JPS58174809A - Azimuth sensor - Google Patents

Azimuth sensor

Info

Publication number
JPS58174809A
JPS58174809A JP5884182A JP5884182A JPS58174809A JP S58174809 A JPS58174809 A JP S58174809A JP 5884182 A JP5884182 A JP 5884182A JP 5884182 A JP5884182 A JP 5884182A JP S58174809 A JPS58174809 A JP S58174809A
Authority
JP
Japan
Prior art keywords
magnetic alloy
amorphous magnetic
magnetic field
alloy ribbon
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5884182A
Other languages
Japanese (ja)
Inventor
Ichiro Yamashita
一郎 山下
Yukihiko Ise
伊勢 悠紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5884182A priority Critical patent/JPS58174809A/en
Publication of JPS58174809A publication Critical patent/JPS58174809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses

Abstract

PURPOSE:To obtain the light, compact, and highly accurate sensor, by utilizing dependence of Young's modulus on a static magnetic field in amorphous magnetic alloy. CONSTITUTION:The central part of the thin belt of the amorphous magnetic alloy is fixed, and held so that both ends are freely vibrated. A bias magnetic field is applied to the thin belt 1 of the amorphous magnetic alloy by a DC flowing through a coil 2. The thin belt 1 of the amorphous magnetic alloy 1 is excited in the direction of the magnetic field by an AC. The repeating period of a triangular wave generator 4, which generates a triangular wave at a constant period, is made sufficiently longer than the period of the oscillating output of an oscillator 3. The bias magnetic field is generated in the coil 2 by the DC. The interval between the time when the output of the triangular wave generator 4 is the lowest and the time when the thin belt 1 of the amorphous magnetic alloy is mechanically resonated is measured. Thus the angle between the direction of the mechanical resonation of the thin belt 1 of the amorphous magnetic alloy and the north is determined.

Description

【発明の詳細な説明】 本発明は地磁気を利用し、ある地点における方位を検出
する方位センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an orientation sensor that uses earth's magnetism to detect the orientation at a certain point.

近年、自動車用を中心として、方位を高い精度で検出す
ることのできる装置の実用化の要望が高まってきた。こ
の方位検出の方法としては、従来より地磁気を利用した
羅針盤、針磁石が用いられてきている。しかしながら、
羅針盤には精度がよいという利点があるものの、大きく
て持ち運べないという欠点があり、一方針磁石には携帯
に便利であるという利点があるものの、方位の精度が悪
い欠点があった。そこで、軒くてしかも方位精度の高い
方位センサが求められてきている。
In recent years, there has been an increasing demand for practical use of devices that can detect orientation with high accuracy, mainly for automobiles. Compasses and needle magnets that utilize geomagnetism have traditionally been used to detect direction. however,
Although a compass has the advantage of being highly accurate, it has the disadvantage of being too large to carry, and a compass has the advantage of being convenient to carry, but it has the disadvantage of poor azimuth accuracy. Therefore, there is a need for an azimuth sensor that is compact and has high azimuth accuracy.

本発明は、このような要望に対して、非晶質磁性合金に
おけるヤング率の静磁界の依存性を用いて、軽く小型で
しかも高精度な方位センサを提供することを目的とする
ものである。
In response to such demands, the present invention aims to provide a light, compact, and highly accurate orientation sensor by using the dependence of Young's modulus on a static magnetic field in an amorphous magnetic alloy. .

第1図に、非晶質磁性合金におけるヤング率の、静磁場
に対する変化の−・例を示す。特に、鉄系非晶質磁性合
金においては、ある特定の静磁場において、図の静磁場
A、B間のように、大きなりング率の変化が見られる。
FIG. 1 shows an example of the change in Young's modulus in an amorphous magnetic alloy with respect to a static magnetic field. In particular, in iron-based amorphous magnetic alloys, a large change in ring ratio is observed in a certain static magnetic field, as shown between static magnetic fields A and B in the figure.

このときの静磁場A、Hの差を10θ以下にすることが
できる。
The difference between the static magnetic fields A and H at this time can be made 10θ or less.

第2図に本発明にかかる方位上ンサの一実施例の構成を
示す。図において、1は非晶質磁性合金薄帯で、非晶質
磁性合金リボンを矩形に切り出したもので、中心部が固
定され、両端が自由に振動するように保持されている。
FIG. 2 shows the configuration of an embodiment of the azimuth sensor according to the present invention. In the figure, reference numeral 1 denotes an amorphous magnetic alloy ribbon, which is cut into a rectangular shape from an amorphous magnetic alloy ribbon.The center portion is fixed and both ends are held so as to vibrate freely.

2はコイルで、非晶質磁性合金薄帯1にそれを磁心とす
るよう巻かれている。このコイル2に流れる直流電流に
より非晶磁性合金薄帯1にバイアス磁界が印加され、交
流電流によシ磁界方向に非晶質磁性合金薄帯1が励振さ
れる。3はコイル2に交流電流を流すための発振器で、
その周波数は、第1図における静磁場人、B間のあるヤ
ング率において、非晶質磁性合金薄帯1が機械的共振を
するよう設定されている。4は−・定の周期で三角波を
発生する三角波発生器で、三角波のくりかえし周期は発
振器3の発振出力の周期に比して十分に長く設定されて
おり、コイル2に直流電流によるバイアス磁界を発生さ
せるものである。そして、このバイアス磁界が第1図の
静磁界A、B間を含むように設計されている。5はトラ
ンスで、発振器3の出力と三角波発生器4の出力を加算
するためのものである。6は抵抗器で、非晶質磁性合金
薄帯1が機械的共振状態になったとき、発振器3から出
力される電流の変化を検出するために使用されるもので
ある。7は高入力インピーダンス電圧計で、抵抗器6の
端子間電圧を検出するためのものである。8は測定部で
、三角波発生器4の最低出力時を検出し、次に、電圧計
7により非晶質磁性合金薄帯1の共振時を検出して、そ
の時間差を測定するものである。
A coil 2 is wound around the amorphous magnetic alloy ribbon 1 so as to form a magnetic core. A bias magnetic field is applied to the amorphous magnetic alloy ribbon 1 by the direct current flowing through the coil 2, and the amorphous magnetic alloy ribbon 1 is excited in the direction of the magnetic field by the alternating current. 3 is an oscillator for flowing alternating current to coil 2;
The frequency is set so that the amorphous magnetic alloy ribbon 1 mechanically resonates at a certain Young's modulus between the static magnetic field B and B in FIG. 4 is a triangular wave generator that generates a triangular wave with a constant period of -. The repetition period of the triangular wave is set to be sufficiently long compared to the period of the oscillation output of the oscillator 3, and a bias magnetic field by DC current is applied to the coil 2. It is something that generates. This bias magnetic field is designed to include the static magnetic fields A and B in FIG. A transformer 5 is used to add the output of the oscillator 3 and the output of the triangular wave generator 4. A resistor 6 is used to detect a change in the current output from the oscillator 3 when the amorphous magnetic alloy ribbon 1 enters a mechanical resonance state. A high input impedance voltmeter 7 is used to detect the voltage between the terminals of the resistor 6. A measuring section 8 detects the lowest output of the triangular wave generator 4, then detects the resonance of the amorphous magnetic alloy ribbon 1 using the voltmeter 7, and measures the time difference.

9は出力部で、測定部80時間差の測定と、非晶質磁性
合金薄帯1の共振方向との対応をするためのものである
Reference numeral 9 denotes an output section, which is used to measure the time difference of the measuring section 80 and to correspond to the resonance direction of the amorphous magnetic alloy ribbon 1.

今、非晶質磁性合金薄帯1の機械的共振方向が地磁気と
直角方向、すなわち東西方向を向いていたとする。この
とき、非晶質磁性合金薄帯1が第3図の静磁場Cで共振
するよう、発振器3の発振周波数を設定し、三角波発生
器4によるバイアス磁界が第3図のり、1間を掃引する
ように設計しておくと、・・イーγス磁界は三角波発生
器4の出力のみで決定され、三角波の最低値と非晶質磁
性合金薄帯1の共振との時間間隔Tiは、三角波の周期
をTtとして次式で表わされる。
Now, assume that the mechanical resonance direction of the amorphous magnetic alloy ribbon 1 is perpendicular to the earth's magnetism, that is, in the east-west direction. At this time, the oscillation frequency of the oscillator 3 is set so that the amorphous magnetic alloy ribbon 1 resonates with the static magnetic field C shown in FIG. If designed so that...the E-γ-s magnetic field is determined only by the output of the triangular wave generator 4, and the time interval Ti between the lowest value of the triangular wave and the resonance of the amorphous magnetic alloy ribbon 1 is determined by the triangular wave It is expressed by the following equation, with the period of Tt being Tt.

配 Ti=−一−=Tt・・・・・・・−・・・・・・・(
1)B 次に非晶質磁性合金薄帯1の機械的共振方向が南北方向
を向いていたとする。そして、地磁気が三角波発生器4
vCよりコイル2に発生するバイアス磁界と同方向であ
ったとする。このとき、発振器3の発振周波数を前述と
同じに第4図において非晶質磁性合金薄帯1が静磁界C
で共振するようにとり、三角波発生器4によるバイアス
磁界も前述と同様に第4図において静磁界り、1間を掃
引するように設計すると、地球磁場より非晶質磁性合金
薄帯1に加わる実際のバイアス磁界は第4図に示すよう
DF (−=EG)だけシフトし、静磁界F、0間を掃
引するようになる。そのため、三角波の最低値と非晶質
磁性合金薄帯1の共振との時間間隔T1は次式に変化す
る。
Distribution Ti=−1−=Tt・・・・・・・−・・・・・・・・・(
1) B Next, assume that the mechanical resonance direction of the amorphous magnetic alloy ribbon 1 is oriented in the north-south direction. And the earth's magnetism is the triangular wave generator 4
It is assumed that the direction is the same as the bias magnetic field generated in the coil 2 by vC. At this time, with the oscillation frequency of the oscillator 3 being the same as described above, the amorphous magnetic alloy ribbon 1 in FIG.
If the bias magnetic field from the triangular wave generator 4 is designed to resonate between the static magnetic field and the static magnetic field in FIG. The bias magnetic field of is shifted by DF (-=EG) as shown in FIG. 4, so that it sweeps between the static magnetic field F and 0. Therefore, the time interval T1 between the lowest value of the triangular wave and the resonance of the amorphous magnetic alloy ribbon 1 changes as follows.

さらに、非晶質磁性合金薄帯1の機械的共振方向が南北
方向を向き、地磁気が三角波発生器4によりコイル2に
発生するバイアス磁界と逆方向であるとする。このとき
、発振器3の発振周波数を前述と同じく第6図において
非晶質磁性合金薄帯1が静磁界Cで共振するようにとり
、三角波発生器4によるバイアス磁界も前述と同様に第
6図において静磁界り、に間を掃引するように設計する
と、地磁気より非晶質磁性合金薄帯1に加わる実際のバ
イアス磁界は第6図に示すように加−Bx)だけシフト
し、静磁界H,I間を掃引するようになる。そのため、
三角波の最低値と非晶質磁性合金薄帯1の共振との時間
間隔Tiは次式に変化する。
Furthermore, it is assumed that the mechanical resonance direction of the amorphous magnetic alloy ribbon 1 is oriented in the north-south direction, and that the earth's magnetism is in the opposite direction to the bias magnetic field generated in the coil 2 by the triangular wave generator 4. At this time, the oscillation frequency of the oscillator 3 is set so that the amorphous magnetic alloy ribbon 1 resonates with the static magnetic field C as shown in FIG. When designed to sweep between the static magnetic field H, the actual bias magnetic field applied to the amorphous magnetic alloy ribbon 1 by the earth's magnetism shifts by +Bx) as shown in Figure 6, and the static magnetic field H, It will now sweep between I. Therefore,
The time interval Ti between the lowest value of the triangular wave and the resonance of the amorphous magnetic alloy ribbon 1 changes as follows.

以上述べたように、第2図に示す構成の回路において、
三角波発生器4の出力最低時と非晶質磁性合金薄帯1の
機械的共振時の間隔を測定することにより、非晶質磁性
合金薄帯1の機械的共振方向が、北より何度の方向であ
るかが決定される。
As mentioned above, in the circuit configured as shown in FIG.
By measuring the interval between the lowest output of the triangular wave generator 4 and the mechanical resonance of the amorphous magnetic alloy ribbon 1, it is possible to determine how many degrees from the north the mechanical resonance direction of the amorphous magnetic alloy ribbon 1 is. The direction is determined.

この構成の方位検出器は北からの角度のみが必要な場合
、すなわち、第6図の領域101,102の区別が必要
でない場合に応用できる。捷だ、第2図の非晶質磁性合
金薄帯の機械的共振方向を水平面内にて回転し、北と南
の方向を決定することにより方位を検出することもでき
る。
The orientation detector with this configuration can be applied when only the angle from north is required, that is, when it is not necessary to distinguish between regions 101 and 102 in FIG. 6. However, the direction can also be detected by rotating the mechanical resonance direction of the amorphous magnetic alloy ribbon shown in Figure 2 in a horizontal plane and determining the north and south directions.

第7図に本発明の方位センサの他の実施例の構成を示す
。図において、11.21は前述の第2図に示した実施
例と同様矩形非晶質磁性合金薄帯で、中心部が固定され
、両端が自由に振動するように保持されているもので、
互いに直角または−・定角度をなすように同定されてい
る。12.22はコイルで、それぞれ非晶質合金薄帯1
1.21に巻装されている。13.23は発振器で、1
4゜24は発振器13.23の発振周期より長いくりか
えし周期をもつ三角波発生器である。15.25は波形
加算用トランス、16 、26は抵抗器、17゜27は
その両端子間に発生する電圧をそれぞれ検出するための
高入力インピーダンス電圧計である。
FIG. 7 shows the configuration of another embodiment of the orientation sensor of the present invention. In the figure, 11.21 is a rectangular amorphous magnetic alloy ribbon similar to the embodiment shown in FIG.
They are identified such that they form a right angle or a constant angle with each other. 12 and 22 are coils, each amorphous alloy ribbon 1
It is wrapped in 1.21. 13.23 is an oscillator, 1
4.24 is a triangular wave generator having a repetition period longer than the oscillation period of the oscillator 13.23. Reference numerals 15 and 25 designate a waveform summing transformer, 16 and 26 resistors, and 17 and 27 a high input impedance voltmeter for detecting the voltage generated between both terminals.

18.28は三角波発生器14 、24の最低出力時と
非晶質磁性合金薄帯11.21の機械的共振時との時間
間隔をそれぞれ測定する測定部であり、19は時間間隔
の測定部18.28の情報より方位を決定し出力する出
力部である。
Reference numerals 18 and 28 are measurement units that measure the time intervals between the lowest output of the triangular wave generators 14 and 24 and the mechanical resonance of the amorphous magnetic alloy ribbon 11.21, and 19 is a time interval measurement unit. This is an output unit that determines the direction based on the information of 18.28 and outputs it.

各構成要素ならびにその機能は第2図に示した方位セン
サと同様で、まず非晶質磁性薄@11゜21の機械的共
振方向が北より何度の方向であるかは、測定部18 、
28の出力によシわかる。これを非晶質磁性合金薄帯1
1.21の互いの位置関係の情報と同時に、出力部19
に入力することにより、非晶質磁性合金薄帯11.12
の方向が決定でき、方位が検出される。
Each component and its function are similar to the orientation sensor shown in FIG. 2. First, the measuring unit 18,
This can be seen from the output of 28. This is amorphous magnetic alloy ribbon 1
1. At the same time as the information on the mutual positional relationship of 21, the output unit 19
By inputting the amorphous magnetic alloy ribbon 11.12
The direction of can be determined and the orientation detected.

以上1方向、2方向に非晶質磁性合金薄帯を取りつけた
場合について述べたが、これを同一平面内にない三方向
に取りつけた場合では地磁気の方向が伏角となり、位置
検出も可能となる。
Above, we have described cases in which amorphous magnetic alloy thin strips are attached in one or two directions, but if they are attached in three directions that are not in the same plane, the direction of the earth's magnetic field becomes an inclination angle, and position detection becomes possible. .

以上述べたように、本発明は、非晶質磁性合金のゝヤン
グ率が・・イアス静磁場により大きく変化すること金利
用した方位センサであり、高感度であることはもちろん
、センサ部分の小型化が容易で、機械的にも強靭で、耐
蝕性についても非晶質磁性合金に少量の添加物で十分実
用化可能で、信頼性も高いというきわめて優れた特長を
有している。
As described above, the present invention is an orientation sensor that utilizes the fact that the Young's modulus of an amorphous magnetic alloy changes greatly depending on the static magnetic field. It has extremely excellent features such as being easy to form, mechanically strong, corrosion resistant, can be put to practical use with a small amount of additives to amorphous magnetic alloys, and highly reliable.

【図面の簡単な説明】 第1図は鉄系非晶質磁性合金薄帯のヤング率のバイアス
静磁界依存性を示す図、第2図は本発明にかかる方位セ
ンサの一実施例のブロック図、第3図はこの実施例にお
いて、非晶質磁性合金薄帯が東西方向を向くときの、バ
イアス静磁界振巾ならひに機械的共振時バイアス静磁界
と非晶質磁性合金薄帯ヤング率との関係を示す図、第4
図はこの実施例において、非晶質磁性合金薄帯が南北方
向を向き、かつ地磁気がバイアス静磁界と同方向である
ときの、バイアス静磁界振巾ならびに機械的共振時バイ
アス静磁界と非晶質磁性合金薄帯のヤング率との関係を
示す図、第6図はこの実施例において、非晶質磁性合金
薄帯が南北方向を向き、0 の、バイアス静磁界振1]ならびに機械的共振時バイア
ス静磁界と非晶質磁性合金薄帯のヤング率との関係を示
す図、第6図はこの実施例による方向判別不可能な二分
野を示す図、第7図は本発明にかかる方位センサの他の
実施例のブロック図である。 1.11.21・・・・・・非晶質磁性合金薄帯、2゜
12.22・・・・・・コイル、3,13.23・・・
・・・発振器、4,14.24・・・・・・三角波発生
器、7 、17゜27・・・・・・高入力インピーダン
ス電圧計、8 、18゜28・・・・・・測定部、9,
19・・・・・・出力部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 静 儀  罎遥ル (ρe) 第3図 第4図 ノぐイブズ虚戸鎌茗4 箭5図 ハ゛イアス静石遊岑 第6図 七と。 ]7図 2/ ト
[Brief Description of the Drawings] Fig. 1 is a diagram showing the bias static magnetic field dependence of the Young's modulus of an iron-based amorphous magnetic alloy ribbon, and Fig. 2 is a block diagram of an embodiment of the orientation sensor according to the present invention. In this example, Fig. 3 shows the bias static magnetic field amplitude, the bias static magnetic field at mechanical resonance, and the amorphous magnetic alloy ribbon Young's modulus when the amorphous magnetic alloy ribbon is oriented in the east-west direction. Diagram showing the relationship between
The figure shows the bias static magnetic field amplitude and the bias static magnetic field at mechanical resonance and the amorphous magnetic alloy ribbon in this example when the amorphous magnetic alloy ribbon is oriented in the north-south direction and the earth's magnetism is in the same direction as the bias static magnetic field. Figure 6 is a diagram showing the relationship between the Young's modulus of the amorphous magnetic alloy ribbon, and in this example, the amorphous magnetic alloy ribbon is oriented in the north-south direction. Figure 6 is a diagram showing the relationship between the bias static magnetic field and the Young's modulus of an amorphous magnetic alloy ribbon, Figure 6 is a diagram showing two fields in which the orientation cannot be determined according to this embodiment, and Figure 7 is the orientation according to the present invention. FIG. 3 is a block diagram of another embodiment of the sensor. 1.11.21...Amorphous magnetic alloy ribbon, 2°12.22...Coil, 3,13.23...
...Oscillator, 4,14.24...Triangular wave generator, 7,17゜27...High input impedance voltmeter, 8,18゜28...Measurement section ,9,
19...Output section. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Nogu Ibuzu Kyoto Kamamai 4 Yame 5 Hiasu Shizuishi Yuki Figure 6 Figure 7. ]7 Figure 2/

Claims (4)

【特許請求の範囲】[Claims] (1)ヤング率の静磁場依存性を示す非晶質磁性合金薄
帯を有し、前記非晶質磁性合金の地磁気のヤング率の変
化を検出して、方位を測定することを特徴とする方位セ
ンサ。
(1) It is characterized by having an amorphous magnetic alloy ribbon exhibiting a static magnetic field dependence of Young's modulus, and measuring the orientation by detecting changes in the Young's modulus of the earth's magnetic field of the amorphous magnetic alloy. Orientation sensor.
(2)非晶質磁性合金薄帯のヤング率の変化をその機械
的共振を用いて検出することを特徴とする特許請求の範
囲第1項に記載の方位センサ。
(2) The orientation sensor according to claim 1, wherein a change in Young's modulus of an amorphous magnetic alloy ribbon is detected using its mechanical resonance.
(3)非晶質磁性合金薄帯が磁歪を有する非晶質磁性合
金薄帯であることを特徴とする特許請求の範囲第1項に
記載の方位センサ。
(3) The orientation sensor according to claim 1, wherein the amorphous magnetic alloy ribbon is an amorphous magnetic alloy ribbon having magnetostriction.
(4)非晶質磁性合金薄帯がそれを巻くコイルを有し、
このコイルに交番電流を印加することにより前記非晶質
磁性合金薄帯を励振し、機械的共振点を測定することを
特徴とする特許請求の範囲第1項に記載の方位センサ。
(4) the amorphous magnetic alloy ribbon has a coil wound around it;
2. The orientation sensor according to claim 1, wherein the amorphous magnetic alloy ribbon is excited by applying an alternating current to the coil to measure a mechanical resonance point.
JP5884182A 1982-04-08 1982-04-08 Azimuth sensor Pending JPS58174809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5884182A JPS58174809A (en) 1982-04-08 1982-04-08 Azimuth sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5884182A JPS58174809A (en) 1982-04-08 1982-04-08 Azimuth sensor

Publications (1)

Publication Number Publication Date
JPS58174809A true JPS58174809A (en) 1983-10-13

Family

ID=13095873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5884182A Pending JPS58174809A (en) 1982-04-08 1982-04-08 Azimuth sensor

Country Status (1)

Country Link
JP (1) JPS58174809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070408A1 (en) * 2003-02-04 2004-08-19 Nec Tokin Corporation Magnetic sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494670A (en) * 1972-05-08 1974-01-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494670A (en) * 1972-05-08 1974-01-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070408A1 (en) * 2003-02-04 2004-08-19 Nec Tokin Corporation Magnetic sensor

Similar Documents

Publication Publication Date Title
CA1308551C (en) Electronic digital compass
JPH02504072A (en) Frequency difference digital compass and magnetometer
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
JPS636801B2 (en)
EP0972208B1 (en) Magnetometer with coil and high permeability core
US3971981A (en) Magnetism detecting system
EP0624241A1 (en) Method for measuring position and angle.
US2474693A (en) Magnetic field responsive device
US3321702A (en) Magnetometer and electrometer utilizing vibrating reeds whose amplitude of vibration is a measure of the field
JPS58174809A (en) Azimuth sensor
JPS63134947A (en) Measuring device for measuring content of magnetizable substance
JP2004239828A (en) Flux gate magnetic field sensor
Hetrick A vibrating cantilever magnetic-field sensor
SU495528A1 (en) Electronic compass
US3504277A (en) Vibration magnetometer for measuring the tangential component of a field on surfaces of ferromagnetic specimens utilizing a magnetostrictive autooscillator
AU598908B2 (en) A magnetometer and method for measuring and monitoring magnetic fields
JPH0352832B2 (en)
RU2097699C1 (en) Electronic compass
US3210654A (en) Direct current flux detector
JPS62187268A (en) Circuit for high sensitive b-h loop tracer
RU2163358C2 (en) Temperature measuring method
MATUMOTO et al. Development of the Portable Easy-Operation Long-Period Seismometer. Part 2: Peripheral Device
SU930184A1 (en) Device for determination of magnetic susceptibility
JPH05223910A (en) Measuring method for magnetism
JPH0445110B2 (en)