WO2007116889A1 - フリーラジカル消去性水素溶液、その製造方法、及び製造装置 - Google Patents

フリーラジカル消去性水素溶液、その製造方法、及び製造装置 Download PDF

Info

Publication number
WO2007116889A1
WO2007116889A1 PCT/JP2007/057489 JP2007057489W WO2007116889A1 WO 2007116889 A1 WO2007116889 A1 WO 2007116889A1 JP 2007057489 W JP2007057489 W JP 2007057489W WO 2007116889 A1 WO2007116889 A1 WO 2007116889A1
Authority
WO
WIPO (PCT)
Prior art keywords
free radical
radical scavenging
hydrogen
hydrogen solution
liquid material
Prior art date
Application number
PCT/JP2007/057489
Other languages
English (en)
French (fr)
Inventor
Chikashi Kamimura
Riichiro Ohba
Hisakazu Matsui
Yoshihito Katayose
Takashi Kamimura
Original Assignee
Yuugen Kaisya Joho Kagaku Kenkyusyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuugen Kaisya Joho Kagaku Kenkyusyo filed Critical Yuugen Kaisya Joho Kagaku Kenkyusyo
Priority to JP2008509856A priority Critical patent/JP4309465B2/ja
Publication of WO2007116889A1 publication Critical patent/WO2007116889A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/707Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms the paddles co-operating, e.g. intermeshing, with elements on the receptacle wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material
    • B01F33/053Mixers using radiation, e.g. magnetic fields or microwaves to mix the material the energy being magnetic or electromagnetic energy, radiation working on the ingredients or compositions for or during mixing them

Definitions

  • the present invention relates to a free radical scavenging hydrogen solution, a production method thereof, and a production apparatus.
  • the present invention relates to a free radical scavenging hydrogen solution production apparatus, a free radical scavenging hydrogen solution production method, and a free radical scavenging hydrogen solution produced by the production apparatus of the present invention.
  • the present invention relates to a liquid material without changing the pH of the liquid material by dissolving hydrogen gas in a liquid material such as beverages, foods, medicines, and cosmetics, and treating it with a rotating magnetic field.
  • the present invention relates to an apparatus and method for producing a free radical erasable hydrogen solution by imparting free radical erasability, and a free radical erasable hydrogen solution produced by the production apparatus of the present invention.
  • Deoxidized water has been used as a method for suppressing oxidation during heat processing.
  • this method has the power to prevent acidification during food processing.
  • Conventionally, it has been regarded as an unavoidable phenomenon of acid and sour decomposition during the addition of food.
  • Food additives having an antioxidant function such as an oxygen absorbent, ascorbate
  • oxygen absorbers are less effective in a passive way that only removes oxygen in the air. Since ascorbic acid is an acidic substance, the pH of the added food and beverage is lowered, and because ascorbic acid has astringency, the flavor of food and beverage is significantly impaired.
  • Patent Document 1 reduced hydrogen water produced by saturating hydrogen gas after degassing a liquid food or the like under reduced pressure. Also provided with heating means and stirring means Disclosed are a vacuum tank, a hydrogen generator for supplying hydrogen to the vacuum tank, a vacuum pump, and a powerful apparatus for producing reducing hydrogen water for food.
  • Patent Document 2 discloses a production system for a hydrogen gas-dissolved liquid medium by blowing hydrogen gas into a liquid medium while stirring in a sealed pressure-resistant container.
  • Patent Document 3 discloses a reduction treatment method and an automatic reduction treatment apparatus that introduce hydrogen gas into a liquid and have a three-stage stirring / dissolution process of reduced-pressure stirring, high-speed stirring, and pressurized stirring.
  • Patent Document 4 describes a suspension of hydrogen saturated solution and bubbles by supplying hydrogen gas in excess of the saturation amount using a vortex generator device connected to a tap and having a spiral plate in the flow path. Disclosed is a hydrogen colloid solution produced by crushing bubbles with stainless steel fibers as a liquid and a production apparatus therefor.
  • Patent Documents 1 to 4 exhibit a low acid reduction potential with no change in pH and have a reducing property, but do not have a free radical scavenging property.
  • Patent Document 5 discloses electrolytic reduced water produced by electrolyzing a sodium hydroxide aqueous solution. This solution is described as containing hydrogen radicals.
  • Patent Document 6 describes a technique for measuring the amount of free radicals of the electrolytically reduced water.
  • the solutions described in Patent Documents 5 and 6 have an extremely high pH of 9 to 12.
  • Patent Document 1 Japanese Patent No. 2890342
  • Patent Document 2 Japanese Patent No. 3829170
  • Patent Document 3 Japanese Patent No. 3843361
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2007-861
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-254078
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-350420
  • the problem to be solved by the present invention is to change the pH of a liquid material that has free radical scavenging properties and reducibility and can be used in beverages, foods, medicines, cosmetics, etc. from the liquid material of the raw material.
  • An object of the present invention is to provide a manufacturing apparatus, a manufacturing method thereof, and a free radical erasable hydrogen solution manufactured using the manufacturing apparatus.
  • the present invention provides:
  • a hydrogen solution production apparatus 102 that mixes and stirs a liquid material and hydrogen to produce a hydrogen solution, and is connected to the hydrogen solution production apparatus 102 and rotates the magnet or the hydrogen solution or both of the hydrogen solution.
  • Free radical scavenging imparting device 5 that magnetically treats
  • An apparatus 100 for producing a free radical scavenging hydrogen solution is provided.
  • the hydrogen solution production apparatus 102 includes:
  • the eddy current ejector 17 includes a vortex generator 11 in which a spiral plate 20 is inserted, a nozzle 9 whose diameter is gradually reduced, a jet 13 which is a tip of the nozzle, and a hydrogen supply device 2.
  • a hydrogen gas outlet 14 connected and installed at the outlet 13 is connected to a mixing part 15 whose diameter gradually increases, and a secondary eddy current generating part 16 in which a spiral plate 20 is inserted in the flow path. Configured.
  • the hydrogen solution production apparatus 102 further includes the bubble refining apparatus 4,
  • the bubble refining device 4 is characterized in that a main body 18 filled with cotton-like stainless steel fibers 21, a pressure gauge 22, and a foreign matter filtering filter 23 are connected in series.
  • the free radical scavenging imparting device 5 relatively rotates the hydrogen solution and the magnetic field formed by the 0.01 to 10 Tesla magnet at a rotational speed of 1000 to 3500 rpm. It is a device that magnetically treats a hydrogen solution and imparts free radical scavenging properties.
  • the magnetic field formed in the free radical erasability imparting device 5 is formed by an AC electromagnet.
  • the free radical scavenging imparting device 5 includes a cylindrical outer cylinder portion 25 having a plurality of baffle plates 37 disposed therein, and a central axis of the outer cylinder portion 25.
  • the rotating shaft 30 installed so that the rotation center 54 and the rotating shaft 54 coincide with each other, a plurality of built-in magnet stirring blades 29 including the magnet 41 installed on the rotating shaft 30, and the rotating shaft 30 at a rotational speed of 1000 to 3500 rpm.
  • a drive unit 28 that is rotated by the motor.
  • the free radical scavenging imparting device 5 includes a cylindrical outer cylinder portion 25 in which a plurality of magnet built-in baffle plates 44 having magnets 41 incorporated therein are installed; A rotary shaft 30 installed so that the central axis of the outer cylinder part 25 and the rotational center 54 coincide with each other, a plurality of stirring blades 36 installed on the rotary shaft 30, and the rotary shaft rotating at 1000 to 3500 rpm And a drive unit 28 that is rotated by a number.
  • the electrical control device 6 that controls the free radical scavenging property imparting device 5 and the free radical scavenging property imparting device 5 are connected, and the spiral plate 20 is disposed inside the outer periphery.
  • the free radical scavenging hydrogen solution production apparatus 100 of the present invention includes a liquid material container, a stirring means, a 0.01-10 Tesla magnet, and a 1000-1000 magnet.
  • the liquid material is water or an aqueous solution.
  • the liquid material is ethanol containing water or a solution using the same as a solvent.
  • the liquid material is any one of a beverage and an alcoholic beverage.
  • the liquid material contains an organic acid and is a solution containing at least one of water, ethanol, or a mixture thereof as a solvent.
  • the liquid material is a liquid material obtained by heating and melting a gel containing agar or gelatin.
  • the liquid material is any one or more members selected from the group consisting of alcohol, organic solvent, essential oil, and vegetable oil.
  • the liquid material is any one of petroleum products including gasoline, light oil, kerosene, light oil and heavy oil.
  • the free radical scavenging property is an activity for scavenging 1,1-diphenyl-2-picrylhydrazyl (hereinafter abbreviated as DPPH).
  • the method for producing a free radical scavenging hydrogen solution of the present invention is the hydrogen solution production apparatus 102 according to any one of claims 1 to 3 or 10 to 16. Producing a hydrogen solution using
  • the method for producing a free radical-erasable hydrogen solution of the present invention uses the apparatus according to claim 9.
  • the present invention provides a free radical scavenging hydrogen solution produced using the free radical scavenging hydrogen solution production apparatus according to any one of claims 1 to 17. provide.
  • a free radical scavenging hydrogen solution according to the present invention is a solution in which hydrogen is dissolved in a liquid material and magnetically treated with a rotating magnetic field to impart free radical scavenging properties. Not.
  • Power radical scavenging is moderate. Since the solvent imparts free radical scavenging, it contains a sufficient amount of active ingredient in proportion to the amount of substrate.
  • the free radical scavenging property of the present invention is an effect of scavenging peracid radicals. I can wait.
  • the product of the present invention prevents oxidation during heat processing of foods.
  • the food can be stored for a long period of time, and since no acid / antioxidant is added, the astringency and taste change of the acid / antioxidant can be suppressed.
  • the products of the present invention have a wide range of uses such as foods, beverages, pharmaceuticals, medical care and cosmetics.
  • FIG. 1 is an overall configuration diagram of an apparatus for producing a free radical scavenging hydrogen solution according to one embodiment of the present invention.
  • FIG. 2 shows an eddy current ejector device 3 according to one embodiment of the present invention.
  • FIG. 3 shows a bubble refining device 4 according to one embodiment of the present invention.
  • FIG. 4 shows a free radical scavenging imparting device 5 according to one embodiment of the present invention.
  • FIG. 5 is an aa cross-sectional view of the free radical scavenging imparting device 5 of FIG.
  • FIG. 6 is a perspective view of the magnet built-in rotor in FIG. 4.
  • FIG. 7 shows a free radical scavenging imparting device 5 according to one embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line bb of the free radical scavenging imparting device 5 in FIG.
  • FIG. 9 shows a free radical scavenging stabilizing device 7 according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of the free radical scavenging stabilizing device 7 of FIG. 9 taken along the line cc.
  • FIG. 11 is a free radical scavenging hydrogen solution production apparatus according to one embodiment of the present invention. Explanation of symbols
  • the DPPH method is employed as a method for measuring free radical scavenging properties.
  • DPPH 1-Diphlo-Lu-2 picrylhydrazyl
  • a free radical scavenger is present, it is erased and converted to a non-radical 1,1-diphenyl-2-picrylhydrazine derivative.
  • the DPPH method is regarded as a general analytical method for measuring free radical scavenging properties in many fields including food analysis.
  • the liquid material used in the present invention is not particularly limited as long as it becomes liquid at 0 to 150 ° C. It is gel-like at room temperature like agar or solid at room temperature like paraffin. Those that become liquid in the temperature range of 0 to 150 ° C. are also included in the liquid material of the present invention. It is impractical to magnetically treat by cooling to 0 ° C or lower. It is not preferable from the viewpoint of safety to magnetically treat a hydrogen solution at a temperature of 150 ° C or higher.
  • the present invention even a liquid material with a small amount of hydrogen dissolved can be imparted with free radical scavenging properties by magnetic treatment with a rotating magnetic field.
  • the free radical scavenging hydrogen solution obtained with the production apparatus of the present invention is moderately active, and the liquid material usually does not dissolve with a small amount of hydrogen. Therefore, in the present invention, It is preferable to use a liquid material in which hydrogen gas is dissolved to near saturation.
  • the hydrogen saturation of the water is calculated according to the Chemical Handbook (Revised 4th edition, 199 3, Maruzen) [Kyore ryoma, 20 ° C, 101.3kPa [here! In short, it is 0.141 X 10-4 monole fraction. Approximate calculation shows that the dissolved amount of hydrogen gas per 1L of water at room temperature and normal pressure is 17.6mL. Therefore, it is preferable to supply hydrogen gas in this amount or in excess of this amount.
  • liquid material in which hydrogen gas is dissolved include the liquid materials described in Patent Documents 1 to 4.
  • the hydrogen solution described in Patent Document 1 containing colloidal hydrogen bubbles, in which excess hydrogen than the saturation amount is supplied and bubbles of excess hydrogen gas are pulverized with stainless steel fibers, is exemplified. can do.
  • the diameter of bubbles generated by pulverization is preferably several hundred nanometers or less. Since such microbubbles have a higher repulsive force between surfaces where the buoyancy and velocity energy of the bubbles are small, collision between the bubbles is suppressed and a gas Z liquid colloidal solution is formed.
  • Free radical erasability imparting apparatus 5 has a negative correlation between the magnetic field strength and the processing time for imparting free radical erasability. In other words, the stronger the magnetic field, the shorter the processing time, and the weaker the magnetic field, the longer the processing time.
  • a magnet of 0.01 tesla or less When a magnet of 0.01 tesla or less is used, the magnetic field formed is weak, so that the processing time becomes too long and is not practical. Therefore, it is preferable to use a magnet of 0.01 Tesla or higher. It is preferable to use a magnet of 0.05 Tesla or more. 0. Use a magnet of 1 Tesla or more. It is preferable.
  • the magnetic flux density of the magnet used is up to about 10 Tesla in the current technical level. Strong magnets with a magnetic flux density greater than 10 Tesla are also known but expensive. If a magnet with high magnetic flux density is put to practical use, the use of a magnet of 10 Tesla or more can be used in the present invention.
  • the processing time in the free radical erasability imparting device 5 can be arbitrarily changed according to the strength of the magnetic field of the free radical erasability imparting device 5 and the type of the device.
  • it When applying free radical scavenging activity in a batch manner as shown in Fig. 11, it is relatively weak and can be magnetically processed for a long time using a magnet. In a continuous manner as shown in Figs. When performing, it is preferable to perform magnetic processing in a short time using a strong magnet.
  • the magnetic processing time is preferably experimentally determined in advance according to the apparatus used.
  • FIG. 1 is an overall configuration diagram of a free radical scavenging hydrogen solution production apparatus based on one embodiment of the present invention.
  • the hydrogen solution production apparatus 102 includes a pump apparatus 1, a hydrogen supply apparatus, and an eddy current ejector apparatus 3, and optionally includes a bubble refining apparatus 4.
  • the pump device 1 supplies liquid material to the vortex ejector device 3.
  • the hydrogen supply device 2 supplies hydrogen to the eddy current generator device 3.
  • the vortex ejector device 3 mixes a liquid material and hydrogen gas to generate a suspension of hydrogen solution and hydrogen bubbles.
  • the hydrogen solution and the suspension of hydrogen bubbles produced by the vortex ejector 3 can be used in the next step as they are, but further, the hydrogen bubbles are crushed to produce a hydrogen solution. It is preferable. When not crushing hydrogen bubbles with the bubble refining device 4, hydrogen Bubbles become huge bubbles and dissipate out of the system.
  • the free radical erasability imparting device 5 connected to the eddy current ejector 3 or the bubble refining device 4 is provided with a free radical erasability hydrogen by magnetically treating a hydrogen solution with a rotating magnetic field. Give solution 100.
  • the free radical-erasable hydrogen solution 100 obtained at this stage is preferably stored after it has been subjected to a stabilization treatment that can be used as it is.
  • the electric control device 6 performs electric control of the free radical scavenging imparting device 5.
  • FIG. 2 shows a vortex ejector assembly 3.
  • the liquid material is fed from the eddy current generator device inlet 10 by the pump device 1 and is given a rotational moment of 500 to 1000 revolutions per minute by the spiral plate 20 installed in the flow path of the vortex generator 11.
  • Hydrogen gas is supplied from a hydrogen gas injection port 14 installed at the injection port 13.
  • a swirling gas cavity is created by entraining hydrogen gas in a liquid material rotating at high speed, and fine bubbles of hydrogen gas are generated by cutting the swirling gas cavity at a difference in swirling speed of the liquid material. Since the fine bubbles of hydrogen gas have a large specific surface area, the hydrogen gas is absorbed and dissolved in the liquid material. If the supply amount of hydrogen gas is excessive than the amount that saturates the liquid material, the liquid material is saturated with hydrogen, and the excess hydrogen gas is suspended as bubbles.
  • FIG. 3 shows the bubble refining device 4.
  • the hydrogen solution and the suspension of hydrogen bubbles sent from the vortex ejector device outlet 17 enter the bubble refiner inlet 19.
  • the secondary vortex generator 16 The spiral plate 20 is extended and inserted!
  • the bubble refiner main body 18 is filled with ultrafine stainless steel fibers 21 in a cotton shape.
  • the stainless steel fiber is a functional material obtained by processing stainless steel such as SUS316L into a fiber shape by, for example, a cutting method, and an extremely fine one having a fiber diameter of 2 to 8 micrometers is commercially available. .
  • the hydrogen solution obtained in this manner is sent to the next device from the bubble micronizer outlet 24 after removing foreign matter with the filter 23 for foreign matter filtration.
  • FIG. 4 illustrates a free radical scavenging imparting device 5 according to one embodiment of the present invention
  • FIG. 5 is an overview of the magnet built-in rotor 40.
  • An eddy current ejector outlet 17 or a bubble refining device outlet 24 communicates, and 1) an inlet pipe 26 having a free radical scavenging device inlet 27 installed at one end 51. 2) A discharge pipe 34 having a free radical scavenging device outlet 35 installed at the other end 51 is provided, and 3) both ends where a plurality of baffle plates 37 are installed inside.
  • a cylindrical outer cylinder part 25 whose surface is sealed;
  • the inside of the free radical scavenging imparting device 5 is inserted into 1) the rotary shaft leakage prevention seal 31 installed at the center of one end surface of the outer cylinder 25, and 2) the rotation shaft leakage prevention seal 31.
  • the rotary shaft 30 installed so that the central axis of the outer cylinder portion 25 and the central axis 53 of the rotary shaft 30 coincide with each other, and the rotary shaft leakage prevention seal 31 installed at the center of the other end face 52 And 3) a bearing 33 having a rotary bearing 32 arbitrarily installed at the center of the opposed end face 52, and 2) a central axis 53 of the rotary shaft 30.
  • a plurality of straight lines 54 that are orthogonal to each other are set at equal intervals and adjacent to each other at an angle of 90 ° to each other.
  • the generated free radical scavenging hydrogen solution is free radical at the end of the discharge pipe 34. It is sent from the erasability imparting device outlet 35 to the next device.
  • FIG. 6 is an aa cross-sectional view of the free radical scavenging imparting device 5 of FIG.
  • the magnet built-in stirring blades 40 with magnets are installed adjacent to each other at an angle of 90 °, and project in the direction of the rotating shaft 30 force 4 directions.
  • FIG. 7 illustrates a free radical scavenging imparting device 5 according to another embodiment of the present invention.
  • the apparatus shown in FIG. 7 is the same as the free radical scavenging imparting apparatus 5 shown in FIG. 4 except that the magnet built-in stirring blade 29 and the magnet built-in rotor 40 are replaced with the stirring blade 36 and the rotor 43, and the baffle plate 37 is a magnet built-in baffle. Replaced with plate 44.
  • FIG. 8 is a cross-sectional view at the position bb in FIG.
  • FIG. 9 shows a free radical scavenging stabilizer 7.
  • the free radical scavenging hydrogen solution sent from the free radical scavenging device outlet 35 enters from the free radical scavenging stability device inlet 39 and alternates between the top and bottom of the free radical scavenging stability device body 38.
  • the magnetic field generated by the magnet 41 attached to is passed along the spiral plate 20 while rotating.
  • the generated free radical scavenging hydrogen solution is free radical scavenging stabilizer outlet
  • FIG. 10 is a sectional view taken along line cc in FIG.
  • FIG. 11 shows an example of a batch-type free radical scavenging hydrogen solution production apparatus 100.
  • Liquid gas container 60, stirring means 61, 0.01 to 10 Tesla magnet 41, rotating means 28 for rotating the magnet at a rotational speed of 1000 to 3500 rpm, and hydrogen supply device 2 communicate with hydrogen gas.
  • a hydrogen gas nozzle 62 for supplying water and a disk 63 installed in water to prevent air entrainment due to eddy currents are used to dissolve hydrogen into the liquid material while stirring, and the magnet 41 Free radical scavenging is imparted by a magnetic treatment in a rotating magnetic field formed by rotation of.
  • Test example 1 is for illustrating the present invention, and the present invention is not limited to the following examples.
  • Test example 1 is for illustrating the present invention, and the present invention is not limited to the following examples.
  • Example 1 [0100] Using the free radical scavenging active hydrogen liquid production system shown in Fig. 1, the eddy current ejector 3 shown in Fig. 2 is supplied with 10L of tap water and 0.2L per minute. A hydrogen fine bubble suspension was produced by supplying the hydrogen gas. The hydrogen fine bubble suspension was made into a hydrogen solution using a bubble refining device 4 shown in FIG. As shown in FIG. 7, a rotating flow baffle plate 37 is installed inside the outer cylinder portion 25 having an internal capacity of 3.4 L, including eight 1.6 Tesla magnets to form a magnetic field.
  • the oxidation-reduction potential at which the pH hardly changed throughout each treatment step was 600 mV or less in all samples after saturating hydrogen gas in tap water.
  • the free radical scavenging power was not observed in the hydrogen microbubble suspension and the hydrogen solution.
  • the free radical scavenging hydrogen solution showed free radical scavenging.
  • Example 2 Fill the aluminum can with the free radical scavenging hydrogen solution obtained in Example 1, The sample was stored after removal of air and sealed for 1 month at room temperature. The redox potential and free radical scavenging rate by DPPH method were measured. The results are shown in Table 2.
  • the free radical scavenging rate of the free radical scavenging hydrogen solution was 100 At 30 ° C, the free radical scavenging rate was reduced to about half.
  • free radical scavenging can be imparted by treating hydrogen-dissolved water with a rotating magnetic field, and free radical scavenging can be achieved using any of the methods of Examples 4-7.
  • a neutral hydrogen solution could be produced.
  • Each of the lmol concentration pH 3 citrate buffer solution and pH 4 citrate buffer solution was treated using the eddy current ejector device 3 shown in FIG. It is made into a bubble suspension, treated with a bubble refining device 4 shown in FIG. 3 to form a hydrogen solution, and a free radical scavenging imparting device 5 shown in FIG. To produce a free radical scavenging active hydrogen liquid.
  • the free radical scavenging potential and the free radical scavenging rate by the DPPH method were measured for the samples before and after imparting free radical scavenging properties. The results are shown in Table 5.
  • a strongly acidic solution has a high acidification reduction potential and high oxidizing power.
  • Table 5 prior to imparting free radical scavenging properties, a pH 3.0 citrate buffer solution has a higher redox potential than a pH 4.0 citrate buffer solution. It was.
  • Example 5 Same as Example 1 except that rice shochu with 25% alcohol content was used instead of tap water A free radical scavenging hydrogen solution was prepared using this method. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

原料の液体材料からpHを変化させずに、フリーラジカル消去性と還元性を有し、飲料、食品、医薬、化粧品等に使用可能な液体材料を製造する。(1)ポンプ装置1と水素供給装置2と連通し、水素飽和溶液との気泡との懸濁液を生成する渦流エジェクター装置3と、気泡を破砕して水素溶液を生成する気泡微細化装置4と、から構成される水素溶液製造装置102と、(2)0.01~10テスラの磁石が1000~3500rpmの回転数で回転して形成する回転磁場で、水素溶液を磁気処理するフリーラジカル消去性付与装置5と、制御装置6と、フリーラジカル消去性安定化装置7と、貯留タンク8と、を含むことを特徴とするフリーラジカル消去性水素溶液の製造装置と、その製造方法と、その製造装置を用いたフリーラジカル消去性水素溶液と、を提供する。

Description

明 細 書
フリーラジカル消去性水素溶液、その製造方法、及び製造装置 発明の属する技術分野
[0001] 本発明は、フリーラジカル消去性水素溶液製造装置と、フリーラジカル消去性水素 溶液の製造方法と、本発明の製造装置によって製造されたフリーラジカル消去性水 素溶液と、に関する。
[0002] 更に詳しくは、本発明は、飲料、食品、医薬、化粧品等の液体材料に水素ガスを溶 解させ、回転磁場で処理することにより、液体材料の pHを変化させずに液体材料に フリーラジカル消去性を付与して、フリーラジカル消去性水素溶液を製造する装置と 方法、及び本発明の製造装置によって製造されたフリーラジカル消去性水素溶液と 、に関する。
背景技術
[0003] 食品は、加熱加工によって酸化による褐変、芋臭の発生や、色素、ビタミン、カロチ ン、アントシァニン等の機能性成分の酸ィ匕分解が進行し、これに伴い品質低下、保 存性の低下が起こる。
[0004] 加熱加工時の酸化抑制方法としては脱気水の使用が行われてきた。しかし、この方 法によっては、食品の加工時の酸ィ匕は殆ど防ぐことが出来な力つた。従来、食品の加 ェ中の酸ィ匕分解は避けられない事柄とされてきた。
[0005] 食品の保蔵中の酸化防止には、酸素吸収剤ゃァスコルビン酸塩等の酸化防止機 能を有する食品添加物が使用されてきた。しかし、酸素吸収剤は空気中の酸素を除 去するのみの受動的な方法で効果が少な 、。またァスコルビン酸は酸性物質である ので添カ卩した食品'飲料の pHを下げ、ァスコルビン酸は渋味を有するために食品 · 飲料の風味を著しく損なう。
[0006] このため、食品の風味や pHを変化させることなぐ安全で、安価な過酸化ラジカル 消去技術の開発が要望されていた。
[0007] 出願人は特許文献 1に、液体からなる食品等を減圧下で脱気した後、水素ガスを 飽和させて製造した還元性水素水を開示した。又、加熱手段と撹拌手段とを備えた 真空タンクと、前記真空タンクに水素を供給する水素発生装置と、真空ポンプと、力 なる食品の還元性水素水の製造装置を開示した。
[0008] 特許文献 2に、密閉耐圧容器中で撹拌しながら、液体媒体に水素ガスを吹き込む ことによる、水素ガス溶存液状媒体の生産システムを開示した。
[0009] 特許文献 3に、水素ガスを液体に導入し、減圧撹拌、高速撹拌、加圧撹拌の 3段階 の撹拌溶解過程を有する還元処理方法と自動還元処理装置を開示した。
[0010] 特許文献 4に、水道の蛇口に接続し、流路にスパイラル板を具備する渦流ェジエタ ター装置を用いて、飽和量より過剰の水素ガスを供給して水素飽和溶液と気泡の懸 濁液とし、ステンレス鋼繊維で気泡を破砕して製造した水素コロイド溶液とその製造 装置を開示した。
[0011] 本発明者らが特許文献 1〜4に開示した水素溶液は、 pHの変化がなぐ低い酸ィ匕 還元電位を示し、還元性を有するが、フリーラジカル消去性は有していない。
[0012] 特許文献 5に水酸化ナトリウム水溶液を電気分解して製造する電解還元水が開示 されて 、る。この溶液は水素ラジカルを含有すると記載されて 、る。
[0013] 特許文献 6には前記電解還元水のフリーラジカル量を測定する技術が記載されて 、 る。しかし、特許文献 5、 6に記載された溶液は pHが 9〜12と極めて高い。
[0014] この様に、特許文献 5、 6に報告された、フリーラジカル消去性を有すると記載され た水は pHが高ぐ食品、医薬、化粧品への使用を制限されている。
[0015] 特許文献 1 :特許第 2890342号公報
特許文献 2:特許第 3829170号公報
特許文献 3:特許第 3843361号公報
特許文献 4:特開 2007— 861号公報
特許文献 5:特開 2002— 254078号公報
特許文献 6:特開 2002 - 350420号公報
発明の開示
発明が解決しょうとする課題
[0016] 本発明が解決しょうとする課題は、フリーラジカル消去性と還元性を有し、飲料、食 品、医薬、化粧品等に使用可能な液体材料を、原料の液体材料から pHを変化させ ずに製造する製造装置と、その製造方法と、その製造装置を用いて製造したフリーラ ジカル消去性水素溶液と、を提供することにある。
課題を解決するための手段
[0017] 上記、課題を解決するための手段として本発明は、
液体材料と水素とを混合、撹拌して水素溶液を製造する水素溶液製造装置 102と 前記水素溶液製造装置 102と連結し、磁石又は前記水素溶液、若しくその双方を 回転させることによって前記水素溶液を磁気処理するフリーラジカル消去性付与装 置 5と、
を含んで構成されることを特徴とするフリーラジカル消去性水素溶液製造装置 100 を提供する。
[0018] 請求項 2の記載によれば、水素溶液製造装置 102は、
(1)水素供給装置 2と、
(2)ポンプ装置 1と、
(3)渦流ェジ クタ一装置 17と、
を備え、渦流ェジェクタ一装置 17は、スパイラル板 20が挿入された渦流生成部 11と 、 口径が漸次縮小されるノズル部 9と、ノズル部の先端である噴出口 13と、水素供給 装置 2と接続され前記噴出口 13に設置された水素ガス噴出口 14と、漸次口径が拡 大する混合部 15と、流路にスパイラル板 20が挿入された 2次渦流生成部 16と、が連 接されて構成される。
[0019] 請求項 3の記載によれば、水素溶液製造装置 102は気泡微細化装置 4を更に備え ており、
気泡微細化装置 4は、内部に綿状のステンレス鋼繊維 21が充填された本体 18と、圧 力計 22と、異物ろ過用フィルタ 23と、が連設されることを特徴とする。
[0020] 請求項 4の記載によれば、フリーラジカル消去性付与装置 5が、水素溶液と 0. 01〜 10テスラの磁石が形成する磁場とを 1000〜3500rpmの回転数で相対回転させる ことによって水素溶液を磁気処理し、フリーラジカル消去性を付与する装置であること を特徴とする。 [0021] 請求項 5の記載によれば、フリーラジカル消去性付与装置 5に形成されている磁場は 、交流電磁石によって形成されたものであることを特徴とする
[0022] 請求項 6の記載によれば、フリーラジカル消去性付与装置 5は、内側に複数個の邪 魔板 37が設置された筒状の外筒部 25と、外筒部 25の中心軸と回転中心 54がー致 するように設置された回転軸 30と、回転軸 30に設置され磁石 41を内蔵する複数個 の磁石内蔵撹拌翼と 29、前記回転軸 30を 1000〜3500rpmの回転数で回転させる 駆動部 28と、を備えることを特徴とする。
[0023] 請求項 7の記載によれば、フリーラジカル消去性付与装置 5は、内側に磁石 41を内 蔵した複数個の磁石内蔵邪魔板 44が設置された筒状の外筒部 25と、外筒部 25の 中心軸と回転中心 54がー致するように設置された回転軸 30と、回転軸 30に設置さ れた複数個の撹拌翼 36と、前記回転軸を 1000〜3500rpmの回転数で回転させる 駆動部 28と、を備えることを特徴とする。
[0024] 請求項 8の記載によれば、フリーラジカル消去性付与装置 5の制御を行う電気制御 装置 6と、フリーラジカル消去性付与装置 5に接続され、内部にスパイラル板 20が設 置され外周面に複数個の磁石 41が設置されたフリーラジカル消去性安定ィ匕装置 7と 、フリーラジカル消去性安定ィ匕装置出口 42に接続された貯留タンク 8と、を更に含ん で構成されることを特徴とする。
[0025] 請求項 9の記載によれば、本発明のフリーラジカル消去性水素溶液製造装置 100は 、液体材料の容器と、撹拌手段と、 0. 01〜10テスラの磁石と、磁石を 1000〜3500 rpmの回転数で回転させる回転手段と、水素供給装置と連通して水素ガスを液体材 料に供給する水素ガスノズルと、を備えることを特徴とする。
[0026] 請求項 10の記載によれば、液体材料が水又は水溶液であることを特徴とする。
[0027] 請求項 11の記載によれば、液体材料が水を含むエタノールまたはそれを溶媒とする 溶液であることを特徴とする。
[0028] 請求項 12の記載によれば、液体材料が飲料又はアルコール飲料の何れか 1種であ ることを特徴とする。
[0029] 請求項 13の記載によれば、液体材料が有機酸を含有し、水又はエタノール若しくは それらの混合物の中の少なくとも 1種を溶媒とする溶液であることを特徴とする。 [0030] 請求項 14の記載によれば、前記液体材料が、寒天又はゼラチンを含むゲルを加熱 融解した液体材料であることを特徴とする。
[0031] 請求項 15の記載によれば、液体材料が、アルコールと有機溶剤と精油と植物性油脂 とからなる群のうちの何れか 1種以上であることを特徴とする。
[0032] 請求項 16の記載によれば、液体材料が、ガソリンと、軽油と灯油と軽油と重油とから なる石油製品のうちの何れか 1種であることを特徴とする。
[0033] 請求項 17の記載によれば、フリーラジカル消去性が、 1, 1ージフエ二ルー 2—ピクリ ルヒドラジル (以下 DPPHと略す)を消去する活性であることを特徴とする。
[0034] 請求項 18の記載によれば、本発明のフリーラジカル消去性水素溶液製造方法は、 請求範囲第 1ないし 3又は 10ないし 16項のいずれか 1項に記載の水素溶液製造装 置 102を用いて水素溶液を製造する工程と、
水素溶液に、請求の範囲第 1、 4ないし 8又は 10ないし 16項のいずれか 1項に記載 のフリーラジカル消去性付装置 5を用いてフリーラジカル消去性を付与する工程と、 を含むことを特徴とする。
[0035] 請求項 19の記載によれば、本発明のフリーラジカル消去性水素溶液製造方法は、 請求の範囲第 9項に記載の装置を用いることを特徴とする。
[0036] 請求項 20の記載によれば本発明は、請求項 1ないし 17のいずれか 1項に記載のフリ 一ラジカル消去性水素溶液製造装置を用いて製造したフリーラジカル消去性水素溶 液を提供する。
発明の効果
[0037] 本発明によるフリーラジカル消去性水素溶液は、液体材料に水素を溶解させ、回 転磁場で磁気処理してフリーラジカル消去性を付与したものであり、蒸発しても残存 する成分は加えていない。
[0038] 中等度のフリーラジカル消去性と、原料と pHが変わらな 、性質と、低 、酸化還元電 位で示される強い還元性と、を有する。
[0039] フリーラジカル消去性は中等度のものである力 溶媒にフリーラジカル消去性を付 与するので、基質の量との比率に於 、ては十分な量の活性成分を含む。
[0040] 本発明のフリーラジカル消去性は、過酸ィ匕ラジカルを消去する作用であることが期 待できる。
[0041] 食品や飲料の分野に於いては、本発明品は、食品の加熱加工時の酸化を防止す る。又、食品の長期保存を可能とすると共に、酸ィ匕防止剤を添加しないので、酸ィ匕防 止剤の有する渋味や味の変化を抑えることができる。
[0042] 医薬品、医療の分野では、本発明品を摂取することによって、フリーラジカル消去 性の活性成分が組織内へ浸透し、生体に発生するフリーラジカルを消去することが 期待出来る。
[0043] 化粧品の分野においては、本発明品を外用することによって人体表面に発生する フリーラジカルを消去して、老化現象を防止'改善することが期待出来る。
[0044] 蒸発して残存する成分は加えて!/、な!/、ので、純水での洗浄を必要とするマイクロチ ップの洗浄での使用が可能である。
この様に、本発明品には、食品、飲料、医薬品、医療、化粧品等幅広い用途が開 けている。
図面の簡単な説明
[0045] [図 1]本発明の 1実施例によるフリーラジカル消去性水素溶液製造装置の全体構成 図である。
[図 2]本発明の 1実施例による渦流ェジェクタ一装置 3を示す。
[図 3]本発明の 1実施例による気泡微細化装置 4を示す。
[図 4]本発明の 1実施例によるフリーラジカル消去性付与装置 5を示す。
[図 5]図 4のフリーラジカル消去性付与装置 5の a— a断面図である。
[図 6]図 4の磁石内蔵回転子の斜視図である。
[図 7]本発明の 1実施例によるフリーラジカル消去性付与装置 5を示す。
[図 8]図 7のフリーラジカル消去性付与装置 5の b—b断面図である。
[図 9]本発明の 1実施例によるフリーラジカル消去性安定ィ匕装置 7を示す。
[図 10]図 9のフリーラジカル消去性安定ィ匕装置 7の c— c断面図である。
[図 11]本発明の 1実施例によるフリーラジカル消去性水素溶液製造装置である。 符号の説明
[0046] 1 ポンプ装置 水素供給装置
渦流ェジ クタ一装置
気泡微細化装置
フリーラジカル消去性付与装置 電気制御装置
フリーラジカル消去性安定化装置 貯留タンク
ノズル部
渦流ェジェクタ一装置入口 渦流生成部
水素ガス供給口
噴出口
水素ガス噴出口
混合部
2次渦流生成部
渦流ェジェクタ一装置出口 気泡微細化装置本体
気泡微細化装置入口
スパイラル板
ステンレス鋼繊維
圧力計
異物ろ過用フィルタ
気泡微細化装置出口
外筒部
導入パイプ
フリーラジカル消去性付与装置入口 駆動部
磁石内蔵攪拌翼 30 回転軸
31 回転軸漏液防止シーノレ
32 回転ベアリング
33 軸受け
34 排出パイプ
35 フリーラジカル消去性付与装置出口
36 攪拌翼
37 邪魔板
38 フリーラジカル消去性安定化装置本体
39 フリーラジカル消去性安定化装置入口
40 磁石内蔵回転子
41 1. 01〜: L0テスラの磁石
42 フリーラジカル消去性安定化装置出口
43 回転子
44 磁石内蔵邪魔板
45 磁石内蔵外筒部
51 端部
52 端面
53 回転部の中心線
54 中心線と直交する直線
60 液体材料の容器
61 撹拌手段
62 水素ガスノズノレ
100 フリーラジカル消去性水素溶液製造装置
101 フリーラジカル消去性水素溶液
102 水素溶液製造装置
発明を実施するための最良の形態 (フリーラジカル消去性の測定方法) 本発明では、フリーラジカル消去性の測定方法として DPPH法を採用した。
[0048] DPPH (1, 1—ジフヱ-ルー 2 ピクリルヒドラジル)はそれ自体がフリーラジカルで ある。フリーラジカル消去物質が存在すると消去されて、非ラジカルである 1, 1ージフ ェニル— 2—ピクリルヒドラジン誘導体に変化する。
[0049] DPPHは、広汎なフリーラジカル消去物質と反応するので、 DPPH法は食品分析 を始め、多くの分野に於いて、フリーラジカル消去性を測定する一般的な分析方法と されている。
[0050] DPPHがフリーラジカルの状態で存在する時は、 520nm付近に最大吸収を有する 紫色を呈しており、フリーラジカル消去性を有する物質に捕捉されると無色の 1, 1 ジフエ二ル 2—ピクリルヒドラジン誘導体に変化する。反応式は化 1に示す。
[0051] 分光光度計を用いて、サンプルとコントロールサンプルの 520nmの吸光度を測定 し、式 1によってフリーラジカル消去率を算出した。
式 1
[0052] フリーラジカル消去率 [%] = [ (Ac -As) /Ac] X 100
但し Ac :コントロールサンプルの吸光度
As :サンプルの吸光度
[0053] [化 1]
Figure imgf000011_0001
, 1 _ジフヱ二ルー 1 _ジフヱ二ル—
2—ピクリルヒドラジル 2—ピクリルヒドラジン 紫色 無色
[0054] (水素溶液)
本発明に用いる液体材料は 0〜150°Cで液体となるものであれば特に限定されな い。寒天のように常温ではゲル状であるものや、パラフィンのように常温では固体であ るものも、 0〜 150°Cでの温度範囲で液体となるものであれば本発明の液体材料に 含まれる。 0°C以下に冷却して磁気処理することは実用的でなぐ 150°C以上の温度 で水素溶液を磁気処理するのは安全性の観点から好ましくない。
[0055] 本発明によれば、水素の溶解量が少な!/ヽ液体材料でも、回転磁場で磁気処理する ことによってフリーラジカル消去性を付与できる。しかし、本発明の製造装置で得られ るフリーラジカル消去性水素溶液は活性が中等度なものであるし、液体材料は通常 は少量の水素し力溶解しな 、ので、本発明に於 、ては水素ガスを飽和近くまで溶解 した液体材料を用いることが好まし 、。
[0056] 液体材料として水を用いる場合は、水の水素飽和度は、化学便覧(改訂 4版、 199 3年、丸善)【こよれ ίま、、 20°C、 101. 3kPa【こ於!ヽて、 0. 141 X 10— 4モノレ分率であ る。近似計算すると、常温常圧に於いて水 1Lに対して水素ガスの溶解量は 17. 6m Lということになる。よって、この程度、若しくはこれより過剰の量の水素ガスを供給す ることが好ましい。
[0057] 水素ガスを溶解した液体材料の好ましい実例としては、特許文献 1〜4に記載した 液体材料を例示できる。
[0058] 更に最も好ましくは、飽和量よりも過剰の水素を供給し、過剰の水素ガスの気泡を ステンレス鋼繊維で粉砕した、コロイド状の水素気泡を含む特許文献 1に記載の水素 溶液を例示することができる。
[0059] 粉砕によって生成する気泡の径は数百ナノメーター以下であることが望ましい。この ような微細気泡は、気泡の浮力や速度エネルギーが小さぐ表面同士の反発力が優 先するので、気泡同士の衝突が抑えられ、気 Z液コロイド溶液を形成する。
[0060] (磁場強度'処理時間'磁場の回転数)
[0061] フリーラジカル消去性付与装置 5の磁場の強度とフリーラジカル消去性を付与する ための処理時間とは負の相関関係にある。即ち、磁場が強ければ強いほど処理時間 を短縮でき、磁場が弱ければ処理時間を長くする必要がある。
[0062] 0. 01テスラ以下の磁石を用いると、形成される磁場が弱いので、処理時間が長く なり過ぎて実用的ではない。よって、 0. 01テスラ以上の磁石を用いることが好ましい 。 0. 05テスラ以上の磁石を用いることが好ましぐ 0. 1テスラ以上の磁石を用いること 力 り好ましい。
[0063] 用いる磁石の磁束密度は高ければ高いほど好ましいが、フリーラジカル消去性付 与装置 5に実用的に使用できる磁石の磁束密度は、現在の技術水準では約 10テス ラまでである。 10テスラより磁束密度の大きな強力磁石も公知であるが高価である。 磁束密度の高 、磁石が実用化されれば、 10テスラ以上の磁石の使用も本発明に使 用できる。
[0064] フリーラジカル消去性付与装置 5に於ける処理時間は、フリーラジカル消去性付与 装置 5の磁場の強さと装置の形式に対応して、任意に変更可能である。図 11に示す ような、バッチ式でフリーラジカル消去活性の付与を行う場合は比較的弱 、磁石を用 いて長時間磁気処理することが可能であり、図 1〜10に示すような連続式で行う場合 は強力な磁石を用いて短時間で磁気処理を行うことが好まし 、。
[0065] バッチ式で行う場合の処理時間の長さに制限はないが、 6000秒を越すと実用的で はない。より好ましくは、 2000秒以下の反応時間が例示される。連続式で行う場合で も、 1秒以上の処理時間は必要である。
[0066] 磁気処理時間は使用する装置に応じて、前以て実験的に求めることが好ましい。
[0067] (図の説明)
以下、図面を参照して本発明のフリーラジカル消去性水素溶液の製造装置につい て説明する。
[0068] 図 1は、本発明の 1実施例に基づくフリーラジカル消去性水素溶液製造装置の全 体構成図である。
[0069] この実施例による水素溶液製造装置 102は、ポンプ装置 1と水素供給装置と渦流 ェジ クタ一装置 3から構成され、任意に気泡微細化装置 4を含む。ポンプ装置 1は 、渦流ェジ クタ一装置 3に液体材料を供給する。水素供給装置 2は、渦流ェジエタ ター装置 3に水素を供給する。渦流ェジェクタ一装置 3は、液体材料と水素ガスとを 混合し、水素溶液と水素気泡の懸濁液を生成する。
[0070] 渦流ェジ クタ一装置 3によって製造された水素溶液と水素気泡の懸濁液は、その まま次の工程で用いることも出来るが、更に、水素気泡を破砕して水素溶液を製造す ることが好ましい。気泡微細化装置 4による水素気泡の破砕を行わない場合は、水素 気泡は巨大気泡になって系外へ散逸する。
[0071] 渦流ェジェクタ一装置 3又は気泡微細化装置 4に接続するフリーラジカル消去性付 与装置 5は、水素溶液を回転磁場で磁気処理してフリーラジカル消去性を付与して フリーラジカル消去性水素溶液 100を与える。この段階で得られるフリーラジカル消 去性水素溶液 100はこのままでも使用可能である力 更に安定化処理を行った後に 貯留することが好ましい。
[0072] フリーラジカル消去性付与装置 5に接続するフリーラジカル消去性安定化装置 7は フリーラジカル消去性を安定化させ、生成したフリーラジカル消去性水素溶液は貯留 タンク 8に貯留される。電気制御装置 6は、フリーラジカル消去性付与装置 5の電気制 御を行う。
[0073] 図 2は渦流ェジェクタ一装置 3を示す。液体材料は、ポンプ装置 1によって渦流ェジ エタター装置入口 10から送り込まれ、渦流生成部 11の流路に設置されたスパイラル 板 20によって毎分 500〜1000回転の回転モーメントが付与される。
[0074] 渦流生成部 11の下流に接続し、漸次口径が縮小されるノズル部 9によって、液体 材料の流速と回転数が急増し、急旋回しながら噴射口 13から噴出される。
[0075] 噴射口 13に設置された水素ガス噴射口 14から水素ガスが供給される。高速で旋 回する液体材料が水素ガスを巻き込むことによって旋回気体空洞が生成し、その旋 回気体空洞を液体材料の旋回速度差で切断することによって水素ガスの微細気泡 を発生させる。水素ガスの微細気泡は比表面積が大きいので、水素ガスは液体材料 に吸収され、溶解される。水素ガスの供給量が液体材料を飽和させる量より過剰であ れば、液体材料は水素の飽和状態となり、過剰の水素ガスは気泡となって懸濁され る。
[0076] 水素溶液と水素気泡の懸濁液は、流路にスパイラル板 20が挿入されている 2次渦 流生成部 16で再度回転モーメントが付与され、液体と気泡の懸濁液として渦流ェジ エタター出口 17から気泡微細化装置 4に送られる。
[0077] 図 3は、気泡微細化装置 4を示す。
渦流ェジェクタ一装置出口 17から送られて来た水素溶液と水素気泡の懸濁液は、 気泡微細化装置入口 19に入る。気泡微細化装置入口 19には、 2次渦流生成部 16 のスパイラル板 20が延長されて挿入されて!、る
[0078] 気泡微細化装置本体 18には、極細のステンレス鋼繊維 21が綿状に充填されてい る。ステンレス鋼繊維とは、例えば SUS316Lのようなステンレス鋼を、例えば切削法 によって繊維状に加工した機能性素材で、極細なものとしては繊維径 2〜8マイクロメ 一ターのものが市販されて 、る。
[0079] 前記液体と気泡の懸濁液が、回転モーメントが付与されて気泡微細化装置本体パ ィプ 18を高速で通過すると、気泡はステンレス鋼繊維 21によってキヤビテーシヨンを 起して破碎され、微細な気泡となる。
[0080] このようにして得られた水素溶液は、異物ろ過用フィルタ 23で異物を除去した後に 気泡微細化装置出口 24から次の装置へ送られる。
[0081] 図 4は本発明の 1実施例に基づくフリーラジカル消去性付与装置 5を例示し、図 5は 磁石内蔵回転子 40の概観図である。
[0082] (1)渦流ェジ クタ一出口 17又は気泡微細化装置出口 24と連通し、 1)一方の端 部 51にフリーラジカル消去性付与装置入口 27が設置された導入パイプ 26が配設さ れ、 2)他方の端部 51にフリーラジカル消去性付与装置出口 35が設置された排出パ イブ 34が配設され、 3)内側に複数個の邪魔板 37が設置されたところの、両端面が 封鎖された円筒形をした外筒部 25と、
(2)フリーラジカル消去性付与装置 5の内部は、 1)外筒部 25の一方の端面の中心 に設置された回転軸漏液防止シール 31と、 2)回転軸漏液防止シール 31に挿通さ れ、前記外筒部 25の中心軸と回転軸 30の中心軸 53とが一致するように設置された 回転軸 30と、他方の端面 52の中心に設置された回転軸漏液防止シール 31を揷通 して回転自在に支持された回転軸 30と、 3)対向する端面 52の中心に任意に設置さ れた回転ベアリング 32を有する軸受け 33と、 2)前記回転軸 30の中心軸 53と直交す る複数の直線 54が等間隔に且つ隣同士互いに 90° の角度をなして設定され、前記 直線 54を中心として前記回転軸 30の両側に 0. 01〜: LOテスラの磁石を内蔵する磁 石内蔵撹拌翼 29が上下左右対称に設置されている磁石内蔵回転子 40と、 3)前記 磁石内蔵回転子 40を回転させる駆動部 28と、を備える。
[0083] 生成したフリーラジカル消去性水素溶液は排出パイプ 34の末端のフリーラジカル 消去性付与装置出口 35から次の装置に送られる。
[0084] 図 6は、図 4のフリーラジカル消去性付与装置 5の a— a断面図である。磁石を内蔵 した磁石内蔵撹拌翼 40は、隣同士互いに 90° の角度をなして設置され、回転軸 30 力 4方向に突出している。
[0085] 図 7は本発明の他の実施例に基づくフリーラジカル消去性付与装置 5を例示する。
図 7に示す装置は、図 4に示すフリーラジカル消去性付与装置 5の、磁石内蔵撹拌 翼 29及び磁石内蔵回転子 40が撹拌翼 36及び回転子 43と換わり、邪魔板 37が磁 石内蔵邪魔板 44と交換したものである。
[0086] 図 8は図 7に於ける b— bの位置の断面図である。
[0087] 図 9はフリーラジカル消去性安定化装置 7を示す。
フリーラジカル消去性付与装置出口 35から送られて来たフリーラジカル消去性水 素溶液は、フリーラジカル消去性安定ィ匕装置入口 39から入り、フリーラジカル消去性 安定ィ匕装置本体 38の上下に交互に取り付けられた磁石 41が生成する磁場を、スパ イラル板 20に沿って回転しながら通過する。
[0088] 生成したフリーラジカル消去性水素溶液は、フリーラジカル消去性安定化装置出口
42から貯蔵タンク 8に送られる。
[0089] 図 10は図 9の c cに於ける断面図である。
[0090] 図 11はバッチ式によるフリーラジカル消去性水素溶液製造装置 100の一例である 。液体材料の容器 60と、撹拌手段 61と、 0. 01〜10テスラの磁石 41と、前記磁石を 1000〜3500rpmの回転数で回転させる回転手段 28と、水素供給装置 2と連通して 水素ガスを供給する水素ガスノズル 62と、渦流による空気の巻き込みを防止するた めに水中に設置した円盤 63と、を備える装置を用いて、液体材料に、撹拌しながら 水素を溶解させると共に、前記磁石 41が回転して形成した回転磁場内に於いて磁 気処理してフリーラジカル消去性を付与する。
[0091] 以下、本発明につ 、て実施例を示して具体的に説明する。但し、下記実施例は本 発明を例示するためのものであり、本発明が下記実施例に限定されるものではない。 試験例 1
[0092] (フリーラジカル消去性の測定法) 1.試薬
a) [0. 2mol DPPHエタノール溶液] : 1, 1 - Diphenyl - 2 - picrylhydrazil3. 5 mgを 99%エタノール 50ml〖こ溶解し 0. 5時間撹拌する。 DPPHエタノール溶液の調 整後 2時間以内測定を終了する。
[0093] b) [0. 2mol MES緩衝液(pH7. 0) ]: 2 - Morpholinoethanesulf onic acid
8. 53gを蒸留水に溶解し、希水酸化ナトリウム水溶液で pH7. 0に調製した後、蒸留 水をカ卩えて 200mLとする。
[0094] c) [DPPH試薬] : 0. 2mol DPPH溶液 2溶と、 0. 2mol MES緩衝液(pH7. 0)
1溶と、蒸留水 1溶とを混合する。
[0095] 2.操作
a)サンプノレ
試料 5mLとエタノール 5mLとの混合液に、 DPPH試薬 0. 6mLを混合し、ボルテツ タスミキサーで 10秒間撹拌した後、直ちに分光光度計で 520nmの吸光度を測定す る。
[0096] b)コントロールサンプル
分析希釈液 5mLとエタノール 5mLとの混合液に、 DPPH試薬 0. 6mLを混合し、 ボルテックスミキサーで 10秒間撹拌した後、直ちに分光光度計で 520nmの吸光度 を測定する。
c)測定機器:分光光度計 日立製作所 UV1800
[0097] 3.計算
コントロールサンプルとサンプル各 6検体の吸光度を交互に測定して平均値を求め 、フリーラジカル消去率 (%)を (式 1)によって算出する。
[0098] フリーラジカル消去率 [%] = [ (Ac— As) ZAc] X 100 (式 1)
但し Ac :コントロールサンプルの吸光度
As :サンプルの吸光度
[0099] (pH及び酸化還元電位の測定)
[測定機器] :メトラー ポータブル pHメーター MP120BE
実施例 1 [0100] 図 1に全体構成図を示したフリーラジカル消去性活性水素液製造装置を用いて、 図 2に示す渦流ェジ クタ一装置 3に、毎分 10Lの水道水と毎分 0. 2Lの水素ガスと を供給して水素微細気泡懸濁液を製造した。前記水素微細気泡懸濁液を、図 3に示 す気泡微細化装置 4を用いて水素溶液とした。前記水素溶液を図 7に示す、内容量 3. 4Lの外筒部 25の内側に 1. 6テスラの磁石を 8個内蔵して磁場を形成する回転流 邪魔板 37が設置され、回転子 43を駆動部 28で 1000〜3500rpmの回転数で回転 させるフリーラジカル消去性付与装置 5で処理し、図 8に示すフリーラジカル消去性 安定ィ匕装置 7で処理してフリーラジカル消去性活性水素液を得た。各処理段階の試 料の pH、酸化還元電位、及び DPPH法によるフリーラジカル消去率を測定した。結 果を表 1に示す。
[0101] [表 1]
Figure imgf000018_0001
Figure imgf000018_0002
[0102] 表 1によれば、 pHは各処理段階を通じて殆ど変化がなぐ酸化還元電位は、水道 水に水素ガスを飽和させた後は何れの試料も 600mV以下となった。水素微細気 泡懸濁液と水素溶液とにはフリーラジカル消去性は認められな力つた力 フリーラジ カル消去性水素溶液にはフリーラジカル消去性が認められた。
[0103] 実施例 1で得られたフリーラジカル消去率で示されるフリーラジカル消去性は中等 度のものではある力 本試験は繰り返し測定に於いても安定したフリーラジカル消去 率が得られ、本発明によるフリーラジカル消去性水素溶液は有意なフリーラジカル消 去性を示すことが示された。
実施例 2
[0104] (フリーラジカル消去性水素溶液の安定性 1 保存安定性)
実施例 1で得たフリーラジカル消去性水素溶液をアルミニウム缶に充填し、内部の 空気を除去して封印し、室温に 1力月間保存した試料について、酸化還元電位と DP PH法によるフリーラジカル消去率を測定した。結果を表 2に示す。
[表 2]
フリ一ラジぉル消去^素; Si ( f^¾®S
Figure imgf000019_0001
[0106] 表 2に示すように、フリーラジカル消去性水素溶液のフリーラジカル消去率は 1力月 間で約 2分の 1となったが、フリーラジカル消去性は残っていた。酸化還元電位の低 下は殆ど起らなかった。
実施例 3
[0107] (フリーラジカル消去性水素溶液の安定性 2 温度安定性)
実施例 1で製造したフリーラジカル消去性水素溶液 100mlを 100mlの三角フラス コに入れ、沸騰したウォーターバスで加熱し 10分、 20分、 30分、及び 40分毎に取り 出し、直ちに冷水で冷却し、 DPPH法でフリーラジカル消去率を測定した。結果を表 3に示す。
[0108] [表 3]
ラジぉル消去 夜 coi^S^性
Figure imgf000019_0002
[0109] 表 3に示すように、フリーラジカル消去性水素溶液のフリーラジカル消去率は 100 °C、 30分でフリーラジカル消去率が約 2分の 1になった。
実施例 4
[0110] 実施例 1と同じ方法で、但し水道水の代りに蒸留水を用いてフリーラジカル消去性 水素溶液を製造し、生成物の pH、酸化還元電位、及び DPPH法によるフリーラジカ ル消去率を測定した。結果を表 4に示す。
実施例 5
[0111] (バッチ式によるフリーラジカル消去性水素溶液の製造)
2Lのガラス製ビーカーに水道水 1Lを取り、渦流による空気の巻き込みを防止する ための円盤を水中に設置し、前記円盤の下に磁気撹拌子を投入し、 0. 4テスラの磁 石が 3000rpmで回転して 、るマグネチックスターラー上に載置して、水素供給装置 と連通した水素供給ノズルから室温、常圧で毎分 10〜20mLの水素ガスを 10分間 吹き込むことによって、水素ガスの溶解と回転磁場によるフリーラジカル消去性の付 与を同時に行い、フリーラジカル消去性水素溶液を得た。生成物のフリーラジカル消 去率を DPPH法によって測定した。結果を表 4に示す。
実施例 6
[0112] 特許文献 2に記載された方法に準じて、密閉容器内で加圧下に、水道水に水素ガ スを激しく撹拌しながら吸収させて製造した水素溶液を、図 6に示したフリーラジカル 消去性付与装置 5と図 8に示したフリーラジカル消去性安定ィ匕装置 7で処理して、フリ 一ラジカル消去性水素溶液を製造し、生成物の pH、酸化還元電位、及び DPPH法 によるフリーラジカル消去率を測定した。結果を表 4に示す。
実施例 7
[0113] 特許文献 4に記載された方法に準じて、水道水を図 2に示す渦流ェジ クタ一装置 3を用いて水素微細気泡分散液とし、図 3に示す気泡微細化装置 4を用いて水素溶 液を製造した。この水素溶液に、図 6に示したフリーラジカル消去性付与装置 5を用 いてフリーラジカル消去性の付与を行った。使用した磁石は 1. 0テスラの磁束密度を 有しており、液体材料の平均滞留時間は 20秒間であった。得られたフリーラジカル 消去性水素溶液を図 8に示したフリーラジカル消去性安定ィ匕装置 7で処理してフリー ラジカル消去性水素溶液を製造した。生成物の pH、酸化還元電位、及び DPPH法 によるフリーラジカル消去率を測定した。結果を表 4に示す。
[表 4]
Figure imgf000021_0001
[0115] 表 4に示すように、実施例 4〜7の何れの方法を用いも、水素溶解水を回転磁場に よって処理することによってフリーラジカル消去性を付与することが出来て、フリーラ ジカル消去性水素溶液を製造できた。
実施例 8
[0116] クェン酸を含むフリーラジカル消去性水素溶液
0. lmol濃度の pH3クェン酸緩衝液と pH4のクェン酸緩衝液とのそれぞれを、実 施例 1の方法に準じて、図 2に示す渦流ェジェクタ一装置 3を用いて処理して、水素 微細気泡懸濁液とし、図 3に示す気泡微細化装置 4を用いて処理して水素溶液とし、 図 6に示すフリーラジカル消去性付与装置 5と図 8に示すフリーラジカル消去性安定 化装置 7を用いて処理してフリーラジカル消去性活性水素液を製造した。フリーラジ カル消去性付与前と付与後の試料の酸ィ匕還元電位と DPPH法によるフリーラジカル 消去率を測定した。結果を表 5に示す。
[0117] 通常、酸性の強い溶液は酸ィ匕還元電位が高ぐ酸化力が高い。表 5によれば、フリ 一ラジカル消去性付与前は、 pH3. 0のクェン酸緩衝液の方が pH4. 0のクェン酸緩 衝液よりも酸化還元電位が高ぐ上記と一致した結果が得られた。
[0118] フリーラジカル消去性を付与した後も、酸ィ匕還元電位は pH3. 0のクェン酸緩衝液 の方力 ¾H4. 0のクェン酸緩衝液よりも酸ィ匕還元電位が高ぐ上記と一致した結果が 得られた。フリーラジカル消去率は pH3. 0と pH4. 0のクェン酸緩衝液とは同レベル の値を示した。
実施例 9
[0119] 水道水の代りにアルコール含量 25%の米焼酎を用いた以外は、実施例 1と同じ方 法を用いてフリーラジカル消去性水素溶液を製造した。結果を表 5に示す。
[0120] 表 5によると、米焼酎にフリーラジカル消去性を付与したところ、酸化還元電位、フリ 一ラジカル消去率とも水と同様の値を示し、水以外の液体材料に於!ヽても本発明の 方法によってフリーラジカル消去性活性の付与が可能なことが示された。
[0121] [表 5]
鎌 サンプル フリーラジぉル消去 S付与前 フリーラジぉル消去 付与後 m フリーラジぉ フリーラジぉ
M] ル胺率 [%] [mV] ル跌率 [%]
9 pH3.0 + 569 0 - 370 2. 71 クエン^ ¾i
pH4.0 + 497 0 - 70 2. 50 クエン^ ¾i
10 米腿 + 225 0 - 620 3. 20

Claims

請求の範囲 [1] 液体材料と水素とを混合、撹拌して水素溶液を製造する水素溶液製造装置と、 前記水素溶液製造装置と連結し、磁石又は前記水素溶液、若しくその双方を回転 させることによって前記水素溶液を磁気処理するフリーラジカル消去性付与装置と、 を含んで構成されることを特徴とするフリーラジカル消去性水素溶液製造装置。 [2] 前記水素溶液製造装置が、
(1)前記水素供給装置と、
(2)前記液体材料を供給するポンプ装置と、
(3)渦流ェジェクタ一装置とを備え、
前記渦流ェジェクタ一装置は、スパイラル板が挿入された渦流生成部と、口径が漸 次縮小されるノズル部と、前記ノズル部の先端である噴出口と、前記水素供給装置と 接続され前記噴出口に設置された水素ガス噴出口と、漸次口径が拡大する混合部と 、流路にスパイラル板が挿入された 2次渦流生成部と、が連設されて構成されている ことを特徴とする請求の範囲第 1項に記載のフリーラジカル消去性水素溶液製造装 置。
[3] 前記水素溶液製造装置は気泡微細化装置を更に備えており、前記気泡微細化装 置は、内部に綿状のステンレス鋼繊維が充填された本体と、圧力計と、異物ろ過用フ ィルタと、が連設されることを特徴とする請求の範囲第 1項に記載のフリーラジカル消 去性水素溶液製造装置。
[4] 前記フリーラジカル消去性付与装置が、前記水素溶液と 0. 01〜10テスラの磁石が 形成する磁場とを 1000〜3500rpmの回転数で相対回転させることによって前記水 素溶液を磁気処理し、フリーラジカル消去性を付与する装置であることを特徴とする 請求の範囲第 1項に記載のフリーラジカル消去性水素溶液製造装置。
[5] 前記磁場が交流電磁石によって形成されたものであることを特徴とする請求の範囲 第 1項に記載のフリーラジカル消去性水素溶液製造装置。
[6] 前記フリーラジカル消去性付与装置は、内側に複数個の邪魔板が設置された筒状 の外筒部と、前記外筒部の中心軸と回転中心が一致するように設置された回転軸と 、前記回転軸に設置され前記磁石を内蔵する複数個の磁石内蔵撹拌翼と、前記回 転軸を 1000〜3500rpmの回転数で回転させる駆動部と、を備えることを特徴とする 請求の範囲第 1項に記載のフリーラジカル消去性水素溶液製造装置。
[7] 前記フリーラジカル消去性付与装置は、内側に、磁石を内蔵した複数個の磁石内蔵 邪魔板が設置された筒状の外筒部と、前記外筒部の中心軸と回転中心が一致する ように設置された回転軸と、前記回転軸に設置された複数個の撹拌翼と、前記回転 軸を 1000〜3500rpmの回転数で回転させる駆動部と、を備えることを特徴とする請 求の範囲第 1項に記載のフリーラジカル消去性水素溶液製造装置。
[8] 前記フリーラジカル消去性付与装置の制御を行う電気制御装置と、前記フリーラジ カル消去性付与装置に接続され、内部にスパイラル板が設置され外周面に複数個 の前記磁石が設置されたフリーラジカル消去性安定化装置と、前記フリーラジカル消 去性安定化装置出口に接続された貯留タンクと、を更に含んで構成されることを特徴 とする請求の範囲第 6または 7項に記載のフリーラジカル消去性水素溶液製造装置。
[9] 液体材料の容器と、撹拌手段と、 0. 01〜10テスラの磁石と、前記磁石を 1000〜35 OOrpmの回転数で回転させる回転手段と、水素供給装置と連通して水素ガスを前記 液体材料に供給する水素ガスノズルと、を備えることを特徴とするフリーラジカル消去 性水素溶液製造装置。
[10] 前記液体材料が、水又は水溶液であることを特徴とする請求の範囲第 1ないし 9の何 れか 1項に記載のフリーラジカル消去性水素溶液製造装置。
[11] 前記液体材料が、水を含むエタノールまたはそれを溶媒とする溶液であることを特 徴とする請求の範囲第 1ないし 9の何れか 1項に記載のフリーラジカル消去性水素溶 液製造装置。
[12] 前記液体材料が、飲料又はアルコール飲料の何れか 1種であることを特徴とする請 求の範囲第 1ないし 9の何れか 1項に記載のフリーラジカル消去性水素溶液製造装 置。
[13] 前記液体材料が、有機酸を含有し、水又はエタノール若しくはそれらの混合物の中 の少なくとも 1種を溶媒とする溶液であることを特徴とする請求の範囲第 1ないし 9の 何れ力 1項に記載のフリーラジカル消去性水素溶液製造装置。
[14] 前記液体材料が、寒天又はゼラチンを含むゲルを加熱融解した液体材料であるこ とを特徴とする請求の範囲第 1ないし 9の何れか 1項に記載のフリーラジカル消去性 水素溶液製造装置。
[15] 前記液体材料が、アルコールと有機溶剤と精油と植物性油脂とからなる群のうちの 何れ力 1種または複数種であることを特徴とする請求の範囲第 1ないし 9の何れか 1 項に記載のフリーラジカル消去性水素溶液製造装置。
[16] 前記液体材料が、ガソリンと、軽油と灯油と軽油と重油とからなる石油製品のうちの 何れ力 1種以上であることを特徴とする請求の範囲第 1ないし 9の何れか 1項に記載 のフリーラジカル消去性水素溶液製造装置。
[17] 前記フリーラジカル消去性力 1, 1 ジフヱ二ルー 2 ピクリルヒドラジルを消去する 活性であることを特徴とする請求の範囲第 1ないし 9の何れ力 1項に記載のフリーラジ カル消去性水素溶液製造装置。
[18] 請求範囲第 1ないし 3又は 10ないし 16項のいずれか 1項に記載の水素溶液製造 装置を用いて水素溶液を製造する工程と、
前記水素溶液に、請求の範囲第 1、 4ないし 8又は 10ないし 16項のいずれか 1項に 記載のフリーラジカル消去性付装置を用いてフリーラジカル消去性を付与する工程 と、
を含むことを特徴とするフリーラジカル消去性水素溶液の製造方法。
[19] 請求の範囲第 9項に記載の記載の装置を用いることを特徴とするフリーラジカル消 去性水素溶液の製造方法。
[20] 請求の範囲第 1ないし 16のいずれか 1項に記載のフリーラジカル消去性水素溶液製 造装置を用いて製造したことを特徴とするフリーラジカル消去性水素溶液。
PCT/JP2007/057489 2006-04-03 2007-04-03 フリーラジカル消去性水素溶液、その製造方法、及び製造装置 WO2007116889A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509856A JP4309465B2 (ja) 2006-04-03 2007-04-03 フリーラジカル消去性水素溶液製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126732 2006-04-03
JP2006-126732 2006-04-03

Publications (1)

Publication Number Publication Date
WO2007116889A1 true WO2007116889A1 (ja) 2007-10-18

Family

ID=38581179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057489 WO2007116889A1 (ja) 2006-04-03 2007-04-03 フリーラジカル消去性水素溶液、その製造方法、及び製造装置

Country Status (2)

Country Link
JP (1) JP4309465B2 (ja)
WO (1) WO2007116889A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167365A (ja) * 2009-01-22 2010-08-05 Reo Laboratory Co Ltd 機能水の製造方法
WO2010095626A1 (ja) * 2009-02-17 2010-08-26 小出 平一 攪拌混合器
JP2013146714A (ja) * 2012-01-23 2013-08-01 Idec Corp 微細気泡生成装置
JP5845504B1 (ja) * 2015-01-21 2016-01-20 有限会社情報科学研究所 酒類の低温アルデヒド除去と抗酸化機能性酒及びその製造方法。
JP5923679B1 (ja) * 2015-01-26 2016-05-25 有限会社情報科学研究所 還元発酵方法、還元発酵装置、酸化還元発酵方法、及び酸化還元発酵装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566175B2 (ja) * 2010-04-27 2014-08-06 株式会社オプトクリエーション ナノバブル・フコイダン水製造方法と製造システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088736A (ja) * 2001-09-17 2003-03-25 Kiyoshi Sato 溶存気体濃度増加装置及び溶存気体濃度増加方法
JP2004122088A (ja) * 2002-10-07 2004-04-22 Yukio Hirose 水素水と該水素水の製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088736A (ja) * 2001-09-17 2003-03-25 Kiyoshi Sato 溶存気体濃度増加装置及び溶存気体濃度増加方法
JP2004122088A (ja) * 2002-10-07 2004-04-22 Yukio Hirose 水素水と該水素水の製造法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167365A (ja) * 2009-01-22 2010-08-05 Reo Laboratory Co Ltd 機能水の製造方法
WO2010095626A1 (ja) * 2009-02-17 2010-08-26 小出 平一 攪拌混合器
JP2013146714A (ja) * 2012-01-23 2013-08-01 Idec Corp 微細気泡生成装置
JP5845504B1 (ja) * 2015-01-21 2016-01-20 有限会社情報科学研究所 酒類の低温アルデヒド除去と抗酸化機能性酒及びその製造方法。
JP5923679B1 (ja) * 2015-01-26 2016-05-25 有限会社情報科学研究所 還元発酵方法、還元発酵装置、酸化還元発酵方法、及び酸化還元発酵装置
WO2016121542A1 (ja) * 2015-01-26 2016-08-04 有限会社情報科学研究所 抗酸化機能性酒、酒類のアセトアルデヒド低温除去方法、還元発酵方法及び酸化還元醸造法、並びにその装置
EP3252135A4 (en) * 2015-01-26 2018-11-07 Johokagaku Kenkyusyo Co. Ltd. Alcoholic beverage having antioxidative function, method for removing acetaldehyde from alcoholic beverage at low temperature, reductive fermentation method, and oxidative/reductive brewing method and apparatus therefor

Also Published As

Publication number Publication date
JP4309465B2 (ja) 2009-08-05
JPWO2007116889A1 (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007116889A1 (ja) フリーラジカル消去性水素溶液、その製造方法、及び製造装置
US11007496B2 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
EP2563426B1 (en) High shear application in medical therapy
US8349192B2 (en) Method for collapsing microbubbles
JP3958346B1 (ja) 微細気泡発生装置
EP2222390B1 (en) Ultrasonic treatment chamber for preparing emulsions
JP5380545B2 (ja) 気/液または液/液の分散、溶解、可溶化、または乳化用の処理装置
EP2060319A1 (en) Gas/liquid mixing device
Tang et al. A novel and facile liquid whistle hydrodynamic cavitation reactor to produce submicron multiple emulsions
WO2010150111A2 (en) Ultrasonic treatment chamber for preparing emulsions
Farias et al. Nanodiamond-stabilized Pickering emulsions: Microstructure and rheology
JP2008279424A (ja) 粘性溶液の水素コロイド及び水素ラジカルコロイドとその生産方法並びに生産システム
WO2013082059A2 (en) Method and system for enhancing mass transfer in aeration/oxygenation systems
CN110235528A (zh) 液中等离子体装置
CN112108075B (zh) 一种Pickering乳化剂及其制备方法与应用
JP3843361B2 (ja) 溶液の還元処理方法及び酸化処理方法並びに自動酸化還元処理装置
JP5596276B2 (ja) 超微細気泡水
Zhang et al. Switching micellization of Pluronics in water by CO2
US20160015739A1 (en) Using aqueous oxygenation to improve animal health & wellness
Liu et al. The physicochemical properties and stability of flaxseed oil emulsions: effects of emulsification methods and the ratio of soybean protein isolate to soy lecithin
Nasiri et al. Food-grade nanoemulsions and their fabrication methods to increase shelf life
CN106417774A (zh) 一种纳米富氢茶及其制备装置和制备方法
WO2006133273A2 (en) Device and method for mixing liquids and oils or particulate solids and mixtures generated therefrom
CN101530390A (zh) α-亚麻酸纳米脂质体制剂的制备与处方
JP6510903B2 (ja) 粉体の分散方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2008509856

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740925

Country of ref document: EP

Kind code of ref document: A1