WO2007110943A1 - Magnetostrictive modulation current sensor and method for measuring current using that sensor - Google Patents

Magnetostrictive modulation current sensor and method for measuring current using that sensor Download PDF

Info

Publication number
WO2007110943A1
WO2007110943A1 PCT/JP2006/306454 JP2006306454W WO2007110943A1 WO 2007110943 A1 WO2007110943 A1 WO 2007110943A1 JP 2006306454 W JP2006306454 W JP 2006306454W WO 2007110943 A1 WO2007110943 A1 WO 2007110943A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
piezoelectric element
magnetostrictive material
sensor
magnetostrictive
Prior art date
Application number
PCT/JP2006/306454
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Tadatsu
Original Assignee
Loyal Port Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Loyal Port Company Limited filed Critical Loyal Port Company Limited
Priority to PCT/JP2006/306454 priority Critical patent/WO2007110943A1/en
Publication of WO2007110943A1 publication Critical patent/WO2007110943A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • G01R15/148Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop involving the measuring of a magnetic field or electric field

Definitions

  • Magnetostrictive modulation type current sensor and current measurement method using this sensor
  • the present invention relates to a current sensor that measures current in an insulated state without being connected to a conductor to be measured in the same way as a known CT (Current Transformer) in alternating current, and in particular, regarding frequency characteristics. It relates to a current sensor that can measure direct current and can measure current values up to a large current in the 1000A range.
  • CT Current Transformer
  • the well-known CT has the advantage that it can be measured while insulated from the measurement lead, but it is used for direct current and alternating current of the frequency in the vicinity, and pulsating current in which direct current and alternating current are superimposed. Can not do it. Therefore, a hall element type, a magnetic modulation type, a magnetic bridge type, and the like have been proposed as insulating DC current sensors that replace CT.
  • a force that generates a voltage when a piezoelectric element is distorted.
  • a static distortion (a steady distortion that remains distorted and does not change in distortion) does not generate a voltage. Therefore, it is appropriate to use the dynamic distortion caused by the magnetic field that fluctuates due to the AC current, as in “Current measurement transformer based on mechanical waves” (see Patent Document 2). As mentioned in this section, it is limited to AC current and cannot measure DC current.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-88937
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-116774
  • the Hall element type has a narrow temperature range that can be used due to the use of a semiconductor, and is not suitable for harsh environments because it is vulnerable to radiation.
  • the magnetic modulation type requires multiple cores and multiple coils, so it is inferior in robustness and price.
  • the electric power for driving the sensor is large at large currents, so it is in the field aiming for so-called energy saving. This is a major drawback.
  • self-heating due to iron loss due to excitation is large, and cooling may be required depending on the application.
  • the magnetic modulation type requires a magnetomotive force larger than the current to be measured.
  • the present invention is small, “robust” and simple. • High accuracy • Non-contact type magnetostriction modulation type capable of measuring DC current with the feature of being able to measure a large current.
  • An object of the present invention is to provide a current sensor.
  • the configuration of the magnetostrictive modulation type current sensor of the present invention for the purpose of solving the above problems includes a piezoelectric element provided with electrodes so as to exhibit a piezoelectric effect, A magnetostrictive material mechanically coupled to the piezoelectric element (a magnetic material having magnetostrictive characteristics, the same applies hereinafter) and a coil wound with the magnetostrictive material are provided, and the magnetic flux of the current to be measured is It is characterized by crossing the coil through the material.
  • the magnetic current to be measured is guided to the magnetostrictive material, and a voltage that varies is applied to the piezoelectric element, thereby causing a variation in the distortion of the piezoelectric element.
  • the fluctuating strain of the magnetostrictive material is caused by the fluctuating strain of the magnetostrictive material, and the magnetic permeability of the magnetostrictive material is fluctuated by the fluctuating strain of the magnetostrictive material.
  • the measured current is measured by generating an electromotive force in the coil crossed with and detecting the electromotive force.
  • the current sensor of the present invention operates according to the above-described operation principle, even when the current to be measured is a direct current and the magnetic flux does not fluctuate, a fluctuating voltage is applied to the piezoelectric element and crosses the coil. Since the magnetic flux fluctuates, the direct current can be measured.
  • frequency components whose fluctuation of current to be measured is relatively lower than the fluctuation frequency of the voltage applied to the piezoelectric element can be measured by the above operating principle, and higher frequency components should be measured by the operating principle of conventional AC CT.
  • DC power can be measured up to high frequencies.
  • FIG. 1 and 2 show a piezoelectric element 1 provided with electrodes so as to exhibit a piezoelectric effect, a magnetostrictive material 2 mechanically coupled to the piezoelectric element 1, and a coil 3 wound around the magnetostrictive material 2.
  • the magnetic field sensor which consists of is shown typically, and is the foundation of the current sensor of the present invention
  • FIG. 1 shows a piezoelectric magnetoresistive element 1 on one end face or both end faces in the length direction of a rod-shaped magnetostrictive material 2 having a square cross section (hereinafter, “end face” is used in this sense, but in FIG. 1, one end face).
  • end face is used in this sense, but in FIG. 1, one end face.
  • This is the basic structure of the magnetic field sensor that is provided and the coil 3 is wound around the magnetostrictive material 2.
  • an AC voltage having a frequency at which the magnetostrictive material 2 resonates is applied to the piezoelectric element 1. Due to this resonance, the magnetostrictive material 2 is greatly distorted, the magnetic permeability is also greatly changed, and the magnetic flux in the magnetostrictive material 2 is similarly changed.
  • This magnetic field sensor is easy to use if the AC voltage for driving the piezoelectric element 1 is stable, but can be used even if it is unstable, such as when the amplitude fluctuates or DC is superimposed. wear. If the driving voltage of the piezoelectric element is unstable, it can be corrected by processing means such as an electronic circuit that processes the detected electromotive force. In addition, as described above, when the frequency is the frequency at which the magnetostrictive material is resonated, the driving efficiency is high, but it is not necessarily required to resonate.
  • FIG. 2 shows one side surface or both side surfaces along the length direction of the magnetostrictive material 2 similar to the magnetostrictive material 2 in FIG. 1 (hereinafter, “side surface” is used in this sense, but in FIG. 2, one side surface)
  • This is a magnetic field sensor when the piezoelectric element 1 is provided in Fig. 2, but in the case of Fig. 2, there is a distortion mode as shown in Figs.
  • the piezoelectric element 1 is provided on either surface, an electromotive force is generated in the coil 3 due to the distortion of the magnetostrictive material 2 as in the description of FIG. In Fig. 2, the coil 3 winds the piezoelectric element 1 and the magnetostrictive material 2 together.
  • FIG. 5, FIG. 6, FIG. 8, and FIG. 9 are all examples of embodiments of the current sensor MSM-cs of the present invention.
  • the current sensor MSM-cs of the present invention can measure the current that is the source of the magnetic field by detecting the magnetic field generated by the current to be measured based on the operating principle of the magnetic field sensor.
  • the electromotive force of the coil 3 in the current sensor MSM-cs of the present invention is proportional to the current to be measured, and the amount of change in the magnetic permeability of the magnetostrictive material 2, that is, the voltage applied to the piezoelectric element 1. Is also proportional to Therefore, the AC voltage is modulated and applied to the piezoelectric element 1 with a voltage proportional to the voltage applied to an arbitrary power load, or when the proportional voltage is an AC voltage, it is directly applied to the piezoelectric element 1. Furthermore, if the current flowing through the power load is the measured current, the electromotive force of coil 3 is proportional to both the voltage and current of the power load and is proportional to the power consumption of the power load. Become. Therefore, the configuration of the current sensor MSM-cs of the present invention depends on the configuration of the piezoelectric element driving circuit to be connected. (See FIGS. 13 and 14).
  • the magnetostrictive material 2 and the piezoelectric element 1 are both cylindrical. In this embodiment, the magnetostrictive material 2 and the piezoelectric element 1 are bonded together by epoxy resin, and are integrated together. However, if the magnetostrictive material 2 and the piezoelectric element 1 are mechanically coupled, The means is not limited to adhesion, and any bonding method may be used.
  • the piezoelectric element 1 of this embodiment uses ferroelectric ceramics as a material, is shaped into a cylindrical shape having an inner diameter of 7 mm, an outer diameter of 11 mm, and a length of 7 mm, and deposits metal on the inner and outer surfaces of the cylinder, respectively. (Not shown in the figure).
  • la and lb are lead wires connected to both electrodes.
  • the magnetostrictive material 2 was formed into a cylindrical shape having an inner diameter of 11.5 mm, an outer diameter of 18 mm, and a length of 7 mm using a super magnetostrictive material “N2M-800” manufactured by Moritex Corporation.
  • FIG. 15 shows a characteristic graph of permeability and stress of the giant magnetostrictive material (N2M-800 manufactured by Moritex Co., Ltd.) used in this example.
  • the magnetic permeability decreases in inverse proportion to the stress.
  • it has a characteristic that it rapidly decreases up to a predetermined stress and the decrease rate decreases beyond that.
  • the magnetic flux is amplitude-modulated by the distortion of the piezoelectric element 1.
  • the current sensor of the present invention operates in any state, but the drive circuit is appropriately determined according to the setting of the operating range.
  • This characteristic graph shows permeability-stress characteristics, but stress and strain are correlated and can be replaced.
  • a magnetic material having particularly remarkable magnetostriction is used, but it is known that most of the magnetic materials have magnetostriction.
  • magnetic materials used for cores such as transformers generate so-called “sagging” due to magnetostriction, which causes noise pollution in large transformers such as substations.
  • No magnetostriction Magnetic steel sheets with reduced magnetostriction, which are preferred by the company, have also been developed.
  • the piezoelectric element When an AC voltage is applied to a piezoelectric element to vibrate, the piezoelectric element is sometimes called a piezoelectric vibrator.
  • the strain mode is sometimes called a vibration mode.
  • modes in this vibration mode There are many vibration modes in this vibration mode, with modes called radial vibration, long-side extension vibration, longitudinal vibration, thickness longitudinal vibration, and thickness shear vibration as representative vibration modes.
  • an appropriate vibration mode can be selected from various vibration modes according to the embodiment. Therefore, the vibration mode that can be used in the embodiment is also the radial vibration illustrated in FIG. It is not limited.
  • the current to be measured 4 passes through the inside of the cylindrical magnetostrictive material 2 and the piezoelectric element 1.
  • Fig. 5 and Fig. 6 indicate the current that is measured by the reference numeral 4.
  • the measured current 4 is a force that generates a magnetic field around it. This magnetic field generates a magnetic flux that circulates in the magnetostrictive material 2.
  • the strength of the magnetic flux is proportional to the magnetic permeability of the magnetostrictive material 2 and the strength of the magnetic field.
  • the measured current 4 is a constant DC current, the magnetomotive force is constant, and the magnetic flux is proportional to the magnetic permeability.
  • the magnetic permeability of the magnetostrictive material 2 can be changed by mechanical strain. Therefore, the magnetic permeability of the magnetostrictive material 2 can be varied by distorting the magnetostrictive material 2 with the piezoelectric element 1 mechanically coupled to the magnetostrictive material 2. As a result, the magnetic flux inside the magnetostrictive material 2 also changes. By distorting the piezoelectric element 1 by applying an AC voltage, the magnetic permeability of the magnetostrictive material 2 pulsates, and the strength of the magnetic flux also pulsates. Therefore, an electromotive force is generated in the coil 3 wound around the magnetostrictive material 2 in proportion to the pulsation amount of the magnetic flux. The amount of pulsation of this magnetic flux is proportional to the strength of the measured current 4 if the amplitude of the strain is constant. That is, the electromotive force generated in the coil 3 is proportional to the measured current 4.
  • the measured current 4 can be measured by rectifying or detecting.
  • the direction of the current to be measured 4 can be measured by performing synchronous detection based on the drive voltage of the piezoelectric element 1.
  • FIG. 10, FIG. 11, and FIG. 12 show block diagrams of electronic circuits for driving the current sensor MSM-cs of the present invention.
  • Fig. 10 shows the case where the electromotive force of the coil is output as it is.
  • Fig. 11 shows the detection of the electromotive force of the coil.
  • FIG. 12 shows a case where the electromotive force of the coil is amplified and synchronous detection is performed based on the drive voltage of the piezoelectric element 1.
  • the piezoelectric element 1 is driven by the oscillation circuit 5.
  • the oscillation circuit 5, the detection rectification circuit 6, the amplification circuit 7, and the synchronous detection circuit 8 shown here may be any circuit means as long as they achieve the above object.
  • FIG. 6 is a case where the magnetostrictive material 2 and the piezoelectric element 1 are arranged opposite to the embodiment of FIG. 5, and the operation principle is the same as that of the embodiment of FIG. is there.
  • the piezoelectric element 1 is shaped into a cylindrical shape having an inner diameter of 8 mm, an outer diameter of 12 mm, and a length of 7 mm, and a metal is vapor-deposited on each of the inner surface and the outer surface of the cylindrical body to form an electrode. Wires la and lb were connected.
  • the magnetostrictive material 2 was shaped into a cylindrical shape having an inner diameter of 4 mm, an outer diameter of 7.5 mm, and a length of 7 mm, and inserted into the piezoelectric element 1 to couple both 1 and 2 together.
  • both the piezoelectric element 1 and the magnetostrictive material 2 are made of the same material as in the embodiment of FIG. 5 and only the dimensions are changed.
  • FIG. 8 shows that the piezoelectric element 1 is formed in an annular circle shape, and a magnetostrictive material 2 shaped in the same shape as that of the piezoelectric element 1 is bonded to the upper surface of the piezoelectric element 1 by bonding or the like.
  • This is another example of the present invention current sensor in which No. 3 is wound. Accordingly, the same reference numerals as those in FIGS. 5 and 6 denote the same members, and the materials used are the same as in the previous example.
  • FIG. 9 shows a magnetostrictive material 2 formed in a cross-sectional (or front) substantially square shape, in which a piezoelectric element 1 is coupled to one outer peripheral side, and a coil 3 is wound around the magnetostrictive material 2. It is another example of this invention current sensor of form.
  • Each component in the embodiment of FIG. 9 is also made of the same material as the previous embodiment. It is made of material. Therefore, the same reference numerals as in the previous example indicate the same members.
  • the current sensor MSM-cs of the present invention described above can be used as a power sensor for measuring power, this point will be described below.
  • This power sensor can measure both AC and DC, but is particularly useful as a power sensor that can easily measure DC power.
  • the power can be obtained by multiplying the load current value and the load voltage value, and is divided into reactive power and active power.
  • a method of measuring a load current value and a load voltage value by separate sensors and calculating the measured values by an electronic circuit or the like is common.
  • CT Current Transformer
  • PT Pultential Transformer
  • a patent document also discloses a power sensor that can measure direct current, detects a load current value and a load voltage value with the same sensor, and performs physical multiplication by the sensor itself. Typical examples are as follows: 1) By measuring the current value according to the operating principle of the Hall element type current sensor and supplying a current proportional to the voltage to the current supply terminal of this Hall element, the current is proportional to the current and voltage. “Power meter” that outputs a signal as a power value (see Japanese Patent Laid-Open No.
  • the power sensor using the above-described current sensor MSM-cs of the present invention has features of small size, robustness, simplicity, high accuracy, and large current measurement compared to the above-described conventional technology.
  • a power sensor that can also measure DC power can be provided.
  • the power sensor using the current sensor MSM-cs of the present invention has a piezoelectric element 1 provided with electrodes so as to exhibit a piezoelectric effect, and a magnetostrictive material 2 mechanically coupled to the piezoelectric element 1 (having magnetostrictive characteristics). Magnetic material) and a coil 3 wound around the magnetostrictive material 2 so that the magnetic flux of the measured current 4 crosses the coil 3 through the magnetostrictive material 2 and is proportional to the measured voltage at the piezoelectric element 1. And a configuration in which the changed voltage is applied.
  • the magnetic flux of the current to be measured 4 is guided to the magnetostrictive material 2, and the fluctuation is proportional to the voltage to be measured in the piezoelectric element 1.
  • this electromotive force is detected.
  • a value proportional to both the measured current and the measured voltage, that is, the power value can be measured.
  • the power sensor using the current sensor MSM-cs of the present invention operates according to the above operating principle, even when the measured power is direct current and the magnetic flux does not vary, the magnetic flux intersecting with the coil varies. Therefore, DC power can be measured.
  • this power sensor measures the instantaneous value of power, it is possible to measure active power and apparent power in AC power measurement. As a result, it is possible to obtain reactive power and power factor.
  • FIG. 13 is a block diagram of an example of the power sensor drive circuit
  • FIG. 14 is a connection example of the power sensor using the current sensor of the present invention.
  • This power sensor operates on the basis of the current detection principle of the magnetostrictive modulation type current sensor, and will be described below.
  • the alternating voltage obtained by the oscillation circuit 5 is modulated by a voltage 10 proportional to the load voltage applied to an arbitrary power load and applied to the piezoelectric element 1.
  • the load current flowing through the load is passed through in a non-contact manner as the current to be measured 4, and the electromotive force generated in the coil 3 is amplified by the amplifier circuit 7 and output through the synchronous detection circuit 8. A value proportional to the power (power value) was obtained.
  • a load 12 is connected to a power source 11 by a conducting wire, and a measured current 4 flows. Therefore, a sensor in which an annular piezoelectric element 1 formed of the same material as the current sensor illustrated in FIG. 8 and having the same dimensions and a magnetostrictive material 2 are joined and integrated by bonding or the like, and a coil 3 is wound around them.
  • the load current is passed through the MSM-cs as the measured current 4 in a non-contact manner to generate an electromotive force in the coil 3, while the output of the oscillation circuit 5 is supplied to the modulation circuit 9 at a voltage 10 proportional to the load voltage. Then, the signal is modulated and applied to the piezoelectric element 1.
  • the electromotive force generated in the coil 3 is amplified by the amplifier circuit 7, and this amplified output is output through the synchronous detection circuit 8 synchronized with the output of the oscillation circuit 5, thereby allowing the power value proportional to the power consumption of the load 12 to be obtained. Can be obtained.
  • the present invention is as described above, and the current sensor according to the present invention is composed of a core (magnetostrictive material), a coil, and a ceramic (piezoelectric element), so that the structure is very simple and force is sufficient. These members can also be formed of a material having sufficient heat resistance, and therefore a current sensor that can withstand a wide range of temperatures can be provided. The same reasoning power is also strong against radiation.
  • both the core and the coil have a single shear force and the shape of each member is simple, it is easy to be robust and downsized.
  • the structure is simple and the operating principle is directly linked to the physical laws, there are few error factors, so it is possible to easily improve the accuracy.
  • it is suitable for measuring a large current because it is not necessary to increase the drive power, as long as the core does not cause magnetic saturation.
  • a magnetostrictive current sensor capable of measuring a direct current having the features of small size, “robust”, “simple”, high accuracy and large current measurement, and is used in the field of electric vehicles in recent years.
  • FIG. 1 is a perspective view schematically showing an example of a magnetostrictive magnetic field sensor for explaining the operating principle of the current sensor of the present invention.
  • FIG. 2 is a perspective view schematically showing another example of a magnetostrictive magnetic field sensor for explaining the operating principle of the current sensor of the present invention.
  • FIG. 3 is a schematic front view for explaining the distortion of the magnetic field sensor of FIG.
  • FIG. 4 is a schematic front view for explaining the distortion of the magnetic field sensor of FIG.
  • FIG. 5 is a perspective view schematically showing a first example of the current sensor of the present invention.
  • FIG. 6 is a perspective view schematically showing a second example of the current sensor of the present invention.
  • FIG. 7 is a plan view for explaining the direction of distortion of the current sensor of the present invention shown in FIGS. 5 and 6.
  • FIG. 7 is a plan view for explaining the direction of distortion of the current sensor of the present invention shown in FIGS. 5 and 6.
  • FIG. 8 is a perspective view schematically showing a third example of the current sensor of the present invention.
  • FIG. 9 is a perspective view schematically showing a fourth example of the current sensor of the present invention.
  • FIG. 10 is a block diagram of a first example of a drive circuit of the current sensor (or magnetic field sensor) of the present invention.
  • FIG. 11 is a block diagram of a second example of the drive circuit of the current sensor (or magnetic field sensor) of the present invention.
  • FIG. 12 is a block diagram of a third example of the drive circuit of the current sensor (or magnetic field sensor) of the present invention.
  • FIG. 13 is a block diagram of an example of a drive circuit when the current sensor of the present invention functions as a power sensor.
  • FIG. 14 is a block diagram showing a connection example of the power sensor of FIG.
  • FIG. 15 is a graph showing the characteristics of magnetic permeability and stress of the magnetostrictive material used in the example of the current sensor of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

[PROBLEMS] To provide a non-contact magnetostrictive modulation current sensor featuring small size, rigid and simple structure, high precision, and large current measurement capability, and capable of measuring even a DC current. [MEANS FOR SOLVING PROBLEMS] The magnetostrictive modulation current sensor comprises a piezoelectric element (1) provided with an electrode to exhibit piezoelectric effect, a magnetostrictive material (2) coupled mechanically with the piezoelectric element (1), and a coil (3) wound around the magnetostrictive material (2), wherein the magnetic flux of a current (4) measured passes trough the magnetostrictive material (2) and crosses the coil (3).

Description

明 細 書  Specification
磁歪変調型電流センサーとこのセンサーを用いた電流計測方法 技術分野  Magnetostrictive modulation type current sensor and current measurement method using this sensor
[0001] 本発明は、交流電流では周知の CT (Current Transformer)と同様に、被計測導線 に接続することなく絶縁状態のままで電流を計測する電流センサーに係り、特に、周 波数特性に関しては直流も計測でき、電流値に関しては 1000A領域の大電流まで 計測できる電流センサーに関する。  [0001] The present invention relates to a current sensor that measures current in an insulated state without being connected to a conductor to be measured in the same way as a known CT (Current Transformer) in alternating current, and in particular, regarding frequency characteristics. It relates to a current sensor that can measure direct current and can measure current values up to a large current in the 1000A range.
背景技術  Background art
[0002] 周知の CTは、被計測導線と絶縁状態のままで計測できる長所をもって 、るが、直 流やその近傍の周波数の交流電流、ならびに、直流と交流とが重畳した脈流電流に 使用することができない。そこで、 CTに代わる絶縁型の直流電流センサーとして、ホ ール素子型、磁気変調型、磁気ブリッジ型等が提案されている。  [0002] The well-known CT has the advantage that it can be measured while insulated from the measurement lead, but it is used for direct current and alternating current of the frequency in the vicinity, and pulsating current in which direct current and alternating current are superimposed. Can not do it. Therefore, a hall element type, a magnetic modulation type, a magnetic bridge type, and the like have been proposed as insulating DC current sensors that replace CT.
[0003] また、磁歪材と圧電素子を組み合わせた電流センサーとして、「磁界センサ及びそ れを用いた電流検出器」(特許文献 1参照)や「機械的な波に基づく電流測定変圧器 」(特許文献 2参照)などがあるが、これらは何れも被計測電流の磁界による磁歪材の 歪みを圧電素子に伝え、圧電素子が発生する電圧を計測することにより被計測電流 の値を計測しょうとするものである。  In addition, as a current sensor combining a magnetostrictive material and a piezoelectric element, “a magnetic field sensor and a current detector using the same” (see Patent Document 1) and “a current measuring transformer based on a mechanical wave” ( (See Patent Document 2), but these all transmit the distortion of the magnetostrictive material due to the magnetic field of the current to be measured to the piezoelectric element, and measure the value of the current to be measured by measuring the voltage generated by the piezoelectric element. To do.
[0004] 圧電素子は歪みが生じたときに電圧を発生する力 静的な歪み (歪んだままで歪み に変動がない定常的な歪み)では、電圧は発生しない。よって、「機械的な波に基づ く電流測定変圧器」(特許文献 2参照)のように交流電流により変動する磁界によって 生ずる動的な歪みを利用することは妥当であるが、当該文献 2の中でも述べているよ うに交流電流用に限られ、直流電流を計測することはできな 、。  [0004] A force that generates a voltage when a piezoelectric element is distorted. A static distortion (a steady distortion that remains distorted and does not change in distortion) does not generate a voltage. Therefore, it is appropriate to use the dynamic distortion caused by the magnetic field that fluctuates due to the AC current, as in “Current measurement transformer based on mechanical waves” (see Patent Document 2). As mentioned in this section, it is limited to AC current and cannot measure DC current.
[0005] 一方、「磁界センサ及びそれを用いた電流検出器」(特許文献 1参照)の明細書に おいては、発明の効果として直流電流の計測が可能と記載されているが、それが可 能であることについての説明は何らなされておらず、むしろ圧電素子の機能と当該文 献 1の発明の構造に鑑みると、文献 1の発明によって直流電流を計測することは不可 能である。 [0006] 近時、直流電流センサーを必要とする装置としては、モータと内燃エンジンを組合 せたいわゆるハイブリッドカーや燃料電池自動車、あるいはコージェネレーション用 の燃料電池などの開発が盛んになり、小型で信頼性の高い直流電流センサーが求 められている。特に、自動車関連においては堅牢かつ小型であって大電流を精度よ く計測できる安価な直流センサーが求められている。 [0005] On the other hand, in the specification of "magnetic field sensor and current detector using the same" (see Patent Document 1), it is described that direct current can be measured as an effect of the invention. There is no explanation of what is possible, but rather, in view of the function of the piezoelectric element and the structure of the invention of Document 1, it is impossible to measure a direct current by the invention of Document 1. [0006] Recently, as a device that requires a DC current sensor, development of a so-called hybrid car, a fuel cell vehicle in which a motor and an internal combustion engine are combined, or a fuel cell for cogeneration, etc., has become active. There is a need for highly reliable DC current sensors. In particular, there is a need for an inexpensive direct current sensor that is robust and compact and can accurately measure a large current in the automotive field.
特許文献 1 :特開 2000— 88937号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-88937
特許文献 2:特開 2001— 116774号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-116774
[0007] しかし、上述したような従来技術の直流センサーでは、上記の要求を満たすものは なかった。  However, none of the conventional DC sensors as described above satisfy the above requirements.
即ち、たとえば、ホール素子型では、半導体を用いているために使用できる温度範 囲が狭ぐまた放射線などにも弱く苛酷な環境下には不向きである。  That is, for example, the Hall element type has a narrow temperature range that can be used due to the use of a semiconductor, and is not suitable for harsh environments because it is vulnerable to radiation.
磁気変調型では、複数のコアと複数のコイルを必要とするため、堅牢性と価格で劣 るほか、大電流ではセンサーを駆動するための電力が大きくなつて、いわゆる省エネ を目指している分野では大きな欠点となる。また、励磁の鉄損による自己発熱が大き く用途によっては冷却を必要とすることもある。因みに、磁気変調型では被計測電流 より大きな起磁力を必要とする。  The magnetic modulation type requires multiple cores and multiple coils, so it is inferior in robustness and price. In addition, the electric power for driving the sensor is large at large currents, so it is in the field aiming for so-called energy saving. This is a major drawback. In addition, self-heating due to iron loss due to excitation is large, and cooling may be required depending on the application. Incidentally, the magnetic modulation type requires a magnetomotive force larger than the current to be measured.
磁気ブリッジ型などの微小電流向けに開発された直流センサーは、大電流の計測 には不向きである。  DC sensors developed for micro currents such as magnetic bridges are not suitable for measuring large currents.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明はこのような直流センサーに関する技術的な現状を鑑み、小型 '堅牢'簡素 •高精度 ·大電流計測可能の特長を備えた直流電流も計測できる非接触式の磁歪変 調型電流センサーを提供することを、その課題とするものである。 [0008] In view of the technical current state of such a DC sensor, the present invention is small, “robust” and simple. • High accuracy • Non-contact type magnetostriction modulation type capable of measuring DC current with the feature of being able to measure a large current. An object of the present invention is to provide a current sensor.
課題を解決するための手段  Means for solving the problem
[0009] 上記課題を解決することを目的としてなされた本発明磁歪変調型電流センサー(以 下、本発明電流センサーという)の構成は、圧電効果を発現するように電極を設けた 圧電素子と、この圧電素子に機械的に結合した磁歪材 (磁歪特性を持つ磁性材、以 下、同じ。)と、この磁歪材を卷回したコイルとを備え、被計測電流の磁束が前記磁歪 材を通り前記コイルと交錯するようにしたことを特徴とするものである。 [0009] The configuration of the magnetostrictive modulation type current sensor of the present invention (hereinafter referred to as the current sensor of the present invention) for the purpose of solving the above problems includes a piezoelectric element provided with electrodes so as to exhibit a piezoelectric effect, A magnetostrictive material mechanically coupled to the piezoelectric element (a magnetic material having magnetostrictive characteristics, the same applies hereinafter) and a coil wound with the magnetostrictive material are provided, and the magnetic flux of the current to be measured is It is characterized by crossing the coil through the material.
[0010] 即ち、本発明電流センサーでは、被計測電流の磁束を前記磁歪材に導くとともに 前記圧電素子に変動する電圧を印加することにより、当該圧電素子に変動する歪み を生じさせ、該圧電素子の変動する歪みにより前記磁歪材に変動する歪みを生じさ せ、この磁歪材の変動する歪みにより当該磁歪材の透磁率を変動させ、この変動す る透磁率により生じる変動する磁束で、当該磁束と交錯した前記コイルに起電力を生 じさせ、この起電力を検出することにより被計測電流を測定するのである。  In other words, in the current sensor of the present invention, the magnetic current to be measured is guided to the magnetostrictive material, and a voltage that varies is applied to the piezoelectric element, thereby causing a variation in the distortion of the piezoelectric element. The fluctuating strain of the magnetostrictive material is caused by the fluctuating strain of the magnetostrictive material, and the magnetic permeability of the magnetostrictive material is fluctuated by the fluctuating strain of the magnetostrictive material. The measured current is measured by generating an electromotive force in the coil crossed with and detecting the electromotive force.
発明の効果  The invention's effect
[0011] 本発明電流センサーは、上記の動作原理により作動するので、被計測電流が直流 電流であって磁束が変動しない場合でも、圧電素子に変動する電圧が印加されてコ ィルと交錯する磁束が変動するので直流電流を計測することができる。  [0011] Since the current sensor of the present invention operates according to the above-described operation principle, even when the current to be measured is a direct current and the magnetic flux does not fluctuate, a fluctuating voltage is applied to the piezoelectric element and crosses the coil. Since the magnetic flux fluctuates, the direct current can be measured.
また、被計測電流の変動が、圧電素子に印加する電圧の変動周波数より比較的低 い周波数成分は前記動作原理により計測でき、より高い周波数成分は従来の交流 用 CTの動作原理により計測することもでき、直流力も高周波まで計測することが可能 である。  In addition, frequency components whose fluctuation of current to be measured is relatively lower than the fluctuation frequency of the voltage applied to the piezoelectric element can be measured by the above operating principle, and higher frequency components should be measured by the operating principle of conventional AC CT. DC power can be measured up to high frequencies.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 次に、本発明電流センサーの実施の形態例について、図を参照して説明する。図 1および図 2は、圧電効果を発現するように電極を設けた圧電素子 1と、この圧電素 子 1に機械的に結合した磁歪材 2と、この磁歪材 2を卷回したコイル 3とから成る磁界 センサーを模式的に示したものであり、本発明電流センサーの基礎となるものである  Next, embodiments of the current sensor of the present invention will be described with reference to the drawings. 1 and 2 show a piezoelectric element 1 provided with electrodes so as to exhibit a piezoelectric effect, a magnetostrictive material 2 mechanically coupled to the piezoelectric element 1, and a coil 3 wound around the magnetostrictive material 2. The magnetic field sensor which consists of is shown typically, and is the foundation of the current sensor of the present invention
[0013] 図 1は、四角形断面の棒状の磁歪材 2の長さ方向の一つの端面又は両端面(以下 、「端面」はこの意味で用いるが、図 1では一端面)に圧電素子 1を設け、磁歪材 2に コイル 3を卷回した磁界センサーの基本構造である。実用的には、磁歪材 2が共振す る周波数の交流電圧をこの圧電素子 1に印加する。この共振によって磁歪材 2は大き く歪み、透磁率も大きく変動して磁歪材 2内部の磁束も同様に変動する。その結果磁 歪材 2を卷回したコイル 3には起電力が生じる。磁歪材 2の両端面に圧電素子を設け た場合も同様である。この起電力は磁界の強さに比例するので、磁界の強さを計測 できる。 [0013] FIG. 1 shows a piezoelectric magnetoresistive element 1 on one end face or both end faces in the length direction of a rod-shaped magnetostrictive material 2 having a square cross section (hereinafter, “end face” is used in this sense, but in FIG. 1, one end face). This is the basic structure of the magnetic field sensor that is provided and the coil 3 is wound around the magnetostrictive material 2. Practically, an AC voltage having a frequency at which the magnetostrictive material 2 resonates is applied to the piezoelectric element 1. Due to this resonance, the magnetostrictive material 2 is greatly distorted, the magnetic permeability is also greatly changed, and the magnetic flux in the magnetostrictive material 2 is similarly changed. As a result, an electromotive force is generated in the coil 3 wound with the magnetostrictive material 2. The same applies when piezoelectric elements are provided on both end faces of the magnetostrictive material 2. This electromotive force is proportional to the strength of the magnetic field, so measure the strength of the magnetic field. it can.
[0014] この磁界センサーは、その圧電素子 1を駆動するための交流電圧が安定していると 使い易いが、振幅が変動したり、直流が重畳したりするなど不安定であっても使用で きる。圧電素子の駆動電圧が不安定である場合は、検出した起電力を処理する電子 回路などの処理手段において補正することができる。また、周波数においては前述し たように磁歪材を共振させる周波数であると駆動効率がょ 、が、必ずしも共振しなけ ればならな 、ものではな 、。  [0014] This magnetic field sensor is easy to use if the AC voltage for driving the piezoelectric element 1 is stable, but can be used even if it is unstable, such as when the amplitude fluctuates or DC is superimposed. wear. If the driving voltage of the piezoelectric element is unstable, it can be corrected by processing means such as an electronic circuit that processes the detected electromotive force. In addition, as described above, when the frequency is the frequency at which the magnetostrictive material is resonated, the driving efficiency is high, but it is not necessarily required to resonate.
[0015] 図 2は、図 1の磁歪材 2と同様の磁歪材 2の長さ方向に沿った一つの側面又は両側 面 (以下「側面」はこの意味で用いるが、図 2では一側面)に圧電素子 1を設けた場合 の磁界センサーであるが、図 2の場合は図 3や図 4に示すような歪みモードがある。い ずれの面に圧電素子 1を設けた場合も前記図 1の説明と同様に磁歪材 2が歪むこと によりコイル 3に起電力が生じる。図 2では、コイル 3は圧電素子 1と磁歪材 2を一緒に 卷回している。  [0015] FIG. 2 shows one side surface or both side surfaces along the length direction of the magnetostrictive material 2 similar to the magnetostrictive material 2 in FIG. 1 (hereinafter, “side surface” is used in this sense, but in FIG. 2, one side surface) This is a magnetic field sensor when the piezoelectric element 1 is provided in Fig. 2, but in the case of Fig. 2, there is a distortion mode as shown in Figs. Even when the piezoelectric element 1 is provided on either surface, an electromotive force is generated in the coil 3 due to the distortion of the magnetostrictive material 2 as in the description of FIG. In Fig. 2, the coil 3 winds the piezoelectric element 1 and the magnetostrictive material 2 together.
[0016] 図 5、図 6、図 8、および図 9は、何れも本発明電流センサー MSM-csの実施形態の 例である。  [0016] FIG. 5, FIG. 6, FIG. 8, and FIG. 9 are all examples of embodiments of the current sensor MSM-cs of the present invention.
これらの本発明電流センサー MSM- csでは、図 1または図 2で説明した磁界センサ 一の要素を、磁路の全体または一部に少なくとも一つ以上具備している。  In these current sensors MSM-cs of the present invention, at least one element of the magnetic field sensor described in FIG. 1 or FIG.
即ち、本発明電流センサー MSM- csは、前記磁界センサーの動作原理に基づき、 被測定電流が発生する磁界を検出することにより、当該磁界の発生源である電流を 計測することができるのである。  That is, the current sensor MSM-cs of the present invention can measure the current that is the source of the magnetic field by detecting the magnetic field generated by the current to be measured based on the operating principle of the magnetic field sensor.
[0017] また、上記の本発明電流センサー MSM-csにおけるコイル 3の起電力は被計測電 流に比例し、且つ、磁歪材 2の透磁率の変化量、すなわち圧電素子 1に印加する電 圧にも比例する。よって、任意の電力負荷に印加された電圧に比例した電圧で交流 電圧を変調して圧電素子 1に印加するか、あるいは当該比例した電圧が交流電圧で ある場合は直接に圧電素子 1に印加し、さらに、当該電力負荷に流れる電流を被計 測電流とすれば、コイル 3の起電力は当該電力負荷の電圧および電流の双方に比 例して、当該電力負荷の消費電力に比例したものとなる。このことから本発明電流セ ンサー MSM- csの構成は、接続する圧電素子駆動回路の構成によって電力センサー として作動するように形成することもできる(図 13,図 14参照)。 In addition, the electromotive force of the coil 3 in the current sensor MSM-cs of the present invention is proportional to the current to be measured, and the amount of change in the magnetic permeability of the magnetostrictive material 2, that is, the voltage applied to the piezoelectric element 1. Is also proportional to Therefore, the AC voltage is modulated and applied to the piezoelectric element 1 with a voltage proportional to the voltage applied to an arbitrary power load, or when the proportional voltage is an AC voltage, it is directly applied to the piezoelectric element 1. Furthermore, if the current flowing through the power load is the measured current, the electromotive force of coil 3 is proportional to both the voltage and current of the power load and is proportional to the power consumption of the power load. Become. Therefore, the configuration of the current sensor MSM-cs of the present invention depends on the configuration of the piezoelectric element driving circuit to be connected. (See FIGS. 13 and 14).
実施例  Example
[0018] 本発明電流センサー MSM-csの具体例を図 5および図 6により説明する力 まず図 5 力 説明する。  A specific example of the current sensor MSM-cs of the present invention will be described with reference to FIG. 5 and FIG.
図 5において、磁歪材 2と圧電素子 1は何れも円筒状である。この実施例では、磁 歪材 2と圧電素子 1とをエポキシ榭脂で接着して一体ィ匕して 、るが、磁歪材 2と圧電 素子 1とは機械的に結合していれば、その手段は接着に限られずいかなる結合方法 であってもよい。  In FIG. 5, the magnetostrictive material 2 and the piezoelectric element 1 are both cylindrical. In this embodiment, the magnetostrictive material 2 and the piezoelectric element 1 are bonded together by epoxy resin, and are integrated together. However, if the magnetostrictive material 2 and the piezoelectric element 1 are mechanically coupled, The means is not limited to adhesion, and any bonding method may be used.
この実施例の圧電素子 1は、材料に強誘電体セラミックスを用い、内径 7mm、外形 11mm,長さ 7mmの円筒状に整形し、円筒の内側面と外側面にそれぞれ金属を蒸 着して電極(図に表われず)とした。 la, lbは両電極に接続したリード線である。  The piezoelectric element 1 of this embodiment uses ferroelectric ceramics as a material, is shaped into a cylindrical shape having an inner diameter of 7 mm, an outer diameter of 11 mm, and a length of 7 mm, and deposits metal on the inner and outer surfaces of the cylinder, respectively. (Not shown in the figure). la and lb are lead wires connected to both electrodes.
また、磁歪材 2は、(株)モリテックス社製の超磁歪材 "N2M— 800"を用い、内径 1 1. 5mm、外形 18mm、長さ 7mmの円筒状に整形した。  The magnetostrictive material 2 was formed into a cylindrical shape having an inner diameter of 11.5 mm, an outer diameter of 18 mm, and a length of 7 mm using a super magnetostrictive material “N2M-800” manufactured by Moritex Corporation.
[0019] 本実施例で使用した超磁歪材((株)モリテックス製 N2M-800)の透磁率一応力 の特'性グラフを図 15に示す。 [0019] FIG. 15 shows a characteristic graph of permeability and stress of the giant magnetostrictive material (N2M-800 manufactured by Moritex Co., Ltd.) used in this example.
この特性グラフからも解る通り、この材料は応力が生じるとその応力に反比例して透 磁率が減少する。特に、所定の応力までは急激に減少して、それ以上は減少率が低 下する特性を持っている。  As can be seen from this characteristic graph, when stress is generated in this material, the magnetic permeability decreases in inverse proportion to the stress. In particular, it has a characteristic that it rapidly decreases up to a predetermined stress and the decrease rate decreases beyond that.
本発明において、磁歪材 2にかける応力の動作範囲を、透磁率の変化が急峻な領 域内に設定すると、磁束は圧電素子 1の歪みにより振幅変調される。また、この動作 範囲を減衰率が充分に低い領域域まで広げると、磁束はチヨッビングされたようにな る。本発明電流センサーはいずれの状態でも動作するが、駆動回路は動作範囲の 設定に応じて適宜決定する。この特性グラフは、透磁率一応力特性になっているが、 応力と歪は相関があり置換できる数値である。  In the present invention, when the operating range of the stress applied to the magnetostrictive material 2 is set in a region where the change in magnetic permeability is steep, the magnetic flux is amplitude-modulated by the distortion of the piezoelectric element 1. In addition, when this operating range is expanded to a region where the attenuation factor is sufficiently low, the magnetic flux becomes like being jobbed. The current sensor of the present invention operates in any state, but the drive circuit is appropriately determined according to the setting of the operating range. This characteristic graph shows permeability-stress characteristics, but stress and strain are correlated and can be replaced.
なお、上記実施例では、磁歪性が特に顕著な磁性材料を用いたが、ほとんどの磁 性材料は磁歪を持つことが知られている。一般にトランスなどのコアに使用する磁性 材料では、磁歪のために所謂「唸り」が生じ、変電所などの大型トランスでは騒音公 害の原因となっているため、トランス用コア材に用いる磁性材料では磁歪はないほう が好ましぐ磁歪を低減した電磁鋼板も開発されている。 In the above embodiment, a magnetic material having particularly remarkable magnetostriction is used, but it is known that most of the magnetic materials have magnetostriction. In general, magnetic materials used for cores such as transformers generate so-called “sagging” due to magnetostriction, which causes noise pollution in large transformers such as substations. No magnetostriction Magnetic steel sheets with reduced magnetostriction, which are preferred by the company, have also been developed.
[0020] 図 5,図 6の実施例において、圧電素子 1にそのリード線 la, lbを通して交流電圧を 印力!]した場合、圧電素子 1は直径方向に拡張したり収縮したりする。磁歪材 2は圧電 素子 1と機械的に結合しているので、圧電素子 1の歪みに同調して一緒に歪む、この 歪みの一例を図 7に模式的に示す。  In the embodiment shown in FIGS. 5 and 6, when an AC voltage is applied to the piezoelectric element 1 through its lead wires la and lb !, the piezoelectric element 1 expands or contracts in the diameter direction. Since the magnetostrictive material 2 is mechanically coupled to the piezoelectric element 1, an example of this distortion is shown in FIG.
[0021] 圧電素子に交流電圧を印加して振動させる場合は圧電振動子と呼ばれることもあり 、その際、歪みモードは振動モードと呼ばれることがある。この振動モードには、径方 向振動、長辺方向伸び振動、縦振動、厚み縦振動、厚みすベり振動などと呼ばれる モードを代表的振動モードとして、多くの振動モードがある。本発明ではその実施の 形態に応じて様々な振動モードの中から適宜の振動モードを選択することができ、従 つて、実施例においても使用できる振動モードも、図 7に例示した径方向振動に限ら れるものではない。  [0021] When an AC voltage is applied to a piezoelectric element to vibrate, the piezoelectric element is sometimes called a piezoelectric vibrator. In this case, the strain mode is sometimes called a vibration mode. There are many vibration modes in this vibration mode, with modes called radial vibration, long-side extension vibration, longitudinal vibration, thickness longitudinal vibration, and thickness shear vibration as representative vibration modes. In the present invention, an appropriate vibration mode can be selected from various vibration modes according to the embodiment. Therefore, the vibration mode that can be used in the embodiment is also the radial vibration illustrated in FIG. It is not limited.
[0022] この実施例において、被計測電流 4は円筒状の磁歪材 2および圧電素子 1の内部 を貫通させる。図 5,図 6に符号 4で示したものが被計測電流である力 具体的には 導線を流れる電流のほか、気体や液体中のイオンの流れ、真空中の電子の流れ、プ ラズマの流れ等、電荷を帯びたものの流れであれば何でもよい。被計測電流 4はその 周囲に磁界を生じる力 この磁界は磁歪材 2に周回する磁束を生じる。そして、この 磁束の強さは磁歪材 2の透磁率と磁界の強さに比例する。ここで、仮に被計測電流 4 が一定の直流電流であれば起磁力は一定であり、磁束は透磁率に比例する。  In this embodiment, the current to be measured 4 passes through the inside of the cylindrical magnetostrictive material 2 and the piezoelectric element 1. Fig. 5 and Fig. 6 indicate the current that is measured by the reference numeral 4. Specifically, in addition to the current flowing through the conductor, the flow of ions in a gas or liquid, the flow of electrons in a vacuum, the flow of plasma Any flow may be used as long as it has a charge. The measured current 4 is a force that generates a magnetic field around it. This magnetic field generates a magnetic flux that circulates in the magnetostrictive material 2. The strength of the magnetic flux is proportional to the magnetic permeability of the magnetostrictive material 2 and the strength of the magnetic field. Here, if the measured current 4 is a constant DC current, the magnetomotive force is constant, and the magnetic flux is proportional to the magnetic permeability.
[0023] 一方、上記磁歪材 2の透磁率は機械的歪みにより変動させることができる。そこで、 磁歪材 2と機械的に結合した圧電素子 1により磁歪材 2を歪ませることにより磁歪材 2 の透磁率を変動させることができる。その結果、磁歪材 2内部の磁束も変化する。 圧電素子 1を、交流電圧を印加することによって歪ませることにより、磁歪材 2の透 磁率が脈動し、磁束の強さも脈動する。よって、この磁歪材 2に卷回したコイル 3には 磁束の脈動量に比例した起電力が生じる。この磁束の脈動量はひずみの振幅が一 定であれば被測定電流 4の強さに比例する。すなわち、コイル 3に生じる起電力は被 測定電流 4に比例する。  On the other hand, the magnetic permeability of the magnetostrictive material 2 can be changed by mechanical strain. Therefore, the magnetic permeability of the magnetostrictive material 2 can be varied by distorting the magnetostrictive material 2 with the piezoelectric element 1 mechanically coupled to the magnetostrictive material 2. As a result, the magnetic flux inside the magnetostrictive material 2 also changes. By distorting the piezoelectric element 1 by applying an AC voltage, the magnetic permeability of the magnetostrictive material 2 pulsates, and the strength of the magnetic flux also pulsates. Therefore, an electromotive force is generated in the coil 3 wound around the magnetostrictive material 2 in proportion to the pulsation amount of the magnetic flux. The amount of pulsation of this magnetic flux is proportional to the strength of the measured current 4 if the amplitude of the strain is constant. That is, the electromotive force generated in the coil 3 is proportional to the measured current 4.
[0024] コイル 3に生じる起電力は圧電素子 1の駆動電圧に同期した交流であるので、これ を整流あるいは検波することにより被測定電流 4を測定することができる。 [0024] Since the electromotive force generated in the coil 3 is alternating current synchronized with the drive voltage of the piezoelectric element 1, The measured current 4 can be measured by rectifying or detecting.
特に検波をする場合は、圧電素子 1の駆動電圧を基準にした同期検波をすること により、被測定電流 4の方向を測定することができる。  In particular, when detecting, the direction of the current to be measured 4 can be measured by performing synchronous detection based on the drive voltage of the piezoelectric element 1.
[0025] 上記実施例の本発明電流センサー MSM-csを駆動するための電子回路のブロック 図を図 10、図 11、および図 12に示す。 [0025] FIG. 10, FIG. 11, and FIG. 12 show block diagrams of electronic circuits for driving the current sensor MSM-cs of the present invention.
図 10はコイルの起電力をそのまま出力する場合、図 11はコイルの起電力を検波ある Fig. 10 shows the case where the electromotive force of the coil is output as it is. Fig. 11 shows the detection of the electromotive force of the coil.
V、は整流して出力する場合、図 12はコイルの起電力を増幅して圧電素子 1の駆動電 圧を基準に同期検波した場合である。 V, when rectified and output, FIG. 12 shows a case where the electromotive force of the coil is amplified and synchronous detection is performed based on the drive voltage of the piezoelectric element 1.
図 10、図 11、および図 12のいずれの回路においても、圧電素子 1は発振回路 5によ り駆動する。また、ここに示す発振回路 5、検波整流回路 6、増幅回路 7、および同期 検波回路 8は、前記の目的を達成するものであれば如何なる回路手段であってもよ い。  In any of the circuits shown in FIGS. 10, 11, and 12, the piezoelectric element 1 is driven by the oscillation circuit 5. Further, the oscillation circuit 5, the detection rectification circuit 6, the amplification circuit 7, and the synchronous detection circuit 8 shown here may be any circuit means as long as they achieve the above object.
[0026] 図 6の実施例は、図 5の実施例に対して磁歪材 2と圧電素子 1とが反対に配置され た場合であり、動作原理は前記図 5の実施例の場合と同様である。  The embodiment of FIG. 6 is a case where the magnetostrictive material 2 and the piezoelectric element 1 are arranged opposite to the embodiment of FIG. 5, and the operation principle is the same as that of the embodiment of FIG. is there.
図 6の実施例においては、圧電素子 1は、内径 8mm、外形 12mm、長さ 7mmの円 筒状に整形し、この円筒体の内側面と外側面にそれぞれ金属を蒸着して電極としリ ード線 la, lbを接続した。  In the embodiment of FIG. 6, the piezoelectric element 1 is shaped into a cylindrical shape having an inner diameter of 8 mm, an outer diameter of 12 mm, and a length of 7 mm, and a metal is vapor-deposited on each of the inner surface and the outer surface of the cylindrical body to form an electrode. Wires la and lb were connected.
また、磁歪材 2は、内径 4mm、外形 7. 5mm、長さ 7mmの円筒状に整形し、圧電 素子 1の内部に挿入して両者 1, 2を結合した。  In addition, the magnetostrictive material 2 was shaped into a cylindrical shape having an inner diameter of 4 mm, an outer diameter of 7.5 mm, and a length of 7 mm, and inserted into the piezoelectric element 1 to couple both 1 and 2 together.
図 6の実施例においては、圧電素子 1と磁歪材 2はともに前記図 5の実施例の場合 と同じ材料で形成し、寸法だけを変更したものである。  In the embodiment of FIG. 6, both the piezoelectric element 1 and the magnetostrictive material 2 are made of the same material as in the embodiment of FIG. 5 and only the dimensions are changed.
[0027] 図 8は、圧電素子 1を環状円状に形成し、その上面に当該圧電素子 1と同一形状に 整形した磁歪材 2を接着等により結合一体ィ匕し、両者 1, 2にコイル 3を卷回した本発 明電流センサーの別の例である。従って、図 5,図 6と同一符号は同一部材を示し、 使用した部材の材質も先の例と同じものである。 FIG. 8 shows that the piezoelectric element 1 is formed in an annular circle shape, and a magnetostrictive material 2 shaped in the same shape as that of the piezoelectric element 1 is bonded to the upper surface of the piezoelectric element 1 by bonding or the like. This is another example of the present invention current sensor in which No. 3 is wound. Accordingly, the same reference numerals as those in FIGS. 5 and 6 denote the same members, and the materials used are the same as in the previous example.
[0028] 図 9は、断面 (又は正面)略口字状に形成した磁歪材 2の、ここでは一つの外周側 面に圧電素子 1を結合し、前記磁歪材 2にコイル 3を卷回した形態の本発明電流セン サ一の別の例である。図 9の実施例における各構成部材も、先の実施例と同材質の 材料で形成している。よって、先の例と同じ符号は同一部材を示している。 FIG. 9 shows a magnetostrictive material 2 formed in a cross-sectional (or front) substantially square shape, in which a piezoelectric element 1 is coupled to one outer peripheral side, and a coil 3 is wound around the magnetostrictive material 2. It is another example of this invention current sensor of form. Each component in the embodiment of FIG. 9 is also made of the same material as the previous embodiment. It is made of material. Therefore, the same reference numerals as in the previous example indicate the same members.
[0029] 以上に説明した本発明電流センサー MSM- csは、電力を計測する電力センサーと しても利用することができるので、以下にこの点いついて説明する。この電力センサ 一は、交流も直流も計測できるが、特に直流電力を簡便に計測できる電力センサー として有用である。  [0029] Since the current sensor MSM-cs of the present invention described above can be used as a power sensor for measuring power, this point will be described below. This power sensor can measure both AC and DC, but is particularly useful as a power sensor that can easily measure DC power.
[0030] 電力は負荷電流値と負荷電圧値を乗算することによって求めることができ、無効電 力と有効電力に分けられる。従来技術では負荷電流値と負荷電圧値をそれぞれ別 々のセンサーで計測し、計測した値を電子回路などにより演算する方法が一般的で ある。この方法により交流電力を計測する際は、電流センサーとしては CT (Current T ransformer)を用い、電圧センサーとしては PT (Potential Transformer)を用いることが 多いが、 CTも PTも直流では機能しない。  [0030] The power can be obtained by multiplying the load current value and the load voltage value, and is divided into reactive power and active power. In the prior art, a method of measuring a load current value and a load voltage value by separate sensors and calculating the measured values by an electronic circuit or the like is common. When measuring AC power using this method, CT (Current Transformer) is often used as the current sensor and PT (Potential Transformer) is often used as the voltage sensor, but neither CT nor PT functions with DC.
[0031] 一方、直流も計測でき、負荷電流値と負荷電圧値を同一のセンサーで検出し、当 該センサー自体が物理的に乗算を行う電力センサーも特許文献に開示されている。 その代表例として、 1)ホール素子型電流センサーの動作原理で電流値を計測し、こ のホール素子の電流供給端子に電圧に比例した電流を供給することにより、これらの 電流と電圧に比例した信号を電力値として出力する「電力メータ」(特開平 11 108 971号参照)、 2)ファラディー効果型電流センサーの動作原理で電流値を計測し、フ ァラディー効果素子に照射する光の強さを電圧に比例させることにより、これらの電流 と電圧に比例した信号を電力値として出力する「電力センサー」(特開平 1 - 162165 号参照)がある。しかし、これらの特許文献に開示された電力センサーは、その動作 原理の基本となっている電流センサーが持っている欠点をそのまま内抱しており、従 つて、使用温度範囲が狭い、構造が複雑で堅牢化小型化が困難、精度が低い、など の欠点がある。  [0031] On the other hand, a patent document also discloses a power sensor that can measure direct current, detects a load current value and a load voltage value with the same sensor, and performs physical multiplication by the sensor itself. Typical examples are as follows: 1) By measuring the current value according to the operating principle of the Hall element type current sensor and supplying a current proportional to the voltage to the current supply terminal of this Hall element, the current is proportional to the current and voltage. “Power meter” that outputs a signal as a power value (see Japanese Patent Laid-Open No. 11 108 971), 2) Intensity of light irradiated to a Faraday effect element by measuring the current value based on the operating principle of a Faraday effect type current sensor There is a “power sensor” (see Japanese Patent Laid-Open No. 1-162165) that outputs a signal proportional to the current and voltage as a power value by making the voltage proportional to the voltage. However, the power sensors disclosed in these patent documents directly incorporate the drawbacks of current sensors, which are the basis of their operating principles, and therefore have a narrow operating temperature range and a complicated structure. However, it has the disadvantages of being solid, difficult to miniaturize, and low accuracy.
また、上述したように従来の電力センサーでは、近時求められている小型 ·堅牢 -簡 素 ·高精度 ·大電流計測可能などを兼ね備えて 、ることを内容とするニーズに対応で きない。  In addition, as described above, conventional power sensors cannot meet the needs of the contents, including the small size, robustness, simplicity, high accuracy, and large current measurement that are required recently.
[0032] し力しながら、上述した本発明電流センサー MSM-csを利用する電力センサーでは 、上記従来技術に比べ、小型 ·堅牢 ·簡素 ·高精度,大電流計測可能の特長を備えた 直流電力も計測できる電力センサーを提供することができる。 [0032] However, the power sensor using the above-described current sensor MSM-cs of the present invention has features of small size, robustness, simplicity, high accuracy, and large current measurement compared to the above-described conventional technology. A power sensor that can also measure DC power can be provided.
即ち、本発明電流センサー MSM-csを利用した電力センサーは、圧電効果を発現 するように電極を設けた圧電素子 1と、この圧電素子 1に機械的に結合した磁歪材 2 ( 磁歪特性を持つ磁性材)と、この磁歪材 2を卷回したコイル 3とを備え、被計測電流 4 の磁束が前記磁歪材 2を通り前記コイル 3と交錯するようにし、圧電素子 1に被計測 電圧に比例させた変動する電圧を印加するようにした構成を具備する。  In other words, the power sensor using the current sensor MSM-cs of the present invention has a piezoelectric element 1 provided with electrodes so as to exhibit a piezoelectric effect, and a magnetostrictive material 2 mechanically coupled to the piezoelectric element 1 (having magnetostrictive characteristics). Magnetic material) and a coil 3 wound around the magnetostrictive material 2 so that the magnetic flux of the measured current 4 crosses the coil 3 through the magnetostrictive material 2 and is proportional to the measured voltage at the piezoelectric element 1. And a configuration in which the changed voltage is applied.
[0033] 換言すれば、本発明電流センサー MSM-csを利用した電力センサーでは、被計測 電流 4の磁束を前記磁歪材 2に導き、さらに前記圧電素子 1に被計測電圧に比例さ せた変動する電圧を印加することにより当該圧電素子 1に被計測電圧に比例した変 動する歪みを生じさせ、該圧電素子 1の変動する歪みにより前記磁歪材 2に変動する 歪みを生じさせ、この変動する歪みにより前記磁歪材 2の透磁率を変動させ、この変 動する透磁率により生じる変動する磁束で、当該磁束と交錯した前記コイル 3に起電 力を生じさせ、この起電力を検出することにより被計測電流と被測定電圧の双方に比 例した値、すなわち電力値を測定することができるのである。  In other words, in the power sensor using the current sensor MSM-cs of the present invention, the magnetic flux of the current to be measured 4 is guided to the magnetostrictive material 2, and the fluctuation is proportional to the voltage to be measured in the piezoelectric element 1. Is applied to the piezoelectric element 1 to cause a strain that varies in proportion to the voltage to be measured, and the strain that the piezoelectric element 1 varies causes a strain that varies to the magnetostrictive material 2 to vary. By changing the magnetic permeability of the magnetostrictive material 2 due to strain, and by generating a magnetomotive force in the coil 3 that intersects with the magnetic flux by the changing magnetic flux generated by the changing magnetic permeability, this electromotive force is detected. A value proportional to both the measured current and the measured voltage, that is, the power value can be measured.
[0034] 本発明電流センサー MSM-csを利用した電力センサーは、上記の動作原理により 動作するので、被計測電力が直流であって磁束が変動しない場合でも、コイルと交 錯する磁束は変動するので直流電力を計測することが出来る。  [0034] Since the power sensor using the current sensor MSM-cs of the present invention operates according to the above operating principle, even when the measured power is direct current and the magnetic flux does not vary, the magnetic flux intersecting with the coil varies. Therefore, DC power can be measured.
また、この電力センサーは電力の瞬時値を計測するので、交流電力計測において は有効電力と皮相電力を計測することができ、その結果、無効電力や力率を求める ことちでさる。  In addition, since this power sensor measures the instantaneous value of power, it is possible to measure active power and apparent power in AC power measurement. As a result, it is possible to obtain reactive power and power factor.
[0035] 図 13は、上記電力センサーの駆動回路の一例のブロック図、図 14は本発明電流セ ンサーを利用した電力センサーの接続例である。この電力センサーは、磁歪変調型 電流センサーの電流検出原理を基本とした動作をするので、以下に説明する。  FIG. 13 is a block diagram of an example of the power sensor drive circuit, and FIG. 14 is a connection example of the power sensor using the current sensor of the present invention. This power sensor operates on the basis of the current detection principle of the magnetostrictive modulation type current sensor, and will be described below.
なお、図 13と図 14において、同一部材,同一構成には同じ符号を用いている。  13 and 14, the same reference numerals are used for the same members and the same configurations.
[0036] 図 13では、変調回路 9において、発振回路 5により得られた交流電圧を、任意の電 力負荷に印加される負荷電圧に比例した電圧 10で変調して圧電素子 1に印加し、当 該負荷に流れる負荷電流を被計測電流 4として非接触で貫通させ、コイル 3に生じる 起電力を増幅回路 7で増幅し、同期検波回路 8を通して出力させることにより、消費 電力に比例した値 (電力値)が得られるようにした。 In FIG. 13, in the modulation circuit 9, the alternating voltage obtained by the oscillation circuit 5 is modulated by a voltage 10 proportional to the load voltage applied to an arbitrary power load and applied to the piezoelectric element 1. The load current flowing through the load is passed through in a non-contact manner as the current to be measured 4, and the electromotive force generated in the coil 3 is amplified by the amplifier circuit 7 and output through the synchronous detection circuit 8. A value proportional to the power (power value) was obtained.
[0037] 図 14において、電源 11に負荷 12が導線により接続され被計測電流 4が流れる。そこ で、図 8に例示した本発明電流センサーと同一の材料を同一寸法に形成した円環状 の圧電素子 1と磁歪材 2を接着等により結合一体化し、両者にコイル 3を卷回したセ ンサー MSM-csに負荷電流を被計測電流 4として非接触で貫通させてコイル 3に起電 力を生じさせるようにする一方、負荷電圧に比例した電圧 10で発振回路 5の出力を 変調回路 9にお 、て変調し圧電素子 1に印加する。  In FIG. 14, a load 12 is connected to a power source 11 by a conducting wire, and a measured current 4 flows. Therefore, a sensor in which an annular piezoelectric element 1 formed of the same material as the current sensor illustrated in FIG. 8 and having the same dimensions and a magnetostrictive material 2 are joined and integrated by bonding or the like, and a coil 3 is wound around them. The load current is passed through the MSM-cs as the measured current 4 in a non-contact manner to generate an electromotive force in the coil 3, while the output of the oscillation circuit 5 is supplied to the modulation circuit 9 at a voltage 10 proportional to the load voltage. Then, the signal is modulated and applied to the piezoelectric element 1.
このとき、コイル 3に生じる起電力を増幅回路 7で増幅し、この増幅出力を発振回路 5の出力で同期した同期検波回路 8を通して出力させることにより、負荷 12の消費電 力に比例した電力値を得ることができる。  At this time, the electromotive force generated in the coil 3 is amplified by the amplifier circuit 7, and this amplified output is output through the synchronous detection circuit 8 synchronized with the output of the oscillation circuit 5, thereby allowing the power value proportional to the power consumption of the load 12 to be obtained. Can be obtained.
産業上の利用可能性  Industrial applicability
[0038] 本発明は以上の通りであって、本発明電流センサーをコア (磁歪材)とコイルとセラ ミックス (圧電素子)とにより構成したので、構造が至ってシンプルであり、し力もいず れの部材も耐熱性が十分な材料で形成でき、従って、広範囲の温度に耐えうる電流 センサーを提供できる。また、同じ理由力も放射線などにも強い。  [0038] The present invention is as described above, and the current sensor according to the present invention is composed of a core (magnetostrictive material), a coil, and a ceramic (piezoelectric element), so that the structure is very simple and force is sufficient. These members can also be formed of a material having sufficient heat resistance, and therefore a current sensor that can withstand a wide range of temperatures can be provided. The same reasoning power is also strong against radiation.
[0039] また、本発明電流センサーでは、コアもコイルも一つでよぐし力も、いずれの部材も 形状が単純なために、堅牢化 ·小型化が容易である。さらに、構造が単純で物理法 則に直結した動作原理であるため誤差要因が少なぐ従って容易に高精度化するこ とが可能である。そして、大電流を計測する際はコアが磁気飽和を起こさないように することだけに配慮すればよぐ駆動電力を大きくする必要もないために大電流計測 にも適している。  [0039] Further, in the current sensor of the present invention, since both the core and the coil have a single shear force and the shape of each member is simple, it is easy to be robust and downsized. In addition, since the structure is simple and the operating principle is directly linked to the physical laws, there are few error factors, so it is possible to easily improve the accuracy. Also, when measuring a large current, it is suitable for measuring a large current because it is not necessary to increase the drive power, as long as the core does not cause magnetic saturation.
[0040] すなわち、本発明によれば小型 '堅牢 '簡素'高精度 ·大電流計測の特長を兼ね備 えた直流電流も計測できる磁歪変調型電流センサーであって、昨今の電気自動車 分野での用途や燃料電池分野での用途など最近の新しいテクノロジー分野での- ーズに対応することができ、従来技術では比肩できるものが全く無い画期的な電流 センサーを提供できるので、様々な産業分野のみならず一般社会に対しても大きな 貢献度が期待できるものである。  That is, according to the present invention, a magnetostrictive current sensor capable of measuring a direct current having the features of small size, “robust”, “simple”, high accuracy and large current measurement, and is used in the field of electric vehicles in recent years. Can meet the demands of recent new technology fields such as applications in the fuel cell field, and can provide innovative current sensors that are completely comparable to those of conventional technologies. It can also be expected to make a significant contribution to the general public.
図面の簡単な説明 [0041] [図 1]本発明電流センサーの動作原理を説明するための磁歪型の磁界センサーの一 例を模式的に示した斜視図。 Brief Description of Drawings FIG. 1 is a perspective view schematically showing an example of a magnetostrictive magnetic field sensor for explaining the operating principle of the current sensor of the present invention.
[図 2]本発明電流センサーの動作原理を説明するための磁歪型の磁界センサーの別 例を模式的に示した斜視図。  FIG. 2 is a perspective view schematically showing another example of a magnetostrictive magnetic field sensor for explaining the operating principle of the current sensor of the present invention.
[図 3]図 2の磁界センサーの歪を説明するための模式的な正面図。  FIG. 3 is a schematic front view for explaining the distortion of the magnetic field sensor of FIG.
[図 4]図 2の磁界センサーの歪を説明するための模式的な正面図。  FIG. 4 is a schematic front view for explaining the distortion of the magnetic field sensor of FIG.
[図 5]本発明電流センサーの第一例を模式的に示した斜視図。  FIG. 5 is a perspective view schematically showing a first example of the current sensor of the present invention.
[図 6]本発明電流センサーの第二例を模式的に示した斜視図。  FIG. 6 is a perspective view schematically showing a second example of the current sensor of the present invention.
[図 7]図 5,図 6の本発明電流センサーの歪みの方向を説明するための平面図。  7 is a plan view for explaining the direction of distortion of the current sensor of the present invention shown in FIGS. 5 and 6. FIG.
[図 8]本発明電流センサーの第三例を模式的に示した斜視図。  FIG. 8 is a perspective view schematically showing a third example of the current sensor of the present invention.
[図 9]本発明電流センサーの第四例を模式的に示した斜視図。  FIG. 9 is a perspective view schematically showing a fourth example of the current sensor of the present invention.
[図 10]本発明電流センサー (又は磁界センサー)の駆動回路の第一例のブロック図。  FIG. 10 is a block diagram of a first example of a drive circuit of the current sensor (or magnetic field sensor) of the present invention.
[図 11]本発明電流センサー (又は磁界センサー)の駆動回路の第二例のブロック図。  FIG. 11 is a block diagram of a second example of the drive circuit of the current sensor (or magnetic field sensor) of the present invention.
[図 12]本発明電流センサー (又は磁界センサー)の駆動回路の第三例のブロック図。  FIG. 12 is a block diagram of a third example of the drive circuit of the current sensor (or magnetic field sensor) of the present invention.
[図 13]本発明電流センサーを電力センサーとして機能させる場合の駆動回路の一例 のブロック図。  FIG. 13 is a block diagram of an example of a drive circuit when the current sensor of the present invention functions as a power sensor.
[図 14]図 13の電力センサーの接続例を示すブロック図。  FIG. 14 is a block diagram showing a connection example of the power sensor of FIG.
[図 15]本発明電流センサーの実施例に用いた磁歪材の透磁率一応力の特性を示す グラフ。  FIG. 15 is a graph showing the characteristics of magnetic permeability and stress of the magnetostrictive material used in the example of the current sensor of the present invention.
符号の説明  Explanation of symbols
[0042] MSM-cs 本発明電流センサー [0042] MSM-cs current sensor of the present invention
1 圧電素子  1 Piezoelectric element
2 磁歪材  2 Magnetostrictive material
3 コイル  3 coils
4 被検出電流  4 Detected current

Claims

請求の範囲 The scope of the claims
[1] 圧電効果を発現するように電極を設けた圧電素子と、この圧電素子に機械的に結 合した磁歪材と、この磁歪材を卷回したコイルとを備え、被計測電流の磁束が前記磁 歪材を通り前記コイルと交錯するようにしたことを特徴とする磁歪変調型電流センサ  [1] A piezoelectric element provided with electrodes so as to exhibit a piezoelectric effect, a magnetostrictive material mechanically coupled to the piezoelectric element, and a coil wound with the magnetostrictive material, and the magnetic flux of the current to be measured is A magnetostrictive modulation type current sensor characterized in that it passes through the magnetostrictive material and intersects with the coil.
[2] 圧電効果を発現するように電極を設けた圧電素子と、この圧電素子に機械的に結 合した磁歪材と、この磁歪材を卷回したコイルとを備え、被計測電流の磁束が前記磁 歪材を通り前記コイルと交錯するようにしておき、前記被計測電流の磁束を前記磁歪 材に導くとともに、さらに前記圧電素子に変動する電圧を印加することにより当該圧 電素子に変動する歪みを生じさせ、該圧電素子の変動する歪みにより前記磁歪材に 変動する歪みを生じさせ、この変動する歪みにより前記磁歪材の透磁率を変動させ、 この変動する透磁率により生じる変動する磁束によって、当該磁束と交錯した前記コ ィルに起電力を生じさせ、この起電力を検出することにより被計測電流を測定するこ とを特徴とする電流の計測方法。 [2] A piezoelectric element provided with an electrode so as to exhibit a piezoelectric effect, a magnetostrictive material mechanically coupled to the piezoelectric element, and a coil wound with the magnetostrictive material, and the magnetic flux of the current to be measured is It passes through the magnetostrictive material and crosses with the coil, guides the magnetic flux of the current to be measured to the magnetostrictive material, and further varies the piezoelectric element by applying a varying voltage to the piezoelectric element. A strain is generated, a strain that fluctuates in the magnetostrictive material is generated due to a fluctuating strain of the piezoelectric element, a magnetic permeability of the magnetostrictive material is fluctuated by the fluctuating strain, and a fluctuating magnetic flux generated by the fluctuating magnetic permeability An electric current is measured by causing an electromotive force to be generated in the coil crossed with the magnetic flux and detecting the electromotive force.
PCT/JP2006/306454 2006-03-29 2006-03-29 Magnetostrictive modulation current sensor and method for measuring current using that sensor WO2007110943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306454 WO2007110943A1 (en) 2006-03-29 2006-03-29 Magnetostrictive modulation current sensor and method for measuring current using that sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306454 WO2007110943A1 (en) 2006-03-29 2006-03-29 Magnetostrictive modulation current sensor and method for measuring current using that sensor

Publications (1)

Publication Number Publication Date
WO2007110943A1 true WO2007110943A1 (en) 2007-10-04

Family

ID=38540883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306454 WO2007110943A1 (en) 2006-03-29 2006-03-29 Magnetostrictive modulation current sensor and method for measuring current using that sensor

Country Status (1)

Country Link
WO (1) WO2007110943A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813723A (en) * 2010-04-07 2010-08-25 中环光伏系统有限公司 Non-contact type direct current measuring method
US20110057458A1 (en) * 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Piezoelectric energy harvester and method of manufacturing the same
EP3117195A4 (en) * 2014-03-10 2018-07-11 Qortek, Inc. Non-contact magnetostrictive current sensor
CN110672906A (en) * 2019-09-25 2020-01-10 南京理工大学 Differential current sensor for measuring electrified alternating current straight wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070408A1 (en) * 2003-02-04 2004-08-19 Nec Tokin Corporation Magnetic sensor
JP2005257477A (en) * 2004-03-11 2005-09-22 Toyota Industries Corp Magnetometric sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070408A1 (en) * 2003-02-04 2004-08-19 Nec Tokin Corporation Magnetic sensor
JP2005257477A (en) * 2004-03-11 2005-09-22 Toyota Industries Corp Magnetometric sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110057458A1 (en) * 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Piezoelectric energy harvester and method of manufacturing the same
US8330334B2 (en) * 2009-09-08 2012-12-11 Electronics And Telecommunications Research Institute Apparatus employing piezoelectric energy harvester capable of generating voltage to drive power conditioning circuit and method of manufacturing the same
CN101813723A (en) * 2010-04-07 2010-08-25 中环光伏系统有限公司 Non-contact type direct current measuring method
EP3117195A4 (en) * 2014-03-10 2018-07-11 Qortek, Inc. Non-contact magnetostrictive current sensor
CN110672906A (en) * 2019-09-25 2020-01-10 南京理工大学 Differential current sensor for measuring electrified alternating current straight wire
CN110672906B (en) * 2019-09-25 2021-06-29 南京理工大学 Differential current sensor for measuring electrified alternating current straight wire

Similar Documents

Publication Publication Date Title
JP4607753B2 (en) Voltage measuring device and power measuring device
Hayes et al. Electrically modulated magnetoelectric AlN/FeCoSiB film composites for DC magnetic field sensing
Ou-Yang et al. Magnetoelectric laminate composites: An overview of methods for improving the DC and low-frequency response
Ou et al. Self-biased magnetoelectric current sensor based on SrFe12O19/FeCuNbSiB/PZT composite
US10613159B2 (en) Magnetoelectric magnetic field measurement with frequency conversion
WO2007110943A1 (en) Magnetostrictive modulation current sensor and method for measuring current using that sensor
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JP2005031089A (en) Open-loop electric current sensor and power supply circuit equipped with it
JPWO2004070408A1 (en) Magnetic sensor
JP2002022706A (en) Magnetic sensor, magnetic leakage flux flaw detection method, and its device
CN111381200B (en) Magnetic sensor for differential output by using 180-degree reverse phase modulation nonlinear magnetoelectric effect
JP4253084B2 (en) Load measuring device
CN105334373B (en) A kind of small current sensor using piezoelectricity/elastic metallic rectangle drum
JP2013238500A (en) Inclined core type current sensor
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2015102507A (en) Force sensor, force detection device using the same and force detection method
JP2008026053A (en) Current sensor
JP3583699B2 (en) Sensor device
JP4739097B2 (en) Diagnosis method of pole transformer
WO2006129389A1 (en) Wide-band current detector
JP2000055996A (en) Magnetic sensor
Loyau et al. A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects
JP2007147419A (en) Variable capacitance circuit, voltage-measuring device and electric power measuring device
JP2000193729A (en) Driving circuit for magnetic impedance effect element
JP2007109787A (en) Contactless dc galvanometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06730402

Country of ref document: EP

Kind code of ref document: A1