WO2004070408A1 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
WO2004070408A1
WO2004070408A1 PCT/JP2004/001098 JP2004001098W WO2004070408A1 WO 2004070408 A1 WO2004070408 A1 WO 2004070408A1 JP 2004001098 W JP2004001098 W JP 2004001098W WO 2004070408 A1 WO2004070408 A1 WO 2004070408A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
thin film
circuit
magnetic sensor
magnetic field
Prior art date
Application number
PCT/JP2004/001098
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Shimada
Junichi Hayasaka
Koichi Okamoto
Yoshiaki Ikeda
Original Assignee
Nec Tokin Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Tokin Corporation filed Critical Nec Tokin Corporation
Priority to JP2005504843A priority Critical patent/JPWO2004070408A1/en
Publication of WO2004070408A1 publication Critical patent/WO2004070408A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a small and highly sensitive magnetic sensor capable of detecting geomagnetism mounted on various industrial devices such as portable terminal devices, home electric appliances, automobiles, measuring devices, and the like. It relates to a magnetic sensor of the type that combines the method and the method. Background art
  • a small and highly sensitive magnetic sensor capable of detecting a magnetic field on the order of terrestrial magnetism is an Ml sensor using a magnetic impedance element (MI element) using the skin effect in the band of several MHz to several hundred MHz
  • MI element magnetic impedance element
  • a flux gate sensor utilizing a change in the magnetic permeability of a soft magnetic material may be used.
  • the magnetic sensitivity generally tends to be significantly reduced as the size of the sensor is reduced due to the influence of the demagnetizing field of the magnetic material. Therefore, it is difficult for such an Ml sensor or a flux gate sensor to achieve both miniaturization and high sensitivity, and it is not applied to, for example, a portable direction sensor using geomagnetism.
  • An example of such a type of magnetic sensor is a magnetic sensor using a magnetostrictive element disclosed in Japanese Patent Application Laid-Open No. 2000-88937, for example.
  • FIG. 1 is a schematic diagram showing a basic configuration of a magnetic sensor 14 according to an example of the related art.
  • the basic principle of the magnetic sensor 14 disclosed in Japanese Patent Application Laid-Open No. 2000-88937 is that the elongation (shape change) of the magnetostrictive element 16 due to a change in an external magnetic field is integrated with it. This is detected as a voltage generated in the piezoelectric element 17. Therefore, the quality of the magnetic sensitivity greatly depends on the voltage generated in the piezoelectric element 17, and the generated voltage V depends on the piezoelectric stress constant g 31 , the thickness t of the piezoelectric element 17, and the applied pressure P.
  • V g 3 X X t XP is represented by relational expression 1.
  • FIG. 2 is a circuit block diagram showing a basic configuration of a magnetic detection system 1 including a magnetic sensor 2 according to another conventional example.
  • the magnetism detection system 1 is composed of a plate-shaped piezoelectric element 21 having a back electrode 22 connected to the whole surface of one main surface, and a magnet that is not pole-reversed with respect to an external magnetic field at one end of the other main surface.
  • the piezoelectric element 21 is provided with a magnetic sensor 2 configured to detect the magnetic field strength applied to the magnet 23 as a mechanical force, and also in accordance with the mechanical force applied to the piezoelectric element 21.
  • An oscillation circuit 31 A whose oscillation frequency changes by means of an oscillator circuit, and means for measuring a change in the oscillation frequency of the oscillation circuit 31 A and displaying the magnetic field intensity detected by the magnetic sensor 2.
  • a non-magnetic metal 24 is provided on the other side of the other main surface of the plate-shaped piezoelectric element 21 in the magnetic sensor 2, and the magnetic sensor 2 always operates at the reference frequency in a state where the external magnetic field is zero.
  • Oscillation circuit 31 B is provided. That is, the oscillation circuit 31A is constructed by arranging the magnet 23 of the magnetic sensor 2, the piezoelectric element 21 and the CMOS inverter 32A in the feedback path, and the oscillation circuit 31B is made of non-magnetic metal. 24, the piezoelectric element 21 and the CMOS inverter 32B are arranged in the return path.
  • the oscillation circuit 31A CMOS inverter 32A output side is provided.
  • Counter circuit 33 A connected to (grounded via a capacitor in the oscillation circuit 31 A), the output of the CMOS inverter 32 B of the oscillation circuit 31 B (similarly, the oscillation circuit 31 A Condensed within Counter circuit 3 3B, counter circuit 33 connected to the counter circuit 3)
  • a subtraction circuit 3 that subtracts the difference between the number of pulses counted by the counter circuit 3 A and the number of pulses counted by the counter circuit 3 3B 4, Compensation circuit for compensating for pulse number difference 35, Calibration coefficient generation circuit 36 for generating calibration coefficient 36, Multiplication circuit 37 for multiplying output of compensation circuit 35 and calibration coefficient 37, Based on multiplied output value And a display device 38 for displaying the value of the external magnetic field detected by the magnetic sensor 2.
  • the basic principle of the magnetic detection system 1 disclosed in Japanese Patent Application Laid-Open No. 2000-65098 is that when an external magnetic field H acts on the magnet 23 having a magnetic moment, the magnetic moment M and the external A torque T acting in the direction of the outer product (HXM) with the magnetic field H acts, and when the strength of the external magnetic field H increases, the torque T, which is a mechanical force, increases.
  • a stress torsional stress
  • the piezoelectric element 21 is converted into a stress.
  • the relational expression 1 shows that the generated voltage related to magnetic sensitivity is There is an inconvenience that it is proportional to the thickness and decreases as the piezoelectric element becomes thinner. In order to suppress the drop in the generated voltage, the thickness and thickness of the piezoelectric element are maintained, and even when the size of the piezoelectric element is reduced, the length and width of the piezoelectric element relative to the thickness of the piezoelectric element are reduced with the size reduction.
  • a magnet that does not undergo pole reversal with respect to an external magnetic field and a piezoelectric element that detects a magnetic field intensity applied to the magnet as a mechanical force disclosed in Japanese Patent Application Laid-Open No. 2000-65098 are provided.
  • the torque (HXM) generated in the magnet in principle is a moment, so that a relatively large area is required in the area of the piezoelectric element in order to receive it efficiently with the piezoelectric element. I need. If the sensor is based on such an operation principle, the size of the sensor is inevitably large even when configured as a differential type, which is not suitable for miniaturization. .
  • an object of the present invention is to solve such problems, and
  • An object of the present invention is to provide a high-sensitivity magnetic sensor which can be applied to a position sensor or the like and which is provided with a simple detection signal processing circuit and which is reduced in size and weight. Disclosure of the invention
  • the sensor structure includes a sensor structure which is a magnetostrictive element, and the sensor structure is in a state where the sensor structure is mechanically vibrating as a unit, and the sensor structure is changed with an external magnetic field change.
  • the mechanical resonance frequency changes, and a magnetic sensor that calculates the external magnetic field amount from the change amount of the resonance frequency is obtained.
  • a magnetic sensor comprising a magnetostrictive thin film as the magnetostrictive element is obtained.
  • a magnetic sensor in which the magnetostrictive element is formed of a laminated body including a magnetostrictive thin film and a support.
  • the support is one of a piezoelectric plate made of a piezoelectric material, a silicon plate, and a non-magnetic metal plate, and the support is a cantilever structure, a doubly supported structure, or a diaphragm structure. It is preferable to have any one of the support structures.
  • the magnetostrictive element includes a piezoelectric body having a magnetostrictive thin film laminated on one main surface of a support as a sensor structure. While the sensor structure is mechanically vibrating integrally with the applied voltage, the mechanical resonance frequency of the sensor structure changes with an external magnetic field change, and the resonance A magnetic sensor that calculates the external magnetic field amount from the frequency change amount is obtained.
  • the sensor structure includes a substantially plate-shaped laminate having electrodes on the other main surface of the support, and a voltage is applied between the magnetostrictive thin film and the electrodes. Is obtained.
  • the change in the mechanical resonance frequency of the sensor structure is obtained by changing the Young's modulus of the magnetostrictive thin film with a change in the external magnetic field.
  • a sensor is obtained.
  • a magnetic field applying means for applying an external magnetic field is provided in advance in a width direction of the magnetostrictive thin film, A magnetic sensor is obtained in which the direction is set at about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film.
  • the magnetic field applying means is preferably a permanent magnet or an electromagnet.
  • a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure includes the sensor structure
  • a self-excited oscillation circuit that includes a sensor unit, an amplification circuit, and a phase shift circuit; and an oscillation frequency that is connected between the amplification circuit and the phase shift circuit and that is output from the self-excited oscillation circuit, is converted to a voltage.
  • a magnetic sensor including a frequency-voltage conversion circuit unit that performs the above-described operation is obtained.
  • the magnetic sensor further includes a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure.
  • a self-excited oscillation circuit section comprising a sensor section, an amplifier circuit, and a phase shift circuit, which are included as a sensor structure, and a laminate made of a non-magnetostrictive thin film or a laminate made of a non-magnetostrictive thin film and a support
  • a second sensor structure that oscillates at a constant reference frequency without changing a mechanical resonance frequency in response to an external magnetic field change, a sensor unit including the second sensor structure, and an amplifier circuit.
  • a second self-excited oscillation circuit including a phase shift circuit; an oscillation frequency output from the first self-excited oscillation circuit; a reference frequency output from the second self-excited oscillation circuit; Amplifying the difference between
  • a magnetic sensor including a differential amplifier circuit that outputs a differential signal and a frequency Z voltage conversion circuit that converts the differential frequency output from the differential amplifier circuit to a voltage can be obtained.
  • FIG. 1 is a schematic diagram showing a basic configuration of a magnetic sensor according to a conventional example
  • FIG. 2 is a circuit block diagram showing a basic configuration of a magnetic detection system including a magnetic sensor according to another conventional example.
  • 3 (a), 3 (b) and 3 (c) are side sectional views showing a basic configuration of a magnetic sensor according to an embodiment of the present invention.
  • Fig. 4 shows the resonance frequency for the external magnetic field in the magnetic sensor shown in Fig. 3 (b). This shows the output characteristics expressed as a number
  • FIG. 5 is a schematic diagram showing the basic configuration and operation functions when the magnetic sensor shown in Fig. 3 (b) is provided with a function of discriminating the sign of the magnetic detection direction, and (a) shows the external magnetic field.
  • (B) relates to the case where the external magnetic field is applied in the positive direction
  • (c) relates to the case where the external magnetic field is applied in the negative direction
  • FIG. FIG. 7 is a circuit block diagram showing the basic configuration of a detection signal processing circuit for detecting the mechanical resonance frequency of the sensor structure of the magnetic sensor shown in FIG. 3 (b).
  • FIG. 4 is a circuit block diagram illustrating a basic configuration of another detection signal processing circuit for detecting a mechanical resonance frequency of a sensor structure of the magnetic sensor illustrated in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the magnetic sensor is composed of a sensor structure, which is a magnetostrictive element, and the sensor structure integrally vibrates mechanically.
  • the mechanical resonance frequency of the sensor structure changes with the change of the external magnetic field, and the amount of the external magnetic field is calculated from the change of the resonance frequency.
  • the magnetostrictive element here may be composed of a magnetostrictive thin film (or a laminate thereof) or a laminate of a magnetostrictive thin film and a support.
  • FIGS. 3 (a) and 3 (b) are side sectional views showing a basic configuration of the magnetic sensor according to the first embodiment of the present invention.
  • the magnetic sensor shown in FIG. 3 (a) includes a piezoelectric body 102 in which a magnetostrictive thin film 101 is laminated on one main surface of a substrate 103 as a support, and an electrode is formed from the piezoelectric body 102. It has a sensor structure 106 composed of a substantially plate-like laminate that is drawn out, and the sensor structure 106 is mechanically vibrated as a body by the voltage applied to the piezoelectric body 102. The mechanical resonance frequency of the sensor structure 106 changes with the change of the external magnetic field 113, and the amount of the external magnetic field 113 changes from the change in the resonance frequency. Is calculated.
  • the substrate 103 here is made up of the piezoelectric body 102 itself.
  • the sensor structure 106 has a magnetostrictive thin film 101 laminated on one main surface of the piezoelectric body 102 and a voltage is applied to the piezoelectric body 102 on the other main surface.
  • the magnetostrictive element is configured as a substantially plate-shaped magnetostrictive element including an electrode 104 for performing the operation, and a voltage is applied between the magnetostrictive thin film 101 and the electrode 104.
  • the Young's modulus of the magnetostrictive thin film 101 (the so-called elongation elastic modulus, the longitudinal elastic modulus) is accompanied by the magnetostrictive effect of the magnetostrictive thin film 101. ) Changes (due to the ⁇ effect of the ferromagnetic material described later), and as a result, the resonance frequency of the sensor structure 106 having the magnetostrictive thin film 101 and the piezoelectric material 102 changes.
  • the sensor structure 106 can be considered as a composite beam of the magnetostrictive thin film 101 and the piezoelectric thin film of the piezoelectric body 102, and its resonance frequency f.
  • the change amount ⁇ f of the magnetostrictive thin film 101 is t f
  • the Young's modulus of the magnetostrictive thin film 101 is E f
  • the density of the magnetostrictive thin film 101 is p.
  • the ⁇ effect of a ferromagnetic material can be calculated as follows: According to the well-known document “Kanaku, Physics of Ferromagnetic Materials (Bottom), Kyobo Sho, p. As a result, extra elongation is generated due to the rotation of spontaneous magnetization due to tension, thereby lowering the Young's modulus E f This effect is called the ⁇ effect, and the ⁇ E effect is caused by the presence of magnetostriction ⁇ . It is proportional to. "
  • the spontaneous magnetization rotates along the direction of the external magnetic field 113. Therefore, the magnetostrictive thin film 101 elongates, and the Young's modulus E f decreases accordingly.
  • the resonance frequency of the composite beam of the sensor structure 106 decreases according to the relational expression 3.
  • the change in the resonance frequency f 0 of the composite beam is also caused by the shape change due to the magnetostriction of the magnetostrictive thin film 101, and the resonance frequency f as the sensor output.
  • the amount of change ⁇ f is caused by the integral vibration change of the sensor structure 106.
  • the thickness of the vibrator may be reduced.
  • the sensor sensitivity ⁇ i / H ex Is considered to have a small effect. That is, as shown in the above-mentioned relational expression 2, even if the variation of the term of the Young's modulus E f of the magnetostrictive thin film 101 related to the demagnetizing field is small, the thickness t s of the piezoelectric thin film and the thickness of the magnetostrictive thin film 101 are small. the percentage t f Zt s and the resonant frequency f Q is or sufficiently large with t f, or is higher, it is possible to maintain a high sensor sensitivity ⁇ fZHex.
  • RF sputtering or the like is performed on a piezoelectric substance 102 on a-18.5 degree X-Cut quartz plate (corresponding to the substrate 103) with a thickness of about 50 m.
  • a Co—Fe—Zr-based magnetostrictive thin film 101 having a thickness of about 1 m is deposited by using the film forming technique described above.
  • Co- Fe- Z r based stoichiometric composition of the magnetostrictive film 101 for example, 50: 35: 15 and the magnetostriction constant lambda s at that time are 25X 10_ about 6, used as the piezoelectric 102 Yes— 18.5 degrees X—Cut
  • the fundamental vibration mode of the quartz plate corresponding to substrate 103 be longitudinal vibration.
  • the electrode 104 is formed on the entire opposite surface of the 18.5 degree X-Cut quartz plate to form the sensor structure 106, and its resonance frequency f. Is roughly the sensor structure 1 It is determined by the length of 06. For example, if the length of the piezoelectric body 102 (the length of the sensor structure 106) is about 12 mm, the resonance frequency f 0 of the sensor structure 106 is about 200 (kHz).
  • the magnetic sensor according to Example 2 shown in FIG. 3C has a sensor structure 106 formed by laminating a magnetostrictive thin film 101 on one main surface of a substrate 103 as a support.
  • Substrate 103 is a support, a quartz plate, a piezoelectric ceramic plate typified by PZT, L INb_ ⁇ 3 plate, a silicon substrate, or stainless steel and T i, Cu, C r, Au, non-magnetic metal plate such as A 1 It is desirable that
  • the mechanical resonance state can be reduced if any one of a cantilever structure (a cantilever structure), a cantilever structure, and a diaphragm structure is employed. In order to generate it, it can be easily driven by an electrostatic, electromagnetic, or thermal excitation method such as an electrostatic drive method or a light detection method. Even when the piezoelectric material is used as a support, not only a flat plate but also one of a cantilever structure, a doubly supported structure, and a diaphragm structure is employed. It is desirable to generate a mechanical resonance state (the driving method technology for these various structures is well known, and thus description thereof is omitted). However, in this case, it is preferable that the electrode is directly provided on the magnetostrictive thin film 101 or the substrate 103 as a support, or is directly drawn out.
  • FIG. 4 shows the resonance frequency f with respect to the external magnetic field Hex in the magnetic sensor described above. It shows the output characteristics (sensor output) expressed by the relationship.
  • the sensor output changes at the resonance frequency f with respect to the change of the external magnetic field 113. And a nearly linear relationship is obtained.
  • the relationship between the magnetostriction and the Young's modulus of the ferromagnetic material is proportional, in order to increase the sensor sensitivity delta f ZH ex magnetic sensor, it may be preferable to apply a material having a large magnetostriction constant Can be Therefore, for example, a TbDyFe alloy having a high magnetostriction constant has recently been developed. However, these materials are generally not preferable because the magnetic bias point where the magnetostriction phenomenon occurs is as high as several hundred Oe or more.
  • magnetic materials such as Fe-Si-B, Fe-Co, or Fe-Ni-based thin films have not only high absolute values of magnetostriction constant but also high magnetic permeability.
  • it has a high magnetostriction constant on the low magnetic field side of several ⁇ e or less, and can reduce the magnetic bias point. Therefore, it is suitable for the magnetic sensor material of the present invention.
  • FIG. 5 is a schematic diagram showing a basic configuration and an operation function when the magnetic sensor described above has a function of determining whether the magnetic detection direction is positive or negative.
  • FIG. 5 (a) shows a case where an external magnetic field is not applied.
  • Fig. 2 (b) shows the case where the external magnetic field 113 is applied in the positive direction, and
  • Fig. 2 (c) shows the case where the external magnetic field 120 is applied in the negative direction. .
  • the width of the magnetostrictive thin film 1 22 in the sensor structure 124 equivalent to the sensor structure 16 is provided so that the magnetic sensor of the above embodiment has a function of discriminating the sign of the magnetic detection direction.
  • Permanent magnets or electromagnetic coils for applying an external magnetic field in advance in the direction are provided, and a bias magnetic field is applied to the magnetostrictive thin film 122.
  • the configuration is such that the vibration direction 1 18 of 1 23 is set at 45 degrees with respect to the width direction of the magnetostrictive thin film 1 22.
  • the resonance frequency f 0 is higher than in the configuration shown in FIG.
  • the direction of the rotational magnetization 121 is relative to the vibration direction 118 of the piezoelectric body 123.
  • the magnetostriction of the magnetostrictive thin film 122 in the vibration direction 118 of the piezoelectric body 123 decreases, and the Young's modulus Ef increases. Therefore, the resonance frequency f in this case. Will increase.
  • the permanent magnets 114 and 116 are provided so that an external magnetic field can be applied in the width direction of the magnetostrictive thin film 122, and the vibration of the piezoelectric body 123 If the direction 118 is set at 45 degrees with respect to the width direction of the magnetostrictive thin film 122, the magnetic detection direction can be determined. According to various experimental results, the vibration direction 118 of the piezoelectric body 123 is set in a direction inclined at about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film 122. It was found that the magnetic detection direction could be determined with the configuration described above.
  • FIG. 6 is a circuit block diagram showing a basic configuration of a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure 106 described above.
  • the detection signal processing system circuit here includes a self-excited oscillation circuit section including a sensor section 7 including a sensor structure 106, an amplification circuit 8, and a phase shift circuit 9, and a self-excited oscillation circuit section.
  • a frequency Z voltage conversion circuit (FZV converter) 10 is connected between the amplification circuit 8 and the phase shift circuit 9 and converts the oscillation frequency output from the self-excited oscillation circuit into a voltage.
  • FZV converter frequency Z voltage conversion circuit
  • FIG. 7 is a circuit block diagram showing a basic configuration of another detection signal processing circuit for detecting the mechanical resonance frequency of the sensor structure 106 described above.
  • the detection signal processing system circuit here includes a first self-excited circuit including a sensor section 7 including the sensor structure 106 as a first sensor structure, an amplifier circuit 8, and a phase shift circuit 9. It consists of an oscillation circuit section 11 and a laminated body composed of a non-magnetostrictive thin film or a laminated body composed of a non-magnetostrictive thin film and a support, and has a constant reference frequency without a change in mechanical resonance frequency in response to an external magnetic field change.
  • a second self-excited circuit comprising a schematic second sensor structure that oscillates, a sensor unit including the second sensor structure, an amplifier circuit, and a phase shift circuit.
  • An oscillation circuit section 12 is provided.
  • the detection signal processing system circuit is provided between the amplifier circuit 8 and the phase shift circuit 9 in the first self-excited oscillation circuit section 11, and the amplifier circuit and the phase shift circuit in the second self-excited oscillation circuit section 12.
  • the difference between the oscillation frequency output from the first self-excited oscillation circuit section 11 and the reference frequency output from the second self-excited oscillation circuit section 12 is amplified by It has a differential amplifier circuit 13 that outputs a frequency, and a frequency Z voltage conversion circuit unit (F / V converter) 10 that converts the differential frequency output from the differential amplifier circuit 13 into a voltage. I have.
  • the non-magnetostrictive thin film used in the other sensor structure here is almost equal to the magnetostrictive thin film 101 to which various material constants such as heat capacity, thermal conductivity, and thermal expansion coefficient are applied in addition to the shape. It is preferable to select As an example, when the magnetostrictive thin film 101 is a Fe—Co thin film, thin films such as Au, A 1, Cu, Cr, and Ti can be cited as non-magnetostrictive thin films.
  • the magnetic sensor of the present invention when the sensor structure, which is the magnetostrictive element, is mechanically vibrating integrally, Since the mechanical resonance frequency of the sensor structure changes with the change, and the external magnetic field amount is calculated from the change amount of the resonance frequency, the size and weight can be reduced, and the sensitivity is high. It has sensor characteristics.
  • a magnetic field applying means for applying an external magnetic field in advance in the width direction of the magnetostrictive thin film is provided, and the vibration direction of the piezoelectric body is inclined by about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film.
  • the configuration is such that the magnetic detection direction can be determined as the configuration for setting the direction, it is suitable for application to various industrial equipment such as a portable direction sensor. Also, in this magnetic sensor, the detection signal processing circuit has the configuration described with reference to FIG. 6 or the differential type configuration described with reference to FIG. It can be done easily.

Abstract

A small-sized, lightweight, highly-sensitive magnetic sensor with a simple sensing signal processing circuit. The sensor can be used as a portable direction sensor. The magnetic sensor comprises a piezoelectric body (102) which is provided on a major surface of a substrate (103) serving as a support and on which a magnetostrictive thin film (101) is formed. The magnetic sensor has a magnetostrictive element composed of a sensor structure (106) comprising a generally plate-shaped multilayer body having an electrode led out of the piezoelectric body (102). While the sensor structure (106) is mechanically vibrating as one piece because of the voltage applied to the piezoelectric body (102), the mechanical resonance frequency of the sensor structure (106) varies with a change of the external magnetic field (113), and the strength of the external magnetic field (113) is calculated from the amount of change of the resonance frequency.

Description

明 細 書 磁気センサ 技術分野  Description Magnetic sensor Technical field
本発明は、 主として携帯端末機器, 家電機器, 自動車, 計測機器等の各種産業 機器に搭載される地磁気検出が検出可能な小型で高感度な磁気センサであって、 詳しくは磁歪現象と共振周波数検出方式とを組み合わせた夕ィプの磁気センサに 関する。 背景技術  The present invention relates to a small and highly sensitive magnetic sensor capable of detecting geomagnetism mounted on various industrial devices such as portable terminal devices, home electric appliances, automobiles, measuring devices, and the like. It relates to a magnetic sensor of the type that combines the method and the method. Background art
従来、 例えば地磁気程度の磁場を検出可能な小型で高感度な磁気センサとして は、 数 MH z〜数百 MH z帯の表皮効果を利用した磁気インピーダンス素子 (M I素子) を用いた M lセンサ、 或いは軟磁性体の透磁率変化を利用したフラック スゲー卜センサ等が挙げられる。 これらの磁気センサの場合、 磁気感度に関して は、 一般に磁性体の反磁界の影響により、 センサを小型化するに伴って磁気感度 が著しく低下する傾向にある。 従って、 こうした M lセンサやフラックスゲ一ト センサでは、 小型化と高感度ィ匕とを両立させることが難しく、 例えば地磁気を利 用した携帯用方位センサ等には適用さない。  Conventionally, for example, a small and highly sensitive magnetic sensor capable of detecting a magnetic field on the order of terrestrial magnetism is an Ml sensor using a magnetic impedance element (MI element) using the skin effect in the band of several MHz to several hundred MHz, Alternatively, a flux gate sensor utilizing a change in the magnetic permeability of a soft magnetic material may be used. In the case of these magnetic sensors, the magnetic sensitivity generally tends to be significantly reduced as the size of the sensor is reduced due to the influence of the demagnetizing field of the magnetic material. Therefore, it is difficult for such an Ml sensor or a flux gate sensor to achieve both miniaturization and high sensitivity, and it is not applied to, for example, a portable direction sensor using geomagnetism.
一方、 上述した M lセンサやフラックスゲートセンサとは異なる原理に基づく 磁気センサとして、 磁歪現象と圧電検出方式とを組み合わせたタイプのものが開 発されている。  On the other hand, as a magnetic sensor based on a principle different from the above-described MI sensor and flux gate sensor, a type combining a magnetostriction phenomenon and a piezoelectric detection method has been developed.
このようなタイプの磁気センサの一例としては、 例えば特開 2 0 0 0 - 8 8 9 3 7号公報に開示された磁歪素子を用いて成る磁気センサが挙げられる。  An example of such a type of magnetic sensor is a magnetic sensor using a magnetostrictive element disclosed in Japanese Patent Application Laid-Open No. 2000-88937, for example.
第 1図は、 この従来の一例に係る磁気センサ 1 4の基本構成を示した概略図で ある。 この磁気センサ 1 4は、 変電所又は送電線における電流計測に適用される もので、 距離 rの位置にある導体 1 5に流れる電流 Jを磁場 Hとの関係式 H= J / 2 π τ (A/m) に基づいて検出可能であるように、 磁歪素子 1 6及び圧電素 子 1 7を組み合わせて磁歪素子 1 6の伸びにより圧電素子 1 7を歪ませて電圧に 変換する機能を持つもので、 更に電圧計 1 8で圧電素子 1 7からの電圧値を計測 するように構成されている。 FIG. 1 is a schematic diagram showing a basic configuration of a magnetic sensor 14 according to an example of the related art. The magnetic sensor 14 is applied to current measurement in a substation or a transmission line, and a current J flowing through a conductor 15 at a distance r is expressed by a relational expression H = J / 2 π τ ( (A / m), the piezoelectric element 17 is distorted by the expansion of the magnetostrictive element 16 by combining the magnetostrictive element 16 and the piezoelectric element 17 so that the voltage can be detected. It has a function of converting, and is configured to measure the voltage value from the piezoelectric element 17 with a voltmeter 18.
即ち、 特開 2 0 0 0— 8 8 9 3 7号公報に開示された磁気センサ 1 4の基本原 理は、 外部磁場変化による磁歪素子 1 6の伸び (形状変化) をそれに一体化され た圧電素子 1 7に発生する電圧として検出するものである。 従って、 磁気感度の 良否は圧電素子 1 7に発生する電圧に大きく依存し、 その発生電圧 Vは圧電応力 定数 g 3 1, 圧電素子 1 7における厚さ t及び印加される圧力 Pとの間で V= g 3 X X t X Pなる関係式 1により表現される。 That is, the basic principle of the magnetic sensor 14 disclosed in Japanese Patent Application Laid-Open No. 2000-88937 is that the elongation (shape change) of the magnetostrictive element 16 due to a change in an external magnetic field is integrated with it. This is detected as a voltage generated in the piezoelectric element 17. Therefore, the quality of the magnetic sensitivity greatly depends on the voltage generated in the piezoelectric element 17, and the generated voltage V depends on the piezoelectric stress constant g 31 , the thickness t of the piezoelectric element 17, and the applied pressure P. V = g 3 X X t XP is represented by relational expression 1.
又、 特開 2 0 0 0— 6 5 9 0 8号公報に開示されているように、 外部磁場に対 して極反転しない磁石と、 この磁石に加わる磁場強度を力学的な力として検出す る圧電素子とを備えた磁気センサも開発されている。  Further, as disclosed in Japanese Patent Application Laid-Open No. 2000-65098, a magnet that does not pole-reverse with respect to an external magnetic field, and a magnetic field strength applied to this magnet is detected as a mechanical force. Magnetic sensors having a piezoelectric element have also been developed.
第 2図は、 この従来の他例に係る磁気センサ 2を含む磁気検出システム 1の基 本構成を示した回路ブロック図である。 この磁気検出システム 1は、 一方の主面 の全面に接地接続された裏面電極 2 2を設けた板状の圧電素子 2 1の他方の主面 の一端側に外部磁場に対して極反転しない磁石 2 3を設けることにより、 圧電素 子 2 1が磁石 2 3に加わる磁場強度を力学的な力として検出する構成の磁気セン サ 2を備える他、 圧電素子 2 1に加わる力学的な力に応じて発振周波数が変化す る発振回路 3 1 Aと、 発振回路 3 1 Aの発振周波数の変化を計測し、 磁気センサ 2で検出された磁場強度を表示する手段とを備えている。  FIG. 2 is a circuit block diagram showing a basic configuration of a magnetic detection system 1 including a magnetic sensor 2 according to another conventional example. The magnetism detection system 1 is composed of a plate-shaped piezoelectric element 21 having a back electrode 22 connected to the whole surface of one main surface, and a magnet that is not pole-reversed with respect to an external magnetic field at one end of the other main surface. By providing the magnetic sensor 23, the piezoelectric element 21 is provided with a magnetic sensor 2 configured to detect the magnetic field strength applied to the magnet 23 as a mechanical force, and also in accordance with the mechanical force applied to the piezoelectric element 21. An oscillation circuit 31 A whose oscillation frequency changes by means of an oscillator circuit, and means for measuring a change in the oscillation frequency of the oscillation circuit 31 A and displaying the magnetic field intensity detected by the magnetic sensor 2.
又、 この磁気検出システム 1では、 磁気センサ 2において板状の圧電素子 2 1 の他方の主面の他端側に非磁性金属 2 4を設け、 常時外部磁場が零の状態で基準 周波数で動作する発振回路 3 1 Bを備えている。 即ち、 発振回路 3 1 Aは磁気セ ンサ 2の磁石 2 3 , 圧電素子 2 1, CMO Sインバー夕 3 2 Aを帰還路内に配設 して構築され、 発振回路 3 1 Bは非磁性金属 2 4, 圧電素子 2 1, CMO Sイン バー夕 3 2 Bを帰還路内に配設して構築される。 更に、 磁気検出システム 1を構 築するための複数の回路 (全体で検出信号処理回路と呼ばれても良いもの) とし て、 発振回路 3 1 Aの C MO Sインバー夕 3 2 Aの出力側 (発振回路 3 1 A内で コンデンサを介して接地される) に接続されたカウンタ回路 3 3 A、 発振回路 3 1 Bの CMO Sインバー夕 3 2 Bの出力側 (同様に発振回路 3 1 A内でコンデン サを介して接地される) に接続されたカウンタ回路 3 3 B、 カウンタ回路 3 3 A でカウントされたパルス数とカウンタ回路 3 3 Bでカウントされたパルス数との 差を減算する減算回路 3 4、 パルス数の差を補償する補償回路 3 5、 較正係数を 発生する較正係数発生回路 3 6、 補償回路 3 5の出力と較正係数とを乗算する乗 算回路 3 7、 乗算出力値に基づいて磁気センサ 2で検出された外部磁界の値を表 示する表示装置 3 8を備えている。 Also, in the magnetic detection system 1, a non-magnetic metal 24 is provided on the other side of the other main surface of the plate-shaped piezoelectric element 21 in the magnetic sensor 2, and the magnetic sensor 2 always operates at the reference frequency in a state where the external magnetic field is zero. Oscillation circuit 31 B is provided. That is, the oscillation circuit 31A is constructed by arranging the magnet 23 of the magnetic sensor 2, the piezoelectric element 21 and the CMOS inverter 32A in the feedback path, and the oscillation circuit 31B is made of non-magnetic metal. 24, the piezoelectric element 21 and the CMOS inverter 32B are arranged in the return path. Further, as a plurality of circuits (which may be collectively referred to as a detection signal processing circuit) for constructing the magnetic detection system 1, the oscillation circuit 31A CMOS inverter 32A output side is provided. Counter circuit 33 A connected to (grounded via a capacitor in the oscillation circuit 31 A), the output of the CMOS inverter 32 B of the oscillation circuit 31 B (similarly, the oscillation circuit 31 A Condensed within Counter circuit 3 3B, counter circuit 33 connected to the counter circuit 3) A subtraction circuit 3 that subtracts the difference between the number of pulses counted by the counter circuit 3 A and the number of pulses counted by the counter circuit 3 3B 4, Compensation circuit for compensating for pulse number difference 35, Calibration coefficient generation circuit 36 for generating calibration coefficient 36, Multiplication circuit 37 for multiplying output of compensation circuit 35 and calibration coefficient 37, Based on multiplied output value And a display device 38 for displaying the value of the external magnetic field detected by the magnetic sensor 2.
要するに、 特開 2 0 0 0— 6 5 9 0 8号公報に開示された磁気検出システム 1 の基本原理は、 磁気モーメントを有する磁石 2 3に外部磁場 Hが作用すると、 磁 気モーメント Mと外部磁場 Hとの外積(H X M)方向を軸とするトルク Tが働き、 そして外部磁場 Hの強度が高くなると力学的な力であるトルク Tが増大すること により、 磁石 2 3で発生したトルク Tが圧電素子 2 1に応力 (ねじり応力) を生 じさせ、 外部磁場 Hは応力に変換されるというものである。  In short, the basic principle of the magnetic detection system 1 disclosed in Japanese Patent Application Laid-Open No. 2000-65098 is that when an external magnetic field H acts on the magnet 23 having a magnetic moment, the magnetic moment M and the external A torque T acting in the direction of the outer product (HXM) with the magnetic field H acts, and when the strength of the external magnetic field H increases, the torque T, which is a mechanical force, increases. A stress (torsional stress) is generated in the piezoelectric element 21 and the external magnetic field H is converted into a stress.
ところで、 特開 2 0 0 0— 8 8 9 3 7号公報に開示された磁歪現象と圧電検出 方式とを組み合わせた磁気センサの場合、 関係式 1により磁気感度に係る発生電 圧は圧電素子の厚さに比例し、 圧電素子の薄膜化に伴つて低下するという不都合 が生じる。 この発生電圧の低下を抑えるために圧電素子の膜厚を維持しつつ、 圧 電素子の小型化を図った場合にも小型化に伴って相対的に圧電素子の厚みに対し て長さ及び幅の寸法が短くなつて圧電素子自体が曲がり難い構造となるため、 関 係式 1で表される圧力が低下することで発生電圧が更に低下してしまう。 こうし た結果により、 小型化と高感度化とを同時に満たすことが困難であるという問題 がある。  By the way, in the case of a magnetic sensor that combines the magnetostriction phenomenon and the piezoelectric detection method disclosed in Japanese Patent Application Laid-Open No. 2000-88973, the relational expression 1 shows that the generated voltage related to magnetic sensitivity is There is an inconvenience that it is proportional to the thickness and decreases as the piezoelectric element becomes thinner. In order to suppress the drop in the generated voltage, the thickness and thickness of the piezoelectric element are maintained, and even when the size of the piezoelectric element is reduced, the length and width of the piezoelectric element relative to the thickness of the piezoelectric element are reduced with the size reduction. Since the size of the piezoelectric element becomes short and the piezoelectric element itself becomes difficult to bend, the generated voltage is further reduced due to a decrease in the pressure expressed by the relational expression 1. Due to these results, there is a problem that it is difficult to satisfy both miniaturization and high sensitivity at the same time.
又、 特開 2 0 0 0 - 6 5 9 0 8号公報に開示された外部磁場に対して極反転し ない磁石とこの磁石に加わる磁場強度を力学的な力として検出する圧電素子とを 備えた磁気センサを用いた磁気検出システムの場合、 原理的に磁石に発生したト ルク (H X M) はモーメントであることにより、 圧電素子で効率良く受けるため には圧電素子の面積に比較的大きな領域を必要とする。 このような動作原理に基 づくものであれば、 差動型として構成した場合にもセンサのサイズが必然的に大 きなものとなってしまうため、 小型化には不向きであるという問題がある。 従って、 本発明の目的は、 このような問題点を解決することにあり、 携帯用方 位センサ等にも適用可能であって、 簡素な検出信号処理回路を備えて小型化, 軽 量ィ匕された高感度な磁気センサを提供することにある。 発明の開示 In addition, a magnet that does not undergo pole reversal with respect to an external magnetic field and a piezoelectric element that detects a magnetic field intensity applied to the magnet as a mechanical force disclosed in Japanese Patent Application Laid-Open No. 2000-65098 are provided. In the case of a magnetic detection system using a magnetic sensor, the torque (HXM) generated in the magnet in principle is a moment, so that a relatively large area is required in the area of the piezoelectric element in order to receive it efficiently with the piezoelectric element. I need. If the sensor is based on such an operation principle, the size of the sensor is inevitably large even when configured as a differential type, which is not suitable for miniaturization. . Therefore, an object of the present invention is to solve such problems, and An object of the present invention is to provide a high-sensitivity magnetic sensor which can be applied to a position sensor or the like and which is provided with a simple detection signal processing circuit and which is reduced in size and weight. Disclosure of the invention
本発明によれば、 磁歪素子であるセンサ構造体から成り、 該センサ構造体が一 体となって機械的に振動している状態中にあって、 外部磁場変化に伴って該セン サ構造体の機械的な共振周波数が変化し、 該共振周波数の変化量から外部磁場量 を算出する磁気センサが得られる。  According to the present invention, the sensor structure includes a sensor structure which is a magnetostrictive element, and the sensor structure is in a state where the sensor structure is mechanically vibrating as a unit, and the sensor structure is changed with an external magnetic field change. The mechanical resonance frequency changes, and a magnetic sensor that calculates the external magnetic field amount from the change amount of the resonance frequency is obtained.
又、 本発明によれば、 上記磁気センサにおいて、 磁歪素子は、 磁歪薄膜から成 る磁気センサが得られる。  Further, according to the present invention, in the above magnetic sensor, a magnetic sensor comprising a magnetostrictive thin film as the magnetostrictive element is obtained.
更に、 本発明によれば、 上記磁気センサにおいて、 磁歪素子は、 磁歪薄膜と支 持体とによる積層体から成る磁気センサが得られる。 この磁気センサにおいて、 支持体は、 圧電材料による圧電板, シリコン板, 非磁性金属板の何れか一つであ ること、 更に支持体は、 片持ち梁構造, 両持ち梁構造, ダイアフラム構造の何れ か一つの支持構造を持つことは、 それぞれ好ましい。  Furthermore, according to the present invention, in the above magnetic sensor, a magnetic sensor is obtained in which the magnetostrictive element is formed of a laminated body including a magnetostrictive thin film and a support. In this magnetic sensor, the support is one of a piezoelectric plate made of a piezoelectric material, a silicon plate, and a non-magnetic metal plate, and the support is a cantilever structure, a doubly supported structure, or a diaphragm structure. It is preferable to have any one of the support structures.
加えて、 本発明によれば、 上記磁気センサにおいて、 磁歪素子は、 センサ構造 体として支持体の一方の主面に磁歪薄膜を積層した圧電体を有して成るもので、 更に、 圧電体に印加された電圧によってセンサ構造体が一体となって機械的に振 動している状態中にあって、 外部磁場変化に伴って該センサ構造体の機械的な共 振周波数が変化し、 該共振周波数の変化量から外部磁場量を算出する磁気センサ が得られる。  In addition, according to the present invention, in the magnetic sensor, the magnetostrictive element includes a piezoelectric body having a magnetostrictive thin film laminated on one main surface of a support as a sensor structure. While the sensor structure is mechanically vibrating integrally with the applied voltage, the mechanical resonance frequency of the sensor structure changes with an external magnetic field change, and the resonance A magnetic sensor that calculates the external magnetic field amount from the frequency change amount is obtained.
又、 本発明によれば、 上記磁気センサにおいて、 センサ構造体として支持体の 他方の主面に電極を備えた略板状の積層体を有して成り、 磁歪薄膜及び電極間に 電圧が印加される磁気センサが得られる。  Further, according to the present invention, in the above magnetic sensor, the sensor structure includes a substantially plate-shaped laminate having electrodes on the other main surface of the support, and a voltage is applied between the magnetostrictive thin film and the electrodes. Is obtained.
一方、 本発明によれば、 上記何れか一つの磁気センサにおいて、 センサ構造体 の機械的な共振周波数の変化は、 外部磁場の変化に伴って磁歪薄膜のヤング率が 変化することで得られる磁気センサが得られる。  On the other hand, according to the present invention, in any one of the above magnetic sensors, the change in the mechanical resonance frequency of the sensor structure is obtained by changing the Young's modulus of the magnetostrictive thin film with a change in the external magnetic field. A sensor is obtained.
他方、 本発明によれば、 上記何れか一つの磁気センサにおいて、 磁歪薄膜の幅 方向には予め外部磁場を印加するための磁場印加手段が備えられ、 圧電体の振動 方向は磁歪薄膜の幅方向に対して約 4 0〜 5 0度傾いた方向に設定されている磁 気センサが得られる。 この磁気センサにおいて、 磁場印加手段は、 永久磁石又は 電磁石であることは好ましい。 On the other hand, according to the present invention, in any one of the above magnetic sensors, a magnetic field applying means for applying an external magnetic field is provided in advance in a width direction of the magnetostrictive thin film, A magnetic sensor is obtained in which the direction is set at about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film. In this magnetic sensor, the magnetic field applying means is preferably a permanent magnet or an electromagnet.
又、 本発明によれば、 上記何れか一つの磁気センサにおいて、 センサ構造体の 機械的な共振周波数を検出するための検出信号処理回路を備え、 検出信号処理回 路は、 センサ構造体を含むセンサ部, 増幅回路, 及び位相シフト回路を備えて成 る自励発振回路部と、 増幅回路及び位相シフト回路の間に接続されて自励発振回 路部から出力される発振周波数を電圧に変換する周波数ノ電圧変換回路部とを備 えて成る磁気センサが得られる。  Further, according to the present invention, in any one of the magnetic sensors described above, a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure is provided, and the detection signal processing circuit includes the sensor structure A self-excited oscillation circuit that includes a sensor unit, an amplification circuit, and a phase shift circuit; and an oscillation frequency that is connected between the amplification circuit and the phase shift circuit and that is output from the self-excited oscillation circuit, is converted to a voltage. Thus, a magnetic sensor including a frequency-voltage conversion circuit unit that performs the above-described operation is obtained.
更に、 本発明によれば、 上記何れか一つの磁気センサにおいて、 センサ構造体 の機械的な共振周波数を検出するための検出信号処理回路を備え、 検出信号処理 回路は、 センサ構造体を第 1のセンサ構造体として含むセンサ部, 増幅回路, 及 び位相シフト回路を備えて成る第 1の自励発振回路部と、 非磁歪薄膜による積層 体, 又は非磁歪薄膜と支持体とによる積層体から成ると共に、 外部磁場変ィ匕に対 して機械的な共振周波数が変化せずに一定の基準周波数を発振する第 2のセンサ 構造体と、 第 2のセンサ構造体を含むセンサ部, 増幅回路, 及び位相シフト回路 を備えて成る第 2の自励発振回路部と、 第 1の自励発振回路部から出力される発 振周波数と第 2の自励発振回路部から出力される基準周波数との差を増幅して差 動周波数として出力する差動増幅回路と、 差動増幅回路から出力される差動周波 数を電圧に変換する周波数 Z電圧変換回路部とを備えて成る磁気センサが得られ る。 図面の簡単な説明  Further, according to the present invention, in any one of the magnetic sensors described above, the magnetic sensor further includes a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure. A self-excited oscillation circuit section comprising a sensor section, an amplifier circuit, and a phase shift circuit, which are included as a sensor structure, and a laminate made of a non-magnetostrictive thin film or a laminate made of a non-magnetostrictive thin film and a support A second sensor structure that oscillates at a constant reference frequency without changing a mechanical resonance frequency in response to an external magnetic field change, a sensor unit including the second sensor structure, and an amplifier circuit. , And a second self-excited oscillation circuit including a phase shift circuit; an oscillation frequency output from the first self-excited oscillation circuit; a reference frequency output from the second self-excited oscillation circuit; Amplifying the difference between Thus, a magnetic sensor including a differential amplifier circuit that outputs a differential signal and a frequency Z voltage conversion circuit that converts the differential frequency output from the differential amplifier circuit to a voltage can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の一例に係る磁気センサの基本構成を示した概略図であり、 第 2図は、 従来の他例に係る磁気センサを含む磁気検出システムの基本構成を 示した回路ブロック図であり、  FIG. 1 is a schematic diagram showing a basic configuration of a magnetic sensor according to a conventional example, and FIG. 2 is a circuit block diagram showing a basic configuration of a magnetic detection system including a magnetic sensor according to another conventional example. And
第 3図 (a), (b ), ( c ) は、 本発明の実施例に係る磁気センサの基本構成を 示した側面断面図であり、  3 (a), 3 (b) and 3 (c) are side sectional views showing a basic configuration of a magnetic sensor according to an embodiment of the present invention.
第 4図は、 第 3図 (b) に示す磁気センサにおける外部磁場に対する共振周波 数の関係で示される出力特性を示したものであり、 ' Fig. 4 shows the resonance frequency for the external magnetic field in the magnetic sensor shown in Fig. 3 (b). This shows the output characteristics expressed as a number
第 5図は、 第 3図 (b ) に示す磁気センサに磁気検出方向の正負判別機能を具 備した場合の基本構成及び動作機能を示した模式図であり、 ( a )は外部磁場が印 加されない場合に関するもの, (b )は外部磁場が正の方向に印加された場合に関 するもの, (c ) は外部磁場が負の方向に印加された場合に関するものであり、 第 6図は、 第 3図 (b ) に示す磁気センサのセンサ構造体の機械的な共振周波 数を検出するための検出信号処理回路の基本構成を示した回路プロック図であり、 第 7図は、 第 3図 (b ) に示す磁気センサのセンサ構造体の機械的な共振周波 数を検出するための別の検出信号処理回路の基本構成を示した回路ブロック図で ある。 発明を実施するための最良の形態  Fig. 5 is a schematic diagram showing the basic configuration and operation functions when the magnetic sensor shown in Fig. 3 (b) is provided with a function of discriminating the sign of the magnetic detection direction, and (a) shows the external magnetic field. (B) relates to the case where the external magnetic field is applied in the positive direction, (c) relates to the case where the external magnetic field is applied in the negative direction, and FIG. FIG. 7 is a circuit block diagram showing the basic configuration of a detection signal processing circuit for detecting the mechanical resonance frequency of the sensor structure of the magnetic sensor shown in FIG. 3 (b). FIG. 4 is a circuit block diagram illustrating a basic configuration of another detection signal processing circuit for detecting a mechanical resonance frequency of a sensor structure of the magnetic sensor illustrated in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 本発 明の磁気センサの場合、 その技術概要を簡単に説明すれば、 磁気センサを磁歪素 子であるセンサ構造体から成るものとし、 このセンサ構造体が一体となつて機械 的に振動している状態中にあつて、 外部磁場変化に伴つてセンサ構造体の機械的 な共振周波数が変化し、 この共振周波数の変化量から外部磁場量を算出するもの とすることである。 但し、 ここでの磁歪素子は、 磁歪薄膜から成る (その積層体 としても良い) か、 或いは磁歪薄膜と支持体とによる積層体から成るものであれ ば良い。  The present invention will be described in more detail with reference to the accompanying drawings. In the case of the magnetic sensor of the present invention, a brief description of the technical outline of the magnetic sensor is that the magnetic sensor is composed of a sensor structure, which is a magnetostrictive element, and the sensor structure integrally vibrates mechanically. In this state, the mechanical resonance frequency of the sensor structure changes with the change of the external magnetic field, and the amount of the external magnetic field is calculated from the change of the resonance frequency. However, the magnetostrictive element here may be composed of a magnetostrictive thin film (or a laminate thereof) or a laminate of a magnetostrictive thin film and a support.
第 3図 ( a ) , ( b ) は、 本発明の実施例 1に係る磁気センサの基本構成を示し た側面断面図である。 第 3図 (a ) に示す磁気センサは、 支持体である基板 1 0 3の一方の主面に磁歪薄膜 1 0 1を積層した圧電体 1 0 2を備え、 圧電体 1 0 2 から電極を引き出すようにした略板状の積層体から成るセンサ構造体 1 0 6を有 し、 圧電体 1 0 2に印加された電圧によってセンサ構造体 1 0 6がー体となって 機械的に振動している状態中にあって、 外部磁場 1 1 3の変化に伴ってセンサ構 造体 1 0 6の機械的な共振周波数が変化し、 係る共振周波数の変化量から外部磁 場 1 1 3の量を算出するように構成されている。  FIGS. 3 (a) and 3 (b) are side sectional views showing a basic configuration of the magnetic sensor according to the first embodiment of the present invention. The magnetic sensor shown in FIG. 3 (a) includes a piezoelectric body 102 in which a magnetostrictive thin film 101 is laminated on one main surface of a substrate 103 as a support, and an electrode is formed from the piezoelectric body 102. It has a sensor structure 106 composed of a substantially plate-like laminate that is drawn out, and the sensor structure 106 is mechanically vibrated as a body by the voltage applied to the piezoelectric body 102. The mechanical resonance frequency of the sensor structure 106 changes with the change of the external magnetic field 113, and the amount of the external magnetic field 113 changes from the change in the resonance frequency. Is calculated.
尚、 第 3図 (b ) に示すように、 ここでの基板 1 0 3は、 圧電体 1 0 2自体で 置き換えることが可能であり、 この場合にはセンサ構造体 1 06が圧電体 1 02 の一方の主面に磁歪薄膜 1 0 1を積層し、 且つ他方の主面に圧電体 1 02へ電圧 を印加するための電極 1 04を備えて成る略板状の磁歪素子として構成され、 磁 歪薄膜 1 0 1及び電極 1 04間に電圧が印加されるものである。 As shown in FIG. 3 (b), the substrate 103 here is made up of the piezoelectric body 102 itself. In this case, the sensor structure 106 has a magnetostrictive thin film 101 laminated on one main surface of the piezoelectric body 102 and a voltage is applied to the piezoelectric body 102 on the other main surface. The magnetostrictive element is configured as a substantially plate-shaped magnetostrictive element including an electrode 104 for performing the operation, and a voltage is applied between the magnetostrictive thin film 101 and the electrode 104.
これらの磁気センサの場合、 外部磁場 1 1 3が印加されると、 磁歪薄膜 1 0 1 の磁歪効果に伴って磁歪薄膜 1 0 1のヤング率 (所謂伸びの弾性率, 縦弾性率と 呼ばれるもの) が変化 (後文で説明する強磁性体の ΔΕ効果による) し、 結果的 に磁歪薄膜 1 0 1と圧電体 1 02とを有するセンサ構造体 1 06の共振周波数が 変化する。  In the case of these magnetic sensors, when an external magnetic field 113 is applied, the Young's modulus of the magnetostrictive thin film 101 (the so-called elongation elastic modulus, the longitudinal elastic modulus) is accompanied by the magnetostrictive effect of the magnetostrictive thin film 101. ) Changes (due to the ΔΕ effect of the ferromagnetic material described later), and as a result, the resonance frequency of the sensor structure 106 having the magnetostrictive thin film 101 and the piezoelectric material 102 changes.
即ち、 このセンサ構造体 1 06は、 磁歪薄膜 1 0 1と圧電体 1 02における圧 電薄膜との複合梁として考えることができ、 その共振周波数 f 。の変化量 Δ fは、 それぞれ磁歪薄膜 1 0 1の厚さを t f, 磁歪薄膜 1 0 1のヤング率を Ef, 磁歪薄 膜 1 0 1の密度を p 圧電体 102 (この場合は圧電薄膜) の厚さを t s, 圧電 体 1 02のヤング率を Es, 圧電体 1 02の密度 p sとした場合、 Δ f = (t f · f 0/2 t s) X [(3Ef/Es) - (p f/p s)] =a' (b' · E「c ' ) な る関係式 2として表わされる。 That is, the sensor structure 106 can be considered as a composite beam of the magnetostrictive thin film 101 and the piezoelectric thin film of the piezoelectric body 102, and its resonance frequency f. The change amount Δf of the magnetostrictive thin film 101 is t f , the Young's modulus of the magnetostrictive thin film 101 is E f , and the density of the magnetostrictive thin film 101 is p. the thickness of the thin film) t s, the Young's modulus of the piezoelectric 1 02 E s, when the density p s of the piezoelectric body 1 02, Δ f = (t f · f 0/2 t s) X [(3E f / E s )-(p f / p s )] = a '(b' · E "c ').
但し、 ここでは、 a' = t f · f 0/2 t sなる関係式 3と、 b' =3/Esなる 関係式 4と、 c ' = p fZp sなる関係式 5とが成立する。 However, here, a '= a t f · f 0/2 t s relational expression 3, b' = 3 / and E s relational expression 4, c '= p f Zp s relational expression 5 and is satisfied I do.
以上の関係式 2〜関係式 5から、 磁歪薄膜 1 0 1及び圧電体 1 02から成る複 合梁の磁歪薄膜 1 0 1のヤング率 E fが外部磁場 1 1 3によって変化する場合、 これに伴って複合梁の共振周波数 f 。の変化量△ fが変化する (共振周波数 f 0の 変化量△ fの変化による影響が大きい) ことが判る。 From the above relational expressions 2 to 5, when the Young's modulus E f of the magnetostrictive thin film 101 composed of the magnetostrictive thin film 101 and the piezoelectric body 102 changes due to the external magnetic field 113, Accordingly, the resonance frequency f of the composite beam. It can be seen that the variation Δf of the resonance frequency changes (the effect of the variation Δf of the resonance frequency f 0 is large).
ここで、 強磁性体の ΔΕ効果は、 公知文献「近角著、 強磁性体の物理 (下)、 裳 華房、 p. 144」 によれば、 「強磁性体では磁歪 λの正負に関係なく、張力によ る自発磁化の回転のために余分な伸びを生じる。 そのためにヤング率 E fが低下 する。 この効果を ΔΕ効果という。 Δ E効果は磁歪 λの存在のために生じるので 当然 λに比例する。」 という具合いに説明されている。 The ΔΕ effect of a ferromagnetic material can be calculated as follows: According to the well-known document “Kanaku, Physics of Ferromagnetic Materials (Bottom), Kyobo Sho, p. As a result, extra elongation is generated due to the rotation of spontaneous magnetization due to tension, thereby lowering the Young's modulus E f This effect is called the ΔΕ effect, and the ΔE effect is caused by the presence of magnetostriction λ. It is proportional to. "
そこで、 本発明の磁気センサについて考察すれば、 センサ構造体 1 06に外部 磁場 1 1 3が印加されると外部磁場 1 1 3の方向に沿うような自発磁化の回転に よって磁歪薄膜 101の伸びを生じ、 それに伴ってヤング率 Efが低下する。 こ のため、 外部磁場 113が変化するとセンサ構造体 106の複合梁の共振周波数 が関係式 3に従って低下する。 ここでの複合梁の共振周波数 f 0の変化は、 磁 歪薄膜 101の磁歪による形状的な変ィ匕によっても生じるものであり、 センサ出 力としての共振周波数 f 。の変化量△ fはセンサ構造体 106の一体的振動変ィ匕 によるものとなる。磁気センサにおけるセンサ感度△ f ZHexを改善するために は、 センサ設計上、 関係式 3に示す a' の値を大きくすること、 即ち、 磁歪薄膜 101の厚み t fと圧電体 102における圧電薄膜の厚み t sとの比 t fZt sを 大きくすること、 及びセンサ構造体 106の複合梁の共振周波数 f 。を高くする ことが必要となる。 センサ構造体 106の複合梁の共振周波数 f 。自体を高める ためには、 例えば圧電体 102の基本モードが縦振動である場合には圧電体 10 2の長さを短くし、 圧電体 102の基本モ一ドが厚味すベり振動の場合には振動 子 (圧電体 102) の厚さを薄くすれば良い。 Considering the magnetic sensor of the present invention, when an external magnetic field 113 is applied to the sensor structure 106, the spontaneous magnetization rotates along the direction of the external magnetic field 113. Therefore, the magnetostrictive thin film 101 elongates, and the Young's modulus E f decreases accordingly. For this reason, when the external magnetic field 113 changes, the resonance frequency of the composite beam of the sensor structure 106 decreases according to the relational expression 3. The change in the resonance frequency f 0 of the composite beam here is also caused by the shape change due to the magnetostriction of the magnetostrictive thin film 101, and the resonance frequency f as the sensor output. The amount of change △ f is caused by the integral vibration change of the sensor structure 106. In order to improve the sensor sensitivity △ f ZH ex of the magnetic sensor, it is necessary to increase the value of a ′ shown in the relational expression 3 in the sensor design, that is, the thickness t f of the magnetostrictive thin film 101 and the piezoelectric thin film of the piezoelectric body 102 The ratio t f Zt s to the thickness t s of the sensor structure 106 and the resonance frequency f of the composite beam of the sensor structure 106. Must be increased. The resonance frequency f of the composite beam of the sensor structure 106. In order to enhance itself, for example, when the fundamental mode of the piezoelectric body 102 is longitudinal vibration, the length of the piezoelectric body 102 is reduced, and when the fundamental mode of the piezoelectric body 102 is thick vibration, In this case, the thickness of the vibrator (piezoelectric body 102) may be reduced.
本発明の磁気センサにおいても、 磁性薄膜を利用している限り、 反磁界の影響 を原理的に避けられないが、 従来の Mlセンサやフラックスゲートセンサと比べ れば、 センサ感度△ i/Hexに対する影響は小さいと考えられる。 即ち、 上述し た関係式 2に示されるように反磁界に関連する磁歪薄膜 101のヤング率 Efの 項の変化量が小さくても、圧電薄膜の厚さ t sと磁歪薄膜 101の厚さ t fとの比 率 t fZt s及び共振周波数 f Qが十分に大きかったり、 或いは高ければ、 高いセ ンサ感度 Δ fZHexを維持することが可能である。 In the magnetic sensor of the present invention as well, as long as a magnetic thin film is used, the influence of a demagnetizing field cannot be avoided in principle. However, compared to conventional Ml sensors and fluxgate sensors, the sensor sensitivity △ i / H ex Is considered to have a small effect. That is, as shown in the above-mentioned relational expression 2, even if the variation of the term of the Young's modulus E f of the magnetostrictive thin film 101 related to the demagnetizing field is small, the thickness t s of the piezoelectric thin film and the thickness of the magnetostrictive thin film 101 are small. the percentage t f Zt s and the resonant frequency f Q is or sufficiently large with t f, or is higher, it is possible to maintain a high sensor sensitivity Δ fZHex.
第 3図 (b) に示す磁気センサを製造する場合、 先ず圧電体 102として 50 m程度の厚さの— 18. 5度 X— Cu t水晶板 (基板 103に該当する) 上に RFスパッタリング等の成膜技術を用いて 1 m程度の厚さの Co— Fe— Z r 系磁歪薄膜 101を堆積させる。 ここで、 Co— Fe— Z r系磁歪薄膜 101の 化学量論的組成比は、 例えば 50 : 35 : 15とし、 そのときの磁歪定数 λ sは 25X 10_6程度であり、 圧電体 102として使用する— 18. 5度 X— Cu t 水晶板 (基板 103に該当する) の基本振動モードを縦振動とする。 When manufacturing the magnetic sensor shown in Fig. 3 (b), first, RF sputtering or the like is performed on a piezoelectric substance 102 on a-18.5 degree X-Cut quartz plate (corresponding to the substrate 103) with a thickness of about 50 m. A Co—Fe—Zr-based magnetostrictive thin film 101 having a thickness of about 1 m is deposited by using the film forming technique described above. Here, Co- Fe- Z r based stoichiometric composition of the magnetostrictive film 101, for example, 50: 35: 15 and the magnetostriction constant lambda s at that time are 25X 10_ about 6, used as the piezoelectric 102 Yes— 18.5 degrees X—Cut Let the fundamental vibration mode of the quartz plate (corresponding to substrate 103) be longitudinal vibration.
次に、 一 18. 5度 X— Cu t水晶板の反対面全体に電極 104を形成してセ ンサ構造体 106を構成するが、 その共振周波数 f 。はおおよそセンサ構造体 1 06の長さで決定される。 例えば圧電体 102の長さ (センサ構造体 106の長 さ)を 12mm程度とすれば、センサ構造体 106の共振周波数 f 0は 200 (k Hz) 程度となる。 Next, the electrode 104 is formed on the entire opposite surface of the 18.5 degree X-Cut quartz plate to form the sensor structure 106, and its resonance frequency f. Is roughly the sensor structure 1 It is determined by the length of 06. For example, if the length of the piezoelectric body 102 (the length of the sensor structure 106) is about 12 mm, the resonance frequency f 0 of the sensor structure 106 is about 200 (kHz).
第 3図 (c) に示す実施例 2に係る磁気センサは、 支持体である基板 103の 一方の主面に磁歪薄膜 101を積層形成してセンサ構造体 106としたものであ る。支持体である基板 103は、水晶板, PZTに代表される圧電セラミクス板, L iNb〇3板, シリコン基板、 或いはステンレスや T i, Cu, C r, Au, A 1等の非磁性金属板であることが望ましい。 The magnetic sensor according to Example 2 shown in FIG. 3C has a sensor structure 106 formed by laminating a magnetostrictive thin film 101 on one main surface of a substrate 103 as a support. Substrate 103 is a support, a quartz plate, a piezoelectric ceramic plate typified by PZT, L INb_〇 3 plate, a silicon substrate, or stainless steel and T i, Cu, C r, Au, non-magnetic metal plate such as A 1 It is desirable that
尚、 シリコン基板や非磁性金属板を用いる場合には、 片持ち梁構造 (カンチレ バ一構造),両持ち梁構造,ダイアフラム構造の何れか一つの支持構造を採用すれ ば、 機械的共振状態を発生させるために例えば静電駆動方式や光検出方式等の静 電的, 電磁的, 熱的励振方法等により容易に駆動することが可能となる。 又、 圧 電材料を支持体として用いる場合であっても、 平板のみならず、 片持ち梁構造, 両持ち梁構造, ダイアフラム構造の何れか一つの支持構造を採用し、 上述した駆 動方式により機械的共振状態を発生させる (これらの各種構造に対する駆動方式 の技術は周知であるので説明を省略する) ことが望ましい。 伹し、 この場合の電 極は、 磁歪薄膜 101又は支持体としての基板 103の何れかに直接設けるか、 或いは直接引き出すようにすることが望ましい。  When a silicon substrate or a non-magnetic metal plate is used, the mechanical resonance state can be reduced if any one of a cantilever structure (a cantilever structure), a cantilever structure, and a diaphragm structure is employed. In order to generate it, it can be easily driven by an electrostatic, electromagnetic, or thermal excitation method such as an electrostatic drive method or a light detection method. Even when the piezoelectric material is used as a support, not only a flat plate but also one of a cantilever structure, a doubly supported structure, and a diaphragm structure is employed. It is desirable to generate a mechanical resonance state (the driving method technology for these various structures is well known, and thus description thereof is omitted). However, in this case, it is preferable that the electrode is directly provided on the magnetostrictive thin film 101 or the substrate 103 as a support, or is directly drawn out.
第 4図は、 上述した磁気センサにおける外部磁場 Hexに対する共振周波数 f 。 の関係で示される出力特性 (センサ出力) を示したものである。 FIG. 4 shows the resonance frequency f with respect to the external magnetic field Hex in the magnetic sensor described above. It shows the output characteristics (sensor output) expressed by the relationship.
第 4図によれば、 センサ出力は外部磁場 113の変化に対して、 共振周波数 f 。の変化量として検出され、 ほぼ線形的関係が得られている。  According to FIG. 4, the sensor output changes at the resonance frequency f with respect to the change of the external magnetic field 113. And a nearly linear relationship is obtained.
又、 一般に、 強磁性材料の磁歪量とヤング率との関係は比例関係にあり、 磁気 センサのセンサ感度 Δ f ZHexを高めるためには、磁歪定数の大きな材料を適用 することが好ましいと考えられる。 そこで、 例えば最近高い磁歪定数を有する T bDy F e合金等が開発されているが、 これらの材料は一般的に磁歪現象が発現 する磁気バイァスボイントが数百 O e以上と高いので余り好ましくない。 Also, in general, the relationship between the magnetostriction and the Young's modulus of the ferromagnetic material is proportional, in order to increase the sensor sensitivity delta f ZH ex magnetic sensor, it may be preferable to apply a material having a large magnetostriction constant Can be Therefore, for example, a TbDyFe alloy having a high magnetostriction constant has recently been developed. However, these materials are generally not preferable because the magnetic bias point where the magnetostriction phenomenon occurs is as high as several hundred Oe or more.
これに対し、 Fe— S i— B系, Fe— Co系, 或いは F e— N i系薄膜等の 磁性材料に関しては、 磁歪定数の絶対値が高いだけではなく、 高い透磁率を持つ と共に、 数〇e以下の低磁場側で高い磁歪定数を有しており、 磁気バイアスボイ ントを低くすることが可能であるため、 本発明における磁気センサ材料には好適 である。 On the other hand, magnetic materials such as Fe-Si-B, Fe-Co, or Fe-Ni-based thin films have not only high absolute values of magnetostriction constant but also high magnetic permeability. In addition, it has a high magnetostriction constant on the low magnetic field side of several 〇e or less, and can reduce the magnetic bias point. Therefore, it is suitable for the magnetic sensor material of the present invention.
第 5図は、 上述した磁気センサに磁気検出方向の正負判別機能を具備した場合 の基本構成及び動作機能を示した模式図であり、 同図 (a ) は外部磁場が印加さ れない場合に関するもの, 同図 (b ) は外部磁場 1 1 3が正の方向に印加された 場合に関するもの, 同図 (c ) は外部磁場 1 2 0が負の方向に印加された場合に 関するものである。  FIG. 5 is a schematic diagram showing a basic configuration and an operation function when the magnetic sensor described above has a function of determining whether the magnetic detection direction is positive or negative. FIG. 5 (a) shows a case where an external magnetic field is not applied. Fig. 2 (b) shows the case where the external magnetic field 113 is applied in the positive direction, and Fig. 2 (c) shows the case where the external magnetic field 120 is applied in the negative direction. .
ここでは、 先の実施の形態の磁気センサに対して磁気検出方向の正負判別機能 を持たせるべく、 そのセンサ構造体 1 6と同等なセンサ構造体 1 2 4における磁 歪薄膜 1 2 2の幅方向に予め外部磁場を印加するための永久磁石 (或いは電磁コ ィルでも良い) 1 1 4, 1 1 6を設け、 磁歪薄膜 1 2 2にバイアス磁場を印加す るように構成し、 圧電体 1 2 3の振動方向 1 1 8を磁歪薄膜 1 2 2の幅方向に対 して 4 5度傾いた方向に設定した構成としている。  Here, the width of the magnetostrictive thin film 1 22 in the sensor structure 124 equivalent to the sensor structure 16 is provided so that the magnetic sensor of the above embodiment has a function of discriminating the sign of the magnetic detection direction. Permanent magnets (or electromagnetic coils) for applying an external magnetic field in advance in the direction are provided, and a bias magnetic field is applied to the magnetostrictive thin film 122. The configuration is such that the vibration direction 1 18 of 1 23 is set at 45 degrees with respect to the width direction of the magnetostrictive thin film 1 22.
こうした構成における磁気検出方向の正負判別法の原理を説明すれば、 先ず第 5図 (a ) に示されるように外部磁場が印加されない場合 (外部磁場による磁気 信号がない場合)、 7久磁石 1 1 4 , 1 1 6により回転磁化 1 1 7は殆ど磁歪薄膜 1 2 2の幅方向に向いており、 しかも圧電体 1 2 3の振動方向 1 1 8が磁歪薄膜 1 2 2の方向に対して 4 5度傾いている状態にある。 この状態は、 第 3図で説明 した永久磁石 1 1 4 , 1 1 6が設けられていない場合と比べて磁歪薄膜 1 2 2の 幅方向への磁気バイアス印加による磁歪現象によって磁歪薄膜 1 2 2のヤング率 E fが低くなつているが、 磁歪薄膜 1 2 2の磁歪方向が圧電体 1 2 3の振動方向 1 1 8に対して 4 5度傾いているため、 実質的には圧電体 1 2 3の振動方向 1 1 8におけるヤング率 E fが高くなつていると言える。 従って、 ここでの構成では 先の第 3図に示した構成の場合と比べて共振周波数 f 0が高い状態にある。 To explain the principle of the method of discriminating the sign of the magnetic detection direction in such a configuration, first, as shown in FIG. 5 (a), when no external magnetic field is applied (when there is no magnetic signal due to the external magnetic field), According to 14 and 1 16, the rotational magnetization 1 17 is almost oriented in the width direction of the magnetostrictive thin film 1 2 2, and the vibration direction 1 18 of the piezoelectric body 1 2 3 is in the direction of the magnetostrictive thin film 1 2 2 It is in a state of tilting 45 degrees. This state is due to the magnetostriction phenomenon caused by the application of the magnetic bias in the width direction of the magnetostrictive thin film 122 compared with the case where the permanent magnets 114 and 116 described in FIG. 3 are not provided. Although the Young's modulus E f of the magnetostrictive film 1 is low, the magnetostriction direction of the magnetostrictive thin film 1 2 2 is inclined by 45 degrees with respect to the vibration direction 1 1 8 of the piezoelectric material 1 2 3. It can be said that the Young's modulus E f in the vibration direction 1 18 of 23 is increasing. Therefore, in this configuration, the resonance frequency f 0 is higher than in the configuration shown in FIG.
次に、 第 5図 (b ) に示されるように外部磁場 1 1 3が正の方向に印加された 場合、 回転磁化 1 1 9の方向は圧電体 1 2 3の振動方向 1 1 8に平行になるよう に推移し、 それに伴って圧電体 1 2 3の振動方向 1 1 8における磁歪薄膜 1 2 2 の磁歪が増加し、 ヤング率 E fが更に低下することになる。 従って、 この場合の 共振周波数 f 。は低下することになる。 Next, when an external magnetic field 113 is applied in the positive direction as shown in Fig. 5 (b), the direction of the rotational magnetization 119 is parallel to the vibration direction 118 of the piezoelectric body 123. Accordingly, the magnetostriction of the magnetostrictive thin film 122 in the vibration direction 118 of the piezoelectric body 123 increases, and the Young's modulus E f further decreases. Therefore, in this case Resonant frequency f. Will decrease.
更に、 第 5図 (c ) に示されるように外部磁場 1 2 0が負の方向に印加された 場合は、 回転磁化 1 2 1の方向は圧電体 1 2 3の振動方向 1 1 8に対して垂直に なるように推移し、 それに伴って圧電体 1 2 3の振動方向 1 1 8における磁歪薄 膜 1 2 2の磁歪が減少し、 ヤング率 E fが高くなる。 従って、 この場合の共振周 波数 f 。は増加することになる。 Furthermore, when the external magnetic field 120 is applied in the negative direction, as shown in FIG. 5 (c), the direction of the rotational magnetization 121 is relative to the vibration direction 118 of the piezoelectric body 123. As a result, the magnetostriction of the magnetostrictive thin film 122 in the vibration direction 118 of the piezoelectric body 123 decreases, and the Young's modulus Ef increases. Therefore, the resonance frequency f in this case. Will increase.
以上の第 5図 (a) 〜 ( c ) より、 磁歪薄膜 1 2 2の幅方向に予め外部磁場を 印加できるように永久磁石 1 1 4 , 1 1 6を設け、 圧電体 1 2 3の振動方向 1 1 8が磁歪薄膜 1 2 2の幅方向に対して 4 5度傾いた方向に設定されていれば、 磁 気検出方向を判別することが可能となる。 尚、 種々実験結果から、 ここでの圧電 体 1 2 3の振動方向 1 1 8は、 磁歪薄膜 1 2 2の幅方向に対して約 4 0〜5 0度 の範囲で傾いた方向に設定されている構成であれば、 磁気検出方向を判別できる ことが判った。  According to FIGS. 5 (a) to 5 (c), the permanent magnets 114 and 116 are provided so that an external magnetic field can be applied in the width direction of the magnetostrictive thin film 122, and the vibration of the piezoelectric body 123 If the direction 118 is set at 45 degrees with respect to the width direction of the magnetostrictive thin film 122, the magnetic detection direction can be determined. According to various experimental results, the vibration direction 118 of the piezoelectric body 123 is set in a direction inclined at about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film 122. It was found that the magnetic detection direction could be determined with the configuration described above.
第 6図は、 上述したセンサ構造体 1 0 6の機械的な共振周波数を検出するため の検出信号処理回路の基本構成を示した回路ブロック図である。 ここでの検出信 号処理系回路は、 センサ構造体 1 0 6を含むセンサ部 7, 増幅回路 8, 及び位相 シフト回路 9を備えて成る自励発振回路部と、 この自励発振回路部における増幅 回路 8及び位相シフ卜回路 9の間に接続されて自励発振回路部から出力される発 振周波数を電圧に変換する周波数 Z電圧変換回路部 (FZVコンバータ) 1 0と を備えて構成される。 ここでの簡易な自励発振回路部の構成例としては、 CMO Sィンバ一夕の帰還回路にセンサ部 7を配置することで実現できる。  FIG. 6 is a circuit block diagram showing a basic configuration of a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure 106 described above. The detection signal processing system circuit here includes a self-excited oscillation circuit section including a sensor section 7 including a sensor structure 106, an amplification circuit 8, and a phase shift circuit 9, and a self-excited oscillation circuit section. A frequency Z voltage conversion circuit (FZV converter) 10 is connected between the amplification circuit 8 and the phase shift circuit 9 and converts the oscillation frequency output from the self-excited oscillation circuit into a voltage. You. An example of the configuration of the simple self-excited oscillation circuit section can be realized by disposing the sensor section 7 in the feedback circuit of the CMOS sensor.
第 7図は、 上述したセンサ構造体 1 0 6の機械的な共振周波数を検出するため の別の検出信号処理回路の基本構成を示した回路プロック図である。 ここでの検 出信号処理系回路は、 先のセンサ構造体 1 0 6を第 1のセンサ構造体として含む センサ部 7 , 増幅回路 8 , 及び位相シフト回路 9を備えて成る第 1の自励発振回 路部 1 1と、 非磁歪薄膜による積層体, 又は非磁歪薄膜と支持体とによる積層体 から成ると共に、 外部磁場変化に対して機械的な共振周波数が変化せずに一定の 基準周波数を発振する略図された別な第 2のセンサ構造体と、 この第 2のセンサ 構造体を含むセンサ部, 増幅回路, 及び位相シフト回路を備えて成る第 2の自励 発振回路部 1 2とを備えている。 又、 この検出信号処理系回路は、 第 1の自励発 振回路部 1 1における増幅回路 8及び位相シフト回路 9の間、 並びに第 2の自励 発振回路部 1 2における増幅回路及び位相シフト回路の間にそれぞれ接続されて 第 1の自励発振回路部 1 1から出力される発振周波数と第 2の自励発振回路部 1 2から出力される基準周波数との差を増幅して差動周波数として出力する差動増 幅回路 1 3と、 差動増幅回路 1 3から出力される差動周波数を電圧に変換する周 波数 Z電圧変換回路部 (F/Vコンバータ) 1 0とを備えている。 FIG. 7 is a circuit block diagram showing a basic configuration of another detection signal processing circuit for detecting the mechanical resonance frequency of the sensor structure 106 described above. The detection signal processing system circuit here includes a first self-excited circuit including a sensor section 7 including the sensor structure 106 as a first sensor structure, an amplifier circuit 8, and a phase shift circuit 9. It consists of an oscillation circuit section 11 and a laminated body composed of a non-magnetostrictive thin film or a laminated body composed of a non-magnetostrictive thin film and a support, and has a constant reference frequency without a change in mechanical resonance frequency in response to an external magnetic field change. A second self-excited circuit comprising a schematic second sensor structure that oscillates, a sensor unit including the second sensor structure, an amplifier circuit, and a phase shift circuit. An oscillation circuit section 12 is provided. The detection signal processing system circuit is provided between the amplifier circuit 8 and the phase shift circuit 9 in the first self-excited oscillation circuit section 11, and the amplifier circuit and the phase shift circuit in the second self-excited oscillation circuit section 12. The difference between the oscillation frequency output from the first self-excited oscillation circuit section 11 and the reference frequency output from the second self-excited oscillation circuit section 12 is amplified by It has a differential amplifier circuit 13 that outputs a frequency, and a frequency Z voltage conversion circuit unit (F / V converter) 10 that converts the differential frequency output from the differential amplifier circuit 13 into a voltage. I have.
このような第 1の自励発振回路部 1 1による発振周波数と第 2の自励発振回路 部 1 2による基準周波数との差を得るようにした差動方式の検出信号処理回路の 場合、 温度変化に伴う磁歪薄膜 1 0 1の形状変化やヤング率変化を補正すること が可能になるため、 一層高精度に磁場計測を行うことができる。 尚、 ここでの別 なセンサ構造体に用いられた非磁歪薄膜としては、形状の他に熱容量,熱伝導率, 熱膨張系数等の各種材料定数が適用された磁歪薄膜 1 0 1とほぼ等しくなるよう に選択することが好ましい。 一例として、 磁歪薄膜 1 0 1を F e— C o系薄膜と する場合に非磁歪薄膜として A u , A 1 , C u , C r, T i等の薄膜が挙げられ る。  In the case of such a differential detection signal processing circuit that obtains the difference between the oscillation frequency of the first self-excited oscillation circuit 11 and the reference frequency of the second self-excited oscillation circuit 12, Since a change in shape and a change in Young's modulus of the magnetostrictive thin film 101 due to the change can be corrected, magnetic field measurement can be performed with higher accuracy. The non-magnetostrictive thin film used in the other sensor structure here is almost equal to the magnetostrictive thin film 101 to which various material constants such as heat capacity, thermal conductivity, and thermal expansion coefficient are applied in addition to the shape. It is preferable to select As an example, when the magnetostrictive thin film 101 is a Fe—Co thin film, thin films such as Au, A 1, Cu, Cr, and Ti can be cited as non-magnetostrictive thin films.
要するに、 本発明の磁気センサの場合、 第 3図を参照して説明したように、 磁 歪素子であるセンサ構造体が一体となって機械的に振動している状態中にあって、 外部磁場変化に伴ってセンサ構造体の機械的な共振周波数が変化し、 その共振周 波数の変化量から外部磁場量を算出する構成としているので、 小型化及び軽量化 が可能であり、 且つ高感度なセンサ特性を持つようになる。 特に、 この磁気セン ザにおいて、 磁歪薄膜の幅方向に予め外部磁場を印加するための磁場印加手段を 備え、 圧電体の振動方向を磁歪薄膜の幅方向に対して約 4 0〜5 0度傾いた方向 に設定する構成として磁気検出方向を判別できる構成とすれば、 携帯用方位セン サ等の各種産業機器への適用が好適となる。 又、 この磁気センサでは、 検出信号 処理回路を第 6図を参照して説明した構成か、 或いは第 7図を参照して説明した 差動方式の構成とすることにより、 高精度な磁気計測を簡単に行うことが可能と なる。  In short, in the case of the magnetic sensor of the present invention, as described with reference to FIG. 3, when the sensor structure, which is the magnetostrictive element, is mechanically vibrating integrally, Since the mechanical resonance frequency of the sensor structure changes with the change, and the external magnetic field amount is calculated from the change amount of the resonance frequency, the size and weight can be reduced, and the sensitivity is high. It has sensor characteristics. In particular, in this magnetic sensor, a magnetic field applying means for applying an external magnetic field in advance in the width direction of the magnetostrictive thin film is provided, and the vibration direction of the piezoelectric body is inclined by about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film. If the configuration is such that the magnetic detection direction can be determined as the configuration for setting the direction, it is suitable for application to various industrial equipment such as a portable direction sensor. Also, in this magnetic sensor, the detection signal processing circuit has the configuration described with reference to FIG. 6 or the differential type configuration described with reference to FIG. It can be done easily.

Claims

請求の範囲 The scope of the claims
1 . 磁歪素子であるセンサ構造体から成り、 該センサ構造体が一体となって 機械的に振動している状態中にあって、 外部磁場変化に伴って該センサ構造体の 機械的な共振周波数が変化し、 該共振周波数の変化量から外部磁場量を算出する ことを特徴とする磁気センサ。 1. Consisting of a sensor structure that is a magnetostrictive element, in a state where the sensor structure is mechanically vibrating as a unit, and the mechanical resonance frequency of the sensor structure in accordance with an external magnetic field change Wherein the external magnetic field amount is calculated from the change amount of the resonance frequency.
2 . 請求項 1記載の磁気センサにおいて、 前記磁歪素子は、 磁歪薄膜から成 ることを特徴とする磁気センサ。  2. The magnetic sensor according to claim 1, wherein the magnetostrictive element is made of a magnetostrictive thin film.
3 . 請求項 1記載の磁気センサにおいて、 前記磁歪素子は、 磁歪薄膜と支持 体とによる積層体から成ることを特徴とする磁気センサ。  3. The magnetic sensor according to claim 1, wherein the magnetostrictive element is formed of a laminated body including a magnetostrictive thin film and a support.
4. 請求項 3記載の磁気センサにおいて、 前記支持体は、 圧電材料による圧 電板, シリコン板, 非磁性金属板の何れか一つであることを特徴とする磁気セン サ。  4. The magnetic sensor according to claim 3, wherein the support is one of a piezoelectric plate made of a piezoelectric material, a silicon plate, and a non-magnetic metal plate.
5. 請求項 4記載の磁気センサにおいて、 前記支持体は、 片持ち梁構造, 両 持ち梁構造, ダイァフラム構造の何れか一つの支持構造を持つことを特徴とする 磁気センサ。  5. The magnetic sensor according to claim 4, wherein the support has any one of a cantilever structure, a doubly supported structure, and a diaphragm structure.
6. 請求項 3記載の磁気センサにおいて、 前記磁歪素子は、 前記センサ構造 体として前記支持体の一方の主面に前記磁歪薄膜を積層した圧電体を有して成る もので、 更に、 前記圧電体に印加された電圧によって前記センサ構造体が一体と なって機械的に振動している状態中にあって、 外部磁場変化に伴って該センサ構 造体の機械的な共振周波数が変化し、 該共振周波数の変化量から外部磁場量を算 出することを特徴とする磁気センサ。  6. The magnetic sensor according to claim 3, wherein the magnetostrictive element includes a piezoelectric body in which the magnetostrictive thin film is laminated on one main surface of the support as the sensor structure. When the sensor structure is mechanically vibrating as a unit by the voltage applied to the body, the mechanical resonance frequency of the sensor structure changes with an external magnetic field change, A magnetic sensor which calculates an external magnetic field amount from the change amount of the resonance frequency.
7 . 請求項 3記載の磁気センサにおいて、 前記センサ構造体として前記支持 体の他方の主面に電極を備えた略板状の積層体を有して成り、 前記磁歪薄膜及び 前記電極間に前記電圧が印加されることを特徴とする磁気センサ。  7. The magnetic sensor according to claim 3, wherein the sensor structure includes a substantially plate-shaped laminate having an electrode on the other main surface of the support, and the sensor structure includes a gap between the magnetostrictive thin film and the electrode. A magnetic sensor to which a voltage is applied.
8 . 請求項 2〜 7の何れか一つに記載の磁気センサにおいて、 前記センサ構 造体の機械的な共振周波数の変化は、 前記外部磁場変化に伴つて前記磁歪薄膜の ヤング率が変化することで得られることを特徴とする磁気センサ。  8. The magnetic sensor according to any one of claims 2 to 7, wherein a change in a mechanical resonance frequency of the sensor structure changes a Young's modulus of the magnetostrictive thin film with a change in the external magnetic field. A magnetic sensor characterized by being obtained by:
9 . 請求項 2〜 8の何れか一つに記載の磁気センサにおいて、 前記磁歪薄膜 の幅方向には予め外部磁場を印加するための磁場印加手段が備えられ、 前記圧電 体の振動方向は前記磁歪薄膜の幅方向に対して約 4 0〜5 0度傾いた方向に設定 されていることを特徴とする磁気センサ。 9. The magnetic sensor according to any one of claims 2 to 8, wherein the magnetostrictive thin film is used. A magnetic field applying means for applying an external magnetic field is provided in advance in the width direction, and the vibration direction of the piezoelectric body is set to a direction inclined about 40 to 50 degrees with respect to the width direction of the magnetostrictive thin film. A magnetic sensor.
1 0 . 請求項 9記載の磁気センサにおいて、 前記磁場印加手段は、 永久磁石又 は電磁石であることを特徴とする磁気センサ。  10. The magnetic sensor according to claim 9, wherein the magnetic field applying means is a permanent magnet or an electromagnet.
1 1 . 請求項 1〜1 0の何れか一つに記載の磁気センサにおいて、 前記センサ 構造体の機械的な共振周波数を検出するための検出信号処理回路を備え、 前記検 出信号処理回路は、 前記センサ構造体を含むセンサ部, 増幅回路, 及び位相シフ ト回路を備えて成る自励発振回路部と、 前記自励発振回路部から出力される発振 周波数を電圧に変換する周波数/電圧変換回路部とを備えて成ることを特徴とす る磁気センサ。  11. The magnetic sensor according to any one of claims 1 to 10, further comprising a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure, wherein the detection signal processing circuit is A self-excited oscillation circuit unit including a sensor unit including the sensor structure, an amplifier circuit, and a phase shift circuit; and a frequency / voltage converter for converting an oscillation frequency output from the self-excited oscillation circuit unit to a voltage. A magnetic sensor comprising a circuit unit.
1 2 . 請求項 1〜1 0の何れか一つに記載の磁気センサにおいて、 前記センサ 構造体の機械的な共振周波数を検出するための検出信号処理回路を備え、 前記検 出信号処理回路は、前記センサ構造体を第 1のセンサ構造体として含むセンサ部, 増幅回路, 及び位相シフト回路を備えて成る第 1の自励発振回路部と、 非磁歪薄 膜による積層体, 又は非磁歪薄膜と支持体とによる積層体から成ると共に、 外部 磁場変化に対して機械的な共振周波数が変化せずに一定の基準周波数を発振する 第 2のセンサ構造体と、 前記第 2のセンサ構造体を含むセンサ部, 増幅回路, 及 び位相シフト回路を備えて成る第 2の自励発振回路部と、 前記第 1の自励発振回 路部から出力される前記発振周波数と前記第 2の自励発振回路部から出力される 前記基準周波数との差を増幅して差動周波数として出力する差動増幅回路と、 前 記差動増幅回路から出力される前記差動周波数を電圧に変換する周波数/電圧変 換回路部とを備えて成ることを特徴とする磁気センサ。  12. The magnetic sensor according to any one of claims 1 to 10, further comprising: a detection signal processing circuit for detecting a mechanical resonance frequency of the sensor structure, wherein the detection signal processing circuit A first self-excited oscillation circuit unit including a sensor unit including the sensor structure as a first sensor structure, an amplifier circuit, and a phase shift circuit; and a laminate of a non-magnetostrictive thin film or a non-magnetostrictive thin film A second sensor structure that oscillates a constant reference frequency without changing a mechanical resonance frequency in response to an external magnetic field change; and A second self-excited oscillation circuit including a sensor unit, an amplification circuit, and a phase shift circuit, the oscillation frequency output from the first self-excited oscillation circuit, and the second self-excited oscillation circuit. The reference frequency output from the oscillation circuit section A differential amplifier circuit that amplifies the difference between the differential frequencies and outputs the differential frequency as a differential frequency; and a frequency / voltage conversion circuit unit that converts the differential frequency output from the differential amplifier circuit into a voltage. A magnetic sensor characterized by the above-mentioned.
PCT/JP2004/001098 2003-02-04 2004-02-04 Magnetic sensor WO2004070408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504843A JPWO2004070408A1 (en) 2003-02-04 2004-02-04 Magnetic sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-027362 2003-02-04
JP2003027362 2003-02-04
JP2003288353 2003-08-07
JP2003-288353 2003-08-07

Publications (1)

Publication Number Publication Date
WO2004070408A1 true WO2004070408A1 (en) 2004-08-19

Family

ID=32852658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001098 WO2004070408A1 (en) 2003-02-04 2004-02-04 Magnetic sensor

Country Status (2)

Country Link
JP (1) JPWO2004070408A1 (en)
WO (1) WO2004070408A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110943A1 (en) * 2006-03-29 2007-10-04 Loyal Port Company Limited Magnetostrictive modulation current sensor and method for measuring current using that sensor
WO2010065974A1 (en) 2008-12-11 2010-06-17 Dieter Suess Sensor for measuring mechanical stresses
WO2010110423A1 (en) * 2009-03-26 2010-09-30 並木精密宝石株式会社 Piezoelectric/magnetostrictive composite magnetic sensor
KR101368330B1 (en) 2009-10-23 2014-03-03 한국기계연구원 Highly dense magnetoelectric nanocomposite thick film and preparation method thereof
JP2014508287A (en) * 2011-01-18 2014-04-03 クリスティアン−アルブレヒツ−ウニヴェアズィテート ツー キール Magnetic field measurement method using magnetoelectric sensor
WO2014138376A1 (en) * 2013-03-07 2014-09-12 Northeastern University Systems and methods for magnetic field detection
WO2015002594A1 (en) * 2013-07-03 2015-01-08 Sondero Technologies Ab A force measurement method and means
WO2018226284A3 (en) * 2017-03-13 2019-02-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Ultra-low power magnetoelectric magnetic field sensor
CN110118947A (en) * 2019-04-19 2019-08-13 华中科技大学 A kind of magnetic sensing device
US10495702B2 (en) 2017-02-15 2019-12-03 Kabushiki Kaisha Toshiba Sensor
EP3792587A2 (en) 2019-08-21 2021-03-17 SuessCo Sensors GmbH Method for measurement
KR102242113B1 (en) * 2019-10-23 2021-04-20 재단법인대구경북과학기술원 Measuring apparatus for three axis magnetic field

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174809A (en) * 1982-04-08 1983-10-13 Matsushita Electric Ind Co Ltd Azimuth sensor
GB2188157A (en) * 1986-03-10 1987-09-23 Gec Avionics Magnetic sensor arrangements
JPS6338190A (en) * 1986-07-31 1988-02-18 セキユリテイ−・タグ・システムズ・インコ−ポレ−テツド Detector for change of magnetic field
JP2000065908A (en) * 1998-08-25 2000-03-03 Victor Co Of Japan Ltd Magnetic sensor and magnetic detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174809A (en) * 1982-04-08 1983-10-13 Matsushita Electric Ind Co Ltd Azimuth sensor
GB2188157A (en) * 1986-03-10 1987-09-23 Gec Avionics Magnetic sensor arrangements
JPS6338190A (en) * 1986-07-31 1988-02-18 セキユリテイ−・タグ・システムズ・インコ−ポレ−テツド Detector for change of magnetic field
JP2000065908A (en) * 1998-08-25 2000-03-03 Victor Co Of Japan Ltd Magnetic sensor and magnetic detection system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110943A1 (en) * 2006-03-29 2007-10-04 Loyal Port Company Limited Magnetostrictive modulation current sensor and method for measuring current using that sensor
WO2010065974A1 (en) 2008-12-11 2010-06-17 Dieter Suess Sensor for measuring mechanical stresses
WO2010110423A1 (en) * 2009-03-26 2010-09-30 並木精密宝石株式会社 Piezoelectric/magnetostrictive composite magnetic sensor
US20120098530A1 (en) * 2009-03-26 2012-04-26 Namiki Seimitsu Houseki Kabushiki Kaisha Piezoelectric/magnetostrictive composite magnetic sensor
JPWO2010110423A1 (en) * 2009-03-26 2012-10-04 並木精密宝石株式会社 Piezoelectrostrictive combined magnetic sensor
KR101368330B1 (en) 2009-10-23 2014-03-03 한국기계연구원 Highly dense magnetoelectric nanocomposite thick film and preparation method thereof
JP2014508287A (en) * 2011-01-18 2014-04-03 クリスティアン−アルブレヒツ−ウニヴェアズィテート ツー キール Magnetic field measurement method using magnetoelectric sensor
WO2014138376A1 (en) * 2013-03-07 2014-09-12 Northeastern University Systems and methods for magnetic field detection
WO2015002594A1 (en) * 2013-07-03 2015-01-08 Sondero Technologies Ab A force measurement method and means
US10495702B2 (en) 2017-02-15 2019-12-03 Kabushiki Kaisha Toshiba Sensor
WO2018226284A3 (en) * 2017-03-13 2019-02-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Ultra-low power magnetoelectric magnetic field sensor
CN110118947A (en) * 2019-04-19 2019-08-13 华中科技大学 A kind of magnetic sensing device
CN110118947B (en) * 2019-04-19 2021-01-05 华中科技大学 Magnetic sensing device
EP3792587A2 (en) 2019-08-21 2021-03-17 SuessCo Sensors GmbH Method for measurement
KR102242113B1 (en) * 2019-10-23 2021-04-20 재단법인대구경북과학기술원 Measuring apparatus for three axis magnetic field

Also Published As

Publication number Publication date
JPWO2004070408A1 (en) 2006-05-25

Similar Documents

Publication Publication Date Title
Zabel et al. Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields
JP2818522B2 (en) How to measure torque or axial stress acting on an object
Dong et al. Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient
CN106556803B (en) A kind of mode of resonance Magnetic Sensor
JP3694028B2 (en) Integrated resonant microbeam sensor and transistor oscillator
Hayes et al. Electrically modulated magnetoelectric sensors
US20050268721A1 (en) Device for measuring pressure
US20070034022A1 (en) Magneto-elastic resonator torque sensor
WO2004070408A1 (en) Magnetic sensor
Ou-Yang et al. Magnetoelectric laminate composites: An overview of methods for improving the DC and low-frequency response
Bian et al. A resonant magnetic field sensor with high quality factor based on quartz crystal resonator and magnetostrictive stress coupling
US20240062739A1 (en) Magnetic field sensor using acoustically driven ferromagnetic resonance
Bian et al. Magnetostrictive stress induced frequency shift in resonator for magnetic field sensor
US9810749B2 (en) Magnetic field measuring device with vibration compensation
Bhaskaran et al. Active microcantilevers based on piezoresistive ferromagnetic thin films
US10613159B2 (en) Magnetoelectric magnetic field measurement with frequency conversion
JP2004093574A (en) Cantilever with force azimuth sensor for atomic force microscope
CN116338536A (en) Magnetic field measurement sensor, system and method
JP2005338031A (en) Magnetic sensor
JP2020112411A (en) Acoustic wave modulation element and physical quantity sensor system
CN112230017B (en) Weak coupling type MEMS acceleration sensor
JPH09196686A (en) Angular velocity sensor
US20220291302A1 (en) Measuring device for weak and slowly changing magnetic fields, in particular for biomagnetic fields
JP2005077100A (en) Magnetic sensor
JP2000352536A (en) Load-measuring apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504843

Country of ref document: JP

122 Ep: pct application non-entry in european phase