WO2007135938A1 - Fuel-barrier material and molded article formed therefrom - Google Patents

Fuel-barrier material and molded article formed therefrom Download PDF

Info

Publication number
WO2007135938A1
WO2007135938A1 PCT/JP2007/060101 JP2007060101W WO2007135938A1 WO 2007135938 A1 WO2007135938 A1 WO 2007135938A1 JP 2007060101 W JP2007060101 W JP 2007060101W WO 2007135938 A1 WO2007135938 A1 WO 2007135938A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
barrier material
fluororubber
fuel barrier
rubber
Prior art date
Application number
PCT/JP2007/060101
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Ichisaka
Tomihiko Yanagiguchi
Haruhisa Masuda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007135938A1 publication Critical patent/WO2007135938A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present invention relates to a fuel barrier material containing a specific fluorine resin (A), a high fluorine concentration, and a crosslinked fluororubber (B).
  • the present invention also relates to a molded article formed from the fuel barrier material, a fuel tube including a layer formed from the fuel noble material force, and a fuel hose.
  • thermoplastic resins such as polyphenylene sulfide resin, ethylene bull alcohol resin, liquid crystal polyester resin, etc. are used.
  • bridge rubber is generally inferior in fuel barrier properties, and when it is used for automobile parts such as fuel hoses, this volatility and transpiration of fuel is required to be improved.
  • the power of the cross-linked fluororubber is not good.
  • the fuel barrier properties are significantly inferior to the thermoplastic resins listed above, and they are flexible and have excellent fuel barrier properties. Material development is an urgent need.
  • “Dyneon THV” has been developed as a resin that is flexible, has a fuel barrier property, and has melt moldability and recyclability (for example, Modern Fluoropolymers: high performance). polymers for diverse applications, jon yl ey & Sons, Chichster, (1997) Chapterl 3, JP 2000-274562 and JP 2002-276862).
  • the hardness and elastic modulus increase when trying to increase the fuel barrier property, and the fuel barrier property becomes extremely poor when trying to decrease the hardness and elastic modulus. There is a problem of hesitation S, and there is insufficient balance between flexibility and fuel barrier properties.
  • fluororubber has excellent heat resistance, chemical resistance, compression set, and other properties, and is used in many applications in the automotive, semiconductor, and industrial fields.
  • fluorinated resin has excellent properties such as slidability, heat resistance, chemical resistance, weather resistance, and electrical properties, and is used in a wide range of fields such as automobiles, industrial machinery, office automation equipment, and electrical and electronic equipment.
  • polymer alloys of fluororubber and fluorocarbon resin have been studied (for example, JP-A-61-57641). The polymer alloy is attracting attention in the vicinity of fuel such as fuel tube material, which requires both fuel permeation resistance and flexibility.
  • thermoplastic elastomer having a fluorocarbon and fluororubber strength having a tetrafluoroethylene / hexafluoropropylene copolymer (FEP) force having excellent fuel permeation resistance
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • An object of the present invention is to provide a fuel barrier material that has excellent heat resistance, chemical resistance, and oil resistance, is melt-moldable, and has excellent flexibility and fuel barrier properties. is there.
  • Another object of the present invention is to provide a molded article formed from the fuel barrier material, a fuel tube including a layer formed from the fuel noble material force, and a fuel hose.
  • the present invention provides a fuel barrier material comprising 80 to 5 wt% fluorine ⁇ (A) 95 to 20 weight 0/0 and crosslinked fluororubber (B),
  • Fluorine resin Force Copolymer with tetrafluoroethylene and hexafluoropropylene strength or Copolymer with Tetrafluoroethylene, Hexafluoropropylene and Perfluoro (alkyl vinyl ether) And
  • the crosslinked fluororubber (B) has a fluorine concentration of 68% by weight or more, and at least a part of the crosslinked fluororubber is crosslinked.
  • the present invention relates to a fuel barrier material.
  • the cross-linked fluororubber (B) is dynamically added to the fluororubber (b) together with the cross-linking agent (C) under the melting condition of the fluorocobalt (A) in the presence of the fluorocobalt (A). It is preferable that it is cross-linked.
  • the molded article formed with a fuel barrier material force has a fuel permeability coefficient force of 0 (g'mm) / (m 2 -day) or less and a tensile elastic modulus of 600 MPa or less.
  • the melting point of the fluorinated resin (A) is preferably 150 ° C to 330 ° C.
  • Fluoro rubber (b) 1S Bilidene fluoride Z Tetrafluoroethylene Z Hexafluoropropylene fluororubber is preferred.
  • Cross-linking agent (C) force It is preferable that it is a polyhydroxyl compound.
  • the present invention also relates to a molded article formed from the fuel barrier material.
  • the present invention relates to a fuel tube and a fuel hose including a layer in which the fuel barrier material force is formed.
  • the “fluorine concentration” is a value obtained by calculating the weight ratio of fluorine atoms in the fluororubber polymer.
  • fuel in this specification refers to a substance used for obtaining energy in the automobile field, industrial field, and industrial field such as gasoline, kerosene, light oil (diesel oil), and heavy oil.
  • the concept includes bio-derived alcohol and bio-diesel, mixed fuel of bio-alcohol and gasoline, and mixed fuel of bio-diesel and light oil (diesel oil).
  • the present invention provides a fuel barrier material containing fluorine ⁇ (A) 95 to 20 weight 0/0 and crosslinked fluororubber (B) 80 to 5 weight 0/0,
  • the crosslinked fluororubber (B) has a fluorine concentration of 68% by weight or more, and at least a part of the crosslinked fluororubber is crosslinked.
  • the present invention relates to a fuel barrier material.
  • an excellent fuel barrier property can be obtained by using a copolymer of TFE and HFP or a copolymer of TFE, HFP and PAVE force as the fluorine resin (A). It is possible to obtain a certain fuel barrier material.
  • TFE and as a copolymer consisting of HFP are not limited to, TFE units 70-99 molar%, HFP units 1 to 30 mol 0/0 a copolymer is it is preferred instrument TFE units 80-95 mole 0/0 and HFP units 5 to 20 mol 0/0 and more preferably a force styrenesulfonate! /,. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
  • the type of the copolymer comprising TFE and HFP is not limited as long as it can be copolymerized with TFE and HFP as the third component which may contain the third component. ⁇ (except PAVE).
  • CTFE black trifluoroethylene
  • VdF vinylidene fluoride
  • fluorinated bulu general formula (1) :
  • X 1 is a hydrogen atom or a fluorine atom
  • X 2 is a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer of 1 to 10
  • TFE, HFP Examples of the third component monomer force styrenesulfonate, Do limited !, force TFE units 67 to 98.9 mole 0/0, HFP units 1 to 30 mol 0/0, the Third component monomer unit 0.1 to 3 mol% Powerful copolymer is preferred TFE unit 78.5 to 54.5 Le 0/0, HFP units 5 to 20 mol 0/0, the third component monomer units from 0.3 to 1.5 mol 0/0 and more preferably a Chikararana Ru copolymer. If the TFE unit is less than 67 mol%, the mechanical properties tend to decrease, and if it exceeds 98.9 mol%, the moldability tends to decrease.
  • TFE, HFP as the copolymer consisting of PAVE, limited Do, but, TFE unit 6 from 7 to 98.9 mole 0/0, HFP units 1 to 30 mol 0/0, PAVE units 0. 1-3 mole 0/0 a copolymer is it is preferred instrument TFE units 78.5 to 94.5 mole 0/0, HFP units 5 to 20 mol%, PAVE units from 0.3 to 1.5 and more preferably a copolymer consisting mol 0/0. If the TFE unit is less than 67 mol%, the mechanical properties tend to decrease, and if it exceeds 98.9 mol%, the melting point becomes too high and the moldability tends to decrease.
  • examples of PAVE include PAVE having an alkyl group having 1 to 5 carbon atoms such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro (propyl butyl ether).
  • the melting point of the fluorinated resin (A) is preferably 150 to 330 ° C, more preferably 150 to 310 ° C, and further preferably 150 to 290 ° C. It is particularly preferably 170 to 270 ° C. If the melting point of fluorine resin (A) is less than 150 ° C, the heat resistance of the resulting fuel noble material tends to decrease, and if it exceeds 330 ° C, it will be in the presence of fluorine resin (A). When the rubber (b) is dynamically cross-linked under the melting condition of the fluorine resin (A), it is necessary to set the melting temperature above the melting point of the fluorine resin (A). Rubber (b) tends to heat deteriorate.
  • the crosslinked fluororubber (B) used in the present invention is not particularly limited as long as it is a fluororubber having a fluorine concentration of 68% by weight or more and at least a part of which is crosslinked. Absent.
  • the fluorine concentration of the crosslinked fluororubber (B) is 68 wt% or more, preferably 68 to 75 wt%, more preferably 69 to 74 wt%, 70 to 73 wt%. % Is more preferable.
  • the fluorine concentration is less than 68% by weight, the mechanical properties of the obtained fuel barrier material tend to be lowered.
  • the cross-linked fluororubber (B) is dynamically added to the fluororubber (b) together with the cross-linking agent (C) under the melting condition of the fluorocobalt (A) in the presence of the fluorocobalt (A). It is obtained that it has been cross-linked
  • the fuel barrier material that has good moldability and improved mechanical properties is preferred.
  • the dynamic cross-linking treatment means that the fluororubber (b) is dynamically cross-linked simultaneously with melt kneading using a Banbury mixer, pressurizer / extruder, extruder or the like. Among these, it is preferable to use an extruder such as a twin screw extruder because a high shear force can be applied.
  • fluororubber (b) examples include perfluorofluororubber (bl) and non-perfluorofluororubber (b2).
  • Examples of the perfluoro fluorine rubber (bl) include a TFEZPAVE copolymer and a TFEZHFPZ PAVE copolymer.
  • non-perfluorofluorororubber (b2) examples include VdF-based polymers and TFEZ-propylene-based copolymers, which are used alone or in a range that does not impair the effects of the present invention. Any combination can be used.
  • the examples of the perfluoro fluorororubber (bl) and the non-perfluorofluorororubber (b2) are the constitution of the main monomer, and those obtained by copolymerizing a crosslinking monomer, a modified monomer, etc. are also suitable. Can be used.
  • a crosslinking monomer or modifying monomer a known crosslinking monomer such as an iodine atom, bromine atom or double bond-containing monomer, a transfer agent, a modified monomer such as a known ethylenically unsaturated compound, or the like can be used. .
  • VdF polymer examples include a VdFZHFP copolymer, a VdF / TFE ZHFP copolymer, a VdFZTFEZ propylene copolymer, a VdFZ ethylene ZHFP copolymer, and a VdFZTFEZPAVE copolymer.
  • VdFZPAVE copolymer examples include VdFZPAVE copolymer, VdF ZCTFE copolymer and the like. More specifically, it is preferably a fluorine-containing copolymer comprising 25 to 85 mol% of VdF and 75 to 15 mol% of at least one other monomer copolymerizable with VdF.
  • At least one other monomer copolymerizable with VdF for example, TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, penta Fluorinated monomers such as fluoropropylene, trifluorobutene, tetrafluoroisobutene, PAVE, fluorinated bur, ethylene, propylene, alkyl butyl ether Non-fluorine monomers such as These can be used alone or in any combination.
  • a fluororubber containing a VdF unit and an HFP unit is preferred from the viewpoint of heat resistance, compression set, workability, and cost. It is more preferable.
  • VdFZTFEZHFP is preferably at least one rubber selected from the group consisting of VdFZHFP fluororubber, VdFZTFEZ HFP fluororubber, and TFEZ propylene fluororubber. More preferred is fluororubber.
  • the fluorororubber (b) used in the present invention can be produced by a usual emulsion polymerization method. Polymerization conditions such as temperature and time during polymerization may be appropriately determined depending on the type of monomer and the target elastomer.
  • the crosslinking agent (C) used in the present invention can be appropriately selected according to the type of the fluororubber (b) to be crosslinked and the melt-kneading conditions.
  • the cross-linking system used in the present invention is appropriately selected depending on the type of the cure site or the use of the molded product to be obtained. That's fine.
  • the crosslinking system any of a polyol crosslinking system, an organic peroxide crosslinking system, and a polyamine crosslinking system can be employed.
  • cross-linking by a polyol cross-linking system is preferable in that it has a carbon-oxygen bond at the cross-linking point, and has a feature of being excellent in moldability with a small compression set.
  • crosslinking agent (C) in the present invention a polyamine-based, polyol-based or organic peroxide-based crosslinking agent can be used.
  • polyamine crosslinking agent examples include hexamethylenediamine carbamate, N, N, 1-disinnamylidene 1, 6 hexamethylenediamine, 4, 4'-bis (aminocyclohexenole) methane power rubamate. And polyamine compounds. Of these, N, N'-dicinnamylidene 1, 6 hexamethylenediamine is preferred!
  • polyol cross-linking agent a compound conventionally known as a fluororubber cross-linking agent can be used.
  • a polyhydroxy compound particularly, a polyhydroxy aromatic compound having excellent heat resistance.
  • a compound is preferably used.
  • the polyhydroxy aromatic compound is not particularly limited.
  • 2, 2 bis (4 hydroxyphenol) propane hereinafter referred to as bisphenol A
  • Perfluoropropane hereinafter referred to as bisphenol AF
  • resorcin 1,3 dihydroxybenzene, 1,7 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 1,6 dihydroxynaphthalene, 4,4'-dihydroxydiphenyl 4, 4 'dihydroxystilbene, 2, 6 dihydroxyanthracene, hydroquinone, catechol, 2, 2-bis (4-hydroxyphenol) butane (hereinafter referred to as bisphenol B), 4, 4-bis (4— Hydroxyphenol) Valeric acid, 2, 2 Bis (4 hydroxyphenol) Tetrafluorodiclopropane Propane, 4, 4, Dihydroxydiph Ninoles norephone, 4, 4, -dihydroxydiphenyl ketone, tri (4-hydroxyphenol) methane, 3, 3 ', 5, 5,
  • the organic peroxide crosslinking type crosslinking agent may be any organic peroxide compound that can easily generate a peroxide radical in the presence of heat or a redox system.
  • polyhydroxy aromatic compounds are preferred because polyhydroxy compounds are excellent in heat resistance because they are excellent in moldability with small compression set such as molded articles to be obtained.
  • Bisphenol AF is more preferred.
  • a crosslinking accelerator (D) is usually used in combination with the polyol crosslinking agent.
  • the crosslinking reaction can be promoted by promoting the formation of an intramolecular double bond in the dehydrofluorination reaction of the fluororubber main chain.
  • an organic compound is generally used as the cross-linking accelerator (D) of the polyol cross-linking system.
  • Ammonium compounds are not particularly limited.
  • ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, monofunctional compounds Amine compounds are preferred, and among these, quaternary ammonium salts and quaternary phospho- um salts are preferred.
  • the quaternary ammonium salt is not particularly limited.
  • 8-methyl 1,8 diazabicyclo [5, 4, 0] -7 undecese-um chloride 8-methyl-1,8 diazabicyclo [ 5, 4, 0] — 7 Hundesaceum iodide
  • 8—Methyl-1, 8 diazabicyclo [5, 4, 0] — 7 Hundesse-um hydroxide 8-methyl 1,8 diazabicyclo [5,
  • the quaternary phospho-um salt is not particularly limited, and examples thereof include tetrabutyl phospho-um chloride, benzyl triphenyl phospho-um chloride (hereinafter referred to as BTPPC), benzyl trimethyl phospho-um chloride, Examples thereof include benzyltributylphosphomethylene chloride, tributylarylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, and benzylphenol (dimethylamino) phosphonium chloride.
  • BTPPC benzyltrif-phosphoro-um chloride
  • crosslinking accelerator (D) a quaternary ammonium salt, a solid solution of a quaternary phosphonium salt and bisphenol AF, chlorine disclosed in JP-A-11-147891 Free bridge accelerators can also be used.
  • crosslinking accelerator (D) for organic peroxides examples include triaryl cyanurate, triaryl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N, -m— Phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triaryl isocyanate (2, 3, 3 ⁇ !
  • the amount of the crosslinking agent (C) to be added is preferably 0.1 to: LO parts by weight, more preferably 0.3 to 5 parts by weight with respect to 100 parts by weight of the fluororubber (b). Part. If the cross-linking agent (C) is less than 0.1 parts by weight, the cross-linking of the fluororubber (b) does not proceed sufficiently, and the resulting fuel barrier material tends to decrease the heat resistance and oil resistance. If the amount exceeds 10 parts by weight, the moldability of the resulting fuel barrier material tends to decrease.
  • the addition amount of the crosslinking agent (C) and the crosslinking accelerator (D) was adjusted so that 90% vulcanization time T90 at the temperature during dynamic crosslinking treatment was 2 to 6 minutes. 90% completion time is more preferably the amount adjusted so that the T90 is 3-5 minutes. If the optimum vulcanization time T90 is less than 2 minutes, the dispersion of the crosslinked rubber tends to be uneven and coarse, and if it exceeds 6 minutes, it takes a long time for the rubber to crosslink. And there is a tendency not to completely crosslink.
  • vulcanization 90% completion time T90 is the temperature at the time of dynamic vulcanization using JSR type chilastometer ⁇ type and V type at the time of primary press vulcanization of fluoro rubber (b). Obtain the vulcanization curve, and the time to reach 90% of the maximum torque value is the 90% completion time (T90).
  • the melting condition means a temperature at which the fluororesin (A) and the fluororubber (b) are melted.
  • the melting temperature varies depending on the glass transition temperature and the Z or melting point of fluorocarbon resin (A) and fluororubber (b), respectively, but is preferably 120-330 ° C. More preferably. If the temperature is less than 120 ° C, the dispersion between the fluorocarbon resin (A) and the fluororubber (b) tends to become coarse, and if it exceeds 330 ° C, the rubber (b) will be thermally deteriorated. There is a tendency to.
  • the obtained fuel barrier material has a structure in which the fluorine resin (A) forms a continuous phase and the crosslinked fluorine rubber (B) forms a dispersed phase, or the fluorine resin (A) and the crosslinked fluorine.
  • the rubber (B) can have a structure that forms a co-continuity, and among them, the fluorocarbon resin (A) forms a continuous phase and the cross-linked fluororubber (B) has a structure that forms a dispersed phase. I prefer that.
  • the fuel barrier material of the present invention exhibits excellent heat resistance, chemical resistance, and oil resistance, and also has excellent fuel permeation resistance and flexibility.
  • the average dispersed particle size of the crosslinked fluororubber (B) is preferably 0.01 to 30 / ⁇ ⁇ . If the average dispersed particle size is less than 0.01 m, the fluidity tends to decrease, and if it exceeds 30 m, the strength of the resulting fuel barrier material tends to decrease.
  • the fuel barrier material of the present invention is preferred and / or the form of the fluorocarbon resin (A) forms a continuous phase, and the crosslinked fluororubber (B) forms a dispersed phase.
  • a part of the structure may include a co-continuous structure of fluorine resin (A) and crosslinked fluororubber (B).
  • the fuel barrier material of the present invention fluorine ⁇ (A) 95 to 20 wt%, crosslinking fluororubber (B) preferably be composed of 5 to 80 weight 0/0 device fluorine ⁇ ( A) 92-30 weight 0/0, crosslinked fluororubber (B) 8 to 70 weight 0/0 also more preferably comprising power tool fluorine ⁇ (A) 90 to 60 wt%, crosslinking fluororubber (B) 10 more preferably consisting of 40 wt 0/0.
  • the fuel barrier material obtained when the fluorine resin (A) is less than 20% by weight tends to have poor fluidity and the molding processability tends to deteriorate.
  • the fuel barrier property obtained when it exceeds 95% by weight The balance between material flexibility and fuel barrier properties tends to be poor.
  • the fuel permeability material strength of the present invention The fuel permeability coefficient of the formed article is preferably 40 (g'mm) / (m 2 .day) or less, and 30 (g ⁇ mm) / ( m 2 .day) or less is more preferable 20 (g 'mm) Z (m 2 * day) or less is more preferable 5 (g-mm) / (m 2 -day) It is particularly preferred that The lower limit value of the fuel permeability coefficient is not particularly limited, and the lower the value, the better. If the fuel permeation coefficient exceeds 40 (g-mm) / (m 2 -day), the fuel permeation resistance is low, so it is necessary to increase the thickness of the molded product to suppress the fuel permeation amount.
  • the fuel permeability coefficient was measured by a method according to the cup method in the moisture permeability test method for moisture-proof packaging materials.
  • the cup method is a moisture permeability test specified in JIS Z 0208. This is a test method that measures the amount of water vapor that passes through a membranous substance of a unit area in a certain time.
  • the fuel permeation coefficient is measured according to this cup method.
  • the sheet-like test piece in the open part of the container and seal it to make a test piece.Place the test piece in a constant temperature device (60 ° C), measure the weight of the test piece, and measure the weight per unit time. When the weight loss becomes constant, the fuel permeability is obtained by the following formula.
  • the tensile modulus of the molded article formed from the fuel barrier material of the present invention is preferably 600 MPa or less, more preferably 550 MPa or less, and more preferably 500 MPa or less. Is more preferable.
  • the lower limit value of the tensile modulus is not particularly limited.
  • the force is preferably 5 MPa or more, more preferably lOMPa or more. If the tensile modulus exceeds 600 MPa, it tends to be unsuitable for molded products that require flexibility.
  • the fuel barrier material of the present invention includes other polymers such as polyethylene, polypropylene, polyamide, polyester and polyurethane, calcium carbonate, talc, celite, clay, titanium oxide, carbon black, barium sulfate and the like.
  • the fuel barrier material of the present invention can be molded using a general molding method or molding apparatus.
  • a molding method for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, vacuum molding and the like can be adopted, and the fuel barrier material of the present invention is used for the purpose of use. Correspondingly, it is formed into a molded body of any shape.
  • the present invention relates to a molded article obtained by using the fuel barrier material of the present invention, and the molded article includes a molded article of a sheet or a film, and the present invention. It includes a laminated structure having a layer with a clear fuel barrier material force and a layer with another material force.
  • the other material has the required characteristics and intended use. What is necessary is just to select an appropriate thing according to the way.
  • the other materials include polyolefin (eg, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene propylene copolymer, polypropylene, etc.), nylon, polyester, butyl chloride.
  • Thermoplastic polymers such as fat (PVC), salt vinylidene resin (PVDC), cross-linked rubber such as ethylene propylene gen rubber (EPDM), butyl rubber, nitrile rubber, silicone rubber, acrylic rubber, polypropylene / EPDM composite, etc.
  • EPDM ethylene propylene gen rubber
  • examples thereof include thermoplastic elastomers, metals, glass, wood, and ceramics.
  • an adhesive layer may be interposed between the layer made of the fuel barrier material of the present invention and the base material layer made of another material.
  • the layer having the fuel barrier material force of the present invention and the base material layer having another material force can be firmly joined and integrated.
  • adhesives used in the adhesive layer include acid anhydride-modified products of gen-based polymers; acid anhydride-modified products of polyolefins; polymer polyols (for example, glycol compounds such as ethylene glycol and propylene glycol, and adipic acid).
  • Polyester polyols obtained by polycondensation of dibasic acids such as; partial saponified products of copolymers of acetic acid vinyl and salt and butyl and polyisocyanate compounds (for example, 2, 4 tolylene diisocyanate, etc. (for example, a reaction product with a molar ratio of glycol compound such as 1, 6 hexamethylene glycol and diisocyanate compound such as 2, 4 tolylene diisocyanate, etc. 1: 2)
  • a molar ratio of a trioylol compound such as trimethylolpropane to a diisocyanate compound such as 2,4 tolylene diisocyanate is 1 to 3.
  • Response product, etc. or the like can be used.
  • a known method such as co-extrusion, co-injection, or extrusion coating can be used.
  • the present invention includes a fuel hose or fuel comprising a single layer of the fuel barrier material of the present invention.
  • a container is included.
  • the use of the fuel hose is not particularly limited, and examples thereof include a filler hose for automobiles, an evaporative hose, and a breather hose.
  • the use of the fuel container is not particularly limited, and examples thereof include a fuel container for automobiles, a fuel container for motorcycles, a fuel container for small generators, and a fuel container for lawn mowers.
  • the present invention includes a multilayer fuel hose or a multilayer fuel container including a layer made of the fuel barrier material of the present invention.
  • the multi-layer fuel hose or multi-layer fuel container is composed of the layer having the fuel barrier material force of the present invention and at least one layer having the other material force, and these layers do not interpose the adhesive layer or intervene. And are adhered to each other.
  • Examples of other material strength layers include layers made of rubber other than the fuel barrier material of the present invention and layers made of thermoplastic resin.
  • the rubber includes acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, vinyl fluoride, epoxy rubber.
  • Acrylonitrile monobutadiene rubber or hydrogenated rubber thereof which is preferably at least one kind of rubber selected from the group consisting of chlorohydrin rubber, EPDM and acrylic rubber, blend rubber of acrylonitrile monobutadiene rubber and polyvinyl chloride, More preferably, it is made of at least one rubber selected from the group consisting of fluororubber and epichlorohydrin rubber.
  • fluorine resin polyamide-based resin, polyolefin resin, polyester-based resin, polyvinyl alcohol-based resin, polyvinyl chloride resin Fluorine resin, polyamide-based resin, polybulle alcohol-based resin, poly-phenylene sulfide-based resin, which is preferably selected from the group consisting of rubber-based resin and polyphenylene sulfide-based resin. More preferred is a thermoplastic rosin that is at least one selected from the group consisting of fats.
  • the fuel hose or the fuel container including the layer made of the fuel barrier material obtained by the present invention and the layer made of other rubber or other thermoplastic resin is particularly limited.
  • fuel hoses such as filler hose, evaporative hose, breather hose for automobiles; fuel containers for automobiles, fuel containers for motorcycles, small generators And a fuel container such as a lawn mower fuel container.
  • a fuel hose comprising a layer made of the fuel barrier material of the present invention and a layer made of other rubber, acrylonitrile monobutadiene rubber or its hydrogenated rubber, acrylo-tolyl monobutadiene rubber and A fuel hose that also has a three-layer force of an outer layer that also has a rubber strength blended with polychlorinated bur or epichlorohydrin rubber, an intermediate layer that also has the fuel barrier material strength of the present invention, and an inner layer that also has a fluorine rubber strength, or acrylonitrile monobutadiene rubber or its hydrogen
  • a fuel hose composed of two layers: an additive rubber, an outer layer of acrylonitrile monobutadiene rubber and polysalt rubber, or an outer layer also having an epichlorohydrin rubber force, and an inner layer of the fuel barrier material of the present invention.
  • Excellent fuel barrier properties' Preferable for its flexibility and chemical resistance Masashi.
  • the surface of the fuel barrier material of the present invention is surfaced as necessary. Processing may be performed.
  • the surface treatment is not particularly limited as long as it is a treatment method that enables adhesion.
  • discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium Z naphthalene solution Processing.
  • a primer treatment is also suitable as the surface treatment. Primer treatment can be performed according to a conventional method.
  • the surface treatment can be performed to treat the surface of the fluorine resin, but the fuel barrier properties are pre-treated with plasma discharge treatment, corona discharge treatment, metal sodium Z naphthalene solution treatment, etc. It is more effective to further prime the surface of the material.
  • the fuel barrier material of the present invention and a molded article comprising the composition can be suitably used in the following fields.
  • a gate valve O-ring as a sealing material, a quartz window o-ring, as a sealing material, as a chamber o-ring, as a sealing material, as a gate o-ring, as a sealing material, as a bell jar o-ring, as a seal O ring for coupling as material, o ring for pump as seal material, seal material, diaphragm, o ring for semiconductor gas control device, o ring for resist developer and stripper as seal material
  • a sealing material as a wafer cleaning solution hose, as a tube, as a wafer transfer roll, as a resist developer bath, as a lining for a stripping solution bath, as a coating, as a lining, coating or as a wet etching bath for a wafer cleaning solution bath It can be used as a lining or coating.
  • sealing materials In addition, sealing materials' sealing agent, optical fiber quartz coating material, electronic parts for insulation, vibration proofing, waterproofing, moisture proofing, circuit board potting, coating, adhesive seals, gaskets for magnetic storage devices, It is used as a modifier for sealing materials such as epoxy, sealant for clean rooms and clean rooms.
  • gaskets, shaft seals, valve stem seals, sealing materials and hoses can be used for engines and peripheral devices, and hoses and sealing materials can be used for AT devices.
  • Rings, tubes, packings, valve cores, hoses, seals and diaphragms can be used in fuel systems and peripheral devices.
  • diaphragms, O (square) rings Such as a tube, a tube, a knock, a hose, and a sealing material, which can be used for a fuel system.
  • a fuel system e.g., a fuel supply hoses, gaskets and o-rings, rotating shaft seals, hydraulic equipment gaskets, firewall seals, etc.
  • the printing field such as a printing machine
  • the coating field such as a coating facility, rolls and the like
  • a film developing machine a tangential film developing machine
  • a printing roll a coating roll be able to.
  • a gravure roll of a printing roll a guide roll, a gravure roll of a magnetic tape manufacturing coating line of a coating tool, and a magnetic tape manufacturing coating It can be used as a line guide roll, various coating rolls, and the like.
  • dry copying machine seals printing equipment printing rolls, scrapers, tubes, valve parts, coating, coating equipment coating rolls, scrapers, tubes, valve parts, printer ink tubes, rolls, belts, dry copying machine belts It can be used as a roll, a roll for a printing press, a belt, or the like.
  • the tube can also be used in the field of analysis and science machines.
  • linings, valves, knockers, rolls, hoses, diaphragms, o (square) rings, tubes, sealing materials, belts, and the like can be mentioned and used for food production processes. Specifically, it can be used as a plate-type heat exchanger seal, a solenoid valve seal of a vending machine, or the like.
  • a sealant between electrodes and separators is used as a seal for hydrogen 'oxygen' product water piping.
  • the molded article of the present invention can be suitably used for the various applications described above, and is particularly suitable as a fuel peripheral part.
  • the molded article of the present invention is particularly useful as a sealing material, knock, roller, tube or hose.
  • the melt flow rate (under the conditions of 297 ° C, 5 kg load or 10 kg load) was measured with a melt flow measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd.). MFR) was measured.
  • a sheet-like test piece having a thickness of 0.5 mm was produced by the above method.
  • This sheet test piece, or the sheet treated with the surface of this sheet test piece and the rubber composition are set in a stacking die, and a 3MPa load is applied for 15 to 30 minutes at 170 ° C with a heat press machine.
  • a rubber-fuel barrier material laminate was molded.
  • Each of the vulcanized rubber-fuel barrier material laminates was cut into strips of 1. Ocm width x 10 cm to prepare test specimens for adhesion test. These test specimens were then JIS-K6256 (vulcanized rubber In accordance with the method described in Adhesion Test Method), a peel test was conducted at 25 ° C at a tensile speed of 50 mmZmin.
  • the discharge electrode (30 cm width) of the corona treatment device was covered with a container made of acrylic resin, and air was allowed to flow for 10 LZ at atmospheric pressure. Tantec's HV05—Type 2 power supply, corona output 25 The sheet surface of the fuel barrier material was treated with OW at a moving speed of ImmZ.
  • the sheet of the fuel barrier material was immersed in a metal sodium / naphthalene solution (Tetraetch, manufactured by Junye Co., Ltd.) for 5 seconds.
  • the treated film was thoroughly washed with ethyl alcohol and water and then dried in an oven at 80 ° C.
  • Polyol-based cross-linking agent 2, 2-bis (4-hydroxyphenol) perfluoropropane (Daikin Industries, Ltd. “Bisphenol AF”)
  • fluororubber (bl-2) in 100.0 parts by weight, cross-linking agent (C) 2.0 parts by weight, cross-linking accelerator (D) l. 0 parts by weight, magnesium oxide (kiyo ⁇ 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-2).
  • fluororubber (bl-3) in 100.0 parts by weight, cross-linking agent (C) 2.17 parts by weight, cross-linking accelerator (D) 0.11 parts by weight, magnesium oxide (kiyo ⁇ 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-3).
  • Table 3 shows the results of measurements of hardness, tensile strength at break, tensile elongation at break, tensile elastic modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 200G” pellets by the methods described above.
  • Table 3 shows the results of measurement of hardness, tensile strength at break, tensile elongation at break, tensile modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 500G” pellets by the methods described above.
  • Table 3 shows the results of measurement of hardness, tensile strength at break, tensile elongation at break, tensile modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 815G” pellets by the methods described above.
  • the fuel barrier material obtained in Examples 1 to 12 was obtained by observing the morphology with a scanning electron microscope (manufactured by JEOL Ltd.), and the fluororesin (A) formed a continuous phase and crosslinked. It was found that the fluororubber (B) has a structure forming a dispersed phase. In Examples 1 to 12, the dispersed particle size of the crosslinked fluororubber (B) was 20 m or less.
  • Fluoro rubber (bl— 1) 100.0 parts by weight, cross-linking agent (C) 2.0 parts by weight, cross-linking accelerator (D) 0 5 parts by weight, magnesium oxide (Kiyo Izuma Mag 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, calcium hydroxide (Caldic 2000, Omi Chemical Co., Ltd.) 6.0 parts by weight Then, the mixture was kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-4).
  • Epoxychlorohydrin rubber (Epichromer CG, Daiso Co., Ltd.) 100.0 parts by weight, Carbon black (N-550, Cancarb Ltd.) 80 parts by weight, Plasticizer (ADK cizer RS-107, Asahi Denka Kogyo Co., Ltd.) 5. 0 parts by weight, Lubricant (Splender R—300) 2. 0 parts by weight, anti-aging agent (NOCRACK NBC, Ouchi Shinsei Chemical Co., Ltd.) 2.
  • the fuel barrier material of the present invention contains a specific fluorine resin (A) and a high fluorine concentration crosslinked fluororubber (B), and thus has excellent heat resistance, chemical resistance, and oil resistance, and is melted. It can be formed and has excellent flexibility and fuel barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A fuel-barrier material which has all of excellent heat resistance, chemical resistance, and oil resistance, is melt-moldable, and is excellent in flexibility and impermeability to fuels. Also provided are a molded article formed from the fuel-barrier material and a fuel tube and fuel hose comprising a layer formed from the fuel-barrier material. The fuel-barrier material comprises 95-20 wt.% fluororesin (A) and 5-80 wt.% crosslinked fluororubber (B), wherein the fluororesin (A) is a copolymer of tetrafluoroethylene and hexafluoropropylene or a copolymer of tetrafluoroethylene, hexafluoropropylene, and a perfluoro(alkyl vinyl ether) and the crosslinked fluororubber (B) has a fluorine concentration of 68 wt.% or higher, at least part of the fluororubber (B) having been crosslinked.

Description

明 細 書  Specification
燃料バリア性材料およびそれから形成される成形品  Fuel barrier material and molded article formed therefrom
技術分野  Technical field
[0001] 本発明は、特定のフッ素榭脂 (A)とフッ素濃度が高 、架橋フッ素ゴム (B)を含む燃 料バリア性材料に関する。また、該燃料バリア性材料から形成される成形品、該燃料 ノリア性材料力ら形成される層を含む燃料チューブ、燃料ホースに関する。  The present invention relates to a fuel barrier material containing a specific fluorine resin (A), a high fluorine concentration, and a crosslinked fluororubber (B). The present invention also relates to a molded article formed from the fuel barrier material, a fuel tube including a layer formed from the fuel noble material force, and a fuel hose.
背景技術  Background art
[0002] 昨今の環境意識の高まりから、燃料揮発を防止するための法整備が進み、特に自 動車業界では米国を中心に燃料揮発抑制の傾向が著しぐ燃料バリア性に優れた 材料へのニーズが大きくなりつつある。燃料バリア性に優れた材料として、ポリフエ- レンスルフイド系榭脂、エチレンビュルアルコール系榭脂、液晶ポリエステル系榭脂 等の熱可塑性榭脂が使用されているが、それに対して柔軟なゴム系材料、例えば架 橋ゴムは一般的に燃料バリア性が劣っており、燃料ホース等の自動車部品に使用し た場合には燃料の揮発'蒸散が大きぐこの改善が求められている。架橋ゴムの中で も、架橋フッ素ゴムの燃料バリア性は良好なものではある力 上記に掲げた熱可塑性 榭脂と比較すると著しく燃料バリア性に劣っており、柔軟でかつ燃料バリア性に優れ た材料開発が急務となって 、る。  [0002] Due to the recent increase in environmental awareness, legislation has been developed to prevent fuel volatilization. In particular, the automobile industry has become a material with excellent fuel barrier properties, especially in the United States, where there is a significant tendency to suppress fuel volatilization. Needs are growing. As materials with excellent fuel barrier properties, thermoplastic resins such as polyphenylene sulfide resin, ethylene bull alcohol resin, liquid crystal polyester resin, etc. are used. For example, bridge rubber is generally inferior in fuel barrier properties, and when it is used for automobile parts such as fuel hoses, this volatility and transpiration of fuel is required to be improved. Among the cross-linked rubbers, the power of the cross-linked fluororubber is not good. The fuel barrier properties are significantly inferior to the thermoplastic resins listed above, and they are flexible and have excellent fuel barrier properties. Material development is an urgent need.
[0003] 上記の状況下、柔軟で燃料バリア性を有し、かつ溶融成形性やリサイクル性を有す る榭脂として、『ダイネオン THV』が開発されている(例えば、 Modern Fluoropoly mers: high performance polymers for diverse applications, j onn il ey & Sons, Chichster, ( 1997) Chapterl 3、特開 2000— 274562号公報 および特開 2002— 276862号公報参照)。しかしながら、これらの文献に記載され た榭脂の特性として、燃料バリア性を高めようとすると硬度や弾性率が大きくなり、ま た硬度や弾性率を低下させようとすると燃料バリア性が著しく悪ィ匕するという問題点 力 Sあり、柔軟性と燃料バリア性との両立が不充分である。  [0003] Under the circumstances described above, “Dyneon THV” has been developed as a resin that is flexible, has a fuel barrier property, and has melt moldability and recyclability (for example, Modern Fluoropolymers: high performance). polymers for diverse applications, jon yl ey & Sons, Chichster, (1997) Chapterl 3, JP 2000-274562 and JP 2002-276862). However, as the properties of the resin described in these documents, the hardness and elastic modulus increase when trying to increase the fuel barrier property, and the fuel barrier property becomes extremely poor when trying to decrease the hardness and elastic modulus. There is a problem of hesitation S, and there is insufficient balance between flexibility and fuel barrier properties.
[0004] また、フッ素ゴムは、優れた耐熱性、耐薬品性、圧縮永久歪などの特性を有するこ と力ら、自動車分野、半導体分野、工業分野などで多くの用途に使用されており、一 方、フッ素榭脂は、摺動性、耐熱性、耐薬品性、耐候性、電気的性質などの特性に 優れ、自動車、産業機械、 OA機器、電気電子機器等の幅広い分野で使用されてい る。フッ素ゴムの耐熱性をさらに改良させる目的で、またはフッ素榭脂に柔軟性を付 与する目的で、フッ素ゴムとフッ素榭脂とのポリマーァロイが研究されており(たとえば 、特開昭 61— 57641号公報参照)、該ポリマーァロイは、耐燃料透過性と柔軟性の 両特性が要求される、燃料チューブ材料などの燃料周辺部にぉ ヽて注目されて ヽる [0004] In addition, fluororubber has excellent heat resistance, chemical resistance, compression set, and other properties, and is used in many applications in the automotive, semiconductor, and industrial fields. one On the other hand, fluorinated resin has excellent properties such as slidability, heat resistance, chemical resistance, weather resistance, and electrical properties, and is used in a wide range of fields such as automobiles, industrial machinery, office automation equipment, and electrical and electronic equipment. . For the purpose of further improving the heat resistance of fluororubber, or for the purpose of imparting flexibility to fluorocarbon resin, polymer alloys of fluororubber and fluorocarbon resin have been studied (for example, JP-A-61-57641). The polymer alloy is attracting attention in the vicinity of fuel such as fuel tube material, which requires both fuel permeation resistance and flexibility.
[0005] しかし、このようなフッ素ゴムとフッ素榭脂とのポリマーァロイでは、耐燃料透過性を 上げるためには、フッ素榭脂成分を多くする必要があるが、フッ素榭脂成分を多くす ると柔軟性が損なわれるという問題がある。一方、柔軟性を向上させるためには、フッ 素ゴム成分を多くする必要があるが、連続相 (海成分)となる榭脂の中にゴムを均一 に分散させることが、一層困難になるため、その結果、分散相(島成分)のゴムが共連 続相を成し、充分な榭脂物性が得られな ヽと ヽぅ問題がある。 [0005] However, in such a polymer alloy of fluororubber and fluorine resin, it is necessary to increase the fluorine resin component in order to improve fuel permeation resistance. However, if the fluorine resin component is increased, There is a problem that flexibility is impaired. On the other hand, in order to improve flexibility, it is necessary to increase the amount of the fluoro rubber component, but it becomes more difficult to uniformly disperse the rubber in the resin that becomes the continuous phase (sea component). As a result, the rubber of the dispersed phase (island component) forms a co-continuous phase, and there is a problem that sufficient properties of the resin cannot be obtained.
[0006] また、耐燃料透過性に優れるテトラフルォロエチレン/へキサフルォロプロピレン共 重合体 (FEP)力もなるフッ素榭脂およびフッ素ゴム力もなる熱可塑性エラストマ一組 成物が知られている(たとえば、特開平 10— 101880号公報、特開平 10- 219062 号公報参照)。しかし、特開平 10— 101880号公報および特開平 10— 219062号 公報の熱可塑性エラストマ一組成物では、榭脂成分よりゴム成分が多いため、得られ たァロイの燃料バリア性が低く高燃料バリア性を要求する用途に適していないという 問題を有するものである。  [0006] In addition, a composition of a thermoplastic elastomer having a fluorocarbon and fluororubber strength having a tetrafluoroethylene / hexafluoropropylene copolymer (FEP) force having excellent fuel permeation resistance is also known. (For example, see Japanese Patent Laid-Open Nos. 10-101880 and 10-219062). However, in the thermoplastic elastomer compositions disclosed in JP-A-10-101880 and JP-A-10-219062, there are more rubber components than the resin components, so that the obtained alloy has a low fuel barrier property and a high fuel barrier property. It has the problem that it is not suitable for applications that require
[0007] したがって、耐燃料透過性と柔軟性の両方が備わったフッ素榭脂およびフッ素ゴム 力もなるポリマーァロイは!、まだ無!、のが現状である。  [0007] Therefore, a polymer alloy that has both fluororesin and fluororubber power with both fuel permeation resistance and flexibility! There is nothing yet!
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、優れた耐熱性,耐薬品性,耐油性を兼ね備え、溶融成形可能で あり、かつ、優れた柔軟性と燃料バリア性を有する燃料バリア性材料を提供すること である。また、本発明の目的は、該燃料バリア性材料から形成される成形品、該燃料 ノリア性材料力ら形成される層を含む燃料チューブ、燃料ホースを提供することであ る。 [0009] すなわち、本発明は、フッ素榭脂 (A) 95〜20重量0 /0および架橋フッ素ゴム (B) 80 〜5重量%を含む燃料バリア性材料であって、 [0008] An object of the present invention is to provide a fuel barrier material that has excellent heat resistance, chemical resistance, and oil resistance, is melt-moldable, and has excellent flexibility and fuel barrier properties. is there. Another object of the present invention is to provide a molded article formed from the fuel barrier material, a fuel tube including a layer formed from the fuel noble material force, and a fuel hose. [0009] Namely, the present invention provides a fuel barrier material comprising 80 to 5 wt% fluorine榭脂(A) 95 to 20 weight 0/0 and crosslinked fluororubber (B),
フッ素榭脂 (A)力 テトラフルォロエチレンとへキサフルォロプロピレン力もなる共重 合体またはテトラフルォロエチレンとへキサフルォロプロピレンとパーフルォロ(アルキ ルビ-ルエーテル)からなる共重合体であり、  Fluorine resin (A) Force Copolymer with tetrafluoroethylene and hexafluoropropylene strength or Copolymer with Tetrafluoroethylene, Hexafluoropropylene and Perfluoro (alkyl vinyl ether) And
架橋フッ素ゴム (B)のフッ素濃度が、 68重量%以上であり、かつその少なくとも一部 が架橋されて ヽる架橋フッ素ゴムである  The crosslinked fluororubber (B) has a fluorine concentration of 68% by weight or more, and at least a part of the crosslinked fluororubber is crosslinked.
燃料バリア性材料に関する。  The present invention relates to a fuel barrier material.
[0010] 架橋フッ素ゴム (B)が、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融条件下に て、フッ素ゴム (b)を架橋剤(C)と共に、動的に架橋処理したものであることが好まし い。 [0010] The cross-linked fluororubber (B) is dynamically added to the fluororubber (b) together with the cross-linking agent (C) under the melting condition of the fluorocobalt (A) in the presence of the fluorocobalt (A). It is preferable that it is cross-linked.
[0011] 燃料バリア性材料力も形成される成形品の燃料透過係数力 0 (g'mm) / (m2-da y)以下であり、かつ引張弾性率が 600MPa以下であることが好ましい。 [0011] It is preferable that the molded article formed with a fuel barrier material force has a fuel permeability coefficient force of 0 (g'mm) / (m 2 -day) or less and a tensile elastic modulus of 600 MPa or less.
[0012] フッ素榭脂(A)の融点が 150°C〜330°Cであることが好ましい。 [0012] The melting point of the fluorinated resin (A) is preferably 150 ° C to 330 ° C.
[0013] フッ素ゴム(b) 1S ビ-リデンフルオライド Zテトラフルォロエチレン Zへキサフルォ 口プロピレン系フッ素ゴムであることが好まし 、。 [0013] Fluoro rubber (b) 1S Bilidene fluoride Z Tetrafluoroethylene Z Hexafluoropropylene fluororubber is preferred.
[0014] 架橋剤 (C)力 ポリヒドロキシィ匕合物であることが好まし 、。 [0014] Cross-linking agent (C) force It is preferable that it is a polyhydroxyl compound.
[0015] また、本発明は、前記燃料バリア性材料から形成される成形品に関する。 [0015] The present invention also relates to a molded article formed from the fuel barrier material.
[0016] さらに、本発明は、前記燃料バリア性材料力 形成される層を含む燃料チューブ、 燃料ホースに関する。 [0016] Further, the present invention relates to a fuel tube and a fuel hose including a layer in which the fuel barrier material force is formed.
[0017] なお、本明細書において、「フッ素濃度」は、フッ素ゴムポリマー中のフッ素原子の 占める重量割合を計算により算出した値である。  In the present specification, the “fluorine concentration” is a value obtained by calculating the weight ratio of fluorine atoms in the fluororubber polymer.
[0018] また、本明細書における「燃料」とは、ガソリン、灯油、軽油(ディーゼル油)、重油等 の自動車分野、工業分野、産業分野でエネルギーを得るために使用される物質を指 すが、生物由来のバイオアルコールやバイオディーゼル、バイオアルコールとガソリ ンとの混合燃料、バイオディーゼルと軽油(ディーゼル油)との混合燃料などを含む 概念である。  [0018] In addition, the term "fuel" in this specification refers to a substance used for obtaining energy in the automobile field, industrial field, and industrial field such as gasoline, kerosene, light oil (diesel oil), and heavy oil. The concept includes bio-derived alcohol and bio-diesel, mixed fuel of bio-alcohol and gasoline, and mixed fuel of bio-diesel and light oil (diesel oil).
発明を実施するための最良の形態 [0019] 本発明は、フッ素榭脂 (A) 95〜20重量0 /0および架橋フッ素ゴム (B) 80〜5重量0 /0 を含む燃料バリア性材料であって、 BEST MODE FOR CARRYING OUT THE INVENTION [0019] The present invention provides a fuel barrier material containing fluorine榭脂(A) 95 to 20 weight 0/0 and crosslinked fluororubber (B) 80 to 5 weight 0/0,
フッ素榭脂 (A)力 テトラフルォロエチレン(以下、 TFEとする)とへキサフルォロプロ ピレン(以下、 HFPとする)力もなる共重合体または TFEと HFPとパーフルォロ(アル キルビュルエーテル)(以下、 PAVEとする)力もなる共重合体であり、  Fluororesin (A) Force Tetrafluoroethylene (hereinafter referred to as TFE) and Hexafluoropropylene (hereinafter referred to as HFP) copolymer or TFE, HFP and Perfluoro (alkyl butyl ether) (hereinafter referred to as “HFP”) PAVE) is a copolymer that also has power,
架橋フッ素ゴム (B)のフッ素濃度が、 68重量%以上であり、かつその少なくとも一部 が架橋されて ヽる架橋フッ素ゴムである  The crosslinked fluororubber (B) has a fluorine concentration of 68% by weight or more, and at least a part of the crosslinked fluororubber is crosslinked.
燃料バリア性材料に関する。  The present invention relates to a fuel barrier material.
[0020] 本発明にお 、ては、フッ素榭脂 (A)として、 TFEと HFPからなる共重合体または T FEと HFPと PAVE力 なる共重合体を用いることにより、優れた燃料バリア性を有す る燃料バリア性材料が得られるものである。  In the present invention, an excellent fuel barrier property can be obtained by using a copolymer of TFE and HFP or a copolymer of TFE, HFP and PAVE force as the fluorine resin (A). It is possible to obtain a certain fuel barrier material.
[0021] TFEと HFPからなる共重合体としては、特に限定されないが、 TFE単位 70〜99モ ル%と HFP単位 1〜30モル0 /0からなる共重合体であることが好ましぐ TFE単位 80 〜95モル0 /0と HFP単位 5〜20モル0 /0力 なる共重合体であることがより好まし!/、。 T FE単位が 70モル%未満では機械物性が低下する傾向があり、 99モル%をこえると 融点が高くなりすぎ成形性が低下する傾向がある。 [0021] TFE and as a copolymer consisting of HFP, but are not limited to, TFE units 70-99 molar%, HFP units 1 to 30 mol 0/0 a copolymer is it is preferred instrument TFE units 80-95 mole 0/0 and HFP units 5 to 20 mol 0/0 and more preferably a force styrenesulfonate! /,. If the TFE unit is less than 70 mol%, the mechanical properties tend to decrease, and if it exceeds 99 mol%, the melting point becomes too high and the moldability tends to decrease.
[0022] また、 TFEおよび HFPからなる共重合体は、第 3成分を含有していてもよぐ第 3成 分としては TFEおよび HFPと共重合可能なものであればその種類は限定されな ヽ( ただし、 PAVEは除く)。たとえば、クロ口トリフルォロエチレン(以下、 CTFEとする)、 トリフルォロエチレン、へキサフルォロイソブテン、ビ-リデンフルオライド(以下、 VdF とする)、フッ化ビュル、一般式(1):  [0022] The type of the copolymer comprising TFE and HFP is not limited as long as it can be copolymerized with TFE and HFP as the third component which may contain the third component.ヽ (except PAVE). For example, black trifluoroethylene (hereinafter referred to as CTFE), trifluoroethylene, hexafluoroisobutene, vinylidene fluoride (hereinafter referred to as VdF), fluorinated bulu, general formula (1) :
CH =CX1 (CF ) X2 (1) CH = CX 1 (CF) X 2 (1)
2 2 n  2 2 n
(式中、 X1は、水素原子またはフッ素原子であり、 X2は、水素原子、フッ素原子または 塩素原子であり、 nは、 1〜10の整数である) (Wherein, X 1 is a hydrogen atom or a fluorine atom, X 2 is a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer of 1 to 10)
で示されるフルォロォレフインなどをあげることができる。  Fluororefine etc. indicated by
[0023] TFE、 HFP、上記第 3成分モノマー力 なる共重合体としては、特に限定されな!、 力 TFE単位 67〜98. 9モル0 /0、 HFP単位 1〜30モル0 /0、上記第 3成分モノマー単 位 0. 1〜3モル%力 なる共重合体であることが好ましぐ TFE単位 78. 5〜94. 5モ ル0 /0、 HFP単位 5〜20モル0 /0、上記第 3成分モノマー単位 0. 3〜1. 5モル0 /0力らな る共重合体であることがより好まし 、。 TFE単位が 67モル%未満では機械物性が低 下する傾向があり、 98. 9モル%をこえると成形性が低下する傾向がある。 [0023] TFE, HFP, Examples of the third component monomer force styrenesulfonate, Do limited !, force TFE units 67 to 98.9 mole 0/0, HFP units 1 to 30 mol 0/0, the Third component monomer unit 0.1 to 3 mol% Powerful copolymer is preferred TFE unit 78.5 to 54.5 Le 0/0, HFP units 5 to 20 mol 0/0, the third component monomer units from 0.3 to 1.5 mol 0/0 and more preferably a Chikararana Ru copolymer. If the TFE unit is less than 67 mol%, the mechanical properties tend to decrease, and if it exceeds 98.9 mol%, the moldability tends to decrease.
[0024] TFE、 HFP、 PAVEからなる共重合体としては、特に限定されな 、が、 TFE単位 6 7〜98. 9モル0 /0、 HFP単位 1〜30モル0 /0、 PAVE単位 0. 1〜3モル0 /0からなる共 重合体であることが好ましぐ TFE単位 78. 5〜94. 5モル0 /0、 HFP単位 5〜20モル %、PAVE単位 0. 3〜1. 5モル0 /0からなる共重合体であることがより好ましい。 TFE 単位が 67モル%未満では機械物性が低下する傾向があり、 98. 9モル%をこえると 融点が高くなりすぎ成形性が低下する傾向がある。 [0024] TFE, HFP, as the copolymer consisting of PAVE, limited Do, but, TFE unit 6 from 7 to 98.9 mole 0/0, HFP units 1 to 30 mol 0/0, PAVE units 0. 1-3 mole 0/0 a copolymer is it is preferred instrument TFE units 78.5 to 94.5 mole 0/0, HFP units 5 to 20 mol%, PAVE units from 0.3 to 1.5 and more preferably a copolymer consisting mol 0/0. If the TFE unit is less than 67 mol%, the mechanical properties tend to decrease, and if it exceeds 98.9 mol%, the melting point becomes too high and the moldability tends to decrease.
[0025] ここで、 PAVEとしては、パーフルォロ(メチルビ-ルエーテル)、パーフルォロ(ェ チルビ-ルエーテル)、パーフルォロ(プロピルビュルエーテル)などの炭素数 1〜5 のアルキル基を有する PAVEをあげることができる。  Here, examples of PAVE include PAVE having an alkyl group having 1 to 5 carbon atoms such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and perfluoro (propyl butyl ether).
[0026] また、フッ素榭脂(A)の融点は、 150〜330°Cであることが好ましぐ 150〜310°C であることがより好ましぐ 150〜290°Cであることがさらに好ましぐ 170〜270°Cで あることが特に好ましい。フッ素榭脂 (A)の融点が 150°C未満であると、得られる燃料 ノ リア性材料の耐熱性が低下する傾向があり、 330°Cを超えると、フッ素榭脂 (A)の 存在下、フッ素榭脂 (A)の溶融条件下にて、ゴム (b)を動的に架橋する場合、フッ素 榭脂 (A)の融点以上に溶融温度を設定する必要があるが、その際にフッ素ゴム (b) が熱劣化する傾向がある。  [0026] Further, the melting point of the fluorinated resin (A) is preferably 150 to 330 ° C, more preferably 150 to 310 ° C, and further preferably 150 to 290 ° C. It is particularly preferably 170 to 270 ° C. If the melting point of fluorine resin (A) is less than 150 ° C, the heat resistance of the resulting fuel noble material tends to decrease, and if it exceeds 330 ° C, it will be in the presence of fluorine resin (A). When the rubber (b) is dynamically cross-linked under the melting condition of the fluorine resin (A), it is necessary to set the melting temperature above the melting point of the fluorine resin (A). Rubber (b) tends to heat deteriorate.
[0027] 本発明で用いる架橋フッ素ゴム (B)としては、フッ素濃度が 68重量%以上であり、 かつ、その少なくとも一部が架橋されているフッ素ゴムであればよぐとくに制限される ものではない。  [0027] The crosslinked fluororubber (B) used in the present invention is not particularly limited as long as it is a fluororubber having a fluorine concentration of 68% by weight or more and at least a part of which is crosslinked. Absent.
[0028] 架橋フッ素ゴム(B)のフッ素濃度は、 68重量%以上であり、 68〜75重量%である ことが好ましぐ 69〜74重量%であることがより好ましぐ 70〜73重量%であることが さらに好ましい。フッ素濃度が 68重量%未満であると得られる燃料バリア性材料の機 械物性が低下する傾向がある。  [0028] The fluorine concentration of the crosslinked fluororubber (B) is 68 wt% or more, preferably 68 to 75 wt%, more preferably 69 to 74 wt%, 70 to 73 wt%. % Is more preferable. When the fluorine concentration is less than 68% by weight, the mechanical properties of the obtained fuel barrier material tend to be lowered.
[0029] 架橋フッ素ゴム (B)が、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融条件下に て、フッ素ゴム (b)を架橋剤 (C)と共に、動的に架橋処理したものであることが得られ る燃料バリア性材料の成形性が良好となり、かつ機械物性が向上する点力 好まし い。ここで、動的に架橋処理するとは、バンバリ一ミキサー、加圧-一ダー、押出機等 を使用して、フッ素ゴム (b)を溶融混練と同時に動的に架橋させることをいう。これら の中でも、高剪断力を加えることができる点で、二軸押出機等の押出機を用いること が好ましい。動的に架橋処理することで、フッ素榭脂 (A)と架橋フッ素ゴム (B)の相 構造および架橋フッ素ゴム (B)の分散を制御することができる。 [0029] The cross-linked fluororubber (B) is dynamically added to the fluororubber (b) together with the cross-linking agent (C) under the melting condition of the fluorocobalt (A) in the presence of the fluorocobalt (A). It is obtained that it has been cross-linked The fuel barrier material that has good moldability and improved mechanical properties is preferred. Here, the dynamic cross-linking treatment means that the fluororubber (b) is dynamically cross-linked simultaneously with melt kneading using a Banbury mixer, pressurizer / extruder, extruder or the like. Among these, it is preferable to use an extruder such as a twin screw extruder because a high shear force can be applied. By dynamically performing the crosslinking treatment, the phase structure of the fluorocarbon resin (A) and the crosslinked fluororubber (B) and the dispersion of the crosslinked fluororubber (B) can be controlled.
[0030] フッ素ゴム(b)としては、たとえば、パーフルオロフッ素ゴム(bl)、非パーフルオロフ ッ素ゴム (b2)などがあげられる。  [0030] Examples of the fluororubber (b) include perfluorofluororubber (bl) and non-perfluorofluororubber (b2).
[0031] パーフルオロフッ素ゴム(bl)としては、 TFEZPAVE系共重合体、 TFEZHFPZ PAVE系共重合体などがあげられる。  [0031] Examples of the perfluoro fluorine rubber (bl) include a TFEZPAVE copolymer and a TFEZHFPZ PAVE copolymer.
[0032] 非パーフルオロフッ素ゴム(b2)としては、たとえば、 VdF系重合体、 TFEZプロピ レン系共重合体などがあげられ、これらをそれぞれ単独で、または本発明の効果を 損なわな 、範囲で任意に組み合わせて用いることができる。  [0032] Examples of the non-perfluorofluororubber (b2) include VdF-based polymers and TFEZ-propylene-based copolymers, which are used alone or in a range that does not impair the effects of the present invention. Any combination can be used.
[0033] また、前記パーフルオロフッ素ゴム(bl)や非パーフルオロフッ素ゴム(b2)として例 示したものは主モノマーの構成であり、架橋用モノマーや変性モノマー等を共重合し たものも好適に用いることができる。架橋用モノマーや変性モノマーとしては、ヨウ素 原子、臭素原子、二重結合を含むものなどの公知の架橋用モノマー、移動剤、公知 のエチレン性不飽和化合物などの変性モノマーなどを使用することができる。  [0033] The examples of the perfluoro fluororubber (bl) and the non-perfluorofluororubber (b2) are the constitution of the main monomer, and those obtained by copolymerizing a crosslinking monomer, a modified monomer, etc. are also suitable. Can be used. As the crosslinking monomer or modifying monomer, a known crosslinking monomer such as an iodine atom, bromine atom or double bond-containing monomer, a transfer agent, a modified monomer such as a known ethylenically unsaturated compound, or the like can be used. .
[0034] 前記 VdF系重合体としては、具体的には、 VdFZHFP系共重合体、 VdF/TFE ZHFP系共重合体、 VdFZTFEZプロピレン系共重合体、 VdFZエチレン ZHFP 系共重合体、 VdFZTFEZPAVE系共重合体、 VdFZPAVE系共重合体、 VdF ZCTFE系共重合体などをあげることができる。さらに具体的には、 VdF25〜85モ ル%と、 VdFと共重合可能な少なくとも 1種の他の単量体 75〜 15モル%とからなる 含フッ素共重合体であることが好まし 、。  [0034] Specific examples of the VdF polymer include a VdFZHFP copolymer, a VdF / TFE ZHFP copolymer, a VdFZTFEZ propylene copolymer, a VdFZ ethylene ZHFP copolymer, and a VdFZTFEZPAVE copolymer. Examples thereof include VdFZPAVE copolymer, VdF ZCTFE copolymer and the like. More specifically, it is preferably a fluorine-containing copolymer comprising 25 to 85 mol% of VdF and 75 to 15 mol% of at least one other monomer copolymerizable with VdF.
[0035] ここで、 VdFと共重合可能な少なくとも 1種の他の単量体としては、たとえば、 TFE、 CTFE、トリフルォロエチレン、 HFP、トリフルォロプロピレン、テトラフルォロプロピレ ン、ペンタフルォロプロピレン、トリフルォロブテン、テトラフルォロイソブテン、 PAVE 、フッ化ビュルなどの含フッ素単量体、エチレン、プロピレン、アルキルビュルエーテ ルなどの非フッ素単量体があげられる。これらをそれぞれ単独で、または、任意に組 み合わせて用いることができる。 Here, as at least one other monomer copolymerizable with VdF, for example, TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, penta Fluorinated monomers such as fluoropropylene, trifluorobutene, tetrafluoroisobutene, PAVE, fluorinated bur, ethylene, propylene, alkyl butyl ether Non-fluorine monomers such as These can be used alone or in any combination.
[0036] 前記フッ素ゴムの中でも、耐熱性、圧縮永久ひずみ、加工性、コストの点から、 VdF 単位を含むフッ素ゴムであることが好ましぐ VdF単位と HFP単位とを有するフッ素ゴ ムであることがより好ましい。  [0036] Among the fluororubbers, a fluororubber containing a VdF unit and an HFP unit is preferred from the viewpoint of heat resistance, compression set, workability, and cost. It is more preferable.
[0037] また、圧縮永久ひずみが良好な点から、 VdFZHFP系フッ素ゴム、 VdFZTFEZ HFP系フッ素ゴム、 TFEZプロピレン系フッ素ゴムからなる群より選ばれる少なくとも 1種のゴムであることが好ましぐ VdFZTFEZHFP系フッ素ゴムであることがより好 ましい。  [0037] From the viewpoint of good compression set, VdFZTFEZHFP is preferably at least one rubber selected from the group consisting of VdFZHFP fluororubber, VdFZTFEZ HFP fluororubber, and TFEZ propylene fluororubber. More preferred is fluororubber.
[0038] 本発明に使用されるフッ素ゴム (b)は、通常の乳化重合法により製造することができ る。重合時の温度、時間などの重合条件としては、モノマーの種類や目的とするエラ ストマーにより適宜決定すればよい。  [0038] The fluororubber (b) used in the present invention can be produced by a usual emulsion polymerization method. Polymerization conditions such as temperature and time during polymerization may be appropriately determined depending on the type of monomer and the target elastomer.
[0039] 本発明で用いる架橋剤 (C)としては、架橋するフッ素ゴム (b)の種類や溶融混練条 件に応じて、適宜選択することができる。 [0039] The crosslinking agent (C) used in the present invention can be appropriately selected according to the type of the fluororubber (b) to be crosslinked and the melt-kneading conditions.
[0040] 本発明で用いられる架橋系は、フッ素ゴム (b)に架橋性基 (キュアサイト)が含まれ る場合は、キュアサイトの種類によって、または得られる成形品などの用途により適宜 選択すればよい。架橋系としては、ポリオール架橋系、有機過酸化物架橋系および ポリアミン架橋系のいずれも採用できる。 [0040] When the fluororubber (b) contains a crosslinkable group (cure site), the cross-linking system used in the present invention is appropriately selected depending on the type of the cure site or the use of the molded product to be obtained. That's fine. As the crosslinking system, any of a polyol crosslinking system, an organic peroxide crosslinking system, and a polyamine crosslinking system can be employed.
[0041] ここで、ポリオール架橋系により架橋する場合は、架橋点に炭素 酸素結合を有し ており、圧縮永久歪みが小さぐ成形性に優れているという特徴がある点で好適であ る。 [0041] Here, cross-linking by a polyol cross-linking system is preferable in that it has a carbon-oxygen bond at the cross-linking point, and has a feature of being excellent in moldability with a small compression set.
[0042] 有機過酸化物架橋系により架橋する場合は、架橋点に炭素 炭素結合を有してい るので、架橋点に炭素 酸素結合を有するポリオール架橋系および炭素 窒素二 重結合を有するポリアミン架橋系に比べて、耐薬品性および耐スチーム性に優れて いるという特徴がある。  [0042] In the case of crosslinking by an organic peroxide crosslinking system, since it has a carbon-carbon bond at the crosslinking point, a polyol crosslinking system having a carbon-oxygen bond at the crosslinking point and a polyamine crosslinking system having a carbon-nitrogen double bond. Compared to the above, it is characterized by excellent chemical resistance and steam resistance.
[0043] ポリアミン架橋により架橋してなる場合は、架橋点に炭素 窒素二重結合を有して いるものであり、動的機械特性に優れているという特徴がある。しかし、ポリオール架 橋系または有機過酸化物架橋系架橋剤を用いて架橋する場合に比べて、圧縮永久 歪みが大きくなる傾向がある。 [0043] When cross-linked by polyamine cross-linking, it has a carbon-nitrogen double bond at the cross-linking point and is characterized by excellent dynamic mechanical properties. However, compared with the case of crosslinking using a polyol crosslinking system or an organic peroxide crosslinking system, the compression permanent There is a tendency for distortion to increase.
[0044] したがって、本発明では、ポリオール架橋系または有機過酸化物架橋系の架橋剤 を用いることが好ましぐポリオール架橋系の架橋剤を用いることがより好まし 、。  [0044] Therefore, in the present invention, it is more preferable to use a polyol crosslinking system or an organic peroxide crosslinking system. It is more preferable to use a polyol crosslinking system.
[0045] 本発明における架橋剤 (C)は、ポリアミン系、ポリオール系、有機過酸化物系の架 橋剤を使用することができる。  [0045] As the crosslinking agent (C) in the present invention, a polyamine-based, polyol-based or organic peroxide-based crosslinking agent can be used.
[0046] ポリアミン架橋剤としては、たとえば、へキサメチレンジァミンカーバメート、 N, N, 一 ジシンナミリデン 1, 6 へキサメチレンジァミン、 4, 4 ' —ビス(アミノシクロへキシノレ )メタン力ルバメートなどのポリアミンィ匕合物があげられる。これらの中でも、 N, N' - ジシンナミリデン 1, 6 へキサメチレンジァミンが好まし!/、。  [0046] Examples of the polyamine crosslinking agent include hexamethylenediamine carbamate, N, N, 1-disinnamylidene 1, 6 hexamethylenediamine, 4, 4'-bis (aminocyclohexenole) methane power rubamate. And polyamine compounds. Of these, N, N'-dicinnamylidene 1, 6 hexamethylenediamine is preferred!
[0047] ポリオール架橋剤としては、従来、フッ素ゴムの架橋剤として知られて 、る化合物を 用いることができ、たとえば、ポリヒドロキシィ匕合物、特に、耐熱性に優れる点力もポリ ヒドロキシ芳香族化合物が好適に用いられる。  [0047] As the polyol cross-linking agent, a compound conventionally known as a fluororubber cross-linking agent can be used. For example, a polyhydroxy compound, particularly, a polyhydroxy aromatic compound having excellent heat resistance. A compound is preferably used.
[0048] 上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、 2, 2 ビス( 4 ヒドロキシフエ-ル)プロパン(以下、ビスフエノール Aという)、 2, 2 ビス(4 ヒド ロキシフエ-ル)パーフルォロプロパン(以下、ビスフエノール AFという)、レゾルシン、 1, 3 ジヒドロキシベンゼン、 1, 7 ジヒドロキシナフタレン、 2, 7 ジヒドロキシナフ タレン、 1, 6 ジヒドロキシナフタレン、 4, 4'ージヒドロキシジフエニル、 4, 4' ジヒド ロキシスチルベン、 2, 6 ジヒドロキシアントラセン、ヒドロキノン、カテコール、 2, 2— ビス(4—ヒドロキシフエ-ル)ブタン(以下、ビスフエノール Bという)、 4, 4—ビス(4— ヒドロキシフエ-ル)吉草酸、 2, 2 ビス(4 ヒドロキシフエ-ル)テトラフルォロジクロ 口プロパン、 4, 4,ージヒドロキシジフエニノレスノレホン、 4, 4,ージヒドロキシジフエ二ノレ ケトン、トリ(4—ヒドロキシフエ-ル)メタン、 3, 3' , 5, 5, 一テトラクロ口ビスフエノール A、 3, 3' , 5, 5, 一テトラブロモビスフェノール Aなどがあげられる。これらのポリヒドロ キシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、 酸を用いて共重合体を凝祈した場合は、上記金属塩は用いな 、ことが好ま 、。  [0048] The polyhydroxy aromatic compound is not particularly limited. For example, 2, 2 bis (4 hydroxyphenol) propane (hereinafter referred to as bisphenol A), 2, 2 bis (4 hydroxyphenol). ) Perfluoropropane (hereinafter referred to as bisphenol AF), resorcin, 1,3 dihydroxybenzene, 1,7 dihydroxynaphthalene, 2,7 dihydroxynaphthalene, 1,6 dihydroxynaphthalene, 4,4'-dihydroxydiphenyl 4, 4 'dihydroxystilbene, 2, 6 dihydroxyanthracene, hydroquinone, catechol, 2, 2-bis (4-hydroxyphenol) butane (hereinafter referred to as bisphenol B), 4, 4-bis (4— Hydroxyphenol) Valeric acid, 2, 2 Bis (4 hydroxyphenol) Tetrafluorodiclopropane Propane, 4, 4, Dihydroxydiph Ninoles norephone, 4, 4, -dihydroxydiphenyl ketone, tri (4-hydroxyphenol) methane, 3, 3 ', 5, 5, monotetrachlorobisphenol A, 3, 3', 5, 5, One tetrabromobisphenol A. These polyhydroxy aromatic compounds may be alkali metal salts, alkaline earth metal salts, and the like, but it is preferable that the above metal salts are not used when the copolymer is prayed using an acid. ,.
[0049] 有機過酸化物架橋系の架橋剤としては、熱や酸化還元系の存在下で容易にパー ォキシラジカルを発生し得る有機過酸ィ匕物であればよぐ具体的には、たとえば 1, 1 ビス(t ブチルパーォキシ)ー 3, 5, 5 トリメチルシクロへキサン、 2, 5 ジメチル へキサン 2, 5 ジヒドロパーオキサイド、ジー t ブチルパーオキサイド、 tーブチ ルクミルパーオキサイド、ジクミルパーオキサイド、 a , α ビス(t ブチルパーォキ シ)—p ジイソプロピルベンゼン、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキ シ)へキサン、 2, 5 ジメチルー 2, 5 ジ(t—ブチルパーォキシ)一へキシンー3、ベ ンゾィルパーオキサイド、 t ブチルパーォキシベンゼン、 t ブチルパーォキシマレ イン酸、 t—ブチルパーォキシイソプロピルカーボネートなどをあげることができる。こ れらの中でも、 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサンが好まし い。 [0049] The organic peroxide crosslinking type crosslinking agent may be any organic peroxide compound that can easily generate a peroxide radical in the presence of heat or a redox system. , 1 Bis (t-butylperoxy)-3, 5, 5 Trimethylcyclohexane, 2, 5 Dimethyl Hexane 2, 5 Dihydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, a, α-bis (t-butyl peroxide) —p diisopropylbenzene, 2, 5 dimethyl-2,5 di ( t-butyl peroxide) hexane, 2,5 dimethyl-2,5 di (t-butylperoxy) monohexene-3, benzoyl peroxide, t-butylperoxybenzene, t-butylperoxymaleic acid, t —Butyl peroxyisopropyl carbonate and the like can be mentioned. Of these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is preferred.
[0050] これらの中でも、得られる成形品などの圧縮永久歪みが小さぐ成形性に優れてい るという点から、ポリヒドロキシィ匕合物が好ましぐ耐熱性が優れることからポリヒドロキ シ芳香族化合物がより好ましぐビスフエノール AFがさらに好ましい。  [0050] Among these, polyhydroxy aromatic compounds are preferred because polyhydroxy compounds are excellent in heat resistance because they are excellent in moldability with small compression set such as molded articles to be obtained. Bisphenol AF is more preferred.
[0051] また、ポリオール架橋系においては、ポリオール系架橋剤と併用して、通常、架橋 促進剤 (D)を用いる。架橋促進剤 (D)を用いると、フッ素ゴム主鎖の脱フッ酸反応に おける分子内二重結合の形成を促進することにより架橋反応を促進することができる  [0051] In the polyol crosslinking system, a crosslinking accelerator (D) is usually used in combination with the polyol crosslinking agent. When the crosslinking accelerator (D) is used, the crosslinking reaction can be promoted by promoting the formation of an intramolecular double bond in the dehydrofluorination reaction of the fluororubber main chain.
[0052] ポリオール架橋系の架橋促進剤 (D)としては、一般にォ -ゥム化合物が用いられる 。ォ -ゥム化合物としては特に限定されず、たとえば、第 4級アンモ-ゥム塩等のアン モニゥム化合物、第 4級ホスホニゥム塩等のホスホニゥム化合物、ォキソニゥム化合物 、スルホニゥム化合物、環状ァミン、 1官能性アミンィ匕合物などがあげられ、これらの 中でも第 4級アンモ-ゥム塩、第 4級ホスホ-ゥム塩が好まし 、。 [0052] As the cross-linking accelerator (D) of the polyol cross-linking system, an organic compound is generally used. Ammonium compounds are not particularly limited. For example, ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, monofunctional compounds Amine compounds are preferred, and among these, quaternary ammonium salts and quaternary phospho- um salts are preferred.
[0053] 第 4級アンモ-ゥム塩としては特に限定されず、たとえば、 8—メチル 1, 8 ジァ ザビシクロ [5, 4, 0]— 7 ゥンデセ -ゥムクロリド、 8—メチルー 1 , 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ-ゥムアイオダイド、 8—メチルー 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ -ゥムハイドロキサイド、 8—メチル 1, 8 ジァザビシクロ [5, [0053] The quaternary ammonium salt is not particularly limited. For example, 8-methyl 1,8 diazabicyclo [5, 4, 0] -7 undecese-um chloride, 8-methyl-1,8 diazabicyclo [ 5, 4, 0] — 7 Hundesaceum iodide, 8—Methyl-1, 8 diazabicyclo [5, 4, 0] — 7 Hundesse-um hydroxide, 8-methyl 1,8 diazabicyclo [5,
4, 0]— 7 ゥンデセ-ゥムメチルスルフェート、 8 ェチル 1, 8 ジァザビシクロ [4, 0] —7undecem methylsulfate, 8 ethyl 1,8 diazabicyclo [
5, 4, 0]— 7 ゥンデセ-ゥムブロミド、 8 プロピル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ-ゥムブロミド、 8 ドデシルー 1, 8 ジァザビシクロ [5, 4, 0] - 7 —ゥンデセ -ゥムクロリド、 8 ドデシル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥン デセ -ゥムハイドロキサイド、 8 エイコシル— 1, 8 ジァザビシクロ [5, 4, 0] - 7- ゥンデセ -ゥムクロリド、 8—テトラコシル 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥン デセ -ゥムクロリド、 8 ベンジル一 1, 8 ジァザビシクロ [5, 4, 0]— 7 ゥンデセ- ゥムクロリド(以下、 DBU— Bとする)、 8 ベンジル一 1, 8 ジァザビシクロ [5, 4, 0] 7 ゥンデセ -ゥムハイドロキサイド、 8 フエネチルー 1, 8 ジァザビシクロ [5, 4 , 0]— 7 ゥンデセ -ゥムクロリド、 8— (3—フエ-ルプロピル)— 1, 8 ジァザビシク 口 [5, 4, 0]— 7 ゥンデセ -ゥムクロリドなどがあげられる。これらの中でも、架橋性、 架橋物の物性の点から、 DBU— Bが好ましい。 5, 4, 0] —7 Undecem-bromide, 8 Propyl 1,8 Diazabicyclo [5, 4, 0] —7 Undecem-bromide, 8 Dodecyl 1,8 Diazabicyclo [5, 4, 0]-7 —Undece- Um chloride, 8 dodecyl 1, 8 diazabicyclo [5, 4, 0] — 7 ung Dece-um hydroxide, 8 eicosyl-1,8 diazabicyclo [5,4,0] -7-undece-um chloride, 8-tetracosyl1,8 diazabicyclo [5,4,0] —7undece -Um chloride, 8 benzyl-1,1,8 diazabicyclo [5,4,0] —7 undese-um chloride (hereinafter referred to as DBU—B), 8 benzyl-1,1,8 diazabicyclo [5, 4, 0] 7 undese Muhydroxide, 8 Phenethyl- 1,8 Diazabicyclo [5, 4, 0] — 7 Undece-um chloride, 8-— (3-Felpropyl) — 1, 8 Diazabi-sic mouth [5, 4, 0] — 7 Undense- Um chloride. Among these, DBU-B is preferable from the viewpoint of the crosslinkability and the physical properties of the cross-linked product.
[0054] また、第 4級ホスホ-ゥム塩としては特に限定されず、たとえば、テトラブチルホスホ -ゥムクロリド、ベンジルトリフエ-ルホスホ -ゥムクロリド(以下、 BTPPCとする)、ベン ジルトリメチルホスホ-ゥムクロリド、ベンジルトリブチルホスホ-ゥムクロリド、トリブチル ァリルホスホ-ゥムクロリド、トリブチルー 2—メトキシプロピルホスホ-ゥムクロリド、ベ ンジルフエ-ル(ジメチルァミノ)ホスホ-ゥムクロリドなどをあげることができ、これらの 中でも、架橋性、架橋物の物性の点から、ベンジルトリフ -ルホスホ -ゥムクロリド( BTPPC)が好ましい。 [0054] The quaternary phospho-um salt is not particularly limited, and examples thereof include tetrabutyl phospho-um chloride, benzyl triphenyl phospho-um chloride (hereinafter referred to as BTPPC), benzyl trimethyl phospho-um chloride, Examples thereof include benzyltributylphosphomethylene chloride, tributylarylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, and benzylphenol (dimethylamino) phosphonium chloride. Among these, crosslinkability and physical properties of the crosslinked product From the above, benzyltrif-phosphoro-um chloride (BTPPC) is preferred.
[0055] また、架橋促進剤 (D)として、第 4級アンモ-ゥム塩、第 4級ホスホ-ゥム塩とビスフ ェノール AFの固溶体、特開平 11— 147891号公報に開示されている塩素フリー架 橋促進剤を用いることもできる。  [0055] Further, as a crosslinking accelerator (D), a quaternary ammonium salt, a solid solution of a quaternary phosphonium salt and bisphenol AF, chlorine disclosed in JP-A-11-147891 Free bridge accelerators can also be used.
[0056] 有機過酸化物の架橋促進剤 (D)としては、たとえば、トリァリルシアヌレート、トリァリ ルイソシァヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、 N, N, - m—フエ-レンビスマレイミド、ジプロパギルテレフタレート、ジァリルフタレート、テトラ ァリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリァリルイ ソシァヌレー卜(1, 3, 5 HJス(2, 3, 3 卜!;フノレ才 P 2 プ Pぺニノレ) 1, 3, 5— トリアジン— 2, 4, 6 トリオン)、トリス(ジァリルァミン)— S トリァジン、亜リン酸トリア リル、 N, N ジァリルアクリルアミド、 1, 6 ジビ-ルドデカフルォ口へキサン、へキサ ァリルホスホルアミド、 N, N, Ν' , Ν,一テトラァリルフタルアミド、 Ν, Ν, Ν' , Ν,一テ トラァリルマロンアミド、トリビュルイソシァヌレート、 2,4,6 トリビュルメチルトリシロキ サン、トリ(5 ノルボルネン一 2—メチレン)シァヌレート、トリアリルホスファイトなどが あげられる。これらの中でも、架橋性、架橋物の物性の点から、トリアリルイソシァヌレ 一 HTAIC)が好ましい。 [0056] Examples of the crosslinking accelerator (D) for organic peroxides include triaryl cyanurate, triaryl isocyanurate (TAIC), triacryl formal, triallyl trimellitate, N, N, -m— Phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalate amide, triallyl phosphate, bismaleimide, fluorinated triaryl isocyanate (2, 3, 3 卜! ; Funore age P 2 P P peninole) 1, 3, 5— Triazine— 2, 4, 6 Trione), Tris (Dialylamine) — S Triazine, Triaryl phosphite, N, N diallyacrylamide, 1, 6 Divinyldodecafluor hexane, hexaryl phosphoramide, N, N, Ν ', Ν, monotetraallyl phthalamide, Ν, Ν, Ν', Ν, 1 tetraallyl malonami , Tri Bulle iso Xia isocyanurate, 2,4,6 Bulle methyltrimethoxysilane siloxane, tri (5-norbornene one 2-methylene) Shianureto, triallyl phosphite can give. Among these, triallyl isocyanurate HTAIC) is preferable from the viewpoint of crosslinkability and physical properties of the cross-linked product.
[0057] 架橋剤(C)の配合量としては、フッ素ゴム (b) 100重量部に対して、 0. 1〜: LO重量 部であることが好ましぐより好ましくは 0. 3〜5重量部である。架橋剤(C)が、 0. 1重 量部未満であると、フッ素ゴム (b)の架橋が充分に進行せず、得られる燃料バリア性 材料の耐熱性および耐油性が低下する傾向があり、 10重量部をこえると、得られる 燃料バリア性材料の成形加工性が低下する傾向がある。  [0057] The amount of the crosslinking agent (C) to be added is preferably 0.1 to: LO parts by weight, more preferably 0.3 to 5 parts by weight with respect to 100 parts by weight of the fluororubber (b). Part. If the cross-linking agent (C) is less than 0.1 parts by weight, the cross-linking of the fluororubber (b) does not proceed sufficiently, and the resulting fuel barrier material tends to decrease the heat resistance and oil resistance. If the amount exceeds 10 parts by weight, the moldability of the resulting fuel barrier material tends to decrease.
[0058] また、架橋剤 (C)および架橋促進剤 (D)の添加量としては、動的に架橋処理すると きの温度における加硫 90%完了時間 T90が 2〜6分になるように調整された量であ ることが好ましぐ加硫 90%完了時間 T90が 3〜5分になるように調整された量である ことがより好ま 、。最適加硫時間 T90が 2分未満となる量であると架橋ゴムの分散が 不均一かつ粗大化する傾向があり、 6分をこえる量となるとゴムが架橋するのに長時 間を要し、かつ完全には架橋しなくなる傾向がある。  [0058] The addition amount of the crosslinking agent (C) and the crosslinking accelerator (D) was adjusted so that 90% vulcanization time T90 at the temperature during dynamic crosslinking treatment was 2 to 6 minutes. 90% completion time is more preferably the amount adjusted so that the T90 is 3-5 minutes. If the optimum vulcanization time T90 is less than 2 minutes, the dispersion of the crosslinked rubber tends to be uneven and coarse, and if it exceeds 6 minutes, it takes a long time for the rubber to crosslink. And there is a tendency not to completely crosslink.
[0059] ここで、加硫 90%完了時間 T90とは、フッ素ゴム (b)を 1次プレス加硫時に JSR型キ ユラストメータ Π型、および V型を用いて、動的加硫時の温度における加硫曲線を求 め、最大トルク値の 90%の値に達する時間を加硫 90%完了時間 (T90)とする。  [0059] Here, vulcanization 90% completion time T90 is the temperature at the time of dynamic vulcanization using JSR type chilastometer Π type and V type at the time of primary press vulcanization of fluoro rubber (b). Obtain the vulcanization curve, and the time to reach 90% of the maximum torque value is the 90% completion time (T90).
[0060] 溶融条件下とは、フッ素榭脂 (A)およびフッ素ゴム (b)が溶融する温度下を意味す る。溶融する温度は、それぞれフッ素榭脂 (A)およびフッ素ゴム (b)のガラス転移温 度および Zまたは融点により異なるが、 120〜330°Cであることが好ましぐ 130-32 0°Cであることがより好ましい。温度が、 120°C未満であると、フッ素榭脂 (A)とフッ素 ゴム (b)の間の分散が粗大化する傾向があり、 330°Cをこえると、ゴム (b)が熱劣化す る傾向がある。  [0060] The melting condition means a temperature at which the fluororesin (A) and the fluororubber (b) are melted. The melting temperature varies depending on the glass transition temperature and the Z or melting point of fluorocarbon resin (A) and fluororubber (b), respectively, but is preferably 120-330 ° C. More preferably. If the temperature is less than 120 ° C, the dispersion between the fluorocarbon resin (A) and the fluororubber (b) tends to become coarse, and if it exceeds 330 ° C, the rubber (b) will be thermally deteriorated. There is a tendency to.
[0061] 得られた燃料バリア性材料は、フッ素榭脂 (A)が連続相を形成しかつ架橋フッ素ゴ ム (B)が分散相を形成する構造、またはフッ素榭脂 (A)と架橋フッ素ゴム (B)が共連 続を形成する構造を有することができるが、その中でも、フッ素榭脂 (A)が連続相を 形成しかつ架橋フッ素ゴム (B)が分散相を形成する構造を有することが好ま 、。  [0061] The obtained fuel barrier material has a structure in which the fluorine resin (A) forms a continuous phase and the crosslinked fluorine rubber (B) forms a dispersed phase, or the fluorine resin (A) and the crosslinked fluorine. The rubber (B) can have a structure that forms a co-continuity, and among them, the fluorocarbon resin (A) forms a continuous phase and the cross-linked fluororubber (B) has a structure that forms a dispersed phase. I prefer that.
[0062] フッ素ゴム (b)が、分散当初マトリックスを形成して!/、た場合でも、架橋反応の進行 に伴い、フッ素ゴム (b)が架橋フッ素ゴム (B)となることで溶融粘度が上昇し、架橋フ ッ素ゴム (B)が分散相になる、またはフッ素榭脂 (A)との共連続相を形成するもので ある。 [0062] Even when the fluororubber (b) forms a matrix at the beginning of dispersion! /, The melt viscosity is increased by the fluororubber (b) becoming the cross-linked fluororubber (B) as the crosslinking reaction proceeds. Rise and bridge The silicon rubber (B) becomes a dispersed phase or forms a co-continuous phase with the fluorine resin (A).
[0063] このような構造を形成すると、本発明の燃料バリア性材料は、優れた耐熱性、耐薬 品性および耐油性を示すと共に、優れた耐燃料透過性と柔軟性を有することとなる。 その際、架橋フッ素ゴム (B)の平均分散粒子径は、 0. 01〜30 /ζ πιであることが好ま しい。平均分散粒子径が、 0. 01 m未満であると、流動性が低下する傾向があり、 3 0 mをこえると、得られる燃料バリア性材料の強度が低下する傾向がある。  [0063] When such a structure is formed, the fuel barrier material of the present invention exhibits excellent heat resistance, chemical resistance, and oil resistance, and also has excellent fuel permeation resistance and flexibility. At that time, the average dispersed particle size of the crosslinked fluororubber (B) is preferably 0.01 to 30 / ζ πι. If the average dispersed particle size is less than 0.01 m, the fluidity tends to decrease, and if it exceeds 30 m, the strength of the resulting fuel barrier material tends to decrease.
[0064] また、本発明の燃料バリア性材料は、その好まし!/、形態であるフッ素榭脂 (A)が連 続相を形成し、かつ架橋フッ素ゴム (B)が分散相を形成する構造の一部に、フッ素 榭脂 (A)と架橋フッ素ゴム (B)との共連続構造を含んで 、ても良!、。  [0064] In addition, the fuel barrier material of the present invention is preferred and / or the form of the fluorocarbon resin (A) forms a continuous phase, and the crosslinked fluororubber (B) forms a dispersed phase. A part of the structure may include a co-continuous structure of fluorine resin (A) and crosslinked fluororubber (B).
[0065] また、本発明の燃料バリア性材料は、フッ素榭脂 (A) 95〜20重量%、架橋フッ素 ゴム (B) 5〜80重量0 /0からなることが好ましぐフッ素榭脂 (A) 92〜30重量0 /0、架橋 フッ素ゴム(B) 8〜70重量0 /0力もなることがより好ましぐフッ素榭脂 (A) 90〜60重量 %、架橋フッ素ゴム (B) 10〜40重量0 /0からなることがさらに好ましい。フッ素榭脂 (A )が 20重量%未満であると得られる燃料バリア性材料の流動性が悪ィ匕し、成形加工 性が低下する傾向があり、 95重量%をこえると得られる燃料バリア性材料の柔軟性と 燃料バリア性のバランスが悪くなる傾向がある。 [0065] Further, the fuel barrier material of the present invention, fluorine榭脂(A) 95 to 20 wt%, crosslinking fluororubber (B) preferably be composed of 5 to 80 weight 0/0 device fluorine榭脂( A) 92-30 weight 0/0, crosslinked fluororubber (B) 8 to 70 weight 0/0 also more preferably comprising power tool fluorine榭脂(A) 90 to 60 wt%, crosslinking fluororubber (B) 10 more preferably consisting of 40 wt 0/0. The fuel barrier material obtained when the fluorine resin (A) is less than 20% by weight tends to have poor fluidity and the molding processability tends to deteriorate. The fuel barrier property obtained when it exceeds 95% by weight The balance between material flexibility and fuel barrier properties tends to be poor.
[0066] 本発明の燃料バリア性材料力 形成される成形品の燃料透過係数は、 40 (g'mm) / (m2. day)以下であることが好ましく、 30 (g · mm) / (m2. day)以下であることがよ り好ましぐ 20 (g 'mm) Z (m2 * day)以下であることがさらに好ましぐ 5 (g-mm) / ( m2 - day)以下であることが特に好ましい。燃料透過係数の下限値は特に限定される ものではなぐ低ければ低いほど好ましい。燃料透過係数が、 40 (g-mm) / (m2-da y)をこえると、耐燃料透過性が低いため、燃料透過量を抑えるためには成形品の肉 厚を厚くする必要があり、経済的に好ましくない。なお、燃料透過係数は、低いほど 燃料透過防止能力が向上するものであり、逆に燃料透過係数が大きいと燃料が透過 しゃす 、ため、燃料チューブ等の成形品としては適さな 、ものである。 [0066] The fuel permeability material strength of the present invention The fuel permeability coefficient of the formed article is preferably 40 (g'mm) / (m 2 .day) or less, and 30 (g · mm) / ( m 2 .day) or less is more preferable 20 (g 'mm) Z (m 2 * day) or less is more preferable 5 (g-mm) / (m 2 -day) It is particularly preferred that The lower limit value of the fuel permeability coefficient is not particularly limited, and the lower the value, the better. If the fuel permeation coefficient exceeds 40 (g-mm) / (m 2 -day), the fuel permeation resistance is low, so it is necessary to increase the thickness of the molded product to suppress the fuel permeation amount. Economically unfavorable. Note that the lower the fuel permeation coefficient, the better the fuel permeation prevention capability, and conversely, when the fuel permeation coefficient is large, the fuel permeates, so that it is suitable as a molded product such as a fuel tube.
[0067] 燃料透過係数の測定は、防湿包装材料の透湿度試験方法におけるカップ法に準 ずる方法にて実施した。ここで、カップ法とは、 JIS Z 0208に規定された透湿度試 験方法であり、一定時間に単位面積の膜状物質を通過する水蒸気量を測定する方 法である。本発明においては、このカップ法に準じて、燃料透過係数を測定するもの である。具体的方法としては、 20mLの容積を有する SUS製容器(開放部面積 1. 26 X 10"3m2)に模擬燃料である CE10 (トルエン Zイソオクタン Zエタノール =45Z45 Z10容量%)を 18mL入れて、シート状試験片を容器開放部にセットして密閉するこ とで、試験体とする。該試験体を恒温装置(60°C)に入れ、試験体の重量を測定し、 単位時間あたりの重量減少が一定となったところで下記の式により燃料透過性を求 める。 [0067] The fuel permeability coefficient was measured by a method according to the cup method in the moisture permeability test method for moisture-proof packaging materials. Here, the cup method is a moisture permeability test specified in JIS Z 0208. This is a test method that measures the amount of water vapor that passes through a membranous substance of a unit area in a certain time. In the present invention, the fuel permeation coefficient is measured according to this cup method. As a specific method, put 18 mL of simulated fuel CE10 (toluene Z isooctane Z ethanol = 45 Z45 Z10 vol%) into a SUS container (open area 1.26 X 10 " 3 m 2 ) with a volume of 20 mL. Then, set the sheet-like test piece in the open part of the container and seal it to make a test piece.Place the test piece in a constant temperature device (60 ° C), measure the weight of the test piece, and measure the weight per unit time. When the weight loss becomes constant, the fuel permeability is obtained by the following formula.
[0068] [数 1] 燃料透過係数 (g . mm/m 2 - d a y ) = [0068] [Equation 1] Fuel permeation coefficient (g. Mm / m 2 -day) =
[:減少重量 )〕 X [シート厚 (mm)〕  [: Reduced weight)] X [Sheet thickness (mm)]
〔開放部面積 1 . 2 6 X 1 0— 3 (m 2 ) ] X 〔測定間隔 (d a y ) ] [Opening area 1. 2 6 X 1 0- 3 (m 2)] X [Measurement interval (day)]
[0069] 本発明の燃料バリア性材料カゝら形成される成形品の引張弾性率は、 600MPa以 下であることが好ましぐ 550MPa以下であることがより好ましぐ 500MPa以下であ ることがさらに好ましい。引張弾性率の下限値としては特に限定されるものではない 力 5MPa以上であることが好ましぐ lOMPa以上であることがより好ましい。引張弹 性率が、 600MPaをこえると、柔軟性を必要とする成形品には適さない傾向がある。 [0069] The tensile modulus of the molded article formed from the fuel barrier material of the present invention is preferably 600 MPa or less, more preferably 550 MPa or less, and more preferably 500 MPa or less. Is more preferable. The lower limit value of the tensile modulus is not particularly limited. The force is preferably 5 MPa or more, more preferably lOMPa or more. If the tensile modulus exceeds 600 MPa, it tends to be unsuitable for molded products that require flexibility.
[0070] また、本発明の燃料バリア性材料は、ポリエチレン、ポリプロピレン、ポリアミド、ポリ エステル、ポリウレタンなどの他の重合体、炭酸カルシウム、タルク、セライト、クレー、 酸化チタン、カーボンブラック、硫酸バリウムなどの無機充填材、顔料、難燃剤、滑剤 、光安定剤、耐候安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、離型剤、発泡 剤、香料、オイル、柔軟化剤などを、本発明の効果に影響を及ぼさない範囲で添カロ することができる。  [0070] The fuel barrier material of the present invention includes other polymers such as polyethylene, polypropylene, polyamide, polyester and polyurethane, calcium carbonate, talc, celite, clay, titanium oxide, carbon black, barium sulfate and the like. Inorganic fillers, pigments, flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, ultraviolet absorbers, antioxidants, mold release agents, foaming agents, fragrances, oils, softeners, etc. It can be added as long as it does not affect the effect.
[0071] 本発明の燃料バリア性材料は、一般の成形加工方法や成形加工装置などを用い て成形加工することができる。成形加工方法としては、例えば、射出成形、押出成形 、圧縮成形、ブロー成形、カレンダー成形、真空成形などの任意の方法を採用するこ とができ、本発明の燃料バリア性材料は、使用目的に応じて任意の形状の成形体に 成形される。 [0072] さらに、本発明は、本発明の燃料バリア性材料を使用して得られた成形品に関する ものであるが、該成形品としては、シートまたはフィルムの成形体を包含し、また本発 明の燃料バリア性材料力 なる層および他の材料力 なる層を有する積層構造体を 包含するものである。 [0071] The fuel barrier material of the present invention can be molded using a general molding method or molding apparatus. As a molding method, for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, vacuum molding and the like can be adopted, and the fuel barrier material of the present invention is used for the purpose of use. Correspondingly, it is formed into a molded body of any shape. [0072] Further, the present invention relates to a molded article obtained by using the fuel barrier material of the present invention, and the molded article includes a molded article of a sheet or a film, and the present invention. It includes a laminated structure having a layer with a clear fuel barrier material force and a layer with another material force.
[0073] 本発明の燃料バリア性材料力もなる少なくとも 1つの層と他の材料力もなる少なくと も 1つの層との積層構造体において、該他の材料は、要求される特性、予定される用 途などに応じて適切なものを選択すればよい。該他の材料としては、例えば、ポリオ レフイン (例:高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状 低密度ポリエチレン、エチレン プロピレン共重合体、ポリプロピレン等)、ナイロン、 ポリエステル、塩化ビュル榭脂 (PVC)、塩ィ匕ビユリデン榭脂(PVDC)などの熱可塑 性重合体、エチレン プロピレン ジェンゴム(EPDM)、ブチルゴム、二トリルゴム、 シリコーンゴム、アクリルゴムなどの架橋ゴム、ポリプロピレン/ EPDM複合体などの 熱可塑性エラストマ一、金属、ガラス、木材、セラミックなどをあげることができる。  [0073] In the laminated structure of at least one layer that also has the fuel barrier material force of the present invention and at least one layer that has the other material force, the other material has the required characteristics and intended use. What is necessary is just to select an appropriate thing according to the way. Examples of the other materials include polyolefin (eg, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene propylene copolymer, polypropylene, etc.), nylon, polyester, butyl chloride. Thermoplastic polymers such as fat (PVC), salt vinylidene resin (PVDC), cross-linked rubber such as ethylene propylene gen rubber (EPDM), butyl rubber, nitrile rubber, silicone rubber, acrylic rubber, polypropylene / EPDM composite, etc. Examples thereof include thermoplastic elastomers, metals, glass, wood, and ceramics.
[0074] 該積層構造を有する成形品においては、本発明の燃料バリア性材料からなる層と 他の材料からなる基材層との間に接着剤層を介在させてもよ!ヽ。接着剤層を介在さ せることによって、本発明の燃料バリア性材料力 なる層と他の材料力 なる基材層 とを強固に接合一体化させることができる。接着剤層において使用される接着剤とし ては、ジェン系重合体の酸無水物変性物;ポリオレフインの酸無水物変性物;高分子 ポリオール(例えば、エチレングリコール、プロピレングリコール等のグリコール化合物 とアジピン酸等の二塩基酸とを重縮合して得られるポリエステルポリオール;酢酸ビ- ルと塩ィ匕ビュルとの共重合体の部分ケンィ匕物など)とポリイソシァネートイ匕合物(例え ば、 2, 4 トリレンジイソシァネート等)との混合物(例えば、 1, 6 へキサメチレング リコール等のグリコール化合物と 2, 4 トリレンジイソシァネート等のジイソシァネート 化合物とのモル比 1対 2の反応生成物;トリメチロールプロパン等のトリオ一ルイ匕合物 と 2, 4 トリレンジイソシァネート等のジイソシァネートイ匕合物とのモル比 1対 3の反応 生成物など);等を使用することができる。なお、積層構造形成のためには、共押出、 共射出、押出コーティング等の公知の方法を使用することもできる。  [0074] In the molded article having the laminated structure, an adhesive layer may be interposed between the layer made of the fuel barrier material of the present invention and the base material layer made of another material. By interposing the adhesive layer, the layer having the fuel barrier material force of the present invention and the base material layer having another material force can be firmly joined and integrated. Examples of adhesives used in the adhesive layer include acid anhydride-modified products of gen-based polymers; acid anhydride-modified products of polyolefins; polymer polyols (for example, glycol compounds such as ethylene glycol and propylene glycol, and adipic acid). Polyester polyols obtained by polycondensation of dibasic acids such as; partial saponified products of copolymers of acetic acid vinyl and salt and butyl and polyisocyanate compounds (for example, 2, 4 tolylene diisocyanate, etc. (for example, a reaction product with a molar ratio of glycol compound such as 1, 6 hexamethylene glycol and diisocyanate compound such as 2, 4 tolylene diisocyanate, etc. 1: 2) A molar ratio of a trioylol compound such as trimethylolpropane to a diisocyanate compound such as 2,4 tolylene diisocyanate is 1 to 3. Response product, etc.); or the like can be used. For forming the laminated structure, a known method such as co-extrusion, co-injection, or extrusion coating can be used.
[0075] 本発明には、本発明の燃料バリア性材料単独の層からなる燃料ホースまたは燃料 容器が包含される。燃料ホースの用途は特に限定されないが、例えば、 自動車用の フィラーホース、エバポホース、ブリーザ一ホース等があげられる。また、燃料容器の 用途は特に限定されないが、例えば、自動車用の燃料容器、自動 2輪車用の燃料容 器、小型発電機の燃料容器、芝刈機の燃料容器等があげられる。 [0075] The present invention includes a fuel hose or fuel comprising a single layer of the fuel barrier material of the present invention. A container is included. The use of the fuel hose is not particularly limited, and examples thereof include a filler hose for automobiles, an evaporative hose, and a breather hose. The use of the fuel container is not particularly limited, and examples thereof include a fuel container for automobiles, a fuel container for motorcycles, a fuel container for small generators, and a fuel container for lawn mowers.
[0076] また、本発明には、本発明の燃料バリア性材料カゝらなる層を含む多層燃料ホースま たは多層燃料容器が包含される。該多層燃料ホースまたは多層燃料容器としては、 本発明の燃料バリア性材料力もなる層と、他の材料力もなる少なくとも 1つの層からな り、これらの層が接着剤層を介在させないで、あるいは介在させて、互いに接着して いるものである。 [0076] Further, the present invention includes a multilayer fuel hose or a multilayer fuel container including a layer made of the fuel barrier material of the present invention. The multi-layer fuel hose or multi-layer fuel container is composed of the layer having the fuel barrier material force of the present invention and at least one layer having the other material force, and these layers do not interpose the adhesive layer or intervene. And are adhered to each other.
[0077] そして、他の材料力 なる層としては、本発明の燃料バリア性材料以外のゴムから なる層や熱可塑性榭脂からなる層があげられる。  [0077] Examples of other material strength layers include layers made of rubber other than the fuel barrier material of the present invention and layers made of thermoplastic resin.
[0078] 該ゴムとしては、耐薬品性や柔軟性の観点から、アクリロニトリル一ブタジエンゴムま たはその水素添加ゴム、アクリロニトリル一ブタジエンゴムとポリ塩ィ匕ビニルとのプレン ドゴム、フッ素ゴム、ェピクロロヒドリンゴム、 EPDMおよびアクリルゴムからなる群より 選ばれる少なくとも 1種力 なるゴムが好ましぐアクリロニトリル一ブタジエンゴムまた はその水素添加ゴム、アクリロニトリル一ブタジエンゴムとポリ塩ィ匕ビニルとのブレンド ゴム、フッ素ゴム、ェピクロロヒドリンゴム力もなる群より選ばれる少なくとも 1種のゴムか らなることがより好ましい。  [0078] From the viewpoint of chemical resistance and flexibility, the rubber includes acrylonitrile-butadiene rubber or hydrogenated rubber thereof, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, vinyl fluoride, epoxy rubber. Acrylonitrile monobutadiene rubber or hydrogenated rubber thereof, which is preferably at least one kind of rubber selected from the group consisting of chlorohydrin rubber, EPDM and acrylic rubber, blend rubber of acrylonitrile monobutadiene rubber and polyvinyl chloride, More preferably, it is made of at least one rubber selected from the group consisting of fluororubber and epichlorohydrin rubber.
[0079] また、燃料バリア性材料としては、燃料バリア性の観点から、フッ素榭脂、ポリアミド 系榭脂、ポリオレフイン系榭脂、ポリエステル系榭脂、ポリビニルアルコール系榭脂、 ポリ塩ィ匕ビ二ル系榭脂、ポリフエ-レンスルフイド系榭脂からなる群より選ばれる少なく とも 1種力もなる熱可塑性榭脂が好ましぐフッ素榭脂、ポリアミド系榭脂、ポリビュル アルコール系榭脂ポリフエ-レンスルフイド系榭脂からなる群より選ばれる少なくとも 1 種力もなる熱可塑性榭脂がより好まし 、。  [0079] In addition, as a fuel barrier material, from the viewpoint of fuel barrier properties, fluorine resin, polyamide-based resin, polyolefin resin, polyester-based resin, polyvinyl alcohol-based resin, polyvinyl chloride resin Fluorine resin, polyamide-based resin, polybulle alcohol-based resin, poly-phenylene sulfide-based resin, which is preferably selected from the group consisting of rubber-based resin and polyphenylene sulfide-based resin. More preferred is a thermoplastic rosin that is at least one selected from the group consisting of fats.
[0080] 上記に示した本発明により得られた燃料バリア性材料カゝらなる層、および他のゴム もしくは他の熱可塑性榭脂からなる層からなる燃料ホースまたは燃料容器としては、 特に限定されず、例えば、自動車用のフィラーホース、エバポホース、ブリーザーホ ース等の燃料ホース;自動車用の燃料容器、自動 2輪車用の燃料容器、小型発電機 の燃料容器、芝刈機の燃料容器等の燃料容器があげられる。 [0080] The fuel hose or the fuel container including the layer made of the fuel barrier material obtained by the present invention and the layer made of other rubber or other thermoplastic resin is particularly limited. For example, fuel hoses such as filler hose, evaporative hose, breather hose for automobiles; fuel containers for automobiles, fuel containers for motorcycles, small generators And a fuel container such as a lawn mower fuel container.
[0081] この内、本発明の燃料バリア性材料からなる層、および他のゴムからなる層からなる 燃料ホースとしては、アクリロニトリル一ブタジエンゴムまたはその水素添加ゴム、ァク リロ-トリル一ブタジエンゴムとポリ塩化ビュルとのブレンドゴムあるいはェピクロロヒド リンゴム力もなる外層、本発明の燃料バリア性材料力もなる中間層、およびフッ素ゴム 力もなる内層の 3層力も構成される燃料ホース、あるいはアクリロニトリル一ブタジエン ゴムまたはその水素添加ゴム、アクリロニトリル一ブタジエンゴムとポリ塩ィ匕ビュルとの ブレンドゴムあるいはェピクロロヒドリンゴム力もなる外層、および本発明の燃料バリア 性材料カゝらなる内層の 2層から構成される燃料ホースが、優れた燃料バリア性 '柔軟 性 ·耐薬品性を示す点で好まし ヽ。  [0081] Among these, as a fuel hose comprising a layer made of the fuel barrier material of the present invention and a layer made of other rubber, acrylonitrile monobutadiene rubber or its hydrogenated rubber, acrylo-tolyl monobutadiene rubber and A fuel hose that also has a three-layer force of an outer layer that also has a rubber strength blended with polychlorinated bur or epichlorohydrin rubber, an intermediate layer that also has the fuel barrier material strength of the present invention, and an inner layer that also has a fluorine rubber strength, or acrylonitrile monobutadiene rubber or its hydrogen A fuel hose composed of two layers: an additive rubber, an outer layer of acrylonitrile monobutadiene rubber and polysalt rubber, or an outer layer also having an epichlorohydrin rubber force, and an inner layer of the fuel barrier material of the present invention. Excellent fuel barrier properties' Preferable for its flexibility and chemical resistance Masashi.
[0082] また、本発明の燃料バリア性材料カゝらなる層と他の材料カゝらなる層を有する積層構 造体を作製する場合、必要に応じて本発明の燃料バリア性材料に表面処理を行って もよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特 に制限されるものではなぐ例えばプラズマ放電処理やコロナ放電処理等の放電処 理、湿式法の金属ナトリウム Zナフタレン液処理などがあげられる。また、表面処理と してプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。 プライマー処理を施す場合、表面処理を行って 、な ヽフッ素榭脂の表面を処理する こともできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム Zナフタレン液処 理などを予め施した燃料バリア性材料の表面を更にプライマー処理すると、より効果 的である。 [0082] Further, when a laminated structure having a layer made of the fuel barrier material of the present invention and a layer made of another material is produced, the surface of the fuel barrier material of the present invention is surfaced as necessary. Processing may be performed. The surface treatment is not particularly limited as long as it is a treatment method that enables adhesion. For example, discharge treatment such as plasma discharge treatment or corona discharge treatment, wet metal sodium Z naphthalene solution Processing. A primer treatment is also suitable as the surface treatment. Primer treatment can be performed according to a conventional method. When the primer treatment is applied, the surface treatment can be performed to treat the surface of the fluorine resin, but the fuel barrier properties are pre-treated with plasma discharge treatment, corona discharge treatment, metal sodium Z naphthalene solution treatment, etc. It is more effective to further prime the surface of the material.
[0083] 本発明の燃料バリア性材料、および該組成物からなる成形品は、以下に示す分野 で好適に用いることができる。  [0083] The fuel barrier material of the present invention and a molded article comprising the composition can be suitably used in the following fields.
[0084] 半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマァドレ ス液晶パネル、フィールドェミッションディスプレイパネル、太陽電池基板等の半導体 関連分野では、 o (角)リング、パッキン、シール材、チューブ、ロール、コーティング、 ライニング、ガスケット、ダイァフラム、ホース等があげられ、これらは CVD装置、ドライ エッチング装置、ウエットエッチング装置、酸化拡散装置、スパッタリング装置、アツシ ング装置、洗浄装置、イオン注入装置、排気装置、薬液配管、ガス配管に用いること ができる。具体的には、ゲートバルブの Oリング、シール材として、クォーツウィンドウ の oリング、シール材として、チャンバ一の oリング、シール材として、ゲートの oリング 、シール材として、ベルジャーの oリング、シール材として、カップリングの oリング、シ ール材として、ポンプの oリング、シール材、ダイァフラムとして、半導体用ガス制御装 置の oリング、シール材として、レジスト現像液、剥離液用の oリング、シール材として 、ウェハー洗浄液用のホース、チューブとして、ウェハー搬送用のロールとして、レジ スト現像液槽、剥離液槽のライニング、コーティングとして、ウェハー洗浄液槽のライ ニング、コーティングとしてまたはウエットエッチング槽のライニング、コーティングとし て用いることができる。さらに、封止材 'シーリング剤、光ファイバ一の石英の被覆材、 絶縁、防振、防水、防湿を目的とした電子部品、回路基盤のポッティング、コーティン グ、接着シール、磁気記憶装置用ガスケット、エポキシ等の封止材料の変性材、タリ ーンルーム.クリーン設備用シーラント等として用いられる。 [0084] In semiconductor-related fields such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, etc., o (square) rings, packings, sealing materials, tubes Rolls, coatings, linings, gaskets, diaphragms, hoses, etc., which are CVD equipment, dry etching equipment, wet etching equipment, oxidation diffusion equipment, sputtering equipment, ashing equipment, cleaning equipment, ion implantation equipment, exhaust equipment , Used for chemical piping and gas piping Can do. Specifically, as a gate valve O-ring, as a sealing material, a quartz window o-ring, as a sealing material, as a chamber o-ring, as a sealing material, as a gate o-ring, as a sealing material, as a bell jar o-ring, as a seal O ring for coupling as material, o ring for pump as seal material, seal material, diaphragm, o ring for semiconductor gas control device, o ring for resist developer and stripper as seal material As a sealing material, as a wafer cleaning solution hose, as a tube, as a wafer transfer roll, as a resist developer bath, as a lining for a stripping solution bath, as a coating, as a lining, coating or as a wet etching bath for a wafer cleaning solution bath It can be used as a lining or coating. In addition, sealing materials' sealing agent, optical fiber quartz coating material, electronic parts for insulation, vibration proofing, waterproofing, moisture proofing, circuit board potting, coating, adhesive seals, gaskets for magnetic storage devices, It is used as a modifier for sealing materials such as epoxy, sealant for clean rooms and clean rooms.
[0085] 自動車分野では、ガスケット、シャフトシール、バルブステムシール、シール材およ びホースはエンジンならびに周辺装置に用いることができ、ホースおよびシール材は AT装置に用いることができ、 0 (角)リング、チューブ、パッキン、バルブ芯材、ホース 、シール材およびダイアフラムは燃料系統ならびに周辺装置に用いることができる。 具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クラン クシャフトシール、カムシャフトシール、バルブステムシール、マ-ホールドパッキン、 オイルホース、酸素センサー用シール、 ATFホース、インジェクター Oリング、インジ エタターパッキン、燃料ポンプ Oリング、ダイァフラム、燃料ホース、クランクシャフトシ ール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシーノレ、ノ ルブステムのシール、自動変速機のフロントポンプシール、リア一アクスルビ-オンシ ール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フー トブレーキのピストンカップ、トルク伝達の Oリング、オイルシール、排ガス再燃焼装置 のシーノレ、ベアリングシーノレ、 EGRチューブ、ツインキヤブチューブ、キャブレターの センサー用ダイァフラム、防振ゴム (エンジンマウント、排気部等)、再燃焼装置用ホ ース、酸素センサーブッシュ等として用いることができる。  [0085] In the automotive field, gaskets, shaft seals, valve stem seals, sealing materials and hoses can be used for engines and peripheral devices, and hoses and sealing materials can be used for AT devices. Rings, tubes, packings, valve cores, hoses, seals and diaphragms can be used in fuel systems and peripheral devices. Specifically, engine head gasket, metal gasket, oil pan gasket, crankshaft seal, camshaft seal, valve stem seal, hold packing, oil hose, oxygen sensor seal, ATF hose, injector O-ring, Ettater packing, fuel pump O-ring, diaphragm, fuel hose, crankshaft seal, gear box seal, power piston packing, cylinder liner seal, knob stem seal, automatic transmission front pump seal, rear axle On seal, universal joint gasket, speedometer pinion seal, foot brake piston cup, torque transmission O-ring, oil seal, exhaust gas re-burner sheath, bearing Nore, EGR tubes, twin key bush tube for sensors Daiafuramu carburetor, rubber vibration isolator (engine mount, exhaust part, etc.), afterburner for hose can be used as an oxygen sensor bush.
[0086] 航空機分野、ロケット分野および船舶分野では、ダイァフラム、 O (角)リング、バル ブ、チューブ、ノ ッキン、ホース、シール材等があげられ、これらは燃料系統に用いる ことができる。具体的には、航空機分野では、ジェットエンジンバルブステムシール、 燃料供給用ホース、ガスケットおよび oリング、ローテ一ティングシャフトシール、油圧 機器のガスケット、防火壁シール等に用いられ、船舶分野では、スクリューのプロペラ シャフト船尾シール、ディーゼルエンジンの吸排気用バルブステムシール、ノタフラ ィバルブのバルブシール、バタフライ弁の軸シール等に用いられる。 [0086] In the aircraft field, rocket field, and ship field, diaphragms, O (square) rings, Such as a tube, a tube, a knock, a hose, and a sealing material, which can be used for a fuel system. Specifically, in the aircraft field, it is used for jet engine valve stem seals, fuel supply hoses, gaskets and o-rings, rotating shaft seals, hydraulic equipment gaskets, firewall seals, etc. Used for propeller shaft stern seals, intake / exhaust valve stem seals for diesel engines, valve seals for notary valves, and shaft seals for butterfly valves.
[0087] プラント等の化学品分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイ ァフラム、 o (角)リング、チューブ、シール材、耐薬品用コーティング等があげられ、こ れらは医薬、農薬、塗料、榭脂等化学品製造工程に用いることができる。具体的には 、化学薬品用ポンプ、流動計、配管のシール、熱交換器のシール、硫酸製造装置の ガラス冷却器パッキング、農薬散布機、農薬移送ポンプのシール、ガス配管のシー ル、メツキ液用シール、高温真空乾燥機のパッキン、製紙用ベルトのコロシール、燃 料電池のシール、風洞のジョイントシール、耐トリクレン用ロール (繊維染色用)、耐酸 ホース (濃硫酸用)、ガスクロマトグラフィー、 pHメーターのチューブ結合部のパッキン 、塩素ガス移送ホース、ベンゼン、トルエン貯槽の雨水ドレンホース、分析機器、理ィ匕 学機器のシール、チューブ、ダイァフラム、弁部品等として用いることができる。  [0087] In the field of chemicals such as plants, linings, valves, knocks, rolls, hoses, diaphragms, o (square) rings, tubes, sealing materials, chemical-resistant coatings, etc. are available. It can be used in the production process of chemicals such as agricultural chemicals, paints, and fats. Specifically, chemical pumps, rheometers, pipe seals, heat exchanger seals, glass cooler packings for sulfuric acid production equipment, pesticide sprayers, seals for pesticide transfer pumps, gas pipe seals, plating solutions Seals, high-temperature vacuum dryer packing, paper belt roller seals, fuel cell seals, wind tunnel joint seals, trichlene-resistant rolls (for textile dyeing), acid-resistant hoses (for concentrated sulfuric acid), gas chromatography, pH It can be used as a packing for a tube connection part of a meter, a chlorine gas transfer hose, a benzene, a rainwater drain hose for a toluene storage tank, an analytical instrument, a seal for a scientific instrument, a tube, a diaphragm, a valve part, and the like.
[0088] 医薬品等の薬品分野では、薬栓等として用いることができる。 [0088] In the pharmaceutical field such as pharmaceuticals, it can be used as a medicine stopper or the like.
[0089] 現像機等の写真分野、印刷機械等の印刷分野および塗装設備等の塗装分野では 、ロール等があげられ、それぞれフィルム現像機 ·Χ線フィルム現像機、印刷ロールお よび塗装ロールに用いることができる。具体的には、フィルム現像機 ·Χ線フィルム現 像機の現像ロールとして、印刷ロールのグラビアロール、ガイドロールとして、塗装口 ールの磁気テープ製造塗工ラインのグラビアロール、磁気テープ製造塗工ラインの ガイドロール、各種コーティングロール等として用いることができる。さらに、乾式複写 機のシール、印刷設備の印刷ロール、スクレーパー、チューブ、弁部品、塗布、塗装 設備の塗布ロール、スクレーパー、チューブ、弁部品、プリンターのインキチューブ、 ロール、ベルト、乾式複写機のベルト、ロール、印刷機のロール、ベルト等として用い ることがでさる。 [0089] In the photographic field such as a developing machine, the printing field such as a printing machine, and the coating field such as a coating facility, rolls and the like can be mentioned, which are respectively used for a film developing machine, a tangential film developing machine, a printing roll and a coating roll be able to. Specifically, as a developing roll of a film developing machine / coiled film image forming machine, a gravure roll of a printing roll, a guide roll, a gravure roll of a magnetic tape manufacturing coating line of a coating tool, and a magnetic tape manufacturing coating It can be used as a line guide roll, various coating rolls, and the like. Furthermore, dry copying machine seals, printing equipment printing rolls, scrapers, tubes, valve parts, coating, coating equipment coating rolls, scrapers, tubes, valve parts, printer ink tubes, rolls, belts, dry copying machine belts It can be used as a roll, a roll for a printing press, a belt, or the like.
[0090] またチューブを分析 ·理ィ匕学機分野に用いることができる。 [0091] 食品プラント機器分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイァ フラム、 o (角)リング、チューブ、シール材、ベルト等があげられ、食品製造工程に用 いることができる。具体的には、プレート式熱交^^のシール、自動販売機の電磁弁 シール等として用いることができる。 [0090] The tube can also be used in the field of analysis and science machines. [0091] In the field of food plant equipment, linings, valves, knockers, rolls, hoses, diaphragms, o (square) rings, tubes, sealing materials, belts, and the like can be mentioned and used for food production processes. Specifically, it can be used as a plate-type heat exchanger seal, a solenoid valve seal of a vending machine, or the like.
[0092] 原子力プラント機器分野では、パッキン、 Oリング、ホース、シール材、ダイアフラム [0092] In the field of nuclear plant equipment, packing, O-rings, hoses, sealing materials, diaphragms
、ノ レブ、ロール、チューブ等があげられる。 , Nozzles, rolls, tubes, etc.
[0093] 鉄板加工設備等の鉄鋼分野では、ロール等があげられ、鉄板加工ロール等に用い ることがでさる。 [0093] In the steel field such as iron plate processing equipment, there are rolls and the like, which can be used for iron plate processing rolls and the like.
[0094] 一般工業分野では、パッキング、 Oリング、ホース、シール材、ダイァフラム、バルブ 、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴ ム板、ウエザーストリップ、 PPC複写機のロール、ロールブレード、ベルト等があげら れる。具体的には、油圧、潤滑機械のシール、ベアリングシール、ドライクリーニング 機器の窓、その他のシール、六フッ化ウランの濃縮装置のシール、サイクロトロンのシ ール (真空)バルブ、自動包装機のシール、空気中の亜硫酸ガス、塩素ガス分析用 ポンプのダイアフラム (公害測定器)、印刷機のロール、ベルト、酸洗い用絞りロール 等に用いられる。  [0094] In the general industrial field, packing, O-rings, hoses, sealing materials, diaphragms, valves, rolls, tubes, linings, mandrels, electric wires, flexible joints, belts, rubber plates, weather strips, rolls for PPC copiers, Examples include roll blades and belts. Specifically, oil pressure, lubrication machine seals, bearing seals, dry cleaning equipment windows, other seals, uranium hexafluoride concentrator seals, cyclotron seal (vacuum) valves, automatic packaging machine seals It is used for diaphragms (pollution measuring devices) for analysis of sulfur dioxide and chlorine gas in the air, printing press rolls, belts, pickling squeeze rolls, and so on.
[0095] 電気分野では、具体的には、新幹線の絶縁油キャップ、液封型トランスのベンチン ダシール、油井ケーブルのジャケット等として用いられる。  In the electric field, specifically, it is used as an insulating oil cap for Shinkansen, a ventilator seal for a liquid ring transformer, a jacket for an oil well cable, and the like.
[0096] 燃料電池分野では、具体的には、電極、セパレーター間のシール材ゃ水素 '酸素' 生成水配管のシール等として用いられる。  [0096] In the fuel cell field, specifically, a sealant between electrodes and separators is used as a seal for hydrogen 'oxygen' product water piping.
[0097] 電子部品分野では、具体的には、放熱材原料、電磁波シールド材原料、エポキシ 等のプリント配線板プリプレダ榭脂の変性材、電球等の飛散防止材、コンピューター のハードディスクドライブのガスケット等に用いられる。  [0097] In the field of electronic components, specifically, it is used as a heat-dissipating material raw material, an electromagnetic shielding material raw material, a modified material for printed wiring board pre-preda resin such as epoxy, an anti-scattering material such as a light bulb, and a hard disk drive gasket of a computer. Used.
[0098] 現場施工型の成形に用いることが可能なものとしては特に限定されず、たとえば、 自動車エンジン用メタルガスケットのコーティング剤、エンジンのオイルパンのガスケ ット、複写機'プリンター用のロール、建築用シーリング剤、磁気記録装置用のガスケ ット、クリーンルーム用フィルターユニットのシーリング剤、プリント基盤のコーティング 剤、電気'電子部品の固定剤、電気機器リード線端子の絶縁防湿処理、電気炉等の オーブンのシール、シーズヒーターの末端処理、電子レンジの窓枠シール、 CRTゥ エッジおよびネックの接着、自動車電装部品の接着、厨房、浴室、洗面所等の目地 シール等があげられる。 [0098] There are no particular limitations on what can be used for on-site molding, such as metal gasket coatings for automobile engines, gaskets for engine oil pans, rolls for copiers, printers, Architectural sealant, gasket for magnetic recording device, sealant for clean room filter unit, coating agent for printed circuit board, electrical 'electronic component fixing agent, insulation moisture-proof treatment of electrical equipment lead wire terminal, electric furnace, etc. Examples include oven seals, end treatment of sheathed heaters, microwave oven window frame seals, adhesion of CRT wedges and necks, adhesion of automotive electrical components, joint seals for kitchens, bathrooms, and washrooms.
[0099] 本発明の成形品は上述の各種用途に好適に用いることができ、特に燃料周辺部品 として好適である。また、本発明の成形品は、特に、シール材、ノ ッキン、ローラー、 チューブまたはホースとして有用である。  [0099] The molded article of the present invention can be suitably used for the various applications described above, and is particularly suitable as a fuel peripheral part. In addition, the molded article of the present invention is particularly useful as a sealing material, knock, roller, tube or hose.
実施例  Example
[0100] つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定さ れるものではない。  [0100] Next, the present invention will be described with reference to examples, but the present invention is not limited to such examples.
[0101] <加硫特性 >  [0101] <Vulcanization characteristics>
JSR型キユラストメータ II型を用いて 170°Cおよび 260°Cにおける加硫曲線を求め、 トルクの変化より、最低粘度 (ML)、加硫度 (MH)、誘導時間 (T10)および最適加硫 時間 (T90)を求める。加熱状態で 30分以上経過してもトルクの変化が見られない場 合、加硫反応は進行していないとみなす。  Obtain the vulcanization curves at 170 ° C and 260 ° C using the JSR type kilastometer type II, and determine the minimum viscosity (ML), vulcanization degree (MH), induction time (T10) and optimum Find the sulfur time (T90). If no change in torque is observed after 30 minutes in the heated state, the vulcanization reaction is considered not to have progressed.
[0102] <シート状試験片の作製 > [0102] <Preparation of sheet specimen>
実施例、比較例で製造した燃料バリア性材料を金型にセットし、ヒートプレス機によ り、 290°Cにて 15〜30分保持し、動的架橋組成物を溶融状態にした後、 3MPaの負 荷を 1分間与え圧縮成形し、所定の厚さのシート状試験片を作製する。  After setting the fuel barrier material produced in Examples and Comparative Examples in a mold and holding it at 290 ° C. for 15 to 30 minutes with a heat press machine to bring the dynamic cross-linking composition into a molten state, A 3MPa load is applied for 1 minute and compression molded to produce a sheet-shaped test piece of the specified thickness.
[0103] <引張破断強度、引張破断伸びおよび引張弾性率測定 > [0103] <Measurement of tensile strength at break, tensile elongation at break and tensile modulus>
上記方法で厚さ 2mmのシート状試験片を作製し、 ASTM V型ダンベルを用いて 標線間距離 3. 18mmのダンベル状試験片を打ち抜く。得られたダンベル状試験片 を用いて、オートグラフ( (株)島津製作所製 AGS— J 5kN)を使用して、 ASTM D638に準じて、 50mmZ分の条件下で、 25°Cで引張破断伸び、引張破断強度お よび引張弾性率を測定する。  Prepare a 2mm thick sheet-shaped test piece by the above method, and punch out a dumbbell-shaped test piece with a distance between marked lines of 3.18mm using ASTM V type dumbbell. Using the obtained dumbbell-shaped test piece, using an autograph (AGS—J 5kN, manufactured by Shimadzu Corporation), in accordance with ASTM D638, under the condition of 50 mmZ, the tensile elongation at break at 25 ° C Measure the tensile strength at break and tensile modulus.
[0104] く燃料透過性 > [0104] Fuel permeability>
上記方法で厚さ 0. 5mmのシート状試験片を作製した。 20mLの容積を有する SU S製容器(開放部面積 1. 26 X 10"V)に模擬燃料である CE10 (トルエン Zイソオタ タン Zエタノール =45Z45Z10容量0 /0)を 18mL入れて、前記シート状試験片を容 器開放部にセットして密閉することで、試験体とする。該試験体を恒温装置(60°C)に 入れ、試験体の重量を測定し、単位時間あたりの重量減少が一定となったところで下 記の式により燃料透過係数を求めた。 A sheet-like test piece having a thickness of 0.5 mm was produced by the above method. Put 18mL of a simulated fuel CE10 (toluene Z Isoota Tan Z ethanol = 45Z45Z10 capacity 0/0) to SU S steel container (opening area 1. 26 X 10 "V) with 20mL of volume, the sheet-like test A piece Set to the open part of the vessel and seal to make the specimen. The test specimen was placed in a thermostatic device (60 ° C), the weight of the test specimen was measured, and when the weight loss per unit time became constant, the fuel permeability coefficient was determined by the following formula.
[0105] [数 2] 燃料透過係数 ((g , m m) / (m 2 · d a y ) ) 二 [0105] [Equation 2] Fuel permeation coefficient ((g, mm) / (m 2 · day))
〔減少重量—(g )〕 X —〔シート厚 (mm)〕  [Reduced weight-(g)] X-[Sheet thickness (mm)]
〔開放部面積 1 . 2 6 X 1 0 " 3 (m s ) ] X 〔測定間隔 (d a y )〕 [Open part area 1.2 6 X 10 " 3 ( ms )] X [Measurement interval (da y )]
[0106] <流動性 > [0106] <Liquidity>
実施例、比較例で製造した燃料バリア性材料のペレットを用いて、メルトフロー測定 装置((株)東洋精機製作所製)により、 297°C、 5kg荷重あるいは 10kg荷重の条件 下でメルトフローレート(MFR)を測定した。  Using the pellets of the fuel barrier material produced in the examples and comparative examples, the melt flow rate (under the conditions of 297 ° C, 5 kg load or 10 kg load) was measured with a melt flow measuring device (manufactured by Toyo Seiki Seisakusho Co., Ltd.). MFR) was measured.
[0107] <接着性評価試験 > [0107] <Adhesion evaluation test>
実施例で製造した燃料バリア性材料のペレットを用いて、上記方法で厚さ 0. 5mm のシート状試験片を作製した。このシート試験片、あるいはこのシート試験片の表面 を処理したシートとゴム組成物を重ね金型にセットし、ヒートプレス機により、 170°Cに て 3MPaの負荷を 15〜30分与え、加硫ゴム—燃料バリア性材料積層体を成型した 。加硫ゴム—燃料バリア性材料積層体をそれぞれ 1. Ocm幅 X 10cmの短冊状に切 断して接着試験用試験片を作製し、この試験片について、 JIS— K 6256 (加硫ゴ ムの接着試験方法)に記載の方法に準拠し、 25°Cにおいて 50mmZminの引張速 度で剥離試験を行った。  Using the pellets of the fuel barrier material produced in the examples, a sheet-like test piece having a thickness of 0.5 mm was produced by the above method. This sheet test piece, or the sheet treated with the surface of this sheet test piece and the rubber composition are set in a stacking die, and a 3MPa load is applied for 15 to 30 minutes at 170 ° C with a heat press machine. A rubber-fuel barrier material laminate was molded. Each of the vulcanized rubber-fuel barrier material laminates was cut into strips of 1. Ocm width x 10 cm to prepare test specimens for adhesion test. These test specimens were then JIS-K6256 (vulcanized rubber In accordance with the method described in Adhesion Test Method), a peel test was conducted at 25 ° C at a tensile speed of 50 mmZmin.
[0108] <大気圧プラズマ処理 > [0108] <Atmospheric pressure plasma treatment>
燃料バリア性材料のシートの表面を大気圧プラズマ処理機により、高圧電極と低圧 電極の極間を 3mmに設定し、周波数 5kHzの交流電源を用い、 2. 2kVの電圧を印 加し、 ArZHe(vol)比 = 50Z50、水素濃度を 2((vol)%)、プラズマエネルギー密度を 2 α/cm2) t ヽぅ条件でプラズマ処理を行った。 The surface of the sheet of fuel barrier material is set to 3 mm between the high and low voltage electrodes using an atmospheric pressure plasma treatment machine, an AC power supply with a frequency of 5 kHz is used, a voltage of 2 kV is applied, and ArZHe ( The plasma treatment was performed under the following conditions: vol) ratio = 50Z50, hydrogen concentration 2 ((vol)%), plasma energy density 2 α / cm 2 ) t ヽ ぅ.
[0109] <コロナ放電処理 > [0109] <Corona discharge treatment>
コロナ処理装置の放電電極(30cm幅)をアクリル榭脂製の容器で覆!ヽ、大気圧下 、空気を 10LZ分で流した。タンテック社製 HV05— 2型電源を用い、コロナ出力 25 OWでシートの移動速度 ImmZ分で燃料バリア性材料のシートの表面を処理した。 The discharge electrode (30 cm width) of the corona treatment device was covered with a container made of acrylic resin, and air was allowed to flow for 10 LZ at atmospheric pressure. Tantec's HV05—Type 2 power supply, corona output 25 The sheet surface of the fuel barrier material was treated with OW at a moving speed of ImmZ.
[0110] く金属ナトリウム Zナフタレン液処理〉 [0110] Metal sodium Z naphthalene treatment>
燃料バリア性材料のシートを金属ナトリウム/ナフタレン液 (テトラエッチ、(株)潤ェ 社製)に 5秒間浸漬処理した。処理されたフィルムをエチルアルコール、水で十分に 洗浄した後、 80°Cのオーブンで乾燥した。  The sheet of the fuel barrier material was immersed in a metal sodium / naphthalene solution (Tetraetch, manufactured by Junye Co., Ltd.) for 5 seconds. The treated film was thoroughly washed with ethyl alcohol and water and then dried in an oven at 80 ° C.
[0111] 実施例および比較例では、下記のフッ素榭脂 (A)、フッ素ゴム (b)、架橋剤 (C)お よび架橋促進剤 (D)を使用した。 [0111] In the examples and comparative examples, the following fluorinated resin (A), fluororubber (b), crosslinking agent (C) and crosslinking accelerator (D) were used.
[0112] くフッ素榭脂 (Al)> [0112] Fluororesin (Al)>
TFE、 HFPからなる共重合体(TFE:HFP = 91.7:8.3モル0 /0、融点 260°C) [0113] くフッ素榭脂 (A2)> TFE, consisting HFP copolymer (TFE: HFP = 91.7: 8.3 mol 0/0, mp 260 ° C) [0113] Ku fluorine榭脂(A2)>
TFE、 HFPおよびパーフルォロ(プロピルビュルエーテル)力 なる共重合体 (TF E:HFP:パーフルォロ(プロピルビュルエーテル) =90.5:9.1:0.4モル0 /0、融点 255°C) TFE, HFP and Pafuruoro (propyl Bulle ether) force becomes copolymer (TF E: HFP: Pafuruoro (propyl Bulle ether) = 90.5: 9.1: 0.4 mole 0/0, mp 255 ° C)
[0114] <フッ素ゴム(bl— 1) >  [0114] <Fluoro rubber (bl— 1)>
VdF、 TFEおよび HFPからなる 3元系ゴム(VdF: TFE: HFP = 50:20: 30モノレ0 /0 、フッ素濃度 =71重量%) VdF, 3-way based rubber consisting of TFE and HFP (VdF: TFE: HFP = 50:20: 30 Monore 0/0, the fluorine concentration = 71 wt%)
[0115] <フッ素ゴム(bl— 2) > [0115] <Fluoro rubber (bl-2)>
VdF、 TFEおよび HFPからなる 3元系ゴム(VdF: TFE: HFP = 30:40: 30モノレ0 /0 、フッ素濃度 =73重量%) VdF, 3-way based rubber consisting of TFE and HFP (VdF: TFE: HFP = 30:40: 30 Monore 0/0, the fluorine concentration = 73 wt%)
[0116] <フッ素ゴム(bl— 3) > [0116] <Fluoro rubber (bl-3)>
VdFおよび HFPからなる 2元系ゴム(VdF: HFP = 78: 22モノレ0 /0、フッ素濃度 = 6 6重量%) Binary rubber consisting of VdF and HFP (VdF: HFP = 78: 22 Monore 0/0, the fluorine concentration = 6 6 wt%)
[0117] く架橋剤 (C)> [0117] Crosslinking agent (C)>
ポリオール系架橋剤: 2, 2—ビス(4ーヒドロキシフエ-ル)パーフルォロプロパン(ダ ィキン工業 (株)製「ビスフエノール AF」)  Polyol-based cross-linking agent: 2, 2-bis (4-hydroxyphenol) perfluoropropane (Daikin Industries, Ltd. “Bisphenol AF”)
[0118] <架橋促進剤 (D)> [0118] <Crosslinking accelerator (D)>
ベンジルトリフエ-ルホスホ -ゥムクロリド (BTPPC、北興化学工業 (株)製) [0119] 製造例 1 (フッ素ゴム組成物 (b2— 1)の調製) 表 1に示すとおり、フッ素ゴム (bl— 1) 100. 0重量部に、架橋剤(C) 2. 0重量部、 架橋促進剤(D) l. 0重量部、酸ィ匕マグネシウム(キヨ一ヮマグ 150、協和化学工業( 株)) 3. 0重量部を添加し、 8インチオープンロールを用いて混練し、フッ素ゴム組成 物 (b2— 1)を作製した。 Benzyltriphenylphospho-um chloride (BTPPC, manufactured by Hokuko Chemical Co., Ltd.) [0119] Production Example 1 (Preparation of fluororubber composition (b2-1)) As shown in Table 1, fluororubber (bl— 1) in 100.0 parts by weight, cross-linking agent (C) 2.0 parts by weight, cross-linking accelerator (D) 1 part by weight, magnesium oxide (kiyoヮ 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-1).
[0120] 製造例 2 (フッ素ゴム組成物 (b2— 2)の調製)  [0120] Production Example 2 (Preparation of fluororubber composition (b2-2))
表 1に示すとおり、フッ素ゴム (bl— 2) 100. 0重量部に、架橋剤(C) 2. 0重量部、 架橋促進剤(D) l. 0重量部、酸ィ匕マグネシウム(キヨ一ヮマグ 150、協和化学工業( 株)) 3. 0重量部を添加し、 8インチオープンロールを用いて混練し、フッ素ゴム組成 物 (b2— 2)を作製した。  As shown in Table 1, fluororubber (bl-2) in 100.0 parts by weight, cross-linking agent (C) 2.0 parts by weight, cross-linking accelerator (D) l. 0 parts by weight, magnesium oxide (kiyoヮ 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-2).
[0121] 製造例 3 (フッ素ゴム組成物 (b2— 3)の調製)  [0121] Production Example 3 (Preparation of fluororubber composition (b2-3))
表 1に示すとおり、フッ素ゴム (bl— 3) 100. 0重量部に、架橋剤(C) 2. 17重量部 、架橋促進剤(D) 0. 11重量部、酸ィ匕マグネシウム (キヨ一ヮマグ 150、協和化学ェ 業 (株)) 3. 0重量部を添加し、 8インチオープンロールを用いて混練し、フッ素ゴム組 成物 (b2— 3)を作製した。  As shown in Table 1, fluororubber (bl-3) in 100.0 parts by weight, cross-linking agent (C) 2.17 parts by weight, cross-linking accelerator (D) 0.11 parts by weight, magnesium oxide (kiyoヮ 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight were added and kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-3).
[0122] [表 1] 表 1  [0122] [Table 1] Table 1
Figure imgf000024_0001
実施例 1〜12
Figure imgf000024_0001
Examples 1-12
上記したフッ素榭脂(A1あるいは A2)、フッ素ゴム組成物(b2—l、 b2— 2)のコン パウンドを、表 2あるいは表 3に示す割合で予備混合した後、二軸押出機に供給して 、シリンダー温度 290°Cおよびスクリュー回転数 500rpmの条件下に溶融混練し、燃 料バリア性材料のペレットをそれぞれ製造した。得られた燃料バリア性材料のペレット を用いて、上記した方法でシート状試験片を作製し、硬度、引張破断強度、引張破 断伸び、引張弾性率、燃料透過係数およびメルトフローレートの測定を行った結果を 表 2あるいは表 3に示す。 After pre-mixing the compound of the above-mentioned fluoro resin (A1 or A2) and fluororubber composition (b2-1, b2-2) in the ratio shown in Table 2 or Table 3, it is supplied to the twin screw extruder. The Then, they were melt-kneaded under conditions of a cylinder temperature of 290 ° C. and a screw rotation speed of 500 rpm to produce pellets of a fuel barrier material. Using the obtained pellets of fuel barrier material, a sheet-like test piece is prepared by the above-described method, and the hardness, tensile breaking strength, tensile breaking elongation, tensile elastic modulus, fuel permeability coefficient and melt flow rate are measured. The results are shown in Table 2 or Table 3.
[0124] 比較例 1〜3 [0124] Comparative Examples 1 to 3
フッ素ゴム糸且成物(b2— 1あるいは b2— 2)のかわりに、フッ素ゴム糸且成物(b2— 3) を用いた以外は、実施例 1〜12と同様の方法を用いて、燃料バリア性材料のペレット を作製し、そのシート状試験片を用いて種々の測定を行った。測定結果を表 3に示 す。  Using the same method as in Examples 1 to 12, except that the fluororubber thread and composition (b2-3) was used instead of the fluororubber thread composition (b2-1 or b2-2), Barrier material pellets were prepared, and various measurements were performed using the sheet-like test pieces. Table 3 shows the measurement results.
[0125] 比較例 4  [0125] Comparative Example 4
ダイネオン製「THV 200G」のペレットを用いて、上記した方法で硬度、引張破断 強度、引張破断伸び、引張弾性率、燃料透過係数およびメルトフローレートの測定を 行った結果を表 3に示す。  Table 3 shows the results of measurements of hardness, tensile strength at break, tensile elongation at break, tensile elastic modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 200G” pellets by the methods described above.
[0126] 比較例 5 [0126] Comparative Example 5
ダイネオン製「THV 500G」のペレットを用いて、上記した方法で硬度、引張破断 強度、引張破断伸び、引張弾性率、燃料透過係数およびメルトフローレートの測定を 行った結果を表 3に示す。  Table 3 shows the results of measurement of hardness, tensile strength at break, tensile elongation at break, tensile modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 500G” pellets by the methods described above.
[0127] 比較例 6 [0127] Comparative Example 6
ダイネオン製「THV 815G」のペレットを用いて、上記した方法で硬度、引張破断 強度、引張破断伸び、引張弾性率、燃料透過係数およびメルトフローレートの測定を 行った結果を表 3に示す。  Table 3 shows the results of measurement of hardness, tensile strength at break, tensile elongation at break, tensile modulus, fuel permeability coefficient and melt flow rate using the Dyneon “THV 815G” pellets by the methods described above.
[0128] 実施例 1〜12により得られた燃料バリア性材料は、走査型電子顕微鏡(日本電子( 株)製)によるモルフォロジ一観察により、フッ素榭脂 (A)が連続相を形成しかつ架橋 フッ素ゴム (B)が分散相を形成する構造を有することがわ力つた。架橋フッ素ゴム (B )の分散粒子径は、実施例 1〜12において、全て 20 m以下であった。 [0128] The fuel barrier material obtained in Examples 1 to 12 was obtained by observing the morphology with a scanning electron microscope (manufactured by JEOL Ltd.), and the fluororesin (A) formed a continuous phase and crosslinked. It was found that the fluororubber (B) has a structure forming a dispersed phase. In Examples 1 to 12, the dispersed particle size of the crosslinked fluororubber (B) was 20 m or less.
[0129] 製造例 4 (フッ素ゴム組成物 (b2— 4)の調製) [0129] Production Example 4 (Preparation of fluororubber composition (b2-4))
フッ素ゴム (bl— 1) 100. 0重量部に、架橋剤 (C) 2. 0重量部、架橋促進剤 (D) 0 . 5重量部、酸ィ匕マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0重量部、 水酸化カルシウム(カルディック 2000、近江化学工業 (株)) 6. 0重量部を添加し 8ィ ンチオープンロールを用いて混練し、フッ素ゴム組成物 (b2— 4)を作製した。 Fluoro rubber (bl— 1) 100.0 parts by weight, cross-linking agent (C) 2.0 parts by weight, cross-linking accelerator (D) 0 5 parts by weight, magnesium oxide (Kiyo Izuma Mag 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, calcium hydroxide (Caldic 2000, Omi Chemical Co., Ltd.) 6.0 parts by weight Then, the mixture was kneaded using an 8-inch open roll to prepare a fluororubber composition (b2-4).
[0130] 製造例 5 (ェピクロロヒドリンゴム組成物の調製)  [0130] Production Example 5 (Preparation of epichlorohydrin rubber composition)
ェピクロロヒドリンゴム(ェピクロマー CG、ダイソー株式会社) 100. 0重量部に、カー ボンブラック(N— 550、 Cancarb Ltd. ) 80重量部、 Plasticizer (ADK cizer R S— 107、旭電化工業株式会社) 5. 0重量部、 Lubricant (Splender R— 300) 2. 0重量部、老化防止剤 (ノクラック NBC、大内新興化学工業 (株)) 2. 0重量部、合成 ノ、イド口タルサイト (DHT— 4A、協和化学工業 (株)) 3. 0重量部、酸化マグネシウム (キヨ一ヮマグ 150、協和化学工業 (株)) 3. 0重量部、 DBUフエノール榭脂塩 (P— 1 52) 1. 5重量部、 6—メチルキノキサリン—2, 3—ジチォカーボネート(ダイソネット XL— 21S、ダイソー株式会社) 1. 5重量部を添カ卩し 8インチオープンロールを用いて 混練し、ェピクロロヒドリンゴム組成物を作製した。  Epoxychlorohydrin rubber (Epichromer CG, Daiso Co., Ltd.) 100.0 parts by weight, Carbon black (N-550, Cancarb Ltd.) 80 parts by weight, Plasticizer (ADK cizer RS-107, Asahi Denka Kogyo Co., Ltd.) 5. 0 parts by weight, Lubricant (Splender R—300) 2. 0 parts by weight, anti-aging agent (NOCRACK NBC, Ouchi Shinsei Chemical Co., Ltd.) 2. 0 parts by weight, synthetic, Ido mouth talcite (DHT — 4A, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, Magnesium Oxide (Kyoichi Tsumugi 150, Kyowa Chemical Industry Co., Ltd.) 3.0 parts by weight, DBU phenol succinate (P— 1 52) 1. 5 parts by weight, 6-methylquinoxaline-2,3-dithiocarbonate (Daisonette XL-21S, Daiso Co., Ltd.) 1. Add 5 parts by weight and knead using an 8-inch open roll. A hydrin rubber composition was prepared.
[0131] 実施例 2で得られた燃料バリア性材料のシートと製造例 4で示す製造方法により得 られたフッ素ゴム組成物 (b2— 4)、あるいは製造例 5で示す製造方法により得られた ェピクロロヒドリンゴム組成物との接着性評価試験を上記の方法により行った。その剥 離強度はフッ素ゴム組成物を用いた場合が 10NZcm、ェピクロロヒドリンゴム組成物 を用いた場合が 8NZcmであり、用いたゴム組成物の種類にかかわらず、燃料バリア 性材料と加硫ゴムシートの界面が剥離していた。  [0131] The sheet of fuel barrier material obtained in Example 2 and the fluororubber composition (b2-4) obtained by the production method shown in Production Example 4 or obtained by the production method shown in Production Example 5 The adhesion evaluation test with the epichlorohydrin rubber composition was carried out by the above method. The peel strength is 10 NZcm when a fluororubber composition is used, and 8 NZcm when an epichlorohydrin rubber composition is used. Regardless of the type of rubber composition used, the fuel barrier material and vulcanization are used. The rubber sheet interface was peeled off.
[0132] 実施例 2で得られた燃料バリア性材料のシートの表面を大気圧プラズマ処理し、表 面処理を行ったシートと製造例 4で示す製造方法により得られたフッ素ゴム組成物 (b 2-4)、あるいは製造例 5で示す製造方法により得られたェピクロロヒドリンゴム組成 物との接着性評価試験を上記の方法により行った。用いたゴム組成物の種類にかか わらず、加硫ゴムシート部位が材料破壊し、その剥離強度は 30NZcm以上であるこ とがわかった。  [0132] The surface of the sheet of the fuel barrier material obtained in Example 2 was subjected to atmospheric pressure plasma treatment, and the surface treated, and the fluororubber composition obtained by the production method shown in Production Example 4 (b) 2-4) Or, an adhesion evaluation test with the epichlorohydrin rubber composition obtained by the production method shown in Production Example 5 was conducted by the above method. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet part failed and the peel strength was 30 NZcm or more.
[0133] 実施例 2で得られた燃料バリア性材料のシートの表面をコロナ放電処理し、表面処 理を行ったシートと製造例 4で示す製造方法により得られたフッ素ゴム組成物 (b2— 4)、あるいは製造例 5で示す製造方法により得られたェピクロロヒドリンゴム組成物と の接着性評価試験を上記の方法により行った。用いたゴム組成物の種類にかかわら ず、加硫ゴムシート部位が材料破壊し、その剥離強度は 30NZcm以上であることが わかった。 [0133] The surface of the sheet of fuel barrier material obtained in Example 2 was subjected to corona discharge treatment, and the surface-treated sheet and the fluororubber composition obtained by the production method shown in Production Example 4 (b2- 4) or an epichlorohydrin rubber composition obtained by the production method shown in Production Example 5 The adhesion evaluation test was conducted by the above method. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet part was destroyed and its peel strength was 30 NZcm or more.
[0134] 実施例 2で得られた燃料バリア性材料のシートの表面を金属ナトリウム Zナフタレン 液処理し、表面処理を行ったシートと製造例 4で示す製造方法により得られたフッ素 ゴム組成物 (b2—4)、あるいは製造例 5で示す製造方法により得られたェピクロロヒド リンゴム組成物との接着性評価試験を上記の方法により行った。用いたゴム組成物 の種類にかかわらず、加硫ゴムシート部位が材料破壊し、その剥離強度は 30NZc m以上であることがわかった。  [0134] The surface of the sheet of the fuel barrier material obtained in Example 2 was treated with a metal sodium Z naphthalene solution, and the surface was treated, and the fluororubber composition obtained by the production method shown in Production Example 4 ( The adhesiveness evaluation test with the epichlorohydrin rubber composition obtained by the production method shown in b2-4) or Production Example 5 was conducted by the above method. Regardless of the type of rubber composition used, it was found that the vulcanized rubber sheet part failed and the peel strength was 30 NZcm or more.
[0135] [表 2] [0135] [Table 2]
表 2 Table 2
Figure imgf000028_0001
Figure imgf000028_0001
表 3 Table 3
Figure imgf000029_0001
Figure imgf000029_0001
本発明の燃料バリア性材料は、特定のフッ素榭脂 (A)とフッ素濃度が高 ヽ架橋フッ 素ゴム (B)を含むことにより、優れた耐熱性'耐薬品性'耐油性を兼ね備え、溶融成 形可能であり、かつ、優れた柔軟性と燃料バリア性を有するものである。 The fuel barrier material of the present invention contains a specific fluorine resin (A) and a high fluorine concentration crosslinked fluororubber (B), and thus has excellent heat resistance, chemical resistance, and oil resistance, and is melted. It can be formed and has excellent flexibility and fuel barrier properties.

Claims

請求の範囲 The scope of the claims
[1] フッ素榭脂 (A) 95〜20重量0 /0および架橋フッ素ゴム (B) 80〜5重量0 /0を含む燃 料バリア性材料であって、 [1] A fuel barrier material containing fluorine榭脂(A) 95 to 20 weight 0/0 and crosslinked fluororubber (B) 80 to 5 weight 0/0,
フッ素榭脂 (A)力 テトラフルォロエチレンとへキサフルォロプロピレン力もなる共重 合体またはテトラフルォロエチレンとへキサフルォロプロピレンとパーフルォロ(アルキ ルビ-ルエーテル)からなる共重合体であり、  Fluorine resin (A) Force Copolymer with tetrafluoroethylene and hexafluoropropylene strength or Copolymer with Tetrafluoroethylene, Hexafluoropropylene and Perfluoro (alkyl vinyl ether) And
架橋フッ素ゴム (B)のフッ素濃度が、 68重量%以上であり、かつその少なくとも一部 が架橋されて ヽる架橋フッ素ゴムである  The crosslinked fluororubber (B) has a fluorine concentration of 68% by weight or more, and at least a part of the crosslinked fluororubber is crosslinked.
燃料バリア性材料。  Fuel barrier material.
[2] 架橋フッ素ゴム (B)が、フッ素榭脂 (A)の存在下、フッ素榭脂 (A)の溶融条件下に て、フッ素ゴム (b)を架橋剤 (C)と共に、動的に架橋処理したものである請求の範囲 第 1項記載の燃料バリア性材料。  [2] The cross-linked fluororubber (B) is dynamically added to the fluororubber (b) together with the cross-linking agent (C) under the melting condition of the fluorocobalt (A) in the presence of the fluororesin (A). 2. The fuel barrier material according to claim 1, which has been subjected to a crosslinking treatment.
[3] 燃料バリア性材料力も形成される成形品の燃料透過係数が 40 (g · mm) / (m2 · da y)以下であり、かつ引張弾性率が 600MPa以下である請求の範囲第 1項または第 2 項に記載の燃料バリア性材料。 [3] A molded article that also has a fuel barrier material strength has a fuel permeability coefficient of 40 (g · mm) / (m 2 · day) or less and a tensile modulus of 600 MPa or less. The fuel barrier material according to Item 2 or Item 2.
[4] フッ素榭脂 (A)の融点が 150°C〜330°Cである請求の範囲第 1項〜第 3項のいず れかに記載の燃料バリア性材料。 [4] The fuel barrier material according to any one of claims 1 to 3, wherein the melting point of the fluororesin (A) is 150 ° C to 330 ° C.
[5] フッ素ゴム(b)力 ビ-リデンフルオライド Zテトラフルォロエチレン Zへキサフルォ 口プロピレン系フッ素ゴムである請求の範囲第 1項〜第 4項のいずれかに記載の燃料 バリア性材料。 [5] Fluororubber (b) force Berylidene fluoride Z Tetrafluoroethylene Z Hexafluoride The fuel barrier material according to any one of claims 1 to 4, which is a propylene-based fluororubber .
[6] 架橋剤 (C)が、ポリヒドロキシィ匕合物である請求の範囲第 2項〜第 5項の 、ずれか に記載の燃料バリア性材料。  [6] The fuel barrier material according to any one of claims 2 to 5, wherein the crosslinking agent (C) is a polyhydroxy compound.
[7] 請求の範囲第 1項〜第 6項のいずれかに記載の燃料バリア性材料力 形成される 成形品。 [7] A molded article formed with the fuel barrier material force according to any one of claims 1 to 6.
[8] 請求の範囲第 1項〜第 6項のいずれかに記載の燃料バリア性材料力 形成される 層を含む燃料チューブ。  [8] A fuel tube comprising a layer formed with the fuel barrier material force according to any one of claims 1 to 6.
[9] 請求の範囲第 1項〜第 6項のいずれかに記載の燃料バリア性材料力 形成される 層を含む燃料ホース。 [9] A fuel hose including a layer formed with the fuel barrier material force according to any one of claims 1 to 6.
PCT/JP2007/060101 2006-05-24 2007-05-17 Fuel-barrier material and molded article formed therefrom WO2007135938A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006144551 2006-05-24
JP2006-144551 2006-05-24
JP2007032530 2007-02-13
JP2007-032530 2007-02-13

Publications (1)

Publication Number Publication Date
WO2007135938A1 true WO2007135938A1 (en) 2007-11-29

Family

ID=38723250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060101 WO2007135938A1 (en) 2006-05-24 2007-05-17 Fuel-barrier material and molded article formed therefrom

Country Status (1)

Country Link
WO (1) WO2007135938A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2503200A1 (en) * 2010-03-08 2012-09-26 Honda Motor Co., Ltd. Vehicle engine oil seal
JP5600586B2 (en) * 2008-02-29 2014-10-01 株式会社クラレ Fuel container
EP3135313A1 (en) * 2015-08-24 2017-03-01 Junkosha Inc. Heat-shrinkable tube having tearability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797457A (en) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd Fluororubber composition and its molding method
JPH10101880A (en) * 1996-09-27 1998-04-21 Nichias Corp Thermoplastic elastomer composition, production thereof and formed product therefrom
JPH10219062A (en) * 1997-02-06 1998-08-18 Nichias Corp Thermoplastic elastomer composition, its production and formed article made of the composition
JP2001011272A (en) * 1999-07-02 2001-01-16 Nippon Mektron Ltd Fluorine-containing polymer composition
JP2004507571A (en) * 2000-06-27 2004-03-11 ダイネオン エルエルシー Fluoropolymer-containing composition
JP2005314678A (en) * 2004-03-30 2005-11-10 Freudenberg-Nok General Partnership Elastomer composition comprising fluoropolymer blend

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797457A (en) * 1993-09-29 1995-04-11 Asahi Glass Co Ltd Fluororubber composition and its molding method
JPH10101880A (en) * 1996-09-27 1998-04-21 Nichias Corp Thermoplastic elastomer composition, production thereof and formed product therefrom
JPH10219062A (en) * 1997-02-06 1998-08-18 Nichias Corp Thermoplastic elastomer composition, its production and formed article made of the composition
JP2001011272A (en) * 1999-07-02 2001-01-16 Nippon Mektron Ltd Fluorine-containing polymer composition
JP2004507571A (en) * 2000-06-27 2004-03-11 ダイネオン エルエルシー Fluoropolymer-containing composition
JP2005314678A (en) * 2004-03-30 2005-11-10 Freudenberg-Nok General Partnership Elastomer composition comprising fluoropolymer blend

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600586B2 (en) * 2008-02-29 2014-10-01 株式会社クラレ Fuel container
EP2503200A1 (en) * 2010-03-08 2012-09-26 Honda Motor Co., Ltd. Vehicle engine oil seal
EP2503200A4 (en) * 2010-03-08 2017-05-03 Honda Motor Co., Ltd. Vehicle engine oil seal
EP3135313A1 (en) * 2015-08-24 2017-03-01 Junkosha Inc. Heat-shrinkable tube having tearability

Similar Documents

Publication Publication Date Title
JP5273048B2 (en) Thermoplastic resin composition containing fluorine-containing resin and crosslinked fluororubber
WO2006057332A1 (en) Thermoplastic polymer composition
JP4910704B2 (en) Thermoplastic polymer composition
CN101065440B (en) Thermoplastic polymer composition
KR101537179B1 (en) Fluorine rubber molded article
TW200536865A (en) Chlorotrifluoroethylene copolymer
JP4968338B2 (en) Laminated body consisting of fluororesin layer and elastomer layer
WO2006001363A1 (en) Fluorine-containing elastomer composition and molded article made therefrom
JPH11129398A (en) Perfluororubber laminate and its manufacture
JP2019094430A (en) Fluororubber molded body and composition
JP7235989B2 (en) Fluorinated elastomer, crosslinkable composition and molded article
JP5120251B2 (en) Thermoplastic polymer composition and molded article comprising the composition
JP2007191576A (en) Thermoplastic polymer composition, thermoplastic resin composition, molded product using the same and manufacturing method for thermoplastic resin composition
JP2010280103A (en) Laminate, molding, fuel hose and method for manufacturing the laminate
JP5892276B1 (en) Fluoro rubber composition and fluoro rubber molding
WO2007135938A1 (en) Fuel-barrier material and molded article formed therefrom
JP5298517B2 (en) Fluorine-containing molded product and method for producing the same
WO2007111334A1 (en) Fluoroelastomer composition, fluororesin composition, and molding thereof
JP2000313089A (en) Laminate of perfluoro-rubber layer and use thereof
JP2007277348A (en) Production method of fluororesin composition and fluororesin composition obtained by the production method
JP2010209275A (en) Polymer composition and molded article
WO2006030774A1 (en) Curable composition
JP2013023629A (en) Method for producing composition including fluorine resin and pulverized crosslinked fluorine rubber
JP2021084988A (en) Crosslinked fluororubber and fluororubber composition
JP2007224086A (en) Fluororesin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP