JPH0352832B2 - - Google Patents

Info

Publication number
JPH0352832B2
JPH0352832B2 JP16050483A JP16050483A JPH0352832B2 JP H0352832 B2 JPH0352832 B2 JP H0352832B2 JP 16050483 A JP16050483 A JP 16050483A JP 16050483 A JP16050483 A JP 16050483A JP H0352832 B2 JPH0352832 B2 JP H0352832B2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
magnetic
coils
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16050483A
Other languages
Japanese (ja)
Other versions
JPS6053861A (en
Inventor
Azuma Murakami
Yoshinori Taguchi
Tsugunari Yamanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP16050483A priority Critical patent/JPS6053861A/en
Publication of JPS6053861A publication Critical patent/JPS6053861A/en
Publication of JPH0352832B2 publication Critical patent/JPH0352832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Description

【発明の詳細な説明】 本発明は簡単な操作で高精度な測定が可能な磁
界測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic field measuring device that can perform highly accurate measurements with simple operation.

従来より用いられている磁界測定装置として
は、磁気感応儀、プロトン磁力計、フラツクスゲ
ート磁力計等がある。しかしながら、磁気感応儀
においては各種誤差を除去するための反復測定が
必要であり、また、プロトン磁力計では励磁のた
めにかなりの電力を必要とするほか、完全な連続
測定でなく、磁場が均一でない場合には全部のプ
ロトンが同一位相で動かなくなるため信号が出な
くなり、さらにまた、フラツクスゲート磁力計で
は水平及び鉛直分力の測定の際に直流を補償コイ
ルに流して平均的水平及び鉛直分力を打ち消さね
ばならないが、このような打ち消し磁場を長期に
わたつて1(γ)以内の精度で維持することは難
しい等、取扱いが複雑で精度の高い測定が困難で
あるという欠点があつた。
Conventionally used magnetic field measuring devices include magnetic sensing instruments, proton magnetometers, fluxgate magnetometers, and the like. However, magnetic sensing instruments require repeated measurements to eliminate various errors, and proton magnetometers require a considerable amount of power for excitation, are not completely continuous, and have a uniform magnetic field. If not, all the protons stop moving in the same phase and no signal is output.Furthermore, in a fluxgate magnetometer, when measuring horizontal and vertical component forces, direct current is passed through a compensation coil to calculate the average horizontal and vertical components. It is necessary to cancel out the component force, but it is difficult to maintain such a canceling magnetic field with an accuracy within 1 (γ) over a long period of time, and the disadvantages are that it is complicated to handle and difficult to perform highly accurate measurements. .

本発明は上記従来の欠点を除去し、操作が簡単
で高精度の測定がなし得る装置を実現することを
目的としたもので、その要旨とするところは外部
磁界の印加により電気機械結合係数が漸次増大
し、所定の外部磁界が加わつた時に該電気機械結
合係数が最大値となる磁性素子と、磁性素子の一
端及び他端にそれぞれ配設した第1及び第2のコ
イルと、上記磁性素子の第1及び第2のコイルの
配設部位にそれぞれ配設した第3及び第4のコイ
ルと、上記第1のコイルに磁性素子を共振させる
交流信号を加える手段と、上記第3のコイルに上
記所定の外部磁界を発生させる直流電流を加える
手段と、上記第4のコイルに信号電流を大きさ及
び極性を順次変えながら加える手段と、上記第2
のコイルに発生する検出信号の電圧値を検出する
手段と、上記検出信号の電圧値が極小となつた時
の上記信号電流の大きさ及び極性から上記磁性素
子の方向の磁界強さと磁界の向きを測定する手段
とからなる磁界測定装置にある。以下、図面につ
いて詳細に説明する。
The present invention aims to eliminate the above-mentioned conventional drawbacks and realize a device that is easy to operate and can perform high-precision measurements. a magnetic element whose electromechanical coupling coefficient increases gradually and reaches a maximum value when a predetermined external magnetic field is applied; first and second coils disposed at one end and the other end of the magnetic element, respectively; and the magnetic element. means for applying an alternating current signal to cause the magnetic element to resonate in the first coil; means for applying a direct current to generate the predetermined external magnetic field; means for applying a signal current to the fourth coil while sequentially changing the magnitude and polarity;
means for detecting the voltage value of the detection signal generated in the coil; and the magnetic field strength and direction of the magnetic field in the direction of the magnetic element based on the magnitude and polarity of the signal current when the voltage value of the detection signal becomes minimum. A magnetic field measuring device comprising: a means for measuring a magnetic field; The drawings will be described in detail below.

まず、本発明の磁界測定装置のセンサ部及びそ
の測定原理を第1図及び第2図について説明す
る。
First, the sensor section of the magnetic field measuring device of the present invention and its measurement principle will be explained with reference to FIGS. 1 and 2.

図中、1は磁性素子であり、特に外部磁界の印
加により電気機械結合係数が漸次増大し、所定の
外部磁界が加わつた時に該電気機械結合係数が最
大値となるもの、例えばアモルフアス合金のリボ
ンである。ここで、電気機械結合係数とは、磁界
及び磁化の微小変化により磁気的に与えられたエ
ネルギーのうち、弾性エネルギーに変換されて材
料内に蓄えられるエネルギーの割合、あるいは応
力及び歪みの微小変化により弾性的に与えられた
エネルギーのうち、磁気的エネルギーに変換され
て材料内に蓄えられるエネルギーの割合を示すも
のである。また、該電気機械結合係数の値は材料
によつて異なるとともに該材料に加わる外部磁界
の大きさによつて変化する。例えば、上述したリ
ボン1では外部磁界がない状態ではほとんど0か
又は小さな値であるが、外部磁界が加わると当初
は外部磁界の増加に伴つて増大し、所定の外部磁
界が加わつた時に最大値となり、その後、さらに
外部磁界が増加すると減少する。なお、電気機械
結合係数の詳細については、例えば「R&Dレポ
ートNo.34 応用開発進むアモルフアス金属材料」
(株式会社シーエムシー、昭和57年11月16日発行、
P96〜99)等に記載されている。
In the figure, 1 is a magnetic element, in particular, an element whose electromechanical coupling coefficient gradually increases with the application of an external magnetic field, and whose electromechanical coupling coefficient reaches its maximum value when a predetermined external magnetic field is applied, such as a ribbon of amorphous alloy. It is. Here, the electromechanical coupling coefficient is the proportion of energy that is converted into elastic energy and stored in the material, out of the energy given magnetically by magnetic fields and minute changes in magnetization, or by minute changes in stress and strain. It shows the proportion of energy that is converted into magnetic energy and stored within the material, out of the energy given elastically. Further, the value of the electromechanical coupling coefficient differs depending on the material and changes depending on the magnitude of the external magnetic field applied to the material. For example, in the ribbon 1 described above, the value is almost 0 or small in the absence of an external magnetic field, but when an external magnetic field is applied, it initially increases as the external magnetic field increases, and reaches its maximum value when a predetermined external magnetic field is applied. and then decreases as the external magnetic field increases further. For details on the electromechanical coupling coefficient, see, for example, "R&D Report No. 34 Amorphous Metal Materials with Progress in Applied Development"
(CMC Co., Ltd., published on November 16, 1982,
P96-99) etc.

また、2はリボン1を共振させる交流電流を加
えるための第1のコイル(以下、励振コイルと称
す。)、3は検出信号を取出すための第2のコイル
(以下、検出コイルと称す。)、4はリボン1の励
振コイル2の配設部位に上述した所定の外部(バ
イアス)磁界を与えるための第3のコイル(以
下、励振バイアスコイルと称す。)、5はリボン1
の検出コイル3の配設部位に外部(バイアス)磁
界を後述する如くその強さ及び向きを順次変えな
がら与えるための第4のコイル(以下、検出バイ
アスコイルと称す。)である。
Further, 2 is a first coil (hereinafter referred to as an excitation coil) for applying an alternating current that makes the ribbon 1 resonate, and 3 is a second coil for extracting a detection signal (hereinafter referred to as a detection coil). , 4 is a third coil (hereinafter referred to as an excitation bias coil) for applying the above-mentioned predetermined external (bias) magnetic field to the location of the excitation coil 2 of the ribbon 1; 5 is the ribbon 1;
This is a fourth coil (hereinafter referred to as a detection bias coil) for applying an external (bias) magnetic field to the disposed portion of the detection coil 3 while sequentially changing its strength and direction as described later.

上記リボン1はその中央付近にて略直角に折り
曲げられ、その一辺1aは略鉛直に、また、他辺
1bは検出すべき磁界の方向Aに向けて配置され
る。また、該一辺1aの周りには励振コイル2及
び励振バイアスコイル4が配設され、他辺1bの
周りには検出コイル3及び検出バイアスコイル5
が配設されている。
The ribbon 1 is bent at a substantially right angle near its center, and one side 1a thereof is arranged substantially vertically, and the other side 1b is oriented in the direction A of the magnetic field to be detected. Further, an excitation coil 2 and an excitation bias coil 4 are arranged around one side 1a, and a detection coil 3 and a detection bias coil 5 are arranged around the other side 1b.
is installed.

上記励振バイアスコイル4には一定の直流電流
が流され、リボン1の励振コイル2の配設部位に
所定のバイアス磁界が加えられるが、その強さ及
び向きはリボン1の電気機械結合係数がほぼ最大
となるように設定される。なお、ここでリボン1
の電気機械結合係数がほぼ最大となるバイアス磁
界を与えるのは、後述する励振コイル2によるリ
ボン1の励振が最も効率良くなされるようにする
ためである。
A constant DC current is passed through the excitation bias coil 4, and a predetermined bias magnetic field is applied to the region of the ribbon 1 where the excitation coil 2 is disposed. is set to the maximum. In addition, here ribbon 1
The reason why the bias magnetic field is applied so that the electromechanical coupling coefficient of is approximately maximized is to enable the ribbon 1 to be excited most efficiently by the excitation coil 2, which will be described later.

而して、励振コイル2に交流の入力電流を流す
と、該励振コイル2に交流磁界が発生するが、こ
の交流磁界による磁気エネルギーはリボン1にて
振動(弾性)エネルギーに変換され、該リボン1
は振動状態となる。一方、振動状態のリボン1に
おける振動エネルギーは該リボン1にて磁気エネ
ルギーに変換され、その周囲に交流磁界を発生さ
せるため、検出コイル3には交流の出力電圧が発
生する。
When an alternating current input current is applied to the excitation coil 2, an alternating magnetic field is generated in the excitation coil 2, and the magnetic energy due to this alternating magnetic field is converted into vibration (elastic) energy in the ribbon 1. 1
becomes an oscillating state. On the other hand, the vibrational energy in the vibrating ribbon 1 is converted into magnetic energy in the ribbon 1, and an alternating current magnetic field is generated around the ribbon 1, so that an alternating current output voltage is generated in the detection coil 3.

この際、入力電流として第2図に示す特定周波
数の入力電流6を励振コイル2に流すと、リボン
1は共振状態となり、検出コイル3には同一周波
数の大きな出力電圧7(厳密には他の周波数の電
圧も発生するが、ここでは考えない。)が発生す
る。
At this time, when an input current 6 with a specific frequency shown in FIG. A voltage with a certain frequency is also generated, but we will not consider it here.) is generated.

ところで上記出力電圧7はリボン1の他辺1b
の方向Aに存在する磁界の極性、強さによつて異
なる。
By the way, the output voltage 7 is the other side 1b of the ribbon 1.
It varies depending on the polarity and strength of the magnetic field existing in direction A.

ここで存在する磁界として地磁気について考え
ると、リボン1の他辺1bが北を向いている場合
は磁界の強さが最も大きいため、その出力電圧7
は最大値を示す。次に一辺1aを中心として他辺
1bを回転させ東に向かわせると、磁界の強さが
弱まるため電圧値は小さくなり(出力電圧7′)、
ちようど東で最小値をとる。それから更に回転さ
せて少しでも南に向けると、磁界の極性が逆転す
るため、位相が180度変化し(出力電圧7″)、南
に近づくに従つて磁界の強さが増し、その電圧値
が大きくなる(出力電圧7)。
Considering the earth's magnetism as the magnetic field that exists here, when the other side 1b of the ribbon 1 faces north, the strength of the magnetic field is greatest, so the output voltage 7
indicates the maximum value. Next, when the other side 1b is rotated around one side 1a to face east, the strength of the magnetic field weakens and the voltage value becomes smaller (output voltage 7').
The minimum value is just east. If you then rotate it further and point it even slightly south, the polarity of the magnetic field will be reversed, so the phase will change by 180 degrees (output voltage 7''), and the closer you get to the south, the stronger the magnetic field will be, and the voltage value will change. (output voltage 7).

一方、上記検出バイアスコイル5に電流を流す
と他辺1b方向にバイアス磁界が発生するが、該
電流の大きさ、極性を順次変えていくと、方向A
の磁界と打ち消し合つて励振コイル3の出力電圧
値が最小値をとる場合が生ずる。従つて、この時
の検出バイアスコイル5に流した電流の値と極性
より方向Aの磁界の強さと極性を判定することが
可能となる。
On the other hand, when a current is passed through the detection bias coil 5, a bias magnetic field is generated in the direction of the other side 1b.
A case may occur in which the output voltage value of the excitation coil 3 takes a minimum value as the magnetic field cancels out with the magnetic field. Therefore, it is possible to determine the strength and polarity of the magnetic field in direction A from the value and polarity of the current flowing through the detection bias coil 5 at this time.

第3図乃至第6図は本発明の磁界検出装置の一
実施例を示すもので、ここでは3個のセンサ部を
互いに直交するように組合わせて、磁界の真の方
向、強さを測定し得る如くなしている。即ち、図
中、10,20,30はセンサ部で、該センサ部
10,20,30はその中央付近にて略直角に折
り曲げられたアモルフアス合金のリボン11,2
1,31と、その一辺11a,21a,31aに
取付けられた励振コイル12,22,32及び励
振バイアスコイル14,24,34と、他辺11
b,21b,31bに取付けられた検出コイル1
3,23,33及び検出バイアスコイル15,2
5,35とからなつており、他辺11b,21
b,31bはそれぞれ互いに直交するx,y,z
軸方向に沿つて配設されている。
Figures 3 to 6 show an embodiment of the magnetic field detection device of the present invention, in which three sensor sections are combined orthogonally to each other to measure the true direction and strength of the magnetic field. I am doing what I can. That is, in the figure, 10, 20, 30 are sensor parts, and the sensor parts 10, 20, 30 are amorphous alloy ribbons 11, 2 bent at a substantially right angle near the center thereof.
1, 31, excitation coils 12, 22, 32 and excitation bias coils 14, 24, 34 attached to one side 11a, 21a, 31a, and the other side 11
Detection coil 1 attached to b, 21b, 31b
3, 23, 33 and detection bias coils 15, 2
5, 35, and the other sides 11b, 21
b, 31b are mutually orthogonal x, y, z, respectively
They are arranged along the axial direction.

また40,41はマルチプレクサ、42はビデ
オアンプ、43は同期検波器、44はローパスフ
イルタ(LPF)、45はコンパレータ、46は信
号発生器、47は励振用磁気バイアス電流源、4
8はD−A変換器、49はマイクロプロセツサで
ある。
Further, 40 and 41 are multiplexers, 42 is a video amplifier, 43 is a synchronous detector, 44 is a low pass filter (LPF), 45 is a comparator, 46 is a signal generator, 47 is an excitation magnetic bias current source, 4
8 is a DA converter, and 49 is a microprocessor.

上記励振コイル12,22,32には信号発生
器46より特定周波数の交流電流が供給され、ま
た励振バイアスコイル14,24,34には励振
用磁気バイアス電流源47より所定の直流電流が
供給されており、リボン11,21,31は共振
状態に保たれている。検出コイル13,23,3
3及び検出バイアスコイル15,25,35はそ
れぞれマルチプレクサ40及び41に接続され、
マイクロプロセツサ49により切換え、選択され
る如くなつている。
The excitation coils 12, 22, 32 are supplied with an alternating current of a specific frequency from a signal generator 46, and the excitation bias coils 14, 24, 34 are supplied with a predetermined direct current from an excitation magnetic bias current source 47. The ribbons 11, 21, and 31 are maintained in a resonant state. Detection coil 13, 23, 3
3 and detection bias coils 15, 25, 35 are connected to multiplexers 40 and 41, respectively,
It is designed to be switched and selected by a microprocessor 49.

次に地磁気の全磁力と伏角とを測定する場合を
例にとつて動作を説明する。ここでz軸は沿直方
向に配置するものとする。まずマイクロプロセツ
サ49はマルチプレクサ40及び41によりx軸
方向のコイル、即ち検出コイル13及び検出バイ
アスコイル15を選択し、D−A変換器48より
検出バイアスコイル15に絶対値及び極性を変え
た電気信号を順次入力する。検出コイル13から
の電気信号よりビデオアンプ42、同期検波器4
3を経て信号発生器46の特定周波数と同一周波
数の信号、即ち検出信号が取り出され、ローパス
フイルタ44にて平滑化され、コンパレータ45
にて0レベルと比較されるが、検出バイアスコイ
ル15の発生するバイアス磁界により検出コイル
13からの電気信号の位相が180度変化し、検出
信号が0レベルを交差すると、コンパレータ45
よりマイクロプロセツサ49にパルス信号が出さ
れ、この時の検出バイアスコイル15へ流した電
流の値と極性が記憶される。以下、y軸、z軸に
ついても同様にして、検出信号が0レベルを交差
する時の検出バイアスコイル25,35に流され
た電流の値及び極性がマイクロプロセツサ49に
記憶される。以上の動作が所定の回数繰り返さ
れ、その平均値が求められ、予め定められた変換
係数に基づいてx,y,z軸方向の磁界の強さと
極性が求められる。
Next, the operation will be explained using an example in which the total magnetic force and inclination angle of the earth's magnetism are measured. Here, the z-axis is assumed to be arranged in the vertical direction. First, the microprocessor 49 selects the coils in the x-axis direction, that is, the detection coil 13 and the detection bias coil 15, by the multiplexers 40 and 41, and the D-A converter 48 sends the detection bias coil 15 an electric current with a changed absolute value and polarity. Input signals sequentially. Based on the electric signal from the detection coil 13, the video amplifier 42 and the synchronous detector 4
3, a signal having the same frequency as the specific frequency of the signal generator 46, that is, a detection signal, is extracted, smoothed by a low-pass filter 44, and then passed to a comparator 45.
However, due to the bias magnetic field generated by the detection bias coil 15, the phase of the electric signal from the detection coil 13 changes by 180 degrees, and when the detection signal crosses the 0 level, the comparator 45
A pulse signal is then output to the microprocessor 49, and the value and polarity of the current passed to the detection bias coil 15 at this time are stored. Thereafter, in the same manner for the y-axis and z-axis, the value and polarity of the current flowing through the detection bias coils 25 and 35 when the detection signal crosses the 0 level are stored in the microprocessor 49. The above operation is repeated a predetermined number of times, the average value thereof is determined, and the strength and polarity of the magnetic field in the x-, y-, and z-axis directions are determined based on predetermined conversion coefficients.

次にマイクロプロセツサ49は上記x,y,z
軸方向の磁界の強さと極性より地磁気の真の磁界
の方向及びその磁界の強さを以下に示す演算によ
り求める。
Next, the microprocessor 49 processes the above x, y, z
From the strength and polarity of the magnetic field in the axial direction, the direction of the true magnetic field of the earth's magnetism and the strength of the magnetic field are determined by the calculations shown below.

即ち、第6図において、水平分力Hはx軸方向
及びy軸方向の磁界強さをそれぞれX,Yとすれ
ば、 H=√22 ……(1) となる。また真の磁界の強さ、即ち全磁力Fはz
軸方向の磁界強さをZとすると、 F=√22 ……(2) となる。また全磁力Fの水平分力Hに対する伏角
Iは I=tan-1F/H ……(3) となる。また偏角Dを補正すれば真北の方向を判
定することもできる。
That is, in FIG. 6, the horizontal component H becomes H=√ 2 + 2 (1), where X and Y are the magnetic field strengths in the x-axis direction and the y-axis direction, respectively. Also, the true magnetic field strength, that is, the total magnetic force F, is z
If the magnetic field strength in the axial direction is Z, then F=√ 2 + 2 ...(2). Also, the inclination angle I with respect to the horizontal component H of the total magnetic force F is I=tan -1 F/H (3). Furthermore, by correcting the declination D, the direction of true north can also be determined.

第7図は本発明の磁界測定装置の変形例を示す
もので、ここでは励振コイルと検出コイル、また
励振バイアスコイルと検出バイアスコイルを兼用
として部品数を削減している。即ち、図中、5
0,51,52はアモルフアス合金のリボン、5
3,54,55,56,57,58はコイルで、
上記リボン50,51,52はその中央付近にて
直角に折り曲げられ、一辺50a,51a,52
aはそれぞれy,z,x軸方向に、また他辺50
b,51b,52bはそれぞれx,y,z軸方向
に向けて配置されている。コイル53,56はリ
ボン50の他辺50bとリボン52の一方52a
の周りに配設され、コイル54,57はリボン5
1の他辺51bとリボン50の一辺50aの周り
に配設され、コイル55,58はリボン52の他
辺52bとリボン51の一辺51aの周りに配設
されている。ここで例えばx軸方向の磁界につい
て測定する場合にはコイル53が検出コイルに、
コイル56が検出バイアスコイルに、コイル54
が励振コイルに、またコイル57が励振バイアス
コイルに選択されて行なわれる。なお、電気回路
部分については信号発生器の出力と励振用磁気バ
イアス電流源の出力をマルチプレクサにより各コ
イル53〜58に選択的に加えるようにするのみ
で、他はそのままでよい。
FIG. 7 shows a modification of the magnetic field measuring device of the present invention, in which the number of parts is reduced by using both the excitation coil and the detection coil, or the excitation bias coil and the detection bias coil. That is, in the figure, 5
0, 51, 52 are amorphous alloy ribbons, 5
3, 54, 55, 56, 57, 58 are coils,
The ribbons 50, 51, 52 are bent at right angles near the center, and one side 50a, 51a, 52
a in the y, z, and x axis directions, and the other side 50
b, 51b, and 52b are arranged toward the x, y, and z axis directions, respectively. The coils 53 and 56 are connected to the other side 50b of the ribbon 50 and one side 52a of the ribbon 52.
The coils 54 and 57 are arranged around the ribbon 5.
The coils 55 and 58 are arranged around the other side 52b of the ribbon 52 and the one side 51a of the ribbon 51. For example, when measuring the magnetic field in the x-axis direction, the coil 53 is used as a detection coil,
The coil 56 serves as a detection bias coil, and the coil 54 serves as a detection bias coil.
is selected as the excitation coil, and coil 57 is selected as the excitation bias coil. As for the electric circuit section, only the output of the signal generator and the output of the excitation magnetic bias current source are selectively applied to each coil 53 to 58 by a multiplexer, and the rest may be left as is.

以上説明したように本発明によれば、外部磁界
の印加により電気機械結合係数が漸次増大し、所
定の外部磁界が加わつた時に該電気機械結合係数
が最大値となる磁性素子と、磁性素子の一端及び
他端にそれぞれ配設した第1及び第2のコイル
と、上記磁性素子の第1及び第2のコイルの配設
部位にそれぞれ配設した第3及び第4のコイル
と、上記第1のコイルに磁性素子を共振させる交
流信号を加える手段と、上記第3のコイルに上記
所定の外部磁界を発生させる直流電流を加える手
段と、上記第4のコイルに信号電流を大きさ及び
極性を順次変えながら加える手段と、上記第2の
コイルに発生する検出信号の電圧値を検出する手
段と、上記検出信号の電圧値が極小となつた時の
上記信号電流の大きさ及び極性から上記磁性素子
の方向の磁界強さと磁界の向きを測定する手段と
からなるため、可動部分が全くなく、従つて、電
源投入後、直ちに測定を開始できるとともに複雑
な操作や取扱いを必要とせず、磁性素子の方向の
磁界強さや磁束の向きを高い精度で測定でき、ま
た、センサ部分は他の部分と離隔して設置するこ
とができ、リモートセンシングが可能で、その間
の距離も自由に設定することができ、また、安価
な磁性素子や少数のコイル及び簡単な電気回路に
より構成できるので、低価格且つ低消費電力とな
すことができ、また、磁界強さや磁束の向きを電
気信号で取出すことができるので、他の電子機器
との結合が容易となる等の利点がある。
As explained above, according to the present invention, there is provided a magnetic element whose electromechanical coupling coefficient gradually increases upon application of an external magnetic field, and whose electromechanical coupling coefficient reaches its maximum value when a predetermined external magnetic field is applied; first and second coils disposed at one end and the other end, respectively; third and fourth coils disposed at the first and second coil disposed portions of the magnetic element; means for applying an alternating current signal to the coil to cause the magnetic element to resonate, means for applying a direct current to the third coil to generate the predetermined external magnetic field, and a signal current to the fourth coil with a magnitude and polarity. a means for detecting the voltage value of the detection signal generated in the second coil; and a means for detecting the magnetic current from the magnitude and polarity of the signal current when the voltage value of the detection signal becomes minimum. Since it consists of a means for measuring the magnetic field strength in the direction of the element and the direction of the magnetic field, there are no moving parts, so measurements can be started immediately after power is turned on, and there is no need for complicated operations or handling. It is possible to measure the magnetic field strength and direction of magnetic flux with high accuracy in the direction of , and the sensor part can be installed separately from other parts, allowing remote sensing, and the distance between them can be set freely. Furthermore, since it can be configured with inexpensive magnetic elements, a small number of coils, and a simple electric circuit, it can be made at low cost and with low power consumption, and the magnetic field strength and direction of magnetic flux can be extracted as electrical signals. Therefore, there are advantages such as ease of connection with other electronic devices.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の説明に供するもので、第1図は
本発明の磁界測定装置の基本原理を説明するため
のセンサ部の斜視図、第2図は第1図のセンサ部
における入力電流と出力電圧との関係を示す説明
図、第3図乃至第6図は本発明の磁界測定装置の
一実施例を示し、第3図はセンサ部分の斜視図、
第4図は電気回路部分のブロツク図、第5図はマ
イクロプロセツサの動作フローを示す図、第6図
は地磁気の全磁力と各成分との関係を示す図、第
7図は本発明の他の実施例を示す斜視図である。 1,11,21,31……アモルフアス合金の
リボン、2,12,22,32……励振コイル、
3,13,23,33……検出コイル、4,1
4,24,34……励振バイアスコイル、5,1
5,25,35……検出バイアスコイル、40,
41……マルチプレクサ、43……同期検波器、
44……ローパスフイルタ、45……コンパレー
タ、46……信号発生器、47……励振用磁気バ
イアス電流源、48……D−A変換器、49……
マイクロプロセツサ。
The drawings are for explaining the present invention. FIG. 1 is a perspective view of the sensor section for explaining the basic principle of the magnetic field measuring device of the present invention, and FIG. 2 shows the input current and output in the sensor section of FIG. 1. An explanatory diagram showing the relationship with voltage, FIGS. 3 to 6 show an embodiment of the magnetic field measuring device of the present invention, and FIG. 3 is a perspective view of the sensor portion,
Figure 4 is a block diagram of the electric circuit, Figure 5 is a diagram showing the operation flow of the microprocessor, Figure 6 is a diagram showing the relationship between the total magnetic force of the earth's magnetic field and each component, and Figure 7 is a diagram showing the relationship between the total magnetic force of the earth's magnetic field and each component. FIG. 7 is a perspective view showing another embodiment. 1, 11, 21, 31... Amorphous alloy ribbon, 2, 12, 22, 32... Excitation coil,
3, 13, 23, 33...detection coil, 4, 1
4, 24, 34...excitation bias coil, 5, 1
5, 25, 35... detection bias coil, 40,
41... multiplexer, 43... synchronous detector,
44...Low pass filter, 45...Comparator, 46...Signal generator, 47...Magnetic bias current source for excitation, 48...D-A converter, 49...
Microprocessor.

Claims (1)

【特許請求の範囲】 1 外部磁界の印加により電気機械結合係数が漸
次増大し、所定の外部磁界が加わつた時に該電気
機械結合係数が最大値となる磁性素子と、 該磁性素子の一端及び他端にそれぞれ配設した
第1及び第2のコイルと、 上記磁性素子の第1及び第2のコイルの配設部
位にそれぞれ配設した第3及び第4のコイルと、 上記第1のコイルに磁性素子を共振させる交流
信号を加える手段と、 上記第3のコイルに上記所定の外部磁界を発生
させる直流電流を加える手段と、 上記第4のコイルに信号電流を大きさ及び極性
を順次変えながら加える手段と、 上記第2のコイルに発生する検出信号の電圧値
を検出する手段と、 上記検出信号の電圧値が極小となつた時の上記
信号電流の大きさ及び極性から上記磁性素子の方
向の磁界強さと磁界の向きを測定する手段と からなる磁界測定装置。 2 磁性素子としてアモルフアス合金のリボンを
用いたことを特徴とする特許請求の範囲第1項記
載の磁界測定装置。
[Scope of Claims] 1. A magnetic element whose electromechanical coupling coefficient gradually increases upon application of an external magnetic field, and whose electromechanical coupling coefficient reaches a maximum value when a predetermined external magnetic field is applied; one end of the magnetic element and another end thereof; first and second coils respectively disposed at the ends; third and fourth coils disposed respectively at the first and second coils of the magnetic element; and the first coil. means for applying an alternating current signal to cause the magnetic element to resonate; means for applying a direct current to the third coil to generate the predetermined external magnetic field; and applying a signal current to the fourth coil while sequentially changing the magnitude and polarity. means for detecting the voltage value of the detection signal generated in the second coil; and a direction of the magnetic element based on the magnitude and polarity of the signal current when the voltage value of the detection signal becomes minimum. A magnetic field measuring device comprising means for measuring the magnetic field strength and direction of the magnetic field. 2. The magnetic field measuring device according to claim 1, wherein an amorphous alloy ribbon is used as the magnetic element.
JP16050483A 1983-09-02 1983-09-02 Magnetic field sensor Granted JPS6053861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16050483A JPS6053861A (en) 1983-09-02 1983-09-02 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16050483A JPS6053861A (en) 1983-09-02 1983-09-02 Magnetic field sensor

Publications (2)

Publication Number Publication Date
JPS6053861A JPS6053861A (en) 1985-03-27
JPH0352832B2 true JPH0352832B2 (en) 1991-08-13

Family

ID=15716370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16050483A Granted JPS6053861A (en) 1983-09-02 1983-09-02 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS6053861A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638108B2 (en) * 1985-07-15 1994-05-18 ティーディーケイ株式会社 Geomagnetic direction sensor
FR2608776A1 (en) * 1986-12-23 1988-06-24 Thomson Csf HOMOCENTRIC TRIAXIAL MAGNETOMETER
FR2695210B1 (en) * 1992-09-03 1994-10-21 Eca Device for measuring the three orthogonal components of an electromagnetic field.
WO2006028425A1 (en) * 2004-09-07 2006-03-16 Inessa Antonovna Bolshakova Magnetic field measuring sensor

Also Published As

Publication number Publication date
JPS6053861A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US6534982B1 (en) Magnetic resonance scanner with electromagnetic position and orientation tracking device
JP2000504106A (en) Vibrating gyroscope and assembling method
Garrett Resonant acoustic determination of elastic moduli
EP0083144A1 (en) Improved method and apparatus for mass flow measurement
EP0380562B1 (en) Magnetometer employing a saturable core inductor
JP3469550B2 (en) Combination of pick-off and vibratory drive used in Coriolis flowmeter and method of using this combination
JPH09152473A (en) Magnetic detecting apparatus
US4439732A (en) Electrically balanced fluxgate gradiometers
US7295943B2 (en) Geomagnetic sensor for calibrating azimuth by compensating for an effect of tilting and method thereof
US20080094057A1 (en) Position measurement system employing total transmitted flux quantization
JPH0670572B2 (en) Device for measuring mass flow rate of substance and method for measuring mass flow rate of substance
Rovati et al. Zero-field readout electronics for planar fluxgate sensors without compensation coil
Wang et al. A highly sensitive magnetometer based on the Villari effect
JPH0352832B2 (en)
JPH0352833B2 (en)
JPH06174471A (en) Electronic azimuth meter
EP2388608B1 (en) Fluxgate sensor circuit for measuring the gradient of a magnetic field
JP2010187709A (en) Jaw movement measuring device
JP2803091B2 (en) Magnetic sensor
US6498478B2 (en) Azimuth measuring method, azimuth measuring apparatus, position measuring method, and position measuring apparatus
JPS62204174A (en) Rotating magnetic field type magnetic anisotropy sensor
JPH10115634A (en) Angular velocity sensor
RU2166735C1 (en) Device for remote determination of coordinates and attitude of object (versions)
JPS61181912A (en) Bearing sensor
JPS60100772A (en) Magnetic field measuring device