TWI331759B - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
TWI331759B
TWI331759B TW096103797A TW96103797A TWI331759B TW I331759 B TWI331759 B TW I331759B TW 096103797 A TW096103797 A TW 096103797A TW 96103797 A TW96103797 A TW 96103797A TW I331759 B TWI331759 B TW I331759B
Authority
TW
Taiwan
Prior art keywords
capacitor
electrode
bias
electrodes
capacitance
Prior art date
Application number
TW096103797A
Other languages
Chinese (zh)
Other versions
TW200802444A (en
Inventor
Tsuyoshi Nakagawa
Noriyuki Kubodera
Takashi Togami
Original Assignee
Murata Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co filed Critical Murata Manufacturing Co
Publication of TW200802444A publication Critical patent/TW200802444A/en
Application granted granted Critical
Publication of TWI331759B publication Critical patent/TWI331759B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Microwave Amplifiers (AREA)
  • Networks Using Active Elements (AREA)

Description

1331759 九、發明說明: 【發明所屬之技術領域】 本發明係關於電容器,特 B — 低m ^ m办 幻疋稭由外部所施加之直流 偏壓來改變電容之電容器。 【先前技術】 可變電容器中,藉由外部所 究之f y 斤施加之直流偏壓來改變電 谷之電谷态,例如有日本特公平 ^ ^么 5 — 1997〇號公報(專利文 獻1)所,己载者。參照圖24及圖 哉♦ ♦Α 說明專利文獻1所記 載之電谷器。圖24,係以面向介電體声 * gg _ _ S之積層方向的截面 來顯不電容器之前視圖;圖 ^ + 係以沿介電體層之主面方 向延伸之截面來顯示電容器之俯視圖。 如圖24所示,電容器丨具備 太@ 電合15本體3,該電容器 本體3具有以複數個介電體層2 古麯犯 得取<積層構造且呈長 方體形。又,電容器本體3具 ,丹備相互成對之直流偏壓施 用電極4及5,以及相互成對之電容 ^ ^ 电今取传用電極6及7。 電谷取得用電極6及7位於直流偏愿 徇爱狍加用電極4及5間。 ,於直流偏壓施加用電極4、電容取 Si ^ m ^ 評用1:極6、電容 传用電極7及直流偏壓施加用電極$各屉 體層2β …各層間,具有介電 圖25顯示上述之直流偏壓施加用電極*及、 各取彳于用電極6及7之各層圖案。於圖25中 : Ά fA. , * (a) 、 (b)、 (c) (d)非按照積層順序加以排列,圖25() ^ , 你顯不直流偏壓 加用電極4所通過之截面,圖25(b)係顯干古* ,m 顯不直流偏壓祐 σ用電極5所通過之截面,圖25(c)係顯 电办取得用電極 5 Π31759 6所通過之截面,圖25(d)係顯示電容取得用電 * /巧' 過 之截面。 如圖25清楚所示,電容器本體3係具有沿積層方向延 伸之四個側面8〜11。側面8、9、10、B 1 1 L ' 夂11上,分別設 有直流偏壓施加用端子導體膜12及13、以及電容取得用 端子導體膜14及15。 如圖25(a)所示,直流偏壓施加用電極4被拉出至側面 8,此處電連接於直流偏壓施加用端子導體膜12。如圖25(b) 所不’直流偏壓施加用電極5被拉出至側面9,此處電連 接於直流偏壓施加用端子導體膜13。如圖25(c)所示,電 容取得用電極6被拉出至側面10,此處電連接於電容取得 用端子導體膜14。如圖25(d)所示,電容取得用電極7被 拉出至側面11 ’此處電連接於電容取得用端子導體膜Μ。 具有如上構成之電容器1,於成對之電容取得用電極6 及7間所形成的靜電容,係由電容取得用端子導體膜w 及15來取得。此時,若通過直流偏壓施加用端子導體膜12 及13,在直流偏壓施加用電極4及5間施加直流偏壓則 位於直流偏壓施加用電極4及5間的介電體層2之介電常 數等;I電特性會產生變化。因,位於上述電容取得用電極 6及7間的介電體層2之介電特性會產生變化,其結果, 可改變通過電容取得用端子導體膜14及15所取出之靜電 容。 號公報(專利文獻2)記載有 。圖26顯示專利文獻2所 曰本專利特公平5 - 19969 類似圖24所示電容器1之構成 6 1331759 記載之電容器la、並與圖24相對應。於圖26中,與圖24 所示之元件相當者,賦予相同的參照符號,並省略重複說 明。 圖26所示之電容器ia,直流偏壓施加用電極4及5 被夾於電容取得用電極6及7之間。至於其他的構成,實 質上與圖24所顯示之電容器1相同。 可是,於此等電容器1及la有如下應解決之課題。 首先,於電容器1及la,為了使電容為可變,因此設 置於電容器本體3之電極,如直流偏壓施加用電極4及5、 以及電容取得用電極6及7,至少需要四層電極,又,將 電極4〜7各層隔開之介電體層2,至少需要三層,並不利 於小型化。 又’圖24所示之電容器1中,使介電特性變化之介電 體層2雖單單僅有一層,但構造上必需施加直流偏壓於三 層的介電體層2。由於電場強度與電極間距離成反比,因 φ 此在上述構造之情形,若各介電體層2之厚度相同,為獲 得需要之電場強度,需要施加一層時之三倍的直流電壓, 招致驅動電壓變高的問題。又,位於直流偏壓施加用電極 4及5間的介電體層2並非全部皆與取得靜電容有關因1331759 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a capacitor, which is a capacitor that changes the capacitance by an externally applied DC bias voltage. [Prior Art] In the variable capacitor, the electric valley state of the electric valley is changed by the DC bias applied by the externally applied fy jin, for example, there is a Japanese special fair ^ ^ 么 5 - 1997 公报 公报 (Patent Document 1) The place has been. Referring to Fig. 24 and Fig. ♦ ♦ 电 The electric grid device described in Patent Document 1 will be described. Fig. 24 is a front view showing the capacitor in a direction facing the lamination direction of the dielectric sound * gg _ _ S; Fig. ^ + shows a plan view of the capacitor by a section extending in the direction of the main surface of the dielectric layer. As shown in Fig. 24, the capacitor 丨 is provided with a body body 3 having a dielectric body 3 having a rectangular structure in which a plurality of dielectric layers 2 are formed in a laminated structure. Further, the capacitor body 3 has DC bias application electrodes 4 and 5 which are paired with each other, and a pair of capacitors which are mutually coupled to each other. The electric valley obtaining electrodes 6 and 7 are located between the DC biasing electrodes 4 and 5. The DC bias application electrode 4, the capacitance take Si ^ m ^ evaluation 1: the pole 6, the capacitor transfer electrode 7 and the DC bias application electrode $ each drawer layer 2β ... each layer has a dielectric diagram 25 display The above-described DC bias application electrode * and each layer pattern of each of the electrodes 6 and 7 are taken. In Fig. 25: Ά fA. , * (a), (b), (c) (d) are not arranged in the order of stacking, Figure 25 () ^, you do not pass the DC bias plus electrode 4 The cross section, Fig. 25(b) shows the section through which the electrode 5 is passed by the DC bias, and Fig. 25(c) is the section through which the electrode 5 Π31759 6 is obtained. 25(d) shows the cross section of the capacitor. As clearly shown in Fig. 25, the capacitor body 3 has four side faces 8 to 11 extending in the lamination direction. On the side faces 8, 9, 10, and B 1 1 L ' 夂 11, the DC bias application terminal conductor films 12 and 13 and the capacitance acquisition terminal conductor films 14 and 15 are provided, respectively. As shown in Fig. 25 (a), the DC bias application electrode 4 is pulled out to the side surface 8, and is electrically connected to the DC bias application terminal conductor film 12. As shown in Fig. 25(b), the DC bias application electrode 5 is pulled out to the side surface 9, where it is electrically connected to the DC bias application terminal conductor film 13. As shown in Fig. 25(c), the capacitor-acquisition electrode 6 is pulled out to the side surface 10, and is electrically connected to the capacitor-acquisition terminal conductor film 14 here. As shown in Fig. 25 (d), the capacitor-acquisition electrode 7 is pulled out to the side surface 11' to be electrically connected to the capacitor-acquisition terminal conductor film Μ. The capacitor 1 having the above configuration is obtained by the capacitance-acquisition terminal conductor films w and 15 between the pair of capacitance-acquisition electrodes 6 and 7. At this time, when the DC bias application terminal conductor films 12 and 13 are applied, and a DC bias voltage is applied between the DC bias application electrodes 4 and 5, the dielectric layer 2 between the DC bias application electrodes 4 and 5 is placed. Dielectric constant, etc.; I electrical characteristics will change. The dielectric properties of the dielectric layer 2 between the capacitor-capturing electrodes 6 and 7 are changed. As a result, the capacitance of the terminal conductor films 14 and 15 obtained by the capacitors can be changed. No. (Patent Document 2) is described. Fig. 26 shows a capacitor la as described in Patent Document 2, which is similar to the configuration of the capacitor 1 shown in Fig. 24, and corresponds to Fig. 24. In FIG. 26, the same reference numerals are given to the same components as those in FIG. 24, and the repeated description is omitted. In the capacitor ia shown in Fig. 26, the DC bias application electrodes 4 and 5 are sandwiched between the capacitance acquisition electrodes 6 and 7. As for the other configurations, it is substantially the same as the capacitor 1 shown in Fig. 24. However, the capacitors 1 and 1a have the following problems to be solved. First, in the capacitors 1 and 1a, in order to make the capacitance variable, the electrodes provided in the capacitor body 3, such as the DC bias application electrodes 4 and 5, and the capacitance acquisition electrodes 6 and 7, require at least four layers of electrodes. Further, at least three layers are required to separate the dielectric layers 2 each of the electrodes 4 to 7 from each other, which is not advantageous for miniaturization. Further, in the capacitor 1 shown in Fig. 24, the dielectric layer 2 having a dielectric property change has only one layer, but it is necessary to apply a DC bias voltage to the dielectric layer 2 of the three layers. Since the electric field strength is inversely proportional to the distance between the electrodes, since φ is in the above configuration, if the thickness of each dielectric layer 2 is the same, in order to obtain the required electric field strength, it is necessary to apply a DC voltage three times that of one layer, which causes the driving voltage. The problem of getting higher. Further, not all of the dielectric layers 2 located between the DC bias application electrodes 4 and 5 are related to the electrostatic capacitance.

所示之電容器la的情形,由於電容The case of the capacitor la shown, due to the capacitance

各層厚度相同時,施加直流偏壓之介電體層 7 丄幻1759 的厚度,為有助於取得靜電容之介電體層2總厚度的丨/3, 則會導致電容的變化率降低至介電體層2材料本身所具有 之直流偏壓特性之1 /3以下的問題。又,構造上,由於 難以縮短電容取得用電極6及7間的距離,因此並不利於 謀求小型且大電容化。 專利文獻1 :日本特公平5 — 19970號公報 專利文獻2 :日本專利特公平5 _丨9969號公報 【發明内容】 此處,本發明之目的在於提供一種能解決如上述課題 之電容器。 本發明,就直流偏壓施加用電極之配置態樣,分類成 第i、第2、及第3類型。When the thickness of each layer is the same, the thickness of the dielectric layer 7 丄 1 1759 to which the DC bias is applied is 丨/3 which contributes to the total thickness of the dielectric layer 2 which contributes to the electrostatic capacitance, and the rate of change of the capacitance is lowered to the dielectric. The bulk layer 2 material itself has a problem of less than one third of the DC bias characteristics. Further, since it is difficult to shorten the distance between the capacitor-acquisition electrodes 6 and 7, it is not advantageous for small size and large capacitance. [Patent Document 1] Japanese Patent Application Laid-Open No. Hei. No. Hei. The present invention is classified into the i-th, second, and third types in terms of the arrangement of the DC bias application electrodes.

於第1類型,本發明之電容器具備電容器本體該電容 器本體具有以複數個介電體層所構成之積層構造。電容器 本體包含:沿特定介電體層所設置的接地用電極;直流偏 壓施加用電極,係透過特定之介電體層與接地用電極對 向,且用以在與接地用電極之間施加直流偏壓;以及電容 取得用電極,係設置成位於將直流偏壓施加用電極夹在與 接地用電極間的位置,且透過特定之介電體層,與接地用 電極對向,藉此形成靜電容P 上述電容器進一步具備:電連接於接地用電極之接地 用端子導體膜;電連接於直流偏壓施加用電極之直流偏壓 施加用端子導體膜;以及電連接於電容取得用電極之第i 電容取得用端子導體膜’ ·此等接地用端子導體膜、直流偏 8 1331759 壓施加用端子導體膜及第丨電容取得用端子導體膜,係設 置於電容器本體之外表面上。 於第1類型中,本發明之電容器較佳為進一步具備設 置於電容器本體之外表面上,且電連接於接地用電極之第 2電容取得用端子導體膜。此時,較佳為,電容器本體為 具有沿積層方向延伸之四個側面的長方體形,接地用端子 導體膜係設置於第1側面上,直流偏壓施加用端子導體膜 則《>又置於與第1側面對向之第2側面上,第1電容取得用 端子導體膜設置於與第1及第2側面相鄰接之第3側面上, 第2電容取得用端子導體膜則設置於與第3側面對向之第 4側面上。 第1類型之電容器中’較佳為,至少位於接地用電極 與直流偏壓施加用電極間之介電體層,係由介電特性之直 流偏壓相依性大的材料構成。 第1類型之電容器中,電容器本體亦可包含複數組接 地用電極、直流偏壓施加用電極及電容取得用電極。 於第2類型’本發明之電容器具備電容器本體,該電 谷器本體具有以複數個介電體層所構成之積層構造。電容 器本體包含:第1及第2電容取得用電極’係設置成透過 特疋之介電體層相互對向’藉此形成靜電容;以及第1及 第2直流偏壓施加用電極,係用以將直流偏壓施加在位於 第1及第2電容取得用電極間之介電體層的電容形成區 域。又’第1直流偏壓施加用電極,係設置於與第1電容 取得用電極所設置之介電體層的主面為相同的主面上,第In the first type, the capacitor of the present invention comprises a capacitor body having a laminated structure composed of a plurality of dielectric layers. The capacitor body includes: a grounding electrode disposed along a specific dielectric layer; the DC biasing application electrode is opposed to the grounding electrode through a specific dielectric layer, and is used to apply a DC bias between the grounding electrode and the grounding electrode. The capacitor and the capacitor-acquisition electrode are disposed so as to sandwich the DC bias application electrode between the ground electrode and the specific dielectric layer, and face the ground electrode to form a static capacitance P. Further, the capacitor further includes: a grounding terminal conductor film electrically connected to the grounding electrode; a DC bias application terminal conductor film electrically connected to the DC bias application electrode; and an ith capacitor electrically connected to the capacitance obtaining electrode The terminal conductor film ′ is used for the grounding terminal conductor film, the DC bias 8 1331759 pressure application terminal conductor film, and the second capacitor acquisition terminal conductor film, and is provided on the outer surface of the capacitor body. In the first aspect, the capacitor of the present invention preferably further includes a second capacitor-acquisition terminal conductor film which is provided on the outer surface of the capacitor body and is electrically connected to the ground electrode. In this case, it is preferable that the capacitor main body has a rectangular parallelepiped shape having four side faces extending in the lamination direction, the ground terminal conductor film is provided on the first side surface, and the DC bias application terminal conductor film is "> The second capacitor-acquisition terminal conductor film is provided on the third side surface adjacent to the first and second side faces, and the second capacitor-acquisition terminal conductor film is provided on the second side surface opposite to the first side surface. On the fourth side opposite to the third side. In the capacitor of the first type, it is preferable that at least the dielectric layer between the ground electrode and the DC bias application electrode is made of a material having a large DC bias dependence of dielectric characteristics. In the capacitor of the first type, the capacitor body may include a plurality of electrodes for grounding the array, a DC bias application electrode, and a capacitor acquisition electrode. In the second type, the capacitor of the present invention includes a capacitor body having a laminated structure composed of a plurality of dielectric layers. The capacitor body includes: the first and second capacitor-acquisition electrodes are disposed such that the dielectric layers of the first and second capacitors are disposed opposite each other to form a static capacitance; and the first and second DC bias application electrodes are used for A DC bias voltage is applied to a capacitance forming region of the dielectric layer between the first and second capacitor obtaining electrodes. Further, the first DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer provided on the first capacitance acquisition electrode.

L 1331759 加用電極,則設置在與· 2電容取得用電極 斤》又置之"電體層的主面為相同的主面上。 上述電容器進一步I備:分別雷 /,、備刀另J電連接於第1及第2直 ^偏壓施加用電極的第1及第2直流偏麼施加用端子導體 及分別電連接於第1及第2電容取得用電極的第i 及第2電容取得用端子導體膜,此等帛i及第2直流㈣L 1331759 Adding an electrode is set on the same main surface as the main surface of the electric layer. Further, the capacitors are further provided with first and second DC bias application terminal conductors electrically connected to the first and second straight bias application electrodes, respectively, and electrically connected to the first And the second and second capacitor-acquisition terminal conductor films of the second capacitor-acquisition electrode, such 帛i and the second DC (four)

施加用端子導體膜、以及第1及帛2電容取得用端子導體 膜’係設置於電容器本體之外表面上。 ★於第2類型中,較佳為,相對第!電容取得用電極, 第1直流偏壓施加用電極所在之側,係與相對第2電容取 得用電極之第2直流偏壓施加用電極所在之側為相反側。 於第2類型之電容器中,較佳為,電容器本體為具有 沿積層方向延伸之四個側面的長方體形,第丨直流偏壓施 加用端子導體膜設置於第丨側面上,第2直流偏壓施加用 端子導體膜設置於與第1側面對向之第2側面上,第!電 容取得用端子導體膜設置於與第1及第2側面鄰接之第3 侧面上,第2電容取得用端子導體膜則設置於與第3側面 對向之第4側面上。 於第2類型之電容器中,較佳為,至少構成上述電容 形成區域之介電體層,係由介電特性之直流偏壓相依性大 的材料構成。 於第2類型之電容器中,電容器本體亦可包含複數組 第1電容取得用電極、第2電容取得用電極、第1直流偏 壓施加用電極及第2直流偏壓施加用電極。 10 1331759 i 〜於第3類型’本發明之電容器具備電容器本體,該電 谷器本體具有以複數個介電體層所構成之積層構造。電容 器本體,包含:笛 1 «π 及第2電容取得用電極,係設置成透 過特定介電體層相互f+ + & & & & + T反對向,藉此形成靜電容;以及第1及 第2直Μ偏壓細加用電極,係用以將直流偏壓施加在位於 第1及第2之電容取得用電極間之介電體層的電容形成區 。又^,第 1 J9 ^ η 上 乐2直流偏壓施加用電極,係設置於第1 及第2電今取得用電極間所夾持之相同介電體層的相同主 面上。 上述電谷器進一步具備:分別電連接於第1及第2直 流偏壓施加用電極的第1及第2直流偏壓施加用端子導體 膜’以及刀別f連接於第i及第2電容取得用電極的第1 及第2電容取得用端子導體膜;此等第i及第2直流偏壓 把加用端子導體膜、以及第i及第2電容取得用端子導體 膜,係設置於電容器本體之外表面上。 Φ 於第3類型中’第1及第2直流偏壓施加用電極,在 介電體層主面方向的位置,亦可設置成不與電容形成區域 重疊,或亦可設置成與電容形成區域重疊。 X’於第3類型之電容器中,第j及第2直流偏麼施 加用電極,皆為形成並列之複數個電極指的梳型餘,第 1直流偏壓施加用電極所具備之各電極指,亦可位在插入 第2直流偏壓施加用電極所具備之各電極指間的位置。 於第3類型之電容器中,較佳為電容器本體係具有沿 積層方向延伸之四個側面的長方體形,第1直流偏壓施加 1331759 用端子導體膜係設置於第2直流偏壓施加用 端子導體膜係設置於與第i側面對向之第2側面上,第( 電容取得用端子導體膜係設置於與第i及第2側面鄰接之 第側Φ上,第2 f谷取得用端+導體膜則設置於與第3 侧面對向之第4侧面上》 。第3類型之電谷器,較佳為,至少構成上述電容形成 區域之介電體層’係、由介電特性之直流偏壓相依性大的材The terminal conductor film for application and the terminal conductor film for obtaining the first and second capacitors are provided on the outer surface of the capacitor body. ★ In the second type, it is better, relative to the first! The capacitor-acquisition electrode is located on the side where the first DC bias application electrode is located on the side opposite to the side on which the second DC bias application electrode of the second capacitor-receiving electrode is located. In the capacitor of the second type, preferably, the capacitor body has a rectangular parallelepiped shape having four side faces extending in the lamination direction, and the second DC bias application terminal conductor film is disposed on the second side surface, the second DC bias voltage The application terminal conductor film is provided on the second side opposite to the first side surface, the first! The terminal conductor film for capacitor acquisition is provided on the third side surface adjacent to the first and second side faces, and the second capacitor-acquisition terminal conductor film is provided on the fourth side face opposed to the third side face. In the capacitor of the second type, it is preferable that at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC bias dependence of dielectric characteristics. In the capacitor of the second type, the capacitor body may include a plurality of first capacitor acquisition electrodes, a second capacitor acquisition electrode, a first DC bias application electrode, and a second DC bias application electrode. 10 1331759 i to the third type The capacitor of the present invention includes a capacitor body having a laminated structure composed of a plurality of dielectric layers. The capacitor body includes: a flute 1 «π and a second capacitor-acquisition electrode, which are arranged to pass each other through a specific dielectric layer f + + &&&& + T, thereby forming a static capacitance; and And the second straight bias biasing electrode is a capacitor forming region for applying a DC bias voltage to the dielectric layer between the first and second capacitor obtaining electrodes. Further, the first J9^n upper music 2 DC bias application electrode is provided on the same main surface of the same dielectric layer sandwiched between the first and second electric current acquisition electrodes. Further, the electric grid device further includes: first and second DC bias application terminal conductor films ' electrically connected to the first and second DC bias application electrodes, and a tool f connected to the i-th and second capacitors The terminal conductor film for obtaining the first and second capacitors of the electrode; the first and second DC biases are used to mount the terminal conductor film and the terminal conductor film for the i-th and second capacitors in the capacitor body On the outer surface. Φ In the third type, the first and second DC bias application electrodes may be disposed so as not to overlap with the capacitance formation region in the direction of the main surface of the dielectric layer, or may be disposed to overlap with the capacitance formation region. . In the capacitor of the third type, the jth and the second DC bias electrodes are the comb-shaped portions of the plurality of electrode fingers formed in parallel, and the electrode fingers of the first DC bias application electrode are provided. Further, it may be placed at a position between each of the electrode fingers provided in the second DC bias application electrode. In the capacitor of the third type, it is preferable that the capacitor system has a rectangular parallelepiped shape in which four side faces extend in the lamination direction, and the first DC bias application 1331759 is provided to the second DC bias application terminal conductor by the terminal conductor film. The film system is provided on the second side surface facing the i-th side, and the second (the capacitor-acquisition terminal conductor film is provided on the first side Φ adjacent to the i-th and second side faces, and the second f-groove end + conductor The film is disposed on the fourth side opposite to the third side. The third type of electric grid device preferably has at least a dielectric layer constituting the capacitance forming region, and a DC bias biased by dielectric characteristics. Dependent material

料構成。 於第3類型之電容器中’電容器本體亦可包含複數組 第1電容取得用電極、第2電容取得用電極、帛1直流偏 壓施加用電極及第2直流偏壓施加用電極。 1類型之電容器,以共通於直流偏壓施 依據本發明第 加用電極與電容取得用電極雙方且對向的方式設置接地用 電極’藉此,與直流偏壓施加用電極成對,以作為用以施 加直流偏壓之電極’且亦與電容取得用電極成對,以作為 用以形成靜電容之電極。如& ’藉由使接地用電極具有兩 個功能’冑電容為可變,gj此於電容器本體中,僅至少需 要接地用電極、直流偏壓施加用電極及電容取得用電極這 三層電極、以及至少兩層介電體層作為將各電極間隔開之 "電體層。因此,能有利於發展電容器之小型化。 又’在第1類型’於電容器本體甲,由於不使電容取 得用電極介於直流偏壓施加用電極與接地用電極間,因此 能容易使直流偏壓施加用電極與接地用電極間隔縮小。 又,若使直流偏壓施加用電極與接地用電極間隔縮小,則 12 1331759 忐以較低之電壓來改變介電體層之介電特性,其結果,能 以更低的電壓來控制電容器給予的靜電容。 又,在第1類型,以上述方式,使電容為可變,因此 . 可減少電容器本體所需之電極及介電體層的數量,因此可 使體積電容變大,易於謀求小型且高電容化。 於第1類型中,本發明之電容器進一步具備電連接於 接地用電極的第2電容取得用端子導體膜,電容器本體為 φ 具有四個側面之長方體形;若將接地用端子導體膜設置於 第1侧面上,直流偏壓施加用端子導體膜設置於第2側面 上’第1電容取得用端子導體膜設置於第3側面上,第2 電容取得用端子導體膜設置於第4側面上,則能採用與專 利文獻1及2所揭示之可變電容器實質上相同的構裝狀 態。 於第1類型之電容器中,若至少位於接地用電極與直 流偏壓施加用電極間之介電體層為由介電特性之直流偏壓 • 相依性大的材料構成,則能使直流偏壓之靜電容的可變範 圍更廣。 於第1類型之電容器中,若電容器本體包含複數組接 地用電極、直流偏壓施加用電極及電容取得用電極,則不 僅能使直流偏壓之靜電容的可變範圍變得更廣,且亦可使 取得靜電容變得更大。 其次,依據本發明第2類型之電容器,雖然為了形成 靜電容需要第1及第2電容取得用電極,為了使靜電容為 可變需要第1及第2直流偏壓施加用電極,但是此等 1331759 φ電容取得用電極、以及第1及帛2直流偏屋施加用 的各個位置,具有下列特徵,亦即1 !直流偏壓施 加用電極,錢置於與設置有第1電容取得用電極之介電 體層的主面相同之主面上1 2直流偏屡施加用電極,係 设置於與設置有第2電容取得用電極之介電體層的主面相 同之主面上。因此’為使電容為可變之所需最小限度構造, 由於可藉由-層介電體層(形成電容形成區域)與夹持該介 電體層之2層電極層來實現因此與該專利文獻i或2所揭 示之習知的電容量可變電容器相較之下,可小型化且 容化。 间 又,依據第2類型之電容器,由於為第i及第2直流 偏壓施加用電極間不存在接地之電極的構造,因此第1及 第2直流偏壓施加用電極施加於介電體層之容量形成區域 的電場未被屏蔽,能抑制電場強度降低所導致之電容變化 率的降低。因此,能以更低的電壓來抑制電容器給予的靜 電容。 於第2類型之電容器中,若使相對第丨電容取得用電 極’第1直流偏壓施加用電極所在之側,係與相對第2 容取得用電極之第2直流偏壓施加用電極所在之侧為相 側’則於介電體層之電容形成區域中,相對介電體声 度方向於斜邊方向施加直流偏壓,能將第1及第2電容取 付用電極、以及第1及第2直流偏塵施加用雷梅 四 極緊凑配置,有助於電容器之小型化。 於第2類型之電容器中’電容器本體為具有四個側面 1331759 之長方體形;若將第1及第2直流偏壓施加用端子導體膜、 以及第1及第2電容取得用端子導體膜,分別設置於第1 - 側面、與第1側面對向之第2側面、與第1及第2侧面相 . 鄰接之第3側面、以及與第3側面對向之第4側面上,則 能採用與專利文獻1及2所記載之可變電容器實質上相同 的構裝狀態。 - 於第2類型之電容器中,若至少構成電容形成區域之 φ 介電體層為由介電特性之直流偏壓相依性大的材料構成, 則能使直流偏壓之靜電容的可變範圍更廣。 於第2類型之電容器中’若電容器本體包含複數組第 1電容取得用電極、第2電容取得用電極、第i直流偏麼 施加用電極及第2直流偏麼施加用電極,則不僅能使直流 偏麼之靜電容的可變範圍更廣,且亦能使取得靜電容更 再久,依據本發明第 — 頰孓之電容器,雖然為形成靜 電谷需要第1及第2電容敌;p田帝| 需要第1及望” ☆ #用電極,為使靜電容為可變 *要第1及第2直流偏壓施加用 雷…θ… ㈣加用電極,但此等帛i及第2 電今取付用電極、以及第丨 各位置,具有下列特徵,亦即第愿施加用電極的 用電極,係設置於第!及第— 2直流偏壓施加 相同介電體層的相同主面上谷取得用電極間所夹持之 需最小限度構造,由於可以兩::電體=電…^ 域)與夹持各介電體層之三層電^層電來體層(形成電容形成區 利文獻1或2所記载此與上述專 €办里可變電容器相較之 15 1331759 下’可小型化且高電容化。 又’依據第3類型之電容器,由於為在第1及第2直 流偏壓施加用電極間不存在接地電極之構造,因此第丨及 第2直流偏壓施加用電極所施加於介電體層之電容形成區 域的電場沒有被屏蔽,能抑制電場強度降低所導致之電容 變化率的降低。因此,能以較低之電壓來抑制電容器給予 的靜電容。 於第3類型之電容器中,第丨及第2直流偏壓施加用 電極在介電體層主面方向的位置,若設置成與上述電容形 成區域重疊,則由於能使第丨及第2電容取得用電極不夾 持直流偏壓施加用電極,因此能使電容特性穩定。 另一方面,於第3類型之電容器中,第】及第2直流 偏壓施加用電極在介電體層主面方向的位置,若設置成與 電容形成區域重疊,則由於能使第丨及第2直流偏壓施加 用電極間的距離縮短,其結果,即使施加較低之電壓作為 直流偏壓時,亦能獲得電容變化的效果。 於第3類型之電容器中,第丨及第2直流偏壓施加用 電極,皆為形成並列之複數個電極指的梳型齒狀,若第ι 直流偏壓施加用電極所具備之各電極指,位在插入第2直 流偏壓施加用電極所具備之各電極指間的位置,則能使第 1及第2直流偏壓施加用電極間之距離縮短,且能使第】 及第2直流偏壓施加用電極之對向面積變大,即使施加較 低之電壓作為直流偏壓,亦能獲得電容變化的效果。 於第3類型之電容器中,電容器本體為具有四個側面 16 1331759 之長方體形’右將第1及第2直流偏歷施加用端子導體膜、 以及第1及第2電容取得用端子導體膜,分別設置於第1 側面、與第1側面對向之第2側面、與第1及第2側面相 鄰接之第3側面、以及與第3側面對向之第4側面上,則 能採用與專利文獻1及2所記載之可變電容器實質上相同 的構裝狀態。 於第3類型之電容器中,若至少構成電容形成區域之 介電體層為由介電特性之直流偏壓相依性大的材料構成, 則能使直流偏壓之靜電容的可變範圍更廣。 於第3類型之電容器中,若電容器本體包含複數組第 1電容取得用電極、第2電容取得用電極、第丨直流偏壓 施加用電極、及第2直流偏壓施加用電極,則不僅能使直 流偏壓之#電容的可變範園更廣’1亦能使取得靜電容更 大0 【實施方式】 (第1類型之實施形態) 圖1及圖2為用以說明本發明第1實施形態之電容器 21者於圖1中,⑷為與該圖24或圖26相對應之圖,係 =面向介電體層22之積層方向的截面來顯示電容器21的 則視圖’(b)〜⑷為與該圖25相對應之圖,係以沿介電體 層22之主面方向延伸的截面來顯示電容器η的俯視圖。 又圖2係於電容器21施加直流偏壓時態的等效電路圖。 —如圖1⑷所不,電容器21具備電容器本冑23,該電 容器本體23具有以適奴μ入 有以複數個介電體層22所構成之積層構 17 1331759 ^電谷器本體23,具備:沿特定介電體層22所設置的 接地用電極24;直流偏壓施加用電極25,係透過特定介 電體層22與接地用電極24對向、且用以在與接地用電極 24之間施加直流偏壓;以及電容取得用電極26,係設置 成位於將直流偏壓施加用電極25夾於與接地用電極24間 的位置,且透過特定介電體層22與接地用電極24對向, 藉此形成靜電容。 電容器本體23,如圖1(b)〜(d)清楚所示,為具有沿積 層方向延伸之四個側面27〜30的長方體形。於第】側面27 上,設置有接地用端子導體膜31。於與第丨側面27對向 之第2側面2 8上,没置有直流偏磨施加用端子導體膜3 2。 於與第1及第2側面27及28相鄰接之第3側面29上, 設置有第1電容取得用端子導體膜33 ^於與第3側面29 對向之第4側面30上,設置有第2電容取得用端子導體 膜34。 於圖1(b),顯示電容取得用電極26所通過之截面。電 容取得用電極26,被拉出至第3側面29,在此處電連接 於第1電容取得用端子導體膜33。 於圖1(c),顯示直流偏壓施加用電極25所通過之截 面。直流偏壓施加用電極25,被拉出至第2側面28,在 此處電連接於直流偏廢施加用端子導體膜32。 於圖1(d),顯示接地用電極24所通過 電…拉出至第i側面27,且亦被拉出至第截4側面接3地〇用 又’接地用電S 24,於第i側面27上電連接於接地用端 1331759 子導體膜31’又,於第4側面30上電連 得用端子導體膜34。 取 具有如上構成之電容器21,如圖2清楚所示,於接地 用電極24與電容取㈣電極26間所形成之靜電容,係從 第1及第2電容取得用端子導體膜33及34所取出。於第 1及第2電容取得用端子導體膜33 & 34,電連接有既定 電路(未圖示)。此時,若通過接地用端子導體膜Η及直产 偏壓施加用端子導體膜32,於接地用電極24與直流偏壓 把加用電極25間施加直流偏壓37,則位於接地用電極μ =直流偏壓施加用電極25間的介電體層22之介電常數等 介,特性會產生變化。因此,使位於該接地用電極24盘 =容取得用電極26間的介電體層22之部份介電特性產^ 變化,其結果,可改變通過第1及第2電容取得用端子導 體膜33及34所取出的靜電容。 為使該靜電容之變化幅度加大,介電體層22,特別是 位於接地用電極24與直流偏壓施加用電極25間之介電體 層22,較佳為由介電特性之直流偏壓相依性大的材料構 =。如此,作為介電特性之直流偏壓相依性大的材料,例 ^^®ai.o〇6(Ti0 97Zr0 03)〇3 — 2.5Gd〇3 / 2~ 2.5Mg〇 — 〇.5Mn〇— i.0Si〇 例1 其次,說明為確認第丨實施形態之效果所實施的實 施 此實施例1,製作與圖〗所示之電容器21實質上具有 相同構造者作為本發明範圍内之實施例試樣丨,又製作與 19 1J31759 前述圖24所示之電容胃1實質上具有相同構造者作為本 發明範圍外之比較例試樣2。於此等各試樣丨及2中,作 為構成介電體層之介電體,係使用BaTi〇3類之高介電常數 陶瓷材料,並使位於電極間之介電體層厚度為2〆^。又, 電極係以錄為主成分,厚度則為又,電容器本體之 外觀尺寸為 3.2mmxl.6mmx0.4mm。 對上述試樣1及2之各電容器,求出施加0〜36V範 圍内若干個直流偏壓時的電容變化率。其結果顯示於圖 從圖3可知’靜電容在試樣1最大約減少8〇%以上, 另-方面’在試樣2則最大約減少25%。此係由於在試樣 2,於成對之直流偏壓施加用電極Material composition. In the capacitor of the third type, the capacitor main body may include a plurality of first capacitor acquisition electrodes, a second capacitor acquisition electrode, a 直流1 DC bias application electrode, and a second DC bias application electrode. A capacitor of the type 1 is provided with a DC biasing electrode in accordance with the present invention, and the grounding electrode is provided in a direction in which both the first applied electrode and the capacitor-acquisition electrode are opposed to each other. The electrode for applying a DC bias is also paired with the capacitor obtaining electrode as an electrode for forming a static capacitance. For example, & 'has two functions for the grounding electrode', and the tantalum capacitor is variable, and gj is the capacitor body, and at least three electrodes of the grounding electrode, the DC bias applying electrode, and the capacitor obtaining electrode are required. And at least two dielectric layers act as an "electrical layer separating the electrodes. Therefore, it is advantageous to develop the miniaturization of the capacitor. Further, in the first embodiment, the capacitor body is not interposed between the DC bias application electrode and the ground electrode. Therefore, the DC bias application electrode and the ground electrode can be easily narrowed. Further, when the DC bias application electrode and the ground electrode are spaced apart from each other, 12 1331759 改变 changes the dielectric characteristics of the dielectric layer at a lower voltage, and as a result, the capacitor can be controlled with a lower voltage. Static capacitance. Further, in the first type, since the capacitance is made variable as described above, the number of electrodes and the dielectric layer required for the capacitor body can be reduced, so that the volume capacitance can be increased, and the size and capacitance can be easily reduced. In the first type, the capacitor of the present invention further includes a second capacitor-acquisition terminal conductor film electrically connected to the grounding electrode, wherein the capacitor body has a rectangular parallelepiped shape having four side faces, and the grounding terminal conductor film is provided in the first In the side surface, the terminal-bonding film for applying a DC bias is provided on the second side surface. The first capacitor-acquisition terminal conductor film is provided on the third side surface, and the second capacitor-acquisition terminal conductor film is provided on the fourth side surface. The configuration state substantially the same as that of the variable capacitors disclosed in Patent Documents 1 and 2 can be employed. In the capacitor of the first type, if at least the dielectric layer between the grounding electrode and the DC bias application electrode is made of a material having a high DC bias and dependence of dielectric characteristics, DC bias can be used. The variable capacitance has a wider range of variations. In the capacitor of the first type, if the capacitor body includes the multi-array grounding electrode, the DC bias application electrode, and the capacitance-acquisition electrode, the variable range of the DC bias static capacitance can be made wider. It is also possible to make the electrostatic capacitance larger. According to the second type of capacitor of the present invention, the first and second capacitor-preventing electrodes are required to form the electrostatic capacitance, and the first and second DC bias-applying electrodes are required to make the capacitance constant. 1331759 φ capacitance acquisition electrode and each of the first and second DC bias housing applications have the following characteristics, that is, the 1 ! DC bias application electrode, the money is placed and the first capacitance acquisition electrode is provided. The DC bias applying electrode on the main surface of the dielectric layer having the same main surface is provided on the same main surface as the main surface of the dielectric layer on which the second capacitor obtaining electrode is provided. Therefore, 'the minimum configuration required to make the capacitance variable is realized by the layer dielectric layer (forming the capacitor formation region) and the two electrode layers sandwiching the dielectric layer. Therefore, the patent document i Or the conventional capacitance variable capacitor disclosed in 2 can be miniaturized and capacitive. In the capacitor of the second type, the first and second DC bias application electrodes are applied to the dielectric layer because there is no grounding electrode between the i-th and second DC bias application electrodes. The electric field in the capacity forming region is not shielded, and it is possible to suppress a decrease in the rate of change in capacitance caused by a decrease in electric field strength. Therefore, the electrostatic capacitance given by the capacitor can be suppressed with a lower voltage. In the capacitor of the second type, the electrode for the first DC bias application electrode is located on the side of the first DC bias application electrode and the second DC bias application electrode for the second capacitance acquisition electrode. The side is the phase side, and in the capacitance forming region of the dielectric layer, a DC bias is applied to the oblique direction of the dielectric sound direction, and the first and second capacitor receiving electrodes and the first and second electrodes can be used. The application of DC dust is a compact configuration of the Remy quadrupole, which contributes to the miniaturization of the capacitor. In the capacitor of the second type, the capacitor body has a rectangular parallelepiped shape having four side faces 1331759, and the first and second DC bias application terminal conductor films and the first and second capacitor-acquisition terminal conductor films are respectively The first side surface, the second side surface opposite to the first side surface, the third side surface adjacent to the first and second side surfaces, and the fourth side surface opposite to the third side surface can be used The variable capacitors described in Patent Documents 1 and 2 have substantially the same configuration state. - In the capacitor of the second type, if at least the dielectric layer of the capacitor forming region is made of a material having a large DC bias dependence of dielectric characteristics, the variable range of the DC bias can be made more variable. wide. In the capacitor of the second type, if the capacitor body includes the plurality of first capacitor acquisition electrodes, the second capacitor acquisition electrode, the ith DC bias electrode, and the second DC bias electrode, The static capacitance of the DC bias is wider, and the electrostatic capacitance can be obtained for a longer period of time. According to the first embodiment of the present invention, the first and second capacitors are required for forming the electrostatic valley; Emperor | Needs 1st and hope" ☆ #用电极, in order to make the static capacitance variable *The first and second DC bias apply thunder...θ... (4) Add the electrode, but these 帛i and 2nd In the present invention, the electrode for use and the position of the second electrode, which is the electrode for the electrode to be applied, is provided on the same main surface of the same dielectric layer as the second and second DC biases. The minimum structure required for clamping between the electrodes is as follows: two:: electric body = electric ... ^ domain) and three layers of electric layers that sandwich each dielectric layer (formation of capacitance forming region 1 or 2) It is recorded that this is compared with the variable capacitors in the above-mentioned special office. In the case of the capacitor of the third type, since the ground electrode is not present between the first and second DC bias application electrodes, the second and second DC biases are used. The electric field applied to the capacitance forming region of the dielectric layer by the pressure applying electrode is not shielded, and the decrease in the capacitance change rate due to the decrease in the electric field strength can be suppressed. Therefore, the electrostatic capacitance given by the capacitor can be suppressed with a lower voltage. In the capacitor of the third type, the position of the second and second DC bias application electrodes in the main surface direction of the dielectric layer is set to overlap with the capacitance formation region, whereby the second and second capacitors can be obtained. Since the electrode does not sandwich the DC bias application electrode, the capacitance characteristics can be stabilized. On the other hand, in the third type of capacitor, the first and second DC bias application electrodes are in the direction of the main surface of the dielectric layer. When the position is overlapped with the capacitance forming region, the distance between the second and second DC bias application electrodes can be shortened, and as a result, even if a lower voltage is applied as a straight In the case of the flow bias, the effect of the capacitance change can also be obtained. In the capacitor of the third type, the second and second DC bias application electrodes are comb-shaped teeth forming a plurality of electrode fingers juxtaposed, if Between each of the electrode fingers of the second DC bias application electrode, the electrode fingers of the DC bias application electrode are interposed between the first and second DC bias application electrodes. The distance is shortened, and the opposing area of the first and second DC bias application electrodes can be increased, and even if a lower voltage is applied as a DC bias, a capacitance change effect can be obtained. The capacitor body is a rectangular parallelepiped having four side faces 16 1331759. The first and second DC bias application terminal conductor films and the first and second capacitor-acquisition terminal conductor films are respectively disposed on the first side. The second side surface opposite to the first side surface, the third side surface adjacent to the first and second side surfaces, and the fourth side surface facing the third side surface can be used in Patent Documents 1 and 2. The variable capacitors described are substantially identical in construction. State. In the capacitor of the third type, if at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC bias dependence of dielectric characteristics, the variable range of the electrostatic capacitance of the DC bias can be made wider. In the capacitor of the third type, the capacitor body includes the plurality of first capacitor acquisition electrodes, the second capacitor acquisition electrode, the second DC bias application electrode, and the second DC bias application electrode. It is also possible to make the static capacitance larger than the variable capacitance of the DC bias of '1'. [Embodiment] (Embodiment 1) FIG. 1 and FIG. 2 are for explaining the first aspect of the present invention. In the capacitor 21 of the embodiment, FIG. 1 and (4) are diagrams corresponding to FIG. 24 or FIG. 26, and the cross section of the dielectric layer 22 is shown in the cross section of the dielectric layer 22 to show the view of the capacitor 21 (b) to (4). In the drawing corresponding to FIG. 25, a plan view of the capacitor η is shown in a cross section extending in the direction of the main surface of the dielectric layer 22. FIG. 2 is an equivalent circuit diagram of the state in which the capacitor 21 is applied with a DC bias. - As shown in Fig. 1 (4), the capacitor 21 is provided with a capacitor body 23 having a laminated structure of a plurality of dielectric layers 22, which is provided with a plurality of dielectric layers 22. The grounding electrode 24 provided in the specific dielectric layer 22; the DC bias applying electrode 25 is transmitted through the specific dielectric layer 22 and the grounding electrode 24, and is used to apply a DC bias between the grounding electrode 24 and the grounding electrode 24. And the capacitor acquisition electrode 26 is disposed so as to be sandwiched between the DC bias application electrode 25 and the ground electrode 24, and is transmitted through the specific dielectric layer 22 and the ground electrode 24, thereby forming Static capacitance. As clearly shown in Figs. 1(b) to 1(d), the capacitor body 23 has a rectangular parallelepiped shape having four side faces 27 to 30 extending in the lamination direction. On the side surface 27, a grounding terminal conductor film 31 is provided. On the second side face 28 opposed to the second side 27, the DC bias application terminal conductor film 3 2 is not provided. On the third side face 29 adjacent to the first and second side faces 27 and 28, a first capacitor-acquisition terminal conductor film 33 is provided on the fourth side face 30 opposed to the third side face 29, and is provided. The second capacitor acquisition terminal conductor film 34. Fig. 1(b) shows a cross section through which the capacitor obtaining electrode 26 passes. The capacitor-acquisition electrode 26 is pulled out to the third side face 29, and is electrically connected to the first capacitor-acquisition terminal conductor film 33. Fig. 1(c) shows a cross section through which the DC bias applying electrode 25 passes. The DC bias application electrode 25 is pulled out to the second side surface 28, where it is electrically connected to the DC offset application terminal conductor film 32. In Fig. 1(d), the grounding electrode 24 is shown to be pulled out to the i-th side 27, and is also pulled out to the fourth side of the fourth side, and the grounding power S24 is used. The side surface 27 is electrically connected to the grounding end 1331759 sub-conductor film 31', and the terminal conductor film 34 is electrically connected to the fourth side surface 30. The capacitor 21 having the above configuration is as shown in FIG. 2, and the electrostatic capacitance formed between the grounding electrode 24 and the capacitor (four) electrode 26 is obtained from the first and second capacitor-forming terminal conductor films 33 and 34. take out. The first and second capacitor-acquisition terminal conductor films 33 & 34 are electrically connected to a predetermined circuit (not shown). At this time, when the terminal conductor film 32 for grounding and the terminal conductor film 32 for direct bias application are applied, a DC bias 37 is applied between the ground electrode 24 and the DC bias voltage to the application electrode 25, and the ground electrode μ is placed. = The dielectric constant of the dielectric layer 22 between the DC bias application electrodes 25 is changed, and the characteristics are changed. Therefore, the dielectric properties of the dielectric layer 22 located between the grounding electrode 24 and the capacitor electrode 26 are changed. As a result, the terminal conductor film 33 for obtaining the first and second capacitors can be changed. And the electrostatic capacitance taken out of 34. In order to increase the variation of the electrostatic capacitance, the dielectric layer 22, particularly the dielectric layer 22 between the grounding electrode 24 and the DC bias applying electrode 25, is preferably DC-biased by dielectric characteristics. Sexual material structure =. Thus, as a material having a large DC bias dependence of dielectric characteristics, for example, ^^®ai.o〇6(Ti0 97Zr0 03)〇3 — 2.5Gd〇3 / 2~2.5Mg〇—〇.5Mn〇—i 。 〇 1 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次 其次Further, a sample 2 of a comparative example which is substantially the same as the range of the present invention, which is substantially the same as the capacitance stomach 1 shown in Fig. 24, is prepared. In each of the samples 2 and 2, as the dielectric material constituting the dielectric layer, a BaTi〇3 type high dielectric constant ceramic material was used, and the thickness of the dielectric layer between the electrodes was 2 Å. Further, the electrode is recorded as a main component, and the thickness is again. The external dimensions of the capacitor body are 3.2 mm x 1.6 mm x 0.4 mm. For each of the samples 1 and 2 described above, the rate of change in capacitance when a plurality of DC bias voltages in the range of 0 to 36 V were applied was determined. The results are shown in Fig. 3. As can be seen from Fig. 3, the electrostatic capacitance is reduced by about 8% or more in the sample 1, and the other is reduced by about 25% in the sample 2. This is due to the pair of DC bias application electrodes in Sample 2.

層,相對於此,在試樣卜則將用以施加直^壓的Z 之一電極及用以取得電容的其中之一電極,以接地用電極 予以八通化,故在成對之直流偏壓施加用電極間僅存在一 層介電體層的緣故。其結果,依據試樣i,能以更低之電 壓獲得需要之電容變化率。 此外,在上述實驗例i,雖使用某特定之BaTi〇3類的 同’丨電*數陶瓷材料作為構成介電體層之介電體,但此陶 竟材料,右使用介電特性之i流偏壓相依性更大的材料, 則能獲得對直流偏壓之電容變化範圍更廣的電容器。 圖4及圖5係分別顯示本發明第2及第3實施形態之 電容器“及51,且與圖1(a)對應。於圖4及圖$中與 圖1(a)所不之疋件相當者,賦予相同的參照符號並省略 重複說明。 20 1331759 第2及第3實施形態之電容器“及5卜其特徵在於: 於電容器本體23巾’形成有複數組接地用電極24、直流 偏Μ施加用電極25及電容取得用電極26。 更詳細為,在圖4所示之電容器41中,複數組接地用 電極24'直流偏壓施加用電㉟25及電容取得用電極 從上方開始,以電容取得用電極26、直流偏壓施加用電極 25、接地用電極24、電容取得用電極26、.之順序,複 數次重複配置。 在圖5所示之電容器5”,從上方開始,以電容取得 用電極26、直流偏壓施加用電極乃、接地用電極24、直 流偏壓施加用電極25、電容取得用電極26、…之順序, 複數次重複配置。In contrast, in the sample, one of the Z electrodes for applying the direct voltage and one of the electrodes for obtaining the capacitance are octoberized by the grounding electrode, so that the DC bias is paired. There is only one dielectric layer between the electrodes for application. As a result, depending on the sample i, the required rate of change of capacitance can be obtained at a lower voltage. Further, in the above experimental example i, although a specific BaTi〇3 type of the same electric material is used as the dielectric body constituting the dielectric layer, the ceramic material of the ceramic material is used for right flow. A material with a higher bias dependence can obtain a capacitor with a wider range of capacitance variations from a DC bias. 4 and 5 show capacitors "and 51" according to the second and third embodiments of the present invention, respectively, corresponding to Fig. 1 (a). Fig. 4 and Fig. 1 and Fig. 1 (a) The same reference numerals will be given to the same reference numerals, and the description will be omitted. 20 1331759 The capacitors of the second and third embodiments are characterized in that: a capacitor array body 23 is formed with a plurality of array ground electrodes 24 and DC bias The application electrode 25 and the capacitance acquisition electrode 26 are provided. More specifically, in the capacitor 41 shown in FIG. 4, the complex array grounding electrode 24' DC bias application power 3525 and the capacitance acquisition electrode are started from above, and the capacitance acquisition electrode 26 and the DC bias application electrode are used. 25. The order of the grounding electrode 24 and the capacitor obtaining electrode 26 and . is repeated a plurality of times. In the capacitor 5" shown in FIG. 5, the capacitor acquisition electrode 26, the DC bias application electrode, the ground electrode 24, the DC bias application electrode 25, the capacitance acquisition electrode 26, ... Order, repeat the configuration multiple times.

換言之,在圖4所示之電容器41中,將圖…)所示之 電容器的電容取得用電極26、直流偏壓施加用電極乃 及接地用電極24的配置當纟"且,並複數次重複此組。 在圖5所示之電容器51,則在相鄰組之間共用接地用電極 24,且每隔兩層介電體層22配置直流偏壓施加用電極乃。 此外,對圖4所示之電容器4〗的電容器本體23、及 圖5所示之電容器51的電容器本體23進行比較時,厚度 方向尺寸雖圖示為不同,但此不過是因為欲圖示電極Μ〜 26數量不同之原因所招致之結果,圖示之厚度方向尺寸的 差異,並非有特別意義。 其次,如上述電容器41及51,於電容器本體以具備 複數組接地用電極24、直流偏壓施加用電極25及電容取 21 1331759 得用電極26時’說明為確認若依本發明之電容器即能 獲得更廣之電容變化範圍所實施的實驗例2。 b 此實驗例2,如表1所示,雖製作各試樣丨丨〜丨〗之電 容器,但各電容器之介電體層的材料及厚度、以及電極之 材料及厚度,係與該實驗例"目同。χ,各試樣m 之電容器的外觀尺寸’皆為3.2mmxl 6_χι 6_。 試樣U,係採用24所示之電極的配置構造,包含 施加用電極及電容取得用電極之全部電極的積層 數為5 0 0。 ::12’係採用圖26所示之電極的配置構造,包含 數==施加用電極及電容取得用電極之全部電極的積層 地用::13 ’係採用圖4所示之電極的配置構造,包含接 電極的積層數::一電極及電容取得用電極之全部 ❿ 化時二二::」1圍:13’將直流㈣在°〜36V範圍内變 电令變化乾圍表示於表1。In other words, in the capacitor 41 shown in FIG. 4, the arrangement of the capacitance obtaining electrode 26, the DC bias applying electrode, and the grounding electrode 24 of the capacitor shown in Fig. 4) is 纟" Repeat this group. In the capacitor 51 shown in Fig. 5, the grounding electrode 24 is shared between adjacent groups, and the DC bias applying electrode is disposed every two layers of the dielectric layer 22. Further, when the capacitor body 23 of the capacitor 4 shown in FIG. 4 and the capacitor body 23 of the capacitor 51 shown in FIG. 5 are compared, the thickness direction dimension is different, but this is because the electrode is to be illustrated. The result of the difference in the number of Μ~26, the difference in the thickness direction of the figure, is not of special significance. Next, as described above, the capacitors 41 and 51 have the capacitor array body 24, the DC bias application electrode 25, and the capacitor 21 1331759. The capacitor 26 can be used to confirm that the capacitor according to the present invention can be used. Experimental Example 2 was carried out to obtain a wider range of capacitance variation. b In the experimental example 2, as shown in Table 1, the capacitors of the respective samples were prepared, but the materials and thicknesses of the dielectric layers of the capacitors, and the materials and thicknesses of the electrodes were compared with the experimental example. ; the same. χ, the outer dimensions of the capacitors of each sample m were both 3.2 mm x 16__ι 6_. In the sample U, the arrangement of the electrodes shown in Fig. 24 was employed, and the number of layers including all the electrodes of the application electrode and the capacitance acquisition electrode was 50,000. The structure of the electrode shown in Fig. 26 is used for the layering of the electrodes of the application electrode and the capacitor acquisition electrode: 13' is the arrangement of the electrodes shown in Fig. 4 , the number of layers including the electrode:: one electrode and the capacitor to obtain all of the electrode when the second two:: "1 circumference: 13' DC (four) in the range of ~ ~ 36V to change the dry circumference shown in Table 1 .

13 6·8〜13·7 6.0 〜36.4 [表1] 從表 1 ^γΤ ——~~ 圍外之試樣U D將本發明範圍内之試樣13、與本發明範 極之積層教Λ及12進行比較時,電容器之尺寸相同且電 :同程度時’依據本發明之電容器,可獲得 22 1331759 更大電容且可使電容的可變幅度更廣。 試樣11’由於為電容取得用電極夾於直流偏壓施加用 電極之構造,因此能獲得較試樣12大的最大電容,但電 容之可變幅度狹窄。 另一方面,在試樣12,由於為直流偏壓施加用電極夾 於電各取仵用電極之構造,因此無法獲得大電容即使電 極之積層數為500 ’最大電容仍不過僅為13.7/zF。 相對於此等試樣’試樣丨3中,與試樣丨〖相較,最大 電容更大且電容可變幅度更廣。 以上’雖參照圖1至圖5說明本發明之第1類型第1 至第3實施形態,但於本發明範圍内,亦能有其它各種變 形例。 、 例如’在第1至第3實施形態,作為電連接於接地用 電極24之端子導體膜,除了接地用端子導體膜31外,更 形成第2電谷取得用端子導體膜34,但此種第2電容取得 用端子導體膜亦可省略。此時,接地用端子導體膜31,可 設置於第2電容取得用端子導體膜34所設置之位置,亦 可设置成從圖示之接地用端子導體膜31所設置之位置一 連延伸至第2電容取得用端子導體膜34所設置之位置。 又’在第1至第3實施形態,接地用電極24、直流偏 壓把加用電極25及電容取得用電極26,雖皆形成於電容 器本體23内部’但位於積層方向最邊緣的電極,例如, 在圖1(a)所示之電容器21,接地用電極24及/或電容取 得用電極26 ’亦可形成於電容器本體23之外表面上。 23 1331759 非為本發明範圍内之前述第i、 實施形態的各種變形彻.p ^ , 乐2及第3 變H亦即$ 1 1 U 3 _ 此外’於第1至第3變形例之說明中,對於與 實施形態之說明所使用之參照符號相當的元;至二 的參照符號。 便用相同 圖6及圖7,用以說明與該第1實施 變形例的電容器2la。於圖6 〜之第 FI,m A入 "為與該® 1(a)對應之13 6·8~13·7 6.0 to 36.4 [Table 1] From the sample UD of Table 1 ^γΤ ——~~, the sample 13 within the scope of the present invention and the layered teaching of the present invention are When comparing 12, the capacitors are the same size and electrically: at the same level, 'according to the capacitor of the present invention, a larger capacitance of 22 1331759 can be obtained and the variable amplitude of the capacitor can be made wider. Since the sample 11' has a structure in which the electrode for capacitor acquisition is sandwiched between the electrodes for applying a DC bias, the maximum capacitance larger than that of the sample 12 can be obtained, but the variable width of the capacitor is narrow. On the other hand, in the sample 12, since the DC bias application electrode was sandwiched between the electrodes for electric pickup, it was not possible to obtain a large capacitance. Even if the number of layers of the electrodes was 500', the maximum capacitance was only 13.7/zF. . Compared with the sample 丨3, the maximum capacitance is larger and the capacitance variable width is wider than that of the sample 丨3. Although the first to third embodiments of the first aspect of the present invention have been described above with reference to Figs. 1 to 5, other various modifications are possible within the scope of the present invention. For example, in the first to third embodiments, the second conductor valley-acquisition terminal conductor film 34 is formed in addition to the grounding terminal conductor film 31 as the terminal conductor film electrically connected to the grounding electrode 24. The terminal conductor film for obtaining the second capacitor may be omitted. In this case, the grounding terminal conductor film 31 may be provided at a position where the second capacitor obtaining terminal conductor film 34 is provided, or may be provided to extend from the position where the grounding terminal conductor film 31 is illustrated to the second position. The position at which the terminal conductor film 34 for capacitance acquisition is provided. Further, in the first to third embodiments, the grounding electrode 24, the DC biasing electrode 25 and the capacitance obtaining electrode 26 are formed inside the capacitor body 23, but are located at the outermost edge of the stacking direction, for example. The capacitor 21 shown in FIG. 1(a), the grounding electrode 24 and/or the capacitor obtaining electrode 26' may be formed on the outer surface of the capacitor body 23. 23 1331759 The various modifications of the above-mentioned i-th embodiment in the scope of the present invention are as follows: p ^ , music 2 and third change H, that is, $ 1 1 U 3 _ in addition to the description of the first to third modifications The elements corresponding to the reference symbols used in the description of the embodiments; the reference symbols to the second. The capacitors 21a according to the modification of the first embodiment will be described using the same Figs. 6 and 7. In Fig. 6~, FI, m A into " corresponds to the ® 1(a)

圖,係以面向介電體層…層方向的截面來顯示電容 裔2U的月"見圖,⑻〜(d)為與該圖i(b)〜⑷對應 係以沿介電體層 9 9 > * + a μ ,丄 电菔暦22之主面方向延伸的截面來顯示電容器 21a的俯視圖。又,圖7係對應於該圖2。 如圖6⑷所示’電容器21a具備電容器本體23,該電 容器本體23具有以複數個介電體層22所構成之積層構 ^電令器本體23 ,具備:沿特定介電體層22所設置的 接地用電極24 ;直流偏壓施加用電極乃,係設置在透過 2定^電體層22,與接地用電極24對向的位置;以及電 T取得用電極26,係設置成位於接地用電極24與直流偏 壓施加用電極25間的位置,且透過特定介電體層22,與 接地用電極24對向’藉此形成靜電容。 電谷本體23,如圖6(b)〜(d)清楚所示,為具有沿積 層方向延伸之四個侧面27〜3〇的長方體形。於第1側面27 上叹置有接地用端子導體膜31。於與第1侧面27對向 之第2側面28上,設置有直流偏壓施加用端子導體膜32。 於與第1及第2侧面27及28相鄰接之第3側面29上, 24 1331759 設置有第1電容取得用端子導體膜33。於與第3側面29 對向之第4側面30上,設置有第2電容取得用端子導體 膜34。 圖6(b)顯示直流偏壓施加用電極25所通過之截面。直 流偏麼施加用電極25被拉出至第2側面28,在此處電連 接於直流偏!施加用端子導體膜3 2。 圖6(c)顯示電容取得用電極26所通過之截面《電容取 得用電極26被拉出至第3側面29,在此處電連接於第! 電容取得用端子導體膜33。 於圖6(d)顯示接地用電極24所通過之截面。接地用電 極24被拉出至第!側面27,且亦被拉出至第4側面3〇。 又,接地用電極24,於第1側面27上電連接於接地用端 子導體膜31,又,於第4侧面30上電連接於第2電容取 得用端子導體膜34。 如圖7滑楚所示 於具有如上構成之電容器21a中 φ 於接地用電極24與電容取得用電極26間所形成之靜電 容,係從第1及第2電容取得用端子導體膜33及34所取 出。於第1及第2電容取得用端子導體膜33及%,電連 接有既定電路(未圖示)。此時,若通過接地用端子導體膜 3i及直流偏麼施加用端子導體膜32,將直流偏壓η施加 於接地用電極24與直流偏壓施加用電極乃間則位於接 地用電極24與直流偏壓施加用電極乃間之介電體層U 介電常數等介電特性會產生變化。因此,使位於該接地用 電極24與電容取得用電極26間的介電體層u介電特性 25 J生變化’其結果,可使通過第1及第2電容取得用端子 體膜33及34所取出之靜電容產生變化。 於此變形例中,為使該靜電容之變化幅度更大,介電 體層22 ’特別疋位於接地用電極24與電容取得用電極% 間的介電體層22,較佳為由介電特性之直流偏壓相依性大 的#料構成。 此外,此第1變形例,於接地用電極24與電容取㈣ 電極26間,由於未夾著直流偏壓施加用電極25,因此與 該第1實施形態之情形相較之下,可使電容特性更為穩定: 圖8及圖9係分別顯示與該第2及第3實施形態相對 應之第2及第3變形例的電容器41a及5U,且與圖*及 圖5相對應。 第2及第3變形例之電容器413及51a,其特徵在於: 與第2及第3實施形態之情形相同,於電容器本體以中, 形成有複數組接地用電極24、直流偏壓施加用電極25及 電容取得用電極26。 更詳細為,圓8所示之電容器41a,複數組接地用電 極24、直流偏壓施加用電極25及電容取得用電極26,從 上方開始’按照直流偏壓施加用電極2 5、電容取得用電極 26、接地用電極24、直流偏壓施加用電極25、…之順序, 複數次重複配置著。 圖9所不之電容器51 a ’則是從上方開始,按照直流 偏壓施加用電極25、電容取得用電極26、接地用電極Μ、 電容取得用電極26、直流偏壓施加用電極25、…之順序, 26 1331759 複數次重複配置著。 換言之’圖8所示之電容器41a,係 1承將圖6(狂)所 電容器21a之直流偏壓施加用電極25、番_ ^ 电各取得用電栖 及接地用電極24的配置當成丨組,並 ^ I複數次重複此組。 圖9所示之電容器51a,則是在相鄰組之間共用接地 極24’且每隔兩層介電體層22配置電容敢值 仔用電極26。 如上述電容器4la^lam器本體23具 組接地用電極24、直流偏壓施加用電極 %丨上及電容取得用 電極26,則能獲得更廣之電容變化範圍。 (第2類型之實施形態) 圖10及圖u,係用以說明本發明第4實施形離之電 谷器m。於圖10中’⑷係與該圖24或圖26對應之圖, 係以面向介電體層122之積層方向的截面來顯示電容器ΐ2ι 的則視圖’(b)及⑷為與該圖25對應之圖,係以沿介電體 層122之主面方向延伸的截面來顯示電容器121的俯視 圖又,圖11為將直流偏壓施加於電容器121時的等效 電路圖。 ^圖10⑷所示,電容器121具備電容器本體123,該 電2器本體123具有以複數個介電體層122所構成之積層 ,。電容器本體123,具備:第丨及第2電容取得用電 向丨24及125,係設置成透過特定之介電體層122相互對 ^藉此形成靜電容;以及第】及第2直流偏麼施加用電 電办27及128,係用以將直流偏壓施加在位於第1及第2 ^取得用電極124及125間之介電體層122的電容形成 27 /^9 區域126。 第1直流偏壓施加用電極127,係設置在與設置有第i 另:取得用電極124之介電體,122主面相同的主面上。 面第2直流偏壓施加用電極128,則設置在與設 有第2電容取得用電極125之介電體層122主面相同的 主面上。 加又才目對第1電容取得用電極124,第1直流偏壓施 ^用電極127所在之側’係與相對於第2電容取得用電極 125之第2直流偏壓施加料極128所在之側為相反側。 此藉第1及第2直流偏壓施加用電極i27及i28所施 加之直流偏壓’係相對介電體層122之厚度方向呈朝斜邊 方向。 電容器本體123 ’如圖10(b)及⑷清楚所示,為具有沿 積層方向延伸之四個侧面129〜132的長方體形。於第ι 侧面129上,設置有第}直流偏壓施加用端子導體膜^33。 於與第1側面129對向之第2侧面【3〇上,設置有第2直 流偏壓施加用端子導體臈134。於與第i及第2側面129 及130相鄰接之第3側面131上,設置有第】電容取得用 端子導體膜135。於與第3侧面131對向之第4側面132, 設置有第2電容取得用端子導體膜136。 於圖10(b),顯示第1電容取得用電極ία及第1直流 偏壓施加用電極127所通過之截面。第丨電容取得用電極 124,被拉出至第3側面131,在此電連接於第丨電容取得 用端子導體膜135。第1直流偏壓施加用電極ι27,被拉 1331759 出至第1側面129,在此電連接於第1直流偏壓施加用端 子導體膜133。 於圖10(c) ’顯示第2電容取得用電極125及第2直流 偏壓施加用電極128所通過之截面。第2電容取得用電極 125’被拉出至第4側面132,在此電連接於第2電容取得 用端子導體膜136。第2直流偏壓施加用電極128,被拉 出至第2側面130,在此電連接於第2直流偏壓施加用端 子導體膜134。 於具有如上構成之電容器121中,如圖n清楚所示, 於第1及第2電容取得用電極124及125間所形成之靜電 容’係從第1及第2電容取得用端子導體膜135及136所 取出。於第1及第2電容取得用端子導體膜135及136, 電連接有既定電路(未圖示)。此時,若通過第丨及第2直 流偏壓施加用端子導體膜133及134,於第1及第2直流 偏壓施加用電極127及128間施加直流偏壓137,則位於 第1及第2電谷取得用電極i 24及125間的介電體層122 之電谷形成區域126(參照圖i〇(a))的介電特性會產生變 化。其結果,可使通過第丨及第2電容取得用端子導體膜 135及136所取出之靜電容改變。 為使該靜電容之變化幅度更大,介電體層122,特別 是位於構成電容形成區域126之第i及第2直流偏壓施加 用電極127及128間的介電體層122,較佳為由介電特性 之直流偏壓相依性大的材料構成。如此,介電特性之直流 偏壓相依性大的材料,例如有1〇〇Bai咖(Ti。— 29 1331759 2.5Gd〇3/2_ 2_5Mg〇— 〇,5MnO- l.〇si〇2。 其次,說明為確認第4實施形態之效果所實施的實驗 例3 〇 此實驗例3,製作與圖10所示之電容器121實質上具 有相同構造者作為本發明範圍内之實施例的試樣ι〇ι,製 作與該圖24所示之電容器i實質上具有相同構造者作為 本發明範圍外之比較例的試樣1〇2,於此等各試樣ι〇ι及 1〇2,使用BaTi〇3類之高介電常數陶瓷材料作為構成介電 體層之;丨電體,且使位於電極間之介電體層的厚度為2以 m。又,電極係以鎳為主成分,厚度為。又電容器 本體之外觀尺寸為3.2mmxl.6mmx〇.4mm。 對上述試樣101及102之各電容器,求出施加〇〜 範圍内若干個直流偏壓時的電容變化率。其結果示於圖 12 ° 通常,若於介電體施加直流偏壓,則於某施加電壓以 上,有電容變化率為一定之性質。於圖12中,試樣ι〇ι 之電容變化率,雖僅圖示直流偏壓至12V為止之情形,但 可確認當直流偏壓在12V以上時則成為一定。因此,從圖 12可知,試樣101 ’電容變化率為_定之直流偏壓,為試 樣102的約1/3。此係由於試樣1〇2,於成對之直流偏壓 施加用電極間存在三層介電體層,相對於此,試樣ι〇ι, 則是將直流偏壓施加用電極與電容取得用電極設在相同面 上,藉此,於成對之直流偏壓施加用電極間不過僅存在一 層介電體層,與試樣102相較之下,電極間隔減少至1/3, 1331759 其結果,能以較低之電壓來獲得需要之電容變化率的緣 故。 . 又,試樣101,於成對之直流偏壓施加用電極間,由 於不存在屏蔽電場之電極(導體層),因此可抑制電場強度 降低所導致之電容變化率的降低,其結果,能獲得大電容 變化率。 此外,在上述實驗例3,雖使用某特定之BaTi〇3類之 φ 高介電常數陶瓷材料作為構成介電體層之介電體,但此陶 瓷材料,若使用介電特性之直流偏壓相依性更大的材料, 則可獲得對直流偏壓之電容變化範圍更廣的電容器。 圖13及圖14係分別顯示本發明第5及第6實施形態 之電容器141及151、並與圖1〇⑷相對應。於圖13及圖14 中,與圖10(a)所示之元件相當者,賦予相同的參照符號, 並省略重複說明。 第5及第6實施形態之電容器141及151,其特徵在 • 於·於電容器本體123中’形成有複數組第i電容取得用 電極124、第2電容取得用電極125、第1直流偏壓施加 用電極127及第2直流偏壓施加用電極128。 更詳細為,圖13所示之電容器141中,形成第i電容 取得用電極丨24及第i直流偏壓施加用電極127之介電體 層122,與形成第2電容取得用電極125及第2直流偏壓 施加用電極128之介電體層122,於積層方向交互配置。 圖14所不之電容器151,於積層方向從上方開始係 按照形成第1電容取得用電極124及第i直流偏壓施加用 31 丄09 電極127之 電體層122、形成第2電容取得用電極125 2雷六直机偏壓施加用電極128之介電體層122、形成第 入 取得用電極125及第2直流偏壓施加用電極128之 Ί體層122、形成第1電容取得用電極124及第1直流 偏壓施加用雷炻197入 電極127之介電體層122…之順序配置。 、人如上述電容器141及151,於電容器本體123 具備複數組第!電容取得用電極124、第2電容取得用電 :1 125、第1直流偏壓施加用電極127及第2直流偏壓施 〇用電極128時’說明為確認若依本發明之電容器,即可 使每單位體積之靜電容變大,且更小型化、高電容化,能 、更低電壓將靜電容控制在更廣範圍所實施的實驗例4。 此實驗例4,雖製作作為本發明範圍内之實施例的^ 樣u丨及本發明範圍外之比較例的試樣ιΐ2的各電容器, 但各電容器之介電體層材料及厚度、以及電極材料及厚 度’與上述實驗例3相同。又,於此實驗例之試樣1U及 112的各電谷器外觀尺寸皆為3 ^ ^ 。 更具體而言,試樣"2係採用圖24所示之電極的配置 構造,包含直流偏壓施加用電極及電容取得用電極之全部 電極的積層數為500。另一方面’試樣ηι係採用圖二 示之電極的配置構造,包含第丨及第2電容取得用電極、 以及第i及第2直流偏壓施加用電極之全部電备 為500 〇 曰数 對此等試樣111及112,將直流偏壓在〇〜36v範圍 變化時的電容變化範圍表示於表2。 内 32 1331759 [表2] 圍外:表J可知’將本發明範圍内之試樣1"與本發明範 式樣112進行比較時,在電容器之尺寸相同且電極 ^數為相同程度下’依據本發明之電容器,能獲得更 大電容且可使電容的可變幅度更廣。The figure shows the month of the capacitive 2U in the direction of the layer facing the dielectric layer... (8) ~ (d) corresponds to the figure i(b) ~ (4) along the dielectric layer 9 9 &gt * + a μ , the cross section of the main surface of the crucible 22 extends to show a plan view of the capacitor 21a. 7 corresponds to FIG. 2. As shown in Fig. 6 (4), the capacitor 21a includes a capacitor body 23 having a laminated body body 23 composed of a plurality of dielectric layers 22, and is provided with a grounding layer provided along the specific dielectric layer 22. The electrode 24; the DC bias application electrode is provided at a position that passes through the 2 constant conductor layer 22 and faces the ground electrode 24; and the electric T acquisition electrode 26 is provided at the ground electrode 24 and the DC The position between the bias application electrodes 25 is transmitted through the specific dielectric layer 22, and is opposed to the ground electrode 24 to thereby form a static capacitance. As shown clearly in Figs. 6(b) to 6(d), the cell body 23 has a rectangular parallelepiped shape having four side faces 27 to 3〇 extending in the stacking direction. The grounding terminal conductor film 31 is slanted on the first side surface 27. The DC bias application terminal conductor film 32 is provided on the second side surface 28 opposed to the first side surface 27. On the third side surface 29 adjacent to the first and second side faces 27 and 28, 24 1331759 is provided with a first capacitor-acquisition terminal conductor film 33. The second capacitor-acquisition terminal conductor film 34 is provided on the fourth side face 30 opposed to the third side face 29. Fig. 6(b) shows a cross section through which the DC bias application electrode 25 passes. The DC biasing application electrode 25 is pulled out to the second side face 28 where it is electrically connected to the DC bias! The terminal conductor film 3 2 for application is applied. Fig. 6(c) shows a section through which the capacitor-acquisition electrode 26 passes. "The capacitor-receiving electrode 26 is pulled out to the third side face 29, where it is electrically connected to the first! The terminal conductor film 33 for capacitor acquisition. Fig. 6(d) shows a cross section through which the grounding electrode 24 passes. The grounding electrode 24 is pulled out to the first! The side 27 is also pulled out to the fourth side 3〇. Further, the grounding electrode 24 is electrically connected to the grounding terminal conductor film 31 on the first side surface 27, and is electrically connected to the second capacitor-receiving terminal conductor film 34 on the fourth side surface 30. The capacitance formed between the grounding electrode 24 and the capacitance obtaining electrode 26 in the capacitor 21a having the above configuration is shown in Fig. 7. The first and second capacitor-acquisition terminal conductor films 33 and 34 are obtained. Take it out. The first and second capacitor-acquisition terminal conductor films 33 and % are electrically connected to a predetermined circuit (not shown). At this time, when the grounding terminal conductor film 3i and the DC bias application terminal conductor film 32 are applied, the DC bias voltage η is applied between the grounding electrode 24 and the DC bias application electrode, and is located between the grounding electrode 24 and the direct current. The dielectric characteristics such as the dielectric constant of the dielectric layer U between the bias application electrodes are changed. Therefore, the dielectric layer u dielectric property 25 J between the grounding electrode 24 and the capacitance obtaining electrode 26 is changed. As a result, the first and second capacitor-acquisition terminal body films 33 and 34 can be used. The static capacitance taken out changes. In this modification, in order to increase the amplitude of the change in the electrostatic capacitance, the dielectric layer 22' is particularly located between the ground electrode 24 and the capacitor-forming electrode %, preferably by dielectric properties. The material composition of the DC bias dependence is large. Further, in the first modification, since the DC bias application electrode 25 is not interposed between the ground electrode 24 and the capacitor (four) electrode 26, the capacitance can be made in comparison with the case of the first embodiment. The characteristics are more stable. FIGS. 8 and 9 show the capacitors 41a and 5U of the second and third modifications corresponding to the second and third embodiments, respectively, and correspond to FIGS. The capacitors 413 and 51a according to the second and third modifications are characterized in that, in the same manner as in the second and third embodiments, the capacitor array body 24 and the DC bias electrode are formed in the capacitor body. 25 and capacitor acquisition electrode 26. More specifically, the capacitor 41a shown in the circle 8, the complex array grounding electrode 24, the DC bias application electrode 25, and the capacitance obtaining electrode 26 are used from the top to follow the DC bias application electrode 25 and the capacitance acquisition. The order of the electrode 26, the grounding electrode 24, and the DC bias application electrodes 25, ... is repeatedly arranged plural times. The capacitor 51 a ' shown in Fig. 9 is the DC bias application electrode 25, the capacitance acquisition electrode 26, the ground electrode Μ, the capacitance acquisition electrode 26, the DC bias application electrode 25, ... The order, 26 1331759 is repeated in multiples. In other words, the capacitor 41a shown in Fig. 8 is a group of the DC bias applying electrode 25 of the capacitor 21a of Fig. 6 (mad), and the electrode for grounding and the grounding electrode 24. , and ^ I repeat this group a number of times. In the capacitor 51a shown in Fig. 9, the ground electrode 24' is shared between adjacent groups, and the capacitor electrode 26 is disposed every two layers of the dielectric layer 22. When the capacitor 4a lamella body 23 has the group grounding electrode 24, the DC bias application electrode %丨, and the capacitance obtaining electrode 26, a wider capacitance variation range can be obtained. (Embodiment of the second type) Figs. 10 and 9 are views for explaining the solar cell m of the fourth embodiment of the present invention. In FIG. 10, '(4) corresponds to FIG. 24 or FIG. 26, and the view of the capacitor ΐ2ι is shown in a cross section facing the lamination direction of the dielectric layer 122, and FIGS. 25(b) and (4) correspond to FIG. 25. In the figure, a plan view of the capacitor 121 is shown in a cross section extending in the direction of the main surface of the dielectric layer 122. FIG. 11 is an equivalent circuit diagram when a DC bias voltage is applied to the capacitor 121. As shown in Fig. 10 (4), the capacitor 121 is provided with a capacitor body 123 having a laminate of a plurality of dielectric layers 122. The capacitor body 123 includes: second and second capacitor-acquisition electric directions 24 and 125, which are formed to pass through a specific dielectric layer 122 to form a static capacitance; and a second and second DC bias are applied The electric power units 27 and 128 are used to apply a DC bias voltage to the capacitance forming 27/^9 region 126 of the dielectric layer 122 between the first and second ^ obtaining electrodes 124 and 125. The first DC bias application electrode 127 is provided on the same main surface as the main surface of the dielectric body 122 on which the i-th addition electrode 124 is provided. The second DC bias application electrode 128 is provided on the same main surface as the main surface of the dielectric layer 122 on which the second capacitance acquisition electrode 125 is provided. The first capacitor-acquisition electrode 124 is disposed, and the side where the first DC bias application electrode 127 is located and the second DC bias application electrode 128 of the second capacitor-acquisition electrode 125 are located. The side is the opposite side. The DC biases applied by the first and second DC bias application electrodes i27 and i28 are oriented in the oblique direction with respect to the thickness direction of the dielectric layer 122. As clearly shown in Figs. 10(b) and (4), the capacitor body 123' has a rectangular parallelepiped shape having four side faces 129 to 132 extending in the lamination direction. The first DC bias application terminal conductor film 33 is provided on the first side 129. The second DC bias application terminal conductor 臈 134 is provided on the second side surface [3" opposite to the first side surface 129. On the third side surface 131 adjacent to the i-th and second side faces 129 and 130, a second capacitor-acquisition terminal conductor film 135 is provided. The second capacitor-acquisition terminal conductor film 136 is provided on the fourth side surface 132 opposite to the third side surface 131. Fig. 10(b) shows a cross section through which the first capacitance acquiring electrode ία and the first DC bias applying electrode 127 pass. The second capacitor-acquisition electrode 124 is pulled out to the third side surface 131, and is electrically connected to the second capacitor-acquisition terminal conductor film 135. The first DC bias application electrode ι27 is pulled 1331759 to the first side surface 129, and is electrically connected to the first DC bias application terminal conductor film 133. A cross section through which the second capacitance acquisition electrode 125 and the second DC bias application electrode 128 pass is shown in Fig. 10(c)'. The second capacitor obtaining electrode 125' is pulled out to the fourth side face 132, and is electrically connected to the second capacitor obtaining terminal conductor film 136. The second DC bias application electrode 128 is pulled out to the second side surface 130, and is electrically connected to the second DC bias application terminal conductor film 134. In the capacitor 121 having the above configuration, the electrostatic capacitance formed between the first and second capacitance-capturing electrodes 124 and 125 is the first and second capacitance-acquisition terminal conductor film 135 as clearly shown in FIG. And 136 are taken out. The first and second capacitor-capturing terminal conductor films 135 and 136 are electrically connected to a predetermined circuit (not shown). At this time, when the DC bias voltage 137 is applied between the first and second DC bias application electrodes 127 and 128 by the second and second DC bias application terminal conductor films 133 and 134, the first and the first The dielectric characteristics of the valley formation region 126 (see Fig. i (a)) of the dielectric layer 122 between the electric grid obtaining electrodes i 24 and 125 are changed. As a result, the electrostatic capacitance taken out by the second and second capacitor-capturing terminal conductor films 135 and 136 can be changed. In order to increase the variation of the electrostatic capacitance, the dielectric layer 122, particularly the dielectric layer 122 between the ith and second DC bias application electrodes 127 and 128 constituting the capacitance forming region 126, is preferably The material has a dielectric bias with a large DC bias dependence. Thus, a material having a large DC bias dependence of dielectric characteristics is, for example, 1 〇〇Bai coffee (Ti. - 29 1331759 2.5Gd 〇 3/2_ 2_5Mg 〇 - 〇, 5MnO-l. 〇si〇2. Second, In the experimental example 3 in which the effect of the fourth embodiment was confirmed, the experimental example 3 was prepared, and the sample having substantially the same structure as the capacitor 121 shown in FIG. 10 was produced as a sample in the range of the present invention. A sample 1〇2 which is substantially the same as the capacitor i shown in FIG. 24 is prepared as a comparative example outside the scope of the present invention, and each of the samples ι〇ι and 1〇2 is used, and BaTi〇3 is used. The high dielectric constant ceramic material is used as a dielectric layer, and the thickness of the dielectric layer between the electrodes is 2 m. Further, the electrode is mainly composed of nickel and has a thickness of a capacitor. The external dimensions of the main body were 3.2 mm x 1.6 mm. 4 mm. For each of the samples 101 and 102, the rate of change in capacitance when a plurality of DC biases were applied in the range of 〇 to ≤ were obtained. The results are shown in Fig. 12 ° If a DC bias is applied to the dielectric, it is above a certain applied voltage. The capacitance change rate is constant. In Fig. 12, the capacitance change rate of the sample ι〇ι is only shown as a DC bias voltage of 12 V, but it can be confirmed that the DC bias voltage is 12 V or more. Therefore, as can be seen from Fig. 12, the sample 101' capacitance change rate is a predetermined DC bias, which is about 1/3 of the sample 102. This is because the sample 1〇2 is applied to the paired DC bias. There are three dielectric layers between the electrodes. On the other hand, in the case of the sample, the DC bias application electrode and the capacitance acquisition electrode are provided on the same surface, thereby applying a pair of DC biases. There is only one dielectric layer between the electrodes, and the electrode spacing is reduced to 1/3 compared with the sample 102, and as a result, the required rate of change of capacitance can be obtained at a lower voltage. In the sample 101, since there is no electrode (conductor layer) that shields the electric field between the pair of DC bias application electrodes, the decrease in the capacitance change rate due to the decrease in the electric field strength can be suppressed, and as a result, a large size can be obtained. Capacitance change rate. In addition, in the above In Example 3, although a specific BaTi〇3 φ high dielectric constant ceramic material is used as the dielectric material constituting the dielectric layer, the ceramic material is a material having a higher DC bias dependence using dielectric characteristics. Further, a capacitor having a wider range of capacitance variation of the DC bias voltage can be obtained. Fig. 13 and Fig. 14 show capacitors 141 and 151 of the fifth and sixth embodiments of the present invention, respectively, and correspond to Fig. 1 (4). 13 and FIG. 14 are denoted by the same reference numerals as those of the components shown in FIG. 10(a), and the description thereof will be omitted. The capacitors 141 and 151 of the fifth and sixth embodiments are characterized by In the capacitor body 123, a complex array of the ith capacitor obtaining electrode 124, the second capacitor obtaining electrode 125, the first DC bias applying electrode 127, and the second DC bias applying electrode 128 are formed. More specifically, in the capacitor 141 shown in FIG. 13, the dielectric layer 122 of the i-th capacitor-acquisition electrode 丨24 and the ith-th DC bias application electrode 127 is formed, and the second capacitor-acquisition electrode 125 and the second electrode are formed. The dielectric layer 122 of the DC bias application electrode 128 is alternately arranged in the stacking direction. In the capacitor 151 which is not shown in FIG. 14, the electric layer 122 which forms the first capacitance acquisition electrode 124 and the i-th DC bias application 31 丄09 electrode 127 is formed from the upper side in the lamination direction, and the second capacitance acquisition electrode 125 is formed. The dielectric layer 122 of the biasing application electrode 128, the body layer 122 forming the first acquisition electrode 125 and the second DC bias application electrode 128, and the first capacitance acquisition electrode 124 and the first The DC bias is applied in the order of the dielectric layers 122 of the electrodes 127 of the Thunder 197. The capacitors 141 and 151 as described above have a complex array in the capacitor body 123! When the capacitor acquisition electrode 124 and the second capacitor acquisition power: 1 125, the first DC bias application electrode 127, and the second DC bias application electrode 128 are described, it is described that the capacitor according to the present invention can be confirmed. The electrostatic capacitance per unit volume was increased, and the capacitance was further reduced and the capacitance was increased, and the experimental example 4 in which the static capacitance was controlled to a wider range was performed at a lower voltage. In the experimental example 4, each of the capacitors of the sample ΐ2 which is an example of the embodiment of the present invention and the comparative example outside the scope of the present invention was produced, but the dielectric layer material and thickness of each capacitor, and the electrode material were prepared. And thickness ' is the same as Experimental Example 3 above. Further, the appearance of each of the electric grids of the samples 1U and 112 of this experimental example was 3 ^ ^ . More specifically, the sample "2 is an arrangement structure of electrodes shown in Fig. 24, and the number of layers including all the electrodes of the DC bias application electrode and the capacitance acquisition electrode is 500. On the other hand, the sample ηι is an arrangement structure of the electrodes shown in FIG. 2, and includes all of the electrodes for the second and second capacitor-acquisition electrodes and the electrodes for the i-th and second DC bias application electrodes. The range of capacitance change when the DC bias voltage was changed from 〇 to 36 V for the samples 111 and 112 is shown in Table 2.内32 1331759 [Table 2] Outside: Table J shows that when the sample 1" within the scope of the present invention is compared with the paradigm 112 of the present invention, the size of the capacitor is the same and the number of electrodes is the same degree. The inventive capacitor can achieve a larger capacitance and can make the variable amplitude of the capacitor wider.

以上,雖參照圖10至圓14來說明本發明第2類型之 第4至第6實施形態,但於本發明範圍内,能有其它各種 變形例。 例如,相互設置於同一面上之電容取得用電極與直流 偏壓施加用電極的位置關係,若為可藉由相互對向之第工 及第2直流偏壓施加用電極,將直流偏壓施加在位於第又 及第2電谷取得用電極間之介電體層的電容形成區域之位Although the fourth to sixth embodiments of the second type of the present invention have been described above with reference to Figs. 10 to 14, a variety of other modifications are possible within the scope of the present invention. For example, the positional relationship between the capacitor-acquisition electrode and the DC-bias-applied electrode which are provided on the same surface, and the DC bias can be applied by the mutually opposing and second DC bias application electrodes. The position of the capacitance forming region of the dielectric layer between the electrodes for the second and second valley acquisition electrodes

置關係,則如圖示之實施形態的位置關係以外的位置關係 亦可。 又,第1及第2直流偏壓施加用端子導體膜、以及第 1及第2電容取得用端子導體膜分別設置於電容器本體上 的位置’可依照上述第1及第2電容取得用電極、以及第 1及第2直流偏壓施加用電極的各位置等進行任意變更。 又,在第4至第6實施形態’第1及第2電容取得用 電極124及125、以及第1及第2直流偏壓施加用電極127 及128,雖皆形成於電容器本體123内部,但若無防潮性 的問題,則至少一組之第1電容取得用電極及第1直流偏 33 1331759 電極及第2直流偏壓施 的外表面上。 壓施加用電極、或第2電容取得用 加用電極,亦可形成於電容器本體 (第3類型之實施形態) 圖15及圖16,係用以日士找 ^ 說月本發明第7實施形態之電The relationship may be other than the positional relationship of the embodiment shown in the figure. Further, the first and second capacitor-applied terminal conductor films and the first and second capacitor-acquisition terminal conductor films are respectively disposed on the capacitor body at the position 'in accordance with the first and second capacitor-acquisition electrodes, The respective positions of the first and second DC bias application electrodes are arbitrarily changed. Further, in the fourth to sixth embodiments, the first and second capacitor-acquisition electrodes 124 and 125 and the first and second DC bias-applying electrodes 127 and 128 are formed inside the capacitor body 123, but If there is no problem of moisture resistance, at least one of the first capacitor-acquisition electrodes and the first DC bias 33 1331759 electrode and the second DC bias are applied to the outer surface. The pressure application electrode or the second capacitance acquisition electrode may be formed in the capacitor body (the third type of embodiment). FIG. 15 and FIG. 16 are used to find the seventh embodiment of the present invention. Electricity

21於圖15中,⑷為與該圖24或圖%相對應之圖, 係以面向介電體層222之積層方向的截面來顯示電容器221 的前視圖’ (b)至(d)為與該圖25相對應之圖,係以沿介電 曰222之主面方向延伸的戴面來顯示電容器m的俯視 又圖16係於電谷器221施加直流偏壓時的等效電 路圖。 一如圖15⑷所示,電容器221具備電容器本體⑵,該 電容器本體223具有以複數個介電體層222所構成之積層 構造。電容器本體223,係具備:第旧2電容取得用 電極224及225,係設置成透過特定之介電體層222相互 對向’藉此來形成靜電容;以及第1 &第2直流偏壓施加 用電極227及228,係用以將直流偏壓施加在位於第】及 第2電容取得用電極224及225間的介電體層222之電容 形成區域226。 第1及第2直流偏壓施加用電極227及228,係設置 於夾持在第1及第2電容取得用電極224及225間之相同 介電體層222的相同主面上。因此,第i及第2直.流偏壓 施加用電極227及228所施加之直流偏壓,會面向介電體 層222之主面方向。此實施形態,第i及第2電容取得用 電極224及225間有兩層介電體層222,沿此等兩層介電 34 1331759 層22間之界面形成第i及第2直流偏壓施加用電極2” 及 228。 於圖15(c),第2電容取得用電極⑵所設置之位置以 虛線來顯示。從此第2電容取得用龍⑵、與第丄及第 2直流偏壓施加用電極227及228之位置關係可知,第i 及第2直流偏壓施加用電極227及228,在介電體層 主面方向的位置,係設置成不與電容形成區域226(參照圖 15(a))重疊。藉此,能使第i及第2電容取得用電極⑵ 及225不夾著直流偏壓施加用電極227及228,其結果, 能使電容特性穩定。 此外,從該第1及第2電容取得用電極224及225、 與第1及第2直流偏壓施加用電極227及228之上述位置 關係可知,以面向介電體層222之積層方向的截面觀看時, 第1及第2電容取得用電極224及⑵,不會出現於與第 1及第2直流偏壓施加用電極227及228相同之截面上。 因此,應可理解到圖15(a)並非以單一截面來顯示電容器 221,為更明確地圖示電容取得用電極224及225、與直流 偏壓施加用電極227及228於積層方向之位置關係,故^ 複數個截面來顯示。 電容器本體223,如圖l5(b)至(d)清楚所示,為具有沿 積層方向延伸之四個侧面229〜232之長方體形。於第i 侧面229上,設置有第1直流偏壓施加用端子導體膜233。 於與第1侧面229對向之第2側面230上,設置有第2直 流偏壓施加用端子導體膜234。於與第1及第2側面229 35 1331759 及230相鄰接之第3側面231上,設置有第ι電容取得用 端子導體膜235。於與第3側面231對向之第4側面⑶ 上,設置有第2電容取得用端子導體膜236 〇 於圖1 5(b) ’顯示第1電容取得用電極224所通過之截 面。第1電谷取得用電極224,被拉出至第;3側面231, 此處,電連接於第1電容取得用端子導體膜23 5。21, (4) is a view corresponding to FIG. 24 or FIG. %, showing a front view of the capacitor 221 'b) to (d) with a cross section facing the lamination direction of the dielectric layer 222. Fig. 25 corresponds to the figure, showing the top view of the capacitor m with the wearing surface extending in the direction of the main surface of the dielectric 222, and Fig. 16 is an equivalent circuit diagram when the electric bar 221 applies a DC bias. As shown in Fig. 15 (4), the capacitor 221 is provided with a capacitor body (2) having a laminated structure composed of a plurality of dielectric layers 222. The capacitor body 223 includes: the second capacitor-capturing electrodes 224 and 225 are disposed to face each other through a specific dielectric layer 222 to form a capacitance; and the first & second DC bias application The electrodes 227 and 228 are used to apply a DC bias voltage to the capacitance forming region 226 of the dielectric layer 222 between the first and second capacitance obtaining electrodes 224 and 225. The first and second DC bias application electrodes 227 and 228 are provided on the same main surface of the same dielectric layer 222 sandwiched between the first and second capacitance acquisition electrodes 224 and 225. Therefore, the DC bias voltage applied to the i-th and second straight-flow bias application electrodes 227 and 228 faces the main surface of the dielectric layer 222. In this embodiment, two dielectric layers 222 are formed between the i-th and second capacitor-acquisition electrodes 224 and 225, and the i-th and second DC bias are applied along the interface between the two layers of dielectric 34 1331759 22 . Electrodes 2" and 228. The position of the second capacitor-acquisition electrode (2) is shown by a broken line in Fig. 15(c). From here, the second capacitor-acquisition dragon (2) and the second and second DC bias application electrodes are provided. In the positional relationship between 227 and 228, the i-th and second DC bias application electrodes 227 and 228 are disposed in the main surface direction of the dielectric layer so as not to form the capacitance region 226 (see FIG. 15(a)). In this way, the first and second capacitor-capturing electrodes (2) and 225 can prevent the capacitance characteristics from being stabilized by the DC bias application electrodes 227 and 228. As a result, the first and second states can be stabilized. The positional relationship between the capacitance-acquisition electrodes 224 and 225 and the first and second DC bias application electrodes 227 and 228 is such that the first and second capacitors are obtained when viewed in a cross section facing the stacking direction of the dielectric layer 222. The electrodes 224 and (2) do not appear in the first and second DC bias application electrodes 22 7 and 228 are the same cross-sections. Therefore, it should be understood that the capacitor 221 is not shown in a single cross section in Fig. 15(a), and the capacitance obtaining electrodes 224 and 225 and the DC bias applying electrode 227 are more clearly shown. And the positional relationship of 228 in the lamination direction, so that a plurality of cross sections are displayed. The capacitor body 223, as clearly shown in Figs. 15(b) to (d), is a rectangular parallelepiped having four side faces 229 to 232 extending in the lamination direction. The first DC bias application terminal conductor film 233 is provided on the i-side 229. The second DC bias application terminal conductor film is provided on the second side surface 230 opposite to the first side surface 229. 234. The third side surface 231 adjacent to the first and second side faces 229 35 1331759 and 230 is provided with a first capacitor-acquisition terminal conductor film 235. The fourth side surface (3) facing the third side surface 231 The second capacitor-acquisition terminal conductor film 236 is provided with a cross section through which the first capacitor-acquisition electrode 224 passes. The first valley-acquisition electrode 224 is pulled out to the first portion. The side surface 231 is electrically connected to the first capacitor-acquisition terminal conductor film 235.

於圖15(c) ’顯示第i及第2直流偏壓施加用電極 及228所通過之截面。第1直流偏壓施加用電極227,被 拉出至第1侧® 229 ’此處,電連接於第i直流偏壓施加 用端子導體膜233。第2直流偏壓施加用電極228,被拉 出至第2側面230,此處,電連接於第2直流偏壓施加用 端子導體膜234。 於圖15(d) ’顯示第2電容取得用電極225所通過之截 面。第2電容取得用電極225 ’被拉出至第4側面232, 此處,電連接於第2電容取得用端子導體膜236。 具有如上構成之電容器221中,如圖16清楚所示,於 第1及第2電容取得用電極224及225間所形成之靜電容, 係從第1及第2電容取得用端子導體膜235及236所取出。 於第1及第2電容取得用端子導體膜235及236,電連接 有既定電路(未圖示)。此時,若通過第丨及第2直流偏壓 施加用端子導體膜233及234 ’將直流偏壓237施加於第 1及第2直流偏壓施加用電極227及228間,則位於第1 及第2電容取得用電極224及225間之介電體層222的電 容形成區域226(參照圖15(a))的介電特性會產生變化。其 36 1331759 結果’可改變通過第1及第2電容取得用端子導體膜235 及23 6所取出的靜電容。 為使該靜電容之變化幅度更大,介電體層222,特別 是構成電容形成區域226之介電體層222,較佳為由介電 特性之直流偏壓相依性大之材料構成。如此,作為介電特 性之直流偏壓相依性大之材料,例如有. lOOBa, 〇〇6(Ti〇 972r〇 〇3)〇3 _ 2.5Gd03//2~ 2.5Mg〇— 0.5Mn〇 — l.〇Si〇2。 其次,說明為確認第7實施形態之效果所實施之實驗 例5 〇 此貫驗例5,製作與圖15所示之電容器221實質上具 有相同構造之試樣作為本發明範圍内之實施例的試樣 201皮,又製作與前述圖24所示之電容器4質上具有相同 構迈者作為本發明範圍外之比較例的試樣。此等各古式 兔〇1及202,係使用BaTl〇3類之高介電常數陶瓷材料作 為構成介電體層之介電體,位於電極間之介電體層的厚度 = 又,電極係以鎳為主成分,厚度為iym。又, 各器本體之外觀尺寸為3.2mmX 1.6mmx〇.4mm » 外以上之試樣201及202之各電容器,求出施加〇〜36v 靶圍内若干個直流偏壓時的電容變化率。 通常,若將直流偏壓施加於介電體,則具有在某施加 蕙坌U上,電容變化率為一定之性質。 ^圖17可知,在試樣2〇1,於成對之直流偏壓施加用 曰,由於可屏蔽電場之電極(導體層)不存在,因此能 37 1331759 抑制電場強度降低所導致之電容變化率降低,其結果,與 試樣202相較之下,能獲得大電容變化率。 • 此外,在上述實驗例5,雖使用某特定之BaTi〇3類之 . 同介電常數陶瓷材料作為構成介電體層之介電體,但此陶 堯材料’若使用介電特性之直流偏壓相依性更大的材料 時’可確認到能獲得對直流偏壓之電容變化範圍更廣的電 - 容器。 • 圖18係顯示本發明第8實施形態之電容器221a'並 與圖15(c)相對應。於圖18中,與圖15(幻所示之元件相當 者,賦予相同的參照符號,並省略重複說明。 將第8實施形態之電容器221a與第7實施形態之電容 器221相比較’直流偏壓施加用電極227及228之形成態 樣不同。亦即’從圖18以虛線所顯示之電容取得用電極225 的位置可知’第1及第2直流偏壓施加用電極227及228, 其特徵在於:在介電體層222主面方向的位置,係設置成 _ 與電谷形成區域226(參照圖15(a))重疊。藉由採用此種構 成,與第7實施形態之電容器221相較之下,由於能縮短 第1及第2直流偏壓施加用電極227及228間的距離,因 此即使施加較低之電壓作為直流偏壓,亦能獲得電容變化 的效果。 圖19係顯示本發明第9實施形態之電容器221b、並 與圖15相對應。於圖19中,與圖15所示之元件相當者, 賦予相同的參照符號,並省略重複說明。 第9實施形態之電容器221b,在第i及第2直流偏壓 38 1331759 施加用電極227及228之形成態樣具有特徵。亦即,第工 及第2直流偏壓施加用電極227及228,係形成為位於介 電體層222之長邊方向的端部。又,從圖i9(a)可知, 第1 及第2直流偏壓施加用電極227及228,係設置成不盘番 容形成區域226重疊。因此’若依此第9實施形態,與上 述第7實施形態之情形相同’由於第1及第2電容取得用 電極224及225未夾持直流偏壓施加用電極227及228, 因此能使電容特性穩定。 圖20顯示本發明第10實施形態之電容器221c,圖2〇(a) 係與圖15(a)或圖19(a)相對應,圖2〇(b)則與圖15(c)或圖 19(c)相對應。圖20中,與圖15或圖19所示之元件相當 者,賦予相同的參照符號,並省略重複說明。 第實施形態之電容器221c ’在直流偏壓施加用電 極22 7及228之形成態樣具有特徵。亦即,第i及第2直 流偏壓施加用電極227及228,雖然與上述第9實施形態 之電容器221b類似,但在介電體層222主面方向的位置, 係又置成與電谷形成區域226重疊。因此,與前述第8實 加形態之電容器221 a的情形相同,能縮短第1及第2直流 偏壓施加用電極227及228間的距離,其結果,即使所施 加之作為直流偏壓的電壓較低,亦能獲得電容變化的效 果。 圖2 1係顯示本發明第丨丨實施形態之電容器22丨d、並 與圖15或圖19相對應。於圖2i中,與圖μ或圖19所 不之兀件相當者,賦予相同的參照符號,並省略重複說明。 39 1331759 第η實施形態之電容器221d,在直流偏壓施加用電 極227及228之形狀具有特徵。亦即,第i…直流偏 壓施加用電極227及228’如圖21(c)清楚所示皆為分別 形成並列之複數個電極指238及239的梳型齒狀。又第 1直流偏壓施加用電極227所具備之各電極指238,位於 插入第2直流偏壓施加用電極228所具備之各電極指239 間的位置。 若依此第11實施形態,能在將第〗及第2直流偏壓施 加用電極227及228間保持為短距離之狀態,使對向面積 變大。 圖22及圖23係分別顯示本發明第12及第13實施形 態之電容器241及251、並與圖15(a)相對應。於圖22及 圖23中,與圖1 5(a)所示之元件相當者,賦予相同的參照 符號,並省略重複說明。 第12及第13實施形態之電容器241及251,其特徵 φ 在於:於電容器本體223中,形成有複數組第i電容取得 用電極224、第2電容取得用電極225、第1直流偏壓施 加用電極227及第2直流偏壓施加用電極228。 更詳細為,在圖22所示之第12實施形態的電容器 241,於積層方向從上方開始,按照第1電容取得用電極 224、直流偏壓施加用電極227及228、第2電容取得用電 極225之順序,複數次重複加以配置》 在圖23所示之第13實施形態的電容器251,於積層 方向從上方開始,按照第1電容取得用電極224、直流偏 40 1331759 壓施加用電極227及228、第2電容取得用電極225、直 流偏壓施加用電極227及228、第i電容取得用電極224 之順序,複數次重複加以配置。 此外,將圖22所示之電容器241的電容器本體223、 及圖23所示之電容器251的電容器本體223進行比較時’ 厚度方向尺寸雖然圖示成不同,但此不過僅是欲圖示之電 極224、225、227、及228數量不同的原因所導致之結果, 圖不之厚度方向尺寸的差,並非有特別意義。 其次,說明:如上述電容器241及251,於電容器本 體223具備複數組第!電容取得用電極、第2電容取 知用電極225、第1直流偏壓施加用電極227及第2直流 偏壓施加用電㉟228時,說明為確認若依據本發明之電容 器’每單位體積之靜電容即會變大,&更小型化且高電容 化’並可以更低電壓冑靜電容控制在更廣冑圍所實施的實 驗例6。The cross section through which the i-th and second DC bias application electrodes and 228 pass is shown in Fig. 15(c)'. The first DC bias application electrode 227 is pulled out to the first side ® 229 'here, and is electrically connected to the ith DC bias application terminal conductor film 233. The second DC bias application electrode 228 is pulled out to the second side surface 230, and is electrically connected to the second DC bias application terminal conductor film 234. The cross section through which the second capacitance obtaining electrode 225 passes is shown in Fig. 15 (d)'. The second capacitance acquisition electrode 225' is pulled out to the fourth side surface 232, and is electrically connected to the second capacitance acquisition terminal conductor film 236. In the capacitor 221 having the above configuration, as shown in FIG. 16, the electrostatic capacitance formed between the first and second capacitance-capturing electrodes 224 and 225 is obtained from the first and second capacitor-acquisition terminal conductor films 235 and 236 was taken out. The first and second capacitor-capturing terminal conductor films 235 and 236 are electrically connected to a predetermined circuit (not shown). At this time, when the DC bias voltage 237 is applied between the first and second DC bias application electrodes 227 and 228 by the second and second DC bias application terminal conductor films 233 and 234', the first and second DC bias application electrodes are located between the first and second DC bias application electrodes 227 and 228. The dielectric characteristics of the capacitance forming region 226 (see FIG. 15(a)) of the dielectric layer 222 between the second capacitance obtaining electrodes 224 and 225 are changed. The result of the change in the capacitance of the first and second capacitor-capturing terminal conductor films 235 and 236 can be changed. In order to make the variation of the electrostatic capacitance larger, the dielectric layer 222, particularly the dielectric layer 222 constituting the capacitance forming region 226, is preferably made of a material having a large DC bias dependence of dielectric characteristics. Thus, as a material having a large DC bias dependence as a dielectric property, for example, lOOBa, 〇〇6(Ti〇972r〇〇3)〇3 _ 2.5Gd03//2~2.5Mg〇—0.5Mn〇—l .〇Si〇2. Next, an experimental example 5 in which the effects of the seventh embodiment are performed will be described. Thus, a sample having substantially the same structure as the capacitor 221 shown in FIG. 15 is produced as an embodiment within the scope of the present invention. A sample of the sample 201 was prepared, and a sample having the same constitution as that of the capacitor 4 shown in Fig. 24 as a comparative example outside the scope of the present invention was produced. These ancient rabbits 1 and 202 use BaTl〇3 high dielectric constant ceramic material as the dielectric body constituting the dielectric layer, and the thickness of the dielectric layer between the electrodes = again, the electrode is made of nickel The main component has a thickness of iym. Further, the external dimensions of each of the main bodies were 3.2 mm×1.6 mm×〇.4 mm » and the respective capacitors 201 and 202 of the outer and outer electrodes were subjected to a capacitance change rate when a plurality of DC biases in the target circumference of 〇 36 w were applied. Generally, when a DC bias voltage is applied to a dielectric body, the capacitance change rate is constant on a certain application 蕙坌U. In Fig. 17, it can be seen that in the sample 2〇1, in the paired DC bias application, since the electrode (conductor layer) capable of shielding the electric field does not exist, the capacity change rate caused by the suppression of the electric field strength can be suppressed by 37 1331759. As a result, as compared with the sample 202, a large capacitance change rate can be obtained. • In addition, in the above Experimental Example 5, a specific dielectric constant ceramic material of the BaTi〇3 type is used as the dielectric body constituting the dielectric layer, but the ceramic material “DC bias using dielectric characteristics” When the pressure-dependent material is larger, it can be confirmed that an electric-container having a wider range of capacitance variation to a DC bias can be obtained. Fig. 18 is a view showing a capacitor 221a' according to the eighth embodiment of the present invention and corresponding to Fig. 15(c). In FIG. 18, the same reference numerals will be given to the same components as those in FIG. 15 and the overlapping description will be omitted. The capacitor 221a of the eighth embodiment is compared with the capacitor 221 of the seventh embodiment. The positions of the application electrodes 227 and 228 are different. That is, the first and second DC bias application electrodes 227 and 228 are characterized by the position of the capacitance acquisition electrode 225 shown by a broken line in Fig. 18, which is characterized in that The position in the main surface direction of the dielectric layer 222 is set to overlap with the electric valley forming region 226 (see Fig. 15 (a)). By adopting such a configuration, it is compared with the capacitor 221 of the seventh embodiment. In the following, since the distance between the first and second DC bias application electrodes 227 and 228 can be shortened, even if a lower voltage is applied as a DC bias, the effect of capacitance change can be obtained. In the embodiment of the present invention, the capacitors 221b of the ninth embodiment are denoted by the same reference numerals and the description thereof will not be repeated. i and the second DC Pressure 38 1331759 The formation of the application electrodes 227 and 228 is characterized in that the first and second DC bias application electrodes 227 and 228 are formed at the ends in the longitudinal direction of the dielectric layer 222. Further, as is clear from Fig. 9 (a), the first and second DC bias application electrodes 227 and 228 are arranged such that the disk formation region 226 overlaps. Therefore, according to the ninth embodiment, In the case of the embodiment, the first and second capacitor-acquisition electrodes 224 and 225 are not sandwiched between the DC bias application electrodes 227 and 228, so that the capacitance characteristics can be stabilized. Fig. 20 shows a tenth embodiment of the present invention. Capacitor 221c, Fig. 2(a) corresponds to Fig. 15(a) or Fig. 19(a), and Fig. 2(b) corresponds to Fig. 15(c) or Fig. 19(c). The components that are the same as those of the components shown in Fig. 15 or Fig. 19 are denoted by the same reference numerals and the description thereof will not be repeated. The capacitor 221c' of the first embodiment has characteristics in the formation of the DC bias application electrodes 22 7 and 228. In other words, the i-th and second DC bias application electrodes 227 and 228 are electrically connected to the ninth embodiment. Similarly to the dielectric layer 222, the 221b is placed in the main surface direction of the dielectric layer 222 so as to overlap the electric valley forming region 226. Therefore, as in the case of the capacitor 221a of the eighth embodiment, the first and The distance between the second DC bias application electrodes 227 and 228 results in an effect of capacitance change even if the applied voltage as a DC bias is low. Fig. 2 shows the third embodiment of the present invention. The capacitor 22 丨d of the form corresponds to FIG. 15 or FIG. In FIG. 2i, the same reference numerals are given to the same reference numerals as those in FIG. 39 1331759 The capacitor 221d of the η embodiment is characterized by the shape of the DC bias application electrodes 227 and 228. That is, the i-th DC bias application electrodes 227 and 228' are clearly shown in Fig. 21(c) as comb-tooth shapes in which a plurality of electrode fingers 238 and 239 are formed in parallel. Further, each of the electrode fingers 238 included in the first DC bias application electrode 227 is located between each of the electrode fingers 239 included in the second DC bias application electrode 228. According to the eleventh embodiment, the opposing area can be increased while maintaining the short distance between the first and second DC bias application electrodes 227 and 228. Fig. 22 and Fig. 23 show capacitors 241 and 251 of the twelfth and thirteenth embodiments of the present invention, respectively, and correspond to Fig. 15(a). It is to be noted that the same reference numerals are given to the elements in the drawings, and the description thereof will be omitted. The capacitors 241 and 251 of the twelfth and thirteenth embodiments are characterized in that the capacitor body 223 is formed with a plurality of ith capacitor acquisition electrodes 224, a second capacitor acquisition electrode 225, and a first DC bias application. The electrode 227 and the second DC bias application electrode 228 are used. More specifically, in the capacitor 241 of the twelfth embodiment shown in FIG. 22, the first capacitor acquisition electrode 224, the DC bias application electrodes 227 and 228, and the second capacitor acquisition electrode are formed from the upper side in the lamination direction. The order of 225 is repeated in a plurality of times. The capacitor 251 of the thirteenth embodiment shown in FIG. 23 starts from the upper side in the lamination direction, and the first capacitor obtaining electrode 224, the DC bias 40 1331759 pressure applying electrode 227, and 228. The order of the second capacitor obtaining electrode 225, the DC bias applying electrodes 227 and 228, and the ith capacitor obtaining electrode 224 is repeated a plurality of times. Further, when the capacitor body 223 of the capacitor 241 shown in FIG. 22 and the capacitor body 223 of the capacitor 251 shown in FIG. 23 are compared, the thickness direction dimension is different, but this is only the electrode to be illustrated. The results of the different numbers of 224, 225, 227, and 228, the difference in the thickness direction of the figure, are not of special significance. Next, it is explained that, as described above, the capacitors 241 and 251 have a complex array in the capacitor body 223! When the capacitor acquisition electrode, the second capacitance sensing electrode 225, the first DC bias application electrode 227, and the second DC bias application power 35528 are described, it is confirmed that the capacitor "per unit volume of static electricity according to the present invention" The capacity will become larger, & smaller and more capacitive, and the lower voltage static capacitance can be controlled in a wider range of experimental examples.

此實驗例6,雖製作本發明範圍内之實施例試樣2ΐι、 及本發明範圍外之比較例試樣212的各電容器,但各電容 器之介電體層的材料及厚度、以及電極之材料及厚产, 與上述實驗例5相同。X,此實驗例之試樣211及之 各電容器的外觀尺寸,皆為3_2mmxl 6mmxi 6_。 、更具體而言,試樣212採用目24所示之電極的配眉 造’包含直流偏|施加用電極、及電容取得用電極之全 電極的積層數為500。另-方面,試樣211採用圖22所 之電極的配置構造,包含h及第2電容取得用電極、 41 1331759 =1〗第2直流偏壓施加用電極之全部電極的積層數為 對此等試樣2H及212,將直流偏壓在〇〜36v範圍内 變化時的電容變化範圍表示於表3。 (表3) 试樣號碼 電容變化範圍 211 6.8〜41.0 212 20.5 〜27.3 —從表3可知,對本發明範圍内之試樣211、與本發明 範圍外之試樣212進行比較時,在電容器之尺寸相同且電 極之積層數為相同程度的情形,若依據本發明之電容器, 能獲得更大的電容且可使電容之可變寬度更廣。 以上,雖參照圖15至圖23說明本發明第3類型之第 7至第13實施形態,但在本發明範圍内,亦可有其它各種 變形例。 例如,電容取得用電極與直流偏壓施加用電極之位置 關係’若為可藉由相互對向之第!及帛2直流偏壓施加用 電極,將直流偏壓施加於位在第丨及第2電容取得用電極 間之介電體層的電容形成區域的位置關係,則如圖示之實 施形態的位置關係以外的位置關係亦可。 又,分別設置有第1及第2直流偏壓施加用端子導體 膜、以及第1及第2電容取得用端子導體膜之電容器本體 上的位置,可根據該第1及第2電容取得用電極以及第 1及第2直流偏壓施加用電極的各位置等進行任意變更。 42 丄幻1759 承2電谷取得用 電極224及225、以及第1及第2直流偏堡施加用電極如 =咖,雖皆形成於電容器本體223内部,但若無防潮性 的問題,則位於積層方向最邊緣的電極,例如,圖15( 不之電容器221的第!及//或第2電容取得用電極224及 /或225,亦可形成於電容器本體的外表面上。 【圖式簡單說明】In the sixth experimental example, the capacitors of the sample of the example 2 in the range of the present invention and the sample 212 of the comparative example outside the scope of the present invention were produced, but the material and thickness of the dielectric layer of each capacitor, and the material of the electrode and The yield was the same as in Experimental Example 5 above. X, the sample 211 of this experimental example and the external dimensions of the capacitors are all 3_2 mmxl 6 mmxi 6_. More specifically, in the sample 212, the number of layers of the electrode including the DC bias|application electrode and the capacitor acquisition electrode was 500. On the other hand, the sample 211 has the arrangement structure of the electrodes shown in Fig. 22, and includes the number of layers of all the electrodes of the electrode for the second DC bias application, including the electrode for the second capacitor and 41, 31, 31,759, =1. Samples 2H and 212 show the range of capacitance change when the DC bias voltage is changed from 〇 to 36 V. (Table 3) Sample number capacitance variation range 211 6.8 to 41.0 212 20.5 to 27.3 - As is apparent from Table 3, when the sample 211 within the scope of the present invention is compared with the sample 212 outside the scope of the present invention, the size of the capacitor is In the case where the number of laminated layers of the electrodes is the same, if the capacitor according to the present invention, a larger capacitance can be obtained and the variable width of the capacitor can be made wider. Although the seventh to thirteenth embodiments of the third type of the present invention have been described above with reference to Figs. 15 to 23, other various modifications are possible within the scope of the present invention. For example, the positional relationship between the capacitor-acquisition electrode and the DC bias-applying electrode can be achieved by mutual opposition! And 帛2 DC bias application electrode, the DC bias is applied to the positional relationship of the capacitance formation region of the dielectric layer between the second and second capacitance acquisition electrodes, and the positional relationship of the embodiment as shown in the figure Other location relationships are also possible. Further, the positions of the first and second DC bias application terminal conductor films and the first and second capacitor acquisition terminal conductor films on the capacitor body are respectively provided, and the first and second capacitance acquisition electrodes can be used. The respective positions of the first and second DC bias application electrodes are arbitrarily changed. 42 丄幻1759 The two electric valley obtaining electrodes 224 and 225 and the first and second DC biasing application electrodes such as = coffee are formed inside the capacitor body 223, but if there is no problem of moisture resistance, they are located. The electrode having the outermost edge in the stacking direction is, for example, FIG. 15 (the second and/or second capacitor-acquisition electrodes 224 and/or 225 of the capacitor 221 may be formed on the outer surface of the capacitor body. Description]

圖1,係用以說明本發明第!實施形態之電容器2 1,⑷ 係以面向介電體層22之積層方向的截面來顯示電容器2ι 的前視圖,(b)〜(d)係以沿介電體層22之主面方向延伸的 截面來顯示電容器21的俯視圖,顯示相互不同之截面。 圖2,係將直流偏壓施加於圖丨所示之電容器2丨時的 等效電路圖。 圖3,係比較顯示為確認第丨實施形態之效果所實施 的貫驗例1中,所求得之作為實施例的試樣丨及作為比較 例的試樣2之各電容變化率。 圖4 ’係顯示本發明第2實施形態之電容器41,並與 圖1(a)相對應。 圖5 ’係顯示本發明第3實施形態之電容器$ 1,並與 圖1(a)相對應。 圖ό ’係用以說明與本發明第1實施形態相對應之第1 變形例的電容器21a,(a)係以面向介電體層22之積層方向 的截面來顯示電容器21a的前視圖,(b)〜(d)係以沿介電體 層22之主面方向延伸的截面來顯示電容器21a的俯視圖, 43 伸的截面來顯示電容器 rfij 〇 圖16,係將直流偏壓施加於圖 時的等效電路圖。 圖1 7,係比較顯示為確μ帛 ~崎叫、第7實施形態之效果所實施 的實驗例5中,將所求撂 于之作為實施例的試樣2 〇 1及作為 比較例的試樣202之各電容變化率。Figure 1 is a diagram for explaining the present invention! The capacitors 2, (4) of the embodiment show a front view of the capacitor 2ι in a cross section facing the lamination direction of the dielectric layer 22, and (b) to (d) are sections extending in the direction of the main surface of the dielectric layer 22. A top view of the display capacitor 21 shows mutually different cross sections. Fig. 2 is an equivalent circuit diagram when a DC bias voltage is applied to the capacitor 2 丨 shown in Fig. 。. Fig. 3 is a comparison of the respective capacitance change rates of the sample 作为 as the sample and the sample 2 as the comparative example, which were obtained in the test example 1 in which the effect of the second embodiment was confirmed. Fig. 4 is a view showing a capacitor 41 according to a second embodiment of the present invention, and corresponds to Fig. 1(a). Fig. 5' shows a capacitor $1 according to the third embodiment of the present invention, and corresponds to Fig. 1(a). FIG. 2A shows a capacitor 21a according to a first modification of the first embodiment of the present invention, and (a) shows a front view of the capacitor 21a in a cross section facing the laminated direction of the dielectric layer 22, (b) ~(d) shows a top view of the capacitor 21a in a cross section extending in the direction of the main surface of the dielectric layer 22, and a cross section of 43 shows the capacitor rfij 〇 Figure 16, which is equivalent to applying a DC bias voltage to the figure. Circuit diagram. In the experimental example 5 which was carried out by comparing the effects of the seventh embodiment with respect to the effect of the seventh embodiment, the sample 2 〇1 which is obtained as an example and the test as a comparative example were compared. The change rate of each capacitor of sample 202.

圖1 8,係顯示本發明笛8& a 月弟8實施形態之電容器221a,並 與圖15(c)相對應。 圖19,係顯示本發明第9實施形態之電容器221b,並 與圖1 5相對應。 圖20’係顯示本發明第1〇實施形態之電容器221^(&) 及(b)分別與圖15(a)及(c)相對應。 圖21 ’係顯示本發明第η實施形態之電容器22id, 並與圖1 5相對應。Fig. 18 shows a capacitor 221a of the embodiment of the present invention 8 and corresponds to Fig. 15(c). Fig. 19 shows a capacitor 221b according to a ninth embodiment of the present invention, and corresponds to Fig. 15. Fig. 20' shows a capacitor 221 (&) and (b) according to the first embodiment of the present invention, which correspond to Figs. 15 (a) and (c), respectively. Fig. 21' is a view showing a capacitor 22id according to the ηth embodiment of the present invention, and corresponds to Fig. 15.

221的俯視圖’顯示相互不同之截 15所示之電容器221 圖22 ’係顯示本發明第12實施形態之電容器241,並 與圖15(a)相對應。 圖23 ’係顯示本發明第13實施形態之電容器25 1,並 與圖15(a)相對應。 圖24 ’係顯示習知的電容器1,並與圖i(a)相對應。 圖25 ’係以沿介電體層2之主面方向延伸的戴面來顯 示圖24所示之電容器1的俯視圖,顯示相互不同之截面。 圖26’係顯示習知的其它電容器ia,並與圖1(a)相對 應。 45 Ϊ331759 【主要元件符號說明】 2 1,41,5 1,12 1,141,1 5 1,221,22 la522 1b,221c,221 ¢1,241,251 電容器 22,122,222 介電體層 23,123,223 電容器本體 24 接地用電極 25,127,128,227,228 直流偏壓施加用電極 26,124,125,224,225 電容取得用電極 27,129,229 第1側面 28,130,230 第2側面 29,13 1,231 第3側面 30,132,232 第4側面 31 32,133,134,233,234 33.135.235 34.136.236 37.137.237 接地用端子導體膜 直流偏壓施加用端子導體膜 第1電容取得用端子導體膜 第2電容取得用端子導體膜 直流偏壓 238,239 電極指 46The top view of 221' shows a capacitor 221 which is different from each other. Fig. 22' shows a capacitor 241 according to a twelfth embodiment of the present invention, and corresponds to Fig. 15(a). Fig. 23 is a view showing a capacitor 25 1 according to a thirteenth embodiment of the present invention, and corresponds to Fig. 15 (a). Fig. 24' shows a conventional capacitor 1 and corresponds to Fig. i(a). Fig. 25' is a plan view showing the capacitor 1 shown in Fig. 24, showing the mutually different cross sections, with the wearing surface extending in the direction of the main surface of the dielectric layer 2. Fig. 26' shows another conventional capacitor ia and corresponds to Fig. 1(a). 45 Ϊ331759 [Description of main component symbols] 2 1,41,5 1,12 1,141,1 5 1,221,22 la522 1b,221c,221 ¢1,241,251 Capacitor 22,122,222 Dielectric layer 23,123,223 Capacitor body 24 Grounding electrode 25,127,128,227,228 DC bias application Electrode 26, 124, 125, 224, 225 Capacitance acquisition electrode 27, 129, 229 First side 28, 130, 230 Second side 29, 13 1, 231 Third side 30, 132, 232 Fourth side 31 32, 133, 134, 233, 234 33.135.235 34.136.236 37.137.237 Terminal conductor film for DC bias application terminal conductor film 1 terminal conductor film for capacitor acquisition second terminal acquisition terminal conductor film DC bias 238, 239 electrode finger 46

Claims (1)

1331759 十、申請專利範圍: 1.一種電容器,其特徵在於: 具備電容器本體,該電容器本體具有以複數個介電體 層所構成之積層構造; 該電容器本體,包含··接地用電極,沿特定之該介電 體層所设置;直流偏壓施加用電極,係透過特定之該介電 體層與該接地用電極對向,且用以在與該接地用電極間施 T直流偏壓a乂及電容取得用電極,係設置成位於將該直 流偏壓施加用電極夾持於與該接地用電極間的位置,且透 過特定之該介電體層與該接地用電極對向,藉此來形成靜 電容; 並進一步具備: 接地用端子導體膜’係設置於該電容器本體之外表面 上’且電連接於該接地用電極; 直流偏壓施加用端子導體膜’係設置於該電容器本體 之外表面上’且電連接於該直流偏壓施加用電極;以及 第1電容取得用端子導體膜,係設置於該電容器本體 之外表面上,且電連接於該電容取得用電極。 2·如申請專利範圍第1項之電容器,其進一步具備第 2電容取得用端子導體膜,係設置於該電容器本體之外表 面上’且電連接於該接地用電極;該電容器本體為具有沿 積層方向延伸之四個側面的長方體形,該接地用端子導體 膜設置於第1之該側面上,該直流偏壓施加用端子導體膜 設置於與該第1側面對向之第2之該側面上,該第1電容 47 ^31759 取得用端子導體膜設置於與該第1及第2側面相鄰接之第 =之該側面上,該第2電容取得用端子導體膜則設置於與 s亥第3側面對向之第4之該側面上。 3. 如申請專利範圍第1項之電容器,其中,至少位於 *亥接地用電極與該直流偏壓施加用電極間之該介電體層, 是由介電特性之直流偏壓相依性大的材料構成。 4. 如申請專利範圍第丨至3項中任一項之電容器,其 ^,該電容器本體包含複數組之該接地用電極、該直流偏 壓施加用電極、及該電容取得用電極。 5. —種電容器,其特徵在於: 具備電容器本體’該電容器本體具有以複數個介電體 層構成之積層構造; 該電容器本體,包含第丨及第2電容取得用電極,係 °又置成透過特定之該介電體層相互對向,藉此形成靜電 谷,以及第1及第2直流偏壓施加用電極,係用以將直流 偏壓施加於位在該第1及第2電容取得用電極間之該介電 體層的電容形成區域; 該第1直流偏壓施加用電極,係設置在與設置有該第 1電容取得用電極之該介電體層的主面相同之主面上·, "亥第2直流偏壓施加用電極,係設置在與設置有該第 2電容取得用電極之該介電體層的主面相同之主面上; 並進一步具備: 第1及第2直流偏壓施加用端子導體膜,係設置於該 電合益本體之外表面上’且分別電連接於該第1及第2直 48 1331759 聖知加用電極,以及第1及第2電容取得用端子導體 膜,係設置於該電容器本體之外表面上,且分別電連接於 该第1及第2電容取得用電極。 如申請專利範圍第5項之電容器,其中,相對該第 1電容取得用電極’該第1直流偏壓施加用電極所在之側, 係與相對該第2電容取得用電極之該第2直流偏壓施加用 電極所在之側為相反側。 7.如申請專利範圍帛5項之電容器,其中,該電容器 本體為具有沿積層方向延伸之四個側面的長方體形,該第 1直流偏壓施加用端子導體膜設置於第丨之該側面上,該 第2直流偏壓施加用端子導體膜設置於與該第^侧面對向 之第2之該侧面上’該帛i電容取得用端子導體膜設置於 與該第1及第2側面相鄰接之第3之該側面上,該第2電 容取得用端子導體膜則設置於與該第3側面對向之第4之 該側面上。 8·如申請專利範圍第5項之電容器,其中,至少構成 該電容形成區域之該介電體層,是由介電特性之直流偏壓 相依性大的材料構成。 9·如申請專利範圍第5至8項任一項中之電容器,其 中,該電容器本體包含該複數組之該第丨電容取得用電極、 該第2電容取得用電極、該第丨直流偏壓施加用電極、及 該第2直流偏壓施加用電極。 10.—種電容器,其特徵在於: 具備電容器本體,該電容器本體具有以複數個介電體 49 1331759 層所構成之積層構造; 該電容器本體,包含第1及第2電容取得用電極,係 設置成透過特定之該介電體層相互對向,藉此形成靜電 容;以及第1及第2直流偏壓施加用電極,係用以將直流 偏壓施加於位在該第丨及第2電容取得用電極間之該介電 體層的電容形成區域; 該第1及第2直流偏壓施加用電極,係設置於該第1 及第2電容取得用電極間所夾持之相同的該介電體層的相 同主面上; 並進一步具備: 第1及第2直流偏壓施加用端子導體膜,係設置於該 電容器本體之外表面上,且分別電連接於該第丨及第2直 流偏壓施加用電極;以及第1及第2電容取得用端子導體 膜,係設置於該電容器本體之外表面上,且分別電連接於 該第1及第2電容取得用電極。 11. 如申請專利範圍第1〇項之電容器’其中,該第j 及第2直流偏壓施加用電極,在該介電體層主面方向的位 置,係設置成不與該電容形成區域重疊。 12. 如申請專利範圍第1〇項之電容器,其中,該第1 及第2直流偏壓施加用電極,在該介電體層主面方向的位 置,係設置成與該電容形成區域重疊。 13. 如申請專利範圍第10項之電容器,其中,該第1 及第2直流偏壓施加用電極,皆為形成並列之複數個電極 指的梳型齒狀,該第1直流偏壓施加用電極所具備之各該 50 丄川/59 係位在插入該第2直流偏壓施加用電極所呈儀之 該各電極指間的位置。 八 。。14.如申請專利範圍第1〇項之電容器其中該電容 态本體為具有沿積層方向延伸之四個側面的長方體形, 楚 1 士 VA 直流偏壓施加用端子導體膜設置於第1之該側面上, 。亥第2直流偏壓施加用端子導體膜設置於與該第1側面對 向之第2之該側面上,該第丨電容取得用端子導體膜設置 於與該第1及第2侧面相鄰接之第3之該側面上,該第2 電容取得用端子導體膜則設置於與該第3側面對向之第4 之該側面上。 15. 如申請專利範圍第1〇項之電容器,其中,至少構 成該電容形成區域之該介電體層,是由介電特性之直流偏 壓相依性大的材料構成。 16. 如申請專利範圍第1〇項至第15項任一項中之電容 器’其中,該電容器本體包含該複數組之該第1電容取得 用電極、該第2電容取得用電極、該第1直流偏壓施加用 電極及該第2直流偏壓施加用電極。 Η 、圖式: 如次頁 511331759 X. Patent Application Range: 1. A capacitor comprising: a capacitor body having a laminated structure composed of a plurality of dielectric layers; the capacitor body comprising a grounding electrode, along a specific The dielectric layer is provided; the DC bias application electrode is opposed to the ground electrode through the specific dielectric layer, and is configured to apply a DC bias voltage a and a capacitance between the ground electrode and the ground electrode. The electrode is disposed so as to be sandwiched between the DC bias application electrode and the ground electrode, and the specific dielectric layer is opposed to the ground electrode to form a static capacitance; Further, the grounding terminal conductor film ' is disposed on the outer surface of the capacitor body' and electrically connected to the grounding electrode; the DC bias application terminal conductor film 'is disposed on the outer surface of the capacitor body' And electrically connected to the DC bias application electrode; and the first capacitor acquisition terminal conductor film is provided outside the capacitor body Surface, and electrically connected to the capacitor electrode made. 2. The capacitor according to the first aspect of the invention, further comprising a second capacitor-acquisition terminal conductor film provided on an outer surface of the capacitor body and electrically connected to the ground electrode; the capacitor body has a The terminal conductor film for grounding is provided on the first side surface of the four side faces extending in the stacking direction, and the DC bias application terminal conductor film is provided on the second side opposite to the first side surface. The first capacitor 47 ^ 31759 is obtained by providing the terminal conductor film on the side surface adjacent to the first and second side faces, and the second capacitor-acquisition terminal conductor film is provided in the shai The third side faces the fourth side of the direction. 3. The capacitor of claim 1, wherein at least the dielectric layer between the electrode for grounding and the electrode for applying the DC bias is a material having a large direct current bias dependence of dielectric characteristics. Composition. 4. The capacitor according to any one of claims 3 to 3, wherein the capacitor body comprises a plurality of the grounding electrodes, the DC bias applying electrode, and the capacitor obtaining electrode. A capacitor comprising: a capacitor body; the capacitor body having a laminated structure composed of a plurality of dielectric layers; the capacitor body including a second and second capacitor-acquisition electrodes, which are further configured to transmit Specifically, the dielectric layers are opposed to each other to form an electrostatic valley, and the first and second DC bias application electrodes are used to apply a DC bias voltage to the first and second capacitor acquisition electrodes. a capacitance forming region of the dielectric layer; the first DC bias applying electrode is provided on the same main surface as the main surface of the dielectric layer on which the first capacitor obtaining electrode is provided, &quot The second DC bias application electrode is provided on the same main surface as the main surface of the dielectric layer on which the second capacitance acquisition electrode is provided, and further includes: first and second DC biases The terminal conductor film for application is provided on the outer surface of the electric benefit body and electrically connected to the first and second straight electrodes, and the first and second capacitor terminal conductors. Membrane Disposed on the outside surface of the capacitor body and electrically connected to the first and second capacitor electrode made. The capacitor of the fifth aspect of the invention, wherein the first DC-acquisition-using electrode is located on the side of the first DC-bias-applied electrode, and the second DC-bias is opposite to the second capacitor-acquisition-electrode The side where the electrode for pressure application is located is the opposite side. 7. The capacitor of claim 5, wherein the capacitor body has a rectangular parallelepiped shape having four side faces extending in a lamination direction, and the first DC bias application terminal conductor film is disposed on the side of the second side. The second DC bias application terminal conductor film is provided on the second side opposite to the second side surface. The terminal capacitor film for obtaining the capacitance is provided adjacent to the first and second side faces. On the third side, the second capacitor-acquisition terminal conductor film is provided on the fourth side opposite to the third side surface. 8. The capacitor of claim 5, wherein at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC bias dependence of dielectric characteristics. The capacitor according to any one of claims 5 to 8, wherein the capacitor body includes the plurality of the second capacitor obtaining electrodes, the second capacitor obtaining electrode, and the second DC bias voltage The application electrode and the second DC bias application electrode. 10. A capacitor comprising: a capacitor body having a laminated structure comprising a plurality of dielectric bodies 49 1331759; the capacitor body including first and second capacitor obtaining electrodes; And forming a static capacitance through the specific dielectric layers facing each other; and the first and second DC bias applying electrodes for applying a DC bias voltage to the second and second capacitors a region in which the dielectric layer of the dielectric layer is formed between the electrodes; and the first and second DC bias application electrodes are provided in the same dielectric layer sandwiched between the first and second capacitor-acquisition electrodes. Further, the first and second DC bias application terminal conductor films are provided on the outer surface of the capacitor body, and are electrically connected to the second and second DC biases, respectively. The electrode and the first and second capacitor-acquisition terminal conductor films are provided on the outer surface of the capacitor body, and are electrically connected to the first and second capacitor-acquisition electrodes, respectively. 11. The capacitor of the first aspect of the invention, wherein the j-th and second DC bias application electrodes are disposed so as not to overlap the capacitance formation region in the main surface direction of the dielectric layer. 12. The capacitor according to the first aspect of the invention, wherein the first and second DC bias application electrodes are disposed to overlap the capacitance formation region at a position in a direction of a main surface of the dielectric layer. 13. The capacitor according to claim 10, wherein the first and second DC bias application electrodes are comb-shaped teeth forming a plurality of parallel electrode fingers, and the first DC bias is applied. Each of the 50 丄川/59 series portions of the electrode is inserted between the respective electrode fingers of the instrument represented by the second DC bias application electrode. Eight . . 14. The capacitor of claim 1, wherein the capacitive body is a rectangular parallelepiped having four sides extending in the lamination direction, and the terminal conductor film for applying a DC bias voltage is provided on the side of the first side. On, The second DC bias application terminal conductor film is provided on the second side opposite to the first side surface, and the second capacitor-acquisition terminal conductor film is provided adjacent to the first and second side faces. On the third side, the second capacitor-acquisition terminal conductor film is provided on the fourth side opposite to the third side surface. 15. The capacitor of claim 1, wherein at least the dielectric layer constituting the capacitance forming region is made of a material having a large DC bias dependence of dielectric characteristics. 16. The capacitor of any one of clauses 1 to 15, wherein the capacitor body includes the first capacitor acquisition electrode, the second capacitor acquisition electrode, and the first capacitor The DC bias application electrode and the second DC bias application electrode. Η , Schema: as the next page 51
TW096103797A 2006-04-07 2007-02-02 Capacitor TWI331759B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006106324 2006-04-07
JP2006106322 2006-04-07
JP2006106323 2006-04-07
PCT/JP2006/325220 WO2007116566A1 (en) 2006-04-07 2006-12-19 Capacitor

Publications (2)

Publication Number Publication Date
TW200802444A TW200802444A (en) 2008-01-01
TWI331759B true TWI331759B (en) 2010-10-11

Family

ID=38580868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096103797A TWI331759B (en) 2006-04-07 2007-02-02 Capacitor

Country Status (3)

Country Link
JP (1) JP4873007B2 (en)
TW (1) TWI331759B (en)
WO (1) WO2007116566A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645637B2 (en) * 2007-11-15 2011-03-09 Tdk株式会社 Multilayer capacitor
JP4743222B2 (en) 2008-04-25 2011-08-10 ソニー株式会社 Variable capacitance element and electronic device
JP5126374B2 (en) * 2011-01-19 2013-01-23 ソニー株式会社 Variable capacitance element and electronic device
KR101994711B1 (en) * 2013-04-22 2019-07-01 삼성전기주식회사 Multi-layered ceramic capacitor and board for mounting the same
KR101504015B1 (en) * 2013-07-09 2015-03-18 삼성전기주식회사 Multi-layered ceramic capacitor and mounting circuit board thereof
US10431388B2 (en) * 2015-12-08 2019-10-01 Avx Corporation Voltage tunable multilayer capacitor
CN109119248A (en) * 2017-06-23 2019-01-01 北京北方华创微电子装备有限公司 Tunable capacitor and impedance-matching device
JP7196817B2 (en) * 2019-10-31 2022-12-27 株式会社村田製作所 How to use multilayer ceramic capacitors and how to mount multilayer ceramic capacitors
JP7302529B2 (en) * 2020-05-22 2023-07-04 株式会社村田製作所 How to use multilayer ceramic capacitors and how to mount multilayer ceramic capacitors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261122A (en) * 1990-03-10 1991-11-21 Nippon Chemicon Corp Variable capacitance element
JPH0878285A (en) * 1994-09-05 1996-03-22 Murata Mfg Co Ltd Variable capacitor
JP2001267503A (en) * 2000-03-16 2001-09-28 Toshiba Corp Capacitor and integrated circuit
GB2400493B (en) * 2003-04-08 2005-11-09 Avx Corp Plated terminations
JP2006344845A (en) * 2005-06-10 2006-12-21 Murata Mfg Co Ltd Capacitor
JP2008066682A (en) * 2006-09-05 2008-03-21 Taiyo Yuden Co Ltd Variable capacitor

Also Published As

Publication number Publication date
JPWO2007116566A1 (en) 2009-08-20
TW200802444A (en) 2008-01-01
JP4873007B2 (en) 2012-02-08
WO2007116566A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
TWI331759B (en) Capacitor
TWI338125B (en) Arrayed electrostatic capacitance sensor
TWI229878B (en) Multilayer capacitor
CN101315833B (en) Multilayer capacitor
JP5275393B2 (en) Multilayer ceramic capacitor
JP5234135B2 (en) Feed-through multilayer capacitor
TW200414239A (en) Multi-layer capacitor
TW200923990A (en) Multilayer capacitor
CN101315832B (en) Multilayer capacitor
JP2010062489A (en) Capacitive element
US7636230B2 (en) Multilayer capacitor array
JP2015119184A (en) Multilayer ceramic capacitor and manufacturing method thereof
TW200901247A (en) Interdigital capacitor
CN109863762B (en) Electrostatic transducer
JP5716092B2 (en) Ceramic device and manufacturing method thereof
KR102057914B1 (en) Multilayer ceramic capacitor
JP5861531B2 (en) Multilayer capacitor
JP4539713B2 (en) Multilayer capacitor array
TW201250727A (en) Electrical multilayer component
KR20030087049A (en) Offset pathway arrangements for energy conditioning
US9101074B2 (en) Capacitor and multilayer circuit board using same
JP2012033717A (en) Multilayer capacitor
JP3180779U (en) Parallel plate magnetic capacitor
JP2012074460A (en) Esd protection device
CN208539864U (en) Acoustic wave device and duplexer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees