WO2007121619A1 - Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus - Google Patents

Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus Download PDF

Info

Publication number
WO2007121619A1
WO2007121619A1 PCT/CN2006/001077 CN2006001077W WO2007121619A1 WO 2007121619 A1 WO2007121619 A1 WO 2007121619A1 CN 2006001077 W CN2006001077 W CN 2006001077W WO 2007121619 A1 WO2007121619 A1 WO 2007121619A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semiconductor wafer
electrode
solar cell
metal alloy
Prior art date
Application number
PCT/CN2006/001077
Other languages
English (en)
French (fr)
Inventor
Jingjia Ji
Zhengrong Shi
Yusen Qin
Stuart Wenham
Granham Artes
Original Assignee
Wuxi Suntech Power Co, Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Suntech Power Co, Ltd filed Critical Wuxi Suntech Power Co, Ltd
Priority to JP2009505703A priority Critical patent/JP2009534813A/ja
Priority to AU2006342590A priority patent/AU2006342590B2/en
Priority to EP06741965A priority patent/EP2020687A1/en
Priority to US12/226,479 priority patent/US20110045631A1/en
Publication of WO2007121619A1 publication Critical patent/WO2007121619A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for preparing a solar cell electrode and an electrochemical deposition device thereof, and more particularly to a method for preparing a solar cell electrode and an electrochemical deposition device thereof which can improve photoelectric conversion efficiency, reduce production cost, have short reaction time, and are easy to handle industrial wastewater. Background technique
  • a solar cell is a device that converts light energy into electrical energy.
  • solar cells can be classified into thin film solar cells and semiconductor thin film solar cells.
  • the crystalline silicon solar cells in the semiconductor wafer solar cells can be further classified into single crystal silicon solar cells and polycrystalline silicon solar cells.
  • the conversion efficiency of solar cells to convert solar energy into electrical energy is an important indicator of the quality of solar cells. Since the purity and crystal quality of single crystal silicon are higher than that of polycrystalline silicon, the efficiency of single crystal silicon solar cells is generally higher than that of polycrystalline silicon solar cells.
  • the production process of large-scale industrial production of crystalline silicon solar cells is roughly as follows: firstly, the damaged layer on the surface of the crystalline silicon is cleaned, and then the texturing process is performed to reduce the reflectivity of the crystalline silicon surface, and then diffusion is performed to form a PN junction in the solar cell. A silicon nitride film is deposited on the surface of the emitter to passivate and reduce the effect. Finally, a metal electrode is printed by screen printing, and a solar cell is formed after the positive and negative electrodes are co-fired. At present, the efficiency of a solar cell obtained by using a screen printing method to generate a solar cell electrode is about 14-16%.
  • the solar cell electrode is easy to produce by screen printing, in order to make the electrode of the solar cell have good ohmic contact with the crystalline silicon and reduce the contact resistance, the screen printing electrode has a relatively large light-shielding area, generally About 5%. At the same time, the square resistance of its emitter is relatively small, typically around 50 ohms. Such a solar cell design is one of the reasons why the conversion efficiency of commercial solar cells is currently low.
  • the planar contact electrode is changed into a groove-type contact electrode. This structural design not only ensures the contact area between the electrode and the solar cell, but also reduces the width of each electrode from 150 micrometers to 30 micrometers, and reduces the solar cell electrode shading area from the conventional 5% to less than 3%.
  • the structure of the buried-gate battery also provides the possibility to prepare a selectively diffused solar cell.
  • the square resistance of the emitter is generally controlled above 100 ohms, and the sheet resistance in the trench is controlled to be less than 10 ohms. After increasing the square resistance of the emitter, the current of the solar cell is increased a lot, thereby improving the photoelectric conversion efficiency of the solar cell.
  • large-scale industrial production of buried-gate batteries has an efficiency of more than 17.5%.
  • the electrodes of the buried-gate battery produced by large-scale industrial production are prepared by a method of chemical deposition of copper.
  • the process of chemically depositing copper is a relatively slow chemical process that typically takes about ten hours to reach the desired thickness of the copper electrode.
  • the rate of copper deposition is generally controlled to be less than 2 microns per hour. Another reason for controlling the rate of copper deposition is that it avoids copper plugging in the upper part of the groove when depositing copper.
  • Another problem with the method of preparing copper-filled battery electrodes by chemical deposition of copper is that the chemically deposited copper solution has a relatively short service life and generally cannot be used after several batches have been used. Therefore, when the method of chemically depositing copper is used in mass production, a large amount of wastewater is discharged. The process of using chemically deposited copper increases production costs because the discharged wastewater contains some more difficult to handle organic matter.
  • the solution of chemically deposited copper is quite unstable, and it is easy to cause self-deposition of copper, which affects normal production.
  • the control of the process conditions for the chemical deposition of copper is also very demanding.
  • the temperature control of a chemically deposited copper solution is critical.
  • air bubbling but also filtration is required.
  • concentration of the solution stable it is also required to continuously add a replenishing solution.
  • the addition of replenisher must be very tightly controlled. Too much will cause auto-deposition of copper, too little will reduce the rate of copper deposition.
  • An object of the present invention is to provide a method for preparing a solar cell electrode and an electrochemical deposition device thereof, which can not only improve the ohmic contact between the solar cell electrode and the crystalline silicon, but also enhance the adhesion of the solar cell electrode to the crystalline silicon. , reducing the series resistance of the solar cell and improving the conversion efficiency of the solar cell;
  • Another object of the present invention is to provide a method for preparing a solar cell electrode and an electrochemical deposition device thereof, which is suitable for electrode preparation of a buried gate battery, which can greatly shorten the electrode formation time and improve the production of the buried gate battery. effectiveness;
  • Another object of the present invention is to provide a method of preparing a solar cell electrode and an electrochemical deposition apparatus thereof, which can greatly reduce the cost of preparing a buried-gate battery electrode;
  • Still another object of the present invention is to provide a method and apparatus for preparing a solar cell electrode, which can greatly reduce the discharge amount of wastewater in a production process, and the wastewater produced by the method has the characteristics of being easy to handle, and is a method for preparing the sun.
  • the present invention provides a method for preparing a solar cell electrode, comprising: a step of shallowly diffusing a surface of a semiconductor wafer to form a PN junction after cleaning and texturing the surface of the semiconductor wafer; a step of depositing a passivation and anti-reflection film on the surface of the semiconductor wafer after diffusion; a step of forming a groove on the surface of the semiconductor wafer; and a step of performing deep diffusion after cleaning the groove; Performing a passivation treatment on the opposite surface of the surface of the semiconductor wafer; performing a chemical deposition metal treatment on the passivated semiconductor wafer, and sintering to form an alloy of the semiconductor wafer and the metal; The step of chemically depositing a metal or a metal alloy on the semiconductor wafer for a predetermined period of time; and subjecting the semiconductor wafer to electrochemical deposition of a metal or a metal alloy in an electrochemical deposition apparatus to form a solar cell electrode.
  • the present invention also provides a method for preparing an electrode of a solar cell, comprising: a step of shallowly diffusing a surface of a semiconductor wafer to form a PN junction after cleaning and texturing a surface; and said semiconductor wafer after shallow diffusion a step of depositing a passivation and anti-reflection film on the surface; removing a passivation and anti-reflection film on the main gate line and the sub-gate line portion on the surface of the semiconductor wafer; and the main gate line and the dummy gate Wire cleaning, followed by a deep diffusion step; blunt the other surface of the semiconductor wafer opposite the surface a step of performing a chemical deposition metal treatment on the passivated semiconductor wafer and sintering to form an alloy of the semiconductor wafer and the metal; and electrochemically plating the semiconductor wafer in an electrochemical deposition apparatus The step of depositing the metal or metal alloy to form a solar cell electrode.
  • the present invention also provides an electrochemical deposition apparatus for preparing a solar cell electrode, wherein the apparatus is used for electrochemically depositing a metal or a metal alloy in a method for preparing a solar cell electrode, thereby forming a solar cell electrode,
  • the apparatus comprises: an electrolytic solution tank accommodating the electrolytic solution; at least one metal or metal alloy electrode placed in the electrolytic solution; a power supply device for outputting electrical energy; and a semiconductor wafer placed parallel to the metal or metal alloy electrode.
  • the electrode formation process of the present invention is an electrochemical process in which the formation of a metal electrode is driven by electrical energy.
  • the metal ions in the electrolyte move toward the cathode under the action of the potential, and electrons are obtained on the surface of the cathode, that is, on the surface of the semiconductor wafer, to form metal atoms.
  • the metal of the anode continuously loses electrons, generates metal ions, and is continuously dissolved in the electrolyte to keep the concentration of metal ions in the electrolyte stable.
  • the rate of electrode formation, i.e., metal deposition, of the present invention is much faster than that of chemically deposited metals.
  • An important advantage of the present invention is that the electrode formation time is reduced from the process of chemically depositing the metal for nearly 10 hours to within one hour. In general, electrode generation can be completed in ten minutes.
  • Another advantage of the present invention is that since electrochemically deposited metals are much simpler than chemically deposited metals, the operating range is much larger and is particularly suitable for industrial production. For example, it does not require a high temperature and is generally operable at room temperature, which is advantageous for production control and saves the cost of heating.
  • the composition of the electrolyte used in the electroless deposition process is also very simple, so the electrolyte can be used repeatedly for a long time.
  • the metal electrode formed by the general chemical deposition process is amorphous, and the electrochemically deposited metal electrode is in a microcrystalline state, so the electrochemically deposited metal electrode has better stability and electrical conductivity. Its direct effect is that the electrochemically deposited metal electrode can reduce the loss of current generated by the solar cell on the electrode and improve the conversion efficiency of the solar cell.
  • the electrochemical deposition process of the present invention is very suitable.
  • the electrode of the solar cell of the present invention The production cost of the method is very low, and the treatment of waste liquid is much simpler than that of chemically deposited metal.
  • Figure 1 is a schematic view showing an electrochemical deposition apparatus for preparing a solar cell electrode of the present invention.
  • 2 is a schematic view showing the structure of a buried-gate solar cell prepared in accordance with the present invention.
  • Figure 3 is a cross-sectional view showing the structure of the buried gate cell main gate line of Embodiment 1 before electroless deposition of a metal or metal alloy.
  • Fig. 4 is a cross-sectional view showing the structure of the buried gate battery grid line in the first embodiment before the electrochemical deposition of the metal or metal alloy.
  • Fig. 5 is a schematic view showing the multi-point contact processing of a conventional solar cell in the second embodiment.
  • Fig. 6 is a cross-sectional view showing the multi-point contact processing of the main gate line in the second embodiment.
  • a laser beam is formed on the surface of the emitter 22 to form a recess 21 to form a main gate line 25 and a sub-gate line 24 which intersect each other; the main gate line 25 and the sub-gate line 24 are deeply diffused after being cleaned, so that the main gate line 25 and the pay
  • the square resistance of the gate line 24 reaches 10 ohms or less; then aluminum is sputtered on the back surface of the emitter 22 and sintered to form an aluminum back field, that is, the back electrode 23; the silicon wafer forming the aluminum back field is rinsed with hydrofluoric acid Performing a chemical deposition of nickel to form a silicon-nickel alloy after sintering; subjecting the silicon-nickel alloy to a chemical deposition of a metal or a metal alloy for about 15 minutes, so that the resistance of the gate line is 3 ohms per centimeter; Chemical deposition treatment to form solar cell electrodes.
  • An electrochemical deposition apparatus for electrochemically depositing a silicon wafer includes an electrolytic solution bath 13, an electrolytic solution 10, a metal or metal alloy electrode 11, a power supply unit 14, and a semiconductor wafer 12.
  • the semiconductor wafer 12 is a silicon wafer.
  • the metal or metal alloy electrode 11 is generally plate-shaped, and may be other physical shapes such as a mesh shape. In order to obtain a better electric field distribution, the area of the metal or metal alloy electrode 11 is generally larger than the area of the semiconductor wafer 12. In the usual case, the two metal or metal alloy electrodes 11 should be parallel, so that a more uniform electric field distribution can be obtained to obtain uniformity of the deposited metal.
  • the conductive line 15 is selectively connected to the metal or metal alloy electrode 11 on both sides through the switch 17.
  • the semiconductor wafer 12 is placed in the middle of the two metal or metal alloy electrodes 11 and parallel to them.
  • the conductive wire 16 is connected to the negative electrode of the power supply device 14 and the semiconductor wafer 12.
  • the conductive wire 15 is connected to the positive electrode of the power supply device 14 and the metal or metal alloy electrode 11 through the switch 17.
  • both sides of the semiconductor wafer 12 are the same as the metal or metal alloy electrode 11
  • the metal ions in the electrolytic solution 10 are continuously deposited on the semiconductor wafer 12 under the influence of the potential difference, and at the same time, the metal on the metal or metal alloy electrode 11 is continuously ionized in the electrolytic solution 10, thus obtaining A solar cell in which electrodes are simultaneously formed on both sides of the semiconductor wafer 12.
  • the metal or metal alloy electrode can be copper, silver or other metal or metal alloy conductive material that provides ohmic contact with the semiconductor wafer.
  • the power supply unit 14 of Fig. 1 may be a direct current power source or a pulse power source.
  • a DC source When using a DC source, the electrochemical deposition rate is faster than the pulsed power supply at the same current density.
  • a pulsed power supply can also be used.
  • the advantage of using a pulsed power supply is that the deposited electrode is smoother and flatter, but the deposition rate is relatively slow.
  • the advantage of the pulsed power supply is that it prevents the metal or metal alloy from being capped in the upper portion of the laser cavity, and there is a gap in the lower portion.
  • a DC power supply can achieve quite good results.
  • the electrolytic solution 10 may be a general metal salt solution such as a copper sulfate solution.
  • a general metal salt solution such as a copper sulfate solution.
  • copper sulphate solution is that its chemical composition is simple and the production cost is very low.
  • a small amount of additives can sometimes be helpful.
  • the electrolytic solution tank 13 is generally prepared by using a high molecular polymer as a material. Since the electrolytic solution 10 is generally a weak acid, a polymer such as plastic can be used as a material for the electrolytic solution tank.
  • the current density of the electrochemically deposited metal electrode of the present invention can vary depending on the metal.
  • the current density can be controlled between 1-5 amps per square decimeter.
  • the rate at which the metal is electrochemically deposited increases as the current density increases.
  • the current density is too small, the deposition rate of the metal becomes very slow.
  • the current density is too large, the deposited metal film may have a large stress, resulting in poor adsorption.
  • the current density of the deposited metal electrode also depends on the structure of the solar cell. For example, when an electrode is formed on the buried-gate battery shown in Fig. 2, the rate at which the metal is deposited is too fast, causing the upper portion of the trench to be capped and the lower portion to have a void.
  • the temperature at which the metal electrode is electrochemically deposited using the apparatus can be varied depending on the metal.
  • the deposition temperature can be simply controlled at room temperature. If the metal deposition temperature is too low, it will not only affect the rate of copper deposition, but will not even occur. If the metal deposition temperature is too high, not only the energy consumption is increased, but also the roughness of the solar cell electrode is increased.
  • the time for electrochemical deposition of the metal using the apparatus is generally controlled between 3 minutes and 1 hour.
  • the optimized electrochemical deposition metal time depends on the surface state of the solar cell, the current density of the electrochemically deposited metal, and the temperature of the electrochemically deposited metal. If the electrodes of the solar cell are in the tank, in order to prevent the upper port of the tank from being blocked, the electrochemical deposition rate can be somewhat slower, generally between 10 minutes and 1 hour.
  • the power supply device 14 is selected as a pulse power source, and the metal or metal alloy electrode is selected as copper.
  • the specific method for electrochemically depositing the silicon wafer by using the above device is to connect the negative electrode of the pulse power source to the main gate line.
  • the two ends are placed in the electrolytic solution tank 13, the electrolytic solution 10 is a copper sulfate solution, the two sides of the silicon wafer are connected to the positive electrode of the pulsed power supply, the current density is controlled at 2.5 amps per square decimeter; At 25 degrees, electrochemical deposition for 20 minutes, after cleaning and drying, the solar cell electrode is formed.
  • the photoelectric conversion efficiency of the solar cell was determined to be 18.08%, wherein the current density, voltage, and fill factor of the solar cell were 37.16 mA/cm2, 616 mV, and 0.795, respectively.
  • the 125*125 polycrystalline silicon wafer is diffused to form a PN junction after cleaning damage, and the diffused square resistance is 100 ohms.
  • a layer of silicon nitride is then deposited on the surface of the emitter of the polysilicon to passivate and counteract. By chemical etching, the silicon nitride at the portions of the main gate line 25 and the sub-gate line 24 is etched and then deep-diffused, so that the sheet resistance of the gate line portion is less than 10 ohms.
  • An aluminum paddle is screen printed on the back side of the emitter 22 and sintered to form an aluminum back field, i.e., the back electrode 23.
  • the polycrystalline silicon is immersed in a solution of chemically deposited nickel to deposit a thin layer of nickel, which is sintered to form a silicon-nickel alloy, and then the polycrystalline silicon wafer is electrochemically deposited by the above electrochemical deposition apparatus to form a solar cell electrode.
  • the positive electrode of the power supply device 14 can be connected to the metal or metal alloy electrode 11 on either side through the switch 17.
  • the process of electrochemically depositing the electrode occurs only on one surface of the semiconductor wafer 12.
  • the present invention can only positively charge the metal electrode facing the emitter so that the electrode of the solar cell is generated only on the emitter.
  • the number of contact points of the negative electrode of the power supply unit 14 and the semiconductor wafer 12 may vary depending on the structure and process requirements of the different solar cells. For example, when the resistance of the main gate line and the sub-gate line of the semiconductor wafer 12 is large, a multi-point contact method can be employed.
  • the electrode of the solar cell is deposited on a plane, a large current density can be used, that is, the electrochemical deposition metal can be made faster, so that the time for depositing the solar cell electrode can be controlled to 5 Within 15 minutes.
  • the power supply device 14 is selected as a DC power source, and the metal or metal alloy electrode is selected as copper.
  • the electrochemical deposition process on the polycrystalline silicon wafer is specifically: connecting the negative electrode of the DC power supply to the polysilicon wafer by using a multi-point contact method. On the main grid line, the distance between each contact point 35 is 10 mm; the polycrystalline silicon wafer is placed in the electrolytic solution tank 13, the electrolytic solution 10 is a copper sulfate solution, and the copper plate facing the emitter is connected to the positive electrode of the direct current power source; The current density was controlled at 3.5 amps per square decimeter; the temperature of the electrolytic solution tank was controlled at 25 degrees, and electrochemical deposition was performed for 15 minutes. After washing and drying, the solar cells were formed. The conversion efficiency of the solar cell was determined to be 15.87%, wherein the current density, voltage and fill factor of the solar cell were 33.37 mA/cm2, 619 mV and 0.769, respectively.
  • the method of chemically depositing metal first deposits a layer of metal on the main gate line and the sub-gate line of the emitter, reduces the resistance of the gate line, and then performs electrochemical deposition treatment, thereby obtaining the photoelectric conversion efficiency effect of the solar cell obtained. Better.
  • the electroless copper is deposited for about 15 minutes, so that the resistance of the auxiliary gate line is 1 ohm per centimeter, and then the negative electrode of the pulse power source is connected. 5 ⁇ ; electrolytic solution at the end of the grid line is placed in the electrolytic solution tank 13, the electrolytic solution 10 is a copper sulfate solution, the two sides of the silicon wafer is connected to the positive electrode of the pulsed power supply, the current density is controlled at 2.5 amps per square decimeter; The temperature of the bath was 25 degrees, electrochemically deposited for 20 minutes, and after cleaning and drying, the solar cell electrodes were formed. The photoelectric conversion efficiency of the solar cell was determined to be 16.12%, wherein the current density, voltage, and fill factor of the solar cell were 33.98 mA/cm2, 615 mV, and 0.777, respectively.
  • the contact point of the negative electrode of the power supply device 14 and the semiconductor wafer 12 can be gradually reduced.
  • the thickness of the chemically deposited metal reaches a certain thickness, the presence of a contact point between the negative electrode of the power supply unit 14 and the semiconductor wafer 12 can well complete the preparation of the solar cell electrode of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

制备太阳电池电极的方法及其电化学沉积装置
技术领域
本发明涉及制备太阳电池电极的方法及其电化学沉积装置, 尤其涉及能提 高光电转换效率, 降低生产成本, 反应时间短, 工业废水易处理的制备太阳电池 电极的方法及其电化学沉积装置。 背景技术
太阳电池是一种将光能转换为电能的装置。一般地, 太阳电池可分为薄膜 太阳电池和半导体薄片太阳电池。而半导体薄片太阳电池中的晶体硅太阳电池又 可分为单晶硅太阳电池和多晶硅太阳电池。太阳电池将太阳光的能量转化为电能 的转化效率是衡量太阳电池质量的重要指标。由于单晶硅的纯度和晶体质量高于 多晶硅, 因此单晶硅太阳电池的效率一般要高于多晶硅太阳电池。
大规模工业化生产晶体硅太阳电池的生产过程大致为, 首先将晶体硅表面 的损伤层清洗干净,然后进行制绒过程以减少晶体硅表面的反射率,再进行扩散 形成 PN结,在太阳电池的发射极表面上沉积氮化硅薄膜,起到钝化和减反作用, 最后采用丝网印刷的方法印上金属电极, 正反电极进行共烧后太阳电池就形成 了。 目前采用丝网印刷方法生成太阳电池电极得到的太阳电池的效率在 14-16% 左右。
尽管采用丝网印刷的方法生成太阳电池电极具有容易生产的特点, 但是为 了使太阳电池的电极与晶体硅有较好的欧姆接触, 降低接触电阻,丝网印刷电极 的遮光面积比较大, 一般为 5%左右。 同时, 它的发射极的方块电阻比较小, 一 般在 50欧姆左右。 这样的太阳电池设计是目前商业化太阳电池的转换效率偏低 的原因之一。
为了减小太阳电池的遮光面积和提髙发射极的电阻, S. Wenhem在 20年前 发明了一种称为埋栅电池的太阳电池结构。这种太阳电池的结构是针对传统的丝 网印刷工艺的缺点而开发的。为了减小遮光面积, 在埋栅电池的结构设计中,把 平面接触的电极改成凹槽型接触电极。这样的结构设计既保证了电极与太阳电池 的接触面积, 又使每个电极的宽度从 150微米降低到 30微米, 把太阳电池电极 遮光面积从传统的 5%降到 3%以下。
埋栅电池的结构同时也为制备选择性扩散太阳电池提供了可能。 在埋栅电 池的设计中,发射极的方块电阻一般控制在 100欧姆以上,而把槽内的方块电阻 控制在 10欧姆以下。 在提高了发射极的方块电阻后, 太阳电池的电流就会增加 很多,从而提高了太阳电池的光电转换效率。一般大规模工业生产的埋栅电池的 效率在 17. 5%以上。
目前大规模工业生产的埋栅电池的电极是由化学沉积铜方法制备的。 化学 沉积铜的过程是一个相当慢的化学过程,一般需要近十个小时左右的时间才能达 到所需的铜电极的厚度。 为了防止由于沉积速度太快而引起的应力和吸附问题, 一般把沉积铜的速率控制在每小时 2微米以下。把沉积铜的速率控制在比较低的 另一个原因是避免在沉积铜时, 铜在凹槽的上部造成封堵现象。
用化学沉积铜的方法制备埋栅电池电极的方法还存在另外一个问题, 即化 学沉积铜溶液的使用寿命比较短,一般在使用几个批次后就不能再继续使用。因 此化学沉积铜的方法在大规模生产上使用时,会产生大量的废水排放。由于排放 的废水中含有一些比较难处理的有机物,因此使用化学沉积铜的工艺增加了生产 成本。
不仅如此, 化学沉积铜的溶液相当不稳定, 很容易发生自析铜的现象, 影 响正常的生产。另外, 化学沉积铜的工艺条件的控制也非常的苛刻。例如, 化学 沉积铜溶液的温度控制要求严格。为了减小自析铜的可能性,在化学沉积铜的时 候, 不仅要求空气鼓泡, 还要求过滤。 为了保持溶液浓度的稳定, 还要求不断地 添加补充液。补充液的添加必须非常严格的控制, 太多了会造成自析铜, 太少了 会减小沉积铜的速率。
另外, 绝大多数的化学沉积铜的操作是在高于室温的条件下进行的, 例如 大于 50度, 这样的工艺就需要大量的能源提供, 进一步加大了生产成本。 由于 反应时间较长, 这些能源的消耗量是相当可观的。
如何克服上述传统技术的缺点又能提髙光电转换效率是亟待解决的问题。 发明内容 本发明正是针对上述问题而提出的。 本发明的一个目的是提供一种制备太 阳电池电极的方法及其电化学沉积装置,其不仅能改善太阳电池电极与晶体硅之 间的欧姆接触,而且能增强太阳电池电极与晶体硅的附着力, 降低太阳电池的串 联电阻, 提高太阳电池的转换效率;
本发明的另一个目的是提供一种制备太阳电池电极的方法及其电化学沉积 装置, 其适合埋栅电池的电极制备, 该方法能大幅度的缩短电极的生成时间, 提 高埋栅电池的生产效率;
本发明的另一个目的是提供一种制备太阳电池电极的方法及其电化学沉积 装置, 其能大大降低制备埋栅电池电极的成本;
本发明的又一个目的是提供一种制备太阳电池电极的方法及其装置, 其能 大大降低生产过程中废水的排放量,而且该方法所产生的废水具有容易处理的特 点, 是一种制备太阳电池电极的环保型方法。 为了实现上述目的和获得上述优点, 本发明提供了一种制备太阳电池电极 的方法, 包括: 对一半导体薄片表面进行清洗和制绒后, 对其一个表面浅扩散形 成 PN结的步骤; 在浅扩散以后的半导体薄片的所述表面上沉积一层钝化和减反 膜的步骤; 在半导体薄片的所述表面上形成凹槽的步骤; 对所述凹槽进行清洗后 进行深扩散的步骤; 对该半导体薄片的所述表面相对的另一表面进行钝化处理; 对所述钝化处理后的半导体薄片进行化学沉积金属处理,并经烧结后形成该半导 体薄片与该金属的合金的步骤;对上述半导体薄片进行预定时间的化学沉积金属 或金属合金的步骤;对所述半导体薄片在一电化学沉积装置内进行电化学沉积金 属或金属合金, 从而形成太阳电池电极的步骤。 本发明还提供了一种制备太阳电池电极的方法, 包括: 对一半导体薄片表 面进行清洗和制绒后, 对其一个表面浅扩散形成 PN结的步骤; 在浅扩散以后的 半导体薄片的所述表面上沉积一层钝化和减反膜的步骤;在半导体薄片的所述表 面上的主栅线和付栅线部位清除钝化和减反膜的步骤;对所述主栅线和付栅线清 洗,然后进行深扩散的步骤; 对该半导体薄片的所述表面相对的另一表面进行钝 化处理;对所述钝化处理后的半导体薄片进行化学沉积金属处理, 并经烧结后形 成该半导体薄片与该金属的合金的步骤;对所述半导体薄片在一电化学沉积装置 内进行电化学沉积所述金属或金属合金, 从而形成太阳电池电极的步骤。 本发明还提供了一种制备太阳电池电极的电化学沉积装置, 其中, 该装置 是用在制备太阳电池电极的方法中进行电化学沉积金属或金属合金,从而形成太 阳电池电极的步骤里, 该装置包括: 可容纳电解溶液的电解溶液槽; 置于电解溶 液中的至少一个金属或金属合金电极; 供电装置, 用于输出电能; 及平行于该金 属或金属合金电极放置的半导体薄片。
与传统的化学金属化的原理不同, 本发明的电极生成过程是一个电化学过 程, 即金属电极的生成是由电能所驱动的。 电解液中的金属离子在电势的驱动下 向阴极移动, 在阴极表面即半导体薄片表面获得电子, 生成金属原子。在电势同 时驱动下,阳极的金属不断地失去电子,生成金属离子,不断地溶解在电解液中, 保持电解液中的金属离子浓度的稳定。
由于化学沉积金属的原理和电化学沉积金属有着根本性的区别, 因此本发 明的电极生成速率, 即金属沉积速率要比化学沉积金属的速率快得多。本发明的 一个重要优点就是把电极生成时间从化学沉积金属的近 10个小时的过程缩短到 一个小时之内。 在一般情况下, 电极的生成可在十几分钟内完成。
本发明的另一个优点是由于电化学沉积金属比化学沉积金属过程简单的 多, 因此操作范围要大得多,特别适用于工业生产。例如,它对温度的要求不高, 一般可在室温下操作, 这样既有利于生产控制, 又节约了加热所需要的成本。 电 化学沉积工艺所用的电解液的组成也非常简单,所以电解液可以长时间反复地使 用。
一般的化学沉积过程所生成的金属电极是非晶状态的, 而电化学沉积金属 电极是呈微晶状态的, 因此电化学沉积的金属电极具有更好的稳定性和导电性。 它的直接影响是电化学沉积的金属电极能降低太阳电池所产生的电流在电极上 的损失, 提高太阳电池的转换效率。
由于电化学沉积金属的化学反应非常简单, 例如, 它对电解液的 pH值的影 响和溶液组成的变化的影响非常小,对溶液的管理也非常简单, 因此本发明的电 化学沉积工艺非常适用于工业化生产。更重要的是,本发明的太阳电池的电极生 成方法的生产成本非常低,对废液的处理也要比化学沉积金属简单的多。采用本 发明的电化学工艺生产太阳电池, 不仅废液少, 而且废液的处理也容易处理。
附图说明
图 1是说明本发明的制备太阳电池电极的电化学沉积装置的示意图。 图 2是说明根据本发明制备的埋栅太阳电池结构的示意图。
图 3是说明实施例 1中埋栅电池主栅线在没有电化学沉积金属或金属合金 以前的结构的剖面图。
图 4是说明实施例 1中埋栅电池付栅线在没有电化学沉积金属或金属合金 以前的结构的剖面图。
图 5是说明实施例 2中对传统太阳电池进行多点接触加工的示意图。 图 6是说明实施例 2中对主栅线进行多点接触加工的剖面图。
附图标记说明
10 电解溶液
11 金属或金属合金电极
12 半导体薄片
13 电解溶液槽
14 供电装置
15 导电线
16 导电线
17 开关
21 激光凹槽
22 发射极
23 背电极
24 付栅线
25 主栅线
26 太阳电池
31 电源负极 34 减反膜
35 接触点
具体实施方式
下面结合附图对本发明的制备太阳电池电极的方法及其装置进行详细地描 述。
实施例一
将 125*125毫米的单晶硅片经清洗和制绒后, 进行浅扩散形成 PN结; 浅扩 散后发射极 22的方块电阻控制在 150欧姆;在发射极 22表面沉积上一层氮化硅 作为钝化和减反膜 34。 用激光在发射极 22的表面刻成凹槽 21形成相互交叉的 主栅线 25和付栅线 24; 主栅线 25和付栅线 24经清洗后进行深扩散, 使主栅线 25和付栅线 24的方块电阻达到 10欧姆以下; 然后在发射极 22的背面溅射上铝 并烧结后形成铝背场, 也即是背电极 23; 形成铝背场的硅片经氢氟酸漂洗后进 行化学沉积镍的处理, 经烧结后形成硅镍合金; 对该硅镍合金进行大约 15分钟 的化学沉积金属或金属合金, 使得付栅线的电阻在 3欧姆每厘米; 然后对硅片进 行电化学沉积处理, 形成太阳电池电极。
对硅片进行电化学沉积处理的电化学沉积装置, 如图 1 所示, 包括电解溶 液槽 13, 电解溶液 10, 金属或金属合金电极 11, 供电装置 14和半导体薄片 12。
在本实施例中半导体薄片 12为硅片。
金属或金属合金电极 11一般是板状的, 也可以是其它物理形状,例如网 筐形。 为了获得较好的电场分布, 金属或金属合金电极 11的面积一般比半导体 薄片 12面积大。在通常情况下, 两个金属或金属合金电极 11应该平行, 这样就 能得到较均勾的电场分布, 以获得沉积的金属的均匀性。 导电线 15通过开关 17 可选择性地连接两边的金属或金属合金电极 11。
半导体薄片 12被放在两个金属或金属合金电极 11的中间并平行于它们。 导电线 16连接供电装置 14的负极和半导体薄片 12。 导电线 15通过开关 17连 接供电装置 14的正极和金属或金属合金电极 11。 在开关 17都闭合的情况下, 当供电装置 14输出电能时, 半导体薄片 12的两面和金属或金属合金电极 11同 时产生电势差, 电解溶液 10中的金属离子在电势差的作用下不断地沉积在半导 体薄片 12上, 同时, 金属或金属合金电极 11上的金属会不断地电离在电解溶液 10内, 这样就得到在半导体薄片 12两面同时生成电极的太阳电池。
一般地, 金属或金属合金电极可以是铜, 银或其它与所述半导体薄片可获 得欧姆接触的金属或金属合金导电材料。
图 1中的供电装置 14可以是直流电源, 也可以是脉冲电源。 当使用直流电 源时, 在相同的电流密度下, 电化学沉积速率比脉冲电源要快。 当然, 也可以选 用脉冲电源, 使用脉冲电源的优点是, 所沉积的电极比较光滑平整, 但是沉积速 率相对较慢。 当然, 对于埋栅电池来说, 脉冲电源的优点是它能避免金属或金属 合金在激光槽上部封顶, 下部存在空隙的现象。 当然, 如果太阳电池的电极不是 沉积在激光槽内, 采用直流电源就可以得到相当好的效果。
电解溶液 10可以是一般的金属盐溶液, 例如硫酸铜溶液。 釆用硫酸铜溶液 的优点是它的化学组成很简单, 生产成本很低。 当然, 为了提高沉积金属电极的 平整性, 少量的添加剂有时会很有帮助。
电解溶液槽 13—般是用高分子聚合物作为材料而制备的。由于电解溶液 10 一般是一种弱酸, 因此诸如塑料等的高分子聚合物都可以作为电解溶液槽的材 料。
本发明的电化学沉积金属电极的电流密度可根据不同的金属而变化。例如, 当该金属是铜时, 电流密度可控制在 1-5安培每平方分米之间。 电化学沉积金属 的速率随着电流密度的增加而上升。当电流密度太小时,金属的沉积速率就变得 很慢。 当电流密度太大时, 所沉积的金属膜会存在很大的应力, 从而造成吸附差 的现象。 同时, 沉积金属电极的电流密度的还取决于太阳电池的结构。例如, 在 图 2所示的埋栅电池上生成电极时, 沉积金属的速率太快会造成槽的上部封顶, 下部存在空隙的现象。
同样, 利用本装置进行电化学沉积金属电极的温度可根据不同的金属而变 化。例如, 当该金属是铜时, 沉积温度可以简单地控制在室温。如果金属沉积温 度太低, 不仅会影响沉积铜速率, 甚至不会发生沉积过程。 如果金属沉积温度太 高的话, 不仅增加了能源的消耗, 同时有可能增大太阳电池电极的粗糙度。
利用本装置进行电化学沉积金属的时间一般控制在 3分钟到 1小时之间。 优化的电化学沉积金属时间取决于太阳电池的表面状态,电化学沉积金属的电流 密度和电化学沉积金属的温度。如果太阳电池的电极是在槽内, 为了防止槽的上 端口被堵死, 电化学的沉积速率可以稍微慢一些, 一般可控制在 10分钟到 1小 时之间。
在本实施例中, 供电装置 14选为脉冲电源, 金属或金属合金电极选为铜, 利用上述装置对硅片进行电化学沉积处理的具体方法为,将脉冲电源的负极连在 主栅线的两端并放入电解溶液槽 13内, 电解溶液 10为硫酸铜溶液,硅片的两侧 是连接脉冲电源正极的铜板, 电流密度控制在 2. 5安培每平方分米; 电解溶液槽 的温度 25度, 电化学沉积 20分钟, 经清洗吹干后, 太阳电池电极就形成了。 经 测定, 该太阳电池的光电转换效率为 18. 08%, 其中, 太阳电池的电流密度、 电 压和填充因子分别为 37. 16 mA/cm2, 616mV和 0. 795。
实施例二
将 125*125的多晶硅片在清洗损伤成后进行扩散形成 PN结, 扩散后的方块 电阻为 100欧姆。然后在多晶硅的发射极表面沉积一层氮化硅膜,起到钝化和减 反作用。采用化学腐蚀的方法, 将在主栅线 25和付栅线 24部位的氮化硅腐蚀干 净, 再进行深扩散, 使栅线部位的方块电阻在 10欧姆以下。在发射极 22的背面 丝网印刷上铝桨, 经烧结后形成铝背场, 即背电极 23。 然后将该多晶硅浸泡在 化学沉积镍的溶液中沉积一层很薄的镍,经烧结后形成硅镍合金, 然后对该多晶 硅片利用上述电化学沉积装置进行电化学沉积处理, 形成太阳电池电极。
在上述电化学沉积装置中, 供电装置 14的正极通过开关 17可以连接任意 一边的金属或金属合金电极 11。 这样, 电化学沉积生成电极的过程仅在半导体 薄片 12的一个表面发生。 例如, 当制备太阳电池的工艺仅要求在太阳电池的发 射极上沉积金属时, 本发明可以只将面对发射极的金属电极通上正电,这样太阳 电池的电极只在发射极上生成。
另外, 供电装置 14的负极和半导体薄片 12的接触点的数量可以根据不同 的太阳电池的结构和工艺要求改变。 例如, 当半导体薄片 12的主栅线和付栅线 的电阻较大时, 可以采用多点接触的方法。
由于是在平面上沉积太阳电池的电极, 可以釆用较大的电流密度, 即可以 使电化学沉积金属进行地较快, 这样沉积太阳电池电极的时间可以控制在 5 到 15分钟之内。
在本实施例中, 供电装置 14选为直流电源, 金属或金属合金电极选为铜, 对多晶硅片进行电化学沉积处理具体为:采用多点接触的方法将直流电源的负极 连接在多晶硅片的主栅线上,每个接触点 35之间的距离为 10毫米; 将多晶硅片 放入电解溶液槽 13内, 电解溶液 10为硫酸铜溶液,面对发射极的铜板和直流电 源的正极相连; 电流密度控制在 3. 5安培每平方分米; 电解溶液槽的温度控制在 25度, 电化学沉积 15分钟, 经清洗吹干后, 太阳电池形成了。 经测定, 该太阳 电池的转换效率为 15. 87%, 其中, 太阳电池的电流密度, 电压和填充因子分别 为 33. 37 mA/cm2, 619mV和 0. 769。
实施例三
经实验证明采用化学沉积金属的方法先在发射极的主栅线和付栅线上沉 积一层金属, 降低栅线的电阻, 然后进行电化学沉积处理, 这样获得的太阳电池 的光电转换效率效果更佳。
具体为, 在实施例二中铝背场的硅片经烧结形成硅镍合金之后, 进行大约 15分钟的化学沉积铜, 使得付栅线的电阻在 1欧姆每厘米, 然后将脉冲电源的 负极连在 栅线的一端并放入电解溶液槽 13内, 电解溶液 10为硫酸铜溶液,硅 片的两侧是连接脉冲电源正极的铜板, 电流密度控制在 2. 5安培每平方分米; 电 解溶液槽的温度 25度, 电化学沉积 20分钟, 经清洗吹干后, 太阳电池电极就形 成了。 经测定, 该太阳电池的光电转换效率为 16. 12%, 其中, 太阳电池的电流 密度、 电压和填充因子分别为 33. 98mA/cm2, 615mV和 0. 772。
在上述方法中, 如果采用多点接触的方法, 那么随着化学沉积金属的厚度 不断地增加,供电装置 14的负极和半导体薄片 12的接触点可以逐渐地减少。当 化学沉积金属的厚度达到一定的厚度时, 供电装置 14 的负极和半导体薄片 12 之间存在一个接触点就能很好的完成本发明的太阳电池电极的制备。
本发明并不局限于上述特定实施例, 在不背离本发明精神及其实质情况下, 本领域的普通技术人员可根据本发明作出各种相应改变和变形。这些相应改变和 变形都应属于本发明所附权利要求的保护范围之内。

Claims

权 利 要 求
1、 一种制备太阳电池电极的方法, 其特征在于, 包括: a : 对一半导体薄片表面进行清洗和制绒后, 对其一个表面浅扩散形成 PN 结的步骤; b : 在浅扩散以后的半导体薄片的所述表面上沉积一层钝化和减反膜的步 骤; c : 在半导体薄片的所述表面上形成凹槽的步骤; d : 对所述凹槽进行清洗后进行深扩散的步骤; e : 对该半导体薄片的所述表面相对的另一表面进行钝化处理的步骤; f : 对所述钝化处理后的半导体薄片进行化学沉积金属处理, 并经烧结后形 成该半导体薄片与该金属的合金的步骤; g : 对上述半导体薄片进行预定时间的化学沉积金属或金属合金的步骤; h : 对所述半导体薄片在一电化学沉积装置内进行电化学沉积金属或金属 合金, 从而形成太阳电池电极的步骤。
2、 按照权利要求 1所述的方法, 其中, 所述的半导体薄片是单晶硅或多晶 硅硅片。
3、 按照权利要求 1所述的方法, 其中, 所述金属或金属合金可以是铜, 银 或其它与所述半导体薄片可获得欧姆接触的金属或金属合金导电材料。
4、 按照权利要求 1所述的方法, 其中, 步骤 b中是釆用氮化硅做为钝化和 减反膜, 步骤 f所述金属为镍。
5、 按照权利要求 1所述的方法, 其中, 步骤 c和 d所述的凹槽是采用激光 刻或者化学腐蚀方法形成的相互交叉的主栅线和付栅线。
6、 按照权利要求 1所述的方法, 其中, 步骤 e对该半导体薄片的另一表面 可以采用溅射上铝或者丝网印刷铝浆, 并烧结得到硅铝合金。
7、 按照权利要求 5所述的方法, 其中, 步骤 h进一步包括: 将该供电装置的正极和与电化学沉积装置内的电解溶液接触的金属或金属 合金电极相连; 将该半导体薄片放入电解溶液中; 将该供电装置一的负极与该半导体薄片的主栅线相连。
8、 按照权利要求 7所述的方法, 其中, 所述电解溶液是与所述金属或金属 合金具有相同分子结构的该金属或金属合金离子的电解溶液。
9、 按照权利要求 7所述的方法, 其中, 该供电装置可以是直流电源, 也可 以是脉冲电源。
10、 按照权利要求 7所述的方法, 其中, 该供电装置的负极与主栅线相连 的方式可以是连接主栅线的一端或两端,也可以是该供电装置的负极与主栅线有 多个均勾间隔接触点的连接方式。
11、 根据权利要求 7所述的方法, 其中, 根据金属或金属合金电极的个数 以及其相对所述半导体薄片形成电势场的具体位置,可以同时在所述半导体薄片 的两个表面生成电极, 也可以只在任一表面上生成电极。
12、 种制备太阳电池电极的方法, 其特征在于, 包括: a :对一半导体薄片表面进行清洗和制绒后, 对其一个表面浅扩散形成 pN结 的步骤; b :在浅扩散以后的半导体薄片的所述表面上沉积一层钝化和减反膜的步 骤; c :在半导体薄片的所述表面上的主栅线和付栅线部位清除钝化和减反膜的 步骤; d :对所述主栅线和付栅线清洗,然后进行深扩散的步骤; e:对该半导体薄片的所述表面相对的另一表面进行钝化处理; f :对所述钝化处理后的半导体薄片进行化学沉积金属处理, 并经烧结后形 成该半导体薄片与该金属的合金的步骤;
g:对所述半导体薄片在一电化学沉积装置内进行电化学沉积所述金属或金 属合金, 从而形成太阳电池电极的步骤。
13、 一种制备太阳电池电极的电化学沉积装置, 其中, 该装置是用在如权 利要求 1一 12 之一所述的制备太阳电池电极的方法中进行电化学沉积金属或金 属合金, 从而形成太阳电池电极的步骤里, 该装置包括: 可容纳电解溶液的电解 溶液槽; 置于电解溶液中的至少一个金属或金属合金电极; 供电装置, 用于输出 电能; 及平行于该金属或金属合金电极放置的半导体薄片。
14、 如权利要求 13所述的电化学沉积装置, 其特征在于, 所述供电装置可 以通过开关将其正极选择性地与该金属或金属合金电极相连。
15、 如权利要求 13— 14中任意一项所述的电化学沉积装置, 其特征在于, 所述供电装置为直流电源或脉冲电源。
16、 如权利要求 13— 14中任意一项所述的电化学沉积装置, 其特征在于, 该供电装置的负极与半导体薄片可以釆用多点接触的方式相连。
PCT/CN2006/001077 2006-04-20 2006-05-24 Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus WO2007121619A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009505703A JP2009534813A (ja) 2006-04-20 2006-05-24 太陽電池用電極の製造方法およびその電気化学的析出装置
AU2006342590A AU2006342590B2 (en) 2006-04-20 2006-05-24 Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus
EP06741965A EP2020687A1 (en) 2006-04-20 2006-05-24 Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus
US12/226,479 US20110045631A1 (en) 2006-04-20 2006-05-24 Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610076375.1 2006-04-20
CN200610076375A CN100576578C (zh) 2006-04-20 2006-04-20 制备太阳电池电极的方法及其电化学沉积装置

Publications (1)

Publication Number Publication Date
WO2007121619A1 true WO2007121619A1 (en) 2007-11-01

Family

ID=38624525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001077 WO2007121619A1 (en) 2006-04-20 2006-05-24 Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus

Country Status (8)

Country Link
US (1) US20110045631A1 (zh)
EP (1) EP2020687A1 (zh)
JP (1) JP2009534813A (zh)
KR (1) KR101012714B1 (zh)
CN (1) CN100576578C (zh)
AU (1) AU2006342590B2 (zh)
RU (1) RU2399119C2 (zh)
WO (1) WO2007121619A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2238208A1 (en) * 2008-01-30 2010-10-13 Basf Se Conductive inks
JP2011505068A (ja) * 2007-11-30 2011-02-17 ウシ サンテック パワー カンパニー,リミティド 太陽電池の金属電極の電気化学的堆積方法
US8415187B2 (en) 2009-01-28 2013-04-09 Solexant Corporation Large-grain crystalline thin-film structures and devices and methods for forming the same
DE102011056632A1 (de) 2011-12-19 2013-06-20 Schott Solar Ag Verfahren zum Ausbilden einer Frontseitenmetallisierung einer Solarzelle sowie Solarzelle
US8927392B2 (en) 2007-11-02 2015-01-06 Siva Power, Inc. Methods for forming crystalline thin-film photovoltaic structures

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442453B2 (ja) * 2007-02-15 2014-03-12 マサチューセッツ インスティテュート オブ テクノロジー 凹凸化された表面を備えた太陽電池
CN101409312B (zh) * 2008-10-20 2010-04-21 东方日升新能源股份有限公司 一种单晶硅片制绒的方法
CN101840952B (zh) * 2009-03-18 2012-11-14 中国科学院微电子研究所 一种制备双面pn结太阳能电池的方法
DE102009051688A1 (de) * 2009-10-23 2011-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur lichtinduzierten galvanischen Pulsabscheidung zur Ausbildung einer Saatschicht für einen Metallkontakt einer Solarzelle und zur nachfolgenden Verstärkung dieser Saatschicht bzw. dieses Metallkontakts sowie Anordnung zur Durchführung des Verfahrens
AU2010314804B2 (en) * 2009-11-03 2016-12-01 Newsouth Innovations Pty Limited Photoplating of metal electrodes for solar cells
TWI472049B (zh) * 2009-12-14 2015-02-01 Ind Tech Res Inst 太陽能電池的製造方法
KR101661768B1 (ko) * 2010-09-03 2016-09-30 엘지전자 주식회사 태양전지 및 이의 제조 방법
CN102060569A (zh) * 2010-11-12 2011-05-18 大连三达奥克化学股份有限公司 多晶硅太阳能电池片酸性制绒剂用添加剂
JP5996244B2 (ja) * 2011-04-19 2016-09-21 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 半導体上の銅のめっき
CN102222729B (zh) * 2011-05-31 2012-11-21 浙江晶科能源有限公司 一种改善太阳电池前电极电镀质量的方法
WO2013084929A1 (ja) * 2011-12-07 2013-06-13 株式会社シンク・ラボラトリー 凝縮器付処理ユニット及びそれを用いた全自動グラビア製版処理システム
CN103367468A (zh) * 2012-03-29 2013-10-23 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
CN103367528A (zh) * 2012-03-29 2013-10-23 无锡尚德太阳能电力有限公司 一种太阳电池、组件及太阳电池电极的制造方法
US8735210B2 (en) * 2012-06-28 2014-05-27 International Business Machines Corporation High efficiency solar cells fabricated by inexpensive PECVD
US20140008234A1 (en) * 2012-07-09 2014-01-09 Rohm And Haas Electronic Materials Llc Method of metal plating semiconductors
CN104178787A (zh) * 2013-05-26 2014-12-03 无锡尚德太阳能电力有限公司 一种太阳电池镀膜设备以及镀膜方法
JP6337016B2 (ja) * 2014-01-08 2018-06-06 東京エレクトロン株式会社 電解処理方法及び電解処理装置
JP6502147B2 (ja) * 2015-03-31 2019-04-17 株式会社カネカ 太陽電池の製造方法および太陽電池モジュールの製造方法
JP6899649B2 (ja) * 2016-12-01 2021-07-07 株式会社カネカ 太陽電池の製造方法、および電極形成用めっき装置
CN106653912B (zh) * 2017-01-22 2023-10-24 晶澳(扬州)太阳能科技有限公司 一种无栅线全背接触太阳能电池组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531827A1 (en) * 1991-08-30 1993-03-17 Canon Kabushiki Kaisha Solar cell and fabrication method thereof
WO1994028588A1 (en) * 1993-05-20 1994-12-08 Amoco Corporation Structure for use in producing semiconductor devices with buried contacts and method for its preparation
US6084175A (en) * 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
US6379520B1 (en) * 1998-11-30 2002-04-30 Ebara Corporation Plating apparatus
US20040058468A1 (en) * 2001-01-31 2004-03-25 Masatoshi Takahashi Method for producing solar cell and solar cell
CN1549876A (zh) * 2001-12-07 2004-11-24 ��ʽ�������տ� 电镀铜方法、电镀铜用纯铜阳极以及使用该方法和阳极进行电镀而得到的粒子附着少的半导体晶片
US6846984B2 (en) * 2000-04-27 2005-01-25 Universitat Konstanz Solar cell and method for making a solar cell
WO2005086633A2 (en) * 2004-02-05 2005-09-22 Advent Solar, Inc. Buried-contact solar cells with self-doping contacts
CN1719621A (zh) * 2005-04-21 2006-01-11 南京中电光伏科技有限公司 一种硅太阳电池的结构与制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000341A1 (en) * 1987-07-07 1989-01-12 Mobil Solar Energy Corporation Method of fabricating solar cells with anti-reflection coating
DE4432191C1 (de) * 1994-09-09 1996-01-18 Siemens Ag Verfahren zum Anschweißen von Bauteilanschlüssen an die Kontakte einer Leiterplatte und unter Anwendung dieses Verfahrens hergestellte Baugruppe
EP1182709A1 (en) * 2000-08-14 2002-02-27 IPU, Instituttet For Produktudvikling A process for depositing metal contacts on a buried grid solar cell and a solar cell obtained by the process
AUPR174800A0 (en) * 2000-11-29 2000-12-21 Australian National University, The Semiconductor processing
KR100366349B1 (ko) * 2001-01-03 2002-12-31 삼성에스디아이 주식회사 태양 전지 및 그의 제조 방법
AU2003275542B2 (en) * 2002-10-03 2007-06-07 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
KR100540101B1 (ko) * 2003-07-24 2006-01-11 한국과학기술연구원 계내 전기화학적 중합법으로 제조된 전도성 고분자복합막을 포함하는 광전소자 및 이의 제조 방법
US20070235342A1 (en) * 2004-10-01 2007-10-11 Canon Kabushiki Kaisha Method for manufacturing nanostructure
JP4589835B2 (ja) * 2005-07-13 2010-12-01 富士通セミコンダクター株式会社 半導体装置の製造方法及び半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531827A1 (en) * 1991-08-30 1993-03-17 Canon Kabushiki Kaisha Solar cell and fabrication method thereof
WO1994028588A1 (en) * 1993-05-20 1994-12-08 Amoco Corporation Structure for use in producing semiconductor devices with buried contacts and method for its preparation
US6084175A (en) * 1993-05-20 2000-07-04 Amoco/Enron Solar Front contact trenches for polycrystalline photovoltaic devices and semi-conductor devices with buried contacts
US6379520B1 (en) * 1998-11-30 2002-04-30 Ebara Corporation Plating apparatus
US6846984B2 (en) * 2000-04-27 2005-01-25 Universitat Konstanz Solar cell and method for making a solar cell
US20040058468A1 (en) * 2001-01-31 2004-03-25 Masatoshi Takahashi Method for producing solar cell and solar cell
CN1549876A (zh) * 2001-12-07 2004-11-24 ��ʽ�������տ� 电镀铜方法、电镀铜用纯铜阳极以及使用该方法和阳极进行电镀而得到的粒子附着少的半导体晶片
WO2005086633A2 (en) * 2004-02-05 2005-09-22 Advent Solar, Inc. Buried-contact solar cells with self-doping contacts
CN1719621A (zh) * 2005-04-21 2006-01-11 南京中电光伏科技有限公司 一种硅太阳电池的结构与制作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927392B2 (en) 2007-11-02 2015-01-06 Siva Power, Inc. Methods for forming crystalline thin-film photovoltaic structures
JP2011505068A (ja) * 2007-11-30 2011-02-17 ウシ サンテック パワー カンパニー,リミティド 太陽電池の金属電極の電気化学的堆積方法
EP2238208A1 (en) * 2008-01-30 2010-10-13 Basf Se Conductive inks
US8415187B2 (en) 2009-01-28 2013-04-09 Solexant Corporation Large-grain crystalline thin-film structures and devices and methods for forming the same
DE102011056632A1 (de) 2011-12-19 2013-06-20 Schott Solar Ag Verfahren zum Ausbilden einer Frontseitenmetallisierung einer Solarzelle sowie Solarzelle
WO2013092536A1 (de) 2011-12-19 2013-06-27 Schott Solar Ag Verfahren zum ausbilden einer frontseitenmetallisierung einer solarzelle sowie solarzelle

Also Published As

Publication number Publication date
US20110045631A1 (en) 2011-02-24
AU2006342590B2 (en) 2011-06-02
KR101012714B1 (ko) 2011-02-09
AU2006342590A1 (en) 2007-11-01
RU2399119C2 (ru) 2010-09-10
RU2008142611A (ru) 2010-05-27
KR20090003341A (ko) 2009-01-09
EP2020687A1 (en) 2009-02-04
CN100576578C (zh) 2009-12-30
JP2009534813A (ja) 2009-09-24
CN101060145A (zh) 2007-10-24

Similar Documents

Publication Publication Date Title
WO2007121619A1 (en) Method for manufacturing electrodes of solar cell and electrochemical depositing apparatus
JP5123394B2 (ja) 太陽電池の金属電極の電気化学的堆積方法
US9666749B2 (en) Low resistance, low reflection, and low cost contact grids for photovoltaic cells
CN1967881A (zh) 太阳电池硅表面生成多孔硅的方法
CN108400175A (zh) 一种具有电镀电极的异质结太阳能电池及制备方法
TW200834948A (en) Precision printing electroplating through plating mask on a solar cell substrate
CN101499417B (zh) 用阳极氧化铝模板实现半导体材料上图形转移的方法
CN113130671A (zh) 硅异质结太阳电池及其制备方法
CN112382678A (zh) 一种铸造单晶硅异质结太阳电池的制备方法
CN104241439A (zh) 一种碲化镉薄膜太阳能电池的制备方法
CN110896108A (zh) 一种双面发电的背接触异质结太阳能电池的制作方法
CN106356418A (zh) 一种硅基异质结电池片及其TiNx阻挡层的制备方法
CN108389936A (zh) 一种太阳能电池上tco导电材料的表面处理方法
WO2013143350A1 (zh) 一种太阳电池、组件及太阳电池电极的制造方法
CN115188891A (zh) 一种钙钛矿太阳能电池及其制备方法
CN106653924B (zh) 一种肖特基太阳能电池及其制备方法
CN1558447B (zh) 薄膜晶体管的制造方法
CN104201216A (zh) 一种太阳能电池及其制备方法
TW201019491A (en) Method for producing metal electrodes on solar cells through electroplating
JP2010239055A (ja) 表面粗化銅板を用いた太陽電池
CN115976588A (zh) 基于微区金属化的电极制备方法及太阳能电池
JP6743286B2 (ja) 光電変換素子及び光電変換素子の製造方法
CN117810306A (zh) 一种太阳能电池背面栅线的制备方法
CN111139515A (zh) 一种制作薄膜光电传感材料的工具及方法
CN115911184A (zh) 一种太阳能电池的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06741965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009505703

Country of ref document: JP

Ref document number: 12008502330

Country of ref document: PH

Ref document number: 2234/MUMNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006342590

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006741965

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087028250

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008142611

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006342590

Country of ref document: AU

Date of ref document: 20060524

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12226479

Country of ref document: US