 parts by weight and 4.5 parts by weight of sodium salt of carboxymethylcellulose as a molding aid, a single-hole cylindrical gas generant composition molded body having an outer diameter of 3 mm, an inner diameter of 1 mm, and a total length of 3 mm was obtained. The obtained molded body 31g was filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0025]
[Comparative Example 1]
As in Example 1, 21.7 parts by weight of dicyandiamide as a fuel component, 69.0 parts by weight of potassium nitrate as an oxidant, 9.0 parts by weight of copper oxide as a combustion catalyst, and 0% of polyvinyl alcohol as a molding aid 0.1 part by weight and 0.2 part by weight of magnesium stearate were used to obtain a tablet having a diameter of 5 mm, a thickness of 2 mm, and a weight of 88 mg. 40 g of the obtained molded body was filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0026]
[Comparative Example 2]
As in Example 3, 27.7 parts by weight of bitetrazole ammonium salt as a fuel component, 42.4 parts by weight of strontium nitrate as an oxidant, and 25.2 parts by weight of phase-stabilized ammonium nitrate as a molding aid Using 4.7 parts by weight of sodium salt of carboxymethylcellulose, it was molded into a single-hole cylindrical shape having an outer diameter of 3 mm, an inner diameter of 1 mm, and an overall length of 3 mm. The obtained molded body 31g was filled in a gas generator having the structure shown in FIG. The test results are shown in Table 1.
[0027]
[Table 1]
Figure 0004318238
[0028]
Generally, it is said that the time from when the bag is unfolded until the operation is completed is 50 milliseconds after the collision. In Examples 1 to 4, the completion of combustion (corresponding to tPmax) is about 45 milliseconds, and there is no particular problem with the combustion rate of the gas generating agent. Also, there is no problem with the combustion gas component in terms of CO concentration and NOx concentration. In Comparative Example 1, a 60 liter tank test of a gas generating composition using dicyandiamide as a nitrogen-containing organic compound, potassium nitrate as an oxidizing agent, and copper oxide as a combustion catalyst disclosed in JP-A-9-87079 was conducted. In this case, tPmax is slow, and a large amount of CO, which is a harmful gas component, is generated. This indicates that the copper oxide added as a combustion catalyst is not satisfactory as a combustion catalyst for the gas generating agent. Further, in Comparative Example 2, a 60 liter tank test of a system in which the combustion catalyst was deleted from the composition of Example 3 was performed. From these results, it can be seen that the flammability can be improved by adding copper oxalate as a combustion catalyst even in an ammonium nitrate system which originally has a slow combustion rate.
[0029]
【The invention's effect】
In the gas generant composition of the present invention, the gas generant containing a nitrogen-containing organic compound and an oxidant contains 0.1 to 10% by weight of an oxalic acid metal salt in terms of oxalic acid as a combustion catalyst. Is. In the gas generant composition, the metal oxalate functions as a combustion catalyst and provides a moderate combustion rate. Furthermore, the oxalic acid metal salt itself contributes as a working gas after combustion, and also has an effect of reducing harmful gases in the combustion gas.
[Brief description of the drawings]
FIG. 1 is a schematic view of a gas generator 1 for an air bag used in an example of the present invention.
FIG. 2 is a graph showing the relationship between time (t) and pressure (P) in a container in a combustion test using a high-pressure container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas generator for air bags 2 Igniter 3 Gunpowder 4 Gas generating agent 5 Cooling filter member 6 Gas discharge hole 7 Central ignition chamber 8 Combustion chamber 9 Cooling filter chamber
P 1 Maximum ultimate pressure
t 1 Time to start operation
t Time from 2 operation to P 1

Claims (5)

蓚酸換算で0.5〜10重量%の蓚酸銅、蓚酸コバルト、蓚酸鉄、蓚酸ニッケル及び蓚酸マンガンからなる群より選ばれる少なくとも1種以上である蓚酸金属塩を必須成分とし、燃料成分として含窒素有機化合物を25〜60重量%、酸化剤を30〜70重量%含有するガス発生剤組成物。An oxalic acid metal salt that is at least one selected from the group consisting of copper oxalate, cobalt oxalate, iron oxalate, nickel oxalate, and manganese oxalate in an amount of 0.5 to 10% by weight in terms of oxalic acid is an essential component, and nitrogen-containing fuel component A gas generating composition containing 25 to 60% by weight of an organic compound and 30 to 70% by weight of an oxidizing agent. 含窒素有機化合物、及び酸化剤のうち少なくとも1種以上が固結防止剤を0.1〜10重量%含有させ、個数基準50%平均粒径が80μmより細かく調整されたものである請求項1に記載のガス発生剤組成物。2. The nitrogen-containing organic compound and the oxidizing agent contain at least one anti-caking agent in an amount of 0.1 to 10% by weight, and the number-based 50% average particle diameter is finely adjusted from 80 μm. The gas generant composition described in 1. 含窒素有機化合物が5−アミノテトラゾール、ビテトラゾールアンモニウム塩、ニトログアニジン及び硝酸グアニジンからなる群から選ばれる少なくとも1種以上である請求項1に記載のガス発生剤組成物。The gas generating composition according to claim 1, wherein the nitrogen-containing organic compound is at least one selected from the group consisting of 5-aminotetrazole, bitetrazole ammonium salt, nitroguanidine and guanidine nitrate. 酸化剤が相安定化硝酸アンモニウム、過塩素酸アンモニウム、アルカリ金属及びアルカリ土類金属の硝酸塩、過塩素酸塩、及び塩素酸塩の群から選ばれる少なくとも1種以上である請求項1に記載のガス発生剤組成物。The gas according to claim 1, wherein the oxidizing agent is at least one selected from the group consisting of phase-stabilized ammonium nitrate, ammonium perchlorate, alkali metal and alkaline earth metal nitrates, perchlorates, and chlorates. Generator composition. 成形用助剤を0.1〜10重量%含有する請求項1に記載のガス発生剤組成物。The gas generant composition according to claim 1, comprising 0.1 to 10% by weight of a molding aid.
JP17638799A 1999-06-23 1999-06-23 Gas generant composition Expired - Fee Related JP4318238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17638799A JP4318238B2 (en) 1999-06-23 1999-06-23 Gas generant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17638799A JP4318238B2 (en) 1999-06-23 1999-06-23 Gas generant composition

Publications (2)

Publication Number Publication Date
JP2001010888A JP2001010888A (en) 2001-01-16
JP4318238B2 true JP4318238B2 (en) 2009-08-19

Family

ID=16012769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17638799A Expired - Fee Related JP4318238B2 (en) 1999-06-23 1999-06-23 Gas generant composition

Country Status (1)

Country Link
JP (1) JP4318238B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017752B2 (en) * 2001-06-06 2012-09-05 堺化学工業株式会社 Composition of strontium compound or barium compound
JP2009007526A (en) * 2007-06-29 2009-01-15 Kobe Steel Ltd Coating composition for releasing and coated substrate having coating film from the composition
JP5067045B2 (en) * 2007-07-04 2012-11-07 マックス株式会社 Gas fired driving tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429691A (en) * 1993-08-10 1995-07-04 Thiokol Corporation Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates
US5544687A (en) * 1993-12-10 1996-08-13 Morton International, Inc. Gas generant compositions using dicyanamide salts as fuel
JPH07309194A (en) * 1994-05-20 1995-11-28 Sensor Technol Kk Gas-forming agent for air bag
JP3028200U (en) * 1996-02-20 1996-08-30 日本化薬株式会社 Gas generator for airbag
JPH1072273A (en) * 1996-08-28 1998-03-17 Nippon Kayaku Co Ltd Gas generating agent for air bag
JPH10130086A (en) * 1996-10-23 1998-05-19 Nippon Kayaku Co Ltd Gas generating agent for air bag
US5962808A (en) * 1997-03-05 1999-10-05 Automotive Systems Laboratory, Inc. Gas generant complex oxidizers
JP2000086376A (en) * 1998-09-14 2000-03-28 Daicel Chem Ind Ltd Gas generator composition

Also Published As

Publication number Publication date
JP2001010888A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
US5670740A (en) Heterogeneous gas generant charges
EP0992473B1 (en) Gas generant for air bag
JP5719763B2 (en) GAS GENERATOR COMPOSITION, MOLDED BODY THEREOF, AND GAS GENERATOR USING THE SAME
EP2399884B1 (en) Gas-generating agent composition and gas generator employing the same
WO2000018619A1 (en) Molded body of composition of gas generating agent for air bags
JP2000086376A (en) Gas generator composition
JP4672975B2 (en) Gas generant composition
EP1000916A1 (en) Enhancer composition for inflator
JP4318238B2 (en) Gas generant composition
JP4514024B2 (en) Gunpowder molded body and gas generator having the same
JP6995006B2 (en) Gas generator composition
JP2000086375A (en) Gas generator composition
JP7266956B2 (en) Gas generant composition
JPH1087390A (en) Gas generating agent for air bag
JP2002160992A (en) Gas generating agent
JPH10259085A (en) Gas generating agent composition for air bag having low residue content
JP2002507542A (en) Propellants for gas generants
JP6562659B2 (en) Gas generant composition
JP3953187B2 (en) Gas generant composition
JP2015086095A (en) Gas generating agent composition
JP3476771B2 (en) Manufacturing method of molded article of gas generating agent for airbag
KR100456410B1 (en) Gas generant for air bag
JP4500397B2 (en) Gas generant
JPH11278977A (en) Gas generator composition
JP2019206473A (en) Gas generating agent composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150605

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees