WO2007116566A1 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
WO2007116566A1
WO2007116566A1 PCT/JP2006/325220 JP2006325220W WO2007116566A1 WO 2007116566 A1 WO2007116566 A1 WO 2007116566A1 JP 2006325220 W JP2006325220 W JP 2006325220W WO 2007116566 A1 WO2007116566 A1 WO 2007116566A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitor
capacitance
bias
electrodes
Prior art date
Application number
PCT/JP2006/325220
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Togami
Noriyuki Kubodera
Tsuyoshi Nakagawa
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008509693A priority Critical patent/JP4873007B2/en
Priority to TW096103797A priority patent/TWI331759B/en
Publication of WO2007116566A1 publication Critical patent/WO2007116566A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Definitions

  • the present invention relates to a capacitor, and more particularly to a capacitor whose capacitance can be changed by a DC noise applied from outside.
  • a capacitor whose capacitance can be changed by a DC bias applied from the outside is, for example, described in Japanese Patent Publication No. 5-19970 (Patent Document 1).
  • Patent Document 1 The capacitor described in Patent Document 1 will be described with reference to FIG. 24 and FIG.
  • FIG. 24 is a front view showing the capacitor with a cross section facing in the stacking direction of the dielectric layers
  • FIG. 25 is a plan view showing the capacitor with a cross section extending in the main surface direction of the dielectric layers.
  • the capacitor 1 includes a rectangular parallelepiped capacitor body 3 having a laminated structure including a plurality of dielectric layers 2.
  • the capacitor body 3 also includes DC bias application electrodes 4 and 5 that make a pair with each other, and capacitance acquisition electrodes 6 and 7 that make a pair with each other.
  • Capacitance acquisition electrodes 6 and 7 are positioned between DC bias application electrodes 4 and 5.
  • a dielectric layer 2 is positioned between each of the DC bias application electrode 4, the capacitance acquisition electrode 6, the capacitance acquisition electrode 7 and the DC bias application electrode 5.
  • FIG. 25 shows a cross section through which the DC bias applying electrode 4 passes.
  • 25 (b) shows a cross section through which the DC bias application electrode 5 passes
  • FIG. 25 (c) shows a cross section through which the capacitance acquisition electrode 6 passes
  • FIG. 25 (d) shows a cross section through which the capacitance acquisition electrode 7 passes.
  • a cross section is shown.
  • the capacitor body 3 has four side surfaces 8 to L 1 extending in the stacking direction. DC bias applied to sides 8, 9, 10 and 11 respectively Terminal conductor films 12 and 13 for capacity and terminal conductor films 14 and 15 for obtaining capacitance are provided.
  • the DC bias applying electrode 4 is drawn out to the side surface 8, and is electrically connected to the DC bias applying terminal conductor film 12 here.
  • the DC bias applying electrode 5 is drawn out to the side surface 9, and is electrically connected to the DC bias applying terminal conductor film 13 here.
  • the capacitance acquisition electrode 6 is pulled out to the side surface 10 and is electrically connected to the capacitance acquisition terminal conductor film 14 here.
  • the capacitance acquisition electrode 7 is drawn out to the side surface 11 and is electrically connected to the capacitance acquisition terminal conductor film 15 here.
  • the capacitance formed between the pair of capacitance acquisition electrodes 6 and 7 is extracted from the capacitance acquisition terminal conductor films 14 and 15.
  • the dielectric layer 2 positioned between the DC bias applying electrodes 4 and 5 Dielectric properties such as dielectric constant change. Therefore, the dielectric characteristic of the dielectric layer 2 located between the capacitance acquisition electrodes 6 and 7 changes, and as a result, the capacitance taken out through the capacitance acquisition terminal conductor films 14 and 15 is reduced. Can be changed.
  • FIG. 26 is a diagram corresponding to FIG. 24 and showing the capacitor la described in Patent Document 2.
  • elements corresponding to those shown in FIG. 24 are denoted by the same reference numerals, and redundant description will be omitted.
  • the DC bias application electrodes 4 and 5 are positioned so as to be sandwiched between the capacitance acquisition electrodes 6 and 7.
  • Other configurations are substantially the same as those of the capacitor 1 shown in FIG.
  • the electrodes provided on the capacitor body 3 include the DC bias application electrodes 4 and 5 and the capacitance acquisition electrode 6. And 7 are required, and at least 3 layers are required for the dielectric layer 2 separating each of the electrodes 4 to 7, which is disadvantageous for miniaturization. Become.
  • the dielectric layer 2 whose dielectric characteristics are to be changed is merely one layer, but the DC bias is applied to the three dielectric layers 2 because of its structure. I have to mark it. Since the electric field strength is inversely proportional to the distance between the electrodes, in the case of the above structure, if the thickness of each dielectric layer 2 is the same, in order to obtain the required electric field strength, the direct current is three times that of the single layer. It is necessary to apply a voltage, which has the adverse effect of increasing the drive voltage. In addition, not all of the dielectric layer 2 positioned between the DC bias application electrodes 4 and 5 is involved in the capacitance acquisition, so the volume capacity is reduced, and the large capacity is reduced despite the small size. It is difficult to realize.
  • the DC bias application electrodes 4 and 5 are arranged between the capacitance acquisition electrodes 6 and 7, a dielectric for acquiring the capacitance is obtained.
  • a DC bias is not applied to a part of the body layer 2.
  • the thickness of the dielectric layers to which the DC bias is applied is 1Z3 of the total thickness of the dielectric layers 2 that contributes to the capacitance acquisition, and the capacitance change With respect to the rate, the detrimental effect of reducing the DC bias characteristic of the material of the dielectric layer 2 to 1Z3 or lower is brought about.
  • Patent Document 1 Japanese Patent Publication No. 5-19970
  • Patent Document 2 Japanese Patent Publication No. 5-19969
  • an object of the present invention is to provide a capacitor that can solve the above-described problems.
  • a capacitor according to the present invention includes a capacitor body having a laminated structure including a plurality of dielectric layers.
  • the capacitor body is used to apply a DC bias between a ground electrode provided along a specific dielectric layer and the ground electrode via the specific dielectric layer and between the ground electrode and the ground electrode.
  • Capacitance is formed by positioning the DC bias applying electrode and the DC bias applying electrode between the grounding electrode and facing the grounding electrode through a specific dielectric layer.
  • a capacitance acquisition electrode provided as described above.
  • the capacitor further includes an earth terminal conductor film electrically connected to the earth electrode, a DC bias application terminal conductor film electrically connected to the DC bias application electrode, and a capacitor acquisition
  • a first capacitance acquisition terminal conductor film electrically connected to the electrode, and the earth terminal conductor film, the DC bias application terminal conductor film, and the first capacitance acquisition terminal conductor film are formed on the capacitor body. Is provided on the outer surface.
  • the capacitor according to the present invention further includes a second capacitance acquisition terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the ground electrode. It is preferable.
  • the capacitor main body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, the ground terminal conductor film is provided on the first side surface, and the DC bias applying terminal conductor film is the first side surface.
  • the first capacitance acquisition terminal conductor film is provided on the second side surface opposite to the first side surface, and the second capacitance acquisition is provided on the third side surface adjacent to the first and second side surfaces.
  • the terminal conductor film for use is provided on the fourth side surface facing the third side surface.
  • At least the dielectric layer positioned between the grounding electrode and the DC bias applying electrode has a large DC bias dependency of the dielectric characteristics and also has a material force. I prefer that.
  • the capacitor main body may include a plurality of sets of grounding electrodes, DC noise application electrodes, and capacitance acquisition electrodes.
  • a capacitor according to the present invention includes a capacitor body having a laminated structure including a plurality of dielectric layers.
  • the capacitor body is provided with first and second capacitors provided to form a capacitance by facing each other through a specific dielectric layer.
  • First and second direct current biases used to apply a DC bias to the capacitance forming region of the dielectric layer located between the first and second capacitance acquisition electrodes and the first and second capacitance acquisition electrodes. And an application electrode.
  • the first DC bias applying electrode is provided on the same main surface as the main surface of the dielectric layer provided with the first capacitance acquisition electrode
  • the second DC bias applying electrode is 2 is provided on the same main surface as the main surface of the dielectric layer provided with the capacitance acquisition electrode.
  • the capacitor further includes first and second DC bias applying terminal conductor films electrically connected to the first and second DC bias applying electrodes, respectively.
  • First and second capacitance acquisition terminal conductor films electrically connected to the two capacitance acquisition electrodes, respectively, and the first and second DC bias applying terminal conductor films and the first and second The second capacitor acquisition terminal conductor film is provided on the outer surface of the capacitor body.
  • the side on which the first DC bias application electrode is located with respect to the first capacitance acquisition electrode is with respect to the second capacitance acquisition electrode.
  • the side on which the second DC bias application electrode is located is the opposite side.
  • the capacitor body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is on the first side surface.
  • the second DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquiring terminal conductor film is provided on the first and second side surfaces.
  • the second capacitance acquisition terminal conductor film is provided on the fourth side surface opposite to the third side surface.
  • At least the dielectric layer constituting the capacitance forming region is made of a material having a large DC noise dependency of dielectric characteristics.
  • the capacitor body includes a plurality of sets of first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct currents. Including a bias application electrode.
  • the capacitor according to the present invention includes a plurality of dielectric layers.
  • the capacitor body includes first and second capacitance acquisition electrodes provided so as to form a capacitance by facing each other through a specific dielectric layer, and first and second capacitance acquisition electrodes.
  • first and second DC bias applying electrodes used for applying a DC bias to the capacitance forming region of the dielectric layer located between the electrodes.
  • the first and second DC noise application electrodes are provided on the same main surface of the same dielectric layer sandwiched between the first and second capacitance acquisition electrodes.
  • the capacitor further includes first and second DC bias applying terminal conductor films electrically connected to the first and second DC bias applying electrodes, respectively, and first and second DC bias applying electrodes.
  • First and second capacitance acquisition terminal conductor films electrically connected to the two capacitance acquisition electrodes, respectively, and the first and second DC bias applying terminal conductor films and the first and second The second capacitor acquisition terminal conductor film is provided on the outer surface of the capacitor body.
  • the first and second DC bias applying electrodes may be provided so as not to overlap the capacitance forming region, or It may be provided so as to overlap the capacitor formation region.
  • the first and second DC bias applying electrodes are both comb-shaped to form a plurality of parallel electrode fingers, and the first DC The electrode fingers provided for the bias applying electrode may be positioned so as to enter between the electrode fingers provided for the second DC bias applying electrode!
  • the capacitor main body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is on the first side surface.
  • the second DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquiring terminal conductor film is provided on the first and second side surfaces.
  • the second capacitance acquisition terminal conductor film is provided on the fourth side surface opposite to the third side surface.
  • At least the dielectric layer constituting the capacitance forming region is made of a material having a large DC noise dependency of dielectric characteristics. That's right.
  • the capacitor body includes a plurality of sets of first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct currents. Including a bias application electrode.
  • the grounding electrode is provided so as to face both the DC bias applying electrode and the capacitance acquiring electrode in common, and thereby It functions as an electrode for applying a DC bias in a pair with a bias application electrode, and also functions as an electrode for forming a capacitance in a pair with a capacitance acquisition electrode.
  • the capacitance variable by providing the earth electrode with two functions in this way, at least three layers of electrodes such as the earth electrode, the DC bias application electrode, and the capacitance acquisition electrode in the capacitor body, In addition, at least two dielectric layers are required as the dielectric layer separating the electrodes. Therefore, it is possible to advantageously reduce the size of the capacitor.
  • the capacitor body since no capacitance acquisition electrode is interposed between the DC bias applying electrode and the ground electrode, the DC bias applying electrode and the grounding electrode are not provided.
  • the distance between the electrodes can be easily reduced. If the distance between the DC bias application electrode and the ground electrode is reduced, the dielectric characteristics of the dielectric layer can be changed at a lower voltage. As a result, the capacitor can be operated at a lower voltage. It is possible to control the applied capacitance.
  • the volume capacity can be reduced. The amount becomes large, and it becomes easy to achieve high capacity while being small.
  • the capacitor power grounding electrode according to the present invention is further provided with a second capacitor acquisition terminal conductor film electrically connected to the electrode, and the capacitor body has a rectangular parallelepiped shape having four side surfaces.
  • a grounding terminal conductor film is provided on the first side surface
  • a DC bias applying terminal conductor film is provided on the second side surface
  • the first capacitance acquisition terminal conductor film is on the third side surface.
  • the second capacitance acquisition terminal conductor film is provided on the fourth side surface. Therefore, it is possible to employ an implementation state substantially similar to that of the variable capacitor described in Patent Documents 1 and 2.
  • the capacitor according to the first aspect if it is made of a material having a large DC bias dependency of the dielectric layer force dielectric property located at least between the grounding electrode and the DC bias applying electrode, The variable range of capacitance by bias can be made wider.
  • the capacitor main body includes a plurality of sets of grounding electrodes, DC bias applying electrodes, and capacitance acquiring electrodes, the variable range of the capacitance due to the DC bias is increased. If it can be made wider, the acquired capacitance can be increased by force.
  • the first and second capacitance acquisition electrodes are required, and the capacitance can be made variable.
  • the first and second DC bias application electrodes are required, but the first and second capacitance acquisition electrodes and the positions of the first and second DC bias application electrodes
  • the first DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer provided with the first capacitance acquisition electrode, and the second DC bias application electrode is provided with the second capacitance. It is characterized in that it is provided on the same main surface as the main surface of the dielectric layer provided with the acquisition electrode.
  • the minimum structure required to make the capacitance variable can be realized by one dielectric layer providing the capacitance formation region and two electrode layers sandwiching the dielectric layer. Compared to the conventional variable capacitance capacitor described in Patent Document 1 or 2, the size and size of the capacitor can be reduced.
  • the first and second since the grounded electrode does not exist between the first and second DC noise application electrodes, the first and second It is possible to suppress a decrease in the rate of change in capacitance due to a decrease in electric field strength that prevents the electric field applied to the capacitance forming region of the dielectric layer from being shielded by the DC bias applying electrode. Therefore, it is possible to control the capacitance provided by the capacitor at a lower voltage.
  • the first direct current is connected to the first capacitance acquisition electrode.
  • Side force at which the current bias application electrode is located When the second capacitance acquisition electrode is opposite to the side at which the second direct current bias application electrode is located, the capacitance formation region of the dielectric layer
  • the DC bias is applied in an oblique direction with respect to the thickness direction of the dielectric layer, and the first and second capacitance acquisition electrodes and the first and second DC bias applications are applied.
  • the capacitor body has a rectangular parallelepiped shape having four side surfaces, the first and second DC bias applying terminal conductor films, and the first and second capacitance acquisitions.
  • the capacitance variable range due to the DC bias can be made wider.
  • the capacitor body includes a plurality of ⁇ a first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct current electrodes.
  • the current bias application electrode is included, if the variable range of the electrostatic capacity due to the DC bias can be made wider, the acquired electrostatic capacity can be increased.
  • the first and second capacitance acquisition electrodes are required, and the capacitance can be made variable.
  • the first and second DC bias application electrodes are required, but the first and second capacitance acquisition electrodes and the positions of the first and second DC bias application electrodes
  • the first and second DC bias applying electrodes are provided on the same main surface of the same dielectric layer sandwiched between the first and second capacitance acquiring electrodes. Therefore, the minimum structure necessary for making the capacitance variable can be realized by two dielectric layers providing a capacitance forming region and three electrode layers sandwiching each dielectric layer. Therefore, compared to the conventional variable capacitance capacitor described in Patent Document 1 or 2 described above Thus, it is possible to reduce the size and increase the capacity.
  • the capacitor according to the third aspect since the grounded electrode does not exist between the first and second DC noise applying electrodes, the first and second It is possible to suppress a decrease in the rate of change in capacitance due to a decrease in electric field strength that prevents the electric field applied to the capacitance forming region of the dielectric layer from being shielded by the DC bias applying electrode. Therefore, it is possible to control the capacitance provided by the capacitor at a lower voltage.
  • the first and second DC bias applying electrodes are provided so as not to overlap the capacitance forming region with respect to the position of the dielectric layer in the principal surface direction.
  • the first and second capacitance acquisition electrodes can be arranged so as not to sandwich the DC bias application electrode, the capacitance characteristics can be stabilized.
  • the capacitor according to the third aspect when the first and second DC bias applying electrodes are provided so as to overlap the capacitance forming region with respect to the position in the principal surface direction of the dielectric layer, The distance between the first and second DC bias application electrodes can be shortened. As a result, even when a relatively low voltage is applied as the DC bias, the effect of capacitance change can be obtained. .
  • both the first and second DC bias application electrode forces have a comb-like shape forming a plurality of parallel electrode fingers, and the first DC noise application Each electrode finger force provided for the electrode for electrode When the electrode finger provided for the second DC bias application electrode is positioned so as to enter between the electrodes, the distance between the first and second DC bias application electrodes is shortened. In addition, the opposing area of the first and second DC bias application electrodes can be increased, and the effect of capacitance change can be obtained even when a relatively low voltage is applied as the DC bias.
  • the capacitor body has a rectangular parallelepiped shape having four side surfaces, the first and second DC bias applying terminal conductor films, and the first and second capacitance acquisitions.
  • the capacitance variable range due to the DC bias can be made wider.
  • the capacitor body includes a plurality of ⁇ a first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct current electrodes.
  • the current bias application electrode is included, if the variable range of the electrostatic capacity due to the DC bias can be made wider, the acquired electrostatic capacity can be increased.
  • FIG. 1 is a front view showing a capacitor 21 according to a first embodiment of the present invention.
  • FIG. 1 (a) is a front view showing the capacitor 21 with a cross section in the stacking direction of a dielectric layer 22.
  • (B) to (d) are plan views showing the capacitor 21 with a cross section extending in the main surface direction of the dielectric layer 22, and show different cross sections.
  • FIG. 2 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 21 shown in FIG.
  • FIG. 3 The rate of change in capacity for each of sample 1 as an example and sample 2 as a comparative example, obtained in Example 1 for confirming the effect of the first embodiment! It is a figure which compares and shows.
  • FIG. 4 is a view corresponding to FIG. 1 (a), showing a capacitor 41 according to a second embodiment of the present invention.
  • FIG. 5 is a view corresponding to FIG. 1 (a), showing a capacitor 51 according to a third embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a capacitor 21a according to a first modification corresponding to the first embodiment of the present invention.
  • FIG. 6 (a) is a cross section of the capacitor 21a facing in the stacking direction of the dielectric layer 22.
  • FIGS. 4B to 4D are plan views showing the capacitor 21a with a cross section extending in the direction of the main surface of the dielectric layer 22 and showing different cross sections.
  • FIG. 7 is an equivalent circuit diagram in which a DC bias is applied to the capacitor 21a shown in FIG. [8]
  • FIG. 8 is a view corresponding to FIG. 4, showing a capacitor 41a according to a second modification corresponding to the second embodiment of the present invention.
  • FIG. 9 is a diagram corresponding to FIG. 5, showing a capacitor 51a according to a third modification corresponding to the third embodiment of the present invention.
  • FIG. 10 is a front view showing a capacitor 121 according to a fourth embodiment of the present invention, in which (a) is a front view showing the capacitor 121 with a cross section in the stacking direction of the dielectric layer 122; b) to (d) are plan views showing the capacitor 121 with a cross section extending in the direction of the main surface of the dielectric layer 122, showing different cross sections.
  • FIG. 11 is an equivalent circuit diagram in a state where a DC noise is applied to the capacitor 121 shown in FIG.
  • FIG. 13 is a view corresponding to FIG. 10 (a), showing a capacitor 141 according to a fifth embodiment of the present invention.
  • FIG. 14 is a view corresponding to FIG. 10 (a), showing a capacitor 151 according to a sixth embodiment of the present invention.
  • FIG. 15 is a front view showing a capacitor 221 according to a seventh embodiment of the present invention, in which (a) is a front view showing the capacitor 221 with a cross section in the stacking direction of the dielectric layer 222; b) to (d) are plan views showing the capacitor 221 with a cross section extending in the direction of the principal surface of the dielectric layer 222, showing different cross sections.
  • FIG. 16 is an equivalent circuit diagram in a state where a DC noise is applied to the capacitor 221 shown in FIG.
  • FIG. 17 shows a comparison of capacity change rates for each of sample 201 as an example and sample 202 as a comparative example obtained in Experimental Example 5 performed to confirm the effect of the seventh embodiment.
  • FIG. 17 shows a comparison of capacity change rates for each of sample 201 as an example and sample 202 as a comparative example obtained in Experimental Example 5 performed to confirm the effect of the seventh embodiment.
  • FIG. 18 is a view corresponding to FIG. 15 (c), showing a capacitor 221 a according to an eighth embodiment of the present invention.
  • FIG. 19 is a view corresponding to FIG. 15, showing a capacitor 221b according to a ninth embodiment of the present invention.
  • FIG. 20 shows a capacitor 221c according to a tenth embodiment of the present invention, in which (a) and (b) correspond to FIGS. 15 (a) and (c), respectively.
  • FIG. 21 is a diagram corresponding to FIG. 15 and showing a capacitor 221d according to an eleventh embodiment of the present invention.
  • FIG. 22 is a view corresponding to FIG. 15 (a), showing a capacitor 241 according to a twelfth embodiment of the present invention.
  • FIG. 23 is a view corresponding to FIG. 15 (a), showing a capacitor 251 according to a thirteenth embodiment of the present invention.
  • FIG. 24 is a view corresponding to FIG. 1 (a), showing a conventional capacitor 1 of interest to the present invention.
  • FIG. 25 is a plan view showing the capacitor 1 shown in FIG. 24 with a cross section extending in the principal surface direction of the dielectric layer 2 and showing different cross sections.
  • FIG. 26 is a view corresponding to FIG. 1 (a) showing another conventional capacitor la of interest to the present invention.
  • FIG. 1 and FIG. 2 are for explaining a capacitor 21 according to the first embodiment of the present invention.
  • FIG. 1 (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 21 with a cross section facing the stacking direction of the dielectric layer 22, (b) to ( d) is a view corresponding to FIG. 25 described above, and is a plan view showing the capacitor 21 with a cross section extending in the principal surface direction of the dielectric layer 22.
  • FIG. 2 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 21.
  • the capacitor 21 includes a capacitor body 23 having a multilayer structure including a plurality of dielectric layers 22.
  • the capacitor body 23 is disposed between the ground electrode 24 provided along the specific dielectric layer 22 and the ground electrode 24 through the specific dielectric layer 22 and facing the ground electrode 24.
  • the DC bias application electrode 25 is used to apply a DC bias, and the DC bias application electrode 25 is sandwiched between the ground electrode 24 and grounded via a specific dielectric layer 22.
  • a capacitance acquisition electrode 26 provided so as to form a capacitance by facing the electrode 24.
  • the capacitor body 23 has a rectangular parallelepiped shape having four side surfaces 27 to 30 extending in the stacking direction, as well shown in FIGS. 1 (b) to (d).
  • a grounding terminal conductor film 31 is provided on the first side surface 27.
  • a DC bias applying terminal conductor film 32 is provided on the second side face 28 facing the first side face 27.
  • a first capacitance acquisition terminal conductor film 33 is provided on the third side surface 29 adjacent to the first and second side surfaces 27 and 28, a first capacitance acquisition terminal conductor film 33 is provided.
  • FIG. 1 (b) shows a cross section through which the capacitance acquisition electrode 26 passes. The capacitance acquisition electrode 26 is pulled out to the third side surface 29, where it is electrically connected to the first capacitance acquisition terminal conductor film 33.
  • FIG. 1 (c) shows a cross section through which the DC bias applying electrode 25 passes.
  • the DC bias applying electrode 25 is drawn out to the second side face 28 and is electrically connected to the DC bias applying terminal conductor film 32 here.
  • FIG. 1 (d) shows a cross section through which the ground electrode 24 passes.
  • the grounding electrode 24 is pulled out to the first side surface 27 and also to the fourth side surface 30.
  • the grounding electrode 24 is electrically connected to the grounding terminal conductor film 31 on the first side surface 27, and is connected to the second capacitance acquisition terminal conductor film 34 on the fourth side surface 30. Electrically connected.
  • the capacitance formed between the grounding electrode 24 and the capacitance acquiring electrode 26 is the first and The second capacitor acquisition terminal conductor films 33 and 34 are taken out.
  • a predetermined circuit (not shown) is electrically connected to the first and second capacitor acquisition terminal conductor films 33 and 34.
  • the dielectric characteristics of the part of the dielectric layer 22 located between the ground electrode 24 and the capacitance acquisition electrode 26 change as described above.
  • the first and second dielectric layers 22 change. It is possible to change the capacitance taken out through the terminal conductor films 33 and 3 4 for acquiring the capacitance of 2.
  • the dielectric layer 22, particularly the dielectric layer 22 positioned between the grounding electrode 24 and the DC bias applying electrode 25, has a dielectric property. It is preferable that a material force having a large DC bias dependency is also configured.
  • a material whose dielectric characteristics have a large DC bias dependency for example, lOOBa (Ti Zr) 0
  • a sample 1 having a structure substantially similar to that of the capacitor 21 shown in FIG. 1 was produced as Sample 1 according to the example within the scope of the present invention.
  • Sample 2 according to the comparative example a sample having a structure substantially similar to that of the capacitor 1 shown in FIG. 24 was prepared.
  • a BaTiO-based high dielectric constant ceramic material is used as the dielectric constituting the dielectric layer, and the dielectric layer positioned between the electrodes is used.
  • the thickness of the electric layer was 2 m.
  • the electrode was mainly composed of nickel and had a thickness of 1 ⁇ m.
  • the external dimensions of the capacitor body were 3.2 mm X l. 6 mm X O. 4 mm.
  • FIGS. 4 and 5 are diagrams corresponding to FIG. 1 (a), showing capacitors 41 and 51 according to the second and third embodiments of the present invention, respectively.
  • elements corresponding to those shown in FIG. 1 (a) are given the same reference numerals, and redundant explanations are omitted.
  • Capacitors 41 and 51 include a plurality of sets of grounding electrodes 24, DC bias application electrodes 25, and capacitance acquisition capacitors in the capacitor body 23.
  • the electrode 26 is formed and is characterized by! /
  • a plurality of ⁇ & ground electrodes 24, a DC bias applying electrode 25, and a capacitance acquiring electrode 26 are arranged from above with a capacitance acquiring electrode 26,
  • the DC bias application electrode 25, the ground electrode 24, the capacitance acquisition electrode 26,... are repeatedly arranged in the order of several times.
  • the capacitance acquisition electrode 26 the DC bias application electrode 25, the ground electrode 24, the DC bias application electrode 25, the capacitance acquisition electrode 26,. Repeated multiple times in the same order.
  • the arrangement of the capacitance acquisition electrode 26, the DC bias application electrode 25, and the ground electrode 24 in the capacitor 21 shown in FIG. This set is repeated several times.
  • the grounding electrode 24 is shared between adjacent pairs, and the DC bias applying electrode 25 is disposed in every two layers of the dielectric layer 22.
  • the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was set to 500.
  • the electrode arrangement structure shown in FIG. 26 was adopted, and the number of stacked layers of all the electrodes including the DC bias application electrode and the capacitance acquisition electrode was set to 500.
  • the electrode arrangement structure shown in FIG. 4 was adopted, and the number of layers of all electrodes including the ground electrode, the DC bias application electrode, and the capacitance acquisition electrode was set to 501.
  • Table 1 shows the capacitance change range when the DC bias is changed in the range of 0 to 36 V for these samples 11 to 13.
  • Sample 12 has a structure in which the DC bias application electrode is sandwiched between the capacitance acquisition electrodes, so that a large capacitance cannot be obtained, and the maximum capacitance is 13. Only 7 F.
  • sample 13 has a larger maximum capacity and a larger capacity variable width than sample 11.
  • the second capacitor acquisition terminal conductor film 34 is formed.
  • a second capacitor acquisition terminal conductor film may be omitted.
  • the capacitor acquisition terminal conductor film 34 may be provided so as to continuously extend to the position where the capacitor acquisition terminal conductor film 34 is provided.
  • the grounding electrode 24, the DC bias applying electrode 25, and the capacitance acquiring electrode 26 are all formed inside the capacitor body 23.
  • the ground electrode 24 and the Z or capacitance acquisition electrode 26 are formed on the outer surface of the capacitor body 23. It will be.
  • FIG. 6 and FIG. 7 are for explaining a capacitor 21a according to a first modification corresponding to the first embodiment described above.
  • (a) is a view corresponding to FIG. 1 (a) described above, and is a front view showing the capacitor 21a with a cross section in the stacking direction of the dielectric layer 22
  • (b) to ( d) is a view corresponding to FIGS. 1B to 1D described above, and is a plan view showing the capacitor 21a with a cross section extending in the main surface direction of the dielectric layer 22.
  • FIG. FIG. 7 corresponds to FIG. 2 described above.
  • the capacitor 21a includes a capacitor body 23 having a multilayer structure composed of a plurality of dielectric layers 22.
  • the capacitor body 23 includes a grounding electrode 24 provided along a specific dielectric layer 22 and a DC bias applying electrode provided at a position facing the grounding electrode 24 through the specific dielectric layer 22. 25, located between the grounding electrode 24 and the DC bias applying electrode 25 and facing the grounding electrode 24 through a specific dielectric layer 22 so as to form a capacitance. And an electrode 26 for capacitance acquisition.
  • the capacitor main body 23 has a rectangular parallelepiped shape having four side surfaces 27 to 30 extending in the stacking direction, as well shown in FIGS. 6 (b) to (d).
  • a grounding terminal conductor film 31 is provided on the first side surface 27 .
  • a DC bias applying terminal conductor film 32 is provided on the second side face 28 facing the first side face 27.
  • a first capacitance acquisition terminal conductor film 33 is provided on the third side surface 29 adjacent to the first and second side surfaces 27 and 28, a first capacitance acquisition terminal conductor film 33 is provided on the fourth side face 30 facing the third side face 29, the second capacitance acquisition terminal conductor film 34 is provided.
  • FIG. 6 (b) shows a cross section through which the DC bias applying electrode 25 passes.
  • the DC bias applying electrode 25 is drawn out to the second side face 28 and is electrically connected to the DC bias applying terminal conductor film 32 here.
  • FIG. 6 (c) shows a cross section through which the capacitance acquisition electrode 26 passes.
  • the capacitance acquisition electrode 26 is pulled out to the third side surface 29, where it is electrically connected to the first capacitance acquisition terminal conductor film 33.
  • FIG. 6 (d) shows a cross-section through which the grounding electrode 24 passes!
  • the grounding electrode 24 is pulled out to the first side surface 27 and also to the fourth side surface 30.
  • the grounding electrode 24 is electrically connected to the grounding terminal conductor film 31 on the first side surface 27, and is connected to the second capacitance acquisition terminal conductor film 34 on the fourth side surface 30. Electrically connected.
  • the capacitance formed between the grounding electrode 24 and the capacitance acquiring electrode 26 is the first and The second capacitor acquisition terminal conductor films 33 and 34 are taken out.
  • a predetermined circuit (not shown) is electrically connected to the first and second capacitor acquisition terminal conductor films 33 and 34.
  • the dielectric characteristics of the dielectric layer 22 located between the ground electrode 24 and the capacitance acquisition electrode 26 change as described above.
  • the first and second capacitance acquisition terminal conductors change.
  • the capacitance extracted through the membranes 33 and 34 can be varied.
  • the dielectric layer 22, particularly the dielectric located between the ground electrode 24 and the capacitance acquisition electrode 26 is used. It is preferable that the layer 22 has a large DC noise dependency of the dielectric properties! / And material strength.
  • the DC bias applying electrode 25 is not sandwiched between the grounding electrode 24 and the capacitance acquiring electrode 26, so that in the case of the first embodiment described above. In comparison, the capacity characteristic can be made more stable.
  • FIGS. 8 and 9 correspond to FIGS. 4 and 5, respectively showing capacitors 41a and 51a according to the second and third modifications corresponding to the second and third embodiments described above, respectively.
  • FIG. 8 and 9 correspond to FIGS. 4 and 5, respectively showing capacitors 41a and 51a according to the second and third modifications corresponding to the second and third embodiments described above, respectively.
  • the capacitors 41a and 51a according to the second and third modifications are the same as in the second and third embodiments.
  • the capacitor body 23 a plurality of sets of grounding electrodes 24, DC bias applying electrodes 25 are provided.
  • the capacitor acquisition electrode 26 is formed.
  • a plurality of ground electrodes 24, a DC bias application electrode 25, and a capacitance acquisition electrode 26 are arranged from the top with a DC bias application electrode 25 and a capacitance.
  • the acquisition electrode 26, the ground electrode 24, the DC bias application electrode 25,... are repeatedly arranged in the order of V.
  • the arrangement of the DC bias applying electrode 25, the capacitance acquiring electrode 26 and the grounding electrode 24 in the capacitor 21a shown in FIG. This set is repeated several times.
  • the grounding electrode 24 is shared between adjacent sets, and the capacitance acquisition electrode 26 is arranged for every two layers of the dielectric layer 22.
  • the capacitor main body 23 forces multiple sets of grounding electrodes 24, DC bias application electrodes 25, and capacitance acquisition electrodes 26 provide a wider capacity change range. It is done. (Embodiment according to the second aspect)
  • FIG. 10 and FIG. 11 are for explaining a capacitor 121 according to the fourth embodiment of the present invention.
  • (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 121 with a cross section in the stacking direction of the dielectric layer 122
  • (b) and ( c) is a view corresponding to FIG. 25 described above, and is a plan view showing the capacitor 121 with a cross section extending in the principal surface direction of the dielectric layer 122.
  • FIG. FIG. 11 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 121.
  • the capacitor 121 includes a capacitor main body 123 having a laminated structure including a plurality of dielectric layers 122.
  • the capacitor body 123 includes first and second capacitance acquisition electrodes 124 and 125 provided to form a capacitance by facing each other through a specific dielectric layer 122, and the first and second capacitors.
  • First and second DC bias applying electrodes 127 and 128 used to apply a direct current bias to the capacitance forming region 126 of the dielectric layer 122 located between the capacitance acquiring electrodes 124 and 125.
  • the first DC bias applying electrode 127 is provided on the same main surface as the main surface of the dielectric layer 122 provided with the first capacitance acquiring electrode 124.
  • the second DC bias application electrode 128 is provided on the same main surface as the main surface of the dielectric layer 122 provided with the second capacitance acquisition electrode 125.
  • the side on which the first DC bias application electrode 127 is positioned with respect to the first capacitance acquisition electrode 124 is the second DC bias application with respect to the second capacitance acquisition electrode 125.
  • the side on which the working electrode 128 is located is the opposite side. Therefore, the DC bias applied by the first and second DC bias applying electrodes 127 and 128 is directed obliquely with respect to the thickness direction of the dielectric layer 122.
  • the capacitor body 123 has a rectangular parallelepiped shape having four side surfaces 129 to 132 extending in the stacking direction, as well shown in FIGS. 10 (b) and 10 (c).
  • a first DC bias applying terminal conductor film 133 is provided on the first side surface 129.
  • a second DC bias applying terminal conductor film 134 is provided on the second side surface 130 facing the first side surface 129.
  • the first capacity An obtaining terminal conductor film 135 is provided on the fourth side surface 132 facing the third side surface 131.
  • a second capacitance acquisition terminal conductor film 136 is provided on the fourth side surface 132 facing the third side surface 131.
  • FIG. 10B shows a cross section through which the first capacitance acquisition electrode 124 and the first DC bias application electrode 127 pass.
  • the first capacitance acquisition electrode 124 is drawn out to the third side surface 131, where it is electrically connected to the first capacitance acquisition terminal conductor film 135.
  • the first DC bias applying electrode 127 is drawn out to the first side surface 129, and is electrically connected to the first DC bias applying terminal conductor film 133 here.
  • FIG. 10 (c) shows a cross section through which the second capacitance acquisition electrode 125 and the second DC bias application electrode 128 pass.
  • the second capacitance acquisition electrode 125 is drawn out to the fourth side surface 132, where it is electrically connected to the second capacitance acquisition terminal conductor film 136.
  • the second DC bias applying electrode 128 is drawn out to the second side face 130 and is electrically connected to the second DC bias applying terminal conductor film 134 here.
  • the capacitance formed between the first and second capacitance acquisition electrodes 124 and 125 is The first and second capacitance acquisition terminal conductor films 135 and 136 are taken out.
  • a predetermined circuit (not shown) is electrically connected to the first and second capacitance acquisition terminal conductor films 135 and 136.
  • a DC bias 137 is applied between the first and second DC bias application electrodes 127 and 128 through the first and second DC noise application terminal conductor films 133 and 134, the first The dielectric property of the capacitor formation region 126 (see FIG.
  • the dielectric layer 122 In order to further increase the above-described capacitance variation range, the dielectric layer 122, particularly the capacitance forming region 126, between the first and second DC bias applying electrodes 127 and 128 is formed. It is preferable that the dielectric layer 122 located in the region is made of a material having a large DC bias dependency of dielectric characteristics. In this way, for example, lOOBa (Ti Zr) 0 — 2.5 GdO — 2.5 MgO— 0.5
  • the thickness of the dielectric layer located at 2 is 2 m.
  • the electrode was mainly composed of nickel and 1 ⁇ m thick.
  • the external dimensions of the capacitor body were 3.2 mm X 1.6 mm X 0.4 mm.
  • FIGS. 13 and 14 are diagrams corresponding to FIG. 10 (a), showing capacitors 141 and 151 according to the fifth and sixth embodiments of the present invention, respectively.
  • elements corresponding to the elements shown in FIG. 10 (a) are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the capacitors 141 and 151 include a plurality of sets of first capacitance acquisition electrodes 124, second capacitance acquisition electrodes 125, and first DC biases in the capacitor main body 123.
  • An application electrode 127 and a second DC bias application electrode 128 are formed! /
  • the dielectric layer 122 and the second capacitance acquisition forming the first capacitance acquisition electrode 124 and the first DC bias application electrode 127.
  • the dielectric layers 122 forming the working electrodes 125 and the second DC bias applying electrodes 128 are alternately arranged in the stacking direction.
  • the capacitor acquisition electrode 124 and the first DC bias application electrode 127 are arranged in the same order as the dielectric layers 122,.
  • the capacitor body 123 force includes a plurality of sets of first capacitance acquisition electrodes 124, second capacitance acquisition electrodes 125, first DC bias application electrodes 127 and
  • the capacitor according to the present invention increases the electrostatic capacity per unit volume, enables further miniaturization and higher capacity, and lowers the voltage.
  • An experimental example 4 conducted to confirm that the capacitance can be controlled over a wider range will be described.
  • the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was 500.
  • the electrode arrangement structure shown in FIG. 13 was adopted, and the number of layers of all electrodes including the first and second capacitance acquisition electrodes and the first and second DC bias application electrodes was set to 500.
  • Table 2 shows the capacitance change range when the DC bias is changed in the range of 0 to 36V.
  • the first and second DC bias application electrodes that face each other are used.
  • the positional relationship may be other than the positional relationship as in the illustrated embodiment.
  • the first and second capacitance acquisition electrodes and the first and second DC bias application electrodes described above can be arbitrarily changed.
  • the first and second capacitance acquisition electrodes 124 and 125 and the first and second DC bias application electrodes 127 and 128 are both capacitors. Force formed in the main body 123 If there is no concern about the problem of moisture resistance, if V, at least one pair of first capacitance acquisition electrode and first DC bias application electrode or second capacitance acquisition The electrode for application and the second DC bias application electrode may be formed on the outer surface of the capacitor body.
  • FIG. 15 and 16 illustrate a capacitor 221 according to the seventh embodiment of the present invention.
  • (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 221 with a cross section in the stacking direction of the dielectric layer 222
  • (b) to ( d) is a diagram corresponding to FIG. 25 described above, and is a plan view showing the capacitor 221 with a cross section extending in the principal surface direction of the dielectric layer 222.
  • FIG. FIG. 16 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 221.
  • the capacitor 221 includes a capacitor body 223 having a laminated structure including a plurality of dielectric layers 222.
  • the capacitor body 223 includes first and second capacitance acquisition electrodes 224 and 225, which are provided so as to form a capacitance by facing each other through a specific dielectric layer 222, and the first and second capacitors.
  • the first and second DC bias applying electrodes 2 27 and 228 used for applying a direct current bias to the capacitance forming region 226 of the dielectric layer 222 located between the two capacitance acquiring electrodes 224 and 225; With /!
  • the first and second DC bias applying electrodes 227 and 228 are disposed on the same main surface of the same dielectric layer 222 sandwiched between the first and second capacitance acquiring electrodes 224 and 225. Can be established. Therefore, the DC bias applied by the first and second DC bias applying electrodes 227 and 228 is directed toward the main surface of the dielectric layer 222.
  • two layers of dielectric are provided between the first and second capacitance acquisition electrodes 224 and 225. The layer 222 force is placed, and first and second DC bias applying electrodes 227 and 228 are formed along the interface between the two dielectric layers 222.
  • the position where the second capacitance acquisition electrode 225 is provided is indicated by a broken line.
  • the first and second DC bias application electrodes 227 and 228 Is provided so as not to overlap the capacitance forming region 226 (see FIG. 15A) with respect to the position of the dielectric layer 222 in the main surface direction.
  • the first and second capacitance acquisition electrodes 224 and 225 can be prevented from sandwiching the DC bias application electrodes 227 and 228.
  • the capacitance characteristics are stabilized. be able to.
  • Fig. 15 (a) shows the positional relationship in the stacking direction between the capacitance acquisition electrodes 224 and 225 and the DC bias application electrodes 227 and 228, which does not show the capacitor 221 with a single cross section. For the purpose of illustration, it should be understood that it is shown with multiple cross sections.
  • the capacitor main body 223 has a rectangular parallelepiped shape having four side surfaces 229 to 232 extending in the stacking direction, as well shown in FIGS. 15 (b) to (d).
  • a first DC bias applying terminal conductor film 233 is provided on the first side surface 229.
  • a second DC bias applying terminal conductor film 234 is provided on the second side surface 230 facing the first side surface 229.
  • a first capacitance obtaining terminal conductor film 235 is provided on the third side surface 231 adjacent to the first and second side surfaces 229 and 230.
  • a second capacitance acquisition terminal conductor film 236 is provided on the fourth side surface 232 facing the third side surface 231.
  • FIG. 15 (b) shows a cross section through which the first capacitance acquisition electrode 224 passes.
  • the first capacitor acquisition electrode 224 is drawn out to the third side surface 231, where it is electrically connected to the first capacitor acquisition terminal conductor film 235.
  • Fig. 15 (c) the first and second DC bias applying electrodes 227 and 228 are disconnected. A face is shown.
  • the first DC bias applying electrode 227 is drawn out to the first side face 229, and is electrically connected to the first DC bias applying terminal conductor film 233.
  • the second DC bias applying electrode 228 is drawn out to the second side face 230 and is electrically connected to the second DC bias applying terminal conductor film 234 here.
  • FIG. 15 (d) shows a cross section through which the second capacitance acquisition electrode 225 passes.
  • the second capacitor acquisition electrode 225 is pulled out to the fourth side surface 232, where it is electrically connected to the second capacitor acquisition terminal conductor film 236.
  • the capacitance formed between the first and second capacitance acquisition electrodes 224 and 225 is The first and second capacitance acquisition terminal conductor films 235 and 236 are taken out.
  • a predetermined circuit (not shown) is electrically connected to the first and second capacitance acquisition terminal conductor films 235 and 236.
  • a DC bias 237 is applied between the first and second DC bias application electrodes 227 and 228 through the first and second DC noise application terminal conductor films 233 and 234, The dielectric property of the capacitance forming region 226 (see FIG.
  • the dielectric layer 222 is made of a material whose dielectric characteristics have a large DC bias dependency. Preferably, it is configured.
  • a sample 201 having a structure substantially similar to that of the capacitor 221 shown in FIG. 15 was produced as the sample 201 according to the example within the scope of the present invention.
  • a sample 202 according to the comparative example a sample 202 having a structure substantially similar to that of the capacitor 1 shown in FIG.
  • the dielectric BaTiO-based high dielectric constant ceramic material is used as the dielectric that composes the body layer.
  • the thickness of the dielectric layer located at 2 is 2 m.
  • the electrode was mainly composed of nickel and 1 ⁇ m thick.
  • the external dimensions of the capacitor body were 3.2 mm X 1.6 mm X O. 4 mm.
  • the capacitor has a wider capacitance change range with respect to the DC bias if the material has a higher DC dependency on the dielectric characteristics. It has been confirmed.
  • FIG. 18 is a view corresponding to FIG. 15 (c), showing a capacitor 221 a according to the eighth embodiment of the present invention.
  • elements corresponding to the elements shown in FIG. 15 (c) are denoted by the same reference numerals, and redundant description is omitted.
  • the capacitor 221a according to the eighth embodiment differs from the capacitor 221 according to the seventh embodiment in the manner of forming the DC noise application electrodes 227 and 228.
  • the first and second DC bias applying electrodes 227 and 228 are formed on the main surface of the dielectric layer 222 so as to exert a force from the position of the capacitance acquisition electrode 225 indicated by a broken line in FIG.
  • the position in the direction is characterized by being provided so as to overlap with the capacitance forming region 226 (see FIG. 15 (a)).
  • FIG. 19 is a view corresponding to FIG. 15, showing a capacitor 221b according to the ninth embodiment of the present invention.
  • elements corresponding to the elements shown in FIG. 15 are denoted by the same reference numerals, and redundant description is omitted.
  • the capacitor 221b according to the ninth embodiment is characterized by the formation of the first and second DC bias applying electrodes 227 and 228.
  • the first and second DC bias applying electrodes 227 and 228 are formed so as to be positioned at the ends of the dielectric layer 222 in the longitudinal direction.
  • the first and second DC bias applying electrodes 227 and 228 are provided so as not to overlap the capacitance forming region 226. Therefore, according to the ninth embodiment, the first and second capacitance acquisition electrodes 224 and 225 are connected to the DC bias application electrodes 227 and 22 as in the case of the seventh embodiment. Since 8 is not sandwiched, the capacitance characteristic can be stabilized.
  • FIG. 20 shows a capacitor 221c according to the tenth embodiment of the present invention.
  • FIG. 20 (a) corresponds to FIG. 15 (a) or FIG. 19 (a)
  • FIG. b) corresponds to Fig. 15 (c) or Fig. 19 (c).
  • elements corresponding to the elements shown in FIG. 15 or FIG. 19 are given the same reference numerals, and redundant descriptions are omitted.
  • the capacitor 221c according to the tenth embodiment is characterized in that the DC noise applying electrodes 227 and 228 are formed. That is, the first and second DC bias applying electrodes 227 and 228 are formed in the capacitance forming region with respect to the position in the principal surface direction of the force dielectric layer 222 similar to the capacitor 221b according to the ninth embodiment described above. It is provided so as to overlap 226. Therefore, as in the case of the capacitor 221a according to the eighth embodiment described above, the distance between the first and second DC bias application electrodes 227 and 228 can be further shortened, and as a result, the DC noise is applied. Even if the voltage is relatively low, the effect of capacitance change can be obtained.
  • FIG. 21 is a view corresponding to FIG. 15 or FIG. 19, showing a capacitor 221d according to an eleventh embodiment of the present invention.
  • elements corresponding to the elements shown in FIG. 15 or FIG. 19 are given the same reference numerals, and redundant description is omitted.
  • the capacitor 221d according to the eleventh embodiment is characterized by the shapes of the DC bias applying electrodes 227 and 228. That is, the first and second DC bias applying electrodes 227 As well shown in FIG. 21 (c), and 228 are comb-shaped to form a plurality of parallel electrode fingers 238 and 239, respectively.
  • the electrode fingers 238 provided on the first DC bias applying electrode 227 are positioned so as to enter between the electrode fingers 239 provided on the second DC bias applying electrode 228.
  • the facing area can be increased while the distance between the first and second DC bias applying electrodes 227 and 228 is kept short.
  • FIGS. 22 and 23 are diagrams corresponding to FIG. 15 (a), showing capacitors 241 and 251 according to the twelfth and thirteenth embodiments of the present invention, respectively. 22 and FIG. 23, elements corresponding to those shown in FIG. 15 (a) are denoted by the same reference numerals, and redundant description is omitted.
  • Capacitors 241 and 251 include a plurality of sets of first capacitance acquisition electrodes 224, second capacitance acquisition electrodes 225, and first DC bias application in the capacitor main body 223. Electrode 227 and a second DC bias applying electrode 228 are formed! /! /
  • the second capacitance acquisition electrode 225 is repeatedly arranged in the order of several times.
  • DC bias application electrodes 227 and 228, first capacitance acquisition electrodes 224, t which are arranged in a plurality of times in the same order.
  • the capacitor body 223 forces multiple sets of In the case of including the first capacitance acquisition electrode 224, the second capacitance acquisition electrode 225, the first DC bias application electrode 227, and the second DC bias application electrode 228, the capacitor according to the present invention
  • Example 6 which was conducted to confirm that the capacitance per unit volume was increased, and that it was possible to reduce the size and increase the capacitance, and that the capacitance could be controlled over a wider range at a lower voltage. I will explain.
  • the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was 500.
  • the electrode arrangement structure shown in FIG. 22 was adopted, and the number of stacked layers of all electrodes including the first and second capacitance acquisition electrodes and the first and second DC bias application electrodes was set to 500.
  • Table 3 shows the capacitance change ranges of these samples 211 and 212 when the DC bias is changed in the range of 0 to 36V.
  • the first and second DC bias application electrodes facing each other are used to connect the first and second capacitance acquisition electrodes. Any positional relationship other than the positional relationship in the illustrated embodiment may be used as long as it can apply a DC bias to the capacitance forming region of the dielectric layer.
  • the positions on the capacitor body where the first and second DC bias applying terminal conductor films and the first and second capacitance acquisition terminal conductor films are provided are described above.
  • the capacitance acquisition electrode and the positions of the first and second DC bias application electrodes can be arbitrarily changed.
  • the first and second capacitance acquisition electrodes 224 and 225 and the first and second DC bias application electrodes 227 and 228 are both capacitors. If there is no concern about the moisture resistance problem formed inside the main body 223, the electrode located at the end in the stacking direction, for example, the capacitor 221 shown in FIG.
  • the first and / or second capacitance acquisition electrodes 224 and / or 225 can be formed on the outer surface of the capacitor body!

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Microwave Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

In a capacitor, the capacitance of which is changed by an externally applied DC bias, the number of stacked electrodes equipped in the capacitor main body is reduced and a voltage required for applying the DC bias is also reduced. The capacitor main body (23) is provided with a DC bias applying electrode (25), a capacitance acquiring electrode (26), and an earth electrode (24). The DC bias applying electrode (25) is positioned between the capacitance acquiring electrode (26) and the earth electrode (24). The earth electrode (24) is made to serve not only as an electrode for applying the DC bias but also as an electrode for acquiring the capacitance.

Description

明 細 書  Specification
コンデンサ  Capacitor
技術分野  Technical field
[0001] この発明は、コンデンサに関するもので、特に、外部から印加される直流ノ ィァスに よって容量が変えられるコンデンサに関するものである。  The present invention relates to a capacitor, and more particularly to a capacitor whose capacitance can be changed by a DC noise applied from outside.
背景技術  Background art
[0002] 可変コンデンサのうち、外部から印加される直流バイアスによって容量が変えられる コンデンサとして、たとえば特公平 5— 19970号公報 (特許文献 1)に記載されたもの がある。図 24および図 25を参照して、特許文献 1に記載されたコンデンサについて 説明する。図 24は、コンデンサを、誘電体層の積層方向に向く断面をもって示す正 面図であり、図 25は、コンデンサを、誘電体層の主面方向に延びる断面をもって示 す平面図である。  [0002] Among variable capacitors, a capacitor whose capacitance can be changed by a DC bias applied from the outside is, for example, described in Japanese Patent Publication No. 5-19970 (Patent Document 1). The capacitor described in Patent Document 1 will be described with reference to FIG. 24 and FIG. FIG. 24 is a front view showing the capacitor with a cross section facing in the stacking direction of the dielectric layers, and FIG. 25 is a plan view showing the capacitor with a cross section extending in the main surface direction of the dielectric layers.
[0003] 図 24に示すように、コンデンサ 1は、複数の誘電体層 2をもって構成される積層構 造を有する、直方体状のコンデンサ本体 3を備えている。コンデンサ本体 3は、また、 互 ヽに対をなす直流バイアス印加用電極 4および 5と、互 、に対をなす容量取得用 電極 6および 7とを備えている。容量取得用電極 6および 7は、直流バイアス印加用電 極 4および 5の間に位置している。また、直流バイアス印加用電極 4、容量取得用電 極 6、容量取得用電極 7および直流バイアス印加用電極 5の各々の間には、誘電体 層 2が位置されている。  As shown in FIG. 24, the capacitor 1 includes a rectangular parallelepiped capacitor body 3 having a laminated structure including a plurality of dielectric layers 2. The capacitor body 3 also includes DC bias application electrodes 4 and 5 that make a pair with each other, and capacitance acquisition electrodes 6 and 7 that make a pair with each other. Capacitance acquisition electrodes 6 and 7 are positioned between DC bias application electrodes 4 and 5. A dielectric layer 2 is positioned between each of the DC bias application electrode 4, the capacitance acquisition electrode 6, the capacitance acquisition electrode 7 and the DC bias application electrode 5.
[0004] 上述した直流バイアス印加用電極 4および 5ならびに容量取得用電極 6および 7の 各々のパターンが図 25によく示されている。図 25において、(a)、(b)、(c)および(d )は、積層順序に対応していないが、図 25 (a)は、直流バイアス印加用電極 4が通る 断面を示し、図 25 (b)は、直流バイアス印加用電極 5が通る断面を示し、図 25 (c)は 、容量取得用電極 6が通る断面を示し、図 25 (d)は、容量取得用電極 7が通る断面 を示している。  [0004] The patterns of the DC bias applying electrodes 4 and 5 and the capacitance acquiring electrodes 6 and 7 described above are well shown in FIG. In FIG. 25, (a), (b), (c), and (d) do not correspond to the stacking order, but FIG. 25 (a) shows a cross section through which the DC bias applying electrode 4 passes. 25 (b) shows a cross section through which the DC bias application electrode 5 passes, FIG. 25 (c) shows a cross section through which the capacitance acquisition electrode 6 passes, and FIG. 25 (d) shows a cross section through which the capacitance acquisition electrode 7 passes. A cross section is shown.
[0005] 図 25によく示されているように、コンデンサ本体 3は、積層方向に延びる 4つの側面 8〜: L 1を有している。側面 8、 9、 10および 11上には、それぞれ、直流バイアス印加 用端子導体膜 12および 13ならびに容量取得用端子導体膜 14および 15が設けられ ている。 As well shown in FIG. 25, the capacitor body 3 has four side surfaces 8 to L 1 extending in the stacking direction. DC bias applied to sides 8, 9, 10 and 11 respectively Terminal conductor films 12 and 13 for capacity and terminal conductor films 14 and 15 for obtaining capacitance are provided.
[0006] 図 25 (a)に示すように、直流バイアス印加用電極 4は、側面 8にまで引き出され、こ こで直流バイアス印加用端子導体膜 12に電気的に接続される。図 25 (b)に示すよう に、直流バイアス印加用電極 5は、側面 9にまで引き出され、ここで直流バイアス印加 用端子導体膜 13に電気的に接続される。図 25 (c)に示すように、容量取得用電極 6 は、側面 10にまで引き出され、ここで容量取得用端子導体膜 14に電気的に接続さ れる。図 25 (d)に示すように、容量取得用電極 7は、側面 11にまで引き出され、ここ で容量取得用端子導体膜 15に電気的に接続される。  As shown in FIG. 25 (a), the DC bias applying electrode 4 is drawn out to the side surface 8, and is electrically connected to the DC bias applying terminal conductor film 12 here. As shown in FIG. 25 (b), the DC bias applying electrode 5 is drawn out to the side surface 9, and is electrically connected to the DC bias applying terminal conductor film 13 here. As shown in FIG. 25 (c), the capacitance acquisition electrode 6 is pulled out to the side surface 10 and is electrically connected to the capacitance acquisition terminal conductor film 14 here. As shown in FIG. 25 (d), the capacitance acquisition electrode 7 is drawn out to the side surface 11 and is electrically connected to the capacitance acquisition terminal conductor film 15 here.
[0007] 以上のような構成を有するコンデンサ 1において、対をなす容量取得用電極 6およ び 7間に形成される静電容量は、容量取得用端子導体膜 14および 15から取り出さ れる。このとき、直流バイアス印加用端子導体膜 12および 13を通して、直流バイアス 印加用電極 4および 5間に直流バイアスが印加されると、直流バイアス印加用電極 4 および 5間に位置する誘電体層 2の誘電率等の誘電特性が変化する。したがって、 上述した容量取得用電極 6および 7間に位置する誘電体層 2の誘電特性が変化する ことになり、その結果として、容量取得用端子導体膜 14および 15を通して取り出され る静電容量を変化させることができる。  In the capacitor 1 having the above-described configuration, the capacitance formed between the pair of capacitance acquisition electrodes 6 and 7 is extracted from the capacitance acquisition terminal conductor films 14 and 15. At this time, when a DC bias is applied between the DC bias applying electrodes 4 and 5 through the DC bias applying terminal conductor films 12 and 13, the dielectric layer 2 positioned between the DC bias applying electrodes 4 and 5 Dielectric properties such as dielectric constant change. Therefore, the dielectric characteristic of the dielectric layer 2 located between the capacitance acquisition electrodes 6 and 7 changes, and as a result, the capacitance taken out through the capacitance acquisition terminal conductor films 14 and 15 is reduced. Can be changed.
[0008] 図 24に示したコンデンサ 1に類似する構成が特公平 5— 19969号公報 (特許文献 2)に記載されている。図 26は、特許文献 2に記載されたコンデンサ laを示す、図 24 に対応する図である。図 26において、図 24に示した要素に相当する要素には同様 の参照符号を付し、重複する説明は省略する。  A configuration similar to the capacitor 1 shown in FIG. 24 is described in Japanese Patent Publication No. 5-19969 (Patent Document 2). FIG. 26 is a diagram corresponding to FIG. 24 and showing the capacitor la described in Patent Document 2. In FIG. 26, elements corresponding to those shown in FIG. 24 are denoted by the same reference numerals, and redundant description will be omitted.
[0009] 図 26に示したコンデンサ laでは、直流バイアス印加用電極 4および 5が、容量取得 用電極 6および 7の間に挟まれるように位置している。その他の構成については、図 2 4に示したコンデンサ 1と実質的に同様である。  In the capacitor la shown in FIG. 26, the DC bias application electrodes 4 and 5 are positioned so as to be sandwiched between the capacitance acquisition electrodes 6 and 7. Other configurations are substantially the same as those of the capacitor 1 shown in FIG.
[0010] これらのコンデンサ 1および laには、しかしながら、次のような解決されるべき課題 がある。  [0010] However, these capacitors 1 and la have the following problems to be solved.
[0011] まず、コンデンサ 1および laでは、容量を可変とするため、コンデンサ本体 3に設け られる電極としては、直流バイアス印加用電極 4および 5ならびに容量取得用電極 6 および 7というように、少なくとも 4層の電極が必要であり、また、電極 4〜7の各々の間 を隔てる誘電体層 2については、少なくとも 3層必要であり、小型化を図る上で不利と なる。 [0011] First, in order to make the capacitance variable in the capacitors 1 and la, the electrodes provided on the capacitor body 3 include the DC bias application electrodes 4 and 5 and the capacitance acquisition electrode 6. And 7 are required, and at least 3 layers are required for the dielectric layer 2 separating each of the electrodes 4 to 7, which is disadvantageous for miniaturization. Become.
[0012] また、図 24に示したコンデンサ 1においては、誘電特性を変化させたい誘電体層 2 は単に 1層に過ぎないにも関わらず、構造上、 3層の誘電体層 2に直流バイアスを印 カロしなければならない。電界強度は電極間距離に反比例するため、上記構造の場合 、各誘電体層 2の厚みが同じであるとすれば、必要な電界強度を得るためには、 1層 の場合の 3倍の直流電圧を印加する必要があり、駆動電圧が高くなるという弊害がも たらされる。また、直流バイアス印加用電極 4および 5間に位置する誘電体層 2のす ベてが静電容量取得に関与するわけではないため、体積容量が低下し、小型であり ながら大容量ィ匕を実現することが困難である。  [0012] In addition, in the capacitor 1 shown in FIG. 24, the dielectric layer 2 whose dielectric characteristics are to be changed is merely one layer, but the DC bias is applied to the three dielectric layers 2 because of its structure. I have to mark it. Since the electric field strength is inversely proportional to the distance between the electrodes, in the case of the above structure, if the thickness of each dielectric layer 2 is the same, in order to obtain the required electric field strength, the direct current is three times that of the single layer. It is necessary to apply a voltage, which has the adverse effect of increasing the drive voltage. In addition, not all of the dielectric layer 2 positioned between the DC bias application electrodes 4 and 5 is involved in the capacitance acquisition, so the volume capacity is reduced, and the large capacity is reduced despite the small size. It is difficult to realize.
[0013] 他方、図 26に示したコンデンサ laの場合には、容量取得用電極 6および 7の間に 直流バイアス印加用電極 4および 5が配置されているため、静電容量取得のための 誘電体層 2の一部には直流バイアスが印加されない。誘電体層 2の各々の厚みが同 じである場合、直流バイアスが印加される誘電体層の厚みは、静電容量取得に寄与 する誘電体層 2の合計厚みの 1Z3になり、容量の変化率については、誘電体層 2の 材料自体がもつ直流バイアス特性の 1Z3以下にまで低下するという弊害力もたらさ れる。また、構造上、容量取得用電極 6および 7間の距離を短くすることが困難である ため、小型でありながら大容量ィ匕を図るには不利である。  On the other hand, in the case of the capacitor la shown in FIG. 26, since the DC bias application electrodes 4 and 5 are arranged between the capacitance acquisition electrodes 6 and 7, a dielectric for acquiring the capacitance is obtained. A DC bias is not applied to a part of the body layer 2. When the thickness of each of the dielectric layers 2 is the same, the thickness of the dielectric layers to which the DC bias is applied is 1Z3 of the total thickness of the dielectric layers 2 that contributes to the capacitance acquisition, and the capacitance change With respect to the rate, the detrimental effect of reducing the DC bias characteristic of the material of the dielectric layer 2 to 1Z3 or lower is brought about. In addition, because of the structure, it is difficult to shorten the distance between the capacitance acquisition electrodes 6 and 7, it is disadvantageous for achieving a large capacitance while being small.
特許文献 1:特公平 5 - 19970号公報  Patent Document 1: Japanese Patent Publication No. 5-19970
特許文献 2:特公平 5 - 19969号公報  Patent Document 2: Japanese Patent Publication No. 5-19969
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] そこで、この発明の目的は、上述したような課題を解決し得るコンデンサを提供しよ うとすることである。 Therefore, an object of the present invention is to provide a capacitor that can solve the above-described problems.
課題を解決するための手段  Means for solving the problem
[0015] この発明は、直流バイアス印加用電極の配置態様に関して、第 1、第 2および第 3 の局面に分類される。 [0016] 第 1の局面では、この発明に係るコンデンサは、複数の誘電体層をもって構成され る積層構造を有する、コンデンサ本体を備える。コンデンサ本体は、特定の誘電体層 に沿って設けられるアース用電極と、特定の誘電体層を介してアース用電極と対向し かつアース用電極との間で直流バイアスを印加するために用いられる直流バイアス 印加用電極と、直流バイアス印加用電極をアース用電極との間に挟むように位置さ れかつ特定の誘電体層を介してアース用電極と対向することによって静電容量を形 成するように設けられる容量取得用電極とを含んで 、る。 [0015] The present invention is classified into first, second and third aspects regarding the arrangement of the DC bias applying electrodes. [0016] In a first aspect, a capacitor according to the present invention includes a capacitor body having a laminated structure including a plurality of dielectric layers. The capacitor body is used to apply a DC bias between a ground electrode provided along a specific dielectric layer and the ground electrode via the specific dielectric layer and between the ground electrode and the ground electrode. Capacitance is formed by positioning the DC bias applying electrode and the DC bias applying electrode between the grounding electrode and facing the grounding electrode through a specific dielectric layer. And a capacitance acquisition electrode provided as described above.
[0017] 上記コンデンサは、さらに、アース用電極に電気的に接続されるアース用端子導体 膜と、直流バイアス印加用電極に電気的に接続される直流バイアス印加用端子導体 膜と、容量取得用電極に電気的に接続される第 1の容量取得用端子導体膜とを備え 、これらアース用端子導体膜、直流バイアス印加用端子導体膜および第 1の容量取 得用端子導体膜は、コンデンサ本体の外表面上に設けられる。  [0017] The capacitor further includes an earth terminal conductor film electrically connected to the earth electrode, a DC bias application terminal conductor film electrically connected to the DC bias application electrode, and a capacitor acquisition A first capacitance acquisition terminal conductor film electrically connected to the electrode, and the earth terminal conductor film, the DC bias application terminal conductor film, and the first capacitance acquisition terminal conductor film are formed on the capacitor body. Is provided on the outer surface.
[0018] 第 1の局面において、この発明に係るコンデンサは、コンデンサ本体の外表面上に 設けられ、かつアース用電極に電気的に接続される、第 2の容量取得用端子導体膜 をさらに備えることが好ましい。この場合、好ましくは、コンデンサ本体は、積層方向に 延びる 4つの側面を有する直方体状であり、アース用端子導体膜は、第 1の側面上 に設けられ、直流バイアス印加用端子導体膜は、第 1の側面に対向する第 2の側面 上に設けられ、第 1の容量取得用端子導体膜は、第 1および第 2の側面に隣接する 第 3の側面上に設けられ、第 2の容量取得用端子導体膜は、第 3の側面に対向する 第 4の側面上に設けられる。  [0018] In the first aspect, the capacitor according to the present invention further includes a second capacitance acquisition terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the ground electrode. It is preferable. In this case, preferably, the capacitor main body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, the ground terminal conductor film is provided on the first side surface, and the DC bias applying terminal conductor film is the first side surface. The first capacitance acquisition terminal conductor film is provided on the second side surface opposite to the first side surface, and the second capacitance acquisition is provided on the third side surface adjacent to the first and second side surfaces. The terminal conductor film for use is provided on the fourth side surface facing the third side surface.
[0019] 第 1の局面に係るコンデンサにおいて、少なくともアース用電極と直流バイアス印加 用電極との間に位置する誘電体層は、誘電特性の直流バイアス依存性の大き!、材 料力も構成されることが好まし 、。  [0019] In the capacitor according to the first aspect, at least the dielectric layer positioned between the grounding electrode and the DC bias applying electrode has a large DC bias dependency of the dielectric characteristics and also has a material force. I prefer that.
[0020] 第 1の局面に係るコンデンサにおいて、コンデンサ本体は、複数組のアース用電極 、直流ノ ィァス印加用電極および容量取得用電極を含んで 、てもよ 、。  [0020] In the capacitor according to the first aspect, the capacitor main body may include a plurality of sets of grounding electrodes, DC noise application electrodes, and capacitance acquisition electrodes.
[0021] 第 2の局面では、この発明に係るコンデンサは、複数の誘電体層をもって構成され る積層構造を有する、コンデンサ本体を備える。コンデンサ本体は、特定の誘電体層 を介して互いに対向することによって静電容量を形成するように設けられる第 1およ び第 2の容量取得用電極と、第 1および第 2の容量取得用電極間に位置する誘電体 層の容量形成領域に直流バイアスを印加するために用いられる第 1および第 2の直 流バイアス印加用電極とを含んでいる。そして、第 1の直流バイアス印加用電極は、 第 1の容量取得用電極が設けられた誘電体層の主面と同一の主面上に設けられ、 第 2の直流バイアス印加用電極は、第 2の容量取得用電極が設けられた誘電体層の 主面と同一の主面上に設けられる。 [0021] In a second aspect, a capacitor according to the present invention includes a capacitor body having a laminated structure including a plurality of dielectric layers. The capacitor body is provided with first and second capacitors provided to form a capacitance by facing each other through a specific dielectric layer. First and second direct current biases used to apply a DC bias to the capacitance forming region of the dielectric layer located between the first and second capacitance acquisition electrodes and the first and second capacitance acquisition electrodes. And an application electrode. The first DC bias applying electrode is provided on the same main surface as the main surface of the dielectric layer provided with the first capacitance acquisition electrode, and the second DC bias applying electrode is 2 is provided on the same main surface as the main surface of the dielectric layer provided with the capacitance acquisition electrode.
[0022] 上記コンデンサは、さらに、第 1および第 2の直流バイアス印加用電極にそれぞれ 電気的に接続される、第 1および第 2の直流バイアス印加用端子導体膜と、第 1およ び第 2の容量取得用電極にそれぞれ電気的に接続される、第 1および第 2の容量取 得用端子導体膜とを備え、これら第 1および第 2の直流バイアス印加用端子導体膜 ならびに第 1および第 2の容量取得用端子導体膜は、コンデンサ本体の外表面上に 設けられる。 [0022] The capacitor further includes first and second DC bias applying terminal conductor films electrically connected to the first and second DC bias applying electrodes, respectively. First and second capacitance acquisition terminal conductor films electrically connected to the two capacitance acquisition electrodes, respectively, and the first and second DC bias applying terminal conductor films and the first and second The second capacitor acquisition terminal conductor film is provided on the outer surface of the capacitor body.
[0023] 第 2の局面において、好ましくは、第 1の容量取得用電極に対して、第 1の直流バイ ァス印加用電極が位置する側は、第 2の容量取得用電極に対して、第 2の直流バイ ァス印加用電極が位置する側とは逆側とされる。  [0023] In the second aspect, preferably, the side on which the first DC bias application electrode is located with respect to the first capacitance acquisition electrode is with respect to the second capacitance acquisition electrode. The side on which the second DC bias application electrode is located is the opposite side.
[0024] 第 2の局面に係るコンデンサにおいて、好ましくは、コンデンサ本体は、積層方向に 延びる 4つの側面を有する直方体状であり、第 1の直流バイアス印加用端子導体膜 は、第 1の側面上に設けられ、第 2の直流バイアス印加用端子導体膜は、第 1の側面 に対向する第 2の側面上に設けられ、第 1の容量取得用端子導体膜は、第 1および 第 2の側面に隣接する第 3の側面上に設けられ、第 2の容量取得用端子導体膜は、 第 3の側面に対向する第 4の側面上に設けられる。  In the capacitor according to the second aspect, preferably, the capacitor body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is on the first side surface. The second DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquiring terminal conductor film is provided on the first and second side surfaces. The second capacitance acquisition terminal conductor film is provided on the fourth side surface opposite to the third side surface.
[0025] 第 2の局面に係るコンデンサにおいて、少なくとも上記容量形成領域を構成する誘 電体層は、誘電特性の直流ノ ィァス依存性の大き 、材料から構成されることが好ま しい。  [0025] In the capacitor according to the second aspect, it is preferable that at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC noise dependency of dielectric characteristics.
[0026] 第 2の局面に係るコンデンサにおいて、コンデンサ本体は、複数組の第 1の容量取 得用電極、第 2の容量取得用電極、第 1の直流バイアス印加用電極および第 2の直 流バイアス印加用電極を含んで 、てもよ 、。  [0026] In the capacitor according to the second aspect, the capacitor body includes a plurality of sets of first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct currents. Including a bias application electrode.
[0027] 第 3の局面では、この発明に係るコンデンサは、複数の誘電体層をもって構成され る積層構造を有する、コンデンサ本体を備える。コンデンサ本体は、特定の誘電体層 を介して互いに対向することによって静電容量を形成するように設けられる第 1およ び第 2の容量取得用電極と、第 1および第 2の容量取得用電極間に位置する誘電体 層の容量形成領域に直流バイアスを印加するために用いられる第 1および第 2の直 流バイアス印加用電極とを含んでいる。そして、第 1および第 2の直流ノ ィァス印加 用電極は、第 1および第 2の容量取得用電極の間に挟まれた同じ誘電体層の同じ主 面上に設けられる。 [0027] In a third aspect, the capacitor according to the present invention includes a plurality of dielectric layers. A capacitor body having a laminated structure. The capacitor body includes first and second capacitance acquisition electrodes provided so as to form a capacitance by facing each other through a specific dielectric layer, and first and second capacitance acquisition electrodes. And first and second DC bias applying electrodes used for applying a DC bias to the capacitance forming region of the dielectric layer located between the electrodes. The first and second DC noise application electrodes are provided on the same main surface of the same dielectric layer sandwiched between the first and second capacitance acquisition electrodes.
[0028] 上記コンデンサは、さらに、第 1および第 2の直流バイアス印加用電極にそれぞれ 電気的に接続される、第 1および第 2の直流バイアス印加用端子導体膜と、第 1およ び第 2の容量取得用電極にそれぞれ電気的に接続される、第 1および第 2の容量取 得用端子導体膜とを備え、これら第 1および第 2の直流バイアス印加用端子導体膜 ならびに第 1および第 2の容量取得用端子導体膜は、コンデンサ本体の外表面上に 設けられる。  [0028] The capacitor further includes first and second DC bias applying terminal conductor films electrically connected to the first and second DC bias applying electrodes, respectively, and first and second DC bias applying electrodes. First and second capacitance acquisition terminal conductor films electrically connected to the two capacitance acquisition electrodes, respectively, and the first and second DC bias applying terminal conductor films and the first and second The second capacitor acquisition terminal conductor film is provided on the outer surface of the capacitor body.
[0029] 第 3の局面において、誘電体層の主面方向での位置に関して、第 1および第 2の直 流バイアス印加用電極は、容量形成領域に重ならないように設けられても、あるいは 、容量形成領域に重なるように設けられてもよい。  [0029] In the third aspect, regarding the position of the dielectric layer in the principal surface direction, the first and second DC bias applying electrodes may be provided so as not to overlap the capacitance forming region, or It may be provided so as to overlap the capacitor formation region.
[0030] また、第 3の局面に係るコンデンサにおいて、第 1および第 2の直流バイアス印加用 電極は、ともに、並列した複数の電極指を形成する櫛歯状をなしており、第 1の直流 バイアス印加用電極に備える各電極指は、第 2の直流バイアス印加用電極に備える 電極指の各間に入り込むように位置して 、てもよ!/、。  [0030] Further, in the capacitor according to the third aspect, the first and second DC bias applying electrodes are both comb-shaped to form a plurality of parallel electrode fingers, and the first DC The electrode fingers provided for the bias applying electrode may be positioned so as to enter between the electrode fingers provided for the second DC bias applying electrode!
[0031] 第 3の局面に係るコンデンサにおいて、好ましくは、コンデンサ本体は、積層方向に 延びる 4つの側面を有する直方体状であり、第 1の直流バイアス印加用端子導体膜 は、第 1の側面上に設けられ、第 2の直流バイアス印加用端子導体膜は、第 1の側面 に対向する第 2の側面上に設けられ、第 1の容量取得用端子導体膜は、第 1および 第 2の側面に隣接する第 3の側面上に設けられ、第 2の容量取得用端子導体膜は、 第 3の側面に対向する第 4の側面上に設けられる。  [0031] In the capacitor according to the third aspect, preferably, the capacitor main body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is on the first side surface. The second DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquiring terminal conductor film is provided on the first and second side surfaces. The second capacitance acquisition terminal conductor film is provided on the fourth side surface opposite to the third side surface.
[0032] 第 3の局面に係るコンデンサにおいて、少なくとも上記容量形成領域を構成する誘 電体層は、誘電特性の直流ノ ィァス依存性の大き 、材料から構成されることが好ま しい。 [0032] In the capacitor according to the third aspect, it is preferable that at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC noise dependency of dielectric characteristics. That's right.
[0033] 第 3の局面に係るコンデンサにおいて、コンデンサ本体は、複数組の第 1の容量取 得用電極、第 2の容量取得用電極、第 1の直流バイアス印加用電極および第 2の直 流バイアス印加用電極を含んで 、てもよ 、。  [0033] In the capacitor according to the third aspect, the capacitor body includes a plurality of sets of first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct currents. Including a bias application electrode.
発明の効果  The invention's effect
[0034] この発明の第 1の局面に係るコンデンサによれば、アース用電極が、直流バイアス 印加用電極と容量取得用電極との双方に共通して対向するように設けられ、それに よって、直流バイアス印加用電極と対をなして直流バイアスを印加するための電極と して機能するとともに、容量取得用電極と対をなして静電容量を形成するための電極 としても機能する。このようにアース用電極に 2つの機能を持たせることにより、容量を 可変とするために、コンデンサ本体において、アース用電極、直流バイアス印加用電 極および容量取得用電極といった少なくとも 3層の電極、ならびに各電極間を隔てる 誘電体層として少なくとも 2層の誘電体層を必要とするだけである。したがって、コン デンサの小型化を有利に進めることができる。  [0034] According to the capacitor of the first aspect of the present invention, the grounding electrode is provided so as to face both the DC bias applying electrode and the capacitance acquiring electrode in common, and thereby It functions as an electrode for applying a DC bias in a pair with a bias application electrode, and also functions as an electrode for forming a capacitance in a pair with a capacitance acquisition electrode. In order to make the capacitance variable by providing the earth electrode with two functions in this way, at least three layers of electrodes such as the earth electrode, the DC bias application electrode, and the capacitance acquisition electrode in the capacitor body, In addition, at least two dielectric layers are required as the dielectric layer separating the electrodes. Therefore, it is possible to advantageously reduce the size of the capacitor.
[0035] また、第 1の局面では、コンデンサ本体において、直流バイアス印加用電極とァー ス用電極との間には、容量取得用電極を介在させないので、直流バイアス印加用電 極とアース用電極との間隔を容易に小さくすることができる。そして、直流バイアス印 加用電極とアース用電極との間隔を小さくすれば、より低い電圧で、誘電体層の誘電 特性を変えることができるようになり、その結果、より低い電圧で、コンデンサが与える 静電容量を制御することが可能になる。  [0035] In addition, in the first aspect, in the capacitor body, since no capacitance acquisition electrode is interposed between the DC bias applying electrode and the ground electrode, the DC bias applying electrode and the grounding electrode are not provided. The distance between the electrodes can be easily reduced. If the distance between the DC bias application electrode and the ground electrode is reduced, the dielectric characteristics of the dielectric layer can be changed at a lower voltage. As a result, the capacitor can be operated at a lower voltage. It is possible to control the applied capacitance.
[0036] また、第 1の局面では、上述したように、容量を可変とするためにコンデンサ本体に ぉ 、て必要とされる電極および誘電体層の数を少なくすることができるため、体積容 量が大きくなり、小型でありながら高容量ィ匕を図ることが容易になる。  [0036] Further, in the first aspect, as described above, since the number of electrodes and dielectric layers required for the capacitor body in order to make the capacitance variable can be reduced, the volume capacity can be reduced. The amount becomes large, and it becomes easy to achieve high capacity while being small.
[0037] 第 1の局面において、この発明に係るコンデンサ力 アース用電極に電気的に接続 される第 2の容量取得用端子導体膜をさらに備え、コンデンサ本体が、 4つの側面を 有する直方体状であり、アース用端子導体膜が第 1の側面上に設けられ、直流バイ ァス印加用端子導体膜が第 2の側面上に設けられ、第 1の容量取得用端子導体膜 が第 3の側面上に設けられ、第 2の容量取得用端子導体膜が第 4の側面上に設けら れると、特許文献 1および 2に記載されたような可変コンデンサと実質的に同様の実 装状態を採用することができる。 [0037] In the first aspect, the capacitor power grounding electrode according to the present invention is further provided with a second capacitor acquisition terminal conductor film electrically connected to the electrode, and the capacitor body has a rectangular parallelepiped shape having four side surfaces. Yes, a grounding terminal conductor film is provided on the first side surface, a DC bias applying terminal conductor film is provided on the second side surface, and the first capacitance acquisition terminal conductor film is on the third side surface. The second capacitance acquisition terminal conductor film is provided on the fourth side surface. Therefore, it is possible to employ an implementation state substantially similar to that of the variable capacitor described in Patent Documents 1 and 2.
[0038] 第 1の局面に係るコンデンサにおいて、少なくともアース用電極と直流バイアス印加 用電極との間に位置する誘電体層力 誘電特性の直流バイアス依存性の大きい材 料から構成されると、直流バイアスによる静電容量の可変範囲をより広くすることがで きる。 [0038] In the capacitor according to the first aspect, if it is made of a material having a large DC bias dependency of the dielectric layer force dielectric property located at least between the grounding electrode and the DC bias applying electrode, The variable range of capacitance by bias can be made wider.
[0039] 第 1の局面に係るコンデンサにおいて、コンデンサ本体が、複数組のアース用電極 、直流バイアス印加用電極および容量取得用電極を含んでいると、直流バイアスに よる静電容量の可変範囲をより広くすることができるば力りでなぐ取得静電容量をよ り大きくすることができる。  [0039] In the capacitor according to the first aspect, if the capacitor main body includes a plurality of sets of grounding electrodes, DC bias applying electrodes, and capacitance acquiring electrodes, the variable range of the capacitance due to the DC bias is increased. If it can be made wider, the acquired capacitance can be increased by force.
[0040] 次に、この発明の第 2の局面に係るコンデンサによれば、静電容量を形成するため 、第 1および第 2の容量取得用電極を必要とし、静電容量を可変とするため、第 1およ び第 2の直流バイアス印加用電極を必要とするが、これら第 1および第 2の容量取得 用電極ならびに第 1および第 2の直流バイアス印加用電極の各々の位置に関して、 第 1の直流バイアス印加用電極は、第 1の容量取得用電極が設けられた誘電体層の 主面と同一の主面上に設けられ、第 2の直流バイアス印加用電極は、第 2の容量取 得用電極が設けられた誘電体層の主面と同一の主面上に設けられる、といった特徴 を有している。したがって、容量を可変とするために必要な最小限の構造は、容量形 成領域を与える 1層の誘電体層とそれを挟む 2層の電極層とで実現されることができ るので、前述した特許文献 1または 2に記載された従来の容量可変コンデンサに比べ て、小型化かつ高容量ィ匕が可能になる。  Next, according to the capacitor of the second aspect of the present invention, in order to form the capacitance, the first and second capacitance acquisition electrodes are required, and the capacitance can be made variable. The first and second DC bias application electrodes are required, but the first and second capacitance acquisition electrodes and the positions of the first and second DC bias application electrodes The first DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer provided with the first capacitance acquisition electrode, and the second DC bias application electrode is provided with the second capacitance. It is characterized in that it is provided on the same main surface as the main surface of the dielectric layer provided with the acquisition electrode. Therefore, the minimum structure required to make the capacitance variable can be realized by one dielectric layer providing the capacitance formation region and two electrode layers sandwiching the dielectric layer. Compared to the conventional variable capacitance capacitor described in Patent Document 1 or 2, the size and size of the capacitor can be reduced.
[0041] また、第 2の局面に係るコンデンサによれば、第 1および第 2の直流ノ ィァス印加用 電極の間に接地された電極が存在しない構造になっているため、第 1および第 2の 直流バイアス印加用電極によって誘電体層の容量形成領域に印加される電界がシ 一ルドされることがなぐ電界強度の低下による容量変化率の低下を抑制することが できる。したがって、より低い電圧で、コンデンサが与える静電容量を制御することが 可會 になる。  [0041] Further, according to the capacitor according to the second aspect, since the grounded electrode does not exist between the first and second DC noise application electrodes, the first and second It is possible to suppress a decrease in the rate of change in capacitance due to a decrease in electric field strength that prevents the electric field applied to the capacitance forming region of the dielectric layer from being shielded by the DC bias applying electrode. Therefore, it is possible to control the capacitance provided by the capacitor at a lower voltage.
[0042] 第 2の局面に係るコンデンサにおいて、第 1の容量取得用電極に対して、第 1の直 流バイアス印加用電極が位置する側力 第 2の容量取得用電極に対して、第 2の直 流バイアス印加用電極が位置する側とは逆側とされると、誘電体層の容量形成領域 にお!/、て、直流バイアスが誘電体層の厚み方向に対して斜め方向に印加されるよう になり、第 1および第 2の容量取得用電極ならびに第 1および第 2の直流バイアス印 加用電極といった 4種類の電極をコンパクトに配置することが可能となり、コンデンサ の小型化に寄与する。 [0042] In the capacitor according to the second aspect, the first direct current is connected to the first capacitance acquisition electrode. Side force at which the current bias application electrode is located When the second capacitance acquisition electrode is opposite to the side at which the second direct current bias application electrode is located, the capacitance formation region of the dielectric layer The DC bias is applied in an oblique direction with respect to the thickness direction of the dielectric layer, and the first and second capacitance acquisition electrodes and the first and second DC bias applications are applied. This makes it possible to arrange four types of electrodes, such as electrodes, for use in a compact manner, contributing to the miniaturization of capacitors.
[0043] 第 2の局面に係るコンデンサにおいて、コンデンサ本体が、 4つの側面を有する直 方体状であり、第 1および第 2の直流バイアス印加用端子導体膜ならびに第 1および 第 2の容量取得用端子導体膜が、それぞれ、第 1の側面、第 1の側面に対向する第 2 の側面、第 1および第 2の側面に隣接する第 3の側面ならびに第 3の側面に対向する 第 4の側面上に設けられると、特許文献 1および 2に記載されたような可変コンデンサ と実質的に同様の実装状態を採用することができる。  [0043] In the capacitor according to the second aspect, the capacitor body has a rectangular parallelepiped shape having four side surfaces, the first and second DC bias applying terminal conductor films, and the first and second capacitance acquisitions. The terminal conductor film for the first side, the second side facing the first side, the third side adjacent to the first and second side and the third side facing the third side, respectively. When provided on the side surface, a mounting state substantially the same as that of the variable capacitor described in Patent Documents 1 and 2 can be employed.
[0044] 第 2の局面に係るコンデンサにおいて、少なくとも容量形成領域を構成する誘電体 層が、誘電特性の直流ノ ィァス依存性の大きい材料力も構成されると、直流バイアス による静電容量の可変範囲をより広くすることができる。  [0044] In the capacitor according to the second aspect, if at least the dielectric layer constituting the capacitance forming region is also configured with a material force having a large dependence on the DC noise of the dielectric characteristics, the capacitance variable range due to the DC bias Can be made wider.
[0045] 第 2の局面に係るコンデンサにおいて、コンデンサ本体が、複数^ aの第 1の容量取 得用電極、第 2の容量取得用電極、第 1の直流バイアス印加用電極および第 2の直 流バイアス印加用電極を含んで 、ると、直流バイアスによる静電容量の可変範囲をよ り広くすることができるば力りでなぐ取得静電容量をより大きくすることができる。  [0045] In the capacitor according to the second aspect, the capacitor body includes a plurality of ^ a first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct current electrodes. When the current bias application electrode is included, if the variable range of the electrostatic capacity due to the DC bias can be made wider, the acquired electrostatic capacity can be increased.
[0046] 次に、この発明の第 3の局面に係るコンデンサによれば、静電容量を形成するため 、第 1および第 2の容量取得用電極を必要とし、静電容量を可変とするため、第 1およ び第 2の直流バイアス印加用電極を必要とするが、これら第 1および第 2の容量取得 用電極ならびに第 1および第 2の直流バイアス印加用電極の各々の位置に関して、 第 1および第 2の直流バイアス印加用電極は、第 1および第 2の容量取得用電極の 間に挟まれた同じ誘電体層の同じ主面上に設けられる、といった特徴を有している。 したがって、容量を可変とするために必要な最小限の構造は、容量形成領域を与え る 2層の誘電体層と各々の誘電体層を挟む 3層の電極層とで実現されることができる ので、前述した特許文献 1または 2に記載された従来の容量可変コンデンサに比べ て、小型化かつ高容量ィ匕が可能になる。 Next, according to the capacitor of the third aspect of the present invention, in order to form the capacitance, the first and second capacitance acquisition electrodes are required, and the capacitance can be made variable. The first and second DC bias application electrodes are required, but the first and second capacitance acquisition electrodes and the positions of the first and second DC bias application electrodes The first and second DC bias applying electrodes are provided on the same main surface of the same dielectric layer sandwiched between the first and second capacitance acquiring electrodes. Therefore, the minimum structure necessary for making the capacitance variable can be realized by two dielectric layers providing a capacitance forming region and three electrode layers sandwiching each dielectric layer. Therefore, compared to the conventional variable capacitance capacitor described in Patent Document 1 or 2 described above Thus, it is possible to reduce the size and increase the capacity.
[0047] また、第 3の局面に係るコンデンサによれば、第 1および第 2の直流ノ ィァス印加用 電極の間に接地された電極が存在しない構造になっているため、第 1および第 2の 直流バイアス印加用電極によって誘電体層の容量形成領域に印加される電界がシ 一ルドされることがなぐ電界強度の低下による容量変化率の低下を抑制することが できる。したがって、より低い電圧で、コンデンサが与える静電容量を制御することが 可會 になる。  [0047] Further, according to the capacitor according to the third aspect, since the grounded electrode does not exist between the first and second DC noise applying electrodes, the first and second It is possible to suppress a decrease in the rate of change in capacitance due to a decrease in electric field strength that prevents the electric field applied to the capacitance forming region of the dielectric layer from being shielded by the DC bias applying electrode. Therefore, it is possible to control the capacitance provided by the capacitor at a lower voltage.
[0048] 第 3の局面に係るコンデンサにおいて、第 1および第 2の直流バイアス印加用電極 力 誘電体層の主面方向での位置に関して、上述の容量形成領域に重ならないよう に設けられていると、第 1および第 2の容量取得用電極が直流バイアス印加用電極を 挟まな 、ようにすることができるので、容量特性を安定なものとすることができる。  [0048] In the capacitor according to the third aspect, the first and second DC bias applying electrodes are provided so as not to overlap the capacitance forming region with respect to the position of the dielectric layer in the principal surface direction. In addition, since the first and second capacitance acquisition electrodes can be arranged so as not to sandwich the DC bias application electrode, the capacitance characteristics can be stabilized.
[0049] 他方、第 3の局面に係るコンデンサにおいて、第 1および第 2の直流バイアス印加 用電極が、誘電体層の主面方向の位置に関して、容量形成領域に重なるように設け られると、第 1および第 2の直流バイアス印加用電極間の距離を短くすることができ、 その結果、直流バイアスとして比較的低い電圧が印加された場合であっても、容量変 化の効果を得ることができる。  [0049] On the other hand, in the capacitor according to the third aspect, when the first and second DC bias applying electrodes are provided so as to overlap the capacitance forming region with respect to the position in the principal surface direction of the dielectric layer, The distance between the first and second DC bias application electrodes can be shortened. As a result, even when a relatively low voltage is applied as the DC bias, the effect of capacitance change can be obtained. .
[0050] 第 3の局面に係るコンデンサにおいて、第 1および第 2の直流バイアス印加用電極 力 ともに、並列した複数の電極指を形成する櫛歯状をなしており、第 1の直流ノィァ ス印加用電極に備える各電極指力 第 2の直流バイアス印加用電極に備える電極指 の各間に入り込むように位置していると、第 1および第 2の直流バイアス印加用電極 間の距離を短くすることができるとともに、第 1および第 2の直流バイアス印加用電極 の対向面積を大きくすることができ、直流バイアスとして比較的低 、電圧が印加され ても、容量変化の効果を得ることができる。  [0050] In the capacitor according to the third aspect, both the first and second DC bias application electrode forces have a comb-like shape forming a plurality of parallel electrode fingers, and the first DC noise application Each electrode finger force provided for the electrode for electrode When the electrode finger provided for the second DC bias application electrode is positioned so as to enter between the electrodes, the distance between the first and second DC bias application electrodes is shortened. In addition, the opposing area of the first and second DC bias application electrodes can be increased, and the effect of capacitance change can be obtained even when a relatively low voltage is applied as the DC bias.
[0051] 第 3の局面に係るコンデンサにおいて、コンデンサ本体が、 4つの側面を有する直 方体状であり、第 1および第 2の直流バイアス印加用端子導体膜ならびに第 1および 第 2の容量取得用端子導体膜が、それぞれ、第 1の側面、第 1の側面に対向する第 2 の側面、第 1および第 2の側面に隣接する第 3の側面ならびに第 3の側面に対向する 第 4の側面上に設けられると、特許文献 1および 2に記載されたような可変コンデンサ と実質的に同様の実装状態を採用することができる。 [0051] In the capacitor according to the third aspect, the capacitor body has a rectangular parallelepiped shape having four side surfaces, the first and second DC bias applying terminal conductor films, and the first and second capacitance acquisitions. The terminal conductor film for the first side, the second side facing the first side, the third side adjacent to the first and second side and the third side facing the third side, respectively. When provided on the side, a variable capacitor as described in Patent Documents 1 and 2 A substantially similar mounting state can be adopted.
[0052] 第 3の局面に係るコンデンサにおいて、少なくとも容量形成領域を構成する誘電体 層が、誘電特性の直流ノ ィァス依存性の大きい材料力も構成されると、直流バイアス による静電容量の可変範囲をより広くすることができる。  [0052] In the capacitor according to the third aspect, if at least the dielectric layer constituting the capacitance forming region is also configured with a material force having a large DC noise dependency of the dielectric characteristics, the capacitance variable range due to the DC bias Can be made wider.
[0053] 第 3の局面に係るコンデンサにおいて、コンデンサ本体が、複数^ aの第 1の容量取 得用電極、第 2の容量取得用電極、第 1の直流バイアス印加用電極および第 2の直 流バイアス印加用電極を含んで 、ると、直流バイアスによる静電容量の可変範囲をよ り広くすることができるば力りでなぐ取得静電容量をより大きくすることができる。 図面の簡単な説明  [0053] In the capacitor according to the third aspect, the capacitor body includes a plurality of ^ a first capacitance acquisition electrodes, second capacitance acquisition electrodes, first DC bias application electrodes, and second direct current electrodes. When the current bias application electrode is included, if the variable range of the electrostatic capacity due to the DC bias can be made wider, the acquired electrostatic capacity can be increased. Brief Description of Drawings
[0054] [図 1]この発明の第 1の実施形態によるコンデンサ 21を説明するためのもので、(a)は 、コンデンサ 21を、誘電体層 22の積層方向に向く断面をもって示す正面図であり、 ( b)〜(d)は、コンデンサ 21を、誘電体層 22の主面方向に延びる断面をもって示す平 面図であり、互いに異なる断面を示している。  FIG. 1 is a front view showing a capacitor 21 according to a first embodiment of the present invention. FIG. 1 (a) is a front view showing the capacitor 21 with a cross section in the stacking direction of a dielectric layer 22. (B) to (d) are plan views showing the capacitor 21 with a cross section extending in the main surface direction of the dielectric layer 22, and show different cross sections.
[図 2]図 1に示したコンデンサ 21に直流バイアスを印加して 、る状態の等価回路図で ある。  FIG. 2 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 21 shown in FIG.
[図 3]第 1の実施形態による効果を確認するために実施した実験例 1にお!/、て求めた 、実施例としての試料 1および比較例としての試料 2の各々についての容量変化率を 比較して示す図である。  [FIG. 3] The rate of change in capacity for each of sample 1 as an example and sample 2 as a comparative example, obtained in Example 1 for confirming the effect of the first embodiment! It is a figure which compares and shows.
[図 4]この発明の第 2の実施形態によるコンデンサ 41を示す、図 1 (a)に対応する図 である。  FIG. 4 is a view corresponding to FIG. 1 (a), showing a capacitor 41 according to a second embodiment of the present invention.
[図 5]この発明の第 3の実施形態によるコンデンサ 51を示す、図 1 (a)に対応する図 である。  FIG. 5 is a view corresponding to FIG. 1 (a), showing a capacitor 51 according to a third embodiment of the present invention.
[図 6]この発明の第 1の実施形態に対応する第 1の変形例よるコンデンサ 21aを説明 するためのもので、(a)は、コンデンサ 21aを、誘電体層 22の積層方向に向く断面を もって示す正面図であり、(b)〜(d)は、コンデンサ 21aを、誘電体層 22の主面方向 に延びる断面をもって示す平面図であり、互いに異なる断面を示して 、る。  FIG. 6 is a diagram for explaining a capacitor 21a according to a first modification corresponding to the first embodiment of the present invention. FIG. 6 (a) is a cross section of the capacitor 21a facing in the stacking direction of the dielectric layer 22. FIGS. 4B to 4D are plan views showing the capacitor 21a with a cross section extending in the direction of the main surface of the dielectric layer 22 and showing different cross sections.
[図 7]図 6に示したコンデンサ 21aに直流バイアスを印加している状態の等価回路図 である。 圆 8]この発明の第 2の実施形態に対応する第 2の変形例によるコンデンサ 41aを示 す、図 4に対応する図である。 FIG. 7 is an equivalent circuit diagram in which a DC bias is applied to the capacitor 21a shown in FIG. [8] FIG. 8 is a view corresponding to FIG. 4, showing a capacitor 41a according to a second modification corresponding to the second embodiment of the present invention.
圆 9]この発明の第 3の実施形態に対応する第 3の変形例によるコンデンサ 51aを示 す、図 5に対応する図である。 [9] FIG. 9 is a diagram corresponding to FIG. 5, showing a capacitor 51a according to a third modification corresponding to the third embodiment of the present invention.
[図 10]この発明の第 4の実施形態によるコンデンサ 121を説明するためのもので、(a )は、コンデンサ 121を、誘電体層 122の積層方向に向く断面をもって示す正面図で あり、(b)〜(d)は、コンデンサ 121を、誘電体層 122の主面方向に延びる断面をもつ て示す平面図であり、互いに異なる断面を示している。  FIG. 10 is a front view showing a capacitor 121 according to a fourth embodiment of the present invention, in which (a) is a front view showing the capacitor 121 with a cross section in the stacking direction of the dielectric layer 122; b) to (d) are plan views showing the capacitor 121 with a cross section extending in the direction of the main surface of the dielectric layer 122, showing different cross sections.
[図 11]図 10に示したコンデンサ 121に直流ノ ィァスを印加して 、る状態の等価回路 図である。  FIG. 11 is an equivalent circuit diagram in a state where a DC noise is applied to the capacitor 121 shown in FIG.
圆 12]この発明の第 4の実施形態による効果を確認するために実施した実験例 3に おいて求めた、実施例としての試料 101および比較例としての試料 102の各々につ V、ての容量変化率を比較して示す図である。 圆 12] V and T for each of the sample 101 as an example and the sample 102 as a comparative example, which were obtained in Experimental Example 3 conducted to confirm the effect of the fourth embodiment of the present invention. It is a figure which compares and shows a capacity | capacitance change rate.
[図 13]この発明の第 5の実施形態によるコンデンサ 141を示す、図 10 (a)に対応する 図である。  FIG. 13 is a view corresponding to FIG. 10 (a), showing a capacitor 141 according to a fifth embodiment of the present invention.
[図 14]この発明の第 6の実施形態によるコンデンサ 151を示す、図 10 (a)に対応する 図である。  FIG. 14 is a view corresponding to FIG. 10 (a), showing a capacitor 151 according to a sixth embodiment of the present invention.
[図 15]この発明の第 7の実施形態によるコンデンサ 221を説明するためのもので、(a )は、コンデンサ 221を、誘電体層 222の積層方向に向く断面をもって示す正面図で あり、(b)〜(d)は、コンデンサ 221を、誘電体層 222の主面方向に延びる断面をもつ て示す平面図であり、互いに異なる断面を示している。  FIG. 15 is a front view showing a capacitor 221 according to a seventh embodiment of the present invention, in which (a) is a front view showing the capacitor 221 with a cross section in the stacking direction of the dielectric layer 222; b) to (d) are plan views showing the capacitor 221 with a cross section extending in the direction of the principal surface of the dielectric layer 222, showing different cross sections.
[図 16]図 15に示したコンデンサ 221に直流ノ ィァスを印加して 、る状態の等価回路 図である。  FIG. 16 is an equivalent circuit diagram in a state where a DC noise is applied to the capacitor 221 shown in FIG.
[図 17]第 7の実施形態による効果を確認するために実施した実験例 5において求め た、実施例としての試料 201および比較例としての試料 202の各々についての容量 変化率を比較して示す図である。  FIG. 17 shows a comparison of capacity change rates for each of sample 201 as an example and sample 202 as a comparative example obtained in Experimental Example 5 performed to confirm the effect of the seventh embodiment. FIG.
[図 18]この発明の第 8の実施形態によるコンデンサ 221aを示す、図 15 (c)に対応す る図である。 [図 19]この発明の第 9の実施形態によるコンデンサ 221bを示す、図 15に対応する図 である。 FIG. 18 is a view corresponding to FIG. 15 (c), showing a capacitor 221 a according to an eighth embodiment of the present invention. FIG. 19 is a view corresponding to FIG. 15, showing a capacitor 221b according to a ninth embodiment of the present invention.
[図 20]この発明の第 10の実施形態によるコンデンサ 221cを示すもので、(a)および ( b)は、それぞれ、図 15 (a)および(c)に対応している。  FIG. 20 shows a capacitor 221c according to a tenth embodiment of the present invention, in which (a) and (b) correspond to FIGS. 15 (a) and (c), respectively.
[図 21]この発明の第 11の実施形態によるコンデンサ 221dを示す、図 15に対応する 図である。  FIG. 21 is a diagram corresponding to FIG. 15 and showing a capacitor 221d according to an eleventh embodiment of the present invention.
[図 22]この発明の第 12の実施形態によるコンデンサ 241を示す、図 15 (a)に対応す る図である。  FIG. 22 is a view corresponding to FIG. 15 (a), showing a capacitor 241 according to a twelfth embodiment of the present invention.
[図 23]この発明の第 13の実施形態によるコンデンサ 251を示す、図 15 (a)に対応す る図である。  FIG. 23 is a view corresponding to FIG. 15 (a), showing a capacitor 251 according to a thirteenth embodiment of the present invention.
[図 24]この発明にとって興味ある従来のコンデンサ 1を示す、図 1 (a)に対応する図で ある。  FIG. 24 is a view corresponding to FIG. 1 (a), showing a conventional capacitor 1 of interest to the present invention.
[図 25]図 24に示したコンデンサ 1を誘電体層 2の主面方向に延びる断面をもって示 す平面図であり、互いに異なる断面を示している。  FIG. 25 is a plan view showing the capacitor 1 shown in FIG. 24 with a cross section extending in the principal surface direction of the dielectric layer 2 and showing different cross sections.
[図 26]この発明にとって興味ある従来の他のコンデンサ laを示す、図 1 (a)に対応す る図である。  FIG. 26 is a view corresponding to FIG. 1 (a) showing another conventional capacitor la of interest to the present invention.
符号の説明 Explanation of symbols
21, 41, 51, 121, 141, 151, 221, 221a, 221b, 221c, 221d, 241, 251 コ ンデンサ  21, 41, 51, 121, 141, 151, 221, 221a, 221b, 221c, 221d, 241, 251 capacitors
22. 122, 222 誘電体層  22. 122, 222 Dielectric layer
23. 123, 223 コンデンサ本体  23. 123, 223 Capacitor body
24 アース用電極  24 Grounding electrode
25, 127, 128, 227, 228 直流バイアス印加用電極  25, 127, 128, 227, 228 DC bias application electrode
26, 124, 125, 224, 225 容量取得用電極  26, 124, 125, 224, 225 Capacitance acquisition electrode
27, 129, 229 第 1の側面  27, 129, 229 First aspect
28, 130, 230 第 2の側面  28, 130, 230 Second side
29, 131, 231 第 3の側面  29, 131, 231 Third side
30, 132, 232 第 4の側面 31 アース用端子導体膜 30, 132, 232 Fourth aspect 31 Grounding terminal conductor film
32, 133, 134, 233, 234 直流バイアス印加用端子導体膜  32, 133, 134, 233, 234 DC bias application terminal conductor film
33. 135, 235 第 1の容量取得用端子導体膜  33, 135, 235 First capacitor acquisition terminal conductor film
34. 136, 236 第 2の容量取得用端子導体膜  34. 136, 236 Second capacitor acquisition terminal conductor film
37. 137, 237 直流ノィァス  37. 137, 237 DC noise
238, 239 電極指  238, 239 electrode fingers
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0056] (第 1の局面に係る実施の形態)  [0056] (Embodiment according to the first aspect)
図 1および図 2は、この発明の第 1の実施形態によるコンデンサ 21を説明するため のものである。図 1において、(a)は、前述した図 24または図 26に対応する図であつ て、コンデンサ 21を、誘電体層 22の積層方向に向く断面をもって示す正面図であり 、(b)〜(d)は、前述した図 25に対応する図であって、コンデンサ 21を、誘電体層 22 の主面方向に延びる断面をもって示す平面図である。また、図 2は、コンデンサ 21に 直流バイアスを印加して 、る状態の等価回路図である。  FIG. 1 and FIG. 2 are for explaining a capacitor 21 according to the first embodiment of the present invention. In FIG. 1, (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 21 with a cross section facing the stacking direction of the dielectric layer 22, (b) to ( d) is a view corresponding to FIG. 25 described above, and is a plan view showing the capacitor 21 with a cross section extending in the principal surface direction of the dielectric layer 22. FIG. 2 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 21.
[0057] 図 1 (a)に示すように、コンデンサ 21は、複数の誘電体層 22をもって構成される積 層構造を有する、コンデンサ本体 23を備えている。コンデンサ本体 23は、特定の誘 電体層 22に沿って設けられるアース用電極 24と、特定の誘電体層 22を介してァー ス用電極 24と対向しかつアース用電極 24との間で直流バイアスを印加するために用 V、られる直流バイアス印加用電極 25と、直流バイアス印加用電極 25をアース用電極 24との間に挟むように位置されかつ特定の誘電体層 22を介してアース用電極 24と 対向することによって静電容量を形成するように設けられる容量取得用電極 26とを 備えている。  As shown in FIG. 1 (a), the capacitor 21 includes a capacitor body 23 having a multilayer structure including a plurality of dielectric layers 22. The capacitor body 23 is disposed between the ground electrode 24 provided along the specific dielectric layer 22 and the ground electrode 24 through the specific dielectric layer 22 and facing the ground electrode 24. The DC bias application electrode 25 is used to apply a DC bias, and the DC bias application electrode 25 is sandwiched between the ground electrode 24 and grounded via a specific dielectric layer 22. And a capacitance acquisition electrode 26 provided so as to form a capacitance by facing the electrode 24.
[0058] コンデンサ本体 23は、図 1 (b)〜(d)によく示されているように、積層方向に延びる 4 つの側面 27〜30を有する直方体状である。第 1の側面 27上には、アース用端子導 体膜 31が設けられる。第 1の側面 27に対向する第 2の側面 28上には、直流バイアス 印加用端子導体膜 32が設けられる。第 1および第 2の側面 27および 28に隣接する 第 3の側面 29上には、第 1の容量取得用端子導体膜 33が設けられる。第 3の側面 2 9に対向する第 4の側面 30上には、第 2の容量取得用端子導体膜 34が設けられる。 [0059] 図 1 (b)には、容量取得用電極 26が通る断面が示されている。容量取得用電極 26 は、第 3の側面 29にまで引き出され、ここで第 1の容量取得用端子導体膜 33に電気 的に接続される。 [0058] The capacitor body 23 has a rectangular parallelepiped shape having four side surfaces 27 to 30 extending in the stacking direction, as well shown in FIGS. 1 (b) to (d). On the first side surface 27, a grounding terminal conductor film 31 is provided. A DC bias applying terminal conductor film 32 is provided on the second side face 28 facing the first side face 27. On the third side surface 29 adjacent to the first and second side surfaces 27 and 28, a first capacitance acquisition terminal conductor film 33 is provided. On the fourth side face 30 facing the third side face 29, the second capacitance acquisition terminal conductor film 34 is provided. [0059] FIG. 1 (b) shows a cross section through which the capacitance acquisition electrode 26 passes. The capacitance acquisition electrode 26 is pulled out to the third side surface 29, where it is electrically connected to the first capacitance acquisition terminal conductor film 33.
[0060] 図 1 (c)には、直流バイアス印加用電極 25が通る断面が示されている。直流バイァ ス印加用電極 25は、第 2の側面 28にまで引き出され、ここで直流バイアス印加用端 子導体膜 32に電気的に接続される。  FIG. 1 (c) shows a cross section through which the DC bias applying electrode 25 passes. The DC bias applying electrode 25 is drawn out to the second side face 28 and is electrically connected to the DC bias applying terminal conductor film 32 here.
[0061] 図 1 (d)には、アース用電極 24が通る断面が示されている。アース用電極 24は、第 1の側面 27にまで引き出されるとともに、第 4の側面 30にまで引き出される。そして、 アース用電極 24は、第 1の側面 27上において、アース用端子導体膜 31に電気的に 接続され、また、第 4の側面 30上において、第 2の容量取得用端子導体膜 34に電気 的に接続される。  [0061] FIG. 1 (d) shows a cross section through which the ground electrode 24 passes. The grounding electrode 24 is pulled out to the first side surface 27 and also to the fourth side surface 30. The grounding electrode 24 is electrically connected to the grounding terminal conductor film 31 on the first side surface 27, and is connected to the second capacitance acquisition terminal conductor film 34 on the fourth side surface 30. Electrically connected.
[0062] 以上のような構成を有するコンデンサ 21において、図 2によく示されているように、 アース用電極 24と容量取得用電極 26との間に形成される静電容量は、第 1および 第 2の容量取得用端子導体膜 33および 34から取り出される。第 1および第 2の容量 取得用端子導体膜 33および 34には、所定の回路(図示せず。)が電気的に接続さ れる。このとき、アース用端子導体膜 31および直流ノ ィァス印加用端子導体膜 32を 通して、アース用電極 24と直流バイアス印加用電極 25との間に直流バイアス 37が印 加されると、アース用電極 24と直流バイアス印加用電極 25との間に位置する誘電体 層 22の誘電率等の誘電特性が変化する。したがって、上述したアース用電極 24と容 量取得用電極 26との間に位置する誘電体層 22の一部につ 、ての誘電特性が変化 することになり、その結果として、第 1および第 2の容量取得用端子導体膜 33および 3 4を通して取り出される静電容量を変化させることができる。  In the capacitor 21 having the above-described configuration, as well shown in FIG. 2, the capacitance formed between the grounding electrode 24 and the capacitance acquiring electrode 26 is the first and The second capacitor acquisition terminal conductor films 33 and 34 are taken out. A predetermined circuit (not shown) is electrically connected to the first and second capacitor acquisition terminal conductor films 33 and 34. At this time, if a DC bias 37 is applied between the grounding electrode 24 and the DC bias applying electrode 25 through the grounding terminal conductor film 31 and the DC noise applying terminal conductor film 32, The dielectric characteristics such as the dielectric constant of the dielectric layer 22 located between the electrode 24 and the DC bias applying electrode 25 change. Therefore, the dielectric characteristics of the part of the dielectric layer 22 located between the ground electrode 24 and the capacitance acquisition electrode 26 change as described above. As a result, the first and second dielectric layers 22 change. It is possible to change the capacitance taken out through the terminal conductor films 33 and 3 4 for acquiring the capacitance of 2.
[0063] 上述した静電容量の変化幅をより大きくするためには、誘電体層 22、特にアース用 電極 24と直流バイアス印加用電極 25との間に位置する誘電体層 22が、誘電特性の 直流バイアス依存性の大きい材料力も構成されることが好ましい。このように、誘電特 性の直流バイアス依存性の大きい材料としては、たとえば、 lOOBa (Ti Zr ) 0  [0063] In order to further increase the capacitance change range described above, the dielectric layer 22, particularly the dielectric layer 22 positioned between the grounding electrode 24 and the DC bias applying electrode 25, has a dielectric property. It is preferable that a material force having a large DC bias dependency is also configured. Thus, as a material whose dielectric characteristics have a large DC bias dependency, for example, lOOBa (Ti Zr) 0
1.006 0.97 0.03 1.006 0.97 0.03
- 2. 5GdO - 2. 5MgO-0. 5MnO— 1. OSiO力 ^ある。 -2. 5GdO-2. 5MgO-0. 5MnO— 1. OSiO force ^.
3 3/2 2  3 3/2 2
[0064] 次に、第 1の実施形態による効果を確認するために実施した実験例 1について説明 する。 [0064] Next, Experimental Example 1 performed to confirm the effect of the first embodiment will be described. To do.
[0065] この実験例 1では、この発明の範囲内にある実施例に係る試料 1として、図 1に示し たコンデンサ 21と実質的に同様の構造を有するものを作製し、この発明の範囲外の 比較例に係る試料 2として、前述の図 24に示したコンデンサ 1と実質的に同様の構造 を有するものを作製した。これら試料 1および 2の各々において、誘電体層を構成す る誘電体として、 BaTiO系の高誘電率セラミック材料を用い、電極間に位置する誘  In Experimental Example 1, a sample 1 having a structure substantially similar to that of the capacitor 21 shown in FIG. 1 was produced as Sample 1 according to the example within the scope of the present invention. As Sample 2 according to the comparative example, a sample having a structure substantially similar to that of the capacitor 1 shown in FIG. 24 was prepared. In each of these samples 1 and 2, a BaTiO-based high dielectric constant ceramic material is used as the dielectric constituting the dielectric layer, and the dielectric layer positioned between the electrodes is used.
3  Three
電体層の厚みを 2 mとした。また、電極は、ニッケルを主成分とし、厚みを 1 μ mとし た。また、コンデンサ本体の外形寸法を 3. 2mmX l. 6mm X O. 4mmとした。  The thickness of the electric layer was 2 m. The electrode was mainly composed of nickel and had a thickness of 1 μm. The external dimensions of the capacitor body were 3.2 mm X l. 6 mm X O. 4 mm.
[0066] 以上のような試料 1および 2の各々に係るコンデンサについて、 0〜36Vの範囲内 のいくつかの直流ノ ィァスを印加した際の容量変化率を求めた。その結果が図 3に 示されている。 [0066] For the capacitors according to Samples 1 and 2 as described above, the rate of change in capacitance when several DC noises in the range of 0 to 36 V were applied. The result is shown in Figure 3.
[0067] 図 3から、静電容量は、試料 1では、最大約 80%以上減少し、他方、試料 2では、 最大約 25%減少していることがわかる。これは、試料 2では、対をなす直流バイアス 印加用電極間に 3層分の誘電体層が介在するのに対し、試料 1では、直流バイアス を印加するための一方の電極および容量を取得するための一方の電極を、アース用 電極で共通化し、対をなす直流バイアス印加用電極間に単に 1層分の誘電体層しか 介在していないためである。その結果、試料 1によれば、より低電圧で必要な容量変 化率を得ることができる。  [0067] From FIG. 3, it can be seen that the capacitance decreased by about 80% or more in the sample 1, while it decreased by about 25% in the sample 2. This is because, in sample 2, three dielectric layers are interposed between the pair of DC bias application electrodes, whereas in sample 1, one electrode and a capacitor for applying a DC bias are obtained. This is because one electrode for this purpose is shared by a ground electrode, and only one dielectric layer is interposed between the pair of DC bias application electrodes. As a result, according to Sample 1, the required capacity change rate can be obtained at a lower voltage.
[0068] なお、上記実験例 1では、誘電体層を構成する誘電体として、ある特定の BaTiO  [0068] In Experimental Example 1 described above, a specific BaTiO is used as the dielectric constituting the dielectric layer.
3 系の高誘電率セラミック材料を用いた力 このセラミック材料として、誘電特性の直流 ノィァス依存性のより大き 、材料を用 、れば、直流バイアスに対する容量変化範囲 のより広 、コンデンサが得られることが確認されて 、る。  Force using 3 series high-permittivity ceramic material As this ceramic material, if the material has a higher DC dependency on the DC characteristics, a capacitor with a wider capacitance change range with respect to DC bias can be obtained. Is confirmed.
[0069] 図 4および図 5は、それぞれ、この発明の第 2および第 3の実施形態によるコンデン サ 41および 51を示す、図 1 (a)に対応する図である。図 4および図 5において、図 1 ( a)に示した要素に相当する要素には同様の参照符号を付し、重複する説明は省略 する。 [0069] FIGS. 4 and 5 are diagrams corresponding to FIG. 1 (a), showing capacitors 41 and 51 according to the second and third embodiments of the present invention, respectively. In FIG. 4 and FIG. 5, elements corresponding to those shown in FIG. 1 (a) are given the same reference numerals, and redundant explanations are omitted.
[0070] 第 2および第 3の実施形態によるコンデンサ 41および 51は、コンデンサ本体 23に おいて、複数組のアース用電極 24、直流バイアス印加用電極 25および容量取得用 電極 26が形成されて 、ることを特徴として!/、る。 [0070] Capacitors 41 and 51 according to the second and third embodiments include a plurality of sets of grounding electrodes 24, DC bias application electrodes 25, and capacitance acquisition capacitors in the capacitor body 23. The electrode 26 is formed and is characterized by! /
[0071] より詳細には、図 4に示したコンデンサ 41では、複数^ &のアース用電極 24、直流バ ィァス印加用電極 25および容量取得用電極 26が、上から、容量取得用電極 26、直 流バイアス印加用電極 25、アース用電極 24、容量取得用電極 26、…といった順序 で複数回繰り返されて配置されて 、る。  [0071] More specifically, in the capacitor 41 shown in FIG. 4, a plurality of ^ & ground electrodes 24, a DC bias applying electrode 25, and a capacitance acquiring electrode 26 are arranged from above with a capacitance acquiring electrode 26, The DC bias application electrode 25, the ground electrode 24, the capacitance acquisition electrode 26,... Are repeatedly arranged in the order of several times.
[0072] 図 5に示したコンデンサ 51では、上から、容量取得用電極 26、直流バイアス印加用 電極 25、アース用電極 24、直流バイアス印加用電極 25、容量取得用電極 26、…と Vヽつた順序で複数回繰り返されて配置されて 、る。  In the capacitor 51 shown in FIG. 5, the capacitance acquisition electrode 26, the DC bias application electrode 25, the ground electrode 24, the DC bias application electrode 25, the capacitance acquisition electrode 26,. Repeated multiple times in the same order.
[0073] 言い換えると、図 4に示したコンデンサ 41では、図 1 (a)に示したコンデンサ 21にお ける容量取得用電極 26、直流バイアス印加用電極 25およびアース用電極 24の配 置を 1組とし、この組が複数回繰り返されている。図 5に示したコンデンサ 51では、隣 り合う組の間でアース用電極 24を共用し、直流バイアス印加用電極 25につ 、ては、 誘電体層 22の 2層毎に配置されている。  In other words, in the capacitor 41 shown in FIG. 4, the arrangement of the capacitance acquisition electrode 26, the DC bias application electrode 25, and the ground electrode 24 in the capacitor 21 shown in FIG. This set is repeated several times. In the capacitor 51 shown in FIG. 5, the grounding electrode 24 is shared between adjacent pairs, and the DC bias applying electrode 25 is disposed in every two layers of the dielectric layer 22.
[0074] なお、図 4に示したコンデンサ 41のコンデンサ本体 23および図 5に示したコンデン サ 51のコンデンサ本体 23を比較したとき、厚み方向寸法に関して異なるように図示 されている力 これは、図示しょうとする電極 24〜26の数が異なるという理由力ももた らされた結果に過ぎず、図示した厚み方向寸法の差は、特に意味があるものではな い。  [0074] When comparing the capacitor main body 23 of the capacitor 41 shown in FIG. 4 and the capacitor main body 23 of the capacitor 51 shown in FIG. The reason is that the number of electrodes 24 to 26 to be different is also a result, and the difference in the thickness direction shown in the figure is not particularly meaningful.
[0075] 次に、上記コンデンサ 41および 51のように、コンデンサ本体 23が、複数組のァー ス用電極 24、直流バイアス印加用電極 25および容量取得用電極 26を備える場合に おいて、この発明に係るコンデンサによれば、より広い容量変化範囲が得られること を確認するために実施した実験例 2につ 、て説明する。  [0075] Next, as in the case of the capacitors 41 and 51, when the capacitor body 23 includes a plurality of pairs of ground electrodes 24, DC bias application electrodes 25, and capacitance acquisition electrodes 26, this An experimental example 2 performed to confirm that a wider capacitance change range can be obtained with the capacitor according to the invention will be described.
[0076] この実験例 2では、表 1に示すように、試料 11〜13の各々に係るコンデンサを作製 した力 各コンデンサにおける誘電体層の材料および厚みならびに電極の材料およ び厚みについては、前述の実験例 1と同様とした。また、試料 11〜13の各々に係る コンデンサの外形寸法は、ともに、 3. 2mm X l . 6mm X l . 6mmとした。  [0076] In this Experimental Example 2, as shown in Table 1, the force that produced the capacitors according to each of Samples 11 to 13, the material and thickness of the dielectric layer and the material and thickness of the electrode in each capacitor were as follows: It was the same as the above-mentioned experimental example 1. In addition, the external dimensions of the capacitors according to each of Samples 11 to 13 were set to 3.2 mm X 1 .6 mm X 1 .6 mm.
[0077] 試料 11については、図 24に示した電極の配置構造を採用し、直流バイアス印加用 電極および容量取得用電極を含むすべての電極の積層数を 500とした。 [0078] 試料 12については、図 26に示した電極の配置構造を採用し、直流バイアス印加用 電極および容量取得用電極を含むすべての電極の積層数を 500とした。 For Sample 11, the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was set to 500. For Sample 12, the electrode arrangement structure shown in FIG. 26 was adopted, and the number of stacked layers of all the electrodes including the DC bias application electrode and the capacitance acquisition electrode was set to 500.
[0079] 試料 13については、図 4に示した電極の配置構造を採用し、アース用電極、直流 バイアス印加用電極および容量取得用電極を含むすべての電極の積層数を 501と した。  For Sample 13, the electrode arrangement structure shown in FIG. 4 was adopted, and the number of layers of all electrodes including the ground electrode, the DC bias application electrode, and the capacitance acquisition electrode was set to 501.
[0080] これら試料 11〜13について、直流バイアスを 0〜36Vの範囲で変化させたときの 容量変化範囲が表 1に示されて 、る。  [0080] Table 1 shows the capacitance change range when the DC bias is changed in the range of 0 to 36 V for these samples 11 to 13.
[0081] [表 1] [0081] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
[0082] 表 1からわ力るように、この発明の範囲内にある試料 13とこの発明の範囲外の試料 11および 12とを比較したとき、コンデンサの寸法が同じで、電極の積層数が同程度 である場合、この発明に係るコンデンサによれば、より大きい容量が得られ、かつ容 量の可変幅をより広くできる。 [0082] As shown in Table 1, when comparing Sample 13 within the scope of the present invention with Samples 11 and 12 outside the scope of the present invention, the capacitor dimensions were the same and the number of stacked electrodes was When they are approximately the same, according to the capacitor of the present invention, a larger capacity can be obtained and the variable width of the capacity can be made wider.
[0083] 試料 11では、容量取得用電極が直流バイアス印加用電極に挟まれる構造である ため、試料 12に比べて大きい最大容量を得ることができるものの、容量の可変幅が 狭い。  [0083] In Sample 11, since the capacitance acquisition electrode is sandwiched between the DC bias application electrodes, a larger maximum capacitance can be obtained compared to Sample 12, but the variable width of the capacitance is narrow.
[0084] 他方、試料 12では、直流バイアス印加用電極が容量取得用電極に挟まれる構造 であるため、大きな容量を得ることができず、電極の積層数を 500としても、最大容量 は 13. 7 Fに過ぎない。  [0084] On the other hand, Sample 12 has a structure in which the DC bias application electrode is sandwiched between the capacitance acquisition electrodes, so that a large capacitance cannot be obtained, and the maximum capacitance is 13. Only 7 F.
[0085] これらに対して、試料 13では、試料 11に比べて、最大容量がより大きぐかつ容量 可変幅がより広くなつて 、る。 [0085] On the other hand, sample 13 has a larger maximum capacity and a larger capacity variable width than sample 11.
[0086] 以上、この発明の第 1の局面に係る第 1ないし第 3の実施形態を、図 1ないし図 5を 参照して説明したが、この発明の範囲内において、その他種々の変形例が可能であ る。 As described above, the first to third embodiments according to the first aspect of the present invention have been described with reference to FIGS. 1 to 5. However, various other modifications are possible within the scope of the present invention. It is possible.
[0087] たとえば、第 1ないし第 3の実施形態では、アース用電極 24に電気的に接続される 端子導体膜として、アース用端子導体膜 31に加えて、第 2の容量取得用端子導体 膜 34が形成されたが、このような第 2の容量取得用端子導体膜は省略されてもよい。 この場合、アース用端子導体膜 31は、第 2の容量取得用端子導体膜 34が設けられ た位置に設けられても、図示したアース用端子導体膜 31が設けられた位置力ゝら第 2 の容量取得用端子導体膜 34が設けられた位置にまで一連に延びるように設けられ てもよい。 For example, in the first to third embodiments, it is electrically connected to the ground electrode 24. As the terminal conductor film, in addition to the ground terminal conductor film 31, the second capacitor acquisition terminal conductor film 34 is formed. However, such a second capacitor acquisition terminal conductor film may be omitted. In this case, even if the ground terminal conductor film 31 is provided at the position where the second capacitance acquisition terminal conductor film 34 is provided, the second position force provided by the ground terminal conductor film 31 shown in FIG. The capacitor acquisition terminal conductor film 34 may be provided so as to continuously extend to the position where the capacitor acquisition terminal conductor film 34 is provided.
[0088] また、第 1ないし第 3の実施形態では、アース用電極 24、直流バイアス印加用電極 25および容量取得用電極 26が、ともに、コンデンサ本体 23の内部に形成されたが、 積層方向での最も端に位置する電極、たとえば、図 1 (a)に示したコンデンサ 21にあ つては、アース用電極 24および Zまたは容量取得用電極 26については、コンデン サ本体 23の外表面上に形成されてもょ 、。  [0088] In the first to third embodiments, the grounding electrode 24, the DC bias applying electrode 25, and the capacitance acquiring electrode 26 are all formed inside the capacitor body 23. For example, for the capacitor 21 shown in FIG. 1 (a), the ground electrode 24 and the Z or capacitance acquisition electrode 26 are formed on the outer surface of the capacitor body 23. It will be.
[0089] 次に、この発明の範囲内のものではないが、前述した第 1、第 2および第 3の実施形 態の各々の変形例、すなわち第 1、第 2および第 3の変形例について説明する。なお 、第 1ないし第 3の変形例の説明において、第 1ないし第 3の実施形態の説明におい て用いた参照符号と同様の参照符号を相当する要素に対して用いることにする。  [0089] Next, although not within the scope of the present invention, each modification of the first, second, and third embodiments described above, that is, the first, second, and third modifications. explain. In the description of the first to third modifications, the same reference numerals as those used in the description of the first to third embodiments are used for the corresponding elements.
[0090] 図 6および図 7は、前述の第 1の実施形態に対応する第 1の変形例によるコンデン サ 21aを説明するためのものである。図 6において、(a)は、前述した図 1 (a)に対応 する図であって、コンデンサ 21aを、誘電体層 22の積層方向に向く断面をもって示す 正面図であり、(b)〜(d)は、前述した図 1 (b)〜(d)に対応する図であって、コンデン サ 21aを、誘電体層 22の主面方向に延びる断面をもって示す平面図である。また、 図 7は、前述した図 2に対応する図である。  FIG. 6 and FIG. 7 are for explaining a capacitor 21a according to a first modification corresponding to the first embodiment described above. In FIG. 6, (a) is a view corresponding to FIG. 1 (a) described above, and is a front view showing the capacitor 21a with a cross section in the stacking direction of the dielectric layer 22, and (b) to ( d) is a view corresponding to FIGS. 1B to 1D described above, and is a plan view showing the capacitor 21a with a cross section extending in the main surface direction of the dielectric layer 22. FIG. FIG. 7 corresponds to FIG. 2 described above.
[0091] 図 6 (a)に示すように、コンデンサ 21aは、複数の誘電体層 22をもって構成される積 層構造を有する、コンデンサ本体 23を備えている。コンデンサ本体 23は、特定の誘 電体層 22に沿って設けられるアース用電極 24と、特定の誘電体層 22を介してァー ス用電極 24と対向する位置に設けられる直流バイアス印加用電極 25と、アース用電 極 24と直流バイアス印加用電極 25との間に位置しかつ特定の誘電体層 22を介して アース用電極 24と対向することによって静電容量を形成するように設けられる容量取 得用電極 26とを備えている。 [0092] コンデンサ本体 23は、図 6 (b)〜(d)によく示されて 、るように、積層方向に延びる 4 つの側面 27〜30を有する直方体状である。第 1の側面 27上には、アース用端子導 体膜 31が設けられる。第 1の側面 27に対向する第 2の側面 28上には、直流バイアス 印加用端子導体膜 32が設けられる。第 1および第 2の側面 27および 28に隣接する 第 3の側面 29上には、第 1の容量取得用端子導体膜 33が設けられる。第 3の側面 2 9に対向する第 4の側面 30上には、第 2の容量取得用端子導体膜 34が設けられる。 As shown in FIG. 6 (a), the capacitor 21a includes a capacitor body 23 having a multilayer structure composed of a plurality of dielectric layers 22. The capacitor body 23 includes a grounding electrode 24 provided along a specific dielectric layer 22 and a DC bias applying electrode provided at a position facing the grounding electrode 24 through the specific dielectric layer 22. 25, located between the grounding electrode 24 and the DC bias applying electrode 25 and facing the grounding electrode 24 through a specific dielectric layer 22 so as to form a capacitance. And an electrode 26 for capacitance acquisition. The capacitor main body 23 has a rectangular parallelepiped shape having four side surfaces 27 to 30 extending in the stacking direction, as well shown in FIGS. 6 (b) to (d). On the first side surface 27, a grounding terminal conductor film 31 is provided. A DC bias applying terminal conductor film 32 is provided on the second side face 28 facing the first side face 27. On the third side surface 29 adjacent to the first and second side surfaces 27 and 28, a first capacitance acquisition terminal conductor film 33 is provided. On the fourth side face 30 facing the third side face 29, the second capacitance acquisition terminal conductor film 34 is provided.
[0093] 図 6 (b)には、直流バイアス印加用電極 25が通る断面が示されて 、る。直流バイァ ス印加用電極 25は、第 2の側面 28にまで引き出され、ここで直流バイアス印加用端 子導体膜 32に電気的に接続される。  FIG. 6 (b) shows a cross section through which the DC bias applying electrode 25 passes. The DC bias applying electrode 25 is drawn out to the second side face 28 and is electrically connected to the DC bias applying terminal conductor film 32 here.
[0094] 図 6 (c)には、容量取得用電極 26が通る断面が示されて 、る。容量取得用電極 26 は、第 3の側面 29にまで引き出され、ここで第 1の容量取得用端子導体膜 33に電気 的に接続される。  FIG. 6 (c) shows a cross section through which the capacitance acquisition electrode 26 passes. The capacitance acquisition electrode 26 is pulled out to the third side surface 29, where it is electrically connected to the first capacitance acquisition terminal conductor film 33.
[0095] 図 6 (d)には、アース用電極 24が通る断面が示されて!/、る。アース用電極 24は、第 1の側面 27にまで引き出されるとともに、第 4の側面 30にまで引き出される。そして、 アース用電極 24は、第 1の側面 27上において、アース用端子導体膜 31に電気的に 接続され、また、第 4の側面 30上において、第 2の容量取得用端子導体膜 34に電気 的に接続される。  [0095] FIG. 6 (d) shows a cross-section through which the grounding electrode 24 passes! The grounding electrode 24 is pulled out to the first side surface 27 and also to the fourth side surface 30. The grounding electrode 24 is electrically connected to the grounding terminal conductor film 31 on the first side surface 27, and is connected to the second capacitance acquisition terminal conductor film 34 on the fourth side surface 30. Electrically connected.
[0096] 以上のような構成を有するコンデンサ 21aにおいて、図 7によく示されているように、 アース用電極 24と容量取得用電極 26との間に形成される静電容量は、第 1および 第 2の容量取得用端子導体膜 33および 34から取り出される。第 1および第 2の容量 取得用端子導体膜 33および 34には、所定の回路(図示せず。)が電気的に接続さ れる。このとき、アース用端子導体膜 31および直流ノ ィァス印加用端子導体膜 32を 通して、アース用電極 24と直流バイアス印加用電極 25との間に直流バイアス 37が印 加されると、アース用電極 24と直流バイアス印加用電極 25との間に位置する誘電体 層 22の誘電率等の誘電特性が変化する。したがって、上述したアース用電極 24と容 量取得用電極 26との間に位置する誘電体層 22の誘電特性が変化することになり、 その結果として、第 1および第 2の容量取得用端子導体膜 33および 34を通して取り 出される静電容量を変化させることができる。 [0097] この変形例においても、上述した静電容量の変化幅をより大きくするためには、誘 電体層 22、特にアース用電極 24と容量取得用電極 26との間に位置する誘電体層 2 2が、誘電特性の直流ノィァス依存性の大き!/、材料力も構成されることが好ま 、。 In the capacitor 21a having the above-described configuration, as well shown in FIG. 7, the capacitance formed between the grounding electrode 24 and the capacitance acquiring electrode 26 is the first and The second capacitor acquisition terminal conductor films 33 and 34 are taken out. A predetermined circuit (not shown) is electrically connected to the first and second capacitor acquisition terminal conductor films 33 and 34. At this time, if a DC bias 37 is applied between the grounding electrode 24 and the DC bias applying electrode 25 through the grounding terminal conductor film 31 and the DC noise applying terminal conductor film 32, The dielectric characteristics such as the dielectric constant of the dielectric layer 22 located between the electrode 24 and the DC bias applying electrode 25 change. Therefore, the dielectric characteristics of the dielectric layer 22 located between the ground electrode 24 and the capacitance acquisition electrode 26 change as described above. As a result, the first and second capacitance acquisition terminal conductors change. The capacitance extracted through the membranes 33 and 34 can be varied. Also in this modified example, in order to further increase the above-described capacitance change range, the dielectric layer 22, particularly the dielectric located between the ground electrode 24 and the capacitance acquisition electrode 26 is used. It is preferable that the layer 22 has a large DC noise dependency of the dielectric properties! / And material strength.
[0098] なお、この第 1の変形例では、アース用電極 24と容量取得用電極 26との間に、直 流バイアス印加用電極 25を挟まないので、前述した第 1の実施形態の場合に比べて 、容量特性をより安定なものとすることができる。  In the first modification, the DC bias applying electrode 25 is not sandwiched between the grounding electrode 24 and the capacitance acquiring electrode 26, so that in the case of the first embodiment described above. In comparison, the capacity characteristic can be made more stable.
[0099] 図 8および図 9は、それぞれ、前述した第 2および第 3の実施形態に対応する第 2お よび第 3の変形例によるコンデンサ 41aおよび 51aを示す、図 4および図 5に対応す る図である。  [0099] FIGS. 8 and 9 correspond to FIGS. 4 and 5, respectively showing capacitors 41a and 51a according to the second and third modifications corresponding to the second and third embodiments described above, respectively. FIG.
[0100] 第 2および第 3の変形例によるコンデンサ 41aおよび 51aは、第 2および第 3の実施 形態の場合と同様、コンデンサ本体 23において、複数組のアース用電極 24、直流 バイアス印加用電極 25および容量取得用電極 26が形成されていることを特徴として いる。  [0100] The capacitors 41a and 51a according to the second and third modifications are the same as in the second and third embodiments. In the capacitor body 23, a plurality of sets of grounding electrodes 24, DC bias applying electrodes 25 are provided. In addition, the capacitor acquisition electrode 26 is formed.
[0101] より詳細には、図 8に示したコンデンサ 41aでは、複数^ のアース用電極 24、直流 バイアス印加用電極 25および容量取得用電極 26が、上から、直流バイアス印加用 電極 25、容量取得用電極 26、アース用電極 24、直流バイアス印加用電極 25、…と Vヽつた順序で複数回繰り返されて配置されて 、る。  [0101] More specifically, in the capacitor 41a shown in FIG. 8, a plurality of ground electrodes 24, a DC bias application electrode 25, and a capacitance acquisition electrode 26 are arranged from the top with a DC bias application electrode 25 and a capacitance. The acquisition electrode 26, the ground electrode 24, the DC bias application electrode 25,... Are repeatedly arranged in the order of V.
[0102] 図 9に示したコンデンサ 51aでは、上から、直流バイアス印加用電極 25、容量取得 用電極 26、アース用電極 24、容量取得用電極 26、直流バイアス印加用電極 25、… t ヽつた順序で複数回繰り返されて配置されて ヽる。  [0102] In the capacitor 51a shown in FIG. 9, the DC bias application electrode 25, the capacitance acquisition electrode 26, the grounding electrode 24, the capacitance acquisition electrode 26, the DC bias application electrode 25,... Repeated several times in order and placed.
[0103] 言い換えると、図 8に示したコンデンサ 41aでは、図 6 (a)に示したコンデンサ 21aに おける直流バイアス印加用電極 25、容量取得用電極 26およびアース用電極 24の 配置を 1組とし、この組が複数回繰り返されている。図 9に示したコンデンサ 51aでは 、隣り合う組の間でアース用電極 24を共用し、容量取得用電極 26については、誘電 体層 22の 2層毎に配置されている。  In other words, in the capacitor 41a shown in FIG. 8, the arrangement of the DC bias applying electrode 25, the capacitance acquiring electrode 26 and the grounding electrode 24 in the capacitor 21a shown in FIG. This set is repeated several times. In the capacitor 51a shown in FIG. 9, the grounding electrode 24 is shared between adjacent sets, and the capacitance acquisition electrode 26 is arranged for every two layers of the dielectric layer 22.
[0104] 上記コンデンサ 41aおよび 51aのように、コンデンサ本体 23力 複数組のアース用 電極 24、直流バイアス印加用電極 25および容量取得用電極 26を備えていると、より 広 、容量変化範囲が得られる。 (第 2の局面に係る実施の形態) [0104] Like the capacitors 41a and 51a, the capacitor main body 23 forces multiple sets of grounding electrodes 24, DC bias application electrodes 25, and capacitance acquisition electrodes 26 provide a wider capacity change range. It is done. (Embodiment according to the second aspect)
図 10および図 11は、この発明の第 4の実施形態によるコンデンサ 121を説明する ためのものである。図 10において、(a)は、前述した図 24または図 26に対応する図 であって、コンデンサ 121を、誘電体層 122の積層方向に向く断面をもって示す正面 図であり、(b)および (c)は、前述した図 25に対応する図であって、コンデンサ 121を 、誘電体層 122の主面方向に延びる断面をもって示す平面図である。また、図 11は 、コンデンサ 121に直流バイアスを印加して 、る状態の等価回路図である。  FIG. 10 and FIG. 11 are for explaining a capacitor 121 according to the fourth embodiment of the present invention. In FIG. 10, (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 121 with a cross section in the stacking direction of the dielectric layer 122, and (b) and ( c) is a view corresponding to FIG. 25 described above, and is a plan view showing the capacitor 121 with a cross section extending in the principal surface direction of the dielectric layer 122. FIG. FIG. 11 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 121.
[0105] 図 10 (a)に示すように、コンデンサ 121は、複数の誘電体層 122をもって構成され る積層構造を有する、コンデンサ本体 123を備えている。コンデンサ本体 123は、特 定の誘電体層 122を介して互いに対向することによって静電容量を形成するように 設けられる第 1および第 2の容量取得用電極 124および 125と、第 1および第 2の容 量取得用電極 124および 125間に位置する誘電体層 122の容量形成領域 126に直 流バイアスを印加するために用いられる第 1および第 2の直流バイアス印加用電極 1 27および 128とを備えて!/ヽる。  As shown in FIG. 10 (a), the capacitor 121 includes a capacitor main body 123 having a laminated structure including a plurality of dielectric layers 122. The capacitor body 123 includes first and second capacitance acquisition electrodes 124 and 125 provided to form a capacitance by facing each other through a specific dielectric layer 122, and the first and second capacitors. First and second DC bias applying electrodes 127 and 128 used to apply a direct current bias to the capacitance forming region 126 of the dielectric layer 122 located between the capacitance acquiring electrodes 124 and 125. Get ready!
[0106] 第 1の直流バイアス印加用電極 127は、第 1の容量取得用電極 124が設けられた 誘電体層 122の主面と同一の主面上に設けられる。他方、第 2の直流バイアス印加 用電極 128は、第 2の容量取得用電極 125が設けられた誘電体層 122の主面と同 一の主面上に設けられる。  The first DC bias applying electrode 127 is provided on the same main surface as the main surface of the dielectric layer 122 provided with the first capacitance acquiring electrode 124. On the other hand, the second DC bias application electrode 128 is provided on the same main surface as the main surface of the dielectric layer 122 provided with the second capacitance acquisition electrode 125.
[0107] また、第 1の容量取得用電極 124に対して、第 1の直流バイアス印加用電極 127が 位置する側は、第 2の容量取得用電極 125に対して、第 2の直流バイアス印加用電 極 128が位置する側とは逆側とされる。したがって、第 1および第 2の直流バイアス印 加用電極 127および 128によって印加される直流バイアスは、誘電体層 122の厚み 方向に対して斜め方向に向くことになる。  In addition, the side on which the first DC bias application electrode 127 is positioned with respect to the first capacitance acquisition electrode 124 is the second DC bias application with respect to the second capacitance acquisition electrode 125. The side on which the working electrode 128 is located is the opposite side. Therefore, the DC bias applied by the first and second DC bias applying electrodes 127 and 128 is directed obliquely with respect to the thickness direction of the dielectric layer 122.
[0108] コンデンサ本体 123は、図 10 (b)および (c)によく示されているように、積層方向に 延びる 4つの側面 129〜132を有する直方体状である。第 1の側面 129上には、第 1 の直流バイアス印加用端子導体膜 133が設けられる。第 1の側面 129に対向する第 2の側面 130上には、第 2の直流バイアス印加用端子導体膜 134が設けられる。第 1 および第 2の側面 129および 130に隣接する第 3の側面 131上には、第 1の容量取 得用端子導体膜 135が設けられる。第 3の側面 131に対向する第 4の側面 132には 、第 2の容量取得用端子導体膜 136が設けられる。 [0108] The capacitor body 123 has a rectangular parallelepiped shape having four side surfaces 129 to 132 extending in the stacking direction, as well shown in FIGS. 10 (b) and 10 (c). On the first side surface 129, a first DC bias applying terminal conductor film 133 is provided. On the second side surface 130 facing the first side surface 129, a second DC bias applying terminal conductor film 134 is provided. On the third side 131 adjacent to the first and second sides 129 and 130, the first capacity An obtaining terminal conductor film 135 is provided. On the fourth side surface 132 facing the third side surface 131, a second capacitance acquisition terminal conductor film 136 is provided.
[0109] 図 10 (b)には、第 1の容量取得用電極 124および第 1の直流バイアス印加用電極 1 27が通る断面が示されている。第 1の容量取得用電極 124は、第 3の側面 131にま で引き出され、ここで、第 1の容量取得用端子導体膜 135に電気的に接続される。第 1の直流バイアス印加用電極 127は、第 1の側面 129にまで引き出され、ここで第 1の 直流バイアス印加用端子導体膜 133に電気的に接続される。  FIG. 10B shows a cross section through which the first capacitance acquisition electrode 124 and the first DC bias application electrode 127 pass. The first capacitance acquisition electrode 124 is drawn out to the third side surface 131, where it is electrically connected to the first capacitance acquisition terminal conductor film 135. The first DC bias applying electrode 127 is drawn out to the first side surface 129, and is electrically connected to the first DC bias applying terminal conductor film 133 here.
[0110] 図 10 (c)には、第 2の容量取得用電極 125および第 2の直流バイアス印加用電極 1 28が通る断面が示されている。第 2の容量取得用電極 125は、第 4の側面 132にま で引き出され、ここで、第 2の容量取得用端子導体膜 136に電気的に接続される。第 2の直流バイアス印加用電極 128は、第 2の側面 130にまで引き出され、ここで第 2の 直流バイアス印加用端子導体膜 134に電気的に接続される。  FIG. 10 (c) shows a cross section through which the second capacitance acquisition electrode 125 and the second DC bias application electrode 128 pass. The second capacitance acquisition electrode 125 is drawn out to the fourth side surface 132, where it is electrically connected to the second capacitance acquisition terminal conductor film 136. The second DC bias applying electrode 128 is drawn out to the second side face 130 and is electrically connected to the second DC bias applying terminal conductor film 134 here.
[0111] 以上のような構成を有するコンデンサ 121において、図 11によく示されているように 、第 1および第 2の容量取得用電極 124および 125の間に形成される静電容量は、 第 1および第 2の容量取得用端子導体膜 135および 136から取り出される。第 1およ び第 2の容量取得用端子導体膜 135および 136には、所定の回路(図示せず。)が 電気的に接続される。このとき、第 1および第 2の直流ノ ィァス印加用端子導体膜 13 3および 134を通して、第 1および第 2の直流バイアス印加用電極 127および 128の 間に直流バイアス 137が印加されると、第 1および第 2の容量取得用電極 124および 125の間に位置する誘電体層 122の容量形成領域 126 (図 10 (a)参照)の誘電特性 が変化することになり、その結果として、第 1および第 2の容量取得用端子導体膜 13 5および 136を通して取り出される静電容量を変化させることができる。  In the capacitor 121 having the above-described configuration, as well shown in FIG. 11, the capacitance formed between the first and second capacitance acquisition electrodes 124 and 125 is The first and second capacitance acquisition terminal conductor films 135 and 136 are taken out. A predetermined circuit (not shown) is electrically connected to the first and second capacitance acquisition terminal conductor films 135 and 136. At this time, if a DC bias 137 is applied between the first and second DC bias application electrodes 127 and 128 through the first and second DC noise application terminal conductor films 133 and 134, the first The dielectric property of the capacitor formation region 126 (see FIG. 10 (a)) of the dielectric layer 122 located between the first and second capacitance acquisition electrodes 124 and 125 changes, and as a result, the first And the electrostatic capacitance taken out through the second capacitance acquisition terminal conductor films 135 and 136 can be changed.
[0112] 上述した静電容量の変化幅をより大きくするためには、誘電体層 122、特に容量形 成領域 126を構成する、第 1および第 2の直流バイアス印加用電極 127および 128 の間に位置する誘電体層 122が、誘電特性の直流バイアス依存性の大き 、材料か ら構成されることが好ましい。このように、誘電特性の直流バイアス依存性の大きい材 料としては、たとえば、 lOOBa (Ti Zr ) 0 — 2. 5GdO — 2. 5MgO— 0. 5  [0112] In order to further increase the above-described capacitance variation range, the dielectric layer 122, particularly the capacitance forming region 126, between the first and second DC bias applying electrodes 127 and 128 is formed. It is preferable that the dielectric layer 122 located in the region is made of a material having a large DC bias dependency of dielectric characteristics. In this way, for example, lOOBa (Ti Zr) 0 — 2.5 GdO — 2.5 MgO— 0.5
1.006 0.97 0.03 3 3/2  1.006 0.97 0.03 3 3/2
MnO- 1. OSiOがある。 [0113] 次に、第 4の実施形態による効果を確認するために実施した実験例 3について説明 する。 MnO- 1. There is OSiO. [0113] Next, Experimental Example 3 performed to confirm the effect of the fourth embodiment will be described.
[0114] この実験例 3では、この発明の範囲内にある実施例に係る試料 101として、図 10に 示したコンデンサ 121と実質的に同様の構造を有するものを作製し、この発明の範囲 外の比較例に係る試料 102として、前述の図 24に示したコンデンサ 1と実質的に同 様の構造を有するものを作製した。これら試料 101および 102の各々において、誘電 体層を構成する誘電体として、 BaTiO系の高誘電率セラミック材料を用い、電極間  [0114] In Experimental Example 3, a sample 101 having a structure substantially similar to that of the capacitor 121 shown in Fig. 10 was produced as the sample 101 according to the example within the scope of the present invention. As the sample 102 according to the comparative example, a sample having a structure substantially similar to that of the capacitor 1 shown in FIG. In each of these samples 101 and 102, a BaTiO-based high dielectric constant ceramic material was used as the dielectric constituting the dielectric layer, and the electrode
3  Three
に位置する誘電体層の厚みを 2 mとした。また、電極は、ニッケルを主成分とし、厚 みを 1 μ mとした。また、コンデンサ本体の外形寸法を 3. 2mm X 1. 6mm X 0. 4m mとした。  The thickness of the dielectric layer located at 2 is 2 m. The electrode was mainly composed of nickel and 1 μm thick. The external dimensions of the capacitor body were 3.2 mm X 1.6 mm X 0.4 mm.
[0115] 以上のような試料 101および 102の各々に係るコンデンサについて、 0〜36Vの範 囲内のいくつかの直流バイアスを印加した際の容量変化率を求めた。その結果が図 12【こ示されて!/ヽる。  [0115] For the capacitors according to Samples 101 and 102 as described above, the rate of change in capacitance when several DC biases in the range of 0 to 36 V were applied. The result is shown in Figure 12!
[0116] 通常、誘電体に直流バイアスを印加すると、ある印加電圧以上で容量変化率が一 定となる性質がある。図 12において、試料 101の容量変化率については、直流バイ ァス電圧が 12Vの場合までしか図示されて!ヽな 、が、 12V以上の直流バイアス電圧 では一定となることが確認されている。したがって、図 12からわ力るように、試料 101 では、容量変化率が一定になる直流バイアス電圧は、試料 102の約 1Z3となる。こ れは、試料 102では、対をなす直流バイアス印加用電極間に 3層分の誘電体層が介 在するのに対し、試料 101では、直流バイアス印加用電極と容量取得用電極とを同 一面上に設けることによって、対をなす直流バイアス印加用電極間に単に 1層分の誘 電体層が介在するに過ぎず、試料 102に比べて電極間隔が 1Z3に減少し、その結 果、より低 、電圧で必要な容量変化率を得ることができるようになったためである。  [0116] Normally, when a DC bias is applied to a dielectric, the capacitance change rate becomes constant at a certain applied voltage or higher. In FIG. 12, the capacity change rate of the sample 101 is shown only up to the case where the DC bias voltage is 12V, but it has been confirmed that it is constant at a DC bias voltage of 12V or more. Therefore, as shown in FIG. 12, in sample 101, the DC bias voltage at which the rate of change in capacitance is constant is about 1Z3 of sample 102. In Sample 102, three dielectric layers are interposed between the pair of DC bias application electrodes, whereas in Sample 101, the DC bias application electrode and the capacitance acquisition electrode are the same. By providing it on one surface, only one dielectric layer is interposed between the pair of DC bias application electrodes, and the electrode spacing is reduced to 1Z3 compared to Sample 102, and as a result, This is because the required capacity change rate can be obtained at a lower voltage.
[0117] また、試料 101では、対をなす直流バイアス印加用電極間に、電界を遮る電極 (導 体層)が存在しないため、電界強度の低下による容量変化率の低下が抑制され、そ の結果、大きな容量変化率が得られている。  [0117] In Sample 101, since there is no electrode (conductor layer) that blocks the electric field between the pair of DC bias application electrodes, a decrease in the capacity change rate due to a decrease in the electric field strength is suppressed, and As a result, a large capacity change rate is obtained.
[0118] なお、上記実験例 3では、誘電体層を構成する誘電体として、ある特定の BaTiO  [0118] In Experimental Example 3, a specific BaTiO is used as the dielectric constituting the dielectric layer.
3 系の高誘電率セラミック材料を用いた力 このセラミック材料として、誘電特性の直流 ノ ィァス依存性のより大き 、材料を用 、れば、直流バイアスに対する容量変化範囲 のより広 、コンデンサが得られることが確認されて 、る。 Force using 3 series high dielectric constant ceramic material It has been confirmed that a capacitor having a larger capacitance change range with respect to the DC bias can be obtained by using a material having a larger dependency on noise and using a material.
[0119] 図 13および図 14は、それぞれ、この発明の第 5および第 6の実施形態によるコンデ ンサ 141および 151を示す、図 10 (a)に対応する図である。図 13および図 14におい て、図 10 (a)に示した要素に相当する要素には同様の参照符号を付し、重複する説 明は省略する。  FIGS. 13 and 14 are diagrams corresponding to FIG. 10 (a), showing capacitors 141 and 151 according to the fifth and sixth embodiments of the present invention, respectively. In FIG. 13 and FIG. 14, elements corresponding to the elements shown in FIG. 10 (a) are denoted by the same reference numerals, and redundant descriptions are omitted.
[0120] 第 5および第 6の実施形態によるコンデンサ 141および 151は、コンデンサ本体 12 3において、複数組の第 1の容量取得用電極 124、第 2の容量取得用電極 125、第 1 の直流バイアス印加用電極 127および第 2の直流バイアス印加用電極 128が形成さ れて 、ることを特徴として!/、る。  [0120] The capacitors 141 and 151 according to the fifth and sixth embodiments include a plurality of sets of first capacitance acquisition electrodes 124, second capacitance acquisition electrodes 125, and first DC biases in the capacitor main body 123. An application electrode 127 and a second DC bias application electrode 128 are formed! /
[0121] より詳細には、図 13に示したコンデンサ 141では、第 1の容量取得用電極 124およ び第 1の直流バイアス印加用電極 127を形成する誘電体層 122と第 2の容量取得用 電極 125および第 2の直流バイアス印加用電極 128を形成する誘電体層 122とが積 層方向に関して交互に配置されて 、る。  In more detail, in the capacitor 141 shown in FIG. 13, the dielectric layer 122 and the second capacitance acquisition forming the first capacitance acquisition electrode 124 and the first DC bias application electrode 127. The dielectric layers 122 forming the working electrodes 125 and the second DC bias applying electrodes 128 are alternately arranged in the stacking direction.
[0122] 図 14に示したコンデンサ 151では、積層方向に関して、上から、第 1の容量取得用 電極 124および第 1の直流バイアス印加用電極 127を形成する誘電体層 122、第 2 の容量取得用電極 125および第 2の直流バイアス印加用電極 128を形成する誘電 体層 122、第 2の容量取得用電極 125および第 2の直流バイアス印加用電極 128を 形成する誘電体層 122、第 1の容量取得用電極 124および第 1の直流バイアス印加 用電極 127を形成する誘電体層 122、…と ヽぅ順序で配置されて 、る。  In the capacitor 151 shown in FIG. 14, with respect to the stacking direction, from the top, the dielectric layer 122 forming the first capacitance acquisition electrode 124 and the first DC bias application electrode 127, and the second capacitance acquisition Dielectric layer 122 forming first electrode 125 and second DC bias applying electrode 128, dielectric layer 122 forming second capacitance acquisition electrode 125 and second DC bias applying electrode 128, first layer The capacitor acquisition electrode 124 and the first DC bias application electrode 127 are arranged in the same order as the dielectric layers 122,.
[0123] 次に、上記コンデンサ 141および 151のように、コンデンサ本体 123力 複数組の 第 1の容量取得用電極 124、第 2の容量取得用電極 125、第 1の直流バイアス印加 用電極 127および第 2の直流バイアス印加用電極 128を備える場合において、この 発明に係るコンデンサによれば、単位体積あたりの静電容量が大きくなり、より小型 化かつ高容量ィ匕が可能となり、より低い電圧でより広範囲に静電容量を制御できるこ とを確認するために実施した実験例 4につ 、て説明する。  [0123] Next, like the capacitors 141 and 151, the capacitor body 123 force includes a plurality of sets of first capacitance acquisition electrodes 124, second capacitance acquisition electrodes 125, first DC bias application electrodes 127 and In the case where the second DC bias applying electrode 128 is provided, the capacitor according to the present invention increases the electrostatic capacity per unit volume, enables further miniaturization and higher capacity, and lowers the voltage. An experimental example 4 conducted to confirm that the capacitance can be controlled over a wider range will be described.
[0124] この実験例 4では、この発明の範囲内にある実施例としての試料 111およびこの発 明の範囲外の比較例としての試料 112の各々に係るコンデンサを作製したが、各コ ンデンサにおける誘電体層の材料および厚みならびに電極の材料および厚みにつ いては、前述の実験例 3と同様とした。また、この実験例における試料 111および 11 2の各々に係るコンデンサの外形寸法は、ともに、 3. 2mmX l. 6mm X l. 6mmとし た。 [0124] In Experimental Example 4, capacitors according to Sample 111 as an example within the scope of the present invention and Sample 112 as a comparative example outside the scope of the present invention were fabricated. The material and thickness of the dielectric layer and the material and thickness of the electrode in the capacitor were the same as in Experimental Example 3 above. In addition, the external dimensions of the capacitors according to Samples 111 and 112 in this experimental example were both 3.2 mm × l.6 mm × l.6 mm.
[0125] より具体的には、試料 112については、図 24に示した電極の配置構造を採用し、 直流バイアス印加用電極および容量取得用電極を含むすべての電極の積層数を 5 00とした。他方、試料 111については、図 13に示した電極の配置構造を採用し、第 1および第 2の容量取得用電極ならびに第 1および第 2の直流バイアス印加用電極を 含むすべての電極の積層数を 500とした。  [0125] More specifically, for the sample 112, the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was 500. . On the other hand, for sample 111, the electrode arrangement structure shown in FIG. 13 was adopted, and the number of layers of all electrodes including the first and second capacitance acquisition electrodes and the first and second DC bias application electrodes Was set to 500.
[0126] これら試料 111および 112について、直流バイアスを 0〜36Vの範囲で変化させた ときの容量変化範囲が表 2に示されて 、る。  [0126] For these samples 111 and 112, Table 2 shows the capacitance change range when the DC bias is changed in the range of 0 to 36V.
[0127] [表 2]  [0127] [Table 2]
Figure imgf000028_0001
Figure imgf000028_0001
[0128] 表 2からわ力るように、この発明の範囲内にある試料 111とこの発明の範囲外の試 料 112とを比較したとき、コンデンサの寸法が同じで、電極の積層数が同程度である 場合、この発明に係るコンデンサによれば、より大きい容量が得られ、かつ容量の可 変幅をより広くできる。 [0128] As shown in Table 2, when comparing sample 111 within the scope of the present invention with sample 112 outside the scope of the present invention, the capacitor dimensions were the same and the number of stacked electrodes was the same. If so, according to the capacitor of the present invention, a larger capacity can be obtained and the variable width of the capacity can be made wider.
[0129] 以上、この発明の第 2の局面に係る第 4ないし第 6の実施形態を、図 10ないし図 14 を参照して説明した力 この発明の範囲内において、その他種々の変形例が可能で ある。  [0129] The force described above with reference to Figs. 10 to 14 for the fourth to sixth embodiments according to the second aspect of the present invention is within the scope of the present invention, and various other modifications are possible. It is.
[0130] たとえば、互いに同一面上に設けられる容量取得用電極と直流バイアス印加用電 極との位置関係については、互いに対向する第 1および第 2の直流バイアス印加用 電極によって、第 1および第 2の容量取得用電極間に位置する誘電体層の容量形成 領域に直流バイアスを印加できる位置関係であれば、図示した実施形態のような位 置関係以外の位置関係であってもよ 、。  [0130] For example, regarding the positional relationship between the capacitance acquisition electrode and the DC bias application electrode provided on the same plane, the first and second DC bias application electrodes that face each other are used. As long as the DC bias can be applied to the capacitance forming region of the dielectric layer located between the two capacitance acquisition electrodes, the positional relationship may be other than the positional relationship as in the illustrated embodiment.
[0131] また、第 1および第 2の直流バイアス印加用端子導体膜ならびに第 1および第 2の 容量取得用端子導体膜がそれぞれ設けられるコンデンサ本体上の位置については[0131] The first and second DC bias applying terminal conductor films and the first and second About the position on the capacitor body where each terminal conductor film for capacitance acquisition is provided
、上述した第 1および第 2の容量取得用電極ならびに第 1および第 2の直流バイアス 印加用電極の各位置等に応じて任意に変更することができる。 The first and second capacitance acquisition electrodes and the first and second DC bias application electrodes described above can be arbitrarily changed.
[0132] また、第 4ないし第 6の実施形態では、第 1および第 2の容量取得用電極 124およ び 125ならびに第 1および第 2の直流バイアス印加用電極 127および 128が、ともに 、コンデンサ本体 123の内部に形成された力 耐湿性の問題に煩わされる懸念がな V、ならば、少なくとも 1組の第 1の容量取得用電極および第 1の直流バイアス印加用 電極または第 2の容量取得用電極および第 2の直流バイアス印加用電極については 、コンデンサ本体の外表面上に形成されてもよい。  In the fourth to sixth embodiments, the first and second capacitance acquisition electrodes 124 and 125 and the first and second DC bias application electrodes 127 and 128 are both capacitors. Force formed in the main body 123 If there is no concern about the problem of moisture resistance, if V, at least one pair of first capacitance acquisition electrode and first DC bias application electrode or second capacitance acquisition The electrode for application and the second DC bias application electrode may be formed on the outer surface of the capacitor body.
(第 3の局面に係る実施の形態)  (Embodiment according to the third aspect)
図 15および図 16は、この発明の第 7の実施形態によるコンデンサ 221を説明する ためのものである。図 15において、(a)は、前述した図 24または図 26に対応する図 であって、コンデンサ 221を、誘電体層 222の積層方向に向く断面をもって示す正面 図であり、(b)ないし(d)は、前述した図 25に対応する図であって、コンデンサ 221を 、誘電体層 222の主面方向に延びる断面をもって示す平面図である。また、図 16は 、コンデンサ 221に直流バイアスを印加して 、る状態の等価回路図である。  15 and 16 illustrate a capacitor 221 according to the seventh embodiment of the present invention. 15, (a) is a view corresponding to FIG. 24 or FIG. 26 described above, and is a front view showing the capacitor 221 with a cross section in the stacking direction of the dielectric layer 222, and (b) to ( d) is a diagram corresponding to FIG. 25 described above, and is a plan view showing the capacitor 221 with a cross section extending in the principal surface direction of the dielectric layer 222. FIG. FIG. 16 is an equivalent circuit diagram in a state where a DC bias is applied to the capacitor 221.
[0133] 図 15 (a)〖こ示すよう〖こ、コンデンサ 221は、複数の誘電体層 222をもって構成され る積層構造を有する、コンデンサ本体 223を備えている。コンデンサ本体 223は、特 定の誘電体層 222を介して互いに対向することによって静電容量を形成するよう〖こ 設けられる第 1および第 2の容量取得用電極 224および 225と、第 1および第 2の容 量取得用電極 224および 225間に位置する誘電体層 222の容量形成領域 226に直 流バイアスを印加するために用いられる第 1および第 2の直流バイアス印加用電極 2 27および 228とを備えて!/ヽる。  As shown in FIG. 15 (a), the capacitor 221 includes a capacitor body 223 having a laminated structure including a plurality of dielectric layers 222. The capacitor body 223 includes first and second capacitance acquisition electrodes 224 and 225, which are provided so as to form a capacitance by facing each other through a specific dielectric layer 222, and the first and second capacitors. The first and second DC bias applying electrodes 2 27 and 228 used for applying a direct current bias to the capacitance forming region 226 of the dielectric layer 222 located between the two capacitance acquiring electrodes 224 and 225; With /!
[0134] 第 1および第 2の直流バイアス印加用電極 227および 228は、第 1および第 2の容 量取得用電極 224および 225の間に挟まれた同じ誘電体層 222の同じ主面上に設 けられる。したがって、第 1および第 2の直流バイアス印加用電極 227および 228によ つて印加される直流バイアスは、誘電体層 222の主面方向に向くことになる。この実 施形態では、第 1および第 2の容量取得用電極 224および 225の間に 2層の誘電体 層 222力 立置し、これら 2層の誘電体層 222の間の界面に沿って第 1および第 2の直 流バイアス印加用電極 227および 228が形成される。 [0134] The first and second DC bias applying electrodes 227 and 228 are disposed on the same main surface of the same dielectric layer 222 sandwiched between the first and second capacitance acquiring electrodes 224 and 225. Can be established. Therefore, the DC bias applied by the first and second DC bias applying electrodes 227 and 228 is directed toward the main surface of the dielectric layer 222. In this embodiment, two layers of dielectric are provided between the first and second capacitance acquisition electrodes 224 and 225. The layer 222 force is placed, and first and second DC bias applying electrodes 227 and 228 are formed along the interface between the two dielectric layers 222.
[0135] 図 15 (c)には、第 2の容量取得用電極 225が設けられる位置が破線で示されてい る。この第 2の容量取得用電極 225と第 1および第 2の直流バイアス印加用電極 227 および 228との位置関係からわ力るように、第 1および第 2の直流バイアス印加用電 極 227および 228は、誘電体層 222の主面方向での位置に関して、容量形成領域 2 26 (図 15 (a)参照)に重ならないように設けられる。これによつて、第 1および第 2の容 量取得用電極 224および 225は直流バイアス印加用電極 227および 228を挟まな いようにすることができ、その結果、容量特性を安定なものとすることができる。  In FIG. 15 (c), the position where the second capacitance acquisition electrode 225 is provided is indicated by a broken line. As shown in the positional relationship between the second capacitance acquisition electrode 225 and the first and second DC bias application electrodes 227 and 228, the first and second DC bias application electrodes 227 and 228 Is provided so as not to overlap the capacitance forming region 226 (see FIG. 15A) with respect to the position of the dielectric layer 222 in the main surface direction. As a result, the first and second capacitance acquisition electrodes 224 and 225 can be prevented from sandwiching the DC bias application electrodes 227 and 228. As a result, the capacitance characteristics are stabilized. be able to.
[0136] なお、第 1および第 2の容量取得用電極 224および 225と第 1および第 2の直流バ ィァス印加用電極 227および 228との上述した位置関係からわ力るように、誘電体層 222の積層方向に向く断面で見たとき、第 1および第 2の容量取得用電極 224およ び 225は、第 1および第 2の直流バイアス印加用電極 227および 228と同じ断面上に は現れない。したがって、図 15 (a)は、コンデンサ 221を単一の断面をもって示すも のではなぐ容量取得用電極 224および 225と直流バイアス印加用電極 227および 228との積層方向での位置関係をより明確に図示するため、複数の断面をもって示 したものであると理解すべきである。  It should be noted that the dielectric layer so that the first and second capacitance acquisition electrodes 224 and 225 and the first and second DC bias application electrodes 227 and 228 are affected by the positional relationship described above. When viewed in a cross section of 222 in the stacking direction, the first and second capacitance acquisition electrodes 224 and 225 appear on the same cross section as the first and second DC bias application electrodes 227 and 228. Absent. Therefore, Fig. 15 (a) shows the positional relationship in the stacking direction between the capacitance acquisition electrodes 224 and 225 and the DC bias application electrodes 227 and 228, which does not show the capacitor 221 with a single cross section. For the purpose of illustration, it should be understood that it is shown with multiple cross sections.
[0137] コンデンサ本体 223は、図 15 (b)ないし(d)によく示されているように、積層方向に 延びる 4つの側面 229〜232を有する直方体状である。第 1の側面 229上には、第 1 の直流バイアス印加用端子導体膜 233が設けられる。第 1の側面 229に対向する第 2の側面 230上には、第 2の直流バイアス印加用端子導体膜 234が設けられる。第 1 および第 2の側面 229および 230に隣接する第 3の側面 231上には、第 1の容量取 得用端子導体膜 235が設けられる。第 3の側面 231に対向する第 4の側面 232には 、第 2の容量取得用端子導体膜 236が設けられる。  [0137] The capacitor main body 223 has a rectangular parallelepiped shape having four side surfaces 229 to 232 extending in the stacking direction, as well shown in FIGS. 15 (b) to (d). On the first side surface 229, a first DC bias applying terminal conductor film 233 is provided. On the second side surface 230 facing the first side surface 229, a second DC bias applying terminal conductor film 234 is provided. On the third side surface 231 adjacent to the first and second side surfaces 229 and 230, a first capacitance obtaining terminal conductor film 235 is provided. A second capacitance acquisition terminal conductor film 236 is provided on the fourth side surface 232 facing the third side surface 231.
[0138] 図 15 (b)には、第 1の容量取得用電極 224が通る断面が示されている。第 1の容量 取得用電極 224は、第 3の側面 231にまで引き出され、ここで、第 1の容量取得用端 子導体膜 235に電気的に接続される  FIG. 15 (b) shows a cross section through which the first capacitance acquisition electrode 224 passes. The first capacitor acquisition electrode 224 is drawn out to the third side surface 231, where it is electrically connected to the first capacitor acquisition terminal conductor film 235.
図 15 (c)には、第 1および第 2の直流バイアス印加用電極 227および 228が通る断 面が示されている。第 1の直流バイアス印加用電極 227は、第 1の側面 229にまで引 き出され、ここで、第 1の直流バイアス印加用端子導体膜 233に電気的に接続される 。第 2の直流バイアス印加用電極 228は、第 2の側面 230にまで引き出され、ここで、 第 2の直流バイアス印加用端子導体膜 234に電気的に接続される。 In Fig. 15 (c), the first and second DC bias applying electrodes 227 and 228 are disconnected. A face is shown. The first DC bias applying electrode 227 is drawn out to the first side face 229, and is electrically connected to the first DC bias applying terminal conductor film 233. The second DC bias applying electrode 228 is drawn out to the second side face 230 and is electrically connected to the second DC bias applying terminal conductor film 234 here.
[0139] 図 15 (d)には、第 2の容量取得用電極 225が通る断面が示されている。第 2の容量 取得用電極 225は、第 4の側面 232にまで引き出され、ここで、第 2の容量取得用端 子導体膜 236に電気的に接続される。  FIG. 15 (d) shows a cross section through which the second capacitance acquisition electrode 225 passes. The second capacitor acquisition electrode 225 is pulled out to the fourth side surface 232, where it is electrically connected to the second capacitor acquisition terminal conductor film 236.
[0140] 以上のような構成を有するコンデンサ 221において、図 16によく示されているように 、第 1および第 2の容量取得用電極 224および 225の間に形成される静電容量は、 第 1および第 2の容量取得用端子導体膜 235および 236から取り出される。第 1およ び第 2の容量取得用端子導体膜 235および 236には、所定の回路(図示せず。)が 電気的に接続される。このとき、第 1および第 2の直流ノ ィァス印加用端子導体膜 23 3および 234を通して、第 1および第 2の直流バイアス印加用電極 227および 228の 間に直流バイアス 237が印加されると、第 1および第 2の容量取得用電極 224および 225の間に位置する誘電体層 222の容量形成領域 226 (図 15 (a)参照)の誘電特性 が変化することになり、その結果として、第 1および第 2の容量取得用端子導体膜 23 5および 236を通して取り出される静電容量を変化させることができる。  In the capacitor 221 having the above-described configuration, as well shown in FIG. 16, the capacitance formed between the first and second capacitance acquisition electrodes 224 and 225 is The first and second capacitance acquisition terminal conductor films 235 and 236 are taken out. A predetermined circuit (not shown) is electrically connected to the first and second capacitance acquisition terminal conductor films 235 and 236. At this time, if a DC bias 237 is applied between the first and second DC bias application electrodes 227 and 228 through the first and second DC noise application terminal conductor films 233 and 234, The dielectric property of the capacitance forming region 226 (see FIG. 15 (a)) of the dielectric layer 222 located between the first and second capacitance acquisition electrodes 224 and 225 changes, and as a result, the first The capacitance taken out through the second capacitance acquisition terminal conductor films 235 and 236 can be changed.
[0141] 上述した静電容量の変化幅をより大きくするためには、誘電体層 222、特に容量形 成領域 226を構成する誘電体層 222が、誘電特性の直流バイアス依存性の大きい 材料から構成されることが好ましい。このように、誘電特性の直流バイアス依存性の大 きい材料としては、たとえば、 lOOBa (Ti Zr ) 0 — 2. 5GdO — 2. 5MgO  [0141] In order to further increase the capacitance variation range described above, the dielectric layer 222, particularly the dielectric layer 222 constituting the capacitance forming region 226, is made of a material whose dielectric characteristics have a large DC bias dependency. Preferably, it is configured. Thus, for example, lOOBa (Ti Zr) 0 — 2.5 GdO — 2.5 MgO
1.006 0.97 0.03 3 3/2  1.006 0.97 0.03 3 3/2
-0. 5MnO— 1. OSiOがある。  -0. 5MnO— 1. There is OSiO.
2  2
[0142] 次に、第 7の実施形態による効果を確認するために実施した実験例 5について説明 する。  [0142] Next, Experimental Example 5 performed to confirm the effect of the seventh embodiment will be described.
[0143] この実験例 5では、この発明の範囲内にある実施例に係る試料 201として、図 15に 示したコンデンサ 221と実質的に同様の構造を有するものを作製し、この発明の範囲 外の比較例に係る試料 202として、前述の図 24に示したコンデンサ 1と実質的に同 様の構造を有するものを作製した。これら試料 201および 202の各々において、誘電 体層を構成する誘電体として、 BaTiO系の高誘電率セラミック材料を用い、電極間 In Experimental Example 5, a sample 201 having a structure substantially similar to that of the capacitor 221 shown in FIG. 15 was produced as the sample 201 according to the example within the scope of the present invention. As a sample 202 according to the comparative example, a sample 202 having a structure substantially similar to that of the capacitor 1 shown in FIG. In each of these samples 201 and 202, the dielectric BaTiO-based high dielectric constant ceramic material is used as the dielectric that composes the body layer.
3  Three
に位置する誘電体層の厚みを 2 mとした。また、電極は、ニッケルを主成分とし、厚 みを 1 μ mとした。また、コンデンサ本体の外形寸法を 3. 2mm X 1. 6mm X O. 4m mとした。  The thickness of the dielectric layer located at 2 is 2 m. The electrode was mainly composed of nickel and 1 μm thick. The external dimensions of the capacitor body were 3.2 mm X 1.6 mm X O. 4 mm.
[0144] 以上のような試料 201および 202の各々に係るコンデンサについて、 0〜36Vの範 囲内のいくつかの直流バイアスを印加した際の容量変化率を求めた。その結果が図 17【こ示されて!/ヽる。  [0144] With respect to the capacitors according to Samples 201 and 202 as described above, the rate of change in capacitance when several DC biases in the range of 0 to 36 V were applied. The result is shown in Figure 17!
[0145] 通常、誘電体に直流バイアスを印加すると、ある印加電圧以上で容量変化率が一 定となる性質がある。  [0145] Normally, when a DC bias is applied to a dielectric, the capacitance change rate becomes constant at a certain applied voltage or higher.
[0146] 図 17からわ力るように、試料 201では、対をなす直流バイアス印加用電極間に、電 界を遮る電極 (導体層)が存在しないため、電界強度の低下による容量変化率の低 下が抑制され、その結果、試料 202に比べて、大きな容量変化率が得られている。  As shown in FIG. 17, in Sample 201, there is no electrode (conductor layer) that blocks the electric field between the pair of DC bias application electrodes, and therefore the rate of change in capacitance due to a decrease in electric field strength. As a result, a large capacity change rate is obtained as compared with the sample 202.
[0147] なお、上記実験例 5では、誘電体層を構成する誘電体として、ある特定の BaTiO  [0147] In Experimental Example 5, a specific BaTiO is used as the dielectric constituting the dielectric layer.
3 系の高誘電率セラミック材料を用いた力 このセラミック材料として、誘電特性の直流 ノ ィァス依存性のより大き 、材料を用 、れば、直流バイアスに対する容量変化範囲 のより広 、コンデンサが得られることが確認されて 、る。  Force using 3 type high dielectric constant ceramic material If this material is used, the capacitor has a wider capacitance change range with respect to the DC bias if the material has a higher DC dependency on the dielectric characteristics. It has been confirmed.
[0148] 図 18は、この発明の第 8の実施形態によるコンデンサ 221aを示す、図 15 (c)に対 応する図である。図 18において、図 15 (c)に示した要素に相当する要素には同様の 参照符号を付し、重複する説明は省略する。  FIG. 18 is a view corresponding to FIG. 15 (c), showing a capacitor 221 a according to the eighth embodiment of the present invention. In FIG. 18, elements corresponding to the elements shown in FIG. 15 (c) are denoted by the same reference numerals, and redundant description is omitted.
[0149] 第 8の実施形態によるコンデンサ 221aは、第 7の実施形態によるコンデンサ 221と 比較して、直流ノ ィァス印加用電極 227および 228の形成態様が異なっている。す なわち、図 18に破線で示した容量取得用電極 225の位置からわ力るように、第 1およ び第 2の直流バイアス印加用電極 227および 228は、誘電体層 222の主面方向での 位置に関して、容量形成領域 226 (図 15 (a)参照)に重なるように設けられることを特 徴としている。このような構成を採用することにより、第 7の実施形態によるコンデンサ 221に比べて、第 1および第 2の直流バイアス印加用電極 227および 228間の距離 を短くすることができるため、直流バイアスとしてより低い電圧が印加されても、容量 変化の効果を得ることができる。 [0150] 図 19は、この発明の第 9の実施形態によるコンデンサ 221bを示す、図 15に対応す る図である。図 19において、図 15に示した要素に相当する要素には同様の参照符 号を付し、重複する説明は省略する。 [0149] The capacitor 221a according to the eighth embodiment differs from the capacitor 221 according to the seventh embodiment in the manner of forming the DC noise application electrodes 227 and 228. In other words, the first and second DC bias applying electrodes 227 and 228 are formed on the main surface of the dielectric layer 222 so as to exert a force from the position of the capacitance acquisition electrode 225 indicated by a broken line in FIG. The position in the direction is characterized by being provided so as to overlap with the capacitance forming region 226 (see FIG. 15 (a)). By adopting such a configuration, the distance between the first and second DC bias applying electrodes 227 and 228 can be shortened compared to the capacitor 221 according to the seventh embodiment. Even if a lower voltage is applied, the effect of capacitance change can be obtained. FIG. 19 is a view corresponding to FIG. 15, showing a capacitor 221b according to the ninth embodiment of the present invention. In FIG. 19, elements corresponding to the elements shown in FIG. 15 are denoted by the same reference numerals, and redundant description is omitted.
[0151] 第 9の実施形態によるコンデンサ 221bは、第 1および第 2の直流バイアス印加用電 極 227および 228の形成態様に特徴がある。すなわち、第 1および第 2の直流バイァ ス印加用電極 227および 228は、誘電体層 222の長手方向の端部に位置されるよう に形成される。また、図 19 (a)からわ力るように、第 1および第 2の直流バイアス印加 用電極 227および 228は、容量形成領域 226に重ならないように設けられる。したが つて、この第 9の実施形態によれば、前述の第 7の実施形態の場合と同様、第 1およ び第 2の容量取得用電極 224および 225が直流バイアス印加用電極 227および 22 8を挟まな ヽため、容量特性を安定なものとすることができる。  [0151] The capacitor 221b according to the ninth embodiment is characterized by the formation of the first and second DC bias applying electrodes 227 and 228. In other words, the first and second DC bias applying electrodes 227 and 228 are formed so as to be positioned at the ends of the dielectric layer 222 in the longitudinal direction. Further, as shown in FIG. 19A, the first and second DC bias applying electrodes 227 and 228 are provided so as not to overlap the capacitance forming region 226. Therefore, according to the ninth embodiment, the first and second capacitance acquisition electrodes 224 and 225 are connected to the DC bias application electrodes 227 and 22 as in the case of the seventh embodiment. Since 8 is not sandwiched, the capacitance characteristic can be stabilized.
[0152] 図 20は、この発明の第 10の実施形態によるコンデンサ 221cを示す図であって、図 20 (a)は、図 15 (a)または図 19 (a)に対応し、図 20 (b)は、図 15 (c)または図 19 (c) に対応している。図 20において、図 15または図 19に示した要素に相当する要素に は同様の参照符号を付し、重複する説明は省略する。  FIG. 20 shows a capacitor 221c according to the tenth embodiment of the present invention. FIG. 20 (a) corresponds to FIG. 15 (a) or FIG. 19 (a), and FIG. b) corresponds to Fig. 15 (c) or Fig. 19 (c). In FIG. 20, elements corresponding to the elements shown in FIG. 15 or FIG. 19 are given the same reference numerals, and redundant descriptions are omitted.
[0153] 第 10の実施形態によるコンデンサ 221cは、直流ノ ィァス印加用電極 227および 2 28の形成態様に特徴がある。すなわち、第 1および第 2の直流バイアス印加用電極 2 27および 228は、上述した第 9の実施形態によるコンデンサ 221bと類似する力 誘 電体層 222の主面方向での位置に関して、容量形成領域 226に重なるように設けら れている。そのため、前述の第 8の実施形態によるコンデンサ 221aの場合と同様、第 1および第 2の直流バイアス印加用電極 227および 228間の距離をより短くすること ができ、その結果、直流ノィァスとして印加される電圧が比較的低くても、容量変化 の効果を得ることができる。  [0153] The capacitor 221c according to the tenth embodiment is characterized in that the DC noise applying electrodes 227 and 228 are formed. That is, the first and second DC bias applying electrodes 227 and 228 are formed in the capacitance forming region with respect to the position in the principal surface direction of the force dielectric layer 222 similar to the capacitor 221b according to the ninth embodiment described above. It is provided so as to overlap 226. Therefore, as in the case of the capacitor 221a according to the eighth embodiment described above, the distance between the first and second DC bias application electrodes 227 and 228 can be further shortened, and as a result, the DC noise is applied. Even if the voltage is relatively low, the effect of capacitance change can be obtained.
[0154] 図 21は、この発明の第 11の実施形態によるコンデンサ 221dを示す、図 15または 図 19に対応する図である。図 21において、図 15または図 19に示した要素に相当す る要素には同様の参照符号を付し、重複する説明は省略する。  FIG. 21 is a view corresponding to FIG. 15 or FIG. 19, showing a capacitor 221d according to an eleventh embodiment of the present invention. In FIG. 21, elements corresponding to the elements shown in FIG. 15 or FIG. 19 are given the same reference numerals, and redundant description is omitted.
[0155] 第 11の実施形態によるコンデンサ 221dは、直流バイアス印加用電極 227および 2 28の形状に特徴がある。すなわち、第 1および第 2の直流バイアス印加用電極 227 および 228は、図 21 (c)によく示されているように、ともに、並列した複数の電極指 23 8および 239をそれぞれ形成する櫛歯状をなしている。そして、第 1の直流バイアス印 加用電極 227に備える各電極指 238は、第 2の直流バイアス印加用電極 228に備え る電極指 239の各間に入り込むように位置して 、る。 [0155] The capacitor 221d according to the eleventh embodiment is characterized by the shapes of the DC bias applying electrodes 227 and 228. That is, the first and second DC bias applying electrodes 227 As well shown in FIG. 21 (c), and 228 are comb-shaped to form a plurality of parallel electrode fingers 238 and 239, respectively. The electrode fingers 238 provided on the first DC bias applying electrode 227 are positioned so as to enter between the electrode fingers 239 provided on the second DC bias applying electrode 228.
[0156] この第 11の実施形態によれば、第 1および第 2の直流バイアス印加用電極 227お よび 228間の距離を短く保ったまま、対向面積を大きくすることができる。  According to the eleventh embodiment, the facing area can be increased while the distance between the first and second DC bias applying electrodes 227 and 228 is kept short.
[0157] 図 22および図 23は、それぞれ、この発明の第 12および第 13の実施形態によるコ ンデンサ 241および 251を示す、図 15 (a)に対応する図である。図 22および図 23に おいて、図 15 (a)に示した要素に相当する要素には同様の参照符号を付し、重複す る説明は省略する。  FIGS. 22 and 23 are diagrams corresponding to FIG. 15 (a), showing capacitors 241 and 251 according to the twelfth and thirteenth embodiments of the present invention, respectively. 22 and FIG. 23, elements corresponding to those shown in FIG. 15 (a) are denoted by the same reference numerals, and redundant description is omitted.
[0158] 第 12および第 13の実施形態によるコンデンサ 241および 251は、コンデンサ本体 223において、複数組の第 1の容量取得用電極 224、第 2の容量取得用電極 225、 第 1の直流バイアス印加用電極 227および第 2の直流バイアス印加用電極 228が形 成されて!/、ることを特徴として!/、る。  Capacitors 241 and 251 according to the twelfth and thirteenth embodiments include a plurality of sets of first capacitance acquisition electrodes 224, second capacitance acquisition electrodes 225, and first DC bias application in the capacitor main body 223. Electrode 227 and a second DC bias applying electrode 228 are formed! /! /
[0159] より詳細には、図 22に示した第 12の実施形態によるコンデンサ 241では、積層方 向に関して、上から、第 1の容量取得用電極 224、直流バイアス印加用電極 227およ び 228、第 2の容量取得用電極 225、という順序で複数回繰り返されて配置されてい る。  More specifically, in the capacitor 241 according to the twelfth embodiment shown in FIG. 22, the first capacitance acquisition electrode 224, the DC bias application electrodes 227 and 228 from the top in the stacking direction. The second capacitance acquisition electrode 225 is repeatedly arranged in the order of several times.
[0160] 図 23に示した第 13の実施形態によるコンデンサ 251では、積層方向に関して、上 から、第 1の容量取得用電極 224、直流バイアス印加用電極 227および 228、第 2の 容量取得用電極 225、直流バイアス印加用電極 227および 228、第 1の容量取得用 電極 224、 t 、う順序で複数回繰り返されて配置されて 、る。  In the capacitor 251 according to the thirteenth embodiment shown in FIG. 23, the first capacitance acquisition electrode 224, the DC bias application electrodes 227 and 228, and the second capacitance acquisition electrode from the top in the stacking direction. 225, DC bias application electrodes 227 and 228, first capacitance acquisition electrodes 224, t, which are arranged in a plurality of times in the same order.
[0161] なお、図 22に示したコンデンサ 241のコンデンサ本体 223および図 23に示したコ ンデンサ 251のコンデンサ本体 223を比較したとき、厚み方向寸法に関して異なるよ うに図示されて ヽる力 これは、図示しょうとする電極 224、 225、 227および 228の 数が異なるという理由からもたらされた結果に過ぎず、図示した厚み方向寸法の差は 、特に意味があるものではない。  Note that when comparing the capacitor body 223 of the capacitor 241 shown in FIG. 22 and the capacitor body 223 of the capacitor 251 shown in FIG. It is only a result brought about because the number of electrodes 224, 225, 227 and 228 to be shown is different, and the difference in the thickness direction shown in the drawing is not particularly meaningful.
[0162] 次に、上記コンデンサ 241および 251のように、コンデンサ本体 223力 複数組の 第 1の容量取得用電極 224、第 2の容量取得用電極 225、第 1の直流バイアス印加 用電極 227および第 2の直流バイアス印加用電極 228を備える場合において、この 発明に係るコンデンサによれば、単位体積あたりの静電容量が大きくなり、より小型 化かつ高容量ィ匕が可能となり、より低い電圧でより広範囲に静電容量を制御できるこ とを確認するために実施した実験例 6につ 、て説明する。 [0162] Next, as in the capacitors 241 and 251, the capacitor body 223 forces multiple sets of In the case of including the first capacitance acquisition electrode 224, the second capacitance acquisition electrode 225, the first DC bias application electrode 227, and the second DC bias application electrode 228, the capacitor according to the present invention In Example 6, which was conducted to confirm that the capacitance per unit volume was increased, and that it was possible to reduce the size and increase the capacitance, and that the capacitance could be controlled over a wider range at a lower voltage. I will explain.
[0163] この実験例 6では、この発明の範囲内にある実施例としての試料 211およびこの発 明の範囲外の比較例としての試料 212の各々に係るコンデンサを作製したが、各コ ンデンサにおける誘電体層の材料および厚みならびに電極の材料および厚みにつ いては、前述の実験例 5と同様とした。また、この実験例における試料 211および 21 2の各々に係るコンデンサの外形寸法は、ともに、 3. 2mm X l . 6mm X l . 6mmとし た。 [0163] In Experimental Example 6, capacitors according to Sample 211 as an example within the scope of the present invention and Sample 212 as a comparative example outside the scope of the present invention were fabricated. The material and thickness of the dielectric layer and the material and thickness of the electrode were the same as in Experimental Example 5 described above. In addition, the external dimensions of the capacitors according to Samples 211 and 21 2 in this experimental example were both 3.2 mm X l.6 mm X l.6 mm.
[0164] より具体的には、試料 212については、図 24に示した電極の配置構造を採用し、 直流バイアス印加用電極および容量取得用電極を含むすべての電極の積層数を 5 00とした。他方、試料 211については、図 22に示した電極の配置構造を採用し、第 1および第 2の容量取得用電極ならびに第 1および第 2の直流バイアス印加用電極を 含むすべての電極の積層数を 500とした。  More specifically, for the sample 212, the electrode arrangement structure shown in FIG. 24 was adopted, and the number of layers of all electrodes including the DC bias application electrode and the capacitance acquisition electrode was 500. . On the other hand, for sample 211, the electrode arrangement structure shown in FIG. 22 was adopted, and the number of stacked layers of all electrodes including the first and second capacitance acquisition electrodes and the first and second DC bias application electrodes Was set to 500.
[0165] これら試料 211および 212について、直流バイアスを 0〜36Vの範囲で変化させた ときの容量変化範囲が表 3に示されている。  [0165] Table 3 shows the capacitance change ranges of these samples 211 and 212 when the DC bias is changed in the range of 0 to 36V.
[0166] [表 3]  [0166] [Table 3]
Figure imgf000035_0001
Figure imgf000035_0001
[0167] 表 3からわ力るように、この発明の範囲内にある試料 211とこの発明の範囲外の試 料 212とを比較したとき、コンデンサの寸法が同じで、電極の積層数が同程度である 場合、この発明に係るコンデンサによれば、より大きい容量が得られ、かつ容量の可 変幅をより広くできる。 [0167] As shown in Table 3, when comparing sample 211 within the scope of the present invention with sample 212 outside the scope of the present invention, the capacitor dimensions were the same and the number of stacked electrodes was the same. If so, according to the capacitor of the present invention, a larger capacity can be obtained and the variable width of the capacity can be made wider.
[0168] 以上、この発明の第 3の局面に係る第 7ないし第 13の実施形態を、図 15ないし図 2 3を参照して説明した力 この発明の範囲内において、その他種々の変形例が可能 である。 [0168] The forces described above with reference to Figs. 15 to 23 for the seventh to thirteenth embodiments according to the third aspect of the present invention are within the scope of the present invention. Possible It is.
[0169] たとえば、容量取得用電極と直流バイアス印加用電極との位置関係については、 互いに対向する第 1および第 2の直流バイアス印加用電極によって、第 1および第 2 の容量取得用電極間に位置する誘電体層の容量形成領域に直流バイアスを印加で きる位置関係であれば、図示した実施形態のような位置関係以外の位置関係であつ てもよい。  [0169] For example, regarding the positional relationship between the capacitance acquisition electrode and the DC bias application electrode, the first and second DC bias application electrodes facing each other are used to connect the first and second capacitance acquisition electrodes. Any positional relationship other than the positional relationship in the illustrated embodiment may be used as long as it can apply a DC bias to the capacitance forming region of the dielectric layer.
[0170] また、第 1および第 2の直流バイアス印加用端子導体膜ならびに第 1および第 2の 容量取得用端子導体膜がそれぞれ設けられるコンデンサ本体上の位置については 、上述した第 1および第 2の容量取得用電極ならびに第 1および第 2の直流バイアス 印加用電極の各位置等に応じて任意に変更することができる。  [0170] Also, the positions on the capacitor body where the first and second DC bias applying terminal conductor films and the first and second capacitance acquisition terminal conductor films are provided are described above. The capacitance acquisition electrode and the positions of the first and second DC bias application electrodes can be arbitrarily changed.
[0171] また、第 7ないし第 13の実施形態では、第 1および第 2の容量取得用電極 224およ び 225ならびに第 1および第 2の直流バイアス印加用電極 227および 228が、ともに 、コンデンサ本体 223の内部に形成された力 耐湿性の問題に煩わされる懸念がな いならば、積層方向での最も端に位置する電極、たとえば、図 15 (a)に示したコンデ ンサ 221にあっては、第 1および/または第 2の容量取得用電極 224および/または 225〖こつ!/、ては、コンデンサ本体の外表面上に形成されてもよ!、。  In the seventh to thirteenth embodiments, the first and second capacitance acquisition electrodes 224 and 225 and the first and second DC bias application electrodes 227 and 228 are both capacitors. If there is no concern about the moisture resistance problem formed inside the main body 223, the electrode located at the end in the stacking direction, for example, the capacitor 221 shown in FIG. The first and / or second capacitance acquisition electrodes 224 and / or 225 can be formed on the outer surface of the capacitor body!

Claims

請求の範囲 The scope of the claims
[1] 複数の誘電体層をもって構成される積層構造を有する、コンデンサ本体を備え、 前記コンデンサ本体は、特定の前記誘電体層に沿って設けられるアース用電極と、 特定の前記誘電体層を介して前記アース用電極と対向しかつ前記アース用電極と の間で直流バイアスを印加するために用いられる直流バイアス印加用電極と、前記 直流バイアス印加用電極を前記アース用電極との間に挟むように位置されかつ特定 の前記誘電体層を介して前記アース用電極と対向することによって静電容量を形成 するように設けられる容量取得用電極とを含み、  [1] A capacitor main body having a laminated structure including a plurality of dielectric layers, the capacitor main body including a ground electrode provided along the specific dielectric layer, and the specific dielectric layer A DC bias applying electrode that is used to apply a DC bias between and opposite to the grounding electrode, and the DC bias applying electrode is sandwiched between the grounding electrode And a capacitance acquisition electrode provided so as to form a capacitance by facing the grounding electrode through the specific dielectric layer,
前記コンデンサ本体の外表面上に設けられ、かつ前記アース用電極に電気的に接 続される、アース用端子導体膜と、  A grounding terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the grounding electrode;
前記コンデンサ本体の外表面上に設けられ、かつ前記直流バイアス印加用電極に 電気的に接続される、直流バイアス印加用端子導体膜と、  A DC bias applying terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the DC bias applying electrode;
前記コンデンサ本体の外表面上に設けられ、かつ前記容量取得用電極に電気的 に接続される、第 1の容量取得用端子導体膜と  A first capacitance acquisition terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the capacitance acquisition electrode;
をさらに備える、コンデンサ。  Further comprising a capacitor.
[2] 前記コンデンサ本体の外表面上に設けられ、かつ前記アース用電極に電気的に接 続される、第 2の容量取得用端子導体膜をさらに備え、前記コンデンサ本体は、積層 方向に延びる 4つの側面を有する直方体状であり、前記アース用端子導体膜は、第 1の前記側面上に設けられ、前記直流バイアス印加用端子導体膜は、前記第 1の側 面に対向する第 2の前記側面上に設けられ、前記第 1の容量取得用端子導体膜は、 前記第 1および第 2の側面に隣接する第 3の前記側面上に設けられ、前記第 2の容 量取得用端子導体膜は、前記第 3の側面に対向する第 4の前記側面上に設けられる 、請求項 1に記載のコンデンサ。  [2] The capacitor body further includes a second capacitance acquisition terminal conductor film provided on the outer surface of the capacitor body and electrically connected to the ground electrode, and the capacitor body extends in the stacking direction. The ground terminal conductor film is provided on the first side face, and the DC bias applying terminal conductor film is a second side facing the first side face. The first capacitance acquisition terminal conductor film is provided on the side surface, and the first capacitance acquisition terminal conductor film is provided on the third side surface adjacent to the first and second side surfaces, and the second capacitance acquisition terminal conductor is provided. The capacitor according to claim 1, wherein the film is provided on the fourth side surface facing the third side surface.
[3] 少なくとも前記アース用電極と前記直流バイアス印加用電極との間に位置する前記 誘電体層は、誘電特性の直流ノィァス依存性の大きい材料力も構成される、請求項 1に記載のコンデンサ。  3. The capacitor according to claim 1, wherein the dielectric layer positioned at least between the grounding electrode and the DC bias applying electrode is also configured with a material force having a large DC noise dependency of dielectric characteristics.
[4] 前記コンデンサ本体は、複数組の前記アース用電極、前記直流バイアス印加用電 極および前記容量取得用電極を含む、請求項 1ないし 3のいずれかに記載のコンデ ンサ。 [4] The capacitor body according to any one of claims 1 to 3, wherein the capacitor body includes a plurality of sets of the grounding electrode, the DC bias application electrode, and the capacitance acquisition electrode. Nsa.
[5] 複数の誘電体層をもって構成される積層構造を有する、コンデンサ本体を備え、 前記コンデンサ本体は、特定の前記誘電体層を介して互いに対向することによって 静電容量を形成するように設けられる第 1および第 2の容量取得用電極と、前記第 1 および第 2の容量取得用電極間に位置する前記誘電体層の容量形成領域に直流 バイアスを印加するために用いられる第 1および第 2の直流バイアス印加用電極とを 含み、  [5] A capacitor body having a laminated structure composed of a plurality of dielectric layers, wherein the capacitor body is provided so as to form a capacitance by facing each other with the specific dielectric layer interposed therebetween. First and second capacitance acquisition electrodes, and the first and second capacitors used to apply a DC bias to the capacitance formation region of the dielectric layer located between the first and second capacitance acquisition electrodes. 2 DC bias application electrodes,
前記第 1の直流バイアス印加用電極は、前記第 1の容量取得用電極が設けられた 前記誘電体層の主面と同一の主面上に設けられ、  The first DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer provided with the first capacitance acquisition electrode,
前記第 2の直流バイアス印加用電極は、前記第 2の容量取得用電極が設けられた 前記誘電体層の主面と同一の主面上に設けられ、  The second DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer provided with the second capacitance acquisition electrode,
前記コンデンサ本体の外表面上に設けられ、かつ前記第 1および第 2の直流バイァ ス印加用電極にそれぞれ電気的に接続される、第 1および第 2の直流バイアス印加 用端子導体膜と、  First and second DC bias applying terminal conductor films provided on an outer surface of the capacitor body and electrically connected to the first and second DC bias applying electrodes, respectively;
前記コンデンサ本体の外表面上に設けられ、かつ前記第 1および第 2の容量取得 用電極にそれぞれ電気的に接続される、第 1および第 2の容量取得用端子導体膜と をさらに備える、コンデンサ。  A capacitor further comprising: first and second capacitor acquisition terminal conductor films provided on an outer surface of the capacitor body and electrically connected to the first and second capacitor acquisition electrodes, respectively. .
[6] 前記第 1の容量取得用電極に対して、前記第 1の直流バイアス印加用電極が位置 する側は、前記第 2の容量取得用電極に対して、前記第 2の直流バイアス印加用電 極が位置する側とは逆側とされる、請求項 5に記載のコンデンサ。  [6] The side on which the first DC bias application electrode is located with respect to the first capacitance acquisition electrode is the second DC bias application with respect to the second capacitance acquisition electrode. 6. The capacitor according to claim 5, wherein the capacitor is on a side opposite to a side where the electrode is located.
[7] 前記コンデンサ本体は、積層方向に延びる 4つの側面を有する直方体状であり、前 記第 1の直流バイアス印加用端子導体膜は、第 1の前記側面上に設けられ、前記第 2の直流バイアス印加用端子導体膜は、前記第 1の側面に対向する第 2の前記側面 上に設けられ、前記第 1の容量取得用端子導体膜は、前記第 1および第 2の側面に 隣接する第 3の前記側面上に設けられ、前記第 2の容量取得用端子導体膜は、前記 第 3の側面に対向する第 4の前記側面上に設けられる、請求項 5に記載のコンデンサ  [7] The capacitor body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is provided on the first side surface, and the second side A DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquisition terminal conductor film is adjacent to the first and second side surfaces. 6. The capacitor according to claim 5, wherein the capacitor is provided on the third side surface, and the second capacitance acquisition terminal conductor film is provided on the fourth side surface facing the third side surface.
[8] 少なくとも前記容量形成領域を構成する前記誘電体層は、誘電特性の直流バイァ ス依存性の大き!/、材料から構成される、請求項 5に記載のコンデンサ。 [8] At least the dielectric layer constituting the capacitance forming region has a DC bias having dielectric characteristics. Great dependence on the service! 6. The capacitor according to claim 5, wherein the capacitor is made of a material.
前記コンデンサ本体は、複数組の前記第 1の容量取得用電極、前記第 2の容量取 得用電極、前記第 1の直流バイアス印加用電極および前記第 2の直流バイアス印加 用電極を含む、請求項 5な!、し 8の!、ずれかに記載のコンデンサ。  The capacitor body includes a plurality of sets of the first capacitance acquisition electrode, the second capacitance acquisition electrode, the first DC bias application electrode, and the second DC bias application electrode. Item 5 !, then 8!
複数の誘電体層をもって構成される積層構造を有する、コンデンサ本体を備え、 前記コンデンサ本体は、特定の前記誘電体層を介して互いに対向することによって 静電容量を形成するように設けられる第 1および第 2の容量取得用電極と、前記第 1 および第 2の容量取得用電極間に位置する前記誘電体層の容量形成領域に直流 バイアスを印加するために用いられる第 1および第 2の直流バイアス印加用電極とを 含み、  A capacitor body having a laminated structure including a plurality of dielectric layers, wherein the capacitor body is provided so as to form a capacitance by facing each other through the specific dielectric layer; First and second DCs used to apply a DC bias to the capacitance forming region of the dielectric layer located between the first and second capacitance acquisition electrodes and the first and second capacitance acquisition electrodes. A bias application electrode,
前記第 1および第 2の直流バイアス印加用電極は、前記第 1および第 2の容量取得 用電極の間に挟まれた同じ前記誘電体層の同じ主面上に設けられ、  The first and second DC bias application electrodes are provided on the same main surface of the same dielectric layer sandwiched between the first and second capacitance acquisition electrodes;
前記コンデンサ本体の外表面上に設けられ、かつ前記第 1および第 2の直流バイァ ス印加用電極にそれぞれ電気的に接続される、第 1および第 2の直流バイアス印加 用端子導体膜と、  First and second DC bias applying terminal conductor films provided on an outer surface of the capacitor body and electrically connected to the first and second DC bias applying electrodes, respectively;
前記コンデンサ本体の外表面上に設けられ、かつ前記第 1および第 2の容量取得 用電極にそれぞれ電気的に接続される、第 1および第 2の容量取得用端子導体膜と をさらに備える、コンデンサ。  A capacitor further comprising: first and second capacitor acquisition terminal conductor films provided on an outer surface of the capacitor body and electrically connected to the first and second capacitor acquisition electrodes, respectively. .
前記誘電体層の主面方向での位置に関して、前記第 1および第 2の直流バイアス 印加用電極は、前記容量形成領域に重ならないように設けられる、請求項 10に記載 のコンデンサ。  11. The capacitor according to claim 10, wherein the first and second DC bias applying electrodes are provided so as not to overlap the capacitance forming region with respect to a position of the dielectric layer in a main surface direction.
前記誘電体層の主面方向での位置に関して、前記第 1および第 2の直流バイアス 印加用電極は、前記容量形成領域に重なるように設けられる、請求項 10に記載のコ ンデンサ。  11. The capacitor according to claim 10, wherein the first and second DC bias applying electrodes are provided so as to overlap the capacitance forming region with respect to the position of the dielectric layer in the main surface direction.
前記第 1および第 2の直流バイアス印加用電極は、ともに、並列した複数の電極指 を形成する櫛歯状をなしており、前記第 1の直流バイアス印加用電極に備える各前 記電極指は、前記第 2の直流バイアス印加用電極に備える前記電極指の各間に入り 込むように位置して 、る、請求項 10に記載のコンデンサ。 [14] 前記コンデンサ本体は、積層方向に延びる 4つの側面を有する直方体状であり、前 記第 1の直流バイアス印加用端子導体膜は、第 1の前記側面上に設けられ、前記第 2の直流バイアス印加用端子導体膜は、前記第 1の側面に対向する第 2の前記側面 上に設けられ、前記第 1の容量取得用端子導体膜は、前記第 1および第 2の側面に 隣接する第 3の前記側面上に設けられ、前記第 2の容量取得用端子導体膜は、前記 第 3の側面に対向する第 4の前記側面上に設けられる、請求項 10に記載のコンデン サ。 Each of the first and second DC bias applying electrodes has a comb-tooth shape forming a plurality of parallel electrode fingers, and each of the electrode fingers included in the first DC bias applying electrode is 11. The capacitor according to claim 10, wherein the capacitor is positioned so as to enter between each of the electrode fingers provided in the second DC bias application electrode. [14] The capacitor body has a rectangular parallelepiped shape having four side surfaces extending in the stacking direction, and the first DC bias applying terminal conductor film is provided on the first side surface, and the second side A DC bias applying terminal conductor film is provided on the second side surface facing the first side surface, and the first capacitance acquisition terminal conductor film is adjacent to the first and second side surfaces. 11. The capacitor according to claim 10, wherein the capacitor is provided on the third side surface, and the second capacitance acquisition terminal conductor film is provided on the fourth side surface facing the third side surface.
[15] 少なくとも前記容量形成領域を構成する前記誘電体層は、誘電特性の直流バイァ ス依存性の大きい材料力も構成される、請求項 10に記載のコンデンサ。  15. The capacitor according to claim 10, wherein at least the dielectric layer constituting the capacitance forming region also has a material force having a large DC bias dependence of dielectric characteristics.
[16] 前記コンデンサ本体は、複数組の前記第 1の容量取得用電極、前記第 2の容量取 得用電極、前記第 1の直流バイアス印加用電極および前記第 2の直流バイアス印加 用電極を含む、請求項 10な!、し 15の!、ずれかに記載のコンデンサ。  [16] The capacitor body includes a plurality of sets of the first capacitance acquisition electrode, the second capacitance acquisition electrode, the first DC bias application electrode, and the second DC bias application electrode. The capacitor according to claim 10, and 15!
PCT/JP2006/325220 2006-04-07 2006-12-19 Capacitor WO2007116566A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509693A JP4873007B2 (en) 2006-04-07 2006-12-19 Capacitor
TW096103797A TWI331759B (en) 2006-04-07 2007-02-02 Capacitor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-106323 2006-04-07
JP2006106322 2006-04-07
JP2006106323 2006-04-07
JP2006-106324 2006-04-07
JP2006106324 2006-04-07
JP2006-106322 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007116566A1 true WO2007116566A1 (en) 2007-10-18

Family

ID=38580868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325220 WO2007116566A1 (en) 2006-04-07 2006-12-19 Capacitor

Country Status (3)

Country Link
JP (1) JP4873007B2 (en)
TW (1) TWI331759B (en)
WO (1) WO2007116566A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061047A1 (en) * 2007-11-15 2009-05-20 TDK Corporation Multilayer capacitor
JP2009267165A (en) * 2008-04-25 2009-11-12 Sony Corp Variable capacitor and electronic device
JP2011101041A (en) * 2011-01-19 2011-05-19 Sony Corp Variable capacitance element and electronic apparatus
JP2014216636A (en) * 2013-04-22 2014-11-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multi-layered ceramic capacitor and board for mounting the same
JP2015019038A (en) * 2013-07-09 2015-01-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting substrate of the same
CN109119248A (en) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 Tunable capacitor and impedance-matching device
US20210134529A1 (en) * 2019-10-31 2021-05-06 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and mount structure for multilayer ceramic capacitor
JP2021184448A (en) * 2020-05-22 2021-12-02 株式会社村田製作所 Multilayer ceramic capacitor and packaging structure of the same
JP2022031820A (en) * 2015-12-08 2022-02-22 エイブイエックス コーポレイション Voltage tunable multilayer capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267503A (en) * 2000-03-16 2001-09-28 Toshiba Corp Capacitor and integrated circuit
JP2004327983A (en) * 2003-04-08 2004-11-18 Avx Corp Plated termination

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261122A (en) * 1990-03-10 1991-11-21 Nippon Chemicon Corp Variable capacitance element
JPH0878285A (en) * 1994-09-05 1996-03-22 Murata Mfg Co Ltd Variable capacitor
JP2006344845A (en) * 2005-06-10 2006-12-21 Murata Mfg Co Ltd Capacitor
JP2008066682A (en) * 2006-09-05 2008-03-21 Taiyo Yuden Co Ltd Variable capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267503A (en) * 2000-03-16 2001-09-28 Toshiba Corp Capacitor and integrated circuit
JP2004327983A (en) * 2003-04-08 2004-11-18 Avx Corp Plated termination

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061047A1 (en) * 2007-11-15 2009-05-20 TDK Corporation Multilayer capacitor
US7646585B2 (en) 2007-11-15 2010-01-12 Ngk Insulators, Ltd. Multilayer capacitor
JP2009267165A (en) * 2008-04-25 2009-11-12 Sony Corp Variable capacitor and electronic device
US8243417B2 (en) 2008-04-25 2012-08-14 Sony Corporation Variable capacitor and electronic device
JP2011101041A (en) * 2011-01-19 2011-05-19 Sony Corp Variable capacitance element and electronic apparatus
JP2014216636A (en) * 2013-04-22 2014-11-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multi-layered ceramic capacitor and board for mounting the same
JP2015019038A (en) * 2013-07-09 2015-01-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor and mounting substrate of the same
JP2022031820A (en) * 2015-12-08 2022-02-22 エイブイエックス コーポレイション Voltage tunable multilayer capacitor
JP2020527824A (en) * 2017-06-23 2020-09-10 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Variable capacitors, impedance matching devices and semiconductor processing equipment
CN109119248A (en) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 Tunable capacitor and impedance-matching device
US20210134529A1 (en) * 2019-10-31 2021-05-06 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and mount structure for multilayer ceramic capacitor
JP2021072384A (en) * 2019-10-31 2021-05-06 株式会社村田製作所 Multilayer ceramic capacitor and mounting structure of multilayer ceramic capacitor
JP7196817B2 (en) 2019-10-31 2022-12-27 株式会社村田製作所 How to use multilayer ceramic capacitors and how to mount multilayer ceramic capacitors
US11557436B2 (en) 2019-10-31 2023-01-17 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor and mount structure for multilayer ceramic capacitor
JP2021184448A (en) * 2020-05-22 2021-12-02 株式会社村田製作所 Multilayer ceramic capacitor and packaging structure of the same
JP7302529B2 (en) 2020-05-22 2023-07-04 株式会社村田製作所 How to use multilayer ceramic capacitors and how to mount multilayer ceramic capacitors

Also Published As

Publication number Publication date
TW200802444A (en) 2008-01-01
TWI331759B (en) 2010-10-11
JP4873007B2 (en) 2012-02-08
JPWO2007116566A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
WO2007116566A1 (en) Capacitor
US7466535B2 (en) Multilayer capacitor
EP1953776A1 (en) Multilayer capacitor
KR101010875B1 (en) Multilayer capacitor
US7558049B1 (en) Multilayer capacitor array
JP4335237B2 (en) Feed-through multilayer capacitor
WO2007063704A1 (en) Layered capacitor and its mounting structure
KR101051620B1 (en) Multilayer capacitor
US7535694B2 (en) Feedthrough multilayer capacitor
JP4415986B2 (en) Multilayer electronic components
JP4539713B2 (en) Multilayer capacitor array
JP4506759B2 (en) Composite electronic components
KR20140133003A (en) Multilayer ceramic capacitor
JP2006344845A (en) Capacitor
CN108011170B (en) Directional coupler
EP3333862B1 (en) Multilayer capacitors
JP2000151324A (en) Laminated type noise filter
JP3727542B2 (en) Multilayer feedthrough capacitor
JP5966423B2 (en) Multilayer electronic components
JPH05347527A (en) Noise filter
JP5966424B2 (en) Multilayer electronic components
CN115516580A (en) Laminated varistor
JPH11163657A (en) Multiple noise filter
JPH04271610A (en) Laminated filter element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509693

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834930

Country of ref document: EP

Kind code of ref document: A1