JP6650660B2 - Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet - Google Patents

Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet Download PDF

Info

Publication number
JP6650660B2
JP6650660B2 JP2014008158A JP2014008158A JP6650660B2 JP 6650660 B2 JP6650660 B2 JP 6650660B2 JP 2014008158 A JP2014008158 A JP 2014008158A JP 2014008158 A JP2014008158 A JP 2014008158A JP 6650660 B2 JP6650660 B2 JP 6650660B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
wiring board
printed wiring
shielding sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014008158A
Other languages
Japanese (ja)
Other versions
JP2015138813A5 (en
JP2015138813A (en
Inventor
孝洋 松沢
孝洋 松沢
健二郎 丸山
健二郎 丸山
英宣 小林
英宣 小林
翔太 井上
翔太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyochem Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2014008158A priority Critical patent/JP6650660B2/en
Publication of JP2015138813A publication Critical patent/JP2015138813A/en
Publication of JP2015138813A5 publication Critical patent/JP2015138813A5/ja
Application granted granted Critical
Publication of JP6650660B2 publication Critical patent/JP6650660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプリント配線板等の配線板に貼着(接合)して使用される電磁波シールドシート、および磁波シールドシートを配線板に接合してなる電磁波シールド層付きプリント配線板に関する。   The present invention relates to an electromagnetic wave shielding sheet used by being attached (joined) to a wiring board such as a printed wiring board, and a printed wiring board with an electromagnetic wave shielding layer formed by joining a magnetic wave shielding sheet to a wiring board.

デジタルカメラや携帯電話等の電子機器の小型化・薄型化が進行している。それに伴って、これらの電子機器に搭載されるプリント配線板も小型化・薄型化することが求められている。また、プリント配線板は、ノイズ低減のため電磁波シールド層を有することが一般的である(以下、電磁波シールド層を備えるプリント配線板を、「電磁波シールド層付きプリント配線板」と言う)。
近年、プリント配線板の配線回路(信号配線)は、高速かつ大容量の信号の伝送が求められており、配線回路に流す信号をより高周波にする必要がある。そのため、周波数が数十GHz帯の高速デジタル信号の使用においても、高いシールド性と低い伝送損失が要求されるようになってきている。
さらに、放射電磁ノイズ(EMI)に関する国際規格である「CISPR22」が改定され、抑制すべき電磁ノイズの上限周波数が、従来の1GHzから6GHzに拡大されることになり、さらなる電磁ノイズに対する対策が求められている。
Electronic devices such as digital cameras and mobile phones are becoming smaller and thinner. Accordingly, printed wiring boards mounted on these electronic devices have also been required to be reduced in size and thickness. Further, a printed wiring board generally has an electromagnetic wave shielding layer for reducing noise (hereinafter, a printed wiring board provided with an electromagnetic wave shielding layer is referred to as a "printed wiring board with an electromagnetic wave shielding layer").
In recent years, a wiring circuit (signal wiring) of a printed wiring board has been required to transmit a high-speed and large-capacity signal, and a signal to be passed through the wiring circuit needs to have a higher frequency. Therefore, even when a high-speed digital signal having a frequency of several tens of GHz is used, a high shielding property and a low transmission loss are required.
Furthermore, the international standard “CISPR22” concerning radiated electromagnetic noise (EMI) has been revised, and the upper limit frequency of electromagnetic noise to be suppressed has been expanded from the conventional 1 GHz to 6 GHz, and further measures against electromagnetic noise are required. Have been.

特開2011−07139号公報JP 2011-07139 A 特開WO2013−077108号公報JP-A-2013-77108

しかしながら、特許文献1の電磁波シールドシートは、蒸着膜を必須の構成としている。サブミクロン程度の極薄の蒸着膜を用いた電磁波シールドシート付きプリント配線板の配線回路に高周波の信号を流すと、導体損失が大きくなってしまう。一方、特許文献2の電磁波シールドシートは、金属層を必須の構成としている。そのため、電磁波シールドシートとして剛直となり、加工適正(打ち抜き加工、圧着加工等)が低下する。
ところで、電磁波シールドシート付きプリント配線板は、鉛フリーハンダリフロー工程を経る。また、電磁波シールドシート付きプリント配線板が高湿度下に置かれると、ガスバリア性が高い蒸着膜や金属層を有していても絶縁層や接着剤層はその周辺部から吸湿してしまう。前記リフロー工程時の短時間加熱の際に接着剤層中の水分は爆発的に揮発する。電磁波シールドシートが蒸着膜や金属層を有する場合、蒸着膜や金属層が「蓋」となり、発泡するという問題もある。
However, the electromagnetic wave shielding sheet of Patent Document 1 has a vapor deposited film as an essential configuration. When a high-frequency signal is passed through a wiring circuit of a printed wiring board with an electromagnetic shielding sheet using an ultra-thin evaporated film of about submicron, conductor loss increases. On the other hand, the electromagnetic wave shield sheet of Patent Document 2 has a metal layer as an essential configuration. For this reason, the electromagnetic wave shielding sheet becomes rigid, and processing adequacy (punching, pressing, etc.) is reduced.
By the way, a printed wiring board with an electromagnetic wave shielding sheet undergoes a lead-free solder reflow process. Further, when the printed wiring board with the electromagnetic wave shielding sheet is placed under high humidity, the insulating layer or the adhesive layer absorbs moisture from the peripheral portion even if it has a vapor deposition film or a metal layer having a high gas barrier property. The water in the adhesive layer volatilizes explosively during short-time heating in the reflow step. When the electromagnetic wave shielding sheet has a vapor-deposited film or a metal layer, there is a problem that the vapor-deposited film or the metal layer becomes a “lid” and foams.

本発明は、優れた伝送特性を有し、吸湿後鉛フリーハンダリフロー時の高温に曝されても発泡しない電磁波シールドシート付きプリント配線板の提供を目的とする。   An object of the present invention is to provide a printed wiring board with an electromagnetic wave shielding sheet that has excellent transmission characteristics and does not foam even when exposed to high temperatures during lead-free solder reflow after moisture absorption.

本発明は、絶縁層と、導電層と、接着剤層を含む電磁波シールドシートであって、
前記導電層は、樹脂と導電性フィラーを含有し、該導電層は表面抵抗が100[mΩ/□]以下で、かつ導電率が1×10[S/m]以上であることを特徴とする電磁波シールドシートに関する。
The present invention is an electromagnetic wave shielding sheet including an insulating layer, a conductive layer, and an adhesive layer,
The conductive layer contains a resin and a conductive filler, and the conductive layer has a surface resistance of 100 [mΩ / □] or less and a conductivity of 1 × 10 6 [S / m] or more. To an electromagnetic wave shielding sheet.

また、本発明は、プリント配線板の少なくとも一方の面に、前記の電磁波シールドシートを貼着してなる、電磁波シールドシート付きプリント配線板に関する。   The present invention also relates to a printed wiring board with an electromagnetic wave shielding sheet, wherein the electromagnetic wave shielding sheet is attached to at least one surface of the printed wiring board.

さらに、本発明は、前記の電磁波シールドシート付きプリント配線板を用いてなる電子機器に関する。前記電子機器は、周波数が1MHzから20GHzの範囲の信号を伝送することが好ましい。   Furthermore, the present invention relates to an electronic device using the printed wiring board with the electromagnetic wave shielding sheet described above. It is preferable that the electronic device transmits a signal having a frequency in a range of 1 MHz to 20 GHz.

本発明により、十分な接着特性に加え、伝送特性に優れ、可撓性・加工性に富む電磁波シールドシートを提供でき、吸湿したとしても鉛フリーハンダリフロー時の高温時に発泡しない電磁波シールドシート付きプリント配線板を提供できる。   According to the present invention, in addition to sufficient adhesive properties, it is possible to provide an electromagnetic wave shielding sheet having excellent transmission characteristics and excellent flexibility and workability, and a print with an electromagnetic wave shielding sheet that does not foam at high temperatures during lead-free solder reflow even if it absorbs moisture. A wiring board can be provided.

本発明の電磁波シールド性フィルムは、絶縁層と導電層と接着層を含む。接着剤層は電磁波シールド性フィルムの一方の面に位置する。
まず、絶縁層に関して説明する。
絶縁層は、絶縁性の樹脂を用いることが好ましい。例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂などから形成したフィルムや、ポリエステル、ポリカーボネート、ポリイミド、ポリフェニレンサルファイドなどのプラスチックフィルムを使用することができる。また、電磁波シールド性フィルムに、絶縁層を2層以上使用していても良い。
The electromagnetic wave shielding film of the present invention includes an insulating layer, a conductive layer, and an adhesive layer. The adhesive layer is located on one surface of the electromagnetic wave shielding film.
First, the insulating layer will be described.
It is preferable to use an insulating resin for the insulating layer. For example, a film formed from an acrylic resin, a urethane resin, a polyester resin, an epoxy resin, a phenol resin, a polycarbonate resin, or the like, or a plastic film such as polyester, polycarbonate, polyimide, or polyphenylene sulfide can be used. Further, two or more insulating layers may be used for the electromagnetic wave shielding film.

絶縁層の厚みは、用途に応じて適宜設計可能であるが、0.5μ m〜25μmの範囲である事が好ましく、より好ましくは、2μm〜10μmである。絶縁層の厚みが、0.5μm以上とすることにより絶縁性が十分となる。また、25μm以下とすることにより、電磁波シールドシート付きフレキシブルプリント配線板の屈曲性が良好となる。   The thickness of the insulating layer can be appropriately designed depending on the application, but is preferably in the range of 0.5 μm to 25 μm, and more preferably 2 μm to 10 μm. When the thickness of the insulating layer is 0.5 μm or more, the insulating property becomes sufficient. When the thickness is 25 μm or less, the flexibility of the flexible printed wiring board with the electromagnetic wave shielding sheet is improved.

絶縁層中には、必要に応じてシランカップリング剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤,充填剤, 難燃剤等を添加しても良い。   Add silane coupling agent, antioxidant, pigment, dye, tackifier resin, plasticizer, ultraviolet absorber, defoamer, leveling regulator, filler, flame retardant, etc. as necessary in the insulating layer You may.

次に、本発明で用いる接着剤層に関して説明する。本発明で用いる接着層は、熱可塑性樹脂または硬化性樹脂を使用できる。硬化性樹脂は、熱硬化性樹脂または光硬化性樹脂が好ましい。   Next, the adhesive layer used in the present invention will be described. For the adhesive layer used in the present invention, a thermoplastic resin or a curable resin can be used. The curable resin is preferably a thermosetting resin or a photocurable resin.

熱可塑性樹脂としては、ポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、テルペン樹脂、石油樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、液晶ポリマー、フッ素樹脂などが挙げられる。特に限定するものではないが、伝送損失の観点から低誘電率、低誘電正接の材料が、特性インピーダンスの観点から低誘電率の材料が好ましく、液晶ポリマーやフッ素含有樹脂などが挙げられる。   As the thermoplastic resin, polyolefin resin, vinyl resin, styrene / acrylic resin, diene resin, terpene resin, petroleum resin, cellulose resin, polyamide resin, polyurethane resin, polyester resin, polycarbonate resin, polyimide resin, Liquid crystal polymers, fluororesins and the like can be mentioned. Although not particularly limited, a material having a low dielectric constant and a low dielectric loss tangent is preferable from the viewpoint of transmission loss, and a material having a low dielectric constant is preferable from the viewpoint of characteristic impedance, and examples thereof include a liquid crystal polymer and a fluorine-containing resin.

熱硬化性樹脂は、加熱による架橋反応に利用できる官能基、例えば、水酸基、フェノール性水酸基、メトキシメチル基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、ブロック化カルボキシル基、シラノール基などを1分子中に1つ以上有する樹脂であればよく、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。また、本発明における熱硬化性樹脂は、上記の樹脂に加え、必要に応じて上記の官能基と反応し化学的架橋を形成する樹脂または低分子化合物などの所謂「硬化剤」を含むことが好ましい。   The thermosetting resin is a functional group that can be used for a crosslinking reaction by heating, for example, a hydroxyl group, a phenolic hydroxyl group, a methoxymethyl group, a carboxyl group, an amino group, an epoxy group, an oxetanyl group, an oxazoline group, an oxazine group, an aziridine group, and a thiol. Any resin having at least one group, isocyanate group, blocked isocyanate group, blocked carboxyl group, silanol group, etc. in one molecule may be used. For example, acrylic resin, maleic acid resin, polybutadiene resin, polyester resin, polyurethane Resins, epoxy resins, oxetane resins, phenoxy resins, polyimide resins, polyamide resins, phenolic resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins, fluorine resins, and the like. In addition, the thermosetting resin in the present invention may contain a so-called “curing agent” such as a resin or a low-molecular compound that reacts with the above-described functional group to form a chemical crosslink, if necessary, in addition to the above-mentioned resin. preferable.

光硬化性樹脂は、光により架橋反応を起こす不飽和結合を1分子中に1つ以上有する樹脂であればよく、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。   The photocurable resin may be any resin having one or more unsaturated bonds in one molecule that cause a cross-linking reaction by light. For example, acrylic resin, maleic acid resin, polybutadiene resin, polyester resin, polyurethane resin, epoxy resin Resin, oxetane resin, phenoxy resin, polyimide resin, polyamide resin, phenolic resin, alkyd resin, amino resin, polylactic acid resin, oxazoline resin, benzoxazine resin, silicone resin, fluorine resin and the like.

接着層の厚みは、用途に応じて適宜設計可能であるが、0.5μm〜25μmの範囲である事が好ましく、より好ましくは、2μm〜10μmである。接着層の厚みが、0.5μm以上とすることにより、プリント配線板への接着力を大きくすることができる。また、25μm以下とすることにより、電磁波シールドシート付きフレキシブルプリント配線板の屈曲性が良好になる。   The thickness of the adhesive layer can be appropriately designed depending on the application, but is preferably in the range of 0.5 μm to 25 μm, and more preferably 2 μm to 10 μm. When the thickness of the adhesive layer is 0.5 μm or more, the adhesive strength to the printed wiring board can be increased. When the thickness is 25 μm or less, the flexibility of the flexible printed wiring board with the electromagnetic wave shielding sheet is improved.

接着剤層は、電磁波シールドシートの一方の面に位置し、後述するプリント配線板との
貼着を担う。
接着剤層は、厚み方向のみに導電性を発現する異方導電性接着剤層であるか、または絶縁性接着剤であることが好ましい。接着剤層として異方導電性接着剤層を用い、異方導電性接着剤層と後述する導電層とを接するようにすれば、プリント配線板のグラウンド回路と導電層とを特別な部材を用いることなく電気的に接合できる。接着剤層として異方導電性接着剤層を用いることによって、より効率的に電気的に接合を達成できる。
The adhesive layer is located on one surface of the electromagnetic wave shielding sheet and serves to adhere to a printed wiring board described later.
The adhesive layer is preferably an anisotropic conductive adhesive layer exhibiting conductivity only in the thickness direction or an insulating adhesive. If an anisotropic conductive adhesive layer is used as the adhesive layer and the anisotropic conductive adhesive layer and a conductive layer described later are brought into contact with each other, a special member is used for the ground circuit of the printed wiring board and the conductive layer. It can be electrically connected without using. By using an anisotropic conductive adhesive layer as the adhesive layer, more efficient electrical bonding can be achieved.

異方導電性接着剤層は、樹脂と導電性フィラーHを含有するものであり、導電性フィラーHを30質量%以下含有することが好ましい。形成される接着剤層の厚みを基準(100)とした場合に、導電性フィラーHの大きさは100〜300程度であることが好ましい。前記大きさの導電性フィラーHを30質量%以下含有することより、等方性ではなく異方性の導電接着剤層を形成できる。
用いられる導電性フィラーHとしては、金、銀、銅、ニッケル等の金属粉、ハンダ等の合金粉、銀メッキされた銅粉、金属メッキされたガラス繊維やカーボンフィラーなどが挙げられる。なかでも、導電率の高い銀粉、銀メッキされた銅粉が好ましい。
また、導電性フィラーの形状としては、球状、フレーク状、樹枝状、繊維状などが挙げられ、特に異方導電性を得やすい球状、樹枝状が特に好ましい。
用いられる樹脂として、前述の絶縁層形成用のものと同様のものを挙げることができる。
The anisotropic conductive adhesive layer contains a resin and a conductive filler H, and preferably contains 30% by mass or less of the conductive filler H. When the thickness of the formed adhesive layer is defined as a reference (100), the size of the conductive filler H is preferably about 100 to 300. By containing 30% by mass or less of the conductive filler H having the above-described size, a conductive adhesive layer that is not isotropic but is anisotropic can be formed.
Examples of the conductive filler H to be used include metal powder such as gold, silver, copper, and nickel; alloy powder such as solder; silver-plated copper powder; metal-plated glass fiber and carbon filler. Of these, silver powder having high conductivity and silver-plated copper powder are preferred.
Examples of the shape of the conductive filler include a sphere, a flake, a dendrite, and a fiber, and a sphere or a dendrite is particularly preferable because anisotropic conductivity is easily obtained.
Examples of the resin used include the same resins as those for forming the insulating layer described above.

次に、本発明で用いる導電層に関して説明する。本発明で用いる導電層は、樹脂と導電性フィラーを含有し、表面抵抗が100[mΩ/□]以下で、かつ導電率が1×10[S/m]以上であることが重要であり、表面抵抗はできるだけ小さいことが好ましい。金、銀、銅等の金属の導電率が約5×10[S/m]であるので、本発明で用いる導電層の導電率はできるだけ5×10[S/m]に近いことが好ましい。
導電層の表面抵抗を100[mΩ/□]以下、導電率を1×10[S/m]以上とすることにより、導体損失を小さくでき、高速伝送時のデータ信号波形の劣化を抑制できる。
Next, the conductive layer used in the present invention will be described. It is important that the conductive layer used in the present invention contains a resin and a conductive filler, has a surface resistance of 100 [mΩ / □] or less, and has a conductivity of 1 × 10 6 [S / m] or more. It is preferable that the surface resistance is as small as possible. Since the conductivity of metals such as gold, silver, and copper is about 5 × 10 7 [S / m], the conductivity of the conductive layer used in the present invention should be as close to 5 × 10 7 [S / m] as possible. preferable.
By setting the surface resistance of the conductive layer to 100 [mΩ / □] or less and the conductivity to 1 × 10 6 [S / m] or more, conductor loss can be reduced and deterioration of the data signal waveform during high-speed transmission can be suppressed. .

本発明における導電層の表面抵抗値は、JIS K7194−1994に準拠し、三菱化学製「ロレスターGP」の四探針プローブを用いて測定される抵抗値に所定の定数を乗じたものである。
具体的には、本発明の電磁波シールドシート(80mm×50mmの長方形の試料片)の接着剤層の中央部から、5mm間隔で直線状に設けた4点の導電性バンプを導電層に達するまで挿入する。前記4点の導電性バンプの位置は、前記試料片の長辺に平行にする。前記4点の導電性バンプの外側の2点間に電流を流し、内側の2点間の電圧を測定し、抵抗値=電圧/電流を求める。次いで、測定値に定数「4.239」を乗じたものを「表面抵抗値」とする。
The surface resistance value of the conductive layer in the present invention is obtained by multiplying a resistance value measured using a four-probe probe of “Lorester GP” manufactured by Mitsubishi Chemical Corporation by a predetermined constant according to JIS K7194-1994.
Specifically, four conductive bumps linearly provided at 5 mm intervals from the center of the adhesive layer of the electromagnetic wave shielding sheet (80 mm × 50 mm rectangular sample piece) of the present invention until the conductive layer is reached. insert. The positions of the four conductive bumps are parallel to the long sides of the sample piece. A current is applied between the two outside points of the four conductive bumps, and the voltage between the two inside points is measured to obtain resistance = voltage / current. Next, a value obtained by multiplying the measured value by a constant “4.239” is defined as “surface resistance value”.

本発明における導電層の導電率は、導電層の厚みt(μm)と前述の表面抵抗値とから求められる。
即ち、本発明の電磁波シールドシートの断面観察から導電層の厚みt(μm)、前述の表面抵抗値R(mΩ/□)とした場合、導電層の導電率σ(S/m)は、下記式にて求められる。
σ=109/R/t
The conductivity of the conductive layer in the present invention is determined from the thickness t (μm) of the conductive layer and the above-described surface resistance.
That is, when the thickness of the conductive layer is t (μm) and the above-described surface resistance R (mΩ / □) is obtained by observing the cross section of the electromagnetic wave shielding sheet of the present invention, the conductivity σ (S / m) of the conductive layer is as follows. It is obtained by the formula.
σ = 10 9 / R / t

また、導電層の厚みは、用途に応じて適宜設計可能であるが、2μm〜20μmの範囲である事が好ましく、より好ましくは、3μm〜10μmである。厚みを2μm以上とすることにより、凝集力の十分な丈夫な導電層を得ることができる。また、厚みを20μm以下とすることにより、電磁波シールドシート付きフレキシブルプリント配線板の屈曲性が良好となる。   The thickness of the conductive layer can be appropriately designed depending on the application, but is preferably in the range of 2 μm to 20 μm, and more preferably 3 μm to 10 μm. By setting the thickness to 2 μm or more, a strong conductive layer having sufficient cohesion can be obtained. When the thickness is 20 μm or less, the flexibility of the flexible printed wiring board with the electromagnetic wave shielding sheet is improved.

このような導電層は、種々の方法で得ることができるが、例えば、導電性フィラーEを70質量%以上含有することが好ましく、80質量%以上含有することがより好ましく、85質量%以上含有することがより好ましい。用いられる導電性フィラーEとしては、金、銀、銅、ニッケル等の金属粉、ハンダ等の合金粉、銀メッキされた銅粉、金属メッキされたガラス繊維やカーボンフィラーなどが挙げられる。なかでも、導電率の高い銀粉、銀メッキされた銅粉が好ましい。
また、導電性フィラーの形状としては、球状、フレーク状、樹枝状、繊維状などが挙げられ、特にフィラー同士の接触を得やすいフレーク状、樹枝状が特に好ましい。
用いられる樹脂として、前述の絶縁層形成用のものと同様のものを挙げることができる。
Such a conductive layer can be obtained by various methods. For example, the conductive layer E preferably contains 70% by mass or more, more preferably 80% by mass or more, and more preferably 85% by mass or more. Is more preferable. Examples of the conductive filler E to be used include metal powder such as gold, silver, copper and nickel, alloy powder such as solder, silver-plated copper powder, metal-plated glass fiber and carbon filler. Of these, silver powder having high conductivity and silver-plated copper powder are preferred.
Examples of the shape of the conductive filler include a spherical shape, a flake shape, a dendritic shape, and a fibrous shape. In particular, the flake shape and the dendritic shape, in which the fillers can easily come into contact with each other, are particularly preferable.
Examples of the resin used include the same resins as those for forming the insulating layer described above.

上記のようにして製造された電磁波シールドシートは、水蒸気透過度が1cc/m・24h以上であることが好ましい。電磁波シールドシート付プリント配線板が吸湿した状態にてリフロー工程で急激に加熱されたとしても、水蒸気が透過されやすいので、爆発的に揮発した水分が電磁波シールドシート内に留めおかれないので、発泡が生じない。
本発明で、水蒸気透過度は水蒸気透過率測定装置(モコン社製、PERMATRAN−W)で測定できる。
Electromagnetic wave shielding sheet produced as described above is preferably water vapor permeability is 1cc / m 2 · 24h or more. Even if the printed wiring board with an electromagnetic wave shielding sheet is heated suddenly in the reflow process in a state where it absorbs moisture, it is easy for water vapor to permeate, so explosive vaporized water is not retained in the electromagnetic wave shielding sheet, so foaming Does not occur.
In the present invention, the water vapor transmission rate can be measured by a water vapor transmission rate measuring device (PERMATRAN-W, manufactured by Mocon Corporation).

上記のようにして製造された電磁波シールドシートは、フレキシブルプリント配線板をはじめとする各種の配線板に貼着せしめられて利用することができる。また、本発明に係る電磁波シールドシートは、配線板の他、各種電子機器、装置、器具等において広範に適用可能である。本発明に係る電磁波シールドシートは、シールド性能、高速伝送特性に優れるので、高速伝送が必要とされる用途において特にメリットが大きい。
本発明の電磁波シールドシート付きプリント配線板は、周波数が1MHzから20GHzの範囲の信号を伝送する電子機器、例えば、デジタルカメラや携帯電話等の電子機器に好適に使用できる。
The electromagnetic wave shielding sheet manufactured as described above can be used by being attached to various wiring boards such as a flexible printed wiring board. Further, the electromagnetic wave shielding sheet according to the present invention can be widely applied to various electronic devices, devices, appliances, etc., in addition to wiring boards. Since the electromagnetic wave shielding sheet according to the present invention is excellent in shielding performance and high-speed transmission characteristics, it is particularly advantageous in applications requiring high-speed transmission.
INDUSTRIAL APPLICABILITY The printed wiring board with an electromagnetic wave shielding sheet of the present invention can be suitably used for an electronic device that transmits a signal in a frequency range of 1 MHz to 20 GHz, for example, an electronic device such as a digital camera or a mobile phone.

次に、実施例を示して本発明を更に詳細に説明するが、本発明はこれらによって限定されるものではない。実施例及び比較例において、「部」及び「% 」とあるのは、「質量部」及び「質量% 」をそれぞれ意味するものとする。
なお、実施例中に記載したポリウレタンポリウレア樹脂の重量平均分子量、及びポリエステル樹脂の数平均分子量は、G P C 測定で求めたポリスチレン換算の重量平均分子量、及び数平均分子量であり、G P C 測定の条件は、以下のとおりである。
装置:Shodex GPC System−21(昭和電工製)
カラム:Shodex KF−802、KF−803L、KF−805L(昭和電工製)の合計3 本を連結して使用。
溶媒:テトラヒドロフラン
流速:1.0ml/min
温度:40℃
試料濃度:0.3質量%
試料注入量:100μl
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In Examples and Comparative Examples, "parts" and "%" mean "parts by mass" and "% by mass", respectively.
The weight average molecular weight of the polyurethane polyurea resin and the number average molecular weight of the polyester resin described in the examples are the weight average molecular weight and the number average molecular weight in terms of polystyrene determined by GPC measurement. Are as follows.
Apparatus: Shodex GPC System-21 (Showa Denko)
Column: A total of three Shodex KF-802, KF-803L, and KF-805L (manufactured by Showa Denko) were connected and used.
Solvent: tetrahydrofuran Flow rate: 1.0 ml / min
Temperature: 40 ° C
Sample concentration: 0.3% by mass
Sample injection volume: 100 μl

<樹脂合成例1>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3−メチル−1,5−ペンタンジオールから得られるポリエステルポリオール((株)クラレ製「クラレポリオールP−1011」、Mn=1006)401.9質量部、ジメチロールブタン酸12.7質量部、イソホロンジイソシアネート151.0質量部、トルエン40.0質量部を仕込み、窒素雰囲気下90℃、3時間反応させ、これにトルエン300.0質量部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。
次に、イソホロンジアミン27.8質量部、ジ−n−ブチルアミン3.2質量部、2−プロパノール342.0質量部、トルエン396.0質量部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液815.1質量部を添加し、70℃、3時間反応させ、トルエン144.0質量部、2−プロパノール72.0質量部で希釈し、Mw=54,000、酸価=8mgKOH/gのポリウレタンポリウレア樹脂の溶液A−1(C−1、F−1ともいう)を得た。
<Resin synthesis example 1>
A polyester polyol obtained from terephthalic acid, adipic acid and 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd.) was placed in a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping device, and nitrogen inlet tube. Kuraray polyol P-1011 ", Mn = 1006) 401.9 parts by mass, dimethylolbutanoic acid 12.7 parts by mass, isophorone diisocyanate 151.0 parts by mass, toluene 40.0 parts by mass, 90 ° C. under a nitrogen atmosphere, After reacting for 3 hours, 300.0 parts by mass of toluene was added thereto to obtain a urethane prepolymer solution having an isocyanate group.
Next, a mixture of 27.8 parts by mass of isophoronediamine, 3.2 parts by mass of di-n-butylamine, 342.0 parts by mass of 2-propanol, and 396.0 parts by mass of toluene has the obtained isocyanate group. Add 815.1 parts by mass of a urethane prepolymer solution, react at 70 ° C. for 3 hours, dilute with 144.0 parts by mass of toluene and 72.0 parts by mass of 2-propanol, Mw = 54,000, acid value = 8 mgKOH / G of polyurethane polyurea resin solution A-1 (also referred to as C-1 or F-1).

<樹脂合成例2>
攪拌機、温度計、還流冷却器、滴下装置、導入管、窒素導入管を備えた4口フラスコに、ポリカーボネートジオール(クラレポリオール C−2090:株式会社クラレ製)292.1質量部、テトラヒドロ無水フタル酸(リカシッドTH:新日本理化株式会社製)44.9質量部、溶剤としてトルエン350.0質量部を仕込み、窒素気流下、攪拌しながら60℃まで昇温し、均一に溶解させた。続いてこのフラスコを110℃に昇温し、3時間反応させた。その後、40℃に冷却後、ビスフェノールA型エポキシ樹脂(YD−8125:東都化成株式会社製)62.9質量部、触媒としてトリフェニルホスフィン4.0質量部を添加して110℃に昇温し、8時間反応させた。室温まで冷却後、トルエンで固形分が35%になるように調整し、本発明のカルボキシル基含有変性エステル樹脂溶液A−2(C−2、F−2ともいう)を得た。
<Resin synthesis example 2>
292.1 parts by mass of polycarbonate diol (Kuraray polyol C-2090: manufactured by Kuraray Co., Ltd.) and tetrahydrophthalic anhydride were placed in a four-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping device, introduction tube, and nitrogen introduction tube. (Likacid TH: manufactured by Shin Nippon Rika Co., Ltd.) was charged with 44.9 parts by mass, and 350.0 parts by mass of toluene as a solvent, and the mixture was heated to 60 ° C. while stirring under a nitrogen stream to be uniformly dissolved. Subsequently, the temperature of the flask was raised to 110 ° C., and the reaction was performed for 3 hours. Then, after cooling to 40 ° C, 62.9 parts by mass of bisphenol A type epoxy resin (YD-8125: manufactured by Toto Kasei Co., Ltd.) and 4.0 parts by mass of triphenylphosphine as a catalyst were added, and the temperature was raised to 110 ° C. For 8 hours. After cooling to room temperature, the solid content was adjusted to 35% with toluene to obtain a carboxyl group-containing modified ester resin solution A-2 (also referred to as C-2 or F-2) of the present invention.

<樹脂合成例3>
攪拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに、ブチルアクリレート98.5質量部、アクリル酸1.5質量部、酢酸エチル150.0質量部を仕込み、窒素置換下で70℃まで加熱し、アゾビスイソブチロニトリル0.15質量部を添加し重合を開始した。重合開始後3時間後から1時間おきに5時間後までそれぞれアゾビスイソブチロニトリル0.15質量部を添加し更に2時間重合を行った。その後、酢酸エチル150.0質量部を追加して重合を終了させ、アクリル樹脂溶液A−3(C−3、F−3ともいう)を得た。
<Resin synthesis example 3>
98.5 parts by mass of butyl acrylate, 1.5 parts by mass of acrylic acid, and 150.0 parts by mass of ethyl acetate were charged into a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel. The mixture was heated to 70 ° C. under substitution, and 0.15 parts by mass of azobisisobutyronitrile was added to initiate polymerization. From 3 hours after the start of the polymerization to 5 hours after every 1 hour, 0.15 parts by mass of azobisisobutyronitrile was added, and the polymerization was further carried out for 2 hours. Thereafter, 150.0 parts by mass of ethyl acetate was added to terminate the polymerization, and an acrylic resin solution A-3 (also referred to as C-3 or F-3) was obtained.

(実施例1)
<工程1−1>
合成例1で得られたポリウレタンポリウレア樹脂溶液(A−1)の固形分で100部に対して、エポキシ樹脂(B−1)(ビスフェノールA型エポキシ樹脂(三菱化学(株)製「jER1001」)20部を加えてディスパーで攪拌混合し、絶縁性組成物を得た。得られた絶縁性組成物を、コンマコーターを使用して、片面に剥離処理を施した50μmPETフィルムの剥離処理面に塗工し、100℃で2分間加熱乾燥して、乾燥膜厚が10μmの絶縁層(I)を具備するフィルム(1)を作製した。
<工程1−2>
合成例1で得られたポリウレタンポリウレア樹脂溶液(C−1)の固形分で100部に対して、エポキシ樹脂(D−1)(ビスフェノールA型エポキシ樹脂(三菱化学(株)製「jER1001」)20部、導電性フィラー(E−1):740部を加えてディスパーで攪拌混合し、導電組成物を得た。前記導電性フィラー(E−1)は、50%粒径6.1μm、BET比表面積1.7m/g、見掛密度0.53g/cmのフレーク状銅粉に対して、重量比で10%の銀メッキをほどこして製造した、銀コート銅粉である。
得られた導電組成物を、コンマコーターを使用して、片面に剥離処理を施した100μmPETフィルムの剥離処理面に塗工し、100℃で2分間加熱乾燥して、乾燥膜厚が9μm、表面抵抗率が80(mΩ/□)の導電層(II)を具備するフィルム(2)を作製した。なお、導電層(II)の膜厚及び表面抵抗率を後述する方法で求めた。
<工程1−3>
作製した上記フィルム(1)の絶縁層(I)面と上記フィルム(2)の導電層(II)面とをラミネーター(80℃、圧力2MPa、ラインスピード2m/分)を用いて貼り合せ後、フィルム(2)の導電層(II)と厚さ100μmの離型処理ポリエチレンテレフタレートフィルムとの間を剥がし、導電層(II)、絶縁層(I)、50μmPETフィルムからなるフィルム(3)を作製した。
<工程1−4>
合成例1で得たポリウレタンポリウレア樹脂溶液(F−1)の固形分で100部に対して、エポキシ樹脂(G−1)(ビスフェノールA型エポキシ樹脂(三菱化学(株)製「jER1001」)20部、導電性フィラー(H−1)40部を加え、異方導電性接着剤樹脂組成物を得た。前記導電性フィラー(H−1)は、電解法で製造した樹枝状銅粉に対して、重量比で10 % の銀メッキをほどこして製造した、平均粒径12μmの銀コート銅粉である。
片面に剥離処理を施した75μmPETフィルムの剥離処理面に、前記異方導電性接着剤樹脂組成物を塗工し、100℃×2分乾燥させて、乾燥膜厚が7μmの接着剤層(III)を具備するフィルム(4)を作製した。
<工程1−5>
作製した上記フィルム(3)の導電層(II)面とフィルム(4)の接着剤層(III)面とをラミネーター(80℃、圧力2MPa、ラインスピード2m/分)を用いて貼り合せて電磁波シールドシートの両面がPETフィルムで覆われた積層体を得た。
(Example 1)
<Step 1-1>
Epoxy resin (B-1) (bisphenol A type epoxy resin ("jER1001" manufactured by Mitsubishi Chemical Corporation)) based on 100 parts by solid content of the polyurethane polyurea resin solution (A-1) obtained in Synthesis Example 1. 20 parts were added and mixed by stirring with a disper to obtain an insulating composition, which was coated on a release-treated surface of a 50 μm PET film having been subjected to a release treatment on one side using a comma coater. Then, the film was dried by heating at 100 ° C. for 2 minutes to produce a film (1) having an insulating layer (I) having a dry film thickness of 10 μm.
<Step 1-2>
Epoxy resin (D-1) (bisphenol A type epoxy resin ("jER1001" manufactured by Mitsubishi Chemical Corporation)) based on 100 parts by solid content of the polyurethane polyurea resin solution (C-1) obtained in Synthesis Example 1. 20 parts and 740 parts of conductive filler (E-1) were added thereto and mixed by stirring with a disper to obtain a conductive composition.The conductive filler (E-1) had a 50% particle size of 6.1 μm and a BET. It is a silver-coated copper powder produced by subjecting a flake-like copper powder having a specific surface area of 1.7 m 2 / g and an apparent density of 0.53 g / cm 3 to silver plating at a weight ratio of 10%.
Using a comma coater, the obtained conductive composition was applied to the release-treated surface of a 100 μm PET film having one surface subjected to a release treatment, and was dried by heating at 100 ° C. for 2 minutes. A film (2) including the conductive layer (II) having a resistivity of 80 (mΩ / □) was produced. The thickness and surface resistivity of the conductive layer (II) were determined by the methods described below.
<Step 1-3>
After laminating the insulating layer (I) surface of the produced film (1) and the conductive layer (II) surface of the film (2) using a laminator (80 ° C., pressure 2 MPa, line speed 2 m / min), The conductive layer (II) of the film (2) was peeled off from the release-treated polyethylene terephthalate film having a thickness of 100 μm to prepare a film (3) composed of the conductive layer (II), the insulating layer (I), and the 50 μm PET film. .
<Step 1-4>
Epoxy resin (G-1) (bisphenol A type epoxy resin ("jER1001" manufactured by Mitsubishi Chemical Corporation)) 20 per 100 parts of the solid content of the polyurethane polyurea resin solution (F-1) obtained in Synthesis Example 1 Parts and 40 parts of conductive filler (H-1) were added to obtain an anisotropic conductive adhesive resin composition, wherein the conductive filler (H-1) was based on dendritic copper powder produced by an electrolytic method. This is a silver-coated copper powder having an average particle diameter of 12 μm, which is manufactured by applying silver plating at a weight ratio of 10%.
The above-described anisotropic conductive adhesive resin composition was applied on the release-treated surface of a 75 μm PET film having one side subjected to a release treatment, and dried at 100 ° C. for 2 minutes to obtain an adhesive layer (III) having a dry film thickness of 7 μm. ) Was prepared.
<Step 1-5>
The conductive layer (II) surface of the film (3) and the adhesive layer (III) surface of the film (4) are bonded together by using a laminator (80 ° C., pressure 2 MPa, line speed 2 m / min), and the electromagnetic wave is applied. A laminate in which both surfaces of the shield sheet were covered with the PET film was obtained.

(実施例2 〜13、比較例1 〜7)
実施例1で用いた原料や厚みを表1、2に記載された原料、厚みに変更した以外は、実施例1と同様に行い電磁波シールドシートを作成した。
(Examples 2 to 13, Comparative Examples 1 to 7)
An electromagnetic wave shielding sheet was prepared in the same manner as in Example 1 except that the raw materials and thickness used in Example 1 were changed to the raw materials and thickness described in Tables 1 and 2.

(実施例13)
<工程1−4>において用いた導電性フィラーHを含有する接着剤組成物の代わりに、合成例1で得たポリウレタンポリウレア樹脂溶液(F−1)の固形分で100部に対して、エポキシ樹脂(G−1)(ビスフェノールA型エポキシ樹脂(三菱化学(株)製「jER1001」)20部を加えてなる接着性樹脂組成物を用いた以外は実施例1と同様にして、電磁波シールドシートを作成した。
(Example 13)
Instead of the adhesive composition containing the conductive filler H used in <Step 1-4>, an epoxy was added to 100 parts by solid content of the polyurethane polyurea resin solution (F-1) obtained in Synthesis Example 1. Electromagnetic wave shielding sheet in the same manner as in Example 1 except that an adhesive resin composition containing 20 parts of resin (G-1) (bisphenol A type epoxy resin (“jER1001” manufactured by Mitsubishi Chemical Corporation)) was used. It was created.

(実施例14)
<工程1−1>で得られたフィルム(1)に代えて、ポリイミドフィルムを用いた以外は、実施例1と同様にして、電磁波シールドシートを作成した。
ただし、実施例1〜4、12〜14は参考例である。
(Example 14)
An electromagnetic wave shielding sheet was prepared in the same manner as in Example 1 except that a polyimide film was used instead of the film (1) obtained in <Step 1-1>.
However, Examples 1 to 4 and 12 to 14 are reference examples.

(1)導電層の膜厚tおよび接着剤層の膜厚の測定
<工程1−5>で得られた積層体から幅10mm、長さ70mmの試料を用意し、前記試料から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)に、厚さが50μmのポリイミドフィルム(東レ・デュポン社製「カプトン200EN」、以下「カプトン200EN」と略す)を150℃、1.0MPa、30minの条件で圧着した。
圧着後、絶縁層(I)側の剥離性フィルムを除去し、一部切り出し、エポキシ樹脂で包埋し、ミクロトームにより膜厚方向の断面を切り出した。露出させた断面を、走査型電子顕微鏡を用いて、倍率1000〜5000倍で観察して、導電層tおよび接着剤層の膜厚を測定した。
(1) Measurement of thickness t of conductive layer and thickness of adhesive layer A sample having a width of 10 mm and a length of 70 mm was prepared from the laminate obtained in <Step 1-5>, and the adhesive layer ( The release treatment sheet on the III) side was peeled off, and a 50 μm-thick polyimide film (“Kapton 200EN” manufactured by Toray DuPont, hereinafter abbreviated as “Kapton 200EN”) was applied to the adhesive layer (III) at 150 ° C. Crimping was performed under the conditions of 0 MPa and 30 min.
After the pressure bonding, the peelable film on the insulating layer (I) side was removed, a part was cut out, embedded with an epoxy resin, and a cross section in the film thickness direction was cut out with a microtome. The exposed cross section was observed at a magnification of 1000 to 5000 times using a scanning electron microscope, and the thicknesses of the conductive layer t and the adhesive layer were measured.

(2)導電層の表面抵抗率Rの測定
耐熱性ポリエステルフィルムの剥離処理面に対し、エポキシ樹脂と銀粉末とからなる導電ペーストを用いて、一直線上5mm間隔に4点のパターンのスクリーン印刷を行い、これを乾燥させた後、180℃のオーブンで導電ペーストを加熱硬化させ、直径500μm、高さ100μmの導電性バンプを形成した。
<工程1−5>で得られた積層体(長辺80mm、短辺50mmの長方形の試料)から接着剤層(III)側の剥離処理シートを剥がし、露出した接着剤層(III)を、導電性バンプを形成した前記耐熱性ポリエステルフィルムに重ね、150℃、1.0MPa、30minの条件で圧着した。なお、前記4点の導電性バンプは前記試料片の長辺に平行に位置するように圧着する。圧着により高さ100μmの導電性バンプは、接着剤層(III)を貫通し導電層(II)に達した。
圧着後、剥離処理された耐熱性ポリエステルフィルムを除去し、接着剤層(III)および、導電性バンプを露出させた。
この導電性バンプを測定用電極とし、JIS K7194−1994に準拠し、三菱化学製「ロレスターGP」の四探針プローブを用いて抵抗値を測定した。測定値に定数「4.239」を乗じた値を表面抵抗値Rとする。評価基準は以下の通りである。
なお、接着剤層(III)は厚さ方向にのみ電電性を発現する異方導電性接着剤層または導電性を有しない接着剤層なので、導電性バンプが接着剤層(III)を貫通しても測定される抵抗値は導電層(II)の抵抗値である。
○:50mΩ/□未満
△:50mΩ/□以上100mΩ/□未満
×:100mΩ/□以上
(2) Measurement of Surface Resistivity R of Conductive Layer A screen printing of a pattern of four points was made in a straight line at an interval of 5 mm using a conductive paste composed of an epoxy resin and silver powder on the release-treated surface of the heat-resistant polyester film. After drying, the conductive paste was heated and cured in an oven at 180 ° C. to form conductive bumps having a diameter of 500 μm and a height of 100 μm.
The release treatment sheet on the side of the adhesive layer (III) was peeled off from the laminate (a rectangular sample having a long side of 80 mm and a short side of 50 mm) obtained in <Step 1-5>, and the exposed adhesive layer (III) was removed. The heat-resistant polyester film on which the conductive bumps were formed was overlaid and pressed under the conditions of 150 ° C., 1.0 MPa, and 30 minutes. The four conductive bumps are pressure-bonded so as to be positioned parallel to the long side of the sample piece. The conductive bump having a height of 100 μm penetrated the adhesive layer (III) to reach the conductive layer (II) by the pressure bonding.
After the pressure bonding, the heat-resistant polyester film subjected to the peeling treatment was removed to expose the adhesive layer (III) and the conductive bumps.
This conductive bump was used as a measurement electrode, and the resistance value was measured using a four-probe probe of “Lorester GP” manufactured by Mitsubishi Chemical in accordance with JIS K7194-1994. The value obtained by multiplying the measured value by a constant “4.239” is defined as the surface resistance value R. The evaluation criteria are as follows.
In addition, since the adhesive layer (III) is an anisotropic conductive adhesive layer exhibiting electrical conductivity only in the thickness direction or an adhesive layer having no conductivity, the conductive bump penetrates the adhesive layer (III). The measured resistance value is the resistance value of the conductive layer (II).
○: less than 50 mΩ / □ △: 50 mΩ / □ or more and less than 100 mΩ / □ ×: 100 mΩ / □ or more

(3)導電層の導電率σ(S/m)の求め方
前記(1)、(2)で求めた導電層の膜厚t(μm)、表面抵抗値R(mΩ/□)とから下記式に従って求めた。
σ=109/R/t
(3) How to determine the conductivity σ (S / m) of the conductive layer From the film thickness t (μm) and the surface resistance R (mΩ / □) of the conductive layer obtained in (1) and (2) above, It was determined according to the formula.
σ = 10 9 / R / t

(4)蒸気透過度の測定
<工程1−5>で得られた積層体から幅150mm、長さ150mmの試料を作成し、前記試料から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)に、前記「カプトン200EN」を150℃、1.0MPa、30minの条件で圧着した。
圧着後、絶縁層(I)側の剥離性フィルムを除去し、水蒸気透過率測定装置(MOCON社製PERMATRAN)を使用し、40℃・100%RHの条件において、水蒸気透過率を測定した。(値A)
さらに、カプトン200ENを単独で測定し(値B)、下記式から水蒸気透過率を算出した(値B)
1/(A) = 1/(B) + 1/(C)
以下に記載する基準により、水蒸気透過性を判定した。
○:10g/(m2・day)以上
△:1g/(m2・day)以上、10g/(m2・day)未満
×:1g/(m2・day)未満
(4) Measurement of vapor permeability A sample having a width of 150 mm and a length of 150 mm was prepared from the laminate obtained in <Step 1-5>, and the release treatment sheet on the side of the adhesive layer (III) was peeled off from the sample. The “Kapton 200EN” was pressure-bonded to the adhesive layer (III) under the conditions of 150 ° C., 1.0 MPa, and 30 minutes.
After the pressure bonding, the peelable film on the insulating layer (I) side was removed, and the water vapor transmission rate was measured using a water vapor transmission rate measuring device (PERMATRAN manufactured by MOCON) at 40 ° C. and 100% RH. (Value A)
Further, Kapton 200EN was measured alone (value B), and the water vapor transmission rate was calculated from the following equation (value B).
1 / (A) = 1 / (B) + 1 / (C)
The water vapor permeability was determined according to the criteria described below.
:: 10 g / (m2 · day) or more Δ: 1 g / (m2 · day) or more and less than 10 g / (m2 · day) ×: less than 1 g / (m2 · day)

(5)接着強度の評価
<工程1−5>で得られた積層体から幅10mm、長さ70mmの試料を作成し、前記試料から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)に、前記「カプトン200EN」を150℃、1.0MPa、30minの条件で圧着した。
圧着後、絶縁層(I)側の剥離性フィルムを除去し、測定用の補強のために、露出した絶縁層(I)に、ポリウレタンポリウレア系の接着シートを用い、前記「カプトン200EN」を同様の条件で圧着した。
23℃、相対湿度50%の雰囲気下、引っ張り速度50mm/min、剥離角度90°で、硬化した接着剤層と前記「カプトン200EN」との間を剥離し、剥離力の中心値を接着強度(N/cm)とした。
この試験は、常温使用時における接着剤層の接着強度を評価するものであり、結果を次の基準で判断した。
◎:接着強度が10(N/cm)以上
○:接着強度が5(N/cm)以上、10(N/cm)未満
△:接着強度が3(N/cm)以上、5(N/cm)未満
×:接着強度が3(N/cm)未満
(5) Evaluation of Adhesive Strength A sample having a width of 10 mm and a length of 70 mm was prepared from the laminate obtained in <Step 1-5>, and the release-treated sheet on the side of the adhesive layer (III) was peeled off from the sample, followed by bonding. The “Kapton 200EN” was pressure-bonded to the agent layer (III) under the conditions of 150 ° C., 1.0 MPa, and 30 minutes.
After the compression bonding, the release film on the insulating layer (I) side is removed, and for the reinforcement for measurement, a polyurethane polyurea-based adhesive sheet is used for the exposed insulating layer (I). It crimped on condition of.
Under an atmosphere of 23 ° C. and a relative humidity of 50%, the cured adhesive layer and the “Kapton 200EN” are peeled off at a pulling rate of 50 mm / min and a peeling angle of 90 °, and the central value of the peeling strength is determined as the adhesive strength ( N / cm).
This test is for evaluating the adhesive strength of the adhesive layer at the time of use at normal temperature, and the result was judged according to the following criteria.
◎: Adhesive strength of 10 (N / cm) or more :: Adhesive strength of 5 (N / cm) or more and less than 10 (N / cm) △: Adhesive strength of 3 (N / cm) or more and 5 (N / cm) Less than ×): Adhesive strength is less than 3 (N / cm)

(6)耐熱性(初期及び吸湿後)の評価
<工程1−5>で得られた積層体から幅10mm、長さ70mmの試料を用意し、前記試料から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)に、前記「カプトン200EN」を150℃、1.0MPa、30minの条件で圧着した。
圧着後、絶縁層(I)側の剥離性フィルムを除去し、23℃、相対湿度50%の環境下で、260℃の溶融半田に、前記「カプトン200EN」を接触させて1分間浮かべ、試験片の外観を目視で観察し、シールドシートの発泡、浮き、剥がれ等の接着異常の有無を評価した。
(初期)。
別途、圧着後の試料を40℃、相対湿度90%の雰囲気で72時間放置して吸湿させた後、前記と同様にして耐熱性を試験・評価した(吸湿後)。
なお、この試験は、鉛フリーハンダリフローにおける電磁波シールドシート付きプリント配線板の耐熱性を、半田浴接触によって代替評価するものである。耐熱性の良好なものは、半田処理の前後で外観が変化しないのに対して、耐熱性の悪いものは、半田処理後に発泡や剥がれが発生する。これらの評価結果を次の基準で判断した。
◎ : 「外観変化無し」
△ : 「小さな発泡がわずかに観察される」
× : 「激しい発泡や剥がれが観察される」
(6) Evaluation of heat resistance (initial and after moisture absorption) A sample having a width of 10 mm and a length of 70 mm was prepared from the laminate obtained in <Step 1-5>, and the adhesive layer (III) side was peeled from the sample. The treated sheet was peeled off, and the “Kapton 200EN” was pressure-bonded to the adhesive layer (III) under the conditions of 150 ° C., 1.0 MPa, and 30 minutes.
After the pressure bonding, the peelable film on the insulating layer (I) side is removed, and the above-mentioned “Kapton 200EN” is brought into contact with the molten solder at 260 ° C. in an environment of 23 ° C. and 50% relative humidity for 1 minute, and the test is performed. The appearance of the piece was visually observed, and the presence or absence of adhesion abnormality such as foaming, floating, and peeling of the shield sheet was evaluated.
(initial).
Separately, the sample after pressure bonding was left in an atmosphere of 40 ° C. and a relative humidity of 90% for 72 hours to absorb moisture, and then heat resistance was tested and evaluated in the same manner as described above (after moisture absorption).
In this test, the heat resistance of a printed wiring board with an electromagnetic wave shielding sheet in lead-free solder reflow is evaluated by substitution with a solder bath. Good heat resistance has no change in appearance before and after soldering, whereas poor heat resistance has foaming and peeling after soldering. These evaluation results were judged based on the following criteria.
◎: “No change in appearance”
Δ: “Small foaming is slightly observed”
×: “Intense foaming and peeling are observed.”

(7)折り曲げ耐性の評価
<工程1−5>で得られた積層体から幅10mm、長さ70mmの試料を用意し、前記試料から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)に、ポリイミドフィルムと銅箔との2層基板(新日鉄化学社製「エスパネックスMC−18−25−00FRM」)のポリイミドフィルム面を150℃、1.0MPa、30minの条件で圧着した。
圧着後、絶縁層(I)側の剥離性フィルムを除去し、電磁波シールドシートを外側に180度折り曲げて、折り曲げ部位に500gの錘を5秒間乗せ、その後このサンプルを平らな状態にもどして、500gの錘を5秒間乗せ、これを折り曲げ回数を1回とした。
2層基板のポリイミドフィルム側に設けた電磁波シールドシートにクラックが発生したかどうかを(株)キーエンス製マイクロスコープ「VHX−900」で観察し、クラックが発生しないで折り曲げられた回数を評価した。
◎・・・50回以上折り曲げてもクラックが発生しない。
○・・・20回以上、50回未満。
△・・・5回以上、20回未満。
×・・・5回未満
(7) Evaluation of bending resistance A sample having a width of 10 mm and a length of 70 mm was prepared from the laminate obtained in <Step 1-5>, and the release-treated sheet on the side of the adhesive layer (III) was peeled off from the sample and bonded. In the agent layer (III), the polyimide film surface of a two-layer substrate (“Espanex MC-18-25-00FRM” manufactured by Nippon Steel Chemical Co., Ltd.) of a polyimide film and a copper foil was applied at 150 ° C., 1.0 MPa, and 30 minutes. Crimped.
After the pressure bonding, the peelable film on the insulating layer (I) side is removed, the electromagnetic wave shielding sheet is bent outward by 180 degrees, a 500 g weight is placed on the bent portion for 5 seconds, and then the sample is returned to a flat state. A 500 g weight was placed for 5 seconds, and the number of bending was set to one.
Whether or not cracks occurred in the electromagnetic wave shielding sheet provided on the polyimide film side of the two-layer substrate was observed with a microscope “VHX-900” manufactured by KEYENCE CORPORATION, and the number of times of bending without cracks was evaluated.
A: No crack occurs even if bent 50 times or more.
・ ・ ・: 20 times or more and less than 50 times.
Δ: 5 times or more and less than 20 times.
×: Less than 5 times

(8−1)伝送損失の測定(実施例1〜12、比較例1〜7用)
<測定用フレキシブルプリント配線板>
下記手順に従って、コプレーナ構造のフレキシブルプリント配線板を得る。
ポリイミドフィルム(厚さ25μm)の両面に厚さ12μmの銅箔を積層した両面CCLを用意し、一方の面に2本の信号配線(信号回路)、前記信号配線のそれぞれ外側に前記信号配線と平行なグランド配線(グランド回路)を設ける。前記信号配線に対応する他方の面における銅箔(前記信号配線の背面部分の銅箔)をエッチングにより除去する。前記一方の面に設けた2本のグランド配線の一部には、メッキ加工したスルーホールを設け、他方の面の銅箔との導通を確保する。
前記加工を施した両面CCLの両面に、前記カバーレイをそれぞれ貼り付ける。なお、信号配線を設けた側における前記カバーレイに設けた開口部は、2本のグランド配線上に位置するようにし、信号配線を設けなかった側における前記カバーレイに設けた開口部は、残した銅箔上に位置するようにする。
<測定用試料>
<工程1−5>で得られた積層体から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)を、前記コプレーナ構造のフレキシブルプリント配線板の両面に、150℃、1.0MPa、30minの条件で圧着して、伝送損失測定用の電磁波シールドシート付きプリント配線板を得た。なお、前記圧着により、カバーレイに設けた開口部に接着剤層(III)が押し込まれ、前記一方の面に設けた2本のグランド配線、及び他方の面に残した銅箔に接触し、導通が確保される。
ネットワークアナライザE5071C(アジレント・ジャパン社製)を用いて、1MHzから20GHzの範囲の信号を信号配線に送り、前記電磁波シールドシート付きプリント配線板の伝送損失を測定した。
(8-1) Measurement of transmission loss (for Examples 1 to 12 and Comparative Examples 1 to 7)
<Flexible printed wiring board for measurement>
According to the following procedure, a flexible printed wiring board having a coplanar structure is obtained.
A double-sided CCL is prepared by laminating a 12 μm thick copper foil on both sides of a polyimide film (25 μm thick), two signal wirings (signal circuits) on one surface, and the signal wirings outside each of the signal wirings. Provide parallel ground wiring (ground circuit). The copper foil on the other surface corresponding to the signal wiring (the copper foil on the back surface of the signal wiring) is removed by etching. A plated through hole is provided in a part of the two ground wirings provided on the one surface to ensure conduction with the copper foil on the other surface.
The coverlays are respectively adhered to both surfaces of the processed double-sided CCL. Note that the opening provided in the cover lay on the side where the signal wiring is provided is located on two ground wirings, and the opening provided in the cover lay on the side where the signal wiring is not provided is left. On the copper foil.
<Sample for measurement>
The release treatment sheet on the side of the adhesive layer (III) was peeled off from the laminate obtained in <Step 1-5>, and the adhesive layer (III) was placed on both sides of the flexible printed wiring board having the coplanar structure at 150 ° C. Crimping was performed under the conditions of 1.0 MPa and 30 min to obtain a printed wiring board with an electromagnetic shielding sheet for measuring transmission loss. The adhesive layer (III) is pressed into the opening provided in the cover lay by the pressure bonding, and comes into contact with the two ground wirings provided on the one surface and the copper foil left on the other surface, Conduction is ensured.
Using a network analyzer E5071C (manufactured by Agilent Japan), a signal in the range of 1 MHz to 20 GHz was sent to the signal wiring, and the transmission loss of the printed wiring board with the electromagnetic wave shielding sheet was measured.

(8−2)伝送損失の測定(実施例13用)
ポリイミドフィルムと銅箔との2層基板(新日鉄化学社製「エスパネックスMC−18−25−00FRM」)の銅箔面の一部に、高さ100μmの導電性ペーストにより導電性バンプを形成した「導電性バンプシート」を用意する。
<工程1−5>で得られた積層体から接着剤層(III)側の剥離処理シートを剥がし、接着剤層(III)を、前記コプレーナ構造のフレキシブルプリント配線板の両面に重ねる。両面に重ねられた電磁波シールドシートの各最外層、すなわち各絶縁層(I)に前記「導電性バンプシート」の銅箔及び導電性バンプを重ね、150℃、1MPa、30mi nの条件で圧着する。圧着により、高さ100μmの導電性バンプは、絶縁層(I)を貫通し導電層(II)に達する。
別途、前記「導電性バンプシート」の銅箔と、プリント配線板の前記一方の面に設けた2本のグランド配線、及び他方の面に残した銅箔との導通を確保することにより、電磁波シールドシート中の導電層(II)とグランド回路との導通を確保できる。
(8-2) Measurement of transmission loss (for Example 13)
A conductive bump was formed on a part of a copper foil surface of a two-layer substrate of a polyimide film and a copper foil (“ESPANEX MC-18-25-00FRM” manufactured by Nippon Steel Chemical Co., Ltd.) using a conductive paste having a height of 100 μm. A “conductive bump sheet” is prepared.
The release sheet on the side of the adhesive layer (III) is peeled off from the laminate obtained in <Step 1-5>, and the adhesive layer (III) is overlaid on both surfaces of the flexible printed wiring board having the coplanar structure. The copper foil and the conductive bumps of the “conductive bump sheet” are stacked on each outermost layer of the electromagnetic wave shielding sheet, ie, each insulating layer (I), on both surfaces, and pressed at 150 ° C., 1 MPa, and 30 min. . By crimping, the conductive bump having a height of 100 μm penetrates the insulating layer (I) and reaches the conductive layer (II).
Separately, by ensuring conduction between the copper foil of the “conductive bump sheet”, the two ground wirings provided on the one surface of the printed wiring board, and the copper foil left on the other surface, the electromagnetic wave Conduction between the conductive layer (II) in the shield sheet and the ground circuit can be ensured.

Figure 0006650660
Figure 0006650660

Figure 0006650660
Figure 0006650660

表2に示すように、比較例1は導電層の膜厚が厚いので導電層の表面抵抗値は100[mΩ/□]以下であるが、導電層に含まれる導電性フィラーEが少ないので、導電層の導電率が1×10[S/m]未満であり、伝送損失が大きかった。
一方、比較例2は導電層の導電率が1×10S/mであるが、導電層の膜厚が薄いので導電層の表面抵抗値が100mΩ/□よりも大きくなり、伝送損失が大きかった。
比較例3〜5は、導電層に含まれる導電性フィラーEが少なく、導電層の導電率が1×10[S/m]未満であり、かつ、導電層の膜厚が薄いので導電層の表面抵抗値が100[mΩ/□]よりも大きいため、伝送損失がさらに大きくなった。
比較例6は、厚み9μmの銅箔を用いているため、導電率が高く、表面抵抗値が小さいため、伝送損失は小さいが、吸湿後の耐熱性評価では激しい発泡が生じ、折り曲げ耐性の評価ではすぐにクラックが生じてしまう。
比較例7は、蒸着層を用いているため、導電率が高いが、表面抵抗値が大きいため、伝送損失が大きく、さらに吸湿後の耐熱性評価では激しい発泡が生じてしまう。
As shown in Table 2, in Comparative Example 1, the surface resistance of the conductive layer was 100 [mΩ / □] or less because the thickness of the conductive layer was large. However, since the conductive filler E contained in the conductive layer was small, The conductivity of the conductive layer was less than 1 × 10 6 [S / m], and the transmission loss was large.
On the other hand, in Comparative Example 2, the conductivity of the conductive layer was 1 × 10 6 S / m, but since the thickness of the conductive layer was small, the surface resistance of the conductive layer was larger than 100 mΩ / □, and the transmission loss was large. Was.
In Comparative Examples 3 to 5, the amount of the conductive filler E contained in the conductive layer was small, the conductivity of the conductive layer was less than 1 × 10 6 [S / m], and the thickness of the conductive layer was small. Has a surface resistance value of more than 100 [mΩ / □], so that transmission loss is further increased.
Comparative Example 6 uses a copper foil having a thickness of 9 μm, and thus has a high conductivity and a small surface resistance, so that the transmission loss is small. However, in the heat resistance evaluation after moisture absorption, severe foaming occurs, and the bending resistance is evaluated. Then, cracks occur immediately.
In Comparative Example 7, since the vapor deposition layer was used, the conductivity was high, but the surface resistance was large, so the transmission loss was large, and in the heat resistance evaluation after moisture absorption, severe foaming occurred.

一方、表1に示すように本発明の電磁波シールドシートは、伝送特性、接着強度、折り曲げ耐性に優れ、吸湿後急激に加熱されても曝されても発泡しない。   On the other hand, as shown in Table 1, the electromagnetic wave shielding sheet of the present invention has excellent transmission characteristics, adhesive strength, and bending resistance, and does not foam even when heated or exposed to heat after absorbing moisture.

Claims (5)

絶縁層と、導電層と、接着剤層とをこの順に有し、
前記接着剤層によりプリント配線基板と貼着して用いられる電磁波シールドシートであって、
前記接着剤層は、熱硬化系樹脂と、硬化剤とを含有し、
前記導電層は、樹脂と導電性フィラーEを含有し、該導電層は表面抵抗が47[mΩ/□]以下で、かつ導電率が2.4×10 [S/m]以上であり、
前記導電性フィラーEの形状は、フレーク状、または樹枝状であり、
前記導電性フィラーEの含有量は、導電層100質量%中70質量%以上であり、
前記導電層の厚みは、3〜20μmであり、
1GHzにおける伝送損失が2.6以下、10GHzにおける伝送損失が6.9以下、および20GHzにおける伝送損失が11.6以下であり、
周波数が1MHzから20GHzの範囲の信号を伝送する電子機器に用いられる
ことを特徴とするフレキシブルプリント配線板用電磁波シールドシート。
Having an insulating layer, a conductive layer, and an adhesive layer in this order,
An electromagnetic wave shielding sheet used by being adhered to a printed wiring board by the adhesive layer,
The adhesive layer contains a thermosetting resin and a curing agent,
The conductive layer contains a resin and a conductive filler E, and the conductive layer has a surface resistance of 47 [mΩ / □] or less and a conductivity of 2.4 × 10 6 [S / m] or more,
The shape of the conductive filler E is a flake or a dendrite,
The content of the conductive filler E is 70% by mass or more in 100% by mass of the conductive layer,
The thickness of the conductive layer is 3 to 20 μm,
The transmission loss at 1 GHz is 2.6 or less, the transmission loss at 10 GHz is 6.9 or less, and the transmission loss at 20 GHz is 11.6 or less;
An electromagnetic wave shielding sheet for a flexible printed wiring board, wherein the electromagnetic wave shielding sheet is used for an electronic device transmitting a signal having a frequency in a range of 1 MHz to 20 GHz.
前記接着剤層は、熱硬化系樹脂と、硬化剤と、導電性フィラーHとを含有し、
接着剤層100質量%中、導電性フィラーHを30質量%以下含有し、
前記導電層は、導電層100質量%中、導電性フィラーEを70質量%以上含有する請求項1記載のフレキシブルプリント配線板用電磁波シールドシート。
The adhesive layer contains a thermosetting resin, a curing agent, and a conductive filler H,
100% by mass of the adhesive layer contains 30% by mass or less of the conductive filler H,
The electromagnetic wave shielding sheet for a flexible printed wiring board according to claim 1, wherein the conductive layer contains 70% by mass or more of a conductive filler E in 100% by mass of the conductive layer.
40℃、90%相対湿度の条件下で測定した水蒸気透過度が1[cc/m・24h]以上であることを特徴とする請求項1または2記載のフレキシブルプリント配線板用電磁波シールドシート。 40 ° C., according to claim 1 or 2 for flexible printed circuit boards electromagnetic shield sheet, wherein the at steam permeability was measured under the conditions of 90% relative humidity 1 [cc / m 2 · 24h ] or higher. フレキシブルプリント配線板の少なくとも一方の面に、請求項1〜3いずれか1項に記載のフレキシブルプリント配線板用電磁波シールドシートの接着剤層を貼着してなる、電磁波シールドシート付きフレキシブルプリント配線板。   A flexible printed wiring board with an electromagnetic wave shielding sheet, wherein the adhesive layer of the electromagnetic wave shielding sheet for a flexible printed wiring board according to any one of claims 1 to 3 is attached to at least one surface of the flexible printed wiring board. . 周波数が1MHzから20GHzの範囲の信号を伝送する、請求項4記載の電磁波シールドシート付きフレキシブルプリント配線板を用いてなる電子機器。 An electronic device using the flexible printed wiring board with the electromagnetic wave shielding sheet according to claim 4 , which transmits a signal having a frequency in a range of 1 MHz to 20 GHz.
JP2014008158A 2014-01-20 2014-01-20 Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet Active JP6650660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008158A JP6650660B2 (en) 2014-01-20 2014-01-20 Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008158A JP6650660B2 (en) 2014-01-20 2014-01-20 Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet

Publications (3)

Publication Number Publication Date
JP2015138813A JP2015138813A (en) 2015-07-30
JP2015138813A5 JP2015138813A5 (en) 2016-11-17
JP6650660B2 true JP6650660B2 (en) 2020-02-19

Family

ID=53769635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008158A Active JP6650660B2 (en) 2014-01-20 2014-01-20 Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet

Country Status (1)

Country Link
JP (1) JP6650660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108635A (en) * 2021-01-27 2022-08-03 도레이첨단소재 주식회사 Conductive adheisive composition and electromagnetic wave shielding film comprising the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757163B2 (en) * 2016-03-31 2020-09-16 タツタ電線株式会社 Electromagnetic wave shield film
JP2018010888A (en) * 2016-07-11 2018-01-18 藤森工業株式会社 Electromagnetic wave shield material
WO2020203109A1 (en) * 2019-03-29 2020-10-08 東レ株式会社 Metallized film and manufacturing method therefor
WO2023228602A1 (en) * 2022-05-27 2023-11-30 東レKpフィルム株式会社 Metal foil with release film and method for manufacturing same, and method for manufacturing electromagnetic shielding film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276399A (en) * 1985-05-31 1986-12-06 藤倉ゴム工業株式会社 Manufacture of flexible transfer film for shielding electromagnetic wave
JP3854102B2 (en) * 2001-06-26 2006-12-06 小松精練株式会社 Method for manufacturing electromagnetic shielding material
JP2003069284A (en) * 2001-08-24 2003-03-07 Komatsu Seiren Co Ltd Electromagnetic shielding wave material and manufacturing method therefor
JP4647924B2 (en) * 2004-03-23 2011-03-09 タツタ電線株式会社 Shield film for printed wiring board and method for producing the same
JP2011171522A (en) * 2010-02-19 2011-09-01 Toyo Ink Sc Holdings Co Ltd Curable electromagnetic shielding adhesive film and method for producing the same
JP5528857B2 (en) * 2010-03-11 2014-06-25 タツタ電線株式会社 Electromagnetic wave shielding film, flexible substrate using the same, and method for producing the same
JP5726048B2 (en) * 2011-11-14 2015-05-27 藤森工業株式会社 Electromagnetic wave shielding material for FPC

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108635A (en) * 2021-01-27 2022-08-03 도레이첨단소재 주식회사 Conductive adheisive composition and electromagnetic wave shielding film comprising the same
KR102451057B1 (en) 2021-01-27 2022-10-04 도레이첨단소재 주식회사 Conductive adheisive composition and electromagnetic wave shielding film comprising the same

Also Published As

Publication number Publication date
JP2015138813A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5854248B1 (en) Conductive adhesive, and conductive adhesive sheet and electromagnetic wave shielding sheet using the same
JP7363103B2 (en) Electromagnetic shielding sheets and printed wiring boards
JP6081819B2 (en) Electromagnetic wave shielding material for FPC
JP6650660B2 (en) Electromagnetic wave shielding sheet for flexible printed wiring board and flexible printed wiring board with electromagnetic wave shielding sheet
JP6597927B1 (en) Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board
CN111741595B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding printed circuit board
JP6287430B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
CN107613628B (en) Electromagnetic wave shielding material
CN111818723B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding printed circuit board
JP7001187B1 (en) Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
JP2017115152A (en) Conductive adhesive layer and electromagnetic wave shielding material for FPC
JP2021027311A (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
TWI837383B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
TWI823254B (en) Electromagnetic wave shielding film and printed circuit board with electromagnetic wave shielding film
JP7268446B2 (en) Electromagnetic wave shielding sheet, electromagnetic wave shielding printed circuit board and electronic equipment
JP6451879B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
JP2018070694A (en) Conductive adhesive composition, electromagnetic wave-shielding sheet and wiring device using the same
JP2021086948A (en) Electromagnetic wave shield sheet and electromagnetic wave shielding wiring circuit board
JP2021027313A (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP2020205399A (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP2019041132A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180621

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180629

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R151 Written notification of patent or utility model registration

Ref document number: 6650660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350