WO2007119513A1 - Shield film and shield printed wiring board - Google Patents

Shield film and shield printed wiring board Download PDF

Info

Publication number
WO2007119513A1
WO2007119513A1 PCT/JP2007/056182 JP2007056182W WO2007119513A1 WO 2007119513 A1 WO2007119513 A1 WO 2007119513A1 JP 2007056182 W JP2007056182 W JP 2007056182W WO 2007119513 A1 WO2007119513 A1 WO 2007119513A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
film
flame retardant
resin
shield film
Prior art date
Application number
PCT/JP2007/056182
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kamino
Yoshinori Kawakami
Syohei Morimoto
Kazuhiro Hashimoto
Original Assignee
Tatsuta System Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta System Electronics Co., Ltd. filed Critical Tatsuta System Electronics Co., Ltd.
Publication of WO2007119513A1 publication Critical patent/WO2007119513A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Definitions

  • the present invention relates to a shield film that can be used for a printed wiring board used in a computer, a cellular phone, a communication device, a video camera, or the like, and the shield film.
  • the present invention relates to a shielded printed wiring board.
  • Patent Document 1 a metal layer is formed on one surface of an electrically insulating substrate, and a conductive filler and a hard filler are added to the resin composition mainly composed of a thermoplastic resin having heat sealability on the metal layer.
  • a flat cable shield material is disclosed in which an adhesive layer having conductivity and flame retardancy is formed using a resin composition containing a flammable filler.
  • Patent Document 1 is suitable as a necessary flame-retardant shielding film for a flat cable, it is used for reflow mounting at high temperatures because it uses thermoplastic resin. Since it is not heat resistant, it cannot be used as a flame retardant shield film for printed wiring boards.
  • the present inventors have added a flame retardant to the thermosetting resin of a shield film (for example, described in Patent Document 2 below) using a thermosetting resin so as to have heat resistance. And a shield film having both heat resistance and flame resistance was verified.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-279831
  • Patent Document 2 JP 2004-95566 A
  • an object of the present invention is to provide flame retardancy that can be used even in an environment where heating is performed in a later process, such as when performing reflow mounting without reducing adhesion to a printed circuit or the like.
  • a shield film and a shield printed wiring board using the shield film are examples of the shield film.
  • the shield film of the present invention has an insulating layer and a shield layer containing a flame retardant resin.
  • the shield film of the present invention has a shield layer containing a flame retardant resin, and has a flame retardant resin (in particular, a highly heat resistant flame retardant thermosetting resin). ) Can provide a flame-retardant shield film that can be used without problems even if it is reflow-mounted in a later process without lowering the adhesion to printed circuits.
  • a flame retardant resin in particular, a highly heat resistant flame retardant thermosetting resin.
  • the shield layer has at least one isotropic conductive adhesive layer formed on at least one side of the insulating layer. According to the above configuration, when the shield film of the present invention is bonded to a printed circuit, the isotropic conductive adhesive layer can exhibit an electromagnetic wave shielding property due to the conduction of the pattern force of the ground circuit.
  • the shield layer of the shield film of the present invention preferably has one or more metal layers formed on at least one surface of the insulating layer and one or more anisotropic conductive adhesive layers.
  • the anisotropic conductive adhesive layer conductively connects the ground circuit pattern and the metal layer of the shield film of the present invention. Shielding performance can be demonstrated.
  • the conductive adhesive layer further contains a flame retardant, and the flame retardant is 10 to 180 weights per 100 parts by weight of the flame retardant resin. It is preferable that it is partially blended.
  • the flame retardant resin is a phosphorus-containing flame retardant resin. It is preferable to contain. With the above configuration, a highly flame-retardant shield film can be provided reliably.
  • the shielded printed wiring board of the present invention has the above-described one-strength shield film on at least one surface of a substrate including one or more printed circuits.
  • the printed circuit board having excellent electromagnetic wave shielding properties can be provided because the pattern of the Darnd circuit and the metal layer in the shield film of the present invention are conductively connected.
  • the base is preferably a flexible printed wiring board.
  • the above configuration provides a shielded printed wiring board that is excellent in electromagnetic wave shielding properties and can be used for parts that need to be bent because the substrate is a flexible printed wiring board having flexibility. it can.
  • FIG. 1 is a cross-sectional view of a shield film according to an embodiment of the present invention.
  • a shield film 1 shown in FIG. 1 is obtained by sequentially providing a metal layer 3 and an adhesive layer 4 on one surface of an insulating layer 2.
  • the insulating layer 2 also has a coating layer force of a cover film or an insulating resin.
  • the cover film also has an engineering plastic power.
  • polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, aramid, polyimide, polyimide amide, polyether imide, polyphenylene sulfide (PPS), polyethylene naphthalate (PEN) and the like can be mentioned.
  • a low-cost polyester film is preferred, and when flame retardancy is required, a polysulfide sulfide film, and when heat resistance is required, aramid film or polyimide film Is preferred.
  • the insulating resin is not particularly limited as long as it has insulating properties, and examples thereof include thermosetting resins and ultraviolet ray curable resins.
  • thermosetting resin include phenol resin, acrylic resin, epoxy resin, melamine resin, silicone resin, and acrylic modified silicone resin.
  • examples of the ultraviolet curable resin include epoxy acrylate resin, polyester, and the like. Examples include reester acrylate, and their metatarylate-modified products.
  • any curing such as thermal curing, ultraviolet curing, electron beam curing, etc. may be used.
  • the insulating layer 2 has a thickness of 1 m to: LO / z m, preferably 3 ⁇ m to 7 ⁇ m.
  • Examples of the metal material forming the metal layer 3 include copper, aluminum, silver, and gold. What is necessary is just to select a metal material suitably according to the required shield characteristic.
  • the metal layer 3 can be formed by vacuum deposition, sputtering, CVD, MO (metal organic), metal plating, etc., but considering the mass productivity, vacuum deposition is desirable and cheap and stable. Can be obtained.
  • the metal layer 3 is not limited to a metal thin film, and a metal foil may be used. In general, the thickness of the metal layer 3 is preferably 0.01 to 10 m. If the distance is below 0.01 m, the shielding effect will be insufficient, and if it exceeds 10 m, the flexibility will deteriorate. Especially when flexibility is required, 2 m or less is preferable. Particularly when shielding effect is required, 10 m or less is preferable.
  • the adhesive layer 4 a heat-resistant thermosetting resin capable of withstanding 260 ° C. substrate mounting (reflow), preferably a flame-retardant thermosetting resin, is used.
  • a conductive filler is added, and it has isotropic conductivity or anisotropic conductivity.
  • the thickness of the adhesive layer 4 is preferably 5 ⁇ m force or 30 ⁇ m. If it is thinner than 5 ⁇ m, sufficient adhesion cannot be obtained, and if it exceeds 30 ⁇ m, flexibility is impaired.
  • the metal layer 3 may be omitted.
  • thermosetting resin examples include phosphorus-containing thermosetting resin, bisphenol A type, bisphenol F type, and novolak type.
  • examples of the phosphorus-containing thermosetting resin include an epoxy resin, a thermoplastic resin, and a phosphorus compound.
  • bisphenol A bisphenol F
  • bisphenol S bisphenol S
  • phenol, 0-cresol or naphthalenediol As a starting material, a product condensed with formaldehyde can be obtained by reacting with epichlorohydrin. You can use it alone or in combination of two or more.
  • thermoplastic resin used here includes polyamide resin, phenoxy resin, polyester resin, polycarbonate resin, polyethylene resin oxide resin, polyurethane resin, polyacetal resin, polyethylene resin.
  • examples thereof include fat, polypropylene-based resin, and polyvinyl-based resin. These may be used alone or in combination of two or more.
  • thermosetting resin by blending an epoxy resin with a thermoplastic resin.
  • the phosphorus compound here may be a reactive type that reacts directly with epoxy resin, or a non-reactive type that does not react directly.
  • the reaction type that directly reacts with epoxy resin is not particularly limited, and examples thereof include those having a functional group such as a hydroxyl group, an amino group, a carboxyl group, a methylol group, an epoxy group, an isocyanate group, a silanol group, and a vinyl group. Good heat resistance and adhesion.
  • the compounding ratio of the phosphorus-containing thermosetting resin is (A) 5 to 60 parts by weight of epoxy resin, (B) 100 parts by weight of thermoplastic resin, and (C) the total weight of (A) and (B). 10 to 35% by mass. This makes it possible to provide a flexible shield film that can withstand board mounting (reflow).
  • flame retardants environmentally problematic non-halogen flame retardants are preferred, such as melamine cyanurate, melamine polyphosphate and other nitrogen-based flame retardants, and metal water such as magnesium hydroxide and aluminum hydroxide.
  • metal water such as magnesium hydroxide and aluminum hydroxide.
  • examples include Japanese, or phosphoric acid flame retardants such as phosphoric acid esters and red phosphorus.
  • melamine cyanurate and magnesium hydroxide are preferred.
  • the blending ratio of the flame retardant is preferably 10 to 180 parts by weight, more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the flame retardant resin. If it exceeds 180 parts by weight, sufficient adhesion cannot be obtained, and if it is less than 10 parts by weight, the flame-retardant performance becomes insufficient.
  • the conductive filler a silver coated copper filler obtained by applying silver plating to carbon, silver, copper, nickel, solder, aluminum, and copper powder, and further, a metallic metal such as a resin ball or glass bead.
  • a filler with a key or a mixture of these fillers is used.
  • Silver is expensive, copper lacks heat resistance reliability, aluminum lacks moisture resistance reliability, and solder is difficult to obtain sufficient conductivity.
  • the blending ratio of the conductive filler depends on the filler shape and the like, but is preferably 10 to: LOO parts by weight with respect to 100 parts by weight of the flame-retardant resin. It should be 15-50 parts by weight. If it exceeds 100 parts by weight, the adhesion to the ground circuit (copper foil) will decrease, the flexibility of the shield flexible printed wiring board (hereinafter referred to as shielded FPC) will deteriorate, and the flame retardancy will decrease. . On the other hand, when the amount is less than 10 parts by weight, the conductivity is remarkably lowered and the flame retardancy is lowered.
  • the shape of the metal filler may be any of spherical, needle-like, fibrous, flake-like, and greave-like.
  • the flame retardant resin contains phosphorus, a highly flame retardant shield film can be provided reliably.
  • the shield film of the present invention can be used for FPC, COF (chip on flex), RF (rigid flex printed board), multilayer flexible board, rigid board, etc., but is not necessarily limited thereto.
  • FPC chip on flex
  • RF rigid flex printed board
  • multilayer flexible board multilayer flexible board
  • rigid board etc.
  • a shield printed wiring board 10 as shown in FIG. 2 is obtained.
  • 5 is a base film
  • 6 is a printed circuit
  • 7 is an insulating film
  • 8 is a base film.
  • the surface of the printed circuit 6 includes a signal circuit 6a and a ground circuit 6b. Is covered with an insulating film 7 except for at least a part (non-insulating part) 6c.
  • the insulating film 7 has an insulating removal portion 7a into which a part of the adhesive layer 4 of the shield film 1 flows. As a result, the ground circuit 6b and the metal layer 3 are electrically connected.
  • the base film 5 and the printed circuit 6 may be joined together with an adhesive, or in the same manner as a so-called non-adhesive copper clad laminate without using an adhesive.
  • the insulating film 7 may be formed by a series of techniques such as application, drying, exposure, development, and heat treatment of a photosensitive insulating resin by bonding a flexible insulating film using an adhesive. good.
  • the base film 8 has a single-sided FPC having a printed circuit only on one side of the base film, a double-sided FPC having a printed circuit on both sides of the base film, and a plurality of such FPCs laminated. Suitable for multilayer FPC, Fretasboard (registered trademark) with multilayer component mounting part and cable part, flex-rigid board with rigid members constituting multilayer part, or TAB tape for tape carrier package It can be carried out with appropriate adoption.
  • the base film 5 and the insulating film 6 are both made of engineering plastic.
  • examples thereof include resins such as polypropylene, crosslinked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide (PPS).
  • resins such as polypropylene, crosslinked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the shield printed wiring board 10 having excellent electromagnetic shielding properties can be provided.
  • even a very thin film of 35 m or less can provide a shield printed wiring board that passes the UL94 vertical flammability test (V standard).
  • the base film 8 is FPC, it has excellent electromagnetic wave shielding properties and has flexibility, so that it is possible to provide the shield printed wiring board 10 that can be used in a portion that needs to be bent.
  • the shield films according to Examples 1 to 4 and Comparative Examples 1 to 4 will be described.
  • the insulating layer 2 is made of an epoxy resin having a thickness of 5 ⁇ m
  • the metal layer 3 has a thickness of 0.1 / 1 /.
  • An xm silver deposition layer was used.
  • Adhesive layer 4 has a thickness of 100 parts by weight of a phosphorus-containing epoxy resin (flame retardant resin), and a predetermined amount of a flame retardant composed of melamine cyanurate is added to each layer, and the silver-coated copper powder is also conductive. The ones added with 20 parts by weight of the filler were used (see Table 1).
  • the metal layer 3 and the adhesive layer 4 having the components of each Example and each Comparative Example in Table 1 above were provided on one surface of the insulating layer 2 to obtain shield films for each Example and each Comparative Example. .
  • the shield films of each Example and each Comparative Example were used. After 3MPa pressing at 3 ° C for 3 minutes and bonding to the substrate of each test, after-curing at 150 ° C for 60 minutes is used.
  • the UL-94 vertical combustion was applied to the shield films of Examples 1 to 4 and Comparative Examples 1 to 4 bonded to a polyimide film with a thickness of 25 ⁇ m (Kapton 100H manufactured by Toray DuPont Co., Ltd.).
  • the flame retardancy was evaluated according to the property test (V standard). Table 1 shows the results when V—0 passed and O, and X failed.
  • each shield film was bonded to a polyimide film with a thickness of 25 m (Kapton 100H, manufactured by Toray DuPont Co., Ltd.) so that the adhesive layer would adhere. .
  • the polyimide film was peeled 180 °, and the strength (adhesion) of the shield film was measured. The results are shown in Table 1 with a strength of 4. ONZcm or higher as ⁇ (passed) and 4. less than ON / cm as X (failed).
  • FIG. 1 is a partial cross-sectional view of a shield film according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of an FPC with the shield film of FIG.

Abstract

In a shield film (1), a metal layer (3) and an adhesive layer (4) are successively arranged on one surface of an insulating layer (2). In the adhesive layer (4), a thermosetting resin, preferably, a flame retardant thermosetting resin, is used as a main component, and a conductive filler is added to the main component. In the adhesive layer (4), a flame retardant of 10-180 pts.wt. is preferably mixed to a flame retardant resin of 100 pts.wt. Thus, the flame retardant shield film is provided to be used even in the environment where the film is heated in a subsequent step, as in a case of performing reflow process.

Description

明 細 書  Specification
シールドフィルム及びシールドプリント配線板  Shield film and shield printed wiring board
技術分野  Technical field
[0001] 本発明は、コンピュータ、携帯電話、通信機器、ビデオカメラなどの装置内等に使 用されているプリント配線板に用いることが可能なシールドフィルム、及び、このシー ルドフィルムを用 V、たシールドプリント配線板に関するものである。  [0001] The present invention relates to a shield film that can be used for a printed wiring board used in a computer, a cellular phone, a communication device, a video camera, or the like, and the shield film. The present invention relates to a shielded printed wiring board.
背景技術  Background art
[0002] 従来から、金属薄膜を用いたシールドフィルムは公知となって 、る。例えば、下記 特許文献 1に開示されるものがある。具体的には、電気絶縁性基材の片面に金属層 を形成し、該金属層の上に、ヒートシール性を有する熱可塑性榭脂を主成分とする 榭脂組成物に導電性フィラー及び難燃性フイラ一を含有した榭脂組成物を用いて導 電性及び難燃性を有する接着層を形成したことを特徴とするフラットケーブル用シー ルド材が開示されている。  Conventionally, shield films using metal thin films have been publicly known. For example, there is one disclosed in Patent Document 1 below. Specifically, a metal layer is formed on one surface of an electrically insulating substrate, and a conductive filler and a hard filler are added to the resin composition mainly composed of a thermoplastic resin having heat sealability on the metal layer. A flat cable shield material is disclosed in which an adhesive layer having conductivity and flame retardancy is formed using a resin composition containing a flammable filler.
[0003] しかし、特許文献 1のシールド材は必要なフラットケーブル用の難燃性のシールドフ イルムとしては適しているものの、熱可塑性榭脂を使用していることから、高温でリフロ 一実装などされる際、耐熱性がないので、プリント配線板の難燃性のシールドフィル ムとしては用いることができな 、。  [0003] However, although the shielding material of Patent Document 1 is suitable as a necessary flame-retardant shielding film for a flat cable, it is used for reflow mounting at high temperatures because it uses thermoplastic resin. Since it is not heat resistant, it cannot be used as a flame retardant shield film for printed wiring boards.
[0004] そこで、本発明者らは、耐熱性を有するように、熱硬化性榭脂を使用したシールド フィルム (例えば、下記特許文献 2に記載のもの)の該熱硬化性榭脂に難燃剤を配合 して、耐熱性及び難燃性の両方を有するシールドフィルムとできな 、かを検証した。  [0004] Therefore, the present inventors have added a flame retardant to the thermosetting resin of a shield film (for example, described in Patent Document 2 below) using a thermosetting resin so as to have heat resistance. And a shield film having both heat resistance and flame resistance was verified.
[0005] 特許文献 1 :特開 2002— 279831号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-279831
特許文献 2:特開 2004— 95566号公報  Patent Document 2: JP 2004-95566 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、上記検証を行った結果、熱硬化性榭脂への難燃剤の配合量を多く すれば、難燃性を向上させることができるものの、シールドフィルムのプリント回路など への密着性が低下するといつた問題が発生することがわ力つた。 [0007] そこで、本発明の目的は、プリント回路などへの密着性が低下することなぐリフロー 実装を行う場合のように後の工程で加熱される場合の環境下においても使用可能な 難燃性のシールドフィルム、及び、このシールドフィルムを用いたシールドプリント配 線板を提供することである。 [0006] However, as a result of the above verification, although the flame retardancy can be improved by increasing the amount of the flame retardant added to the thermosetting resin, the adhesion of the shield film to the printed circuit, etc. It was surprising that problems would occur when the price dropped. [0007] Therefore, an object of the present invention is to provide flame retardancy that can be used even in an environment where heating is performed in a later process, such as when performing reflow mounting without reducing adhesion to a printed circuit or the like. A shield film and a shield printed wiring board using the shield film.
課題を解決するための手段及び効果  Means and effects for solving the problems
[0008] 本発明のシールドフィルムは、絶縁層と難燃性榭脂を含有するシールド層とを有す るものである。 The shield film of the present invention has an insulating layer and a shield layer containing a flame retardant resin.
上記構成により、本発明のシールドフィルムは、難燃性榭脂を含有しているシール ド層を有しており、難燃性榭脂 (特に、耐熱性の高い難燃性熱硬化性榭脂)によって 、プリント回路などへの密着性が低下することなぐ後の工程でリフロー実装などされ ても問題なく使用可能な難燃性のシールドフィルムを提供できる。  With the above configuration, the shield film of the present invention has a shield layer containing a flame retardant resin, and has a flame retardant resin (in particular, a highly heat resistant flame retardant thermosetting resin). ) Can provide a flame-retardant shield film that can be used without problems even if it is reflow-mounted in a later process without lowering the adhesion to printed circuits.
[0009] 本発明のシールドフィルムにおいては、前記シールド層が、前記絶縁層の少なくと も片面に形成された 1層以上の等方導電性接着剤層を有することが好ましい。上記 構成によれば、プリント回路に本発明のシールドフィルムを貼り合せた際、グランド回 路のパターン力ゝらの導電によって、等方導電性接着剤層が電磁波シールド性を発揮 できる。 In the shield film of the present invention, it is preferable that the shield layer has at least one isotropic conductive adhesive layer formed on at least one side of the insulating layer. According to the above configuration, when the shield film of the present invention is bonded to a printed circuit, the isotropic conductive adhesive layer can exhibit an electromagnetic wave shielding property due to the conduction of the pattern force of the ground circuit.
[0010] 本発明のシールドフィルムの前記シールド層においては、前記絶縁層の少なくとも 片面に形成された 1層以上の金属層と、 1層以上の異方導電性接着剤層とを有する ことが好ましい。上記構成によれば、プリント回路に本発明のシールドフィルムを貼り 合せた際、異方導電性接着剤層がグランド回路のパターンと本発明のシールドフィ ルムにおける金属層とを導電接続させるので、電磁波シールド性を発揮できる。  [0010] The shield layer of the shield film of the present invention preferably has one or more metal layers formed on at least one surface of the insulating layer and one or more anisotropic conductive adhesive layers. . According to the above configuration, when the shield film of the present invention is bonded to the printed circuit, the anisotropic conductive adhesive layer conductively connects the ground circuit pattern and the metal layer of the shield film of the present invention. Shielding performance can be demonstrated.
[0011] 本発明のシールドフィルムにおいては、前記導電性接着剤層が難燃剤をさらに含 有するものであり、前記難燃剤が、前記難燃性榭脂 100重量部に対して 10〜180重 量部配合されていることが好ましい。上記構成により、 35 /z m以下と非常に薄いフィ ルムであっても、 UL94の垂直燃焼性試験 (VTM規格)に合格するとともに、基材な どへの密着性が高 、上、可撓性及び保存安定性にも優れたシールドフィルムを確実 に提供できる。  [0011] In the shield film of the present invention, the conductive adhesive layer further contains a flame retardant, and the flame retardant is 10 to 180 weights per 100 parts by weight of the flame retardant resin. It is preferable that it is partially blended. With the above configuration, even a very thin film of 35 / zm or less passes the UL94 vertical flammability test (VTM standard), and has high adhesion to substrates, etc., and is flexible. In addition, a shield film excellent in storage stability can be provided with certainty.
[0012] 本発明のシールドフィルムにお 、ては、前記難燃性榭脂が、リン含有難燃性榭脂を 含有していることが好ましい。上記構成により、確実に高難燃性のシールドフィルムを 提供できる。 [0012] In the shield film of the present invention, the flame retardant resin is a phosphorus-containing flame retardant resin. It is preferable to contain. With the above configuration, a highly flame-retardant shield film can be provided reliably.
[0013] 本発明のシールドプリント配線板は、上述のいずれ力 1つのシールドフィルムを、 1 層以上のプリント回路を含む基体の少なくとも片面上に有する。上記構成により、ダラ ンド回路のパターンと本発明のシールドフィルムにおける金属層とを導電接続させる ので、電磁波シールド性に優れたシールドプリント配線板を提供できる。また、 UL94 の垂直燃焼性試験 (V規格)に合格するシールドプリント配線板を提供できる。  [0013] The shielded printed wiring board of the present invention has the above-described one-strength shield film on at least one surface of a substrate including one or more printed circuits. With the above configuration, the printed circuit board having excellent electromagnetic wave shielding properties can be provided because the pattern of the Darnd circuit and the metal layer in the shield film of the present invention are conductively connected. We can also provide shielded printed wiring boards that pass the UL94 vertical flammability test (V standard).
[0014] 本発明のシールドプリント配線板は、前記基体がフレキシブルプリント配線板である ことが好ましい。上記構成により、電磁波シールド性に優れるとともに、基体が可撓性 を有しているフレキシブルプリント配線板であることから、曲げる必要がある部位にお V、て用いることができるシールドプリント配線板を提供できる。  [0014] In the shielded printed wiring board of the present invention, the base is preferably a flexible printed wiring board. The above configuration provides a shielded printed wiring board that is excellent in electromagnetic wave shielding properties and can be used for parts that need to be bent because the substrate is a flexible printed wiring board having flexibility. it can.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、図面に基づいて、本発明の実施の形態について説明する。図 1は、本発明 の実施形態に係るシールドフィルムの断面図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a shield film according to an embodiment of the present invention.
[0016] 図 1に示すシールドフィルム 1は、絶縁層 2の片面に金属層 3と、接着剤層 4とを順 次設けてなるものである。  A shield film 1 shown in FIG. 1 is obtained by sequentially providing a metal layer 3 and an adhesive layer 4 on one surface of an insulating layer 2.
[0017] 絶縁層 2は、カバーフィルム又は絶縁樹脂のコーティング層力もなる。  [0017] The insulating layer 2 also has a coating layer force of a cover film or an insulating resin.
カバーフィルムは、エンジニアリングプラスチック力もなる。例えば、ポリプロピレン、 架橋ポリエチレン、ポリエステル、ポリベンツイミダゾール、ァラミド、ポリイミド、ポリイミ ドアミド、ポリエーテルイミド、ポリフエ-レンサルファイド(PPS)、ポリエチレンナフタレ ート(PEN)などが挙げられる。  The cover film also has an engineering plastic power. For example, polypropylene, cross-linked polyethylene, polyester, polybenzimidazole, aramid, polyimide, polyimide amide, polyether imide, polyphenylene sulfide (PPS), polyethylene naphthalate (PEN) and the like can be mentioned.
あまり耐熱性を要求されない場合は、安価なポリエステルフィルムが好ましぐ難燃 性が要求される場合においては、ポリフエ-レンサルファイドフィルム、さらに耐熱性 が要求される場合にはァラミドフィルムやポリイミドフィルムが好ましい。  When heat resistance is not required, a low-cost polyester film is preferred, and when flame retardancy is required, a polysulfide sulfide film, and when heat resistance is required, aramid film or polyimide film Is preferred.
絶縁榭脂は、絶縁性を有する榭脂であればよぐ例えば、熱硬化性榭脂又は紫外 線硬化性榭脂などが挙げられる。熱硬化性榭脂としては、例えば、フエノール榭脂、 アクリル榭脂、エポキシ榭脂、メラミン榭脂、シリコン榭脂、アクリル変性シリコン榭脂な どが挙げられる。紫外線硬化性榭脂としては、例えば、エポキシアタリレート榭脂、ポ リエステルアタリレート榭脂、及びそれらのメタタリレート変性品などが挙げられる。な お、硬化形態としては、熱硬化、紫外線硬化、電子線硬化などどれでもよぐ硬化す るものであればよい。 The insulating resin is not particularly limited as long as it has insulating properties, and examples thereof include thermosetting resins and ultraviolet ray curable resins. Examples of the thermosetting resin include phenol resin, acrylic resin, epoxy resin, melamine resin, silicone resin, and acrylic modified silicone resin. Examples of the ultraviolet curable resin include epoxy acrylate resin, polyester, and the like. Examples include reester acrylate, and their metatarylate-modified products. As the curing form, any curing such as thermal curing, ultraviolet curing, electron beam curing, etc. may be used.
なお、絶縁層 2の厚みは 1 m〜: LO /z m、好ましくは 3 μ m〜7 μ mであることが好 ましい。  The insulating layer 2 has a thickness of 1 m to: LO / z m, preferably 3 μm to 7 μm.
[0018] 金属層 3を形成する金属材料としては、銅、アルミ、銀、金などを挙げることができる 。金属材料は、求められるシールド特性に応じて適宜選択すればよい。金属層 3の 形成方法としては、真空蒸着、スパッタリング、 CVD法、 MO (メタルオーガニック)、メ ツキなどがあるが、量産性を考慮すれば真空蒸着が望ましぐ安価で安定して金属薄 膜を得ることができる。また、金属層 3は、金属薄膜に限られず、金属箔を用いてもよ い。金属層 3の厚さは、一般に 0. 01〜 10 mとするのが好ましい。 0. 01 mを下 回るとシールド効果が不十分となり、逆に 10 mを超えると可撓性が悪くなる。特に 可撓性が必要な場合には 2 m以下が好ましぐ特にシールド効果が必要な場合に は 10 m以下が好ましい。  [0018] Examples of the metal material forming the metal layer 3 include copper, aluminum, silver, and gold. What is necessary is just to select a metal material suitably according to the required shield characteristic. The metal layer 3 can be formed by vacuum deposition, sputtering, CVD, MO (metal organic), metal plating, etc., but considering the mass productivity, vacuum deposition is desirable and cheap and stable. Can be obtained. The metal layer 3 is not limited to a metal thin film, and a metal foil may be used. In general, the thickness of the metal layer 3 is preferably 0.01 to 10 m. If the distance is below 0.01 m, the shielding effect will be insufficient, and if it exceeds 10 m, the flexibility will deteriorate. Especially when flexibility is required, 2 m or less is preferable. Particularly when shielding effect is required, 10 m or less is preferable.
[0019] 接着剤層 4としては、 260°Cの基板実装(リフロー)に耐えうる耐熱性のある熱硬化 性樹脂、好ましくは難燃性の熱硬化性樹脂が用いられ、これに難燃剤や導電性フィ ラーが添加されており、等方導電性又は異方導電性を有している。接着剤層 4の厚さ は、 5 μ m力ら 30 μ mが好ましい。 5 μ mより薄いと十分な密着性が得られず、 30 μ mを超えると柔軟性が損なわれる。なお、接着剤層 4が等方導電性である場合には、 金属層 3はなくてもよい。  As the adhesive layer 4, a heat-resistant thermosetting resin capable of withstanding 260 ° C. substrate mounting (reflow), preferably a flame-retardant thermosetting resin, is used. A conductive filler is added, and it has isotropic conductivity or anisotropic conductivity. The thickness of the adhesive layer 4 is preferably 5 μm force or 30 μm. If it is thinner than 5 μm, sufficient adhesion cannot be obtained, and if it exceeds 30 μm, flexibility is impaired. When the adhesive layer 4 is isotropically conductive, the metal layer 3 may be omitted.
[0020] 難燃性の熱硬化性榭脂としては、リン含有熱硬化性榭脂、ビスフエノール A型、ビス フエノール F型、ノボラック型などが挙げられる。  [0020] Examples of the flame retardant thermosetting resin include phosphorus-containing thermosetting resin, bisphenol A type, bisphenol F type, and novolak type.
ここで、リン含有熱硬化性榭脂としては、エポキシ榭脂、熱可塑性榭脂、リン化合物 が含有されて ヽるものが挙げられる。  Here, examples of the phosphorus-containing thermosetting resin include an epoxy resin, a thermoplastic resin, and a phosphorus compound.
ここでのエポキシ榭脂としては、ビスフエノール A、ビスフエノール F、あるいは、ビス フエノール Sを出発原料としてェピクロルヒドリンと反応させて得られる、例えば、ビス フエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビスフエノール S型 エポキシ榭脂、また、フエノール、 0—クレゾール、あるいは、ナフタレンジオールを出 発原料としてホルムアルデヒドで縮合したものをェピクロルヒドリンと反応させて得られ る、例えば、フエノールノボラック榭脂、 0—クレゾ一ルノボラック榭脂、ナフタレンノボ ラック榭脂などが挙げられ、これらは、 1種単独で用いても、 2種以上混合して用いて ちょい。 As the epoxy resin, bisphenol A, bisphenol F, or bisphenol S can be used as a starting material and reacted with epichlorohydrin. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol, 0-cresol or naphthalenediol As a starting material, a product condensed with formaldehyde can be obtained by reacting with epichlorohydrin. You can use it alone or in combination of two or more.
また、ここでの熱可塑性榭脂としては、ポリアミド系榭脂、フエノキシ榭脂、ポリエステ ル榭脂、ポリカーボネート榭脂、ポリフエ二レン才キシド榭脂、ポリウレタン榭脂、ポリア セタール榭脂、ポリエチレン系榭脂、ポリプロピレン系榭脂、ポリビニル系榭脂などが 挙げられ、これらは、 1種単独で用いても、 2種以上混合して用いてもよい。  The thermoplastic resin used here includes polyamide resin, phenoxy resin, polyester resin, polycarbonate resin, polyethylene resin oxide resin, polyurethane resin, polyacetal resin, polyethylene resin. Examples thereof include fat, polypropylene-based resin, and polyvinyl-based resin. These may be used alone or in combination of two or more.
エポキシ榭脂に熱可塑性榭脂を配合することで、柔軟性のある熱硬化性榭脂を得 ることがでさる。  It is possible to obtain a flexible thermosetting resin by blending an epoxy resin with a thermoplastic resin.
また、ここでのリンィ匕合物としては、エポキシ榭脂などと直接反応する反応型、直接 反応しな ヽ非反応型の 、ずれでもよ ヽ。エポキシ榭脂などと直接反応する反応型は 、特に限定されないが、水酸基、アミノ基、カルボキシル基、メチロール基、エポキシ 基、イソシァネート基、シラノール基、ビニル基などの官能基を有するものが挙げられ 、耐熱性や接着性などが良好なものである。  In addition, the phosphorus compound here may be a reactive type that reacts directly with epoxy resin, or a non-reactive type that does not react directly. The reaction type that directly reacts with epoxy resin is not particularly limited, and examples thereof include those having a functional group such as a hydroxyl group, an amino group, a carboxyl group, a methylol group, an epoxy group, an isocyanate group, a silanol group, and a vinyl group. Good heat resistance and adhesion.
リン含有熱硬化性榭脂の配合割合は、(A)エポキシ榭脂 5〜60重量部、(B)熱 可塑性榭脂 100重量部、 (C) (A)及び (B)の合計重量に対して、 10〜35質量% である。これにより、基板実装(リフロー)に耐え、かつ、柔軟性のあるシールドフィル ムを提供できる。  The compounding ratio of the phosphorus-containing thermosetting resin is (A) 5 to 60 parts by weight of epoxy resin, (B) 100 parts by weight of thermoplastic resin, and (C) the total weight of (A) and (B). 10 to 35% by mass. This makes it possible to provide a flexible shield film that can withstand board mounting (reflow).
[0021] 難燃剤としては、環境上の問題力 ノンハロゲン系難燃剤が好ましぐメラミンシァヌ レート、ポリリン酸メラミン等の窒素系難燃剤や水酸ィ匕マグネシウム、水酸化アルミ- ゥム等の金属水和物、又は、燐酸エステル、赤リン等のリン系難燃剤等が挙げられる 力 耐熱性が要求される場合には、メラミンシァヌレート、水酸ィ匕マグネシウムが好ま しい。難燃剤の配合割合は、難燃性榭脂 100重量部に対して 10〜180重量部とす るのが好ましぐさらに好ましくは 50〜150重量部とするのがよい。 180重量部を超え ると、十分な密着が得られず、 10重量部を下回ると難燃性の性能が不十分となる。  [0021] As flame retardants, environmentally problematic non-halogen flame retardants are preferred, such as melamine cyanurate, melamine polyphosphate and other nitrogen-based flame retardants, and metal water such as magnesium hydroxide and aluminum hydroxide. Examples include Japanese, or phosphoric acid flame retardants such as phosphoric acid esters and red phosphorus. When heat resistance is required, melamine cyanurate and magnesium hydroxide are preferred. The blending ratio of the flame retardant is preferably 10 to 180 parts by weight, more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the flame retardant resin. If it exceeds 180 parts by weight, sufficient adhesion cannot be obtained, and if it is less than 10 parts by weight, the flame-retardant performance becomes insufficient.
[0022] 導電性フイラ一としては、カーボン、銀、銅、ニッケル、ハンダ、アルミ及び銅粉に銀 メツキを施した銀コ一ト銅フイラ一、さらには榭脂ボールやガラスビーズ等に金属メッ キを施したフィラー又はこれらのフィラーの混合体が用いられる。銀は高価であり、銅 は耐熱の信頼性に欠け、アルミは耐湿の信頼性に欠け、さらにハンダは十分な導電 性を得ることが困難であることから、比較的安価で優れた導電性を有し、さらに信頼 性の高 、銀コート銅フイラ一又はニッケルを用いるのが好まし 、。 [0022] As the conductive filler, a silver coated copper filler obtained by applying silver plating to carbon, silver, copper, nickel, solder, aluminum, and copper powder, and further, a metallic metal such as a resin ball or glass bead. A filler with a key or a mixture of these fillers is used. Silver is expensive, copper lacks heat resistance reliability, aluminum lacks moisture resistance reliability, and solder is difficult to obtain sufficient conductivity. In addition, it is preferable to use silver coated copper filler or nickel, which is more reliable.
[0023] 導電性フィラーの配合割合は、フィラーの形状等にも左右されるが、難燃性榭脂 10 0重量部に対して 10〜: LOO重量部とするのが好ましぐさらに好ましくは 15〜50重量 部とするのがよい。 100重量部を超えると、グランド回路 (銅箔)への接着性が低下し 、シールドフレキシブルプリント配線板(以下、シールド FPCとする)等の可撓性が悪 くなるとともに難燃性能が低下する。また、 10重量部を下回ると導電性が著しく低下 するとともに難燃性能が低下する。金属フィラーの形状は、球状、針状、繊維状、フレ ーク状、榭脂状のいずれであってもよい。 [0023] The blending ratio of the conductive filler depends on the filler shape and the like, but is preferably 10 to: LOO parts by weight with respect to 100 parts by weight of the flame-retardant resin. It should be 15-50 parts by weight. If it exceeds 100 parts by weight, the adhesion to the ground circuit (copper foil) will decrease, the flexibility of the shield flexible printed wiring board (hereinafter referred to as shielded FPC) will deteriorate, and the flame retardancy will decrease. . On the other hand, when the amount is less than 10 parts by weight, the conductivity is remarkably lowered and the flame retardancy is lowered. The shape of the metal filler may be any of spherical, needle-like, fibrous, flake-like, and greave-like.
[0024] 上記実施形態によれば、耐熱性の高!、熱硬化性榭脂を用いて 、るので、後の工程 でリフロー処理などされても問題なく使用可能な難燃性のシールドフィルムを提供で きる。 [0024] According to the above embodiment, since the heat-resistant and thermosetting resin is used, a flame-retardant shield film that can be used without any problem even if it is subjected to a reflow process in a later step. Can be provided.
[0025] また、 35 μ m以下と非常に薄!、フィルムであっても、 UL94の垂直燃焼性試験 (VT M規格)に合格するとともに、基材などへの密着性が高い上、可撓性及び保存安定 性にも優れたシールドフィルムを確実に提供できる。  [0025] In addition, it is very thin at 35 μm or less! Even for films, it passes the UL94 vertical flammability test (VT M standard), has high adhesion to substrates, and is flexible. It is possible to reliably provide a shield film that is excellent in stability and storage stability.
[0026] さらに、難燃性榭脂がリンを含有しているものであるので、確実に高難燃性のシー ルドフィルムを提供できる。  [0026] Furthermore, since the flame retardant resin contains phosphorus, a highly flame retardant shield film can be provided reliably.
[0027] 力!]えて、プリント回路に本実施形態のシールドフィルムを貼り合せた際、回路のパタ 一ンと本発明のシールドフィルムにおける金属層とを導電接続させるので、このとき、 電磁波シールド性を発揮できる。  [0027] Power! In addition, when the shield film of this embodiment is bonded to a printed circuit, the circuit pattern and the metal layer of the shield film of the present invention are conductively connected, and at this time, the electromagnetic wave shielding property can be exhibited.
[0028] なお、本発明のシールドフィルムは、 FPC、 COF (チップオンフレックス)、 RF (リジ ットフレックスプリント板)、多層フレキシブル基板、リジット基板などに利用できるが、 必ずしもこれらに限られない。なお、 FPCに貼付した場合の構造としては、例えば、 図 2に示すようなシールドプリント配線板 10となる。ここで、 5はベースフィルム、 6はプ リント回路、 7は絶縁フィルム、 8は基体フィルムである。  [0028] The shield film of the present invention can be used for FPC, COF (chip on flex), RF (rigid flex printed board), multilayer flexible board, rigid board, etc., but is not necessarily limited thereto. In addition, as a structure when affixed to FPC, for example, a shield printed wiring board 10 as shown in FIG. 2 is obtained. Here, 5 is a base film, 6 is a printed circuit, 7 is an insulating film, and 8 is a base film.
[0029] プリント回路 6の表面は、信号回路 6aとグランド回路 6bとからなり、グランド回路 6b の少なくとも一部(非絶縁部) 6cを除いて、絶縁フィルム 7によって被覆されている。 絶縁フィルム 7は、内部にシールドフィルム 1の接着剤層 4の一部が流れ込んでいる 絶縁除去部 7aを有している。これにより、グランド回路 6bと金属層 3とは電気的に接 続される。 [0029] The surface of the printed circuit 6 includes a signal circuit 6a and a ground circuit 6b. Is covered with an insulating film 7 except for at least a part (non-insulating part) 6c. The insulating film 7 has an insulating removal portion 7a into which a part of the adhesive layer 4 of the shield film 1 flows. As a result, the ground circuit 6b and the metal layer 3 are electrically connected.
[0030] ここで、ベースフィルム 5とプリント回路 6との接合は、接着剤によって接着しても良 いし、接着剤を用いない、所謂、無接着剤型銅張積層板と同様に接合しても良い。ま た、絶縁フィルム 7は、可撓性絶縁フィルムを接着剤を用いて張り合わせても良いし、 感光性絶縁樹脂の塗工、乾燥、露光、現像、熱処理などの一連の手法によって形成 しても良い。また、更には、基体フィルム 8は、ベースフィルムの一方の面にのみプリ ント回路を有する片面型 FPC、ベースフィルムの両面にプリント回路を有する両面型 FPC、この様な FPCが複数層積層された多層型 FPC、多層部品搭載部とケーブル 部を有するフレタスボード (登録商標)や、多層部を構成する部材を硬質なものとした フレックスリジッド基板、或いは、テープキャリアパッケージの為の TABテープ等を適 宜採用して実施することができる。  [0030] Here, the base film 5 and the printed circuit 6 may be joined together with an adhesive, or in the same manner as a so-called non-adhesive copper clad laminate without using an adhesive. Also good. The insulating film 7 may be formed by a series of techniques such as application, drying, exposure, development, and heat treatment of a photosensitive insulating resin by bonding a flexible insulating film using an adhesive. good. Furthermore, the base film 8 has a single-sided FPC having a printed circuit only on one side of the base film, a double-sided FPC having a printed circuit on both sides of the base film, and a plurality of such FPCs laminated. Suitable for multilayer FPC, Fretasboard (registered trademark) with multilayer component mounting part and cable part, flex-rigid board with rigid members constituting multilayer part, or TAB tape for tape carrier package It can be carried out with appropriate adoption.
[0031] また、ベースフィルム 5、絶縁フィルム 6はいずれもエンジニアリングプラスチックから なる。例えば、ポリプロピレン、架橋ポリエチレン、ポリエステル、ポリベンツイミダゾー ル、ポリイミド、ポリイミドアミド、ポリエーテルイミド、ポリフエ-レンサルファイド(PPS) 等の樹脂が挙げられる。あまり耐熱性を要求されない場合は、安価なポリエステルフ イルムが好ましぐ難燃性が要求される場合においては、ポリフエ-レンサルファイドフ イルム、さらに耐熱性が要求される場合にはポリイミドフィルムが好ましい。  [0031] The base film 5 and the insulating film 6 are both made of engineering plastic. Examples thereof include resins such as polypropylene, crosslinked polyethylene, polyester, polybenzimidazole, polyimide, polyimide amide, polyether imide, and polyphenylene sulfide (PPS). When heat resistance is not required, a low-cost polyester film is preferred, and when flame retardancy is required, polyphenylene sulfide film is preferred, and when heat resistance is required, polyimide film is preferred. .
[0032] 上記構成により、グランド回路 6bのパターンと上記実施形態のシールドフィルム 1に おける金属層 3とを導電接続させるので、電磁波シールド性に優れたシールドプリン ト配線板 10を提供できる。また、 35 m以下と非常に薄いフィルムであっても、 UL9 4の垂直燃焼性試験 (V規格)に合格するシールドプリント配線板を提供できる。また 、基体フィルム 8が FPCであるので、電磁波シールド性に優れるとともに、可撓性を有 していることから、曲げる必要がある部位において用いることができるシールドプリント 配線板 10を提供できる。  [0032] With the above configuration, since the pattern of the ground circuit 6b and the metal layer 3 in the shield film 1 of the above embodiment are conductively connected, the shield printed wiring board 10 having excellent electromagnetic shielding properties can be provided. In addition, even a very thin film of 35 m or less can provide a shield printed wiring board that passes the UL94 vertical flammability test (V standard). In addition, since the base film 8 is FPC, it has excellent electromagnetic wave shielding properties and has flexibility, so that it is possible to provide the shield printed wiring board 10 that can be used in a portion that needs to be bent.
実施例 [0033] 図 1に示すシールドフィルム 1と同様の構成の実施例 1〜4及び比較例 1〜4に係る シールドフィルムを作製した。以下、これらの実施例 1〜4及び比較例 1〜4に係るシ 一ルドフィルムについて説明する。なお、実施例 1〜4及び比較例 1〜4に係るシー ルドフィルムにおいて、絶縁層 2として厚さが 5 μ mのエポキシ榭脂からなるもの、金 属層 3として厚さが 0. 1 /x mの銀蒸着層を用いた。接着剤層 4の厚さは で、リ ン含有エポキシ樹脂 (難燃性榭脂) 100重量部に、メラミンシァヌレートからなる難燃 剤を所定量ずつ添加し、さらに銀コート銅粉力もなる導電性フィラーを 20重量部ずつ 添加したものを使用した (表 1参照)。 Example [0033] Shield films according to Examples 1 to 4 and Comparative Examples 1 to 4 having the same configuration as the shield film 1 shown in Fig. 1 were produced. Hereinafter, the shield films according to Examples 1 to 4 and Comparative Examples 1 to 4 will be described. In the shield films according to Examples 1 to 4 and Comparative Examples 1 to 4, the insulating layer 2 is made of an epoxy resin having a thickness of 5 μm, and the metal layer 3 has a thickness of 0.1 / 1 /. An xm silver deposition layer was used. Adhesive layer 4 has a thickness of 100 parts by weight of a phosphorus-containing epoxy resin (flame retardant resin), and a predetermined amount of a flame retardant composed of melamine cyanurate is added to each layer, and the silver-coated copper powder is also conductive. The ones added with 20 parts by weight of the filler were used (see Table 1).
[0034] [表 1]  [0034] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0035] (実施例 1〜4及び比較例 1〜4のシールドフィルムの作製方法) (Method for producing shield films of Examples 1 to 4 and Comparative Examples 1 to 4)
まず、絶縁層 2の片面に、金属層 3と、上記表 1の各実施例及び各比較例の成分を 有する接着剤層 4とを設けて、各実施例及び各比較例のシールドフィルムとした。な お、難燃性試験及び可撓性試験以外の試験では、実施例 1〜4及び比較例 1〜4の シールドフィルムを評価するために、各実施例及び各比較例のシールドフィルムを、 170°Cで 3分間、 3MPaプレスして各試験の基材に貼り合わせた後、 150°Cで 60分 間、アフターキュア (後硬化)したものを用いている。  First, the metal layer 3 and the adhesive layer 4 having the components of each Example and each Comparative Example in Table 1 above were provided on one surface of the insulating layer 2 to obtain shield films for each Example and each Comparative Example. . In the tests other than the flame retardancy test and the flexibility test, in order to evaluate the shield films of Examples 1 to 4 and Comparative Examples 1 to 4, the shield films of each Example and each Comparative Example were used. After 3MPa pressing at 3 ° C for 3 minutes and bonding to the substrate of each test, after-curing at 150 ° C for 60 minutes is used.
[0036] (耐リフロー試験の方法) 実施例 1〜4及び比較例 1〜4のシールドフィルムについて、以下の耐リフロー試験 を行った。基材となる銅貼り積層板 (二ツカン工業 (株)製 F—30VC1)の銅箔に、 接着剤層が接着するように各シールドフィルムを貼り合わせ、シールドフィルムの絶 縁層側を上にして IRリフロー炉 (ピーク温度: 265°C)を通した。その後、シールドフィ ルムの絶縁層表面の膨れ、剥がれ等の外観異状の有無を目視によって評価を行つ た。膨れ及び剥がれ等の外観異状が確認されなカゝつたものを〇、膨れ及び剥がれ等 の外観異状が確認されたものを Xとして、結果を表 1に示した。 [0036] (Reflow resistance test method) The following reflow resistance test was performed on the shield films of Examples 1 to 4 and Comparative Examples 1 to 4. Each shield film is bonded to the copper foil of the copper-clad laminate (F-30VC1 made by Futtsukan Kogyo Co., Ltd.) as the base material so that the adhesive layer adheres, with the insulation layer side of the shield film facing up. And passed through an IR reflow furnace (peak temperature: 265 ° C). Thereafter, the appearance of abnormal appearance such as swelling and peeling of the insulating layer surface of the shield film was visually evaluated. The results are shown in Table 1, with 〇 indicating that there are no abnormalities such as blistering and peeling, and X indicating that there are abnormalities such as blistering and peeling.
[0037] (難燃性試験 (VTM規格)の方法)  [0037] (Flame retardance test (VTM standard) method)
実施例 1〜4及び比較例 1〜4のシールドフィルムにつ 、て、以下の難燃性試験を 行った。まず、上記作製方法を用いて、各シールドフィルムの接着剤層表面に転写 フィルムを形成した後、各シールドフィルム単体を 170°Cで 3分間、 3MPaプレスした 。次に、転写フィルムを剥離して、 150°Cで 60分間、アフターキュアを行った。そして 、各シールドフィルムをマンドレルに巻き付けて丸めた後、取り外し、それぞれについ て、 UL— 94の垂直燃焼性試験 (VTM規格)に準拠して難燃性の評価を行った。 V TM— 0に合格したものを〇、不合格のものを Xとして、結果を表 1に示した。  The following flame retardancy tests were conducted on the shield films of Examples 1 to 4 and Comparative Examples 1 to 4. First, after the transfer film was formed on the surface of the adhesive layer of each shield film using the above production method, each shield film alone was pressed at 170 ° C. for 3 minutes for 3 MPa. Next, the transfer film was peeled off and after-curing was performed at 150 ° C. for 60 minutes. Each shield film was wound around a mandrel, rolled, removed, and each was evaluated for flame retardancy according to the UL-94 vertical flammability test (VTM standard). The results are shown in Table 1, where V TM-0 passed 0 and X failed.
[0038] (難燃性試験 (V規格)の方法)  [0038] (Method of flame retardancy test (V standard))
実施例 1〜4及び比較例 1〜4のシールドフィルムをそれぞれ厚さが 25 μ mのポリイ ミドフィルム (東レ.デュポン (株)製 カプトン 100H)に貼り合わせたものについて、 U L— 94の垂直燃焼性試験 (V規格)に準拠して難燃性の評価を行った。 V— 0に合格 したものを〇、不合格のものを Xとして、結果を表 1に示した。  The UL-94 vertical combustion was applied to the shield films of Examples 1 to 4 and Comparative Examples 1 to 4 bonded to a polyimide film with a thickness of 25 μm (Kapton 100H manufactured by Toray DuPont Co., Ltd.). The flame retardancy was evaluated according to the property test (V standard). Table 1 shows the results when V—0 passed and O, and X failed.
[0039] (密着性試験の方法)  [0039] (Adhesion test method)
実施例 1〜4及び比較例 1〜4のシールドフィルムにつ 、て、以下の密着性試験を 行った。まず、上記作製方法を用いて、基材となる厚さが 25 mのポリイミドフィルム( 東レ 'デュポン (株)製 カプトン 100H)に、接着剤層が接着するように各シールドフィ ルムを貼り合わせた。次に、ポリイミドフィルムを 180° 剥離し、シールドフィルムの強 度 (密着性)を測定した。この強度が 4. ONZcm以上のものを〇(合格)、 4. ON/c m未満のものを X (不合格)として、結果を表 1に示した。  The following adhesion tests were performed on the shield films of Examples 1 to 4 and Comparative Examples 1 to 4. First, using the above production method, each shield film was bonded to a polyimide film with a thickness of 25 m (Kapton 100H, manufactured by Toray DuPont Co., Ltd.) so that the adhesive layer would adhere. . Next, the polyimide film was peeled 180 °, and the strength (adhesion) of the shield film was measured. The results are shown in Table 1 with a strength of 4. ONZcm or higher as ○ (passed) and 4. less than ON / cm as X (failed).
[0040] 上記結果から、プリント回路などへの密着性が低下することなぐ後の工程でリフロ 一実装などされても問題なく使用可能な難燃性のシールドフィルム、及び、これを用 いたシールドプリント配線板を提供できることがわかる。 [0040] From the above results, it is necessary to perform reflow in a later process without lowering the adhesion to a printed circuit or the like. It can be seen that a flame-retardant shield film that can be used without problems even if it is mounted, and a shield printed wiring board using the same can be provided.
[0041] なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、 上記実施形態に限定されるものではな ヽ。  It should be noted that the present invention can be modified in design without departing from the scope of the claims, and is not limited to the above embodiment.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明の実施形態に係るシールドフィルムの一部横断面図。 FIG. 1 is a partial cross-sectional view of a shield film according to an embodiment of the present invention.
[図 2]図 1のシールドフィルムを貼付した FPCの一部横断面図。  FIG. 2 is a partial cross-sectional view of an FPC with the shield film of FIG.
符号の説明  Explanation of symbols
1 シールドフィルム  1 Shield film
2 絶縁層  2 Insulating layer
3 金属層  3 Metal layer
4 接着剤層  4 Adhesive layer
5 ベースフイノレム  5 Base Finolem
6 プリント回路  6 Printed circuit
6a 信号回路  6a Signal circuit
6b グランド回路  6b Ground circuit
6c 非絶縁部  6c Non-insulated part
7 絶縁フィルム  7 Insulating film
7a 絶縁除去部  7a Insulation removal part
8 基体フィルム  8 Substrate film
10 シールドプリント配線板  10 Shield printed wiring board

Claims

請求の範囲 The scope of the claims
[1] 絶縁層と耐熱性の高い難燃性榭脂を含有するシールド層とを有することを特徴とす るシールドフィルム。  [1] A shield film comprising an insulating layer and a shield layer containing a highly heat-resistant flame retardant resin.
[2] 前記シールド層が、前記絶縁層の少なくとも片面に形成された 1層以上の等方導 電性接着剤層を有することを特徴とする請求項 1に記載のシールドフィルム。  [2] The shield film according to claim 1, wherein the shield layer has one or more isotropic conductive adhesive layers formed on at least one surface of the insulating layer.
[3] 前記シールド層が、前記絶縁層の少なくとも片面に形成された 1層以上の金属層と 、 1層以上の異方導電性接着剤層とを有することを特徴とする請求項 1に記載のシー ノレドフイノレム。  3. The shield layer according to claim 1, wherein the shield layer has one or more metal layers formed on at least one surface of the insulating layer and one or more anisotropic conductive adhesive layers. Noh.
[4] 前記導電性接着剤層が難燃剤をさらに含有するものであり、  [4] The conductive adhesive layer further contains a flame retardant,
前記難燃剤が、前記難燃性榭脂 100重量部に対して 10〜180重量部配合されて いることを特徴とする請求項 1〜3のいずれ力 1項に記載のシールドフィルム。  The shield film according to any one of claims 1 to 3, wherein the flame retardant is blended in an amount of 10 to 180 parts by weight with respect to 100 parts by weight of the flame retardant resin.
[5] 前記難燃性樹脂が、リン含有難燃性樹脂を含有して!/ヽることを特徴とする請求項 1[5] The flame retardant resin contains a phosphorus-containing flame retardant resin!
〜3の!、ずれか 1項に記載のシールドフィルム。 The shield film according to item 1 to ~ 3!
[6] 請求項 1〜3のいずれ力 1項に記載のシールドフィルムを、 1層以上のプリント回路 を含む基体の少なくとも片面上に有することを特徴とするシールドプリント配線板。 [6] A shield printed wiring board comprising the shield film according to any one of claims 1 to 3 on at least one surface of a substrate including one or more printed circuits.
[7] 前記基体がフレキシブルプリント配線板であることを特徴とする請求項 6記載のシー ルドプリント配線板。 7. The shielded printed wiring board according to claim 6, wherein the substrate is a flexible printed wiring board.
PCT/JP2007/056182 2006-03-29 2007-03-26 Shield film and shield printed wiring board WO2007119513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-091709 2006-03-29
JP2006091709 2006-03-29

Publications (1)

Publication Number Publication Date
WO2007119513A1 true WO2007119513A1 (en) 2007-10-25

Family

ID=38609291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056182 WO2007119513A1 (en) 2006-03-29 2007-03-26 Shield film and shield printed wiring board

Country Status (2)

Country Link
TW (1) TW200803664A (en)
WO (1) WO2007119513A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188083A (en) * 2008-02-05 2009-08-20 Murata Mfg Co Ltd Electromagnetic shielding sheet and electromagnetic shielding method
US9723708B2 (en) 2012-07-18 2017-08-01 Kaneka Corporation Conductive-layer-integrated flexible printed circuit board
JP6465243B1 (en) * 2018-07-30 2019-02-06 東洋インキScホールディングス株式会社 Electromagnetic shielding film, printed wiring board and electronic equipment.
WO2021004177A1 (en) * 2019-07-05 2021-01-14 海宁卓泰电子材料有限公司 Shielding film having multi-layered metal structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237645B2 (en) 2011-04-28 2016-01-12 Kaneka Corporation Flexible printed circuit integrated with conductive layer
US9072177B2 (en) * 2011-07-20 2015-06-30 Kaneka Corporation Conductive layer integrated FPC
KR20140099258A (en) * 2011-11-24 2014-08-11 다츠다 덴센 가부시키가이샤 Shield film, shielded printed wiring board, and method for manufacturing shield film
TWI586230B (en) * 2012-07-18 2017-06-01 鐘化股份有限公司 Reinforcing plate-integrated flexible printed circuit
TWI602478B (en) * 2013-05-28 2017-10-11 大自達電線股份有限公司 Shape retaining film and shape retaining flexible wiring board containing the shape retaining film
CN103747613A (en) * 2014-01-15 2014-04-23 深圳市三惠科技有限公司 Applicable electromagnetic wave protection film and manufacturing method thereof
KR101862121B1 (en) * 2015-02-02 2018-05-29 토요잉크Sc홀딩스주식회사 Electromagnetic wave shielding sheet, printed wiring board and electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279831A (en) * 2001-03-19 2002-09-27 Dainippon Printing Co Ltd Shield material for flat cable and flat cable with shield
JP2004095566A (en) * 2002-07-08 2004-03-25 Tatsuta Electric Wire & Cable Co Ltd Shield film, shielded flexible printed wiring board, and their manufacturing methods
JP2005109160A (en) * 2003-09-30 2005-04-21 Tokai Rubber Ind Ltd Electromagnetic shielding tape and shielding flat cable using it
JP2006052275A (en) * 2004-08-10 2006-02-23 Hitachi Chem Co Ltd Resin composition, substrate with resin and laminated board with conductive layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279831A (en) * 2001-03-19 2002-09-27 Dainippon Printing Co Ltd Shield material for flat cable and flat cable with shield
JP2004095566A (en) * 2002-07-08 2004-03-25 Tatsuta Electric Wire & Cable Co Ltd Shield film, shielded flexible printed wiring board, and their manufacturing methods
JP2005109160A (en) * 2003-09-30 2005-04-21 Tokai Rubber Ind Ltd Electromagnetic shielding tape and shielding flat cable using it
JP2006052275A (en) * 2004-08-10 2006-02-23 Hitachi Chem Co Ltd Resin composition, substrate with resin and laminated board with conductive layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188083A (en) * 2008-02-05 2009-08-20 Murata Mfg Co Ltd Electromagnetic shielding sheet and electromagnetic shielding method
US9723708B2 (en) 2012-07-18 2017-08-01 Kaneka Corporation Conductive-layer-integrated flexible printed circuit board
US10045433B2 (en) 2012-07-18 2018-08-07 Kaneka Corporation Conductive-layer-integrated flexible printed circuit board
JP6465243B1 (en) * 2018-07-30 2019-02-06 東洋インキScホールディングス株式会社 Electromagnetic shielding film, printed wiring board and electronic equipment.
JP2020021759A (en) * 2018-07-30 2020-02-06 東洋インキScホールディングス株式会社 Electromagnetic wave shielding film, printed wiring board, and electronic device
WO2021004177A1 (en) * 2019-07-05 2021-01-14 海宁卓泰电子材料有限公司 Shielding film having multi-layered metal structure
US11765875B2 (en) 2019-07-05 2023-09-19 Haining Zhuotai Electronic Materials Co., Ltd Shielding film having multi-layered metal structure

Also Published As

Publication number Publication date
TW200803664A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
JP4914262B2 (en) Shield film and shield printed wiring board
WO2007119513A1 (en) Shield film and shield printed wiring board
KR102500417B1 (en) resin composition
KR101561132B1 (en) Shield film for printed wiring board, and printed wiring board
CN111726936B (en) Electromagnetic wave shielding wired circuit board and electronic apparatus
JP2013010955A (en) Flame-retardant resin composition and metal-clad laminate for flexible printed-wiring board, cover lay, adhesive sheet for flexible printed-wiring board, and flexible printed-wiring board using the resin composition
KR102656740B1 (en) Resin sheet with support
US20070275249A1 (en) Substrate for flexible display devices
JP2007051212A (en) Adhesive composition and coverlay film and adhesive sheet using the same
KR20160150587A (en) Resin composition
JP2009144052A (en) Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board
JP2009007424A (en) Adhesive composition, and adhesive sheet and cover lay film using the same
JP2000290616A (en) Electroconductive adhesive composition, electroconductive adhesive sheet and electromagnetic wave shielding material and electromagnetic wave shielding flexible printed circuit board using the same
JP2012097197A (en) Flame-retardant adhesive composition and adhesive sheet and coverlay film using the same
JP6650660B2 (en) Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet
JP2008201884A (en) Flame-retardant adhesive composition, flexible copper-clad laminated plate, cover-lay, and adhesive sheet
JP2007051211A (en) Adhesive composition and coverlay film and adhesive sheet using the same
KR20090078051A (en) Adhesive composition for halogen-free coverlay film and coverlay film using the same
WO2020121734A1 (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and printed wiring board
JP4425118B2 (en) Flame retardant resin composition, metal-clad laminate for flexible printed wiring board using the composition, coverlay, adhesive sheet, and flexible printed wiring board
JP4238172B2 (en) Flame retardant resin composition and metal-clad laminate for flexible printed wiring board using the flame retardant resin composition
JP2012097195A (en) Flame-retardant adhesive composition and adhesive sheet and coverlay film using the same
JP2008195846A (en) Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
US11758705B2 (en) Electromagnetic wave shielding film
KR101582492B1 (en) Adhesive composition and coverlay film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739620

Country of ref document: EP

Kind code of ref document: A1