JP2008066682A - Variable capacitor - Google Patents

Variable capacitor Download PDF

Info

Publication number
JP2008066682A
JP2008066682A JP2006272284A JP2006272284A JP2008066682A JP 2008066682 A JP2008066682 A JP 2008066682A JP 2006272284 A JP2006272284 A JP 2006272284A JP 2006272284 A JP2006272284 A JP 2006272284A JP 2008066682 A JP2008066682 A JP 2008066682A
Authority
JP
Japan
Prior art keywords
electrode
bias
capacitor
variable capacitor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006272284A
Other languages
Japanese (ja)
Inventor
Kunihiko Nakajima
邦彦 中島
Takeo Sakurai
武夫 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2006272284A priority Critical patent/JP2008066682A/en
Publication of JP2008066682A publication Critical patent/JP2008066682A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable capacitor capable of realizing both of lowering of a bias voltage and the maximization of an electrostatic capacitance changing rate. <P>SOLUTION: This variable capacitor comprises, a first capacitance portion which is formed by alternately laminating a plurality of first capacitance electrodes 4 and a plurality of first bias electrodes 6 via dielectric layers; a second capacitance portion which is formed by alternately laminating a plurality of second capacitance electrodes 5 and a plurality of second bias electrodes 7 via dielectric layers; and a variable capacitance portion in which a bias electrode 6a and a bias electrode 7a face each other via a dielectric layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強誘電体の誘電率電界依存性を利用した可変キャパシタに関するもので、バイアス電圧の低電圧化と静電容量変化率の最大化の両立が可能な可変キャパシタに関するものである。  The present invention relates to a variable capacitor using the dielectric constant electric field dependence of a ferroelectric, and relates to a variable capacitor capable of both reducing a bias voltage and maximizing a capacitance change rate.

静電容量を変化させる可変キャパシタとしては、次のようなものが知られている。(a)対向配置した複数金属板の一方を移動させて容量面積を変化させるキャパシタ、いわゆるバリコンと呼ばれるもの、(b)セラミックコンデンサなどを複数個並列に接続して各コンデンサのそれぞれにスイッチICを接続して切換動作を行うもの、(c)ダイオードの逆バイアス電圧に対する非直線容量特性を利用したものなどがある。  The following are known as variable capacitors for changing the capacitance. (A) Capacitors that change the capacitance area by moving one of a plurality of opposed metal plates, so-called variable capacitors, (b) A plurality of ceramic capacitors connected in parallel, and a switch IC is connected to each capacitor. There are those that are connected to perform the switching operation, and (c) those that use the non-linear capacitance characteristics with respect to the reverse bias voltage of the diode.

しかしながら、(a)のバリコンは機械的な手段で容量変化させるので、小型化が困難であるという問題があった。また、(b)についてはスイッチICが必要なため小型化が難しく、スイッチングによってコンデンサを切り換えるので容量の連続変化ができないという問題があった。また、(c)については製造に真空プロセスが必要なので、製造コストが高いという問題があった。  However, the variable capacitor (a) has a problem that it is difficult to reduce the size because the capacity is changed by mechanical means. Further, (b) has a problem that it is difficult to reduce the size because a switch IC is required, and the capacitance cannot be continuously changed because the capacitor is switched by switching. Further, (c) has a problem in that the manufacturing cost is high because a vacuum process is required for the manufacturing.

そこで、これらの問題を解決する手段として(d)強誘電体の誘電率電界依存性を利用した可変キャパシタが提案されている。これはキャパシタの容量電極に挟まれた誘電体に外部電界をかけることにより、誘電体の誘電率を変化させて静電容量を変化させるものである。このような可変キャパシタとしては、特開昭62−259417号公報にあるような、容量電極の間にバイアス電極を設けて電界をかけるものや、特開昭62−281319号公報にあるような、容量電極をバイアス電極で挟むようにして電界をかけるものがある。これらのものは構造が簡易であり製造が通常のキャパシタと同様に容易なため、低コストで小型化が容易な可変キャパシタを得ることができるものである。  Therefore, as a means for solving these problems, (d) a variable capacitor utilizing the dielectric constant electric field dependence of a ferroelectric has been proposed. In this method, an external electric field is applied to the dielectric sandwiched between the capacitor electrodes of the capacitor, thereby changing the dielectric constant of the dielectric to change the capacitance. Examples of such a variable capacitor include those in which a bias electrode is provided between capacitive electrodes as in JP-A-62-259417 and an electric field is applied, and in JP-A-62-281319. There is one in which an electric field is applied such that a capacitor electrode is sandwiched between bias electrodes. Since these have a simple structure and are easy to manufacture in the same manner as ordinary capacitors, it is possible to obtain a variable capacitor that can be easily reduced in size at low cost.

特開昭62−259417号公報Japanese Patent Laid-Open No. 62-259417 特開昭62−281319号公報JP-A-62-281319

可変キャパシタには、(イ)大きな静電容量変化率、(ロ)低いバイアス電圧、の性能が求められる。大きな静電容量変化率を得るには、誘電体の誘電率の変動を大きくする必要があり、この誘電率の変動を大きくするには誘電体にかける電界強度を高くすることが必要である。電界強度は(バイアス電圧/バイアス電極間距離)で表される。このことから、電界強度を高くするにはバイアス電極間の印加電圧を高くするか、バイアス電極間距離を小さくすることで行うことができるが、低いバイアス電圧で電界強度を高くするにはバイアス電極間を小さくすることが必要である。  The variable capacitor is required to have (i) a large capacitance change rate and (b) a low bias voltage. In order to obtain a large capacitance change rate, it is necessary to increase the variation of the dielectric constant of the dielectric. To increase the variation of the dielectric constant, it is necessary to increase the electric field strength applied to the dielectric. The electric field strength is expressed by (bias voltage / bias electrode distance). From this, it is possible to increase the electric field strength by increasing the applied voltage between the bias electrodes or by reducing the distance between the bias electrodes, but to increase the electric field strength at a low bias voltage, It is necessary to reduce the gap.

ここで、特開昭62−281319号公報の可変キャパシタについてみてみると、容量電極をバイアス電極で挟むようにして電界をかけるタイプの可変キャパシタであるので、バイアス電極間距離が容量電極間距離よりも大きくなるため、バイアス電圧の低電圧化には限界がある。そのため、バイアス電圧の低電圧化には、特開昭62−259417号公報にあるような、容量電極の間にバイアス電極を設けて電界をかけるタイプの可変キャパシタの方が有利である。  Here, looking at the variable capacitor disclosed in Japanese Patent Application Laid-Open No. 62-281319, it is a type of variable capacitor in which an electric field is applied so that the capacitor electrode is sandwiched between the bias electrodes. Therefore, there is a limit to lowering the bias voltage. For this reason, a variable capacitor of the type in which a bias electrode is provided between capacitive electrodes and an electric field is applied as described in Japanese Patent Application Laid-Open No. 62-259417 is more advantageous for lowering the bias voltage.

このような可変キャパシタのモデルを図12(a)に示す。図12(a)の可変キャパシタは、誘電率εの誘電体を介して対向する第一の容量電極4と第二の容量電極5を有し、前記第一の容量電極4と前記第二の容量電極5の間に、前記第一の容量電極4に対して誘電体を介して対向する第一のバイアス電極6と、前記第一のバイアス電極6及び前記第二の容量電極5に対して誘電体を介して対向する第二のバイアス電極7を有している。前記第一のバイアス電極6と前記第二のバイアス電極7との間には電源PSからのバイアス電圧がかかっており、これによる電界により前記第一のバイアス電極6と前記第二のバイアス電極7との間の誘電体の誘電率がε‘に変化している。  A model of such a variable capacitor is shown in FIG. The variable capacitor shown in FIG. 12A includes a first capacitor electrode 4 and a second capacitor electrode 5 which are opposed to each other with a dielectric having a dielectric constant ε, and the first capacitor electrode 4 and the second capacitor electrode 5 Between the capacitive electrode 5, the first bias electrode 6 facing the first capacitive electrode 4 via a dielectric, and the first bias electrode 6 and the second capacitive electrode 5 It has the 2nd bias electrode 7 which opposes via a dielectric material. A bias voltage from a power source PS is applied between the first bias electrode 6 and the second bias electrode 7, and the electric field generated thereby causes the first bias electrode 6 and the second bias electrode 7 to be biased. The dielectric constant of the dielectric between is changed to ε ′.

この可変キャパシタは、図12(b)に示すような等価回路で表現できる。すなわちこの可変キャパシタの静電容量は、誘電率εの誘電体を介して対向する第一の容量電極4と第一のバイアス電極6とで形成された静電容量Cと、誘電率εの誘電体を介して対向する第二の容量電極5と第二のバイアス電極7とで形成された静電容量Cと、誘電率ε‘の誘電体を介して対向する第一のバイアス電極6と第二のバイアス電極7とで形成された可変の静電容量Cと、が直列接続されて構成されているものである。よって、第一の容量電極4と第二の容量電極5の間に形成される静電容量Ctotalは次式のようになる。This variable capacitor can be expressed by an equivalent circuit as shown in FIG. That is, the capacitance of this variable capacitor is the capacitance C 1 formed by the first capacitance electrode 4 and the first bias electrode 6 facing each other through a dielectric having a dielectric constant ε, and the dielectric constant ε. A capacitance C 2 formed by the second capacitor electrode 5 and the second bias electrode 7 facing each other through a dielectric, and a first bias electrode 6 facing through a dielectric having a dielectric constant ε ′. And a variable capacitance CV formed by the second bias electrode 7 are connected in series. Therefore, the capacitance C total formed between the first capacitor electrode 4 and the second capacitor electrode 5 is expressed by the following equation.

式1Formula 1

Figure 2008066682
Figure 2008066682

ここで、Cの最大値をCV・MAX、Cの最小値をCV・MINとして、C=CV・MAX、のときのCtotalをCtotal・MAX、C=CV・MIN、のときのCtotalをCtotal・MINとすると、可変キャパシタの静電容量変化率Ctotal・MAX/Ctotal・MINは次式のようになる。Here, the maximum value of C V C V · MAX, the minimum value of C V as C V · MIN, C V = C V · MAX, a C total when the C total · MAX, C V = C V · MIN, a C total when C total · MIN, the capacitance change rate of the variable capacitor C total · MAX / C total · MIN is as follows when the.

式2Formula 2

Figure 2008066682
Figure 2008066682

ここで、式2を整理して次式のように表した。  Here, Formula 2 is arranged and expressed as the following formula.

式3Formula 3

Figure 2008066682
Figure 2008066682

式3より、静電容量変化率を最大限大きくするには、Cに対してC及びCを充分に大きく(例えばC及びCの静電容量をCの10倍以上)する必要がある。図12(a)の構造でこれを実現するには、第一のバイアス電極6と第二のバイアス電極7との間の距離に対して、第一の容量電極4と第一のバイアス電極6との間の距離、及び第二の容量電極5と第二のバイアス電極7との間の距離を充分に小さくすることで可能である。From Equation 3, in order to increase maximum capacitance change rate, C 1 and C 2 sufficiently large (for example, C 1 and 10 times more C V the capacitance of C 2) relative to the C V There is a need to. In order to realize this with the structure of FIG. 12A, the first capacitance electrode 4 and the first bias electrode 6 with respect to the distance between the first bias electrode 6 and the second bias electrode 7. And the distance between the second capacitor electrode 5 and the second bias electrode 7 can be made sufficiently small.

しかしながら、バイアス電圧を低電圧化するには、第一のバイアス電極6と第二のバイアス電極7との間の距離を小さくする必要があるが、このようにすると第一の容量電極4と第一のバイアス電極6との間の距離及び第二の容量電極5と第二のバイアス電極7との間の距離をさらに小さくする必要がある。誘電体の厚みには製法上の限界厚みがあるので、バイアス電圧の低電圧化には限界があるという問題がある。本発明は、このような問題点を解決して、バイアス電圧の低電圧化と静電容量変化率の最大化が両立できる可変キャパシタを得るものである。  However, in order to reduce the bias voltage, it is necessary to reduce the distance between the first bias electrode 6 and the second bias electrode 7. It is necessary to further reduce the distance between the first bias electrode 6 and the distance between the second capacitor electrode 5 and the second bias electrode 7. There is a problem that there is a limit to lowering the bias voltage because the thickness of the dielectric has a limit in terms of manufacturing method. The present invention solves such problems and obtains a variable capacitor that can achieve both a reduction in bias voltage and a maximum rate of change in capacitance.

本発明は第一の解決手段として、誘電体の積層体中に、誘電体を介して対向する第一の容量電極と第一のバイアス電極とで構成された第一の容量部と、誘電体を介して対向する第二の容量電極と第二のバイアス電極とで構成された第二の容量部と、誘電体を介して対向する第一のバイアス電極と第二のバイアス電極とで構成された可変容量部と、を有し、前記積層体の表面に、前記第一の容量電極と電気的に接続される第一の外部電極と、前記第二の容量電極と電気的に接続される第二の外部電極と、前記第一のバイアス電極と電気的に接続される第三の外部電極と、前記第二のバイアス電極と電気的に接続される第四の外部電極と、を有する可変キャパシタにおいて、前記第一の容量部または第二の容量部の少なくともいずれかは、複数の容量電極と複数のバイアス電極が誘電体を介して交互に重ねられた積層構造を形成していることを特徴とする可変キャパシタを提案する。  The present invention provides, as a first solving means, a first capacitor section composed of a first capacitor electrode and a first bias electrode facing each other through a dielectric in a dielectric laminate, and a dielectric A second capacitive portion composed of a second capacitive electrode and a second bias electrode facing each other via a first dielectric layer, and a first bias electrode and a second bias electrode facing each other via a dielectric. And a first external electrode electrically connected to the first capacitive electrode and electrically connected to the second capacitive electrode on the surface of the laminate. A variable having a second external electrode, a third external electrode electrically connected to the first bias electrode, and a fourth external electrode electrically connected to the second bias electrode In the capacitor, at least one of the first capacitor and the second capacitor is a plurality of The amount electrodes and a plurality of bias electrodes to propose a variable capacitor, characterized in that to form a laminated structure superimposed alternately with the dielectric.

上記第一の解決手段によれば、図12(b)の等価回路のCあるいはCを積層構造にすることにより、その静電容量を充分に大きくできるので、バイアス電圧の低電圧化と静電容量変化率の最大化の両立が可能な可変キャパシタを得ることができる。According to the first solution, the capacitance can be sufficiently increased by making C 1 or C 2 of the equivalent circuit of FIG. 12B a laminated structure, so that the bias voltage can be lowered. It is possible to obtain a variable capacitor that can simultaneously maximize the rate of change in capacitance.

また、本発明では第二の解決手段として、前記可変容量部の誘電体の厚みは、その他の電極間の誘電体の厚みよりも薄いことを特徴とする可変キャパシタを提案する。  In the present invention, as a second solution, a variable capacitor is proposed in which the thickness of the dielectric of the variable capacitor is smaller than the thickness of the dielectric between the other electrodes.

上記第二の解決手段によれば、可変容量部の電界強度を高めることができるので、バイアス電圧をより低電圧化することができる。  According to the second solving means, since the electric field strength of the variable capacitance section can be increased, the bias voltage can be further lowered.

なお、このような可変キャパシタを実際に動作させる場合、第一のバイアス電極あるいは第二のバイアス電極と、バイアス電圧の電源とを抵抗素子のような直流的に導通する高インピーダンス部で分離する必要がある。分離していないと、容量電極に印加された信号が電源に流れてしまい、可変キャパシタとして動作しなくなってしまう。これを解決するために第三の解決手段として、前記第一のバイアス電極と前記第三の外部電極との間、または前記第二のバイアス電極と前記第四の外部電極との間の、少なくともいずれかに直流的に導通する高インピーダンス部を設けたことを特徴とする可変キャパシタを提案する。  When such a variable capacitor is actually operated, it is necessary to separate the first bias electrode or the second bias electrode and the power source of the bias voltage with a high impedance portion such as a resistance element that is DC-conductive. There is. If they are not separated, the signal applied to the capacitor electrode flows to the power supply and does not operate as a variable capacitor. In order to solve this, as a third solution, at least between the first bias electrode and the third external electrode, or between the second bias electrode and the fourth external electrode, A variable capacitor is proposed in which a high-impedance part that conducts in a direct current is provided in either of them.

この高インピーダンス部は、外部電極の電極膜として形成してもよいし、またキャパシタ内にチップ抵抗器に用いられる抵抗体や、コイル導体を積層体内に内蔵してもよい。  The high impedance portion may be formed as an electrode film of an external electrode, or a resistor used for a chip resistor or a coil conductor may be incorporated in the multilayer body in the capacitor.

本発明によれば、バイアス電圧の低電圧化と静電容量変化率の最大化の両立が可能な可変キャパシタを得ることができる。  According to the present invention, it is possible to obtain a variable capacitor capable of both reducing the bias voltage and maximizing the capacitance change rate.

本発明の可変キャパシタに係る実施形態を、図面に基づいて説明する。図1は本発明の可変キャパシタの外観斜視図、図2は分解図である。可変キャパシタ1は内部に第一の容量電極4、第二の容量電極5、第一のバイアス電極6、6a及び第二のバイアス電極7、7aを内蔵した略直方体形状の誘電体の積層体2と、該積層体2の4つの側面に形成された第一の外部電極3a、第二の外部電極3b、第三の外部電極3c及び第四の外部電極3dを有している。第一の外部電極3aは第一の容量電極4が引出された側面に形成され、第二の外部電極3bは第二の容量電極5が引出された側面に形成され、第三の外部電極3cは第一のバイアス電極6、6aが引出された側面に形成され、第四の外部電極3dは第二のバイアス電極7、7aが引出された側面に形成されている。  An embodiment according to a variable capacitor of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of the variable capacitor of the present invention, and FIG. 2 is an exploded view. The variable capacitor 1 has a substantially rectangular parallelepiped dielectric laminate 2 in which a first capacitor electrode 4, a second capacitor electrode 5, a first bias electrode 6, 6a, and a second bias electrode 7, 7a are incorporated. And a first external electrode 3a, a second external electrode 3b, a third external electrode 3c, and a fourth external electrode 3d formed on the four side surfaces of the laminate 2. The first external electrode 3a is formed on the side surface from which the first capacitive electrode 4 is drawn, the second external electrode 3b is formed on the side surface from which the second capacitive electrode 5 is drawn, and the third external electrode 3c. Is formed on the side surface from which the first bias electrodes 6 and 6a are drawn, and the fourth external electrode 3d is formed on the side surface from which the second bias electrodes 7 and 7a are drawn.

前記積層体2の内部構造は、複数の第一の容量電極4と複数の第一のバイアス電極6、6aが誘電体を介して交互に積層された第一の容量部(図12(b)のCに相当)と、複数の第二の容量電極5と複数の第一のバイアス電極7、7aが誘電体を介して交互に積層された第二の容量部(図12(b)のCに相当)と、バイアス電極6aとバイアス電極7aが誘電体を介して対向している可変容量部(図12(b)のCに相当)で構成され、積層方向上下に誘電体層2aが保護層として積層されている。なお、ここでは第一の容量部と第二の容量部の両方とも積層構造としているが直接基準電位面に接続するような用途の場合では、図3に示すように、一方のみ例えば第一の容量部のみを積層構造としてもよい。この場合は、積層構造でない方を基準電位面に接続するものとする。また、第一の容量部と第二の容量部は略同じ静電容量であることが望ましい。また、可変容量部を形成する第一のバイアス電極6a及び第二のバイアス電極7aは、第一の容量電極4もしくは第二の容量電極5との間に生じるストレー容量を低減するために、第一の容量電極4と第一のバイアス電極6aの間、あるいは第二の容量電極5と第二のバイアス電極7aの間について、誘電体厚みを厚くするか、誘電率の異なる誘電体を挿入しても良い。The internal structure of the multilayer body 2 is a first capacitor section in which a plurality of first capacitor electrodes 4 and a plurality of first bias electrodes 6 and 6a are alternately stacked via a dielectric (FIG. 12B). and equivalent) in C 1, the second capacitor portion in which a plurality of second capacitor electrodes 5 and a plurality of first bias electrode 7,7a are alternately stacked via the dielectric (see FIG. 12 (b) and C 2 corresponding to) be composed of a variable capacitance unit that bias electrode 6a and the bias electrode 7a is opposed through the dielectric corresponding to the C V in (FIG. 12 (b)), the stacking direction vertical to the dielectric layer 2a is laminated as a protective layer. In this case, both the first capacitor unit and the second capacitor unit have a laminated structure, but in the case of the use where the first capacitor unit and the second capacitor unit are directly connected to the reference potential surface, as shown in FIG. Only the capacitor portion may have a laminated structure. In this case, the non-stacked structure is connected to the reference potential surface. In addition, it is desirable that the first capacitance portion and the second capacitance portion have substantially the same capacitance. In addition, the first bias electrode 6a and the second bias electrode 7a forming the variable capacitor section are provided with the first bias electrode 6a and the second bias electrode 7a in order to reduce the stray capacitance generated between the first capacitor electrode 4 and the second capacitor electrode 5. Between one capacitor electrode 4 and the first bias electrode 6a or between the second capacitor electrode 5 and the second bias electrode 7a, the dielectric thickness is increased or a dielectric having a different dielectric constant is inserted. May be.

このような可変キャパシタ1は、一般的な積層電子部品の製造プロセスで製造することができるので、比較的低コストで製造することができる。また、積層体2を構成する誘電体としては、例えばチタン酸バリウム等のセラミック誘電体の他、フィルムコンデンサに用いられる有機誘電体など、膜状の強誘電体であれば適宜使用できる。また、誘電率等の特性の異なる異種材料を組み合わせても良い。またさらに、容量電極、バイアス電極及び外部電極に用いられる導電材料も、Ag、Cu、Ni、Pd等、製造プロセスや誘電体材料に合わせて適宜選択が可能である。  Since such a variable capacitor 1 can be manufactured by a general manufacturing process of multilayer electronic components, it can be manufactured at a relatively low cost. Moreover, as a dielectric material which comprises the laminated body 2, if it is film-form ferroelectric materials, such as an organic dielectric material used for a film capacitor other than ceramic dielectric materials, such as barium titanate, for example, it can use suitably. Further, different materials having different characteristics such as dielectric constant may be combined. Furthermore, the conductive material used for the capacitor electrode, the bias electrode, and the external electrode can be appropriately selected in accordance with the manufacturing process and the dielectric material, such as Ag, Cu, Ni, and Pd.

本発明の可変キャパシタ1の動作状態を図4に示す。電源PSよりバイアス電圧を第三の外部電極3c及び第四の外部電極3dに印加すると第一のバイアス電極6と第二のバイアス電極7の間の誘電体の誘電率が変化しCの容量が変化する。CとCは積層構造を有しているので、Cと比較して充分に大きい静電容量を有している。これにより可変キャパシタ1の全体の静電容量変化率はCの容量変化率に限りなく近づき、最大限大きくすることができる。また、バイアス電圧を低電圧化するため、第一のバイアス電極6と第二のバイアス電極7の間の誘電体の厚みを薄くした場合、C及びCの容量を増やす必要があるが、本発明の可変キャパシタ1ではC及びCの積層枚数を増やすことで対応可能になるため、部品サイズの許容範囲内でバイアス電圧の低電圧化と静電容量変化率の最大化を両立することができる。The operating state of the variable capacitor 1 of the present invention is shown in FIG. When a bias voltage is applied from the power source PS to the third external electrode 3c and the fourth external electrode 3d, the dielectric constant of the dielectric between the first bias electrode 6 and the second bias electrode 7 changes, and the capacitance of C V Changes. Since C 1 and C 2 have a laminated structure, they have a sufficiently large capacitance compared to CV . As a result, the overall capacitance change rate of the variable capacitor 1 approaches the CV capacitance change rate as much as possible, and can be maximized. In order to reduce the bias voltage, when the thickness of the dielectric between the first bias electrode 6 and the second bias electrode 7 is reduced, it is necessary to increase the capacities of C 1 and C 2 . Since the variable capacitor 1 of the present invention can be dealt with by increasing the number of stacked layers of C 1 and C 2 , both lowering the bias voltage and maximizing the rate of change in capacitance are compatible within the allowable range of the component size. be able to.

なお、図4において電源PSと第三の外部電極3c及び第四の外部電極3dとの間に高インピーダンス部REが設けられている。これは本発明の可変キャパシタ1を実際に動作させた場合、高インピーダンス部REが無いと第一の外部電極3aと第二の外部電極3bの間に印加された信号が電源PSに流れてしまい、可変キャパシタとして動作しなくなってしまうからである。この現象は特に信号の周波数が高くなるほど顕著になる。  In FIG. 4, a high impedance portion RE is provided between the power source PS and the third external electrode 3c and the fourth external electrode 3d. This is because, when the variable capacitor 1 of the present invention is actually operated, a signal applied between the first external electrode 3a and the second external electrode 3b flows to the power source PS without the high impedance portion RE. This is because it does not operate as a variable capacitor. This phenomenon becomes more pronounced as the signal frequency increases.

そこで、本発明の可変キャパシタの別の実施形態として、図5の分解図に示すような、高インピーダンス部を内蔵した可変キャパシタを提案する。この可変キャパシタは、第一のバイアス電極6、6aをスルーホール導体SHで接続し、第三の外部電極3cとスルーホール導体SHを高インピーダンス部REで接続しており、第二のバイアス電極7、7aをスルーホール導体SHで接続し、第四の外部電極3dとスルーホール導体SHを高インピーダンス部REで接続したものである。高インピーダンス部REとしては、チップ抵抗器に用いられる酸化ルテニウムなどの抵抗材料の他、蛇行形状の導体やコイルのようなインダクタンス素子など、直流的に導通しながら高いインピーダンスを付与できるものが挙げられる。コイルの場合は平面コイルのほか、積層型のコイルでも良い。また、スルーホール導体SHに充填されている導電体の代わりに抵抗材料を用いても良い。  Therefore, as another embodiment of the variable capacitor of the present invention, a variable capacitor incorporating a high impedance portion as shown in the exploded view of FIG. 5 is proposed. In this variable capacitor, the first bias electrodes 6 and 6a are connected by a through-hole conductor SH, the third external electrode 3c and the through-hole conductor SH are connected by a high impedance portion RE, and the second bias electrode 7 , 7a are connected by a through-hole conductor SH, and the fourth external electrode 3d and the through-hole conductor SH are connected by a high impedance portion RE. Examples of the high impedance portion RE include a resistance material such as ruthenium oxide used for a chip resistor, a meandering conductor, an inductance element such as a coil, and the like that can impart high impedance while conducting in a DC manner. . In the case of a coil, a laminated coil may be used in addition to a planar coil. Further, a resistance material may be used instead of the conductor filled in the through-hole conductor SH.

なお、図6(a)、(b)に示す構造であれば、スルーホール導体SHを設けなくても良い。この構造では、第一のバイアス電極6、6aをダミー電極DE1に接続しており、ダミー電極DE1と第三の外部電極3cとを高インピーダンス部REで接続している。また、第二のバイアス電極7、7aをダミー電極DE2に接続しており、ダミー電極DE2と第四の外部電極3dとを高インピーダンス部REで接続している。バイアス電圧の電源に接続されている配線を第三の外部電極3c及び第四の外部電極3dに接続することによって、高インピーダンス部REを電源とバイアス電極との間に設けることができる。なお、ダミー電極DE1、DE2はバイアス電極に接続されているので、例えば内蔵の高インピーダンス部REではインピーダンス値が足りない場合には、ダミー電極DE1及びDE2に電源を接続して外付けの高インピーダンス素子を介在させても良い。  Note that the through-hole conductor SH does not have to be provided in the structure shown in FIGS. In this structure, the first bias electrodes 6 and 6a are connected to the dummy electrode DE1, and the dummy electrode DE1 and the third external electrode 3c are connected by the high impedance part RE. The second bias electrodes 7 and 7a are connected to the dummy electrode DE2, and the dummy electrode DE2 and the fourth external electrode 3d are connected by the high impedance part RE. By connecting the wiring connected to the power source of the bias voltage to the third external electrode 3c and the fourth external electrode 3d, the high impedance part RE can be provided between the power source and the bias electrode. Since the dummy electrodes DE1 and DE2 are connected to the bias electrode, for example, when the impedance value is insufficient in the built-in high impedance unit RE, a power source is connected to the dummy electrodes DE1 and DE2 to provide an external high impedance. An element may be interposed.

また、図7に示すように、第三の外部電極3cあるいは第四の外部電極3dの電極膜として抵抗材料を用いて高インピーダンス部REを形成しても良い。このように可変キャパシタの外部電極に抵抗材料を付与することにより、高インピーダンス部REを内蔵せずスルーホール導体SHを使用しなくても単独で可変キャパシタとして動作させることができるようになる。なお、ここでは、抵抗体を第三の外部電極3c側と第四の外部電極3d側の両方に形成した例を示したが、どちらか一方に形成してあれば有効である。  Further, as shown in FIG. 7, the high impedance portion RE may be formed using a resistance material as an electrode film of the third external electrode 3c or the fourth external electrode 3d. Thus, by applying a resistance material to the external electrode of the variable capacitor, it becomes possible to operate as a variable capacitor independently without incorporating the high impedance part RE and without using the through-hole conductor SH. Here, an example is shown in which the resistors are formed on both the third external electrode 3c side and the fourth external electrode 3d side, but it is effective if they are formed on either one.

なお、本発明の可変キャパシタは、図1のような外観のものについて説明してきたが、容量電極やバイアス電極の引出し方によって外部電極の形成位置が変わってくる。例えば図8に示すように、外部電極を四隅に形成したものでも良い。また、図9に示すように、相対向する一対の側面に2つずつ外部電極を形成したものでも良い。また、図10のように、一側面に4つの外部電極を形成したものでも良い。また、図11に示すように、スルーホールで引き出す等の方法によって上面または下面に外部電極を形成しても良い。なお、第一の外部電極3a、第二の外部電極3b、第三の外部電極3c及び第四の外部電極3dの並び方は、各図面に示された並び方に限定されず、適宜設定可能である。また、誘電体の積層体の形状についても、本実施形態では略直方体形状のもので説明したが、本発明の範囲内であれば例えば略円筒状等のような略直方体形状以外の形状でも良い。  Although the variable capacitor according to the present invention has been described with respect to the appearance as shown in FIG. 1, the formation position of the external electrode varies depending on how the capacitor electrode and the bias electrode are drawn. For example, as shown in FIG. 8, the external electrodes may be formed at the four corners. Further, as shown in FIG. 9, two external electrodes may be formed on a pair of opposite side surfaces. Further, as shown in FIG. 10, four external electrodes may be formed on one side surface. Further, as shown in FIG. 11, external electrodes may be formed on the upper surface or the lower surface by a method such as drawing through through holes. The arrangement of the first external electrode 3a, the second external electrode 3b, the third external electrode 3c, and the fourth external electrode 3d is not limited to the arrangement shown in each drawing, and can be set as appropriate. . The shape of the dielectric laminate has been described as a substantially rectangular parallelepiped shape in the present embodiment, but may be a shape other than a substantially rectangular parallelepiped shape such as a substantially cylindrical shape as long as it is within the scope of the present invention. .

本発明の可変キャパシタの外観を示す斜視図である。It is a perspective view which shows the external appearance of the variable capacitor of this invention. 本発明の可変キャパシタの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of the variable capacitor of this invention. 本発明の可変キャパシタの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of the variable capacitor of this invention. 本発明の可変キャパシタの動作を示すモデル図である。It is a model figure which shows operation | movement of the variable capacitor of this invention. 本発明の別例の可変キャパシタの内部構造を示す分解斜視図である。It is a disassembled perspective view which shows the internal structure of the variable capacitor of another example of this invention. (a)は本発明の別例の可変キャパシタの内部構造を示す分解斜視図であり、(b)はその外観を示す斜視図である。(A) is a disassembled perspective view which shows the internal structure of the variable capacitor of another example of this invention, (b) is a perspective view which shows the external appearance. 本発明の別例の可変キャパシタの外観を示す斜視図である。It is a perspective view which shows the external appearance of the variable capacitor of another example of this invention. 本発明の可変キャパシタの外観のバリエーションを示す斜視図である。It is a perspective view which shows the variation of the external appearance of the variable capacitor of this invention. 本発明の可変キャパシタの外観のバリエーションを示す斜視図である。It is a perspective view which shows the variation of the external appearance of the variable capacitor of this invention. 本発明の可変キャパシタの外観のバリエーションを示す斜視図である。It is a perspective view which shows the variation of the external appearance of the variable capacitor of this invention. 本発明の可変キャパシタの外観のバリエーションを示す斜視図である。It is a perspective view which shows the variation of the external appearance of the variable capacitor of this invention. (a)は可変キャパシタのモデル図であり、(b)はその等価回路図である。(A) is the model figure of a variable capacitor, (b) is the equivalent circuit schematic.

符号の説明Explanation of symbols

1 可変キャパシタ
2 誘電体の積層体
2a 誘電体層
3a 第一の外部電極
3b 第二の外部電極
3c 第三の外部電極
3d 第四の外部電極
4 第一の容量電極
5 第二の容量電極
6、6a 第一のバイアス電極
7、7a 第二のバイアス電極
DESCRIPTION OF SYMBOLS 1 Variable capacitor 2 Dielectric laminated body 2a Dielectric layer 3a 1st external electrode 3b 2nd external electrode 3c 3rd external electrode 3d 4th external electrode 4 1st capacity electrode 5 2nd capacity electrode 6 , 6a First bias electrode 7, 7a Second bias electrode

Claims (5)

誘電体の積層体中に、誘電体を介して対向する第一の容量電極と第一のバイアス電極とで構成された第一の容量部と、誘電体を介して対向する第二の容量電極と第二のバイアス電極とで構成された第二の容量部と、誘電体を介して対向する第一のバイアス電極と第二のバイアス電極とで構成された可変容量部と、を有し、
前記積層体の表面に、前記第一の容量電極と電気的に接続される第一の外部電極と、前記第二の容量電極と電気的に接続される第二の外部電極と、前記第一のバイアス電極と電気的に接続される第三の外部電極と、前記第二のバイアス電極と電気的に接続される第四の外部電極と、を有する可変キャパシタにおいて、
前記第一の容量部または前記第二の容量部の少なくともいずれかは、複数の容量電極と複数のバイアス電極が誘電体を介して交互に重ねられた積層構造を形成していることを特徴とする可変キャパシタ。
A first capacitor portion composed of a first capacitor electrode and a first bias electrode facing each other through a dielectric in a dielectric laminate, and a second capacitor electrode facing through the dielectric And a second capacitor part constituted by a second bias electrode, and a variable capacitor part constituted by a first bias electrode and a second bias electrode opposed via a dielectric,
A first external electrode electrically connected to the first capacitive electrode; a second external electrode electrically connected to the second capacitive electrode; and A variable capacitor having a third external electrode electrically connected to the bias electrode and a fourth external electrode electrically connected to the second bias electrode;
At least one of the first capacitor section and the second capacitor section has a stacked structure in which a plurality of capacitor electrodes and a plurality of bias electrodes are alternately stacked via a dielectric. A variable capacitor.
前記可変容量部の誘電体の厚みは、その他の電極間の誘電体の厚みよりも薄いことを特徴とする請求項1に記載の可変キャパシタ。  2. The variable capacitor according to claim 1, wherein the thickness of the dielectric of the variable capacitance portion is thinner than the thickness of the dielectric between the other electrodes. 前記第一のバイアス電極と前記第三の外部電極との間、または前記第二のバイアス電極と前記第四の外部電極との間の、少なくともいずれかに直流的に導通する高インピーダンス部を設けたことを特徴とする請求項1に記載の可変キャパシタ。  A high-impedance portion that conducts a direct current is provided between at least one of the first bias electrode and the third external electrode or between the second bias electrode and the fourth external electrode. The variable capacitor according to claim 1. 前記高インピーダンス部は外部電極の電極膜を形成していることを特徴とする請求項3に記載の可変キャパシタ。  The variable capacitor according to claim 3, wherein the high impedance portion forms an electrode film of an external electrode. 前記高インピーダンス部はキャパシタ内に内蔵された導電体であることを特徴とする請求項3に記載の可変キャパシタ。  The variable capacitor according to claim 3, wherein the high impedance portion is a conductor built in the capacitor.
JP2006272284A 2006-09-05 2006-09-05 Variable capacitor Withdrawn JP2008066682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272284A JP2008066682A (en) 2006-09-05 2006-09-05 Variable capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272284A JP2008066682A (en) 2006-09-05 2006-09-05 Variable capacitor

Publications (1)

Publication Number Publication Date
JP2008066682A true JP2008066682A (en) 2008-03-21

Family

ID=39289076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272284A Withdrawn JP2008066682A (en) 2006-09-05 2006-09-05 Variable capacitor

Country Status (1)

Country Link
JP (1) JP2008066682A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267165A (en) * 2008-04-25 2009-11-12 Sony Corp Variable capacitor and electronic device
WO2011013658A1 (en) * 2009-07-28 2011-02-03 ソニー株式会社 Capacitance element and resonant circuit
US20110037536A1 (en) * 2009-08-11 2011-02-17 Sony Corporation Capacitance element and resonance circuit
JP4873007B2 (en) * 2006-04-07 2012-02-08 株式会社村田製作所 Capacitor
US9053862B2 (en) 2009-12-03 2015-06-09 Dexerials Corporation Variable capacitance device with a plurality of electrodes laminated via dielectric layers
CN105390288A (en) * 2014-08-29 2016-03-09 太阳诱电株式会社 Variable capacitance device and antenna device
US9590677B2 (en) 2014-11-19 2017-03-07 Taiyo Yuden Co., Ltd. Variable capacitance device and antenna apparatus
WO2017100230A1 (en) * 2015-12-08 2017-06-15 Avx Corporation Voltage tunable multilayer capacitor
US9929468B2 (en) 2014-08-12 2018-03-27 Taiyo Yuden Co., Ltd. Variable capacitance device and antenna device
WO2019070393A1 (en) * 2017-10-02 2019-04-11 Avx Corporation High capacitance tunable multilayer capacitor and array
US10284181B2 (en) 2016-06-30 2019-05-07 Taiyo Yuden Co., Ltd. Variable capacitor and electronic device
WO2021067862A1 (en) * 2019-10-04 2021-04-08 Urbix Resources, LLC Supercapacitor with biasing electrode
KR20210130828A (en) * 2017-06-23 2021-11-01 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Adjustable capacitor, impedance-matching apparatus and semiconductor-processing device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873007B2 (en) * 2006-04-07 2012-02-08 株式会社村田製作所 Capacitor
JP2009267165A (en) * 2008-04-25 2009-11-12 Sony Corp Variable capacitor and electronic device
US8243417B2 (en) 2008-04-25 2012-08-14 Sony Corporation Variable capacitor and electronic device
WO2011013658A1 (en) * 2009-07-28 2011-02-03 ソニー株式会社 Capacitance element and resonant circuit
US9041491B2 (en) 2009-07-28 2015-05-26 Dexerials Corporation Capacitive device and resonance circuit
US20110037536A1 (en) * 2009-08-11 2011-02-17 Sony Corporation Capacitance element and resonance circuit
CN103123867A (en) * 2009-08-11 2013-05-29 迪睿合电子材料有限公司 Capacitance element and resonance circuit
US8884720B2 (en) * 2009-08-11 2014-11-11 Dexerials Corporation Capacitance element and resonance circuit
US9053862B2 (en) 2009-12-03 2015-06-09 Dexerials Corporation Variable capacitance device with a plurality of electrodes laminated via dielectric layers
US9929468B2 (en) 2014-08-12 2018-03-27 Taiyo Yuden Co., Ltd. Variable capacitance device and antenna device
US9730324B2 (en) 2014-08-29 2017-08-08 Taiyo Yuden Co., Ltd. Variable capacitance device and antenna device
CN105390288A (en) * 2014-08-29 2016-03-09 太阳诱电株式会社 Variable capacitance device and antenna device
US9590677B2 (en) 2014-11-19 2017-03-07 Taiyo Yuden Co., Ltd. Variable capacitance device and antenna apparatus
CN108369866B (en) * 2015-12-08 2021-07-27 阿维科斯公司 Voltage adjustable multilayer capacitor
CN108369866A (en) * 2015-12-08 2018-08-03 阿维科斯公司 Voltage is adjustable multi-layer capacitor
JP2019502259A (en) * 2015-12-08 2019-01-24 エイブイエックス コーポレイション Voltage tunable multilayer capacitor
US10903016B2 (en) 2015-12-08 2021-01-26 Avx Corporation Voltage tunable multilayer capacitor
WO2017100230A1 (en) * 2015-12-08 2017-06-15 Avx Corporation Voltage tunable multilayer capacitor
JP2022031820A (en) * 2015-12-08 2022-02-22 エイブイエックス コーポレイション Voltage tunable multilayer capacitor
US10284181B2 (en) 2016-06-30 2019-05-07 Taiyo Yuden Co., Ltd. Variable capacitor and electronic device
KR20210130828A (en) * 2017-06-23 2021-11-01 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Adjustable capacitor, impedance-matching apparatus and semiconductor-processing device
KR102381337B1 (en) * 2017-06-23 2022-04-01 베이징 나우라 마이크로일렉트로닉스 이큅먼트 씨오., 엘티디. Adjustable capacitor, impedance-matching apparatus and semiconductor-processing device
WO2019070393A1 (en) * 2017-10-02 2019-04-11 Avx Corporation High capacitance tunable multilayer capacitor and array
WO2021067862A1 (en) * 2019-10-04 2021-04-08 Urbix Resources, LLC Supercapacitor with biasing electrode
US11728099B2 (en) 2019-10-04 2023-08-15 Urbix, Inc. Supercapacitor with biasing electrode
EP4038650A4 (en) * 2019-10-04 2023-10-18 Urbix, Inc. Supercapacitor with biasing electrode

Similar Documents

Publication Publication Date Title
JP2008066682A (en) Variable capacitor
JP5574303B2 (en) Multilayer ceramic capacitor
JP5666123B2 (en) Variable capacity device
JP4049181B2 (en) Multilayer capacitor
KR101101530B1 (en) Multi layered capacitor
CN1661741B (en) Multilayer capacitor
JP4049182B2 (en) Multilayer capacitor
WO2006067939A1 (en) Multilayer capacitor and mounting structure of same
JP3832505B2 (en) Multilayer capacitor and its mounting structure
JP4086086B2 (en) Multilayer capacitor and its mounting structure
US7542264B2 (en) Capacitor block and laminated board
JP2011135038A (en) Multilayer ceramic capacitor
JP5949476B2 (en) Multilayer capacitor
WO2013061677A1 (en) Electrostatic capacitance element and resonance circuit
KR20190053692A (en) 3-termibal multi-layered capacitor
CN108010721B (en) Multilayer electronic component
JP2001185449A (en) Laminated ceramic capacitor
KR20090067044A (en) Multilayer condensor array
JP2006203167A (en) Laminated capacitor and packaging structure thereof
KR101994725B1 (en) Array-type multi-layered ceramic electronic component and board for mounting the same
JP2006203258A (en) Laminated capacitor and packaging structure thereof
JP4089726B2 (en) Multilayer electronic components
KR100916480B1 (en) Laminated ceramic capacitor
JP2006344845A (en) Capacitor
JP6459717B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110