WO2007116876A1 - Thermoplastic polymer composition and molded body made of the composition - Google Patents

Thermoplastic polymer composition and molded body made of the composition Download PDF

Info

Publication number
WO2007116876A1
WO2007116876A1 PCT/JP2007/057439 JP2007057439W WO2007116876A1 WO 2007116876 A1 WO2007116876 A1 WO 2007116876A1 JP 2007057439 W JP2007057439 W JP 2007057439W WO 2007116876 A1 WO2007116876 A1 WO 2007116876A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polymer
polymer composition
fluororubber
fuel
composition
Prior art date
Application number
PCT/JP2007/057439
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Ichisaka
Tomihiko Yanagiguchi
Takeshi Inaba
Haruhisa Masuda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008509844A priority Critical patent/JP5120251B2/en
Publication of WO2007116876A1 publication Critical patent/WO2007116876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • Thermoplastic polymer composition and molded article comprising the composition
  • the present invention relates to a thermoplastic polymer composition comprising a specific fluorine resin and a specific crosslinked fluororubber.
  • the present invention also relates to a molded article, a fuel tube and a fuel hose made of the thermoplastic polymer composition.
  • thermoplastic resins such as polyphenylene sulfide resin, ethylene bull alcohol resin, liquid crystal polyester resin, etc. are used.
  • bridge rubber is generally inferior in fuel barrier properties, and when it is used for automobile parts such as fuel hoses, this volatility and transpiration of fuel is required to be improved.
  • the power of the cross-linked fluororubber is not good.
  • the fuel barrier properties are significantly inferior to the thermoplastic resins listed above, and they are flexible and have excellent fuel barrier properties. Material development is an urgent need.
  • “Dyneon THV” has been developed as a resin that is flexible, has a fuel barrier property, and has melt moldability and recyclability (for example, Modern Fluoropolymers: high performance polymers). for diverse applications, John Wiley & Sons, Hichster, (1997) Chapter 13, JP 2000-274562 and JP 2002-276862).
  • the hardness and elastic modulus increase as the fuel barrier property increases, and the fuel barrier property decreases as the hardness and elastic modulus decrease.
  • both the flexibility and the fuel barrier property are inadequate.
  • the present invention relates to a thermoplastic resin that also has a strength of a cross-linked fluororubber (B) that is at least partially cross-linked with a fluororesin (A) containing a black-mouthed trifluoroethylene unit and a tetrafluoroethylene unit.
  • the present invention relates to a polymer composition.
  • the cross-linked fluororubber (B) is obtained by dynamically cross-linking the fluororubber composition (b) in the presence of the fluorocobalt (A) and under the melting conditions of the fluorocobalt (A).
  • the fluorocobalt (A) Preferably it is a copolymerizable monomer (a) It is preferably a fluorine resin containing units.
  • x ⁇ x 3 is the same or different and each represents a hydrogen atom, a fluorine atom or —CF
  • X 4 is a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer from 1 to 10.
  • the present invention also relates to a molded article, a fuel tube, and a fuel hose formed from the thermoplastic polymer composition.
  • the present invention is at least partially cross-linked with a fluororesin (A) containing a black trifluoroethylene (hereinafter referred to as CTFE) unit and a tetrafluoroethylene (hereinafter referred to as TFE) unit.
  • CTFE black trifluoroethylene
  • TFE tetrafluoroethylene
  • the present invention relates to a thermoplastic polymer composition having a cross-linked fluororubber (B) force.
  • Fluororesin (A) is not particularly limited as long as it contains CTFE units and TFE units.
  • CTFE units 2 to 98 mol% of CTFE units in the fluorine resin (A), more preferably 10 to 90 mol%. If it is less than 2 mol%, the chemical permeability deteriorates, Melt processing tends to be difficult, and if it exceeds 98 mol%, the heat resistance and chemical resistance during molding may deteriorate.
  • the fluorine resin further contains a monomer (a) unit copolymerizable with CTFE and TFE.
  • the monomer (a) is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE, but is not limited to ethylene, vinylidene fluoride (hereinafter referred to as VdF), perfluoro (alkyl). (Buel ether) (hereinafter referred to as PAVE), general formula (1):
  • x ⁇ x 3 is the same or different and each represents a hydrogen atom, a fluorine atom or —CF
  • X 4 is a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer from 1 to 10.
  • R 1 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • the ability to increase alkyl perfluorovinyl ether, etc. one or more unit forces selected from ethylene, VdF, PAVE, and a group force consisting of a bulle monomer represented by the general formula (1) PAVE is more preferable. It is more preferable that it is PAVE.
  • Examples of PAVE in this case include perfluoro (methyl vinyl ether) (hereinafter referred to as PMVE), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), and the like. Of these, PMVE, perfluoro (ethyl vinyl ether), and perfluoro (propyl butyl ether) are preferable.
  • perfluoroalkylethylene represented by the general formula (3) perfluorobutylethylene is preferable.
  • R 1 has a carbon number of f
  • CF CF-OCH -CF CF is preferred because it is a perfluoroalkyl group of 1 to 3
  • the fluororesin (A) is a CTFE unit because the thermoplastic polymer composition obtained has excellent flame resistance and flexibility and is easy to mold.
  • CTFE units, TFE units, and perfluoro (methyl vinyl ether) units are preferred to be binary fluorine resins containing A and TFE units, or ternary fluorine resins containing CTFE units, TFE units and PAVE units. More preferred is a ternary fluorine resin containing or a ternary fluorine resin containing CTFE units, TFE units and perfluoro (propyl butyl ether) units! /.
  • the monomer (a) unit is 0.1 to 10 mol%, and the CTF E unit and TFE unit are 90 to 99.9 mol% in total. If the monomer (a) is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance are likely to be inferior. If it exceeds 10 mol%, the chemical solution has low permeability, heat resistance, mechanical properties. It tends to be inferior in characteristics and productivity. Furthermore, the CTFE unit is preferably 10 to 90 mol% of the total of the CTFE unit and the TFE unit.
  • the E unit is less than 10 mol%, the low chemical solution permeability may be insufficient, and if it exceeds 90 mol%, the polymerization rate will decrease rapidly, resulting in a decrease in productivity and a decrease in chemical resistance. Or the heat resistance may be insufficient.
  • a more preferred lower limit is 15 mol%, further preferred correct lower limit is 20 mole 0/0, and more preferred upper limit is 80 mol 0/0, further preferred upper limit is 70 mol%.
  • the method for producing the fluorocobalt (A) is not particularly limited.
  • Examples include the methods described in 298702, WO 2005Z100420 pamphlet, and the like.
  • thermoplastic polymer composition of the present invention may contain a resin other than the fluorine resin (A).
  • the melting point of the fluorocobalt (A) is preferably 130 to 330 ° C, more preferably 140 to 320 ° C, and more preferably 150 to 310 ° C. preferable. If the melting point of the fluororesin (A) is less than 130 ° C, the heat resistance of the resulting thermoplastic polymer composition tends to decrease, and if it exceeds 330 ° C, the fluororesin (A) When the fluororubber is dynamically cross-linked under the melting condition of the fluorocarbon resin (A), the melting temperature must be set above the melting point of the fluorocarbon resin (A). Fluoro rubber tends to be thermally deteriorated.
  • the crosslinked fluororubber (B) used in the present invention is not particularly limited as long as at least a part of at least one fluororubber composition (b) is crosslinked.
  • fluororubber examples include perfluorofluororubber (bl), non-perfluorofluororubber (b2), and fluorine-containing thermoplastic elastomer (b3).
  • Examples of the perfluorofluorororubber (bl) include TFEZPAVE copolymer, TFEZ hexafluoropropylene (hereinafter referred to as HFP! ZPAVE copolymer, and the like.
  • non-perfluorofluorororubber (b2) examples include VdF-based polymers and TFEZ-propylene-based copolymers, which are used alone or in a range that does not impair the effects of the present invention. Any combination can be used.
  • those exemplified as the perfluoro fluorine rubber and non-perfluoro fluorine rubber have a constitution of a main monomer, and those obtained by copolymerizing a crosslinking monomer, a modified monomer, etc. can be suitably used.
  • crosslinking monomers and modifying monomers include iodine atoms, bromine
  • Known crosslinking monomers such as those containing atoms and double bonds, transfer agents, modified monomers such as known ethylenically unsaturated compounds, and the like can be used.
  • the VdF polymer examples include a VdFZHFP copolymer, a VdFZTFE ZHFP copolymer, a VdFZTFEZ propylene copolymer, a VdFZ ethylene ZHFP copolymer, a VdFZTFEZPAVE copolymer, Examples thereof include VdFZPAVE copolymers and VdF ZCTFE copolymers.
  • the fluorine-containing copolymer is preferably composed of 25 to 85 mol% of VdF and 75 to 15 mol% of at least one other monomer copolymerizable with VdF.
  • Preferred is a fluorine-containing copolymer having 50 to 80 mol% of VdF and 50 to 20 mol% of at least one other monomer copolymerizable with VdF.
  • At least one other monomer copolymerizable with VdF for example, TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, penta
  • fluorine-containing monomers such as fluoropropylene, trifluorobutene, tetrafluoroisobutene, PAVE, and fluorinated butyl
  • non-fluorine monomers such as ethylene, propylene, and alkyl butyl ether.
  • the fluororubber contains VdF units from the viewpoint of heat resistance, compression set, workability, and cost. It is a fluororubber having VdF units and HFP units. It is more preferable.
  • the fuel is at least one rubber selected from the group consisting of VdFZHFP-based fluororubber, VdFZTFEZ HFP-based fluororubber, and TFEZ propylene-based fluororubber. From the perspective of permeability, it is more preferable to use VdFZTFEZHFP-based fluoro rubber! /.
  • the fluororubber used in the present invention can be produced by a usual emulsion polymerization method.
  • Polymerization conditions such as temperature and time during polymerization may be appropriately determined depending on the type of monomer and the target elastomer.
  • the fluorine-containing thermoplastic elastomer (b3) is not particularly limited, but it has at least one elastomeric polymer segment because of its excellent compatibility with fluorine resin. (p—l) and at least one non-elastomeric polymer segment (p—2), an elastomeric polymer segment (p—1) and a non-elastomeric polymer segment (p—
  • At least one is preferably a fluorine-containing polymer segment.
  • the elastomeric polymer segment (p-1) imparts flexibility to the polymer, and the glass transition point is preferably 25 ° C or lower, more preferably 0 ° C or lower.
  • X 1 is a fluorine atom or —CF; R 4 is a perfluoroalkyl having 1 to 5 carbon atoms.
  • Perhaloolefins such as perfluorobule ethers represented by: VdF, trifluoroethylene, triphenolopropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene And fluorine-containing monomers such as fluorinated butyl; non-fluorine monomers such as ethylene, propylene, and alkyl butyl ether; and any monomer that provides a crosslinking site.
  • fluorine-containing monomers such as fluorinated butyl
  • non-fluorine monomers such as ethylene, propylene, and alkyl butyl ether
  • any monomer that provides a crosslinking site such as perfluorobule ethers represented by: VdF, trifluoroethylene, triphenolopropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene,
  • Examples of the monomer that gives a crosslinking site include, for example, the general formula (5):
  • R 1 is a hydrogen atom or — CH
  • X 6 is an iodine atom
  • CF CFO (CF CF (CF) 0) (CF) — X 7 (6)
  • n is an integer of 1 to 3;
  • X 7 is a cyano group, a carboxyl group, an alkoxycarbonyl group, or a bromine atom
  • CF CF (CF) X 8 (7) (Wherein, r is,. 1 to: L0 integer; X 8 is a fluorine atom or a chlorine atom in a) represented by reduction compounds with, par Haroo Lev-ins such as perfluoro-2-butene; VdF, Fukka Bulle , Trifluoroethylene, general formula (8):
  • X 9 is a hydrogen atom or a fluorine atom; s is an integer of 1 to 10
  • Non-fluorine monomers such as ruether, carboxylic acid bule ester, and acrylic acid.
  • the elastomeric polymer segment (p-1) is a copolymer of TFE / VdF / HFP
  • the non-elastomeric polymer segment (p-2) is a copolymer of 1S TFE / ethylene.
  • non-elastomeric polymer segment (p— 2) ) force TFEZ ethylene 20 ⁇ 80Z80 ⁇ 20 mole 0/0 fluorinated thermoplastic elastomer one are more preferred.
  • the fluorine-containing thermoplastic elastomer is composed of an elastomeric polymer segment ( ⁇
  • a fluorine-containing multi-segmented polymer in which 1) and a non-elastomeric polymer segment ( ⁇ -2) are bonded in the form of a block graft is preferred, and a fluorine-containing thermoplastic elastomer is a single elastomer.
  • the polymer segment ( ⁇ -1) and two non-elastomeric polymer segments ( ⁇ -2) force, and at least one of them is a triblock polymer force that is a fluorine-containing polymer segment.
  • a known iodine transfer polymerization method can be given as a method for producing a fluorororubber.
  • a method for producing a fluororubber For example, in a water medium, in the presence of an iodine compound, preferably in the presence of a diiodine compound, the perhaloolefin and, if necessary, a monomer that provides a curing site are stirred under pressure while being substantially oxygen-free.
  • a method of carrying out emulsion polymerization in the presence of a radical initiator can be mentioned.
  • the thermoplastic polymer composition of the present invention dynamically changes the fluororubber composition (b) in the presence of the fluorine resin (A) under the melting condition of the fluorine resin (A). It is preferable to obtain it by crosslinking treatment.
  • the dynamic cross-linking treatment means that the fluororubber is dynamically cross-linked simultaneously with the melt kneading using a Banbury mixer, a pressure-kinder, an extruder or the like. Among these, it is preferable to use an extruder such as a twin-screw extruder because a high shear force can be applied.
  • thermoplastic polymer composition of the present invention In order to cross-link at least one fluororubber composition (b) to the thermoplastic polymer composition of the present invention, it is preferable to further add a cross-linking agent (C).
  • the crosslinking agent (C) can be appropriately selected depending on the type of the fluororubber composition (b) to be crosslinked and the melt-kneading conditions.
  • the cross-linking system used in the present invention may be appropriately selected depending on the type of cure site or the use of the obtained molded product.
  • the crosslinking system any of a polyol crosslinking system, an organic peroxide crosslinking system, and a polyamine crosslinking system can be employed.
  • cross-linking by a polyol cross-linking system it has a feature that it has a carbon-oxygen bond at the cross-linking point, has a small compression set, a good moldability, and an excellent sealing property. Is preferred.
  • Cross-linking by polyamine cross-linking has a carbon-nitrogen double bond at the cross-linking point, and is characterized by excellent dynamic mechanical properties.
  • the compression set tends to be larger than when crosslinking is performed using a polyol crosslinking system or an organic peroxide crosslinking system.
  • a polyol crosslinking type or organic peroxide crosslinking type crosslinking agent it is preferable to use a polyol crosslinking type or organic peroxide crosslinking type crosslinking agent.
  • a polyol crosslinking type crosslinking agent is used because of its excellent sealing properties. More preferred ,.
  • crosslinking agent (C) in the present invention a polyamine-based, polyol-based or organic peroxide-based crosslinking agent can be used.
  • polyamine cross-linking agent examples include hexamethylenediamine amine carbamate, N, N, unicinnamylidene 1,6 hexamethylenediamine, 4, 4'-bis (aminocyclohexenole) methane power rubamate And polyamine compounds. Of these, N, N'-dicinnamylidene 1, 6 hexamethylenediamine is preferred!
  • polyol cross-linking agent a compound conventionally known as a fluororubber cross-linking agent can be used.
  • a polyhydroxy compound particularly a polyhydroxy aromatic compound having excellent heat resistance.
  • a compound is preferably used.
  • the polyhydroxy aromatic compound is not particularly limited, and examples thereof include 2, 2 bis (4 hydroxyphenol) propane (hereinafter referred to as bisphenol A), 2, 2 bis (4 hydroxyphenol). ) Perfluoropropane (hereinafter referred to as bisphenol AF), resorcin, 1,3 dihydroxybenzene, 1,7 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 1,6 dihydroxynaphthalene, 4,4'-dihydroxydiphenyl 4, 4 'dihydroxystilbene, 2, 6 dihydroxyanthracene, hydroquinone, catechol, 2, 2-bis (4-hydroxyphenol) butane (hereinafter referred to as bisphenol B), 4, 4-bis (4— Hydroxyphenol) valeric acid, 2, 2 bis (4 hydroxyphenol) tetrafluorodiclonal propane, 4, 4, dihydroxydiphenol Ninoles norephone, 4, 4, -dihydroxydiphenyl ketone, tri (4-hydroxyphenol) methane, 3, 3 ', 5,
  • the organic peroxide cross-linking agent may be an organic peroxide compound that can easily generate a peroxide radical in the presence of heat or a redox system.
  • polyhydroxy aromatic compounds are preferred because polyhydroxy compounds are excellent in heat resistance because they are excellent in moldability with small compression set such as molded articles obtained.
  • Bisphenol AF is more preferred.
  • a crosslinking accelerator (D) is usually used in combination with the polyol crosslinking agent.
  • the crosslinking reaction can be promoted by promoting the formation of an intramolecular double bond in the dehydrofluorination reaction of the fluororubber main chain.
  • an organic compound is generally used as the polyol crosslinking-type crosslinking accelerator (D).
  • Ammonium compounds are not particularly limited.
  • ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, monofunctional compounds Amine compounds are preferred, and among these, quaternary ammonium salts and quaternary phospho- um salts are preferred.
  • the quaternary ammonium salt is not particularly limited.
  • the quaternary phospho-um salt is not particularly limited, and examples thereof include tetrabutyl phospho-um chloride, benzyl triphenyl phospho-um chloride (hereinafter referred to as BTPPC), benzyl trimethyl phospho-um chloride, benzyl.
  • BTPPC benzyl triphenyl phospho-um chloride
  • benzyl trimethyl phospho-um chloride examples thereof include tributylphosphomethylene chloride, tributylarylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, benzylphenol (dimethylamino) phosphonium chloride, and the like.
  • BTPPC Benzyltriphenyl-phosphomum chloride
  • crosslinking accelerator (D) a quaternary ammonium salt, a solid solution of a quaternary phosphonium salt and bisphenol AF, chlorine disclosed in JP-A-11-147891 Free bridge accelerators can also be used.
  • organic peroxide crosslinking accelerator (D) examples include triaryl cyanurate, triaryl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N, -m— Phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triaryl isocyanate (2, 3, 3 ⁇ !
  • the addition amount of the crosslinking agent (C) and the crosslinking accelerator (D) was adjusted so that the 90% completion time ⁇ 90 at the temperature when dynamically crosslinking was 90 to 2 to 6 minutes.
  • the preferred amount is vulcanized 90% completion time ⁇ 90 is more preferably the amount adjusted to be 3-5 minutes.
  • the optimal vulcanization time ⁇ 90 is less than 2 minutes, the dispersion of the crosslinked rubber tends to be uneven and coarse, and if it exceeds 6 minutes, it takes a long time for the rubber to crosslink. And there is a tendency not to completely crosslink.
  • vulcanization 90% completion time ⁇ 90 means dynamic vulcanization using JSR type chilastometer type II and type V at the time of primary press vulcanization of fluororubber composition (b).
  • the vulcanization curve at the hour temperature is obtained, and the time to reach 90% of the maximum torque value is defined as the vulcanization 90% completion time (T90).
  • vulcanization 90% completion time T90 at 170 ° C is 2 to 6 minutes, preferably 3 to 5
  • the crosslinking accelerator (D) is less than 0.2 parts by weight, the crosslinking of the fluororubber does not proceed sufficiently, and the heat resistance and oil resistance of the resulting thermoplastic polymer composition tend to decrease. Yes, 2. If the amount exceeds 5Y parts by weight, the mechanical strength of the resulting thermoplastic polymer composition tends to decrease.
  • the melting condition means a temperature at which the fluorocarbon resin (foam) and the fluororubber composition (b) are melted.
  • the melting temperature varies depending on the glass transition temperature and the Z or melting point of the fluororesin (A) and the fluororubber composition (b), respectively, but is preferably 120 to 330 ° C, and is preferably 130 to 320 ° C. More preferably. If the temperature is lower than 120 ° C, the dispersion between the fluororesin (A) and the fluororubber tends to be coarsened, and if it exceeds 330 ° C, the fluorine rubber tends to be thermally deteriorated.
  • the obtained thermoplastic polymer composition has a structure in which the fluorine resin (A) forms a continuous phase and the crosslinked rubber (B) forms a dispersed phase, or the fluorine resin (A) and the crosslinked structure.
  • the fluororubber (B) can have a structure that forms a co-continuity, and among them, the fluororesin (A) has a structure that forms a continuous phase and the crosslinked rubber (B) has a structure that forms a dispersed phase. I prefer it.
  • the thermoplastic polymer composition of the present invention exhibits excellent heat resistance, chemical resistance, and oil resistance, and is compatible with low fuel permeability and flexibility. In addition, it has better moldability.
  • the average dispersed particle size of the crosslinked fluororubber (B) is preferably 0.01 to 30 / ⁇ ⁇ . If the average dispersed particle size is less than 0.01 ⁇ m, the fluidity tends to decrease, and if it exceeds 30 / zm, the strength of the resulting thermoplastic polymer composition tends to decrease.
  • the preferred fluororesin (A) forms a continuous phase
  • the crosslinked fluororubber (B) forms a dispersed phase. It is also possible to include a co-continuous structure of fluorine resin (A) and cross-linked fluororubber (B) as part of the structure.
  • the weight ratio of the fluorinated resin (A) to the crosslinked fluororubber (B) is 98Z2 to: LOZ90, and preferably 95/5 to 20Z80. If the amount of fluorine resin ( ⁇ ) is less than 10% by weight, the fluidity of the resulting thermoplastic polymer composition tends to deteriorate and the molding processability tends to deteriorate. Flexibility and fuel permeability baluns of plastic polymer compositions. Tend to get worse.
  • the fuel permeation coefficient of the molded article made of the thermoplastic composition of the present invention is preferably 40 g-mm / m 2 -day or less, and preferably 20 g'mm / m 2 'day or less. More preferred is 10 g-mm / m 2 ⁇ day or less, and particularly preferred is 5 g ⁇ / ⁇ day or less.
  • the lower limit value of the fuel permeability coefficient is not particularly limited, and the lower the value, the better. If the fuel permeation coefficient exceeds 40 g'mmZdaym 2 , the fuel permeation resistance is low, so that it is necessary to increase the thickness of the molded product in order to suppress the fuel permeation amount, which is not economically preferable. Note that the lower the fuel permeability coefficient, the better the fuel permeation preventing ability. On the contrary, if the fuel permeability coefficient is large, the fuel easily permeates, so it is not suitable as a molded product such as a fuel tube.
  • the fuel permeability coefficient was measured by a method in accordance with the cup method in the moisture permeability test method for moisture-proof packaging materials.
  • the cup method is a moisture permeability test method stipulated in JIS Z 0208, and is a method for measuring the amount of water vapor that passes through a membranous substance of a unit area in a certain time.
  • the fuel permeation coefficient is measured according to this cup method.
  • the sheet-like test piece in the open part of the container and seal it to make a test piece.Place the test piece in a constant temperature device (60 ° C), measure the weight of the test piece, and measure the weight per unit time.
  • the fuel permeability coefficient is obtained by the following formula.
  • the tensile modulus of the molded article having the thermoplastic composition strength of the present invention is preferably lOOOMPa or less, more preferably 800 MPa or less, and even more preferably 700 MPa or less. It is particularly preferably 600 MPa or less.
  • the lower limit value of the tensile modulus is not particularly limited, but it is preferably 5 MPa or more. More preferably. Tensile modulus over lOOOMPa tends to be unsuitable for molded products that require flexibility.
  • thermoplastic polymer composition of the present invention includes other polymers such as polyethylene, polypropylene, polyamide, polyester, polyurethane, calcium carbonate, talc, celite, clay, titanium oxide, carbon black, barium sulfate.
  • polymers such as polyethylene, polypropylene, polyamide, polyester, polyurethane, calcium carbonate, talc, celite, clay, titanium oxide, carbon black, barium sulfate.
  • inorganic fillers pigments, flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, UV absorbers, antioxidants, release agents, foaming agents, fragrances, oils, softeners, etc. Addition can be carried out within a range that does not affect the effects of the present invention.
  • thermoplastic polymer composition of the present invention can be molded using a general molding method or molding apparatus.
  • molding method for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, vacuum molding and the like can be adopted, and the thermoplastic polymer composition of the present invention is intended for use. Depending on the shape, it is formed into a compact of any shape.
  • the present invention relates to a molded article obtained by using the thermoplastic polymer composition of the present invention, and the molded article includes a molded article of a sheet or a film, Further, it includes a laminated structure having a layer made of the thermoplastic polymer composition of the present invention and a layer made of another material.
  • the other material is expected to have the required properties. What is necessary is just to select an appropriate thing according to a use.
  • the other material examples include polyolefin (eg, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene propylene copolymer, polypropylene, etc.), nylon, polyester, salt Thermoplastic polymers such as bur resin (PVC) and salt vinylidene resin (PVDC), cross-linked rubber such as ethylene propylene gen rubber (EPDM), butyl rubber, nitrile rubber, silicone rubber, acrylic rubber, polypropylene / EPDM composite Examples thereof include thermoplastic elastomers such as bodies, metals, glass, wood, and ceramics.
  • polyolefin eg, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene propylene copolymer, polypropylene, etc.
  • nylon polyester
  • Thermoplastic polymers such as bur resin (PVC) and salt vinylidene resin (PVDC)
  • cross-linked rubber such as ethylene propylene gen rubber (EP
  • the molded article having the laminated structure is composed of the thermoplastic polymer composition of the present invention.
  • An adhesive layer may be interposed between the layer and the base material layer made of other materials! By interposing the adhesive layer, the layer made of the thermoplastic polymer composition of the present invention and the base material layer made of another material can be firmly joined and integrated.
  • the adhesive used in the adhesive layer includes an acid anhydride modified product of a gen-based polymer; an acid anhydride modified product of polyolefin; a polymer polyol (for example, a glycol or a mixture of glycols such as ethylene glycol and propylene glycol).
  • a known method such as co-extrusion, co-injection, or extrusion coating can be used.
  • the present invention includes a fuel hose or a fuel container comprising a single layer of the thermoplastic polymer composition of the present invention.
  • the use of the fuel hose is not particularly limited, and examples thereof include a filler hose for automobiles, an evaporation hose, and a breather hose.
  • the use of the fuel container is not particularly limited, and examples thereof include a fuel container for an automobile, a fuel container for a motorcycle, a fuel container for a small generator, and a fuel container for a lawn mower.
  • the present invention includes a multilayer fuel hose or a multilayer fuel container including a layer comprising the thermoplastic polymer composition of the present invention.
  • the multi-layer fuel hose or multi-layer fuel container comprises a layer made of the thermoplastic polymer composition of the present invention and at least one layer made of another material, and these layers do not interpose an adhesive layer. In other words, they are bonded to each other with or between them.
  • Examples of other material strength layers include layers made of rubber other than the thermoplastic polymer composition of the present invention and layers made of thermoplastic resin.
  • the rubber includes acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epoxy.
  • a rubber having at least one kind of strength is selected from the group consisting of acrylonitrile monobutadiene rubber or its hydrogenated rubber, a blend rubber of acrylonitrile monobutadiene rubber and polysilene rubber, fluororubber, and epichlorohydrin rubber. It is more preferable to have at least one kind of rubber!
  • thermoplastic resin from the viewpoint of fuel barrier properties, fluorine resin, polyamide-based resin, polyolefin-based resin, polyester-based resin, polybulu alcohol-based resin, polysalt-based resin Fluorine resin, polyamide resin, polybutyl alcohol resin, polyphenylene sulfide resin, which preferably has at least one thermoplastic resin selected from the group consisting of bur resin and polyphenylene sulfide resin More preferred is a thermoplastic rosin having at least one strength selected from the group consisting of fats.
  • the fuel hose or the fuel container including the layer composed of the thermoplastic polymer composition obtained by the present invention as described above and the layer composed of other rubber or other thermoplastic resin is particularly limited.
  • fuel hoses such as filler hose, evaporative hose, breather and hose for automobiles; fuel containers for automobiles, fuel containers for motorcycles, fuel containers for small generators, fuel containers for lawn mowers, etc.
  • a fuel container for example, fuel hoses such as filler hose, evaporative hose, breather and hose for automobiles; fuel containers for automobiles, fuel containers for motorcycles, fuel containers for small generators, fuel containers for lawn mowers, etc.
  • a fuel container is particularly limited.
  • a fuel hose comprising a layer made of the thermoplastic polymer composition of the present invention and a layer made of other rubber, acrylonitrile monobutadiene rubber or its hydrogenated rubber, acrylonitrile butadiene rubber and polychlorinated
  • a fuel hose composed of a three-layer force consisting of an outer layer that also has a rubber blend with bule or an epichlorohydrin rubber, an intermediate layer that also has the thermoplastic polymer composition of the present invention, and an inner layer that also has a fluororubber power, or acrylonitrile butadiene rubber
  • a hydrogenated rubber, a blend rubber of acrylonitrile butadiene rubber and polysulphated bur is composed of two layers: an outer layer also having an epichlorohydrin rubber strength, and an inner layer composed of the thermoplastic polymer composition of the present invention.
  • Fuel hose shows excellent fuel barrier properties, flexibility and chemical resistance It is preferable in point! / ⁇ .
  • the surface of the fuel barrier material of the present invention is surfaced as necessary. Processing may be performed.
  • the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
  • discharge treatment such as plasma discharge treatment or corona discharge treatment can be used.
  • a primer treatment is also suitable as the surface treatment. Primer treatment can be performed according to a conventional method.
  • the surface treatment can be performed to treat the surface of the fluorine resin, but the fuel barrier properties are pre-treated with plasma discharge treatment, corona discharge treatment, metal sodium Z naphthalene solution treatment, etc. It is more effective to further prime the surface of the material.
  • thermoplastic polymer composition of the present invention and the molded article made of the composition can be suitably used in the following fields.
  • a gate valve O-ring and seal material as a quartz window O-ring and seal material, as a chamber O-ring and seal material, as a gate O-ring and as a seal material, a bell jar O-ring and seal Coupling O-rings, seal materials, pump O-rings, sealing materials, diaphragms, semiconductor gas control device O-rings, sealing materials, resist developer, stripping solution O-rings
  • a sealing material as a wafer cleaning solution hose, as a tube, as a wafer transfer roll, as a resist developer bath, as a coating for a stripping solution bath, as a coating, as a coating, as a wafer cleaning solution bath lining, as a coating or as a wet etching bath It can be used as a lining or coating.
  • sealing materials In addition, sealing materials' sealing agent, optical fiber quartz coating material, electronic parts for insulation, vibration proofing, waterproofing, moisture proofing, circuit board potting, coating, adhesive seals, gaskets for magnetic storage devices, It is used as a modifier for sealing materials such as epoxy, sealant for clean rooms and clean rooms.
  • gaskets, shaft seals, valve stem seals, seals and hoses can be used for engines and peripheral devices. It can be used for AT devices, and 0 (square) rings, tubes, knocks, valve cores, hoses, seals and diaphragms can be used for fuel systems and peripheral devices.
  • On-seal, universal joint gasket, speedometer pinion seal, foot brake piston cup, torque transmission O-ring, oil seal, exhaust gas re-burning unit scenery, bearing Shinore, EGR tubes, twin key bush tube for sensors Daiafuramu carburetor, rubber vibration isolator (engine mount, exhaust part, etc.), afterburners hoses, can be used as an oxygen sensor bush.
  • the printing field such as a printing machine
  • the coating field such as a coating facility, rolls and the like
  • a developing roll of a film developing machine / coiled film image forming machine a gravure roll of a printing roll, a guide roll, a gravure roll of a magnetic tape manufacturing coating line of a coating tool, and a magnetic tape manufacturing coating It can be used as a line guide roll, various coating rolls, and the like.
  • dry copying machine seals printing equipment printing rolls, scrapers, tubes, valve parts, coating, coating equipment coating rolls, scrapers, tubes, valve parts, printer ink tubes, rolls, belts, dry copying machine belts It can be used as a roll, a roll for a printing press, a belt, or the like.
  • the tube can also be used in the field of analysis and science.
  • a sealant between electrodes and separators is used as a seal for hydrogen 'oxygen' product water piping.
  • the electronic component field specifically, it is used as a heat-dissipating material raw material, an electromagnetic shielding material raw material, a printed wiring board pre-preda resin modified material such as epoxy, an anti-scattering material such as a light bulb, and a hard disk drive gasket of a computer Used.
  • the molded article of the present invention can be suitably used for the various applications described above, and is particularly suitable as a fuel peripheral part.
  • the molded article of the present invention is particularly useful as a sealing material, knock, roller, tube or hose.
  • the kneading of the fluororesin (A) and the fluororubber composition (b) is performed using a lab plast mill (manufactured by Toyo Seiki Seisakusho).
  • the total amount of the fluorinated resin (A) and the fluororubber composition (b) to be kneaded is adjusted so that the total volume thereof is 77% by volume of the total volume of the kneaded part of the lab plast mill.
  • the temperature of the lab plast mill is set to a temperature 30 to 70 ° C higher than the melting point of the fluorine resin (A) used in the composition.
  • thermoplastic polymer composition After the temperature of the lab plast mill is stabilized, add fluorine resin and stir at lOrpm for 5-10 minutes to melt the fluorine resin.
  • the fluororubber composition is added to the molten fluorocarbon resin, and immediately after the addition, the number of stirring is increased to lOOrpm. From the point of time when the torque showed the maximum value (corresponding to T90 measured with CYLAST II type), the mixture was stirred for 10 minutes to obtain a thermoplastic polymer composition.
  • thermoplastic polymer composition pellets produced in the examples and comparative examples compression molding was performed under the conditions of 270 ° C and 5 MPa from a hot press machine to produce a sheet-like specimen having a thickness of 2 mm. These were used to measure the A hardness according to JIS-K6301.
  • the pellets of the thermoplastic polymer composition produced in the examples and comparative examples were compression-molded by a hot press machine at 270 ° C and 5 MPa, and a sheet-like test piece having a thickness of 2 mm was obtained.
  • ASTM V-type dumbbells using an autograph (AGS—J 5kN, manufactured by Shimadzu Corporation), in accordance with ASTM D638, under the condition of 50 mmZ, the tensile elongation at break at 25 ° C Measure the tensile strength at break and tensile modulus.
  • the pellets of the thermoplastic polymer composition produced in the examples and comparative examples were compression-molded under a condition of 270 ° C. and 5 MPa using a hot press machine, and a sheet having a thickness of 0.5 mm was formed.
  • thermoplastic polymer composition pellets produced in the examples and comparative examples using a melt flow rate measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a load of 297 ° C, 5 kg or 10 kg The melt flow rate (MFR) was measured under the conditions.
  • a sheet-like test piece having a thickness of 0.5 mm was produced by the above method.
  • This sheet test piece, or the sheet treated with the surface of this sheet test piece and the rubber composition are set in a stacking die, and a 3MPa load is applied for 15 to 30 minutes at 170 ° C with a heat press machine.
  • a rubber-fuel barrier material laminate was molded.
  • Each of the vulcanized rubber-fuel barrier material laminates was cut into strips of 1. Ocm width x 10 cm to prepare test specimens for adhesion test. These test specimens were then JIS-K6256 (vulcanized rubber In accordance with the method described in Adhesion Test Method), a peel test was conducted at 25 ° C at a tensile speed of 50 mmZmin.
  • the discharge electrode (30 cm width) of the corona treatment device was covered with a container made of acrylic resin, and air was allowed to flow for 10 LZ at atmospheric pressure.
  • the surface of the fuel barrier material sheet was treated at a corona output of 250 W using a HV05-2 type power source manufactured by Tantech Co., Ltd. at a sheet moving speed of ImmZ.
  • the sheet of the fuel barrier material was immersed in a metal sodium / naphthalene solution (Tetraetch, manufactured by Junye Co., Ltd.) for 5 seconds.
  • the treated film was thoroughly washed with ethyl alcohol and water and then dried in an oven at 80 ° C.
  • Polyol-based cross-linking agent 2, 2-bis (4-hydroxyphenol) perfluoropropane (Daikin Industries, Ltd. “Bisphenol AF”)
  • Polyamine cross-linking agent N, N, —dicinnamylidene-1, 6-hexamethylenediamine (“V-3” manufactured by Daikin Industries, Ltd.)
  • Dyneon "THV 200G” (Comparative Example 1), Dyneon “THV 500G” (Comparative Example 2) or Dyneon “THV 815G” (Comparative Example 3)
  • a mixed monomer prepared to have the same composition as the desired copolymer composition was polymerized while being additionally charged so that the pressure in the tank was maintained at 0.69 MPa, and then the residual gas in the tank was exhausted.
  • the polymer thus produced was taken out, washed with demineralized pure water, and dried to obtain 183.7 kg of a CTFE copolymer in the form of granular powder.
  • the mixture was melt-kneaded at a cylinder temperature of 280 ° C. using a ⁇ 50 mm short-axis extruder to obtain pellets.
  • the obtained pellet-like CTFE copolymer was heated at 180 ° C. for 24 hours.
  • thermoplastic resin fluorine-based
  • CTFEZTFEZPPVE 44.5 / 53. 4 / 2.1 (mol%)
  • the melting point was 221 ° C.
  • the tensile modulus was 520 MPa
  • the fuel permeability coefficient was 0.3 (g ⁇ mm) Z (m 2 ⁇ day).
  • Table 1 shows the composition of the fluororubber composition (b-2-1) and the vulcanization characteristics thereof.
  • the vulcanization reaction did not proceed at 170 ° C, and the vulcanization time T90 at 250 ° C was 4.0 minutes.
  • Table 1 shows the composition of the fluororubber composition (b-2-2) and the vulcanization characteristics thereof. In the fluororubber composition (b-2-2), the vulcanization reaction did not proceed at 170 ° C, and the vulcanization time T90 at 220 ° C was 4.2 minutes. [0133] [Table 1] Table 1
  • thermoplastic polymer composition was obtained.
  • Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
  • thermoplastic polymer composition was obtained.
  • Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
  • thermoplastic resin fluorine-based
  • fluororubber composition b-2-1
  • Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
  • thermoplastic polymer composition was obtained.
  • Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
  • Table 2 shows the results of measurements of tensile elongation at break, tensile modulus, fuel permeability and melt flow rate.
  • thermoplastic resin non-fluorine-based
  • fluororubber composition b-2-1
  • thermoplastic resin non-fluorine
  • fluororubber composition b-2-2
  • thermoplastic resin composition obtained in Examples 1 to 4 has excellent fuel permeability and fuel permeability compared to the thermoplastic elastomer (fluorine-based) used in Comparative Examples 1 to 3. sex The balance between flexibility and flexibility was strong.
  • thermoplastic resin composition obtained in Examples 1 to 4 has a continuous thermoplastic resin (A) by morphological observation with a scanning electron microscope (manufactured by Nippon Electronics Co., Ltd.). It was found that the cross-linked fluororubber (B) has a structure that forms a dispersed phase. The dispersed particle size of the crosslinked fluororubber (B) was 20 / zm or less in all of Examples 1 to 4.
  • fluororubber 10.0 parts by weight of fluororubber, 2.0 parts by weight of cross-linking agent (Cl), 0.5 parts by weight of cross-linking accelerator (D), magnesium oxide (Kiyo Izuma Mag 150, Kyowa Chemical Industry Co., Ltd.) 3 0 parts by weight, calcium hydroxide (Caldic 2000, Omi Chemical Co., Ltd.) 6.0 parts by weight, carbon black (Thermax N-990, Cancarb Ltd.) 20. 0 parts by weight An 8-inch open roll was used and kneaded to prepare a fluororubber composition (b-2-3).
  • fluororubber composition 10.0 parts by weight of fluororubber, 3.0 parts by weight of crosslinking agent (C2), magnesium oxide (Kyoto Mag 30; Kyowa Chemical Industry Co., Ltd.) 15.0 parts by weight, carbon black (Thermax N-990, Cancarb Ltd.) 20. 0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b-2-4).
  • Epoxychlorohydrin rubber (Epichromer CG, Daiso Co., Ltd.) 100.0 parts by weight, Carbon black (N-550, Cancarb Ltd.) 80 parts by weight, Plasticizer (ADK cizer RS-107, Asahi Denka Kogyo Co., Ltd.) 5. 0 parts by weight, Lubricant (Splender R—300) 2. 0 parts by weight, anti-aging agent (NOCRACK NBC, Ouchi Shinsei Chemical Co., Ltd.) 2.
  • the surface of the sheet of the fuel barrier material obtained in Example 2 was treated with a metallic sodium Z naphthalene solution, and the fluororubber composition obtained by the production method shown in Production Example 4 (b 2— 3) Adhesiveness to the fluororubber composition (b-2-4) obtained by the production method shown in Production Example 5 and the epichlorohydrin rubber composition obtained by the production method shown in Production Example 6
  • the evaluation test was conducted by the above method. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet part failed and the peel strength was 30 NZcm or more.
  • the strength of the thermoplastic polymer composition of the present invention is obtained by using a specific fluorine resin. As a result, it has excellent fuel permeability and flexibility, and has excellent moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Disclosed is a melt-moldable thermoplastic polymer composition which is excellent in heat resistance, chemical resistance and oil resistance, while having flexibility and high fuel barrier property. Also disclosed are a molded article, a fuel tube and a fuel hose respectively made of such a thermoplastic polymer composition. Specifically disclosed is a thermoplastic polymer composition containing a fluororesin (A) containing a chlorotrifluoroethylene unit and a tetrafluoroethylene unit, and a crosslinked fluororubber (B) obtained by crosslinking at least a part of at least one fluororubber. The crosslinked fluororubber (B) is specifically obtained by dynamically crosslinking a fluororubber composition (b) in the presence of the fluororesin (A) under melting conditions of the fluororesin (A).

Description

明 細 書  Specification
熱可塑性重合体組成物および該組成物からなる成形体  Thermoplastic polymer composition and molded article comprising the composition
技術分野  Technical field
[0001] 本発明は、特定のフッ素榭脂および特定の架橋フッ素ゴムからなる熱可塑性重合 体組成物に関する。また、該熱可塑性重合体組成物からなる成形品、燃料チューブ および燃料ホースに関する。  The present invention relates to a thermoplastic polymer composition comprising a specific fluorine resin and a specific crosslinked fluororubber. The present invention also relates to a molded article, a fuel tube and a fuel hose made of the thermoplastic polymer composition.
背景技術  Background art
[0002] 昨今の環境意識の高まりから、燃料揮発を防止するための法整備が進み、特に自 動車業界では米国を中心に燃料揮発抑制の傾向が著しぐ燃料バリア性に優れた 材料へのニーズが大きくなりつつある。燃料バリア性に優れた材料として、ポリフエ- レンスルフイド系榭脂、エチレンビュルアルコール系榭脂、液晶ポリエステル系榭脂 等の熱可塑性榭脂が使用されているが、それに対して柔軟なゴム系材料、例えば架 橋ゴムは一般的に燃料バリア性が劣っており、燃料ホース等の自動車部品に使用し た場合には燃料の揮発'蒸散が大きぐこの改善が求められている。架橋ゴムの中で も、架橋フッ素ゴムの燃料バリア性は良好なものではある力 上記に掲げた熱可塑性 榭脂と比較すると著しく燃料バリア性に劣っており、柔軟でかつ燃料バリア性に優れ た材料開発が急務となって 、る。  [0002] Due to the recent increase in environmental awareness, legislation has been developed to prevent fuel volatilization. In particular, the automobile industry has become a material with excellent fuel barrier properties, especially in the United States, where there is a significant tendency to suppress fuel volatilization. Needs are growing. As materials with excellent fuel barrier properties, thermoplastic resins such as polyphenylene sulfide resin, ethylene bull alcohol resin, liquid crystal polyester resin, etc. are used. For example, bridge rubber is generally inferior in fuel barrier properties, and when it is used for automobile parts such as fuel hoses, this volatility and transpiration of fuel is required to be improved. Among the cross-linked rubbers, the power of the cross-linked fluororubber is not good. The fuel barrier properties are significantly inferior to the thermoplastic resins listed above, and they are flexible and have excellent fuel barrier properties. Material development is an urgent need.
[0003] 上記の状況下、柔軟で燃料バリア性を有し、かつ溶融成形性やリサイクル性を有す る榭脂として、『ダイネオン THV』が開発されている(例えば、 Modern Fluoropolymers : high performance polymers for diverse applications, John Wiley & Sons,し hichster ,(1997) Chapter 13、特開 2000— 274562号公報および特開 2002— 276862号公 報参照)。し力しながら、これらの文献に記載された榭脂の特性として、燃料バリア性 を高めようとすると硬度や弾性率が大きくなり、また硬度や弾性率を低下させようとす ると燃料バリア性が著しく悪ィ匕するという問題点があり、柔軟性と燃料バリア性との両 立が不充分である。  [0003] Under the circumstances described above, “Dyneon THV” has been developed as a resin that is flexible, has a fuel barrier property, and has melt moldability and recyclability (for example, Modern Fluoropolymers: high performance polymers). for diverse applications, John Wiley & Sons, Hichster, (1997) Chapter 13, JP 2000-274562 and JP 2002-276862). However, as the properties of the resin described in these documents, the hardness and elastic modulus increase as the fuel barrier property increases, and the fuel barrier property decreases as the hardness and elastic modulus decrease. However, both the flexibility and the fuel barrier property are inadequate.
発明の開示  Disclosure of the invention
[0004] 本発明の目的は、優れた耐熱性 '耐薬品性 '耐油性を兼ね備え、柔軟であり、燃料 ノリア性が高ぐかつ溶融成形可能な熱可塑性重合体組成物を提供することである 。また、本発明の目的は、該熱可塑性重合体組成物からなる成形品、燃料チューブ および燃料ホースを提供することである。 [0004] The object of the present invention is to combine excellent heat resistance 'chemical resistance' and oil resistance, flexible, and fuel It is an object of the present invention to provide a thermoplastic polymer composition having high noria properties and capable of being melt-molded. Another object of the present invention is to provide a molded article, a fuel tube and a fuel hose made of the thermoplastic polymer composition.
[0005] すなわち、本発明は、クロ口トリフルォロエチレン単位およびテトラフルォロエチレン 単位を含むフッ素榭脂 (A)と少なくとも一部が架橋されてなる架橋フッ素ゴム (B)力も なる熱可塑性重合体組成物に関する。  [0005] That is, the present invention relates to a thermoplastic resin that also has a strength of a cross-linked fluororubber (B) that is at least partially cross-linked with a fluororesin (A) containing a black-mouthed trifluoroethylene unit and a tetrafluoroethylene unit. The present invention relates to a polymer composition.
[0006] 架橋フッ素ゴム (B)が、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融条件下に て、フッ素ゴム組成物 (b)を動的に架橋処理したものであることが好ま ヽ 共重合可能な単量体 (a)単位を含むフッ素榭脂であることが好ま 、。  [0006] The cross-linked fluororubber (B) is obtained by dynamically cross-linking the fluororubber composition (b) in the presence of the fluorocobalt (A) and under the melting conditions of the fluorocobalt (A). Preferably it is a copolymerizable monomer (a) It is preferably a fluorine resin containing units.
[0007] 単量体(a)力 エチレン、ビ-リデンフルオライド、パーフルォロ(アルキルビュルェ 一テル)および一般式(1) : [0007] Monomer (a) Force Ethylene, Bi-Ridene Fluoride, Perfluoro (Alkyl Buerte) and General Formula (1):
cx'x^cx'CCF ) X4 (1) cx'x ^ cx'CCF) X 4 (1)
2 n  2 n
(式中、 x^x3は同一または異なるものであり、それぞれ水素原子、フッ素原子また は— CFであり、 X4は水素原子、フッ素原子または塩素原子であり、 nは 1〜10の整(Wherein x ^ x 3 is the same or different and each represents a hydrogen atom, a fluorine atom or —CF, X 4 is a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer from 1 to 10.
3 Three
数である)  Number)
で示されるビニル単量体力 なる群力 選ばれる 1つ以上の単量体であることが好ま しい。  It is preferable that one or more monomers selected by the group power of vinyl monomer power represented by
[0008] また、本発明は、前記熱可塑性重合体組成物から形成される成形品、燃料チュー ブおよび燃料ホースに関する。  [0008] The present invention also relates to a molded article, a fuel tube, and a fuel hose formed from the thermoplastic polymer composition.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明は、クロ口トリフルォロエチレン(以下、 CTFEという)単位およびテトラフルォ 口エチレン (以下、 TFEという)単位を含むフッ素榭脂 (A)と少なくとも一部が架橋さ れて 、る架橋フッ素ゴム (B)力 なる熱可塑性重合体組成物に関する。 [0009] The present invention is at least partially cross-linked with a fluororesin (A) containing a black trifluoroethylene (hereinafter referred to as CTFE) unit and a tetrafluoroethylene (hereinafter referred to as TFE) unit. The present invention relates to a thermoplastic polymer composition having a cross-linked fluororubber (B) force.
[0010] フッ素榭脂 (A)としては、特に限定されるものではなぐ CTFE単位および TFE単 位を含むものであればょ 、。 [0010] Fluororesin (A) is not particularly limited as long as it contains CTFE units and TFE units.
[0011] フッ素榭脂(A)中に CTFE単位を 2〜98モル%含有することが好ましぐ 10〜90 モル%含有することがより好ましい。 2モル%未満であると薬液透過性が悪化し、また 溶融加工が困難になる傾向があり、 98モル%をこえると成形時の耐熱性、耐薬品性 が悪ィ匕する場合がある。 [0011] It is preferable to contain 2 to 98 mol% of CTFE units in the fluorine resin (A), more preferably 10 to 90 mol%. If it is less than 2 mol%, the chemical permeability deteriorates, Melt processing tends to be difficult, and if it exceeds 98 mol%, the heat resistance and chemical resistance during molding may deteriorate.
[0012] フッ素榭脂(A)中に TFE単位を 2〜98モル%含有することが好ましぐ 10〜90モ ル%含有することがより好ましい。 2モル%未満であると成形時の耐熱性、耐薬品性 が悪ィ匕する場合があり、 98モル%をこえると薬液透過性が悪ィ匕し、また溶融力卩ェが 困難になる傾向がある。 [0012] It is preferable to contain 2 to 98 mol% of TFE units in the fluorine resin (A), more preferably 10 to 90 mol%. If it is less than 2 mol%, the heat resistance and chemical resistance at the time of molding may deteriorate, and if it exceeds 98 mol%, the chemical permeability tends to deteriorate and the melting power tends to be difficult. There is.
[0013] また、耐ストレスクラック性、耐薬品性および耐熱性の点から、さらに CTFEおよび T FEと共重合可能な単量体 (a)単位を含むフッ素榭脂であることが好ま 、。  [0013] Further, from the viewpoint of stress crack resistance, chemical resistance and heat resistance, it is preferable that the fluorine resin further contains a monomer (a) unit copolymerizable with CTFE and TFE.
[0014] 単量体 (a)としては、 CTFEおよび TFEと共重合可能な単量体であればよく特に限 定されないが、エチレン、ビ-リデンフルオライド(以下、 VdFという)、パーフルォロ( アルキルビュルエーテル)(以下、 PAVEという)、一般式(1):  [0014] The monomer (a) is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE, but is not limited to ethylene, vinylidene fluoride (hereinafter referred to as VdF), perfluoro (alkyl). (Buel ether) (hereinafter referred to as PAVE), general formula (1):
cx'x^cx'CCF ) X4 (1) cx'x ^ cx'CCF) X 4 (1)
2 n  2 n
(式中、 x^x3は同一または異なるものであり、それぞれ水素原子、フッ素原子また は— CFであり、 X4は水素原子、フッ素原子または塩素原子であり、 nは 1〜10の整(Wherein x ^ x 3 is the same or different and each represents a hydrogen atom, a fluorine atom or —CF, X 4 is a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer from 1 to 10.
3 Three
数である)  Number)
で示されるビニル単量体、一般式(2):  Vinyl monomer represented by general formula (2):
CF =CF— OCH— R 1 (2) CF = CF— OCH— R 1 (2)
2 2 f  2 2 f
(式中、 R1は炭素数 1〜5のパーフルォロアルキル基である) (Wherein R 1 is a perfluoroalkyl group having 1 to 5 carbon atoms)
f  f
で示されるアルキルパーフルォロビニルエーテルなどをあげることができる力 これら の中でも、エチレン、 VdF、 PAVEおよび一般式(1)で示されるビュル単量体からな る群力 選ばれる 1つ以上の単量体であることが好ましぐ PAVEであることがより好 ましい。  Among these, the ability to increase alkyl perfluorovinyl ether, etc. Among these, one or more unit forces selected from ethylene, VdF, PAVE, and a group force consisting of a bulle monomer represented by the general formula (1) PAVE is more preferable. It is more preferable that it is PAVE.
[0015] この場合の PAVEとしては、たとえばパーフルォロ(メチルビ-ルエーテル)(以下、 PMVEという)、パーフルォロ(ェチルビ-ルエーテル)、パーフルォロ(プロピルビ- ルエーテル)、パーフルォロ(ブチルビ-ルエーテル)などがあげられ、これらの中で も、 PMVE、パーフルォロ(ェチルビ-ルエーテル)、パーフルォロ(プロピルビュル エーテル)が好ましい。  [0015] Examples of PAVE in this case include perfluoro (methyl vinyl ether) (hereinafter referred to as PMVE), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), and the like. Of these, PMVE, perfluoro (ethyl vinyl ether), and perfluoro (propyl butyl ether) are preferable.
[0016] 一般式(1)で示されるビニル単量体としては、特に限定されないが、例えば、へキ サフルォロプロピレン(以下、 HFPという)、パーフルォロ(1, 1, 2—トリハイドロー 1 へキセン)、パーフルォロ(1, 1, 5 トリハイド口 1—ペンテン)、一般式(3): CH =CX3R2 (3) [0016] The vinyl monomer represented by the general formula (1) is not particularly limited. Safluoropropylene (hereinafter referred to as HFP), perfluoro (1, 1, 2—trihydro 1 hexene), perfluoro (1, 1, 5 trihydr 1-pentene), general formula (3): CH = CX 3 R 2 (3)
2 f  2 f
(式中、 X3は前記同様であり、 R2は炭素数 1〜10のパーフルォロアルキル基である) f (Wherein X 3 is the same as above, and R 2 is a perfluoroalkyl group having 1 to 10 carbon atoms) f
で示されるパーフルォロアルキルエチレン等があげられる。  And perfluoroalkylethylene represented by the formula:
[0017] 一般式(3)で示されるパーフルォロアルキルエチレンとしては、パーフルォロブチ ルエチレンが好ましい。 [0017] As the perfluoroalkylethylene represented by the general formula (3), perfluorobutylethylene is preferable.
[0018] 一般式(2)で示されるアルキルパーフルォロビュルエーテルとしては、 R 1が炭素数 f [0018] As the alkyl perfluorobule ether represented by the general formula (2), R 1 has a carbon number of f
1〜3のパーフルォロアルキル基であるものが好ましぐ CF =CF-OCH -CF CF  CF = CF-OCH -CF CF is preferred because it is a perfluoroalkyl group of 1 to 3
2 2 2 力 り好ましい。  2 2 2 Power is preferred.
3  Three
[0019] これらの中でも、フッ素榭脂 (A)としては、得られる熱可塑性重合体組成物の耐燃 料透過性と柔軟性が優れ、かつ成形カ卩ェ性が容易になる点から、 CTFE単位および TFE単位を含む二元フッ素榭脂、または、 CTFE単位、 TFE単位および PAVE単 位を含む三元フッ素榭脂であることが好ましぐ CTFE単位、 TFE単位およびパーフ ルォロ(メチルビ-ルエーテル)単位を含む三元フッ素榭脂または CTFE単位、 TFE 単位およびパーフルォロ(プロピルビュルエーテル)単位を含む三元フッ素榭脂であ ることがより好まし!/、。  [0019] Among these, the fluororesin (A) is a CTFE unit because the thermoplastic polymer composition obtained has excellent flame resistance and flexibility and is easy to mold. CTFE units, TFE units, and perfluoro (methyl vinyl ether) units are preferred to be binary fluorine resins containing A and TFE units, or ternary fluorine resins containing CTFE units, TFE units and PAVE units. More preferred is a ternary fluorine resin containing or a ternary fluorine resin containing CTFE units, TFE units and perfluoro (propyl butyl ether) units! /.
[0020] 二元フッ素榭脂である場合、その組成比(モル比)としては、 CTFEZTFE = 2Z9 8〜98Z2であることが好ましぐ 5Z95〜90Z10であることがより好ましぐ 10/90 〜80Ζ20であることがさらに好まし!/、。 CTFE単位が 2モル%未満であると薬液透過 性が悪ィ匕しまた溶融力卩ェが困難になる傾向があり、 98モル%をこえると成形時の耐 熱性、耐薬品性が悪ィ匕する場合がある。  [0020] In the case of binary fluorine resin, the composition ratio (molar ratio) is preferably CTFEZTFE = 2Z9 8 to 98Z2, more preferably 5Z95 to 90Z10, 10/90 to It is even more preferable that it is 80Ζ20! If the CTFE unit is less than 2 mol%, the chemical permeability tends to be poor and the melting power tends to be difficult. If it exceeds 98 mol%, the heat resistance and chemical resistance during molding are poor. There is a case.
[0021] 三元フッ素榭脂である場合、上記単量体 (a)単位は 0. 1〜10モル%であり、 CTF E単位および TFE単位は合計で 90〜99. 9モル%である。上記単量体(a)が 0. 1モ ル%未満であると成形性、耐環境応力割れ性および耐ストレスクラック性に劣りやす ぐ 10モル%をこえると薬液低透過性、耐熱性、機械特性、生産性などに劣る傾向に ある。さら〖こ、その CTFE単位は、上記 CTFE単位と上記 TFE単位の合計の 10〜 90 モル%であることが好まし 、。上記 CTFE単位と上記 TFE単位の合計に占める CTF E単位が 10モル%未満であると薬液低透過性が不充分となる場合があり、 90モル% をこえると重合速度が急激に低下し生産性が低下するだけでなぐ耐薬品性が低下 したり、耐熱性が不充分となる場合がある。より好ましい下限は 15モル%、さらに好ま しい下限は 20モル0 /0、より好ましい上限は 80モル0 /0、さらに好ましい上限は 70モル %である。 [0021] In the case of ternary fluorine resin, the monomer (a) unit is 0.1 to 10 mol%, and the CTF E unit and TFE unit are 90 to 99.9 mol% in total. If the monomer (a) is less than 0.1 mol%, the moldability, environmental stress crack resistance and stress crack resistance are likely to be inferior. If it exceeds 10 mol%, the chemical solution has low permeability, heat resistance, mechanical properties. It tends to be inferior in characteristics and productivity. Furthermore, the CTFE unit is preferably 10 to 90 mol% of the total of the CTFE unit and the TFE unit. CTF in the total of the above CTFE units and the above TFE units If the E unit is less than 10 mol%, the low chemical solution permeability may be insufficient, and if it exceeds 90 mol%, the polymerization rate will decrease rapidly, resulting in a decrease in productivity and a decrease in chemical resistance. Or the heat resistance may be insufficient. A more preferred lower limit is 15 mol%, further preferred correct lower limit is 20 mole 0/0, and more preferred upper limit is 80 mol 0/0, further preferred upper limit is 70 mol%.
[0022] フッ素榭脂 (A)の製造方法としては、特に限定されるものではないが、特開 2005  [0022] The method for producing the fluorocobalt (A) is not particularly limited.
298702号公報、国際公開第 2005Z100420号パンフレットなどに記載の方法を あげることができる。  Examples include the methods described in 298702, WO 2005Z100420 pamphlet, and the like.
[0023] また、本発明の熱可塑性重合体組成物は、前記フッ素榭脂 (A)以外の榭脂を含ん でいてもよい。  [0023] Further, the thermoplastic polymer composition of the present invention may contain a resin other than the fluorine resin (A).
[0024] また、フッ素榭脂(A)の融点は、 130〜330°Cであることが好ましぐ 140〜320°C であることがより好ましぐ 150〜310°Cであることがさらに好ましい。フッ素榭脂 (A) の融点が、 130°C未満であると、得られる熱可塑性重合体組成物の耐熱性が低下す る傾向があり、 330°Cを超えると、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融 条件下にて、フッ素ゴムを動的に架橋する場合、フッ素榭脂 (A)の融点以上に溶融 温度を設定する必要があるが、その際にフッ素ゴムが熱劣化する傾向がある。  [0024] Further, the melting point of the fluorocobalt (A) is preferably 130 to 330 ° C, more preferably 140 to 320 ° C, and more preferably 150 to 310 ° C. preferable. If the melting point of the fluororesin (A) is less than 130 ° C, the heat resistance of the resulting thermoplastic polymer composition tends to decrease, and if it exceeds 330 ° C, the fluororesin (A) When the fluororubber is dynamically cross-linked under the melting condition of the fluorocarbon resin (A), the melting temperature must be set above the melting point of the fluorocarbon resin (A). Fluoro rubber tends to be thermally deteriorated.
[0025] 本発明で用いる架橋フッ素ゴム (B)としては、少なくとも 1種のフッ素ゴム組成物 (b) の少なくとも一部を架橋したものであればとくに制限されるものではな 、。  [0025] The crosslinked fluororubber (B) used in the present invention is not particularly limited as long as at least a part of at least one fluororubber composition (b) is crosslinked.
[0026] フッ素ゴムとしては、たとえば、パーフルオロフッ素ゴム(bl)、非パーフルオロフッ素 ゴム (b2)、含フッ素熱可塑性エラストマ一 (b3)などがあげられる。  [0026] Examples of the fluororubber include perfluorofluororubber (bl), non-perfluorofluororubber (b2), and fluorine-containing thermoplastic elastomer (b3).
[0027] パーフルオロフッ素ゴム(bl)としては、 TFEZPAVE系共重合体、 TFEZへキサ フルォロプロピレン(以下、 HFPと!、う) ZPAVE系共重合体などがあげられる。  [0027] Examples of the perfluorofluororubber (bl) include TFEZPAVE copolymer, TFEZ hexafluoropropylene (hereinafter referred to as HFP!) ZPAVE copolymer, and the like.
[0028] 非パーフルオロフッ素ゴム(b2)としては、たとえば、 VdF系重合体、 TFEZプロピ レン系共重合体などがあげられ、これらをそれぞれ単独で、または本発明の効果を 損なわな 、範囲で任意に組合わせて用いることができる。  [0028] Examples of the non-perfluorofluororubber (b2) include VdF-based polymers and TFEZ-propylene-based copolymers, which are used alone or in a range that does not impair the effects of the present invention. Any combination can be used.
[0029] また、前記パーフルオロフッ素ゴムや非パーフルオロフッ素ゴムとして例示したもの は主モノマーの構成であり、架橋用モノマーや変性モノマー等を共重合したものも好 適に用いることができる。架橋用モノマーや変性モノマーとしては、ヨウ素原子、臭素 原子、二重結合を含むものなどの公知の架橋用モノマー、移動剤、公知のエチレン 性不飽和化合物などの変性モノマーなどを使用することができる。 [0029] Further, those exemplified as the perfluoro fluorine rubber and non-perfluoro fluorine rubber have a constitution of a main monomer, and those obtained by copolymerizing a crosslinking monomer, a modified monomer, etc. can be suitably used. Examples of crosslinking monomers and modifying monomers include iodine atoms, bromine Known crosslinking monomers such as those containing atoms and double bonds, transfer agents, modified monomers such as known ethylenically unsaturated compounds, and the like can be used.
[0030] 前記 VdF系重合体としては、具体的には、 VdFZHFP系共重合体、 VdFZTFE ZHFP系共重合体、 VdFZTFEZプロピレン系共重合体、 VdFZエチレン ZHFP 系共重合体、 VdFZTFEZPAVE系共重合体、 VdFZPAVE系共重合体、 VdF ZCTFE系共重合体などをあげることができる。さらに具体的には、 VdF25〜85モ ル%と、 VdFと共重合可能な少なくとも 1種の他の単量体 75〜 15モル%とからなる 含フッ素共重合体であることが好ましぐより好ましくは、 VdF50〜80モル%と、 VdF と共重合可能な少なくとも 1種の他の単量体 50〜20モル%と力 なる含フッ素共重 合体である。 [0030] Specific examples of the VdF polymer include a VdFZHFP copolymer, a VdFZTFE ZHFP copolymer, a VdFZTFEZ propylene copolymer, a VdFZ ethylene ZHFP copolymer, a VdFZTFEZPAVE copolymer, Examples thereof include VdFZPAVE copolymers and VdF ZCTFE copolymers. More specifically, the fluorine-containing copolymer is preferably composed of 25 to 85 mol% of VdF and 75 to 15 mol% of at least one other monomer copolymerizable with VdF. Preferred is a fluorine-containing copolymer having 50 to 80 mol% of VdF and 50 to 20 mol% of at least one other monomer copolymerizable with VdF.
[0031] ここで、 VdFと共重合可能な少なくとも 1種の他の単量体としては、たとえば、 TFE、 CTFE、トリフルォロエチレン、 HFP、トリフルォロプロピレン、テトラフルォロプロピレ ン、ペンタフルォロプロピレン、トリフルォロブテン、テトラフルォロイソブテン、 PAVE 、フッ化ビュルなどの含フッ素単量体、エチレン、プロピレン、アルキルビュルエーテ ルなどの非フッ素単量体があげられる。これらをそれぞれ単独で、または、任意に組 み合わせて用いることができる。  Here, as at least one other monomer copolymerizable with VdF, for example, TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, penta Examples include fluorine-containing monomers such as fluoropropylene, trifluorobutene, tetrafluoroisobutene, PAVE, and fluorinated butyl, and non-fluorine monomers such as ethylene, propylene, and alkyl butyl ether. These can be used alone or in any combination.
[0032] 前記フッ素ゴムの中でも、耐熱性、圧縮永久ひずみ、加工性、コストの点から、 VdF 単位を含むフッ素ゴムであることが好ましぐ VdF単位と HFP単位とを有するフッ素ゴ ムであることがより好ましい。  [0032] Among the fluororubbers, it is preferred that the fluororubber contains VdF units from the viewpoint of heat resistance, compression set, workability, and cost. It is a fluororubber having VdF units and HFP units. It is more preferable.
[0033] また、圧縮永久ひずみが良好な点から、 VdFZHFP系フッ素ゴム、 VdFZTFEZ HFP系フッ素ゴム、 TFEZプロピレン系フッ素ゴムからなる群より選ばれる少なくとも 1種のゴムであることが好ましぐ低燃料透過性の観点から VdFZTFEZHFP系フッ 素ゴムであることがより好まし!/、。  [0033] From the viewpoint of good compression set, it is preferable that the fuel is at least one rubber selected from the group consisting of VdFZHFP-based fluororubber, VdFZTFEZ HFP-based fluororubber, and TFEZ propylene-based fluororubber. From the perspective of permeability, it is more preferable to use VdFZTFEZHFP-based fluoro rubber! /.
[0034] 本発明に使用されるフッ素ゴムは、通常の乳化重合法により製造することができる。  [0034] The fluororubber used in the present invention can be produced by a usual emulsion polymerization method.
重合時の温度、時間などの重合条件としては、モノマーの種類や目的とするエラスト マーにより適宜決定すればよい。  Polymerization conditions such as temperature and time during polymerization may be appropriately determined depending on the type of monomer and the target elastomer.
[0035] 含フッ素熱可塑性エラストマ一(b3)としては、特に限定されるものではないが、フッ 素榭脂との相溶性が優れる点から、少なくとも 1種のエラストマ一性ポリマーセグメント (p— l)と、少なくとも 1種の非エラストマ一性ポリマーセグメント (p— 2)とからなり、か つエラストマ一性ポリマーセグメント(p— 1)と非エラストマ一性ポリマーセグメント(p—[0035] The fluorine-containing thermoplastic elastomer (b3) is not particularly limited, but it has at least one elastomeric polymer segment because of its excellent compatibility with fluorine resin. (p—l) and at least one non-elastomeric polymer segment (p—2), an elastomeric polymer segment (p—1) and a non-elastomeric polymer segment (p—
2)のうち、少なくとも一方が含フッ素ポリマーセグメントであることが好ましい。 Of 2), at least one is preferably a fluorine-containing polymer segment.
[0036] エラストマ一性ポリマーセグメント (p— 1)は、重合体に柔軟性を付与し、ガラス転移 点が 25°C以下が好ましぐより好ましくは 0°C以下である。その構成単位としては、た とえば、 TFE、 CTFE、 HFP、一般式(4): [0036] The elastomeric polymer segment (p-1) imparts flexibility to the polymer, and the glass transition point is preferably 25 ° C or lower, more preferably 0 ° C or lower. For example, TFE, CTFE, HFP, and general formula (4):
CF =CFO (CF CFX'O) - (CF CF CF O) — R4 (4) CF = CFO (CF CFX'O)-(CF CF CF O) — R 4 (4)
2 2 p 2 2 2 q f  2 2 p 2 2 2 q f
(式中、 X1は、フッ素原子または— CF; R4は、炭素数 1〜5のパーフルォロアルキル (In the formula, X 1 is a fluorine atom or —CF; R 4 is a perfluoroalkyl having 1 to 5 carbon atoms.
3 f  3 f
基; pは、 0〜5の整数; qは、 0〜5の整数である)  A group; p is an integer of 0 to 5; q is an integer of 0 to 5)
で表されるパーフルォロビュルエーテルなどのパーハロォレフイン; VdF、トリフルォ 口エチレン、トリフノレオ口プロピレン、テトラフノレォロプロピレン、ペンタフノレォロプロピ レン、トリフルォロブテン、テトラフルォロイソブテン、フッ化ビュルなどの含フッ素単量 体;エチレン、プロピレン、アルキルビュルエーテルなどの非フッ素単量体;架橋部位 を与える任意の単量体などがあげられる。  Perhaloolefins such as perfluorobule ethers represented by: VdF, trifluoroethylene, triphenolopropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene And fluorine-containing monomers such as fluorinated butyl; non-fluorine monomers such as ethylene, propylene, and alkyl butyl ether; and any monomer that provides a crosslinking site.
[0037] 架橋部位を与える単量体としては、たとえば、一般式(5): [0037] Examples of the monomer that gives a crosslinking site include, for example, the general formula (5):
CX5 =CX5-R5CHR1X6 (5) CX 5 = CX 5 -R 5 CHR 1 X 6 (5)
2 f  2 f
(式中、 X5は同じ力または異なり、水素原子、フッ素原子または— CH; R5は、フルォ (Wherein X 5 are the same force or different, hydrogen atom, fluorine atom or —CH; R 5 is fluoro
3 f 口アルキレン基、パーフルォロアルキレン基、フルォロポリオキシアルキレン基または パーフルォロポリオキシアルキレン基; R1は、水素原子または— CH ;X6は、ヨウ素原 3 f Open-alkylene group, perfluoroalkylene group, fluoropolyoxyalkylene group or perfluoropolyoxyalkylene group; R 1 is a hydrogen atom or — CH; X 6 is an iodine atom
3  Three
子または臭素原子である)で表されるヨウ素または臭素含有単量体、一般式 (6): CF =CFO (CF CF (CF ) 0) (CF ) — X7 (6) Or iodine-containing monomer represented by the general formula (6): CF = CFO (CF CF (CF) 0) (CF) — X 7 (6)
2 2 3 m 2 n  2 2 3 m 2 n
(式中、 mは、 0〜5の整数; nは、 1〜3の整数; X7は、シァノ基、カルボキシル基、ァ ルコキシカルボニル基、臭素原子である)で表される単量体で表されるような単量体 などがあげられ、これらをそれぞれ単独で、または任意に組合わせて用いることがで きる。 (Wherein m is an integer of 0 to 5; n is an integer of 1 to 3; X 7 is a cyano group, a carboxyl group, an alkoxycarbonyl group, or a bromine atom) And the like, and these can be used alone or in any combination.
[0038] つぎに、非エラストマ一性ポリマーセグメント(p— 2)の構成単位としては、 TFE、 C TFE、 PAVE, HFPゝ一般式(7):  [0038] Next, as structural units of the non-elastomeric polymer segment (p-2), TFE, C TFE, PAVE, HFP ゝ General formula (7):
CF =CF (CF ) X8 (7) (式中、 rは、 1〜: L0の整数; X8は、フッ素原子または塩素原子である)で表される化 合物、パーフルオロー 2—ブテンなどのパーハロォレフイン; VdF、フッ化ビュル、トリ フルォロエチレン、一般式(8): CF = CF (CF) X 8 (7) (Wherein, r is,. 1 to: L0 integer; X 8 is a fluorine atom or a chlorine atom in a) represented by reduction compounds with, par Haroo Lev-ins such as perfluoro-2-butene; VdF, Fukka Bulle , Trifluoroethylene, general formula (8):
CH =CX9— (CF ) -X9 (8) CH = CX 9 — (CF) -X 9 (8)
2 2 s  2 2 s
(式中、 X9は、水素原子またはフッ素原子; sは、 1〜10の整数)で表される化合物、 C H =C (CF )などの部分フッ素化ォレフイン;エチレン、プロピレン、塩化ビュル、ビ(Wherein X 9 is a hydrogen atom or a fluorine atom; s is an integer of 1 to 10), partially fluorinated olefins such as CH 2 = C (CF 3); ethylene, propylene, butyl chloride, vinyl
2 3 2 2 3 2
-ルエーテル、カルボン酸ビュルエステル、アクリル酸などの非フッ素単量体などを あげることができる。  -Non-fluorine monomers such as ruether, carboxylic acid bule ester, and acrylic acid.
[0039] また、これらの中でも、エラストマ一性ポリマーセグメント(p— 1)力 TFE/VdF/ HFPの共重合体であり、かつ非エラストマ一性ポリマーセグメント(p— 2) 1S TFE/ エチレンの共重合体である含フッ素熱可塑性エラストマ一が好ましぐエラストマ一性 ポリマーセグメント(p— 1) 1S TFEZVdFZHFP = 0〜35Z40〜90Z5〜50モル %であり、かつ非エラストマ一性ポリマーセグメント(p— 2)力 TFEZエチレン = 20 〜80Z80〜20モル0 /0である含フッ素熱可塑性エラストマ一がより好ましい。 [0039] Among these, the elastomeric polymer segment (p-1) is a copolymer of TFE / VdF / HFP, and the non-elastomeric polymer segment (p-2) is a copolymer of 1S TFE / ethylene. Polymeric segment (p— 1) 1S TFEZVdFZHFP = 0 to 35Z40 to 90Z5 to 50 mol%, and non-elastomeric polymer segment (p— 2) ) force TFEZ ethylene = 20 ~80Z80~20 mole 0/0 fluorinated thermoplastic elastomer one are more preferred.
[0040] 含フッ素熱可塑性エラストマ一は、 1分子中にエラストマ一性ポリマーセグメント(ρ  [0040] The fluorine-containing thermoplastic elastomer is composed of an elastomeric polymer segment (ρ
1)と非エラストマ一性ポリマーセグメント (ρ— 2)がブロックゃグラフトの形態で結合 した含フッ素多元セグメント化ポリマーであることが好ましく、含フッ素熱可塑性エラス トマ一が、 1個のエラストマ一性ポリマーセグメント(ρ— 1)と、 2個の非エラストマ一性 ポリマーセグメント(ρ— 2)力 なり、かつそのうちの少なくとも一方は含フッ素ポリマー セグメントであるトリブロックポリマー力もなることが好ましい。  A fluorine-containing multi-segmented polymer in which 1) and a non-elastomeric polymer segment (ρ-2) are bonded in the form of a block graft is preferred, and a fluorine-containing thermoplastic elastomer is a single elastomer. Preferably, the polymer segment (ρ-1) and two non-elastomeric polymer segments (ρ-2) force, and at least one of them is a triblock polymer force that is a fluorine-containing polymer segment.
[0041] 含フッ素熱可塑性エラストマ一の製法としては、エラストマ一性ポリマーセグメント(ρ  [0041] As a method for producing a fluorine-containing thermoplastic elastomer, an elastomeric polymer segment (ρ
1)と非エラストマ一性ポリマーセグメント (ρ— 2)とをブロックゃグラフトなどの形態で つなぎ、含フッ素多元セグメント化ポリマーとするベぐ公知の種々の方法が採用でき る力 なかでも特公昭 58— 4728号公報などに示されたブロック型の含フッ素多元セ グメントイ匕ポリマーの製法や、特開昭 62— 34324号公報に示されたグラフト型の含フ ッ素多元セグメント化ポリマーの製法などが好ましく採用できる。  Among the strengths that can be used to connect various non-elastomeric polymer segments (ρ-2) in the form of block grafts, etc. to form fluorine-containing multi-segmented polymers, among others — The production method of block-type fluorine-containing multi-segment segment polymers described in Japanese Patent Publication No. 4728 and the production method of graft-type fluorine-containing multi-segmented polymers disclosed in Japanese Patent Application Laid-Open No. 62-34324. Preferably employed.
[0042] とりわけ、セグメント化率 (ブロック化率)も高ぐ均質で規則的なセグメント化ポリマ 一が得られることから、特公昭 58— 4728号公報、高分子論文集 (Vol. 49、 No. 10 、 1992)記載のいわゆるヨウ素移動重合法で合成されたブロック型の含フッ素多元 セグメント化ポリマーが好まし 、。 [0042] In particular, since a uniform and regular segmented polymer having a high segmentation rate (blocking rate) can be obtained, Japanese Patent Publication No. 58-4728, a collection of polymer papers (Vol. 49, No. Ten 1992)), a block type fluorine-containing multi-segmented polymer synthesized by a so-called iodine transfer polymerization method is preferred.
[0043] 含フッ素熱可塑性エラストマ一の好ましい製造方法としては、フッ素ゴムの製造法と して公知のヨウ素移動重合法をあげることができる。たとえば、実質的に無酸素下で、 水媒体中で、ヨウ素化合物、好ましくはジヨウ素化合物の存在下に、前記パーハロォ レフインと、要すれば硬化部位を与える単量体を加圧下で撹拌しながらラジカル開始 剤の存在下、乳化重合を行う方法があげられる。  [0043] As a preferred method for producing a fluorine-containing thermoplastic elastomer, a known iodine transfer polymerization method can be given as a method for producing a fluororubber. For example, in a water medium, in the presence of an iodine compound, preferably in the presence of a diiodine compound, the perhaloolefin and, if necessary, a monomer that provides a curing site are stirred under pressure while being substantially oxygen-free. A method of carrying out emulsion polymerization in the presence of a radical initiator can be mentioned.
[0044] 本発明の熱可塑性重合体組成物は、フッ素榭脂 (A)の存在下にて、フッ素榭脂( A)の溶融条件下にて、フッ素ゴム組成物 (b)を動的に架橋処理して得ることが好まし い。ここで、動的に架橋処理するとは、バンバリ一ミキサー、加圧-一ダー、押出機等 を使用して、フッ素ゴムを溶融混練と同時に動的に架橋させることをいう。これらの中 でも、高剪断力を加えることができる点で、二軸押出機等の押出機を用いることが好 ましい。動的に架橋処理することで、フッ素榭脂 (A)と架橋フッ素ゴム (B)の相構造 および架橋フッ素ゴム (B)の分散を制御することができる。  [0044] The thermoplastic polymer composition of the present invention dynamically changes the fluororubber composition (b) in the presence of the fluorine resin (A) under the melting condition of the fluorine resin (A). It is preferable to obtain it by crosslinking treatment. Here, the dynamic cross-linking treatment means that the fluororubber is dynamically cross-linked simultaneously with the melt kneading using a Banbury mixer, a pressure-kinder, an extruder or the like. Among these, it is preferable to use an extruder such as a twin-screw extruder because a high shear force can be applied. By dynamically performing the crosslinking treatment, the phase structure of the fluorine resin (A) and the crosslinked fluororubber (B) and the dispersion of the crosslinked fluororubber (B) can be controlled.
[0045] 本発明の熱可塑性重合体組成物に、少なくとも 1種のフッ素ゴム組成物 (b)を架橋 するため、架橋剤 (C)をさらに添加することが好ま 、。  [0045] In order to cross-link at least one fluororubber composition (b) to the thermoplastic polymer composition of the present invention, it is preferable to further add a cross-linking agent (C).
[0046] 架橋剤 (C)としては、架橋するフッ素ゴム組成物 (b)の種類や溶融混練条件に応じ て、適宜選択することができる。  [0046] The crosslinking agent (C) can be appropriately selected depending on the type of the fluororubber composition (b) to be crosslinked and the melt-kneading conditions.
[0047] 本発明で用いられる架橋系は、フッ素ゴムに架橋性基 (キュアサイト)が含まれる場 合は、キュアサイトの種類によって、または得られる成形品などの用途により適宜選択 すればよい。架橋系としては、ポリオール架橋系、有機過酸化物架橋系およびポリア ミン架橋系のいずれも採用できる。  [0047] When the fluororubber contains a crosslinkable group (cure site), the cross-linking system used in the present invention may be appropriately selected depending on the type of cure site or the use of the obtained molded product. As the crosslinking system, any of a polyol crosslinking system, an organic peroxide crosslinking system, and a polyamine crosslinking system can be employed.
[0048] ここで、ポリオール架橋系により架橋する場合は、架橋点に炭素 酸素結合を有し ており、圧縮永久歪みが小さぐ成形性も良ぐシール特性に優れているという特徴 がある点で好適である。  [0048] Here, in the case of cross-linking by a polyol cross-linking system, it has a feature that it has a carbon-oxygen bond at the cross-linking point, has a small compression set, a good moldability, and an excellent sealing property. Is preferred.
[0049] 有機過酸化物架橋系により架橋する場合は、架橋点に炭素 炭素結合を有してい るので、架橋点に炭素 酸素結合を有するポリオール架橋系および炭素 窒素二 重結合を有するポリアミン架橋系に比べて、耐薬品性および耐スチーム性に優れて いるという特徴がある。 [0049] In the case of crosslinking by an organic peroxide crosslinking system, since it has a carbon-carbon bond at the crosslinking point, a polyol crosslinking system having a carbon-oxygen bond at the crosslinking point and a polyamine crosslinking system having a carbon-nitrogen double bond. Compared with, superior in chemical resistance and steam resistance There is a feature that.
[0050] ポリアミン架橋により架橋する場合は、架橋点に炭素 窒素二重結合を有している ものであり、動的機械特性に優れているという特徴がある。しかし、ポリオール架橋系 または有機過酸化物架橋系架橋剤を用いて架橋する場合に比べて、圧縮永久歪み が大きくなる傾向がある。  [0050] Cross-linking by polyamine cross-linking has a carbon-nitrogen double bond at the cross-linking point, and is characterized by excellent dynamic mechanical properties. However, the compression set tends to be larger than when crosslinking is performed using a polyol crosslinking system or an organic peroxide crosslinking system.
[0051] したがって、本発明では、ポリオール架橋系または有機過酸化物架橋系の架橋剤 を用いることが好ましぐ前述のようにシール性に優れる点から、ポリオール架橋系の 架橋剤を用いることがより好まし 、。  [0051] Therefore, in the present invention, it is preferable to use a polyol crosslinking type or organic peroxide crosslinking type crosslinking agent. As described above, a polyol crosslinking type crosslinking agent is used because of its excellent sealing properties. More preferred ,.
[0052] 本発明における架橋剤 (C)は、ポリアミン系、ポリオール系、有機過酸化物系の架 橋剤を使用することができる。  [0052] As the crosslinking agent (C) in the present invention, a polyamine-based, polyol-based or organic peroxide-based crosslinking agent can be used.
[0053] ポリアミン架橋剤としては、たとえば、へキサメチレンジァミンカーバメート、 N, N, 一 ジシンナミリデン 1, 6 へキサメチレンジァミン、 4, 4 ' —ビス(アミノシクロへキシノレ )メタン力ルバメートなどのポリアミンィ匕合物があげられる。これらの中でも、 N, N' - ジシンナミリデン 1, 6 へキサメチレンジァミンが好まし!/、。  [0053] Examples of the polyamine cross-linking agent include hexamethylenediamine amine carbamate, N, N, unicinnamylidene 1,6 hexamethylenediamine, 4, 4'-bis (aminocyclohexenole) methane power rubamate And polyamine compounds. Of these, N, N'-dicinnamylidene 1, 6 hexamethylenediamine is preferred!
[0054] ポリオール架橋剤としては、従来、フッ素ゴムの架橋剤として知られて 、る化合物を 用いることができ、たとえば、ポリヒドロキシィ匕合物、特に、耐熱性に優れる点力もポリ ヒドロキシ芳香族化合物が好適に用いられる。  [0054] As the polyol cross-linking agent, a compound conventionally known as a fluororubber cross-linking agent can be used. For example, a polyhydroxy compound, particularly a polyhydroxy aromatic compound having excellent heat resistance. A compound is preferably used.
[0055] 上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、 2, 2 ビス ( 4 ヒドロキシフエ-ル)プロパン(以下、ビスフエノール Aという)、 2, 2 ビス(4 ヒド ロキシフエ-ル)パーフルォロプロパン(以下、ビスフエノール AFという)、レゾルシン、 1, 3 ジヒドロキシベンゼン、 1, 7 ジヒドロキシナフタレン、 2, 7 ジヒドロキシナフ タレン、 1, 6 ジヒドロキシナフタレン、 4, 4'ージヒドロキシジフエニル、 4, 4' ジヒド ロキシスチルベン、 2, 6 ジヒドロキシアントラセン、ヒドロキノン、カテコール、 2, 2— ビス(4—ヒドロキシフエ-ル)ブタン(以下、ビスフエノール Bという)、 4, 4—ビス(4— ヒドロキシフエ-ル)吉草酸、 2, 2 ビス(4 ヒドロキシフエ-ル)テトラフルォロジクロ 口プロパン、 4, 4,ージヒドロキシジフエニノレスノレホン、 4, 4,ージヒドロキシジフエ二ノレ ケトン、トリ(4—ヒドロキシフエ-ル)メタン、 3, 3' , 5, 5, 一テトラクロ口ビスフエノール A、 3, 3' , 5, 5, 一テトラブロモビスフェノール Aなどがあげられる。これらのポリヒドロ キシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、 酸を用いて共重合体を凝祈した場合は、上記金属塩は用いな 、ことが好まし 、。 [0055] The polyhydroxy aromatic compound is not particularly limited, and examples thereof include 2, 2 bis (4 hydroxyphenol) propane (hereinafter referred to as bisphenol A), 2, 2 bis (4 hydroxyphenol). ) Perfluoropropane (hereinafter referred to as bisphenol AF), resorcin, 1,3 dihydroxybenzene, 1,7 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 1,6 dihydroxynaphthalene, 4,4'-dihydroxydiphenyl 4, 4 'dihydroxystilbene, 2, 6 dihydroxyanthracene, hydroquinone, catechol, 2, 2-bis (4-hydroxyphenol) butane (hereinafter referred to as bisphenol B), 4, 4-bis (4— Hydroxyphenol) valeric acid, 2, 2 bis (4 hydroxyphenol) tetrafluorodiclonal propane, 4, 4, dihydroxydiphenol Ninoles norephone, 4, 4, -dihydroxydiphenyl ketone, tri (4-hydroxyphenol) methane, 3, 3 ', 5, 5, monotetrachlorobisphenol A, 3, 3', 5, 5, One tetrabromobisphenol A. These polyhydro The xyaromatic compound may be an alkali metal salt, an alkaline earth metal salt, or the like, but it is preferable that the above metal salt is not used when the copolymer is prayed using an acid.
[0056] 有機過酸化物架橋系の架橋剤としては、熱や酸化還元系の存在下で容易にパー ォキシラジカルを発生し得る有機過酸ィ匕物であればよぐ具体的には、たとえば 1, 1 ビス(t ブチルパーォキシ)ー 3, 5, 5 トリメチルシクロへキサン、 2, 5 ジメチル へキサン 2, 5 ジヒドロパーオキサイド、ジー t ブチルパーオキサイド、 tーブチ ルクミルパーオキサイド、ジクミルパーオキサイド、 a , α ビス(t ブチルパーォキ シ)—p ジイソプロピルベンゼン、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキ シ)へキサン、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキシ)一へキシンー3、ベ ンゾィルパーオキサイド、 t ブチルパーォキシベンゼン、 t ブチルパーォキシマレ イン酸、 t—ブチルパーォキシイソプロピルカーボネートなどをあげることができる。こ れらの中でも、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサンが好まし い。 [0056] The organic peroxide cross-linking agent may be an organic peroxide compound that can easily generate a peroxide radical in the presence of heat or a redox system. , 1 Bis (t butylperoxy)-3, 5, 5 Trimethylcyclohexane, 2, 5 Dimethyl hexane 2, 5 Dihydroperoxide, Di-t-butyl peroxide, t-Butylcumyl peroxide, Dicumyl peroxide, a , α Bis (t-butylperoxy) -p diisopropylbenzene, 2,5 dimethyl-2,5 di (t-butylperoxy) hexane, 2,5 dimethyl-2,5 di (t-butylperoxy) monohexyne-3, Ben Zoyl peroxide, t-butylperoxybenzene, t-butylperoxymaleic acid, t-butylperoxyisopropyl carbonate, etc.Of these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is preferred.
[0057] これらの中でも、得られる成形品などの圧縮永久歪みが小さぐ成形性に優れてい るという点から、ポリヒドロキシィ匕合物が好ましぐ耐熱性が優れることからポリヒドロキ シ芳香族化合物がより好ましぐビスフエノール AFがさらに好ましい。  Among these, polyhydroxy aromatic compounds are preferred because polyhydroxy compounds are excellent in heat resistance because they are excellent in moldability with small compression set such as molded articles obtained. Bisphenol AF is more preferred.
[0058] また、ポリオール架橋系においては、ポリオール系架橋剤と併用して、通常、架橋 促進剤 (D)を用いる。架橋促進剤 (D)を用いると、フッ素ゴム主鎖の脱フッ酸反応に おける分子内二重結合の形成を促進することにより架橋反応を促進することができる  [0058] In the polyol crosslinking system, a crosslinking accelerator (D) is usually used in combination with the polyol crosslinking agent. When the crosslinking accelerator (D) is used, the crosslinking reaction can be promoted by promoting the formation of an intramolecular double bond in the dehydrofluorination reaction of the fluororubber main chain.
[0059] ポリオール架橋系の架橋促進剤 (D)としては、一般にォ -ゥム化合物が用いられる 。ォ -ゥム化合物としては特に限定されず、たとえば、第 4級アンモ-ゥム塩等のアン モニゥム化合物、第 4級ホスホニゥム塩等のホスホニゥム化合物、ォキソニゥム化合物 、スルホニゥム化合物、環状ァミン、 1官能性アミンィ匕合物などがあげられ、これらの 中でも第 4級アンモ-ゥム塩、第 4級ホスホ-ゥム塩が好まし 、。 [0059] As the polyol crosslinking-type crosslinking accelerator (D), an organic compound is generally used. Ammonium compounds are not particularly limited. For example, ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, monofunctional compounds Amine compounds are preferred, and among these, quaternary ammonium salts and quaternary phospho- um salts are preferred.
[0060] 第 4級アンモ-ゥム塩としては特に限定されず、たとえば、 8—メチル 1, 8 ジァ ザビシクロ [5, 4, 0]— 7 ゥンデセ -ゥムクロリド、 8—メチルー 1 , 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ-ゥムアイオダイド、 8—メチルー 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ -ゥムハイドロキサイド、 8—メチル 1, 8 ジァザビシクロ [5,[0060] The quaternary ammonium salt is not particularly limited. For example, 8—methyl 1,8 diazabicyclo [5, 4, 0] —7 undese-um chloride, 8—methyl-1,8 diazabicyclo [ 5, 4, 0] — 7 Hundesseum Iodide, 8-Methyl-1, 8 Diazabicyclo [5, 4, 0] — 7 undese-um hydroxide, 8—methyl 1, 8 diazabicyclo [5,
4, 0]— 7 ゥンデセ-ゥムメチルスルフェート、 8 ェチル 1, 8 ジァザビシクロ [4, 0] —7undecem methylsulfate, 8 ethyl 1,8 diazabicyclo [
5, 4, 0]— 7 ゥンデセ-ゥムブロミド、 8 プロピル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ-ゥムブロミド、 8 ドデシルー 1, 8 ジァザビシクロ [5, 4, 0] - 7 —ゥンデセ -ゥムクロリド、 8 ドデシル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥン デセ -ゥムハイドロキサイド、 8 エイコシル— 1, 8 ジァザビシクロ [5, 4, 0] - 7- ゥンデセ -ゥムクロリド、 8—テトラコシル 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥン デセ -ゥムクロリド、 8 ベンジル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ- ゥムクロリド(以下、 DBU— Bという)、 8 ベンジル一 1, 8 ジァザビシクロ [5, 4, 0] 7 ゥンデセ -ゥムハイドロキサイド、 8 フエネチルー 1, 8 ジァザビシクロ [5, 4 , 0]— 7 ゥンデセ -ゥムクロリド、 8— (3—フエ-ルプロピル)— 1, 8 ジァザビシク 口 [5, 4, 0]— 7 ゥンデセ -ゥムクロリドなどがあげられる。これらの中でも、架橋性、 架橋物の物性の点から、 DBU— Bが好ましい。 5, 4, 0] —7 Undecem-bromide, 8 Propyl 1,8 Diazabicyclo [5, 4, 0] —7 Undecem-bromide, 8 Dodecyl 1,8 Diazabicyclo [5, 4, 0]-7 —Undece- Umchloride, 8 dodecyl 1,8 diazabicyclo [5, 4, 0] — 7 und dec-um hydroxide, 8 eicosyl— 1, 8 diazabicyclo [5, 4, 0]-7- undese-um chloride, 8—Tetracosyl 1,8 diazabicyclo [5, 4, 0] — 7 und dec-um chloride, 8 benzyl 1, 1, 8 diazabicyclo [5, 4, 0] — 7 und dec-um chloride (hereinafter referred to as DBU— B) , 8 Benzyl-1,8 diazabicyclo [5, 4, 0] 7 undecse-um hydroxide, 8 phenethyl 1, 8 diazabicyclo [5, 4, 0] — 7 undece-um chloride, 8— (3—hue- Rupropyl) — 1, 8 Gizabic mouth [5, 4, 0] — 7 Undeceth-um chloride Etc. Among these, DBU-B is preferable from the viewpoint of the crosslinkability and the physical properties of the cross-linked product.
[0061] また、第 4級ホスホ-ゥム塩としては特に限定されず、たとえば、テトラブチルホスホ -ゥムクロリド、ベンジルトリフエ-ルホスホ -ゥムクロリド(以下、 BTPPCという)、ベン ジルトリメチルホスホ-ゥムクロリド、ベンジルトリブチルホスホ-ゥムクロリド、トリブチル ァリルホスホ-ゥムクロリド、トリブチルー 2—メトキシプロピルホスホ-ゥムクロリド、ベ ンジルフエ-ル(ジメチルァミノ)ホスホ-ゥムクロリドなどをあげることができ、これらの 中でも、架橋性、架橋物の物性の点から、ベンジルトリフ -ルホスホ -ゥムクロリド( BTPPC)が好ましい。  [0061] The quaternary phospho-um salt is not particularly limited, and examples thereof include tetrabutyl phospho-um chloride, benzyl triphenyl phospho-um chloride (hereinafter referred to as BTPPC), benzyl trimethyl phospho-um chloride, benzyl. Examples thereof include tributylphosphomethylene chloride, tributylarylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, benzylphenol (dimethylamino) phosphonium chloride, and the like. Benzyltriphenyl-phosphomum chloride (BTPPC) is preferred.
[0062] また、架橋促進剤 (D)として、第 4級アンモ-ゥム塩、第 4級ホスホ-ゥム塩とビスフ ェノール AFの固溶体、特開平 11— 147891号公報に開示されている塩素フリー架 橋促進剤を用いることもできる。  [0062] Further, as a crosslinking accelerator (D), a quaternary ammonium salt, a solid solution of a quaternary phosphonium salt and bisphenol AF, chlorine disclosed in JP-A-11-147891 Free bridge accelerators can also be used.
[0063] 有機過酸化物の架橋促進剤 (D)としては、たとえば、トリァリルシアヌレート、トリァリ ルイソシァヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、 N, N, - m—フエ-レンビスマレイミド、ジプロパギルテレフタレート、ジァリルフタレート、テトラ ァリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリァリルイ ソシァヌレー卜(1, 3, 5 HJス(2, 3, 3 卜!;フノレ才 P 2 プ Pぺニノレ) 1, 3, 5— トリアジン— 2, 4, 6—トリオン)、トリス(ジァリルァミン)— S—トリァジン、亜リン酸トリア リル、 N, N—ジァリルアクリルアミド、 1, 6—ジビ-ルドデカフルォ口へキサン、へキサ ァリルホスホルアミド、 N, N, Ν' , Ν,一テトラァリルフタルアミド、 Ν, Ν, Ν' , Ν,一テ トラァリルマロンアミド、トリビュルイソシァヌレート、 2,4,6—トリビュルメチルトリシロキ サン、トリ(5—ノルボルネン一 2—メチレン)シァヌレート、トリアリルホスファイトなどが あげられる。これらの中でも、架橋性、架橋物の物性の点から、トリアリルイソシァヌレ 一 HTAIC)が好ましい。 [0063] Examples of the organic peroxide crosslinking accelerator (D) include triaryl cyanurate, triaryl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N, -m— Phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triaryl isocyanate (2, 3, 3 卜! ; Funore talent P 2 P P peninole) 1, 3, 5— Triazine—2, 4, 6-trione), Tris (diallylamin) —S-triazine, triaryl phosphite, N, N-diarylacrylamide, 1,6-dibi-dodecafluorooral hexane, hexaryl Phosphoramide, N, N, Ν ', Ν, monotetraallyl phthalamide, Ν, Ν, Ν', 一, 1 tetraallyl malonamide, tribule isocyanurate, 2,4,6-tribule Examples include methyltrisiloxane, tri (5-norbornene-2-methylene) cyanurate, triallyl phosphite. Among these, triallyl isocyanurate HTAIC) is preferable from the viewpoint of crosslinkability and physical properties of the cross-linked product.
[0064] 架橋剤 (C)および架橋促進剤 (D)の添加量としては、動的に架橋処理するときの 温度における加硫 90%完了時間 Τ90が 2〜6分になるように調整された量であること が好ましぐ加硫 90%完了時間 Τ90が 3〜5分になるように調整された量であることが より好まし 、。最適加硫時間 Τ90が 2分未満となる量であると架橋ゴムの分散が不均 一かつ粗大化する傾向があり、 6分をこえる量となるとゴムが架橋するのに長時間を 要し、かつ完全には架橋しなくなる傾向がある。  [0064] The addition amount of the crosslinking agent (C) and the crosslinking accelerator (D) was adjusted so that the 90% completion time Τ90 at the temperature when dynamically crosslinking was 90 to 2 to 6 minutes. The preferred amount is vulcanized 90% completion time Τ90 is more preferably the amount adjusted to be 3-5 minutes. The optimal vulcanization time Τ90 is less than 2 minutes, the dispersion of the crosslinked rubber tends to be uneven and coarse, and if it exceeds 6 minutes, it takes a long time for the rubber to crosslink. And there is a tendency not to completely crosslink.
[0065] ここで、加硫 90%完了時間 Τ90とは、フッ素ゴム組成物(b)を 1次プレス加硫時に J SR型キユラストメータ II型、および V型を用いて、動的加硫時の温度における加硫曲 線を求め、最大トルク値の 90%の値に達する時間を加硫 90%完了時間 (T90)とす る。  [0065] Here, vulcanization 90% completion time Τ90 means dynamic vulcanization using JSR type chilastometer type II and type V at the time of primary press vulcanization of fluororubber composition (b). The vulcanization curve at the hour temperature is obtained, and the time to reach 90% of the maximum torque value is defined as the vulcanization 90% completion time (T90).
[0066] 架橋剤 (C)と架橋促進剤 (D)の添加量を決定する具体的な方法としては、 170°C における加硫 90%完了時間 T90が 2〜6分、好ましくは 3〜5分となる、フッ素ゴム 10 0重量部に対する架橋剤(C)の配合量 X重量部、架橋促進剤(D)の配合量 Y重 量部をまず求める。  [0066] As a specific method for determining the addition amount of the crosslinking agent (C) and the crosslinking accelerator (D), vulcanization 90% completion time T90 at 170 ° C is 2 to 6 minutes, preferably 3 to 5 First, obtain X parts by weight of crosslinking agent (C) and 100 parts by weight of fluoro rubber, and Y parts by weight of crosslinking accelerator (D).
[0067] 次に、この Xおよび Yの量をもとに、  [0067] Next, based on the amount of X and Y,
(i)架橋剤(C)の量: X重量、架橋促進剤(D)の量: 0. 2Y〜0. 5Υ重量部、好ましく は 0. 3Υ〜0. 4Υ重量部、または  (i) Amount of crosslinking agent (C): X weight, Amount of crosslinking accelerator (D): 0.2Y to 0.5% by weight, preferably 0.3% to 0.4% by weight, or
(ii)架橋剤(C)の量: 2Χ〜5Χ重量部、架橋促進剤(D)の量: 0. 4Υ〜2. 5Υ重量部 力 本発明における好ま 、架橋剤 (C)と架橋促進剤 (D)の添加量となる。  (ii) Amount of crosslinking agent (C): 2 to 5 parts by weight, Amount of crosslinking accelerator (D): 0.4 to 2.5 parts by weight Forces Preferred in the present invention, crosslinking agent (C) and crosslinking accelerator (D) is added.
[0068] 架橋促進剤 (D)が 0. 2Υ重量部未満であると、フッ素ゴムの架橋が充分に進行せ ず、得られる熱可塑性重合体組成物の耐熱性および耐油性が低下する傾向があり、 2. 5Y重量部をこえると、得られる熱可塑性重合体組成物の機械強度が低下する傾 向がある。 [0068] If the crosslinking accelerator (D) is less than 0.2 parts by weight, the crosslinking of the fluororubber does not proceed sufficiently, and the heat resistance and oil resistance of the resulting thermoplastic polymer composition tend to decrease. Yes, 2. If the amount exceeds 5Y parts by weight, the mechanical strength of the resulting thermoplastic polymer composition tends to decrease.
[0069] 溶融条件下とは、フッ素榭脂 (Α)およびフッ素ゴム組成物 (b)が溶融する温度下を 意味する。溶融する温度は、それぞれフッ素榭脂 (A)およびフッ素ゴム組成物 (b)の ガラス転移温度および Zまたは融点により異なるが、 120〜330°Cであることが好ま しぐ 130〜320°Cであることがより好ましい。温度が、 120°C未満であると、フッ素榭 脂 (A)とフッ素ゴムの間の分散が粗大化する傾向があり、 330°Cをこえると、フッ素ゴ ムが熱劣化する傾向がある。  [0069] The melting condition means a temperature at which the fluorocarbon resin (foam) and the fluororubber composition (b) are melted. The melting temperature varies depending on the glass transition temperature and the Z or melting point of the fluororesin (A) and the fluororubber composition (b), respectively, but is preferably 120 to 330 ° C, and is preferably 130 to 320 ° C. More preferably. If the temperature is lower than 120 ° C, the dispersion between the fluororesin (A) and the fluororubber tends to be coarsened, and if it exceeds 330 ° C, the fluorine rubber tends to be thermally deteriorated.
[0070] 得られた熱可塑性重合体組成物は、フッ素榭脂 (A)が連続相を形成しかつ架橋ゴ ム (B)が分散相を形成する構造、またはフッ素榭脂 (A)と架橋フッ素ゴム (B)が共連 続を形成する構造を有することができるが、その中でも、フッ素榭脂 (A)が連続相を 形成しかつ架橋ゴム (B)が分散相を形成する構造を有することが好ま ヽ。  [0070] The obtained thermoplastic polymer composition has a structure in which the fluorine resin (A) forms a continuous phase and the crosslinked rubber (B) forms a dispersed phase, or the fluorine resin (A) and the crosslinked structure. The fluororubber (B) can have a structure that forms a co-continuity, and among them, the fluororesin (A) has a structure that forms a continuous phase and the crosslinked rubber (B) has a structure that forms a dispersed phase. I prefer it.
[0071] フッ素ゴムが、分散当初マトリックスを形成していた場合でも、架橋反応の進行に伴 い、フッ素ゴムが架橋フッ素ゴム (B)となることで溶融粘度が上昇し、架橋フッ素ゴム( B)が分散相になる、またはフッ素榭脂 (A)との共連続相を形成するものである。  [0071] Even when the fluororubber initially forms a matrix, as the cross-linking reaction proceeds, the fluororubber becomes the cross-linked fluororubber (B), so that the melt viscosity increases and the cross-linked fluororubber (B ) Becomes a dispersed phase, or forms a co-continuous phase with the fluorocarbon resin (A).
[0072] このような構造を形成すると、本発明の熱可塑性重合体組成物は、優れた耐熱性、 耐薬品性および耐油性を示すと共に、低 、燃料透過性と柔軟性を両立することがで き、さらに良好な成形加工性を有することとなる。その際、架橋フッ素ゴム (B)の平均 分散粒子径は、 0. 01〜30 /ζ πιであることが好ましい。平均分散粒子径が、 0. 01 μ m未満であると、流動性が低下する傾向があり、 30 /z mをこえると、得られる熱可塑 性重合体組成物の強度が低下する傾向がある。  [0072] When such a structure is formed, the thermoplastic polymer composition of the present invention exhibits excellent heat resistance, chemical resistance, and oil resistance, and is compatible with low fuel permeability and flexibility. In addition, it has better moldability. At that time, the average dispersed particle size of the crosslinked fluororubber (B) is preferably 0.01 to 30 / ζ πι. If the average dispersed particle size is less than 0.01 μm, the fluidity tends to decrease, and if it exceeds 30 / zm, the strength of the resulting thermoplastic polymer composition tends to decrease.
[0073] また、本発明の熱可塑性重合体組成物は、その好まし!/、形態であるフッ素榭脂 (A )が連続相を形成し、かつ架橋フッ素ゴム (B)が分散相を形成する構造の一部に、フ ッ素榭脂 (A)と架橋フッ素ゴム (B)との共連続構造を含んで 、ても良!、。  [0073] Further, in the thermoplastic polymer composition of the present invention, the preferred fluororesin (A) forms a continuous phase, and the crosslinked fluororubber (B) forms a dispersed phase. It is also possible to include a co-continuous structure of fluorine resin (A) and cross-linked fluororubber (B) as part of the structure.
[0074] フッ素榭脂(A)と架橋フッ素ゴム(B)の重量比は、 98Z2〜: LOZ90であり、 95/5 〜20Z80であることが好ましい。フッ素榭脂 (Α)が 10重量%未満であると、得られる 熱可塑性重合体組成物の流動性が悪化し、成形加工性が低下する傾向があり、 98 重量%をこえると、得られる熱可塑性重合体組成物の柔軟性と燃料透過性のバラン スが悪くなる傾向がある。 [0074] The weight ratio of the fluorinated resin (A) to the crosslinked fluororubber (B) is 98Z2 to: LOZ90, and preferably 95/5 to 20Z80. If the amount of fluorine resin (Α) is less than 10% by weight, the fluidity of the resulting thermoplastic polymer composition tends to deteriorate and the molding processability tends to deteriorate. Flexibility and fuel permeability baluns of plastic polymer compositions. Tend to get worse.
[0075] 本発明の熱可塑性組成物からなる成形品の燃料透過係数は、 40g-mm/m2-da y以下であることが好ましぐ 20g'mm/m2'day以下であることがより好ましぐ 10g- mm/m2 · day以下であることがさらに好ましく、 5g · / · day以下であることが 特に好ましい。燃料透過係数の下限値は特に限定されるものではなぐ低ければ低 いほど好ましい。燃料透過係数が、 40g'mmZdaym2をこえると、耐燃料透過性が 低いため、燃料透過量を抑えるためには成形品の肉厚を厚くする必要があり、経済 的に好ましくない。なお、燃料透過係数は、低いほど燃料透過防止能力が向上する ものであり、逆に燃料透過係数が大きいと燃料が透過しやすいため、燃料チューブ 等の成形品としては適さないものである。 [0075] The fuel permeation coefficient of the molded article made of the thermoplastic composition of the present invention is preferably 40 g-mm / m 2 -day or less, and preferably 20 g'mm / m 2 'day or less. More preferred is 10 g-mm / m 2 · day or less, and particularly preferred is 5 g · / · day or less. The lower limit value of the fuel permeability coefficient is not particularly limited, and the lower the value, the better. If the fuel permeation coefficient exceeds 40 g'mmZdaym 2 , the fuel permeation resistance is low, so that it is necessary to increase the thickness of the molded product in order to suppress the fuel permeation amount, which is not economically preferable. Note that the lower the fuel permeability coefficient, the better the fuel permeation preventing ability. On the contrary, if the fuel permeability coefficient is large, the fuel easily permeates, so it is not suitable as a molded product such as a fuel tube.
[0076] 燃料透過係数の測定は、防湿包装材料の透湿度試験方法におけるカップ法に準 ずる方法にて実施した。ここで、カップ法とは、 JIS Z 0208に規定された透湿度試 験方法であり、一定時間に単位面積の膜状物質を通過する水蒸気量を測定する方 法である。本発明においては、このカップ法に準じて、燃料透過係数を測定するもの である。具体的方法としては、 20mLの容積を有する SUS製容器(開放部面積 1. 26 X 10"3m2)に模擬燃料である CE10 (トルエン Zイソオクタン Zエタノール =45Z45 Z10容量%)を 18mL入れて、シート状試験片を容器開放部にセットして密閉するこ とで、試験体とする。該試験体を恒温装置(60°C)に入れ、試験体の重量を測定し、 単位時間あたりの重量減少が一定となったところで下記の式により燃料透過係数を 求める。 [0076] The fuel permeability coefficient was measured by a method in accordance with the cup method in the moisture permeability test method for moisture-proof packaging materials. Here, the cup method is a moisture permeability test method stipulated in JIS Z 0208, and is a method for measuring the amount of water vapor that passes through a membranous substance of a unit area in a certain time. In the present invention, the fuel permeation coefficient is measured according to this cup method. As a specific method, put 18 mL of simulated fuel CE10 (toluene Z isooctane Z ethanol = 45 Z45 Z10 vol%) into a SUS container (open area 1.26 X 10 " 3 m 2 ) with a volume of 20 mL. Then, set the sheet-like test piece in the open part of the container and seal it to make a test piece.Place the test piece in a constant temperature device (60 ° C), measure the weight of the test piece, and measure the weight per unit time. When the weight loss becomes constant, the fuel permeability coefficient is obtained by the following formula.
[0077] [数 1] 燃料透過係叙 ( g · mm/m2 ' d a y) = [0077] [Equation 1] Fuel Permeability (g · mm / m 2 'day) =
[減少重量 (g)〕 X 〔シート厚 (mm)]  [Reduced weight (g)] X [Sheet thickness (mm)]
〔開放部面積 1 , 2 6 X 1, 0 3 (m2)] X 〔測定間隔 (d. a y)〕[Open area 1, 2 6 X 1, 0 3 (m 2 )] X [Measurement interval (d. Ay)]
[0078] 本発明の熱可塑性組成物力もなる成形品の引張弾性率は、 lOOOMPa以下である ことが好ましぐ 800MPa以下であることがより好ましぐ 700MPa以下であることがさ らに好ましぐ 600MPa以下であることが特に好ましい。引張弾性率の下限値として は特に限定されるものではないが、 5MPa以上であることが好ましぐ lOMPa以上で あることがより好ましい。引張弾性率力 lOOOMPaをこえると、柔軟性を必要とする 成形品には適さない傾向がある。 [0078] The tensile modulus of the molded article having the thermoplastic composition strength of the present invention is preferably lOOOMPa or less, more preferably 800 MPa or less, and even more preferably 700 MPa or less. It is particularly preferably 600 MPa or less. The lower limit value of the tensile modulus is not particularly limited, but it is preferably 5 MPa or more. More preferably. Tensile modulus over lOOOMPa tends to be unsuitable for molded products that require flexibility.
[0079] また、本発明の熱可塑性重合体組成物は、ポリエチレン、ポリプロピレン、ポリアミド 、ポリエステル、ポリウレタンなどの他の重合体、炭酸カルシウム、タルク、セライト、ク レー、酸化チタン、カーボンブラック、硫酸バリウムなどの無機充填材、顔料、難燃剤 、滑剤、光安定剤、耐候安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、離型剤 、発泡剤、香料、オイル、柔軟化剤などを、本発明の効果に影響を及ぼさない範囲で 添カロすることができる。 [0079] Further, the thermoplastic polymer composition of the present invention includes other polymers such as polyethylene, polypropylene, polyamide, polyester, polyurethane, calcium carbonate, talc, celite, clay, titanium oxide, carbon black, barium sulfate. Such as inorganic fillers, pigments, flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, UV absorbers, antioxidants, release agents, foaming agents, fragrances, oils, softeners, etc. Addition can be carried out within a range that does not affect the effects of the present invention.
[0080] 本発明の熱可塑性重合体組成物は、一般の成形加工方法や成形加工装置などを 用いて成形加工することができる。成形加工方法としては、例えば、射出成形、押出 成形、圧縮成形、ブロー成形、カレンダー成形、真空成形などの任意の方法を採用 することができ、本発明の熱可塑性重合体組成物は、使用目的に応じて任意の形状 の成形体に成形される。  [0080] The thermoplastic polymer composition of the present invention can be molded using a general molding method or molding apparatus. As the molding method, for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, vacuum molding and the like can be adopted, and the thermoplastic polymer composition of the present invention is intended for use. Depending on the shape, it is formed into a compact of any shape.
[0081] さらに、本発明は、本発明の熱可塑性重合体組成物を使用して得られた成形品に 関するものであるが、該成形品としては、シートまたはフィルムの成形体を包含し、ま た本発明の熱可塑性重合体組成物からなる層および他の材料からなる層を有する 積層構造体を包含するものである。  [0081] Furthermore, the present invention relates to a molded article obtained by using the thermoplastic polymer composition of the present invention, and the molded article includes a molded article of a sheet or a film, Further, it includes a laminated structure having a layer made of the thermoplastic polymer composition of the present invention and a layer made of another material.
[0082] 本発明の熱可塑性重合体組成物力 なる少なくとも 1つの層と他の材料力 なる少 なくとも 1つの層との積層構造体において、該他の材料は、要求される特性、予定さ れる用途などに応じて適切なものを選択すればよい。該他の材料としては、例えば、 ポリオレフイン (例:高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、 直鎖状低密度ポリエチレン、エチレン プロピレン共重合体、ポリプロピレン等)、ナ ィロン、ポリエステル、塩ィ匕ビュル榭脂(PVC)、塩ィ匕ビユリデン榭脂(PVDC)などの 熱可塑性重合体、エチレン プロピレン ジェンゴム(EPDM)、ブチルゴム、二トリ ルゴム、シリコーンゴム、アクリルゴムなどの架橋ゴム、ポリプロピレン/ EPDM複合 体などの熱可塑性エラストマ一、金属、ガラス、木材、セラミックなどをあげることがで きる。  [0082] In the laminated structure of at least one layer as the thermoplastic polymer composition force of the present invention and at least one layer as the other material force, the other material is expected to have the required properties. What is necessary is just to select an appropriate thing according to a use. Examples of the other material include polyolefin (eg, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene propylene copolymer, polypropylene, etc.), nylon, polyester, salt Thermoplastic polymers such as bur resin (PVC) and salt vinylidene resin (PVDC), cross-linked rubber such as ethylene propylene gen rubber (EPDM), butyl rubber, nitrile rubber, silicone rubber, acrylic rubber, polypropylene / EPDM composite Examples thereof include thermoplastic elastomers such as bodies, metals, glass, wood, and ceramics.
[0083] 該積層構造を有する成形品においては、本発明の熱可塑性重合体組成物からな る層と他の材料からなる基材層との間に接着剤層を介在させてもよ!ヽ。接着剤層を 介在させること〖こよって、本発明の熱可塑性重合体組成物からなる層と他の材料から なる基材層とを強固に接合一体化させることができる。接着剤層において使用される 接着剤としては、ジェン系重合体の酸無水物変性物;ポリオレフインの酸無水物変性 物;高分子ポリオール(例えば、エチレングリコール、プロピレングリコール等のグリコ 一ルイ匕合物とアジピン酸等の二塩基酸とを重縮合して得られるポリエステルポリオ一 ル;酢酸ビュルと塩化ビュルとの共重合体の部分ケン化物など)とポリイソシァネート 化合物(例えば、 2, 4—トリレンジイソシァネートなど)との混合物(例えば、 1, 6—へ キサメチレングリコール等のグリコール化合物と 2, 4—トリレンジイソシァネート等のジ イソシァネートイ匕合物とのモル比 1対 2の反応生成物;トリメチロールプロパン等のトリ オール化合物と 2, 4—トリレンジイソシァネート等のジイソシァネート化合物とのモル 比 1対 3の反応生成物など);等を使用することができる。なお、積層構造形成のため には、共押出、共射出、押出コーティング等の公知の方法を使用することもできる。 [0083] The molded article having the laminated structure is composed of the thermoplastic polymer composition of the present invention. An adhesive layer may be interposed between the layer and the base material layer made of other materials! By interposing the adhesive layer, the layer made of the thermoplastic polymer composition of the present invention and the base material layer made of another material can be firmly joined and integrated. The adhesive used in the adhesive layer includes an acid anhydride modified product of a gen-based polymer; an acid anhydride modified product of polyolefin; a polymer polyol (for example, a glycol or a mixture of glycols such as ethylene glycol and propylene glycol). Polyols obtained by polycondensation of dibasic acids such as adipic acid; partially saponified products of copolymers of butyl acetate and butyl chloride and polyisocyanate compounds (eg, 2, 4- A mixture of a glycol compound such as 1,6-hexamethylene glycol and a diisocyanate compound such as 2,4-tolylene diisocyanate in a molar ratio of 1 to 2. Reaction product: molar ratio of triol compound such as trimethylolpropane to diisocyanate compound such as 2,4-tolylene diisocyanate 1 to 3 And the like can be used. For forming the laminated structure, a known method such as co-extrusion, co-injection, or extrusion coating can be used.
[0084] 本発明には、本発明の熱可塑性重合体組成物単独の層からなる燃料ホースまたは 燃料容器が包含される。燃料ホースの用途は特に限定されないが、例えば、 自動車 用のフィラーホース、エバポホース、ブリーザ一ホース等があげられる。また、燃料容 器の用途は特に限定されないが、例えば、自動車用の燃料容器、自動 2輪車用の燃 料容器、小型発電機の燃料容器、芝刈機の燃料容器等があげられる。  [0084] The present invention includes a fuel hose or a fuel container comprising a single layer of the thermoplastic polymer composition of the present invention. The use of the fuel hose is not particularly limited, and examples thereof include a filler hose for automobiles, an evaporation hose, and a breather hose. Further, the use of the fuel container is not particularly limited, and examples thereof include a fuel container for an automobile, a fuel container for a motorcycle, a fuel container for a small generator, and a fuel container for a lawn mower.
[0085] また、本発明には、本発明の熱可塑性重合体組成物カゝらなる層を含む多層燃料ホ ースまたは多層燃料容器が包含される。該多層燃料ホースまたは多層燃料容器とし ては、本発明の熱可塑性重合体組成物からなる層と、他の材料カゝらなる少なくとも 1 つの層からなり、これらの層が接着剤層を介在させないで、あるいは介在させて、互 V、に接着して 、るものである。  [0085] Further, the present invention includes a multilayer fuel hose or a multilayer fuel container including a layer comprising the thermoplastic polymer composition of the present invention. The multi-layer fuel hose or multi-layer fuel container comprises a layer made of the thermoplastic polymer composition of the present invention and at least one layer made of another material, and these layers do not interpose an adhesive layer. In other words, they are bonded to each other with or between them.
[0086] そして、他の材料力 なる層としては、本発明の熱可塑性重合体組成物以外のゴム カゝらなる層や熱可塑性榭脂からなる層があげられる。  [0086] Examples of other material strength layers include layers made of rubber other than the thermoplastic polymer composition of the present invention and layers made of thermoplastic resin.
[0087] 該ゴムとしては、耐薬品性や柔軟性の観点から、アクリロニトリル一ブタジエンゴムま たはその水素添加ゴム、アクリロニトリル一ブタジエンゴムとポリ塩ィ匕ビニルとのプレン ドゴム、フッ素ゴム、ェピクロロヒドリンゴム、 EPDMおよびアクリルゴム力もなる群より選 ばれる少なくとも 1種力もなるゴムが好ましぐアクリロニトリル一ブタジエンゴムまたは その水素添加ゴム、アクリロニトリル一ブタジエンゴムとポリ塩ィ匕ビュルとのブレンドゴ ム、フッ素ゴム、ェピクロロヒドリンゴム力もなる群より選ばれる少なくとも 1種ゴム力もな ることがより好まし!/、。 [0087] From the viewpoint of chemical resistance and flexibility, the rubber includes acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluorine rubber, epoxy. Selected from the group consisting of chlorohydrin rubber, EPDM and acrylic rubber A rubber having at least one kind of strength is selected from the group consisting of acrylonitrile monobutadiene rubber or its hydrogenated rubber, a blend rubber of acrylonitrile monobutadiene rubber and polysilene rubber, fluororubber, and epichlorohydrin rubber. It is more preferable to have at least one kind of rubber!
[0088] また、該熱可塑性榭脂としては、燃料バリア性の観点から、フッ素榭脂、ポリアミド系 榭脂、ポリオレフイン系榭脂、ポリエステル系榭脂、ポリビュルアルコール系榭脂、ポリ 塩ィ匕ビュル系榭脂、ポリフエ-レンスルフイド系榭脂からなる群より選ばれる少なくとも 1種力 なる熱可塑性榭脂が好ましぐフッ素榭脂、ポリアミド系榭脂、ポリビュルアル コール系榭脂、ポリフエ-レンスルフイド系榭脂からなる群より選ばれる少なくとも 1種 力もなる熱可塑性榭脂がより好まし 、。  [0088] Further, as the thermoplastic resin, from the viewpoint of fuel barrier properties, fluorine resin, polyamide-based resin, polyolefin-based resin, polyester-based resin, polybulu alcohol-based resin, polysalt-based resin Fluorine resin, polyamide resin, polybutyl alcohol resin, polyphenylene sulfide resin, which preferably has at least one thermoplastic resin selected from the group consisting of bur resin and polyphenylene sulfide resin More preferred is a thermoplastic rosin having at least one strength selected from the group consisting of fats.
[0089] 上記に示した本発明により得られた熱可塑性重合体組成物からなる層、および他 のゴムもしくは他の熱可塑性榭脂からなる層からなる燃料ホースまたは燃料容器とし ては、特に限定されず、例えば、自動車用のフィラーホース、エバポホース、ブリーザ 一ホース等の燃料ホース;自動車用の燃料容器、自動 2輪車用の燃料容器、小型発 電機の燃料容器、芝刈機の燃料容器等の燃料容器があげられる。  [0089] The fuel hose or the fuel container including the layer composed of the thermoplastic polymer composition obtained by the present invention as described above and the layer composed of other rubber or other thermoplastic resin is particularly limited. For example, fuel hoses such as filler hose, evaporative hose, breather and hose for automobiles; fuel containers for automobiles, fuel containers for motorcycles, fuel containers for small generators, fuel containers for lawn mowers, etc. A fuel container.
[0090] この内、本発明の熱可塑性重合体組成物からなる層、および他のゴムからなる層か らなる燃料ホースとしては、アクリロニトリル一ブタジエンゴムまたはその水素添加ゴム 、アクリロニトリル ブタジエンゴムとポリ塩化ビュルとのブレンドゴムあるいはェピクロ ロヒドリンゴム力もなる外層、本発明の熱可塑性重合体組成物力もなる中間層、およ びフッ素ゴム力もなる内層の 3層力も構成される燃料ホース、あるいはアクリロニトリル ブタジエンゴムまたはその水素添加ゴム、アクリロニトリル ブタジエンゴムとポリ塩 化ビュルとのブレンドゴムある ヽはェピクロロヒドリンゴム力もなる外層、および本発明 の熱可塑性重合体組成物カゝらなる内層の 2層から構成される燃料ホースが、優れた 燃料バリア性 ·柔軟性 ·耐薬品性を示す点で好まし!/ヽ。  [0090] Among them, as a fuel hose comprising a layer made of the thermoplastic polymer composition of the present invention and a layer made of other rubber, acrylonitrile monobutadiene rubber or its hydrogenated rubber, acrylonitrile butadiene rubber and polychlorinated A fuel hose composed of a three-layer force consisting of an outer layer that also has a rubber blend with bule or an epichlorohydrin rubber, an intermediate layer that also has the thermoplastic polymer composition of the present invention, and an inner layer that also has a fluororubber power, or acrylonitrile butadiene rubber A hydrogenated rubber, a blend rubber of acrylonitrile butadiene rubber and polysulphated bur is composed of two layers: an outer layer also having an epichlorohydrin rubber strength, and an inner layer composed of the thermoplastic polymer composition of the present invention. Fuel hose shows excellent fuel barrier properties, flexibility and chemical resistance It is preferable in point! / ヽ.
[0091] また、本発明の燃料バリア性材料カゝらなる層と他の材料カゝらなる層を有する積層構 造体を作製する場合、必要に応じて本発明の燃料バリア性材料に表面処理を行って もよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特 に制限されるものではなぐ例えばプラズマ放電処理やコロナ放電処理等の放電処 理、湿式法の金属ナトリウム zナフタレン液処理などが挙げられる。また、表面処理と してプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。 プライマー処理を施す場合、表面処理を行って 、な ヽフッ素榭脂の表面を処理する こともできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム Zナフタレン液処 理などを予め施した燃料バリア性材料の表面を更にプライマー処理すると、より効果 的である。 [0091] When a laminated structure having a layer made of the fuel barrier material of the present invention and a layer made of another material is produced, the surface of the fuel barrier material of the present invention is surfaced as necessary. Processing may be performed. The surface treatment is not particularly limited as long as it is a treatment method that enables adhesion. For example, discharge treatment such as plasma discharge treatment or corona discharge treatment can be used. And metal sodium z naphthalene solution treatment of wet and wet methods. A primer treatment is also suitable as the surface treatment. Primer treatment can be performed according to a conventional method. When the primer treatment is applied, the surface treatment can be performed to treat the surface of the fluorine resin, but the fuel barrier properties are pre-treated with plasma discharge treatment, corona discharge treatment, metal sodium Z naphthalene solution treatment, etc. It is more effective to further prime the surface of the material.
[0092] 本発明の熱可塑性重合体組成物、および該組成物カゝらなる成形品は、以下に示 す分野で好適に用いることができる。  [0092] The thermoplastic polymer composition of the present invention and the molded article made of the composition can be suitably used in the following fields.
[0093] 半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマァドレ ス液晶パネル、フィールドェミッションディスプレイパネル、太陽電池基板等の半導体 関連分野では、 o (角)リング、パッキン、シール材、チューブ、ロール、コーティング、 ライニング、ガスケット、ダイァフラム、ホース等があげられ、これらは CVD装置、ドライ エッチング装置、ウエットエッチング装置、酸化拡散装置、スパッタリング装置、アツシ ング装置、洗浄装置、イオン注入装置、排気装置、薬液配管、ガス配管に用いること ができる。具体的には、ゲートバルブの Oリング、シール材として、クォーツウィンドウ の Oリング、シール材として、チャンバ一の Oリング、シール材として、ゲートの Oリング 、シール材として、ベルジャーの Oリング、シール材として、カップリングの Oリング、シ ール材として、ポンプの Oリング、シール材、ダイァフラムとして、半導体用ガス制御装 置の Oリング、シール材として、レジスト現像液、剥離液用の Oリング、シール材として 、ウェハー洗浄液用のホース、チューブとして、ウェハー搬送用のロールとして、レジ スト現像液槽、剥離液槽のライニング、コーティングとして、ウェハー洗浄液槽のライ ニング、コーティングとしてまたはウエットエッチング槽のライニング、コーティングとし て用いることができる。さらに、封止材 'シーリング剤、光ファイバ一の石英の被覆材、 絶縁、防振、防水、防湿を目的とした電子部品、回路基盤のポッティング、コーティン グ、接着シール、磁気記憶装置用ガスケット、エポキシ等の封止材料の変性材、タリ ーンルーム.クリーン設備用シーラント等として用いられる。  [0093] In semiconductor-related fields such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, etc., o (square) rings, packings, sealing materials, tubes Rolls, coatings, linings, gaskets, diaphragms, hoses, etc., which are CVD equipment, dry etching equipment, wet etching equipment, oxidation diffusion equipment, sputtering equipment, ashing equipment, cleaning equipment, ion implantation equipment, exhaust equipment It can be used for chemical piping and gas piping. Specifically, as a gate valve O-ring and seal material, as a quartz window O-ring and seal material, as a chamber O-ring and seal material, as a gate O-ring and as a seal material, a bell jar O-ring and seal Coupling O-rings, seal materials, pump O-rings, sealing materials, diaphragms, semiconductor gas control device O-rings, sealing materials, resist developer, stripping solution O-rings As a sealing material, as a wafer cleaning solution hose, as a tube, as a wafer transfer roll, as a resist developer bath, as a coating for a stripping solution bath, as a coating, as a coating, as a wafer cleaning solution bath lining, as a coating or as a wet etching bath It can be used as a lining or coating. In addition, sealing materials' sealing agent, optical fiber quartz coating material, electronic parts for insulation, vibration proofing, waterproofing, moisture proofing, circuit board potting, coating, adhesive seals, gaskets for magnetic storage devices, It is used as a modifier for sealing materials such as epoxy, sealant for clean rooms and clean rooms.
[0094] 自動車分野では、ガスケット、シャフトシール、バルブステムシール、シール材およ びホースはエンジンならびに周辺装置に用いることができ、ホースおよびシール材は AT装置に用いることができ、 0 (角)リング、チューブ、ノ ッキン、バルブ芯材、ホース 、シール材およびダイアフラムは燃料系統ならびに周辺装置に用いることができる。 具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クラン クシャフトシール、カムシャフトシール、バルブステムシール、マ-ホールドパッキン、 オイルホース、酸素センサー用シール、 ATFホース、インジェクター Oリング、インジ エタターパッキン、燃料ポンプ Oリング、ダイァフラム、燃料ホース、クランクシャフトシ ール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシーノレ、ノ ルブステムのシール、自動変速機のフロントポンプシール、リア一アクスルビ-オンシ ール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フー トブレーキのピストンカップ、トルク伝達の O—リング、オイルシール、排ガス再燃焼装 置のシーノレ、ベアリングシーノレ、 EGRチューブ、ツインキヤブチューブ、キャブレター のセンサー用ダイァフラム、防振ゴム (エンジンマウント、排気部等)、再燃焼装置用 ホース、酸素センサーブッシュ等として用いることができる。 [0094] In the automotive field, gaskets, shaft seals, valve stem seals, seals and hoses can be used for engines and peripheral devices. It can be used for AT devices, and 0 (square) rings, tubes, knocks, valve cores, hoses, seals and diaphragms can be used for fuel systems and peripheral devices. Specifically, engine head gasket, metal gasket, oil pan gasket, crankshaft seal, camshaft seal, valve stem seal, hold packing, oil hose, oxygen sensor seal, ATF hose, injector O-ring, Ettater packing, fuel pump O-ring, diaphragm, fuel hose, crankshaft seal, gear box seal, power piston packing, cylinder liner seal, knob stem seal, automatic transmission front pump seal, rear axle On-seal, universal joint gasket, speedometer pinion seal, foot brake piston cup, torque transmission O-ring, oil seal, exhaust gas re-burning unit scenery, bearing Shinore, EGR tubes, twin key bush tube for sensors Daiafuramu carburetor, rubber vibration isolator (engine mount, exhaust part, etc.), afterburners hoses, can be used as an oxygen sensor bush.
[0095] 航空機分野、ロケット分野および船舶分野では、ダイァフラム、 O (角)リング、バル ブ、チューブ、ノ ッキン、ホース、シール材等があげられ、これらは燃料系統に用いる ことができる。具体的には、航空機分野では、ジェットエンジンバルブステムシール、 燃料供給用ホース、ガスケットおよび O—リング、ローテ一ティングシャフトシール、油 圧機器のガスケット、防火壁シール等に用いられ、船舶分野では、スクリューのプロ ペラシャフト船尾シール、ディーゼルエンジンの吸排気用バルブステムシール、バタ フライバルブのバルブシール、バタフライ弁の軸シール等に用いられる。  [0095] In the aircraft field, the rocket field, and the marine field, there are diaphragms, O (square) rings, valves, tubes, knockers, hoses, sealing materials, and the like, which can be used for fuel systems. Specifically, in the aircraft field, it is used for jet engine valve stem seals, fuel supply hoses, gaskets and O-rings, rotating shaft seals, gaskets for hydraulic equipment, firewall seals, etc. Used for propeller shaft stern seals for screws, intake / exhaust valve stem seals for diesel engines, valve seals for butterfly valves, shaft seals for butterfly valves, etc.
[0096] プラント等の化学品分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイ ァフラム、 o (角)リング、チューブ、シール材、耐薬品用コーティング等があげられ、こ れらは医薬、農薬、塗料、榭脂等化学品製造工程に用いることができる。具体的には 、化学薬品用ポンプ、流動計、配管のシール、熱交換器のシール、硫酸製造装置の ガラス冷却器パッキング、農薬散布機、農薬移送ポンプのシール、ガス配管のシー ル、メツキ液用シール、高温真空乾燥機のパッキン、製紙用ベルトのコロシール、燃 料電池のシール、風洞のジョイントシール、耐トリクレン用ロール (繊維染色用)、耐酸 ホース (濃硫酸用)、ガスクロマトグラフィー、 pHメーターのチューブ結合部のパッキン 、塩素ガス移送ホース、ベンゼン、トルエン貯槽の雨水ドレンホース、分析機器、理ィ匕 学機器のシール、チューブ、ダイァフラム、弁部品等として用いることができる。 [0096] In the field of chemicals such as plants, linings, valves, knocks, rolls, hoses, diaphragms, o (square) rings, tubes, sealing materials, chemical-resistant coatings, etc. are available. It can be used in the production process of chemicals such as agricultural chemicals, paints, and fats. Specifically, chemical pumps, rheometers, pipe seals, heat exchanger seals, glass cooler packings for sulfuric acid production equipment, pesticide sprayers, seals for pesticide transfer pumps, gas pipe seals, plating solutions Seals, high-temperature vacuum dryer packing, paper belt roller seals, fuel cell seals, wind tunnel joint seals, trichlene-resistant rolls (for textile dyeing), acid-resistant hoses (for concentrated sulfuric acid), gas chromatography, pH Packing of meter tube joint It can be used as a chlorine gas transfer hose, benzene, toluene rainwater drain hose, analytical instrument, scientific instrument seal, tube, diaphragm, valve part, etc.
[0097] 医薬品等の薬品分野では、薬栓等として用いることができる。  [0097] In the pharmaceutical field such as pharmaceuticals, it can be used as a medicine stopper or the like.
[0098] 現像機等の写真分野、印刷機械等の印刷分野および塗装設備等の塗装分野では 、ロール等があげられ、それぞれフィルム現像機 ·Χ線フィルム現像機、印刷ロールお よび塗装ロールに用いることができる。具体的には、フィルム現像機 ·Χ線フィルム現 像機の現像ロールとして、印刷ロールのグラビアロール、ガイドロールとして、塗装口 ールの磁気テープ製造塗工ラインのグラビアロール、磁気テープ製造塗工ラインの ガイドロール、各種コーティングロール等として用いることができる。さらに、乾式複写 機のシール、印刷設備の印刷ロール、スクレーパー、チューブ、弁部品、塗布、塗装 設備の塗布ロール、スクレーパー、チューブ、弁部品、プリンターのインキチューブ、 ロール、ベルト、乾式複写機のベルト、ロール、印刷機のロール、ベルト等として用い ることがでさる。 [0098] In the photographic field such as a developing machine, the printing field such as a printing machine, and the coating field such as a coating facility, rolls and the like can be mentioned. be able to. Specifically, as a developing roll of a film developing machine / coiled film image forming machine, a gravure roll of a printing roll, a guide roll, a gravure roll of a magnetic tape manufacturing coating line of a coating tool, and a magnetic tape manufacturing coating It can be used as a line guide roll, various coating rolls, and the like. Furthermore, dry copying machine seals, printing equipment printing rolls, scrapers, tubes, valve parts, coating, coating equipment coating rolls, scrapers, tubes, valve parts, printer ink tubes, rolls, belts, dry copying machine belts It can be used as a roll, a roll for a printing press, a belt, or the like.
[0099] またチューブを分析 ·理ィ匕学機分野に用いることができる。  [0099] The tube can also be used in the field of analysis and science.
[0100] 食品プラント機器分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイァ フラム、 ο (角)リング、チューブ、シール材、ベルト等があげられ、食品製造工程に用 いることができる。具体的には、プレート式熱交^^のシール、自動販売機の電磁弁 シール等として用いることができる。  [0100] In the food plant equipment field, linings, valves, knockers, rolls, hoses, diaphragms, ο (square) rings, tubes, sealing materials, belts, and the like can be mentioned and used for food production processes. Specifically, it can be used as a plate-type heat exchanger seal, a solenoid valve seal of a vending machine, or the like.
[0101] 原子力プラント機器分野では、パッキン、 οリング、ホース、シール材、ダイアフラム [0101] In the nuclear plant equipment field, packing, ο ring, hose, sealing material, diaphragm
、ノ レブ、ロール、チューブ等があげられる。 , Nozzles, rolls, tubes, etc.
[0102] 鉄板加工設備等の鉄鋼分野では、ロール等があげられ、鉄板加工ロール等に用い ることがでさる。  [0102] In the steel field such as iron plate processing equipment, rolls and the like can be mentioned, which can be used for iron plate processing rolls and the like.
[0103] 一般工業分野では、パッキング、 Οリング、ホース、シール材、ダイァフラム、バルブ 、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴ ム板、ウエザーストリップ、 PPC複写機のロール、ロールブレード、ベルト等があげら れる。具体的には、油圧、潤滑機械のシール、ベアリングシール、ドライクリーニング 機器の窓、その他のシール、六フッ化ウランの濃縮装置のシール、サイクロトロンのシ ール (真空)バルブ、自動包装機のシール、空気中の亜硫酸ガス、塩素ガス分析用 ポンプのダイアフラム (公害測定器)、印刷機のロール、ベルト、酸洗い用絞りロール 等に用いられる。 [0103] In the general industrial field, packing, scissors ring, hose, sealing material, diaphragm, valve, roll, tube, lining, mandrel, electric wire, flexible joint, belt, rubber plate, weather strip, roll of PPC copier, Examples include roll blades and belts. Specifically, oil pressure, lubrication machine seals, bearing seals, dry cleaning equipment windows, other seals, uranium hexafluoride concentrator seals, cyclotron seal (vacuum) valves, automatic packaging machine seals For analysis of sulfur dioxide and chlorine gas in the air Used for pump diaphragms (pollution measuring instruments), printing press rolls, belts, pickling squeeze rolls, etc.
[0104] 電気分野では、具体的には、新幹線の絶縁油キャップ、液封型トランスのベンチン ダシール、油井ケーブルのジャケット等として用いられる。  [0104] In the electric field, specifically, it is used as an insulating oil cap for Shinkansen, a ventilator seal for a liquid ring transformer, a jacket for an oil well cable and the like.
[0105] 燃料電池分野では、具体的には、電極、セパレーター間のシール材ゃ水素 '酸素' 生成水配管のシール等として用いられる。  [0105] In the fuel cell field, specifically, a sealant between electrodes and separators is used as a seal for hydrogen 'oxygen' product water piping.
[0106] 電子部品分野では、具体的には、放熱材原料、電磁波シールド材原料、エポキシ 等のプリント配線板プリプレダ榭脂の変性材、電球等の飛散防止材、コンピューター のハードディスクドライブのガスケット等に用いられる。  [0106] In the electronic component field, specifically, it is used as a heat-dissipating material raw material, an electromagnetic shielding material raw material, a printed wiring board pre-preda resin modified material such as epoxy, an anti-scattering material such as a light bulb, and a hard disk drive gasket of a computer Used.
[0107] 現場施工型の成形に用いることが可能なものとしては特に限定されず、たとえば、 自動車エンジン用メタルガスケットのコーティング剤、エンジンのオイルパンのガスケ ット、複写機'プリンター用のロール、建築用シーリング剤、磁気記録装置用のガスケ ット、クリーンルーム用フィルターユニットのシーリング剤、プリント基盤のコーティング 剤、電気'電子部品の固定剤、電気機器リード線端子の絶縁防湿処理、電気炉等の オーブンのシール、シーズヒーターの末端処理、電子レンジの窓枠シール、 CRTゥ エッジおよびネックの接着、 自動車電装部品の接着、厨房、浴室、洗面所等の目地 シール等があげられる。  [0107] There are no particular limitations on what can be used for on-site molding, such as metal gasket coating agents for automobile engines, gaskets for engine oil pans, rolls for copiers and printers, Architectural sealant, gasket for magnetic recording device, sealant for clean room filter unit, coating agent for printed circuit board, electrical 'electronic component fixing agent, insulation moisture-proof treatment of electrical equipment lead wire terminal, electric furnace, etc. Examples include oven seals, end treatment of sheathed heaters, microwave oven window frame seals, adhesion of CRT wedges and necks, adhesion of automotive electrical components, joint seals for kitchens, bathrooms, and washrooms.
[0108] 本発明の成形品は上述の各種用途に好適に用いることができ、特に燃料周辺部品 として好適である。また、本発明の成形品は、特に、シール材、ノ ッキン、ローラー、 チューブまたはホースとして有用である。  [0108] The molded article of the present invention can be suitably used for the various applications described above, and is particularly suitable as a fuel peripheral part. In addition, the molded article of the present invention is particularly useful as a sealing material, knock, roller, tube or hose.
実施例  Example
[0109] つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定さ れるものではない。  [0109] Next, the present invention will be described with reference to examples, but the present invention is not limited to such examples.
[0110] <加硫特性 > [0110] <Vulcanization characteristics>
JSR型キユラストメータ II型を用いて 170°C、 220°Cおよび 250°Cにおける加硫曲線 を求め、トルクの変化より、最低粘度 (ML)、加硫度 (MH)、誘導時間 (T10)および 最適加硫時間 (T90)を求めた。加熱状態で 30分以上経過してもトルクの変化が見ら れな ヽ場合、加硫反応は進行して!/ヽな ヽとみなす。 [0111] くラボプラストミルによる混練 > Using the JSR type kilastometer type II, obtain vulcanization curves at 170 ° C, 220 ° C and 250 ° C. From the change in torque, minimum viscosity (ML), vulcanization degree (MH), induction time (T10 ) And optimum vulcanization time (T90). If no change in torque is observed even after 30 minutes in the heated state, the vulcanization reaction proceeds and is considered to be! / ヽ. [0111] Kneading with Laboplast Mill>
フッ素榭脂 (A)とフッ素ゴム組成物 (b)の混練は、ラボプラストミル( (株)東洋精機 製作所製)を用いて行う。混練するフッ素榭脂 (A)とフッ素ゴム組成物 (b)は、それら の合計体積が、ラボプラストミルの混練部全容積の 77体積%となるように全量を調整 する。ラボプラストミルの温度は、組成物に用いたフッ素榭脂 (A)の融点より 30〜70 °C高い温度に設定する。ラボプラストミルの温度が安定した後、フッ素榭脂を添加し、 5〜10分間 lOrpmで攪拌を行い、フッ素榭脂を溶融させる。溶融状態のフッ素榭脂 に、フッ素ゴム組成物を添加し、添加後即、攪拌数を lOOrpmに上昇させる。トルクが 最大の値を示した時点(キユラスト II型で測定した T90に対応する)から、 10分後まで 攪拌し、熱可塑性重合体組成物を得た。  The kneading of the fluororesin (A) and the fluororubber composition (b) is performed using a lab plast mill (manufactured by Toyo Seiki Seisakusho). The total amount of the fluorinated resin (A) and the fluororubber composition (b) to be kneaded is adjusted so that the total volume thereof is 77% by volume of the total volume of the kneaded part of the lab plast mill. The temperature of the lab plast mill is set to a temperature 30 to 70 ° C higher than the melting point of the fluorine resin (A) used in the composition. After the temperature of the lab plast mill is stabilized, add fluorine resin and stir at lOrpm for 5-10 minutes to melt the fluorine resin. The fluororubber composition is added to the molten fluorocarbon resin, and immediately after the addition, the number of stirring is increased to lOOrpm. From the point of time when the torque showed the maximum value (corresponding to T90 measured with CYLAST II type), the mixture was stirred for 10 minutes to obtain a thermoplastic polymer composition.
[0112] <硬度 >  [0112] <Hardness>
実施例および比較例で製造した熱可塑性重合体組成物のペレットを用いて、熱プ レス機〖こより 270°C、 5MPaの条件下で圧縮成形し、厚さ 2mmのシート状試験片を 作製し、これらを用いて JIS— K6301に準じて A硬度を測定した。  Using the thermoplastic polymer composition pellets produced in the examples and comparative examples, compression molding was performed under the conditions of 270 ° C and 5 MPa from a hot press machine to produce a sheet-like specimen having a thickness of 2 mm. These were used to measure the A hardness according to JIS-K6301.
[0113] <引張破断強度、引張破断伸び、引張弾性率 > [0113] <Tensile breaking strength, tensile breaking elongation, tensile elastic modulus>
実施例および比較例で製造した熱可塑性重合体組成物のペレットを用いて、該ぺ レットを熱プレス機により 270°C、 5MPaの条件下で圧縮成形し、厚さ 2mmのシート 状試験片を作製し、 ASTM V型ダンベルを用いて幅 3. 18mmのダンベル状試験 片を打ち抜く。得られたダンベル状試験片を用いて、オートグラフ((株)島津製作所 製 AGS— J 5kN)を使用して、 ASTM D638に準じて、 50mmZ分の条件下で 、 25°Cで引張破断伸び、引張破断強度および引張弾性率を測定する。  Using the pellets of the thermoplastic polymer composition produced in the examples and comparative examples, the pellets were compression-molded by a hot press machine at 270 ° C and 5 MPa, and a sheet-like test piece having a thickness of 2 mm was obtained. Prepare and punch out a 3.18mm wide dumbbell specimen using ASTM V-type dumbbells. Using the obtained dumbbell-shaped test piece, using an autograph (AGS—J 5kN, manufactured by Shimadzu Corporation), in accordance with ASTM D638, under the condition of 50 mmZ, the tensile elongation at break at 25 ° C Measure the tensile strength at break and tensile modulus.
[0114] く燃料透過性 > [0114] Fuel Permeability>
実施例および比較例で製造した熱可塑性重合体組成物のペレットを用いて、該ぺ レットを熱プレス機により 270°C、 5MPaの条件下で圧縮成形し、厚さ 0. 5mmのシー ト状試験片を作製した。 20mLの容積を有する SUS製容器(開放部面積 1. 26 X 10 3 m2)に模擬燃料である CE10 (トルエン Zイソオクタン Zエタノール =45Z45Z10 容量%)を 18mL入れて、前記シート状試験片を容器開放部にセットして密閉するこ とで、試験体とする。該試験体を恒温装置(60°C)に入れ、試験体の重量を測定し、 単位時間あたりの重量減少が一定となったところで下記の式により燃料透過係数を 求めた。 Using the pellets of the thermoplastic polymer composition produced in the examples and comparative examples, the pellets were compression-molded under a condition of 270 ° C. and 5 MPa using a hot press machine, and a sheet having a thickness of 0.5 mm was formed. A test piece was prepared. Put 18 mL of simulated fuel CE10 (toluene Z isooctane Z ethanol = 45 Z45 Z10 vol%) in a SUS container (open area 1.26 X 10 3 m 2 ) with a volume of 20 mL, and store the sheet-shaped test piece in the container Set it in the open part and seal it to make the specimen. Put the test body in a thermostat (60 ° C), measure the weight of the test body, When the weight loss per unit time became constant, the fuel permeability coefficient was calculated by the following formula.
[0115] [数 2] 燃料透過係数 《g · mm/m 2 - d a y ) = [0115] [Equation 2] Fuel Permeability Coefficient << g · mm / m 2 -day) =
[減少重量 ( g )〕 X 〔シート厚 (mm) ]  [Reduced weight (g)] X [Sheet thickness (mm)]
開放部面積 1 , 2 6 X 1, 0 3 (m 2) ] X 〔測定間隔 (d. a y )〕Open area 1, 2 6 X 1, 0 3 (m 2 )] X [Measurement interval (d. Ay)]
[0116] <流動性 > [0116] <Liquidity>
実施例および比較例で製造した熱可塑性重合体組成物のペレットを用いて、メルト フローレート測定装置((株)東洋精機製作所製)を使用して、 297°C、 5kgまたは 10 kgの荷重の条件下でメルトフローレート(MFR)を測定した。  Using the thermoplastic polymer composition pellets produced in the examples and comparative examples, using a melt flow rate measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a load of 297 ° C, 5 kg or 10 kg The melt flow rate (MFR) was measured under the conditions.
[0117] <接着性評価試験 >  [0117] <Adhesion evaluation test>
実施例で製造した燃料バリア性材料のペレットを用いて、上記方法で厚さ 0. 5mm のシート状試験片を作製した。このシート試験片、あるいはこのシート試験片の表面 を処理したシートとゴム組成物を重ね金型にセットし、ヒートプレス機により、 170°Cに て 3MPaの負荷を 15〜30分与え、加硫ゴム—燃料バリア性材料積層体を成型した 。加硫ゴム—燃料バリア性材料積層体をそれぞれ 1. Ocm幅 X 10cmの短冊状に切 断して接着試験用試験片を作製し、この試験片について、 JIS— K 6256 (加硫ゴ ムの接着試験方法)に記載の方法に準拠し、 25°Cにおいて 50mmZminの引張速 度で剥離試験を行った。  Using the pellets of the fuel barrier material produced in the examples, a sheet-like test piece having a thickness of 0.5 mm was produced by the above method. This sheet test piece, or the sheet treated with the surface of this sheet test piece and the rubber composition are set in a stacking die, and a 3MPa load is applied for 15 to 30 minutes at 170 ° C with a heat press machine. A rubber-fuel barrier material laminate was molded. Each of the vulcanized rubber-fuel barrier material laminates was cut into strips of 1. Ocm width x 10 cm to prepare test specimens for adhesion test. These test specimens were then JIS-K6256 (vulcanized rubber In accordance with the method described in Adhesion Test Method), a peel test was conducted at 25 ° C at a tensile speed of 50 mmZmin.
[0118] <大気圧プラズマ処理 >  [0118] <Atmospheric pressure plasma treatment>
燃料バリア性材料のシートの表面を大気圧プラズマ処理機により、高圧電極と低圧 電極の極間を 3mmに設定し、周波数 5kHzの交流電源を用い、 2. 2kVの電圧を印 加し、 ArZHe(vol)比 = 50Z50、水素濃度を 2((vol)%)、プラズマエネルギー密度を 2 α/cm2) t ヽぅ条件でプラズマ処理を行った。 The surface of the sheet of fuel barrier material is set to 3 mm between the high and low voltage electrodes using an atmospheric pressure plasma treatment machine, an AC power supply with a frequency of 5 kHz is used, a voltage of 2 kV is applied, and ArZHe ( The plasma treatment was performed under the following conditions: vol) ratio = 50Z50, hydrogen concentration 2 ((vol)%), plasma energy density 2 α / cm 2 ) t ヽ ぅ.
[0119] <コロナ放電処理 >  [0119] <Corona discharge treatment>
コロナ処理装置の放電電極(30cm幅)をアクリル榭脂製の容器で覆!ヽ、大気圧下 、空気を 10LZ分で流した。タンテック社製 HV05— 2型電源を用い、コロナ出力 25 0Wでシートの移動速度 ImmZ分で燃料バリア性材料のシートの表面を処理した。 [0120] く金属ナトリウム Zナフタレン液処理〉 The discharge electrode (30 cm width) of the corona treatment device was covered with a container made of acrylic resin, and air was allowed to flow for 10 LZ at atmospheric pressure. The surface of the fuel barrier material sheet was treated at a corona output of 250 W using a HV05-2 type power source manufactured by Tantech Co., Ltd. at a sheet moving speed of ImmZ. [0120] Metal Sodium Z Naphthalene Solution Treatment>
燃料バリア性材料のシートを金属ナトリウム/ナフタレン液 (テトラエッチ、(株)潤ェ 社製)に 5秒間浸漬処理した。処理されたフィルムをエチルアルコール、水で十分に 洗浄した後、 80°Cのオーブンで乾燥した。  The sheet of the fuel barrier material was immersed in a metal sodium / naphthalene solution (Tetraetch, manufactured by Junye Co., Ltd.) for 5 seconds. The treated film was thoroughly washed with ethyl alcohol and water and then dried in an oven at 80 ° C.
[0121] <フッ素ゴム > [0121] <Fluoro rubber>
VdF、 TFEおよび HFPからなる 3元系ゴム(VdF: TFE: HFP = 50 : 20 : 30モノレ0 /0 、 100°Cにおけるム一-一粘度 = 88) VdF, 3-way based rubber consisting of TFE and HFP (VdF: TFE: HFP = 50: 20: 30 Monore 0/0, beam one at 100 ° C - one viscosity = 88)
[0122] く架橋剤 (Cl) > [0122] Crosslinking agent (Cl)>
ポリオール系架橋剤: 2, 2—ビス(4ーヒドロキシフエ-ル)パーフルォロプロパン(ダ ィキン工業 (株)製「ビスフエノール AF」)  Polyol-based cross-linking agent: 2, 2-bis (4-hydroxyphenol) perfluoropropane (Daikin Industries, Ltd. “Bisphenol AF”)
[0123] く架橋剤 (C2) > [0123] Crosslinking agent (C2)>
ポリアミン系架橋剤: N, N,—ジシンナミリデン—1, 6—へキサメチレンジァミン (ダ ィキン工業 (株)製「V- 3」)  Polyamine cross-linking agent: N, N, —dicinnamylidene-1, 6-hexamethylenediamine (“V-3” manufactured by Daikin Industries, Ltd.)
[0124] <架橋促進剤 (D) > [0124] <Crosslinking accelerator (D)>
ベンジルトリフエ-ルホスホ -ゥムクロリド (BTPPC、北興化学工業 (株)製) [0125] く熱可塑性榭脂 (非フッ素系)〉  Benzyltriphenylphospho-um chloride (BTPPC, Hokuko Chemical Co., Ltd.) [0125] Thermoplastic resin (non-fluorinated)>
(株)クラレ製エチレンビュルアルコール榭脂「ェバール F101」(融点: 183°C)上記 の方法で物性を評価した結果、引っ張り弾性率は 2000MPa以上、燃料透過係数は 0. 3 (g · mm; / (m 'day)であつ 7こ。  Kuraray Co., Ltd. ethylene bull alcohol resin “Eval F101” (melting point: 183 ° C) As a result of evaluating the physical properties by the above method, the tensile elastic modulus was 2000 MPa or more and the fuel permeability coefficient was 0.3 (g · mm; / (m 'day)
[0126] <熱可塑性エラストマ一(フッ素系) > [0126] <Thermoplastic elastomer (fluorine-based)>
ダイネオン製「THV 200G」(比較例 1)、ダイネオン製「THV 500G」(比較例 2) またはダイネオン製「THV 815G」(比較例 3)  Dyneon "THV 200G" (Comparative Example 1), Dyneon "THV 500G" (Comparative Example 2) or Dyneon "THV 815G" (Comparative Example 3)
[0127] 製造例 1 (熱可塑性榭脂 (フッ素系)の製造) [0127] Production Example 1 (Production of thermoplastic resin (fluorine))
水 1316Lを収容できるジャケット付攪拌式重合槽に、脱ミネラルした純水 392kgを 仕込み、内部空間を純窒素ガスで充分置換した後、窒素ガスを真空で排除した。次 、で才クタフノレ才 Pシク Pブタン 307kg、 CTFE20. 41kg, TFE35. 3kg、ノ ーフノレ ォロ(プロピルビュルエーテル)(PPVE) 22. 42kgを圧入し、温度を 35°Cに調節し、 攪拌を開始した。ここへ重合開始剤としてジ一 n—プロピルパーォキシジカーボネー ト(NPP)の 50質量%メタノール溶液を 4. 49kg添カ卩して重合を開始した。重合中に は、所望の共重合体組成と同組成に調製した混合モノマーを、槽内圧力が 0. 69M Paを維持するように追加仕込みしながら重合した後、槽内の残存ガスを排気して生 成したポリマーを取り出し、脱ミネラルした純水で洗浄し、乾燥させて 183. 7kgの粒 状粉末の CTFE共重合体を得た。次いで φ 50mm短軸押出し機を用いてシリンダー 温度 280°Cで溶融混練を行い、ペレットを得た。次いで得られたペレット状の CTFE 共重合体を 180°Cで 24時間加熱した。 392kg of demineralized pure water was charged in a jacketed stirring polymerization tank capable of containing 1316L of water, the interior space was sufficiently replaced with pure nitrogen gas, and then the nitrogen gas was removed in vacuum. Next, press Kutafunole P Shik P Butane 307kg, CTFE20.41kg, TFE35. Started. Di-n-propyl peroxy dicarbonate as a polymerization initiator Polymerization was initiated by adding 4.49 kg of a 50 mass% methanol solution of NPP. During the polymerization, a mixed monomer prepared to have the same composition as the desired copolymer composition was polymerized while being additionally charged so that the pressure in the tank was maintained at 0.69 MPa, and then the residual gas in the tank was exhausted. The polymer thus produced was taken out, washed with demineralized pure water, and dried to obtain 183.7 kg of a CTFE copolymer in the form of granular powder. Next, the mixture was melt-kneaded at a cylinder temperature of 280 ° C. using a φ50 mm short-axis extruder to obtain pellets. Next, the obtained pellet-like CTFE copolymer was heated at 180 ° C. for 24 hours.
[0128] 熱可塑性榭脂(フッ素系)の組成は、 CTFEZTFEZPPVE=44. 5/53. 4/2 . 1 (モル%)であり、融点は 221°Cであった。また、上記の方法で物性を評価した結 果、引っ張り弾性率は 520MPa、燃料透過係数は 0. 3 (g · mm) Z (m2 · day)であつ た。 [0128] The composition of the thermoplastic resin (fluorine-based) was CTFEZTFEZPPVE = 44.5 / 53. 4 / 2.1 (mol%), and the melting point was 221 ° C. As a result of evaluating the physical properties by the above method, the tensile modulus was 520 MPa, and the fuel permeability coefficient was 0.3 (g · mm) Z (m 2 · day).
[0129] 製造例 2 (フッ素ゴム組成物 (b— 2— 1)の調製)  [0129] Production Example 2 (Preparation of fluororubber composition (b— 2— 1))
上記のフッ素ゴム 100. 0重量部に、架橋剤(Cl) 2. 0重量部 (X)、架橋促進剤(D ) 1. 0重量部 (Y)、酸ィ匕マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0重 量部を添カ卩し、 8インチオープンロールを用いて混練し、フッ素ゴム組成物(b— 2—1 )を作製した。  In 100.0 parts by weight of the above-mentioned fluororubber, 2.0 parts by weight of crosslinking agent (Cl) (X), 1.0 part by weight of crosslinking accelerator (D) (Y), magnesium oxide (150 mg of Kiyogi Mug, Kyowa Chemical Industry Co., Ltd.) 3.0 A weight part was added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b-2-1).
[0130] フッ素ゴム組成物 (b— 2— 1)の配合とこれらの加硫特性を表 1に示す。フッ素ゴム 組成物(b— 2—1)は、 170°Cでは加硫反応が進行せず、 250°Cにおける加硫時間 T90は 4. 0分であった。  [0130] Table 1 shows the composition of the fluororubber composition (b-2-1) and the vulcanization characteristics thereof. In the fluororubber composition (b-2-1), the vulcanization reaction did not proceed at 170 ° C, and the vulcanization time T90 at 250 ° C was 4.0 minutes.
[0131] 製造例 3 (フッ素ゴム組成物 (b— 2— 2)の調製)  [0131] Production Example 3 (Preparation of fluororubber composition (b-2-2))
上記のフッ素ゴム 100. 0重量部に、架橋剤(Cl) 2. 0重量部 (X)、架橋促進剤(D ) 0. 77重量部 (Y)、酸ィ匕マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0 重量部および水酸ィ匕カルシウム (カルディック 2000、近江化学工業 (株)製) 6. 0重 量部を添カ卩し、 8インチオープンロールを用いて混練し、フッ素ゴム組成物(b— 2— 2 )を作製した。  In the above fluororubber, 100.0 parts by weight, a crosslinking agent (Cl) 2.0 parts by weight (X), a crosslinking accelerator (D) 0.77 parts by weight (Y), magnesium oxide (Kyoto Mug 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight and calcium hydroxide (Caldic 2000, manufactured by Omi Chemical Industry Co., Ltd.) 6. Add the weight part and use an 8-inch open roll. The mixture was kneaded to produce a fluororubber composition (b-2-2).
[0132] フッ素ゴム組成物 (b— 2— 2)の配合とこれらの加硫特性を表 1に示す。フッ素ゴム 組成物(b— 2— 2)は、 170°Cでは加硫反応が進行せず、 220°Cにおける加硫時間 T90は 4. 2分であった。 [0133] [表 1] 表 1 [0132] Table 1 shows the composition of the fluororubber composition (b-2-2) and the vulcanization characteristics thereof. In the fluororubber composition (b-2-2), the vulcanization reaction did not proceed at 170 ° C, and the vulcanization time T90 at 220 ° C was 4.2 minutes. [0133] [Table 1] Table 1
Figure imgf000028_0001
Figure imgf000028_0001
[0134] 実施例 1  [0134] Example 1
上記した熱可塑性榭脂(フッ素系) 90重量部とフッ素ゴム組成物 (b— 2— 1) 10重 量部を温度 250°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶融 混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレット を用いて、上記した方法で硬度、引張破断強度、引張破断伸び、引張弾性率、燃料 透過性およびメルトフローレートの評価を行った結果を表 2に示す。  Melting and kneading 90 parts by weight of the above-described thermoplastic resin (fluorine-based) and 10 parts by weight of fluororubber composition (b-2-1) at a temperature of 250 ° C and screw rotation speed lOOrpm in a lab plast mill As a result, a thermoplastic polymer composition was obtained. Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
[0135] 実施例 2 [0135] Example 2
上記した熱可塑性榭脂(フッ素系) 70重量部とフッ素ゴム組成物 (b— 2— 1) 30重 量部を温度 250°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶融 混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレット を用いて、上記した方法で硬度、引張破断強度、引張破断伸び、引張弾性率、燃料 透過性およびメルトフローレートの評価を行った結果を表 2に示す。  Melting and kneading 70 parts by weight of the above-mentioned thermoplastic resin (fluorine-based) and 30 parts by weight of fluororubber composition (b-2-1) at a temperature of 250 ° C and screw rotation speed lOOrpm in a lab plast mill As a result, a thermoplastic polymer composition was obtained. Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
[0136] 実施例 3 [0136] Example 3
上記した熱可塑性榭脂(フッ素系) 50重量部とフッ素ゴム組成物 (b— 2— 1) 50重 量部を温度 250°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶融 混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレット を用いて、上記した方法で硬度、引張破断強度、引張破断伸び、引張弾性率、燃料 透過性およびメルトフローレートの評価を行った結果を表 2に示す。 Melting 50 parts by weight of the above-mentioned thermoplastic resin (fluorine-based) and 50 parts by weight of fluororubber composition (b-2-1) in a lab plast mill under the conditions of a temperature of 250 ° C and a screw speed of lOOrpm. The mixture was kneaded to obtain a thermoplastic polymer composition. Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
[0137] 実施例 4 [0137] Example 4
上記した熱可塑性榭脂(フッ素系) 30重量部とフッ素ゴム組成物 (b— 2— 1) 70重 量部を温度 250°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶融 混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレット を用いて、上記した方法で硬度、引張破断強度、引張破断伸び、引張弾性率、燃料 透過性およびメルトフローレートの評価を行った結果を表 2に示す。  Melting and kneading 30 parts by weight of the above-mentioned thermoplastic resin (fluorine-based) and 70 parts by weight of fluororubber composition (b-2-1) at a temperature of 250 ° C and a screw rotation speed of lOOrpm in a lab plast mill As a result, a thermoplastic polymer composition was obtained. Table 2 shows the results of evaluation of hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability, and melt flow rate using the obtained thermoplastic polymer composition pellets by the methods described above. Show.
[0138] 比較例 1〜3  [0138] Comparative Examples 1 to 3
ダイネオン製「THV 200G」(比較例 1)、ダイネオン製「THV 500G」(比較例 2) またはダイネオン製「THV 815G」(比較例 3)のペレットを用いて、上記した方法で 硬度、引張破断強度、引張破断伸び、引張弾性率、燃料透過性およびメルトフロー レートの測定を行った結果を表 2に示す。  Using pellets of Dyneon's "THV 200G" (Comparative Example 1), Dyneon's "THV 500G" (Comparative Example 2) or Dyneon's "THV 815G" (Comparative Example 3), hardness and tensile strength at break as described above Table 2 shows the results of measurements of tensile elongation at break, tensile modulus, fuel permeability and melt flow rate.
[0139] 比較例 4  [0139] Comparative Example 4
上記した熱可塑性榭脂 (非フッ素系) 70重量部とフッ素ゴム組成物 (b— 2— 1) 30 重量部を温度 250°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶 融混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレ ットを用いて、上記した方法でシートを作製しようと試みたが、良好な膜質のシートを 得ることはできなかった。このシートの引っ張り試験を行ったところ、引張破断強度は 3MPa以下、引張破断伸びは 50%以下であった。また、同様に、膜質の問題から、 燃料透過試験を行うことはできな力つた。評価の結果を表 2に示す。  Melting 70 parts by weight of the above thermoplastic resin (non-fluorine-based) and 30 parts by weight of fluororubber composition (b-2-1) in a lab plast mill under the conditions of a temperature of 250 ° C and a screw speed of lOOrpm. The mixture was kneaded to obtain a thermoplastic polymer composition. An attempt was made to produce a sheet by the above-described method using the pellets of the obtained thermoplastic polymer composition, but a sheet having good film quality could not be obtained. When this sheet was subjected to a tensile test, the tensile strength at break was 3 MPa or less and the tensile elongation at break was 50% or less. Similarly, fuel permeation tests could not be performed due to membrane quality problems. The evaluation results are shown in Table 2.
[0140] 比較例 5 [0140] Comparative Example 5
上記した熱可塑性榭脂 (非フッ素系) 70重量部とフッ素ゴム組成物 (b— 2— 2) 30 重量部を温度 220°C、スクリュー回転数 lOOrpmの条件下でラボプラストミルにて溶 融混練し、熱可塑性重合体組成物を得た。得られた熱可塑性重合体組成物のペレ ットを用いて、上記した方法でシートを作製しようと試みたが、良好な膜質のシートを 得ることはできなかった。このシートの引っ張り試験を行ったところ、引張破断強度は 3MPa以下、引張破断伸びは 50%以下であった。また、同様に、膜質の問題から 燃料透過試験を行うことはできな力つた。評価の結果を表 2に示す。 70 parts by weight of the above-mentioned thermoplastic resin (non-fluorine) and 30 parts by weight of fluororubber composition (b-2-2) were melted in a lab plast mill under the conditions of a temperature of 220 ° C and a screw speed of lOOrpm. The mixture was kneaded to obtain a thermoplastic polymer composition. An attempt was made to produce a sheet by the above-described method using the pellets of the obtained thermoplastic polymer composition, but a sheet having good film quality could not be obtained. When the tensile test of this sheet was performed, the tensile strength at break was The tensile elongation at break was 3% or less and 50% or less. Similarly, fuel permeation tests could not be performed due to membrane quality problems. The evaluation results are shown in Table 2.
[表 2] [Table 2]
CM CM
Figure imgf000031_0001
Figure imgf000031_0001
実施例 1〜4により得られた熱可塑性榭脂組成物は、比較例 1〜 3で使用した熱可 塑性エラストマ一 (フッ素系)と比較して、燃料透過性に優れており、かつ燃料透過性 と柔軟性のバランスに優れていることがわ力つた。 The thermoplastic resin composition obtained in Examples 1 to 4 has excellent fuel permeability and fuel permeability compared to the thermoplastic elastomer (fluorine-based) used in Comparative Examples 1 to 3. sex The balance between flexibility and flexibility was strong.
[0143] また、実施例 1〜4により得られた熱可塑性榭脂組成物は、走査型電子顕微鏡(日 本電子 (株)製)によるモルフォロジ一観察により、熱可塑性榭脂 (A)が連続相を形成 しかつ架橋フッ素ゴム (B)が分散相を形成する構造を有することがわかった。架橋フ ッ素ゴム (B)の分散粒子径は、実施例 1〜4において、全て 20 /z m以下であった。  [0143] In addition, the thermoplastic resin composition obtained in Examples 1 to 4 has a continuous thermoplastic resin (A) by morphological observation with a scanning electron microscope (manufactured by Nippon Electronics Co., Ltd.). It was found that the cross-linked fluororubber (B) has a structure that forms a dispersed phase. The dispersed particle size of the crosslinked fluororubber (B) was 20 / zm or less in all of Examples 1 to 4.
[0144] 製造例 4 (フッ素ゴム組成物 (b— 2— 3)の調製)  [0144] Production Example 4 (Preparation of fluororubber composition (b-2-3))
フッ素ゴム 100. 0重量部に、架橋剤(Cl) 2. 0重量部、架橋促進剤(D) 0. 5重量 部、酸ィ匕マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0重量部、水酸ィ匕 カルシウム(カルディック 2000、近江化学工業 (株)) 6. 0重量部、カーボンブラック( Thermax N— 990、 Cancarb Ltd. ) 20. 0重量部を添カ卩し 8インチオープンロー ルを用 ヽて混練し、フッ素ゴム組成物 (b— 2— 3)を作製した。  10.0 parts by weight of fluororubber, 2.0 parts by weight of cross-linking agent (Cl), 0.5 parts by weight of cross-linking accelerator (D), magnesium oxide (Kiyo Izuma Mag 150, Kyowa Chemical Industry Co., Ltd.) 3 0 parts by weight, calcium hydroxide (Caldic 2000, Omi Chemical Co., Ltd.) 6.0 parts by weight, carbon black (Thermax N-990, Cancarb Ltd.) 20. 0 parts by weight An 8-inch open roll was used and kneaded to prepare a fluororubber composition (b-2-3).
[0145] 製造例 5 (フッ素ゴム組成物 (b— 2— 4)の調製)  [0145] Production Example 5 (Preparation of fluororubber composition (b-2-4))
フッ素ゴム 100. 0重量部に、架橋剤(C2) 3. 0重量部、酸ィ匕マグネシウム(キヨーヮ マグ 30、協和化学工業 (株)) 15. 0重量部、カーボンブラック(Thermax N— 990 、 Cancarb Ltd. ) 20. 0重量部を添カ卩し 8インチオープンロールを用いて混練し、 フッ素ゴム組成物 (b— 2— 4)を作製した。  10.0 parts by weight of fluororubber, 3.0 parts by weight of crosslinking agent (C2), magnesium oxide (Kyoto Mag 30; Kyowa Chemical Industry Co., Ltd.) 15.0 parts by weight, carbon black (Thermax N-990, Cancarb Ltd.) 20. 0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b-2-4).
[0146] 製造例 6 (ェピクロロヒドリンゴム組成物の調製)  [0146] Production Example 6 (Preparation of epichlorohydrin rubber composition)
ェピクロロヒドリンゴム(ェピクロマー CG、ダイソー株式会社) 100. 0重量部に、カー ボンブラック(N— 550、 Cancarb Ltd. ) 80重量部、 Plasticizer (ADK cizer R S— 107、旭電化工業株式会社) 5. 0重量部、 Lubricant (Splender R— 300) 2. 0重量部、老化防止剤 (ノクラック NBC、大内新興化学工業 (株)) 2. 0重量部、合成 ノ、イド口タルサイト (DHT— 4A、協和化学工業 (株)) 3. 0重量部、酸化マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0重量部、 DBUフエノール榭脂塩 (P— 1 52) 1. 5重量部、 6—メチルキノキサリン—2, 3—ジチォカーボネート(ダイソネット XL— 21S、ダイソー株式会社) 1. 5重量部を添カ卩し 8インチオープンロールを用いて 混練し、ェピクロロヒドリンゴム組成物を作製した。  Epoxychlorohydrin rubber (Epichromer CG, Daiso Co., Ltd.) 100.0 parts by weight, Carbon black (N-550, Cancarb Ltd.) 80 parts by weight, Plasticizer (ADK cizer RS-107, Asahi Denka Kogyo Co., Ltd.) 5. 0 parts by weight, Lubricant (Splender R—300) 2. 0 parts by weight, anti-aging agent (NOCRACK NBC, Ouchi Shinsei Chemical Co., Ltd.) 2. 0 parts by weight, synthetic, Ido mouth talcite (DHT — 4A, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, Magnesium Oxide (Kyoichi Tsumugi 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, DBU phenol succinate (P— 1 52) 1. 5 parts by weight, 6-methylquinoxaline-2,3-dithiocarbonate (Daisonette XL-21S, Daiso Co., Ltd.) 1. Add 5 parts by weight and knead using an 8-inch open roll. A hydrin rubber composition was prepared.
[0147] 実施例 2で得られた燃料バリア性材料のシートと、製造例 4で示す製造方法により 得られたフッ素ゴム組成物 (b— 2— 3)、製造例 5で示す製造方法により得られたフッ 素ゴム組成物 (b 2— 4)、および製造例 6で示す製造方法により得られたェピクロ口 ヒドリンゴム組成物との接着性評価試験を上記の方法により行った。その剥離強度は 、フッ素ゴム組成物(b— 2— 3)を用いた場合が 9NZcm、フッ素ゴム組成物(b— 2 -4)を用いた場合が 22NZcm、ェピクロロヒドリンゴム組成物を用いた場合が 8NZ cmであり、用いたゴム組成物の種類にかかわらず、燃料バリア性材料と加硫ゴムシ ートの界面が剥離していた。 [0147] The sheet of the fuel barrier material obtained in Example 2, the fluororubber composition (b-2-3) obtained by the production method shown in Production Example 4, and the production method shown in Production Example 5 were obtained. Hook The adhesion evaluation test with the raw rubber composition (b 2-4) and the epipic hydrin rubber composition obtained by the production method shown in Production Example 6 was performed by the above method. The peel strength is 9 NZcm when the fluororubber composition (b-2-3) is used, 22 NZcm when the fluororubber composition (b-2-4) is used, and the epichlorohydrin rubber composition is used. 8 NZ cm, and the interface between the fuel barrier material and the vulcanized rubber sheet was peeled off regardless of the type of rubber composition used.
[0148] 実施例 2で得られた燃料バリア性材料のシートの表面を大気圧プラズマ処理し表面 処理を行ったシートと、製造例 4で示す製造方法により得られたフッ素ゴム組成物 (b — 2— 3)、製造例 5で示す製造方法により得られたフッ素ゴム組成物 (b 2—4)、お よび製造例 6で示す製造方法により得られたェピクロロヒドリンゴム組成物との接着性 評価試験を上記の方法により行った。用いたゴム組成物の種類にかかわらず、加硫 ゴムシート部位が材料破壊し、その剥離強度は 30NZcm以上であることがわ力つた [0148] The surface of the fuel barrier material sheet obtained in Example 2 was subjected to atmospheric pressure plasma treatment and surface treatment, and the fluororubber composition obtained by the production method shown in Production Example 4 (b — 2-3) Adhesion with fluororubber composition (b 2-4) obtained by the production method shown in Production Example 5 and epichlorohydrin rubber composition obtained by the production method shown in Production Example 6 The property evaluation test was conducted by the above method. Regardless of the type of rubber composition used, the material of the vulcanized rubber sheet was destroyed and the peel strength was 30 NZcm or more.
[0149] 実施例 2で得られた燃料バリア性材料のシートの表面をコロナ放電処理し表面処理 を行ったシートと、製造例 4で示す製造方法により得られたフッ素ゴム組成物 (b— 2 3)、製造例 5で示す製造方法により得られたフッ素ゴム組成物 (b 2— 4)、および 製造例 6で示す製造方法により得られたェピクロロヒドリンゴム組成物との接着性評価 試験を上記の方法により行った。用いたゴム組成物の種類にかかわらず、加硫ゴム シート部位が材料破壊し、その剥離強度は 30NZcm以上であることがわ力つた。 実施例 2で得られた燃料バリア性材料のシートの表面を金属ナトリウム Zナフタレン 液処理し表面処理を行ったシートと、製造例 4で示す製造方法により得られたフッ素 ゴム組成物 (b 2— 3)、製造例 5で示す製造方法により得られたフッ素ゴム組成物( b— 2— 4)、および製造例 6で示す製造方法により得られたェピクロロヒドリンゴム組 成物との接着性評価試験を上記の方法により行った。用いたゴム組成物の種類にか かわらず、加硫ゴムシート部位が材料破壊し、その剥離強度は 30NZcm以上である ことがわかった。 [0149] The surface of the fuel barrier material sheet obtained in Example 2 was subjected to corona discharge treatment and surface-treated, and the fluororubber composition (b-2) obtained by the production method shown in Production Example 4. 3) Adhesive evaluation test with fluororubber composition (b 2-4) obtained by the production method shown in Production Example 5 and epichlorohydrin rubber composition obtained by the production method shown in Production Example 6 Was carried out by the method described above. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet was destroyed and its peel strength was 30 NZcm or higher. The surface of the sheet of the fuel barrier material obtained in Example 2 was treated with a metallic sodium Z naphthalene solution, and the fluororubber composition obtained by the production method shown in Production Example 4 (b 2— 3) Adhesiveness to the fluororubber composition (b-2-4) obtained by the production method shown in Production Example 5 and the epichlorohydrin rubber composition obtained by the production method shown in Production Example 6 The evaluation test was conducted by the above method. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet part failed and the peel strength was 30 NZcm or more.
産業上の利用可能性  Industrial applicability
[0150] 本発明の熱可塑性重合体組成物力 得られる成形品は、特定のフッ素榭脂を用い ることで、優れた耐燃料透過性と柔軟性を兼ね備え、かつ成形加工性に優れている ものである。 [0150] The strength of the thermoplastic polymer composition of the present invention is obtained by using a specific fluorine resin. As a result, it has excellent fuel permeability and flexibility, and has excellent moldability.

Claims

請求の範囲 The scope of the claims
[1] クロ口トリフルォロエチレン単位およびテトラフルォロエチレン単位を含むフッ素榭脂  [1] Fluororesin containing black-mouthed trifluoroethylene units and tetrafluoroethylene units
(A)と少なくとも一部が架橋されて 、る架橋フッ素ゴム (B)からなる熱可塑性重合体 組成物。  A thermoplastic polymer composition comprising (A) and at least a part of the crosslinked fluororubber (B).
[2] 架橋フッ素ゴム (B)が、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融条件下に て、フッ素ゴム組成物 (b)を動的に架橋処理したものである請求の範囲第 1項記載の 熱可塑性重合体組成物。 共重合可能な単量体 (a)単位を含むフッ素榭脂である請求の範囲第 1項または第 2 項記載の熱可塑性重合体組成物。  [2] The cross-linked fluororubber (B) is obtained by dynamically cross-linking the fluororubber composition (b) under the melting condition of the fluorocobalt (A) in the presence of the fluorocobalt (A). The thermoplastic polymer composition according to claim 1, wherein: The thermoplastic polymer composition according to claim 1 or 2, wherein the thermoplastic polymer composition is a fluorine resin containing a copolymerizable monomer (a) unit.
[4] 単量体(a)力 エチレン、ビ-リデンフルオライド、パーフルォロ(アルキルビュルェ 一テル)および一般式(1) : [4] Monomer (a) force Ethylene, bi-lidene fluoride, perfluoro (alkyl buer ter) and general formula (1):
CX'X^CX' CCF ) X4 (1) CX'X ^ CX 'CCF) X 4 (1)
2 n  2 n
(式中、 x^x3は同一または異なるものであり、それぞれ水素原子、フッ素原子また は— CFであり、 X4は水素原子、フッ素原子または塩素原子であり、 nは 1〜10の整(Wherein x ^ x 3 is the same or different and each represents a hydrogen atom, a fluorine atom or —CF, X 4 is a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer from 1 to 10.
3 Three
数である)  Number)
で示されるビニル単量体からなる群から選ばれる 1つ以上の単量体である請求の範 囲第 3項記載の熱可塑性重合体組成物。  4. The thermoplastic polymer composition according to claim 3, wherein the thermoplastic polymer composition is one or more monomers selected from the group consisting of vinyl monomers.
[5] 請求の範囲第 1項〜第 4項のいずれかに記載の熱可塑性重合体組成物力 形成 される成形品。 [5] A molded article formed of the thermoplastic polymer composition according to any one of claims 1 to 4.
[6] 請求の範囲第 1項〜第 4項のいずれかに記載の熱可塑性重合体組成物力 形成 される燃料チューブ。  [6] A fuel tube formed of the thermoplastic polymer composition according to any one of claims 1 to 4.
[7] 請求の範囲第 1項〜第 4項のいずれかに記載の熱可塑性重合体組成物力 形成 される燃料ホース。  [7] A fuel hose formed of the thermoplastic polymer composition according to any one of claims 1 to 4.
PCT/JP2007/057439 2006-04-04 2007-04-03 Thermoplastic polymer composition and molded body made of the composition WO2007116876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509844A JP5120251B2 (en) 2006-04-04 2007-04-03 Thermoplastic polymer composition and molded article comprising the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006103391 2006-04-04
JP2006-103391 2006-04-04

Publications (1)

Publication Number Publication Date
WO2007116876A1 true WO2007116876A1 (en) 2007-10-18

Family

ID=38581166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057439 WO2007116876A1 (en) 2006-04-04 2007-04-03 Thermoplastic polymer composition and molded body made of the composition

Country Status (2)

Country Link
JP (1) JP5120251B2 (en)
WO (1) WO2007116876A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248280A (en) * 2009-04-10 2010-11-04 Shin-Etsu Chemical Co Ltd Fluorine-containing curable composition and method for producing the same
JP2010253887A (en) * 2009-04-28 2010-11-11 Tokai Rubber Ind Ltd Gasohol fuel hose and manufacturing method of the same
WO2018066399A1 (en) * 2016-10-05 2018-04-12 ダイキン工業株式会社 Composition and molding
JP2018058289A (en) * 2016-10-06 2018-04-12 ダイキン工業株式会社 Laminate
US11787927B2 (en) 2018-07-13 2023-10-17 Daikin Industries, Ltd. Thermoplastic resin composition and method for producing same
US11999842B2 (en) 2018-02-28 2024-06-04 Daikin Industries, Ltd. Thermoplastic resin composition comprising a fluororesin and a crosslinked fluoroelastomer and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157641A (en) * 1984-07-09 1986-03-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Fluorinated thermoplastic elastomer composition
JP2004501258A (en) * 2000-06-20 2004-01-15 フロイデンベルク − ノク ジェネラル パートナーシップ Thermoplastic vulcanizates based on fluorocarbon polymers
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
JP2005298702A (en) * 2004-04-13 2005-10-27 Daikin Ind Ltd Chlorotrifluoroethylene copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157641A (en) * 1984-07-09 1986-03-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Fluorinated thermoplastic elastomer composition
JP2004501258A (en) * 2000-06-20 2004-01-15 フロイデンベルク − ノク ジェネラル パートナーシップ Thermoplastic vulcanizates based on fluorocarbon polymers
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
JP2005298702A (en) * 2004-04-13 2005-10-27 Daikin Ind Ltd Chlorotrifluoroethylene copolymer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248280A (en) * 2009-04-10 2010-11-04 Shin-Etsu Chemical Co Ltd Fluorine-containing curable composition and method for producing the same
JP2010253887A (en) * 2009-04-28 2010-11-11 Tokai Rubber Ind Ltd Gasohol fuel hose and manufacturing method of the same
WO2018066399A1 (en) * 2016-10-05 2018-04-12 ダイキン工業株式会社 Composition and molding
JP2018058289A (en) * 2016-10-06 2018-04-12 ダイキン工業株式会社 Laminate
US11999842B2 (en) 2018-02-28 2024-06-04 Daikin Industries, Ltd. Thermoplastic resin composition comprising a fluororesin and a crosslinked fluoroelastomer and method for producing the same
US11787927B2 (en) 2018-07-13 2023-10-17 Daikin Industries, Ltd. Thermoplastic resin composition and method for producing same

Also Published As

Publication number Publication date
JP5120251B2 (en) 2013-01-16
JPWO2007116876A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
KR100846941B1 (en) Thermoplastic Polymer Composition
JP4910704B2 (en) Thermoplastic polymer composition
JP5273048B2 (en) Thermoplastic resin composition containing fluorine-containing resin and crosslinked fluororubber
EP1762594B1 (en) Fluorine-containing elastomer composition and molded article made therefrom
CN105722680B (en) Laminate, method for producing laminate, and fluororubber composition
KR101537179B1 (en) Fluorine rubber molded article
TW200536865A (en) Chlorotrifluoroethylene copolymer
JP7235989B2 (en) Fluorinated elastomer, crosslinkable composition and molded article
JP5120251B2 (en) Thermoplastic polymer composition and molded article comprising the composition
JP2007191576A (en) Thermoplastic polymer composition, thermoplastic resin composition, molded product using the same and manufacturing method for thermoplastic resin composition
JP5892276B1 (en) Fluoro rubber composition and fluoro rubber molding
JP5298517B2 (en) Fluorine-containing molded product and method for producing the same
WO2007111334A1 (en) Fluoroelastomer composition, fluororesin composition, and molding thereof
JP2000313089A (en) Laminate of perfluoro-rubber layer and use thereof
WO2007135938A1 (en) Fuel-barrier material and molded article formed therefrom
JP2010180366A (en) Fluororesin composition and laminate
JP2007277348A (en) Production method of fluororesin composition and fluororesin composition obtained by the production method
JP2010209275A (en) Polymer composition and molded article
WO2006030774A1 (en) Curable composition
JP7436910B2 (en) Fluororubber composition and molded article
JP2013023629A (en) Method for producing composition including fluorine resin and pulverized crosslinked fluorine rubber
JP2024095578A (en) Fluororubber composition, molded article and fuel hose
JP2023177692A (en) Fluorine-containing elastomer composition, molding, and fuel hose
JP2021084988A (en) Crosslinked fluororubber and fluororubber composition
JP2007224086A (en) Fluororesin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740875

Country of ref document: EP

Kind code of ref document: A1