JPH09196686A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH09196686A
JPH09196686A JP8024822A JP2482296A JPH09196686A JP H09196686 A JPH09196686 A JP H09196686A JP 8024822 A JP8024822 A JP 8024822A JP 2482296 A JP2482296 A JP 2482296A JP H09196686 A JPH09196686 A JP H09196686A
Authority
JP
Japan
Prior art keywords
ferromagnetic
angular velocity
ferromagnetic parts
ferromagnetic material
magnetostrictive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8024822A
Other languages
Japanese (ja)
Inventor
Naoko Kawamura
尚古 川村
Koichi Matsumura
恒一 松村
Manabu Aizawa
学 相澤
Toshio Aizawa
俊雄 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8024822A priority Critical patent/JPH09196686A/en
Publication of JPH09196686A publication Critical patent/JPH09196686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an angular velocity sensor whose configuration is simple and whose sensitivity and accuracy are enhanced. SOLUTION: When an AC current is applied to a winding 15 at a detection part 10, ferromagnetic parts 12, 13 are excited, and the respective ferromagnetic parts 12, 13 are vibrated (expanded and contracted) in the length direction due to a magnetostrictive effect. When the ferromagnetic parts 12, 13 being vibrated are turned at an angular velocity ω, Coriolis' force Fc acts on the ferromagnetic parts 12, 13, a support member 11 is bent, and a stress acts on the ferromagnetic parts 12, 13 in such a way that the other out of the ferromagnetic parts 12, 13 is contracted when one out of them is expanded. Thereby, a difference is generated in the impedance of the ferromagnetic parts 12, 13 due to a reverse magnetostrictive effect. Consequently, a high-frequency voltage Vs is applied across the ferromagnetic parts 12, 13 by a high-frequency power supply 21, and the difference in a current flowing to the ferromagnetic parts 12, 13 is amplified by a differential amplifier 22. Thereby, the angular velocity ωcan be found on the basis of the output of the differential amplifier 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強磁性体の磁歪効
果および逆磁歪効果を利用した角速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor utilizing the magnetostrictive effect and inverse magnetostrictive effect of a ferromagnetic material.

【0002】[0002]

【従来の技術】従来より、角速度センサとしては、ピエ
ゾジャイロのように、圧電セラミック素子(以下、単に
圧電素子と言う。)を利用したものが種々提案されてい
る。例えばピエゾジャイロでは、振動体に駆動用圧電素
子と検出用圧電素子とが取り付けられ、駆動用圧電素子
によって振動体を振動させ、角速度によって振動体に作
用するコリオリ力を検出用圧電素子を用いて検出するよ
うになっている。
2. Description of the Related Art Conventionally, various types of angular velocity sensors using a piezoelectric ceramic element (hereinafter simply referred to as a piezoelectric element) such as a piezo gyro have been proposed. For example, in a piezo gyro, a driving piezoelectric element and a detecting piezoelectric element are attached to a vibrating body, the vibrating body is vibrated by the driving piezoelectric element, and the Coriolis force acting on the vibrating body depending on the angular velocity is used by the detecting piezoelectric element. It is designed to detect.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の角速度センサでは、検出用圧電素子の出力
が小さく、例えば出力を30倍程度増幅するアンプが必
要になる等、感度が劣るという問題点があった。また、
構造が複雑で、組立工数が多く、コストが高くなるとい
う問題点があった。更には、ドリフトやオフセットが大
きく精度が劣るという問題点があった。
However, in the conventional angular velocity sensor as described above, the output of the detecting piezoelectric element is small, and the sensitivity is inferior because, for example, an amplifier for amplifying the output by about 30 times is required. There was a point. Also,
There are problems that the structure is complicated, the number of assembling steps is large, and the cost is high. Further, there is a problem that the drift and the offset are large and the accuracy is poor.

【0004】本発明はかかる問題点に鑑みてなされたも
ので、その課題は、構成が簡単で、感度および精度の高
い角速度センサを提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide an angular velocity sensor having a simple structure and high sensitivity and accuracy.

【0005】[0005]

【課題を解決するための手段】本発明の角速度センサ
は、平行な二面を有する細長い支持部材と、支持部材の
二面にそれぞれ設けられた磁歪効果および逆磁歪効果を
有する細長い二つの強磁性体部と、強磁性体部の周囲に
巻回され、交流電流の通電により強磁性体部を磁歪効果
によって長手方向に振動させるための巻線と、角速度に
より強磁性体部に作用するコリオリ力によって生じる支
持部材の撓みに応じて、逆磁歪効果によって生じる二つ
の強磁性体部のインピーダンスの差に応じた信号を検出
する検出手段とを備えたものである。
The angular velocity sensor of the present invention comprises an elongated support member having two parallel surfaces, and two elongated ferromagnetism having a magnetostrictive effect and an inverse magnetostrictive effect respectively provided on the two surfaces of the support member. A body part, a winding wound around the ferromagnetic part, and a coil for vibrating the ferromagnetic part in the longitudinal direction due to the magnetostrictive effect when an alternating current is applied, and a Coriolis force acting on the ferromagnetic part by the angular velocity. And a detection unit for detecting a signal corresponding to the difference in impedance between the two ferromagnetic material portions caused by the inverse magnetostriction effect in accordance with the bending of the supporting member caused by.

【0006】この角速度センサでは、強磁性体部の周囲
に巻回された巻線に交流電流を通電すると、強磁性体部
は磁歪効果によって長手方向に振動する。振動中の強磁
性体部には角速度に応じたコリオリ力が作用し、このコ
リオリ力によって支持部材が撓み、これにより、逆磁歪
効果によって二つの強磁性体部のインピーダンスに差に
生じる。従って、検出手段によって、二つの強磁性体部
のインピーダンスの差に応じた信号を検出することによ
り、角速度を求めることができる。
In this angular velocity sensor, when an alternating current is applied to the winding wound around the ferromagnetic material portion, the ferromagnetic material portion vibrates in the longitudinal direction due to the magnetostrictive effect. A Coriolis force corresponding to the angular velocity acts on the vibrating ferromagnetic body portion, and the Coriolis force causes the supporting member to bend. This causes a difference in impedance between the two ferromagnetic body portions due to the inverse magnetostrictive effect. Therefore, the angular velocity can be obtained by detecting the signal according to the difference in impedance between the two ferromagnetic parts by the detecting means.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0008】図1は本発明の第1の実施の形態に係る角
速度センサの構成を示す説明図、図2は図1における検
出部の平面図である。これらの図に示したように、本実
施の形態に係る角速度センサは、計測対象に取り付けら
れる検出部10を備えている。検出部10は、適度の弾
性率を有する非磁性材料で形成され、平行な二面を有す
る細長い板状の支持部材11と、この支持部材11の平
行な二面にそれぞれ設けられた磁歪効果および逆磁歪効
果を有する細長い板状の二つの強磁性体部12,13
と、各強磁性体部12,13の両端部にそれぞれ設けら
れた電極部14と、支持部材11および強磁性体部1
2,13の周囲に巻回され、交流電流の通電により強磁
性体部12,13を磁歪効果によって長手方向に振動
(伸縮)させるための巻線15とを有する検出部10を
備えている。
FIG. 1 is an explanatory view showing the constitution of an angular velocity sensor according to a first embodiment of the present invention, and FIG. 2 is a plan view of a detecting portion in FIG. As shown in these drawings, the angular velocity sensor according to the present embodiment includes the detection unit 10 attached to the measurement target. The detection unit 10 is formed of a non-magnetic material having an appropriate elastic modulus, and has an elongated plate-like support member 11 having two parallel surfaces, and a magnetostrictive effect provided on each of the two parallel surfaces of the support member 11. Two elongated plate-shaped ferromagnetic parts 12, 13 having an inverse magnetostrictive effect
An electrode portion 14 provided at both ends of each of the ferromagnetic material portions 12 and 13, a support member 11 and a ferromagnetic material portion 1
The detection unit 10 is provided around the windings 2 and 13 and has a winding 15 for vibrating (expanding and contracting) the ferromagnetic material portions 12 and 13 in the longitudinal direction by the magnetostrictive effect when an alternating current is applied.

【0009】強磁性体部12,13は、Ni−Fe系、
Co−Fe系等の合金(例えばパーマロイ(商品名))
やアモルファス等、磁歪効果および逆磁歪効果を有する
強磁性体で形成される。強磁性体の磁歪定数は、例えば
1×10-6より大きい値とする。このような強磁性体の
組成の一例としては、Co65%,Fe10%,Ca1
5%,B10%が挙げられる。強磁性体部12,13の
形状は、例えば長さ15mm、幅0.1mm、厚み25
μmとしている。強磁性体部12,13は、長手方向に
振動(伸縮)できるように、支持部材11に対して長手
方向に摺動可能に取り付けるのが好ましい。電極部14
は、例えば、強磁性体部12,13の両端部に銀ペース
ト(銀粉と有機性硬化樹脂の混合物)を付着させて形成
される。巻線15には、交流電源20によって、例えば
周波数が100Hzよりも大きい励磁信号Vr が印加さ
れるようになっている。検出部10は、図1に示したよ
うに、支持部材11の両端部近傍の2箇所を支点16と
して、測定箇所に固定されるようになっている。
The ferromagnetic portions 12 and 13 are made of a Ni--Fe system,
Co-Fe based alloys (eg Permalloy (trade name))
It is formed of a ferromagnetic material having a magnetostrictive effect and an inverse magnetostrictive effect such as amorphous and amorphous. The magnetostriction constant of the ferromagnetic material is set to a value larger than 1 × 10 −6 , for example. As an example of the composition of such a ferromagnetic material, Co65%, Fe10%, Ca1
5% and B10% are included. The ferromagnetic material parts 12 and 13 have, for example, a length of 15 mm, a width of 0.1 mm, and a thickness of 25 mm.
μm. The ferromagnetic parts 12, 13 are preferably attached to the support member 11 so as to be slidable in the longitudinal direction so that they can vibrate (expand and contract) in the longitudinal direction. Electrode part 14
Is formed by, for example, depositing a silver paste (a mixture of silver powder and an organic curable resin) on both ends of the ferromagnetic parts 12, 13. An excitation signal V r having a frequency higher than 100 Hz, for example, is applied to the winding 15 by the AC power supply 20. As shown in FIG. 1, the detection unit 10 is fixed to the measurement position with two fulcrums 16 near both ends of the support member 11.

【0010】本実施の形態に係る角速度センサは、更
に、角速度により強磁性体部12,13に作用するコリ
オリ力によって生じる支持部材11の撓みに応じて、逆
磁歪効果によって生じる二つの強磁性体部12,13の
インピーダンスの差に応じた信号を検出する検出手段と
して、各強磁性体部12,13に高周波電圧Vs を印加
する高周波電源21と、この高周波電圧Vs によって各
強磁性体部12,13に流れる電流の差を増幅する差動
増幅器22とを備えている。
The angular velocity sensor according to the present embodiment further includes two ferromagnetic bodies produced by the inverse magnetostrictive effect in accordance with the bending of the support member 11 caused by the Coriolis force acting on the ferromagnetic bodies 12 and 13 due to the angular velocity. As a detection means for detecting a signal corresponding to the difference in impedance between the parts 12 and 13, a high frequency power source 21 for applying a high frequency voltage V s to each ferromagnetic part 12 and 13, and each ferromagnetic material by this high frequency voltage V s . The differential amplifier 22 amplifies the difference between the currents flowing in the parts 12 and 13.

【0011】ここで、図3を参照して、検出部10の強
磁性体部12,13に作用する応力とインピーダンスと
の関係について説明する。ここでは、図3に示したよう
に、適度の弾性率を有する細長い板状の基体31の一面
に強磁性体層32を接合した素子30を考える。強磁性
体層32は、強磁性体部12,13と同様に磁歪効果お
よび逆磁歪効果を有するものである。この素子30は、
強磁性体層32が接合された面とは反対側における基体
31の両端部近傍の2箇所を支点34,34として測定
箇所に固定されるようになっている。
Here, the relationship between the stress acting on the ferromagnetic material portions 12 and 13 of the detection portion 10 and the impedance will be described with reference to FIG. Here, as shown in FIG. 3, let us consider an element 30 in which a ferromagnetic layer 32 is bonded to one surface of an elongated plate-shaped substrate 31 having an appropriate elastic modulus. The ferromagnetic layer 32 has a magnetostrictive effect and an inverse magnetostrictive effect, like the ferromagnetic parts 12 and 13. This element 30 is
Two points near both ends of the base 31 on the side opposite to the surface to which the ferromagnetic layer 32 is joined are fixed to the measurement point as fulcrums 34, 34.

【0012】Ni−Fe系、Co−Fe系等の強磁性体
の合金膜やアモルファス膜は、磁歪効果を有し、磁歪定
数(λ)は±50×10-6程度であるが、応力に応じて
抗磁力、インダクタンス、透磁率等の磁気特性が変化す
る逆磁歪効果も有することが明らかになっている。
An alloy film or an amorphous film of a ferromagnetic material such as Ni-Fe system or Co-Fe system has a magnetostriction effect, and the magnetostriction constant (λ) is about ± 50 × 10 -6 , but the stress It has been clarified that it also has an inverse magnetostriction effect in which magnetic properties such as coercive force, inductance, and magnetic permeability change accordingly.

【0013】ここで、逆磁歪効果を有する強磁性体にお
ける応力と透磁率の関係について考察する。等方磁歪の
場合に、応力をσとすると、強磁性体内部に発生する磁
気弾性エネルギ(一軸異方性エネルギ)Eは、次の
(1)式のように表される(近角著「強磁性」(裳華
房、1936年発行)の第130ページ参照)。
Here, the relationship between stress and magnetic permeability in a ferromagnetic material having an inverse magnetostrictive effect will be considered. In the case of isotropic magnetostriction, assuming that the stress is σ, the magnetoelastic energy (uniaxial anisotropy energy) E generated inside the ferromagnetic material is expressed by the following equation (1) (K. (See page 130 of "Magnetism" (published by Zenkabo, 1936)).

【0014】[0014]

【数1】E=(−3/2)・λ・σ …(1)[Equation 1] E = (− 3/2) · λ · σ (1)

【0015】磁気弾性エネルギEは、強磁性体の透磁率
μに影響し、次の(2)式の関係がある(前出の「強磁
性」の第187ページ参照)。
The magnetoelastic energy E affects the magnetic permeability μ of the ferromagnetic material and has the relationship of the following equation (2) (see the above-mentioned “ferromagnetism”, page 187).

【0016】[0016]

【数2】μ∝1/E …(2)[Equation 2] μ∝1 / E (2)

【0017】ここで、応力σの絶対値が小さい範囲すな
わち磁気弾性エネルギEの絶対値が小さい範囲では、透
磁率μの変化量Δμは、近似的に次の(3)式のように
表すことができる。
Here, in a range where the absolute value of the stress σ is small, that is, in the range where the absolute value of the magnetoelastic energy E is small, the variation Δμ of the magnetic permeability μ is approximately expressed by the following equation (3). You can

【0018】[0018]

【数3】Δμ∝E …(3)[Equation 3] Δμ∝E (3)

【0019】一方、図3に示したような構造の素子30
では、基体31に外力Fが作用すると、基体31が撓
み、強磁性体層32に応力が作用する。外力Fと強磁性
体層32に作用する応力σとの関係は、次の(4)式の
ように表される。ただし、kは係数である。
On the other hand, the element 30 having the structure shown in FIG.
Then, when the external force F acts on the base 31, the base 31 bends, and stress acts on the ferromagnetic layer 32. The relationship between the external force F and the stress σ acting on the ferromagnetic layer 32 is expressed by the following equation (4). However, k is a coefficient.

【0020】[0020]

【数4】σ∝k・F …(4)[Equation 4] σ∝k · F (4)

【0021】(1)式、(3)式および(4)式より、
次の(5)式が導かれる。
From equations (1), (3) and (4),
The following equation (5) is derived.

【0022】[0022]

【数5】Δμ∝E∝λ・σ∝λ・F …(5)[Equation 5] Δμ∝E∝λ ・ σ∝λ ・ F (5)

【0023】強磁性体層32のインダクタンスLの変化
量ΔLはΔμに比例するので、次の(6)式が導かれ
る。
Since the variation ΔL of the inductance L of the ferromagnetic layer 32 is proportional to Δμ, the following equation (6) is derived.

【0024】[0024]

【数6】ΔL∝F …(6)[Equation 6] ΔL∝F (6)

【0025】ここで、測定角周波数をωとすると、強磁
性体層32のインピーダンスZは、次の(7)式で表さ
れる。ただし、Rは抵抗である。
Here, when the measurement angular frequency is ω, the impedance Z of the ferromagnetic layer 32 is expressed by the following equation (7). However, R is a resistance.

【0026】[0026]

【数7】Z=R+j・ω・L …(7)[Equation 7] Z = R + j · ω · L (7)

【0027】(6)式および(7)式より、強磁性体層
32のインダクタンスLおよびインピーダンスZは外力
Fに応じて変化することが分かる。
From the equations (6) and (7), it can be seen that the inductance L and the impedance Z of the ferromagnetic layer 32 change according to the external force F.

【0028】図4は、強磁性体層32の両端間に13M
Hzの高周波電圧を印加し、強磁性体層32に13MH
zの高周波電流を通電した場合において素子30に作用
する応力(外力Fに比例)と強磁性体層32のリアクタ
ンス(ω・L)との関係を測定した結果の一例を示した
ものである。なお、ここでは、図4の縦軸の2つのスケ
ールのうち左側のものを用いる。この図から、応力(外
力)の小さい範囲では、強磁性体部12のインピーダン
スZを決定するリアクタンス(ω・L)が、応力(外
力)に応じて略直線的に変化することが分かる。
FIG. 4 shows that 13M is provided between both ends of the ferromagnetic layer 32.
13 MHz is applied to the ferromagnetic layer 32 by applying a high frequency voltage of Hz.
It is an example of the result of measuring the relationship between the stress acting on the element 30 (proportional to the external force F) and the reactance (ω · L) of the ferromagnetic layer 32 when a high frequency current of z is applied. In addition, here, the one on the left side of the two scales on the vertical axis of FIG. 4 is used. From this figure, it can be seen that in the range where the stress (external force) is small, the reactance (ω · L) that determines the impedance Z of the ferromagnetic body portion 12 changes substantially linearly according to the stress (external force).

【0029】また、図3に示したように、基体31のお
よび強磁性体層32の周囲に導線を例えば200回の巻
回してなる巻線35を設け、この巻線35に1MHzの
高周波電流を通電した場合において素子30に作用する
応力と強磁性体層32および巻線35を含むコイルのリ
アクタンス(ω・L)との関係を測定した結果も、図4
に示したように、前述の素子30に作用する応力と強磁
性体層32のリアクタンス(ω・L)との関係と同様と
なった。なお、ここでは、図4の縦軸の2つのスケール
のうち右側のものを用いる。従って、応力(外力)の小
さい範囲では、強磁性体層32および巻線35を含むコ
イルのインピーダンスZを決定するリアクタンス(ω・
L)が、応力(外力)に応じて略直線的に変化すること
が分かる。
Further, as shown in FIG. 3, a winding 35 formed by winding a conductor wire, for example, 200 times is provided around the base 31 and the ferromagnetic layer 32, and a high frequency current of 1 MHz is supplied to the winding 35. FIG. 4 also shows the result of measuring the relationship between the stress acting on the element 30 and the reactance (ω · L) of the coil including the ferromagnetic layer 32 and the winding 35 when current is applied to the element 30.
As described above, the relationship between the stress acting on the element 30 and the reactance (ω · L) of the ferromagnetic layer 32 is similar. Note that the right one of the two vertical scales in FIG. 4 is used here. Therefore, in the range where the stress (external force) is small, the reactance (ω ·) that determines the impedance Z of the coil including the ferromagnetic layer 32 and the winding 35.
It can be seen that L) changes substantially linearly according to the stress (external force).

【0030】このように、強磁性体層32に応力が作用
すると、強磁性体層32のインピーダンスおよび強磁性
体層32および巻線35を含むコイルのインピーダンス
が変化する。図1における検出部10についても同様で
あり、強磁性体部12,13に応力が作用すると、強磁
性体部12,13のインピーダンスが変化する。
Thus, when the stress is applied to the ferromagnetic layer 32, the impedance of the ferromagnetic layer 32 and the impedance of the coil including the ferromagnetic layer 32 and the winding 35 change. The same applies to the detection unit 10 in FIG. 1, and when stress acts on the ferromagnetic material portions 12 and 13, the impedance of the ferromagnetic material portions 12 and 13 changes.

【0031】次に、本実施の形態に係る角速度センサの
作用について説明する。
Next, the operation of the angular velocity sensor according to this embodiment will be described.

【0032】検出部10の巻線15には、交流電源20
によって、例えば周波数が100Hzよりも大きい励磁
信号Vr が印加され、巻線15に交流電流が通電され
る。これにより、各強磁性体部12,13が励磁され、
各強磁性体部12,13が磁歪効果によって長手方向に
振動(伸縮)する。このように振動中の強磁性体部1
2,13が、図1に示したように角速度ωで回転する
と、強磁性体部12,13にはコリオリ力Fc が作用す
る。強磁性体部12,13の振動の速度をvとすると、
コリオリ力Fc は、ωvに比例した大きさを持ち、方向
は速度vの方向を角速度ωの方向と反対の方向に90°
回転した方向となる。強磁性体部12,13がコリオリ
力Fc を受けることによって支持部材11は撓み、強磁
性体部12,13の一方が伸びるときは他方が縮むよう
に、強磁性体部12,13に応力が作用する。これによ
り、逆磁歪効果によって強磁性体部12,13のインピ
ーダンスが変化すると共に、強磁性体部12,13のイ
ンピーダンスの変化量が異なるため、強磁性体部12,
13のインピーダンスに差に生じる。従って、強磁性体
部12,13のインピーダンスの差に応じた信号を検出
することにより、角速度ωを求めることができる。本実
施の形態では、強磁性体部12,13のインピーダンス
の差に応じた信号を検出するために、高周波電源21に
よって各強磁性体部12,13に高周波電圧Vs を印加
して、各強磁性体部12,13に流れる電流の差を差動
増幅器22によって増幅しており、差動増幅器22の出
力より角速度ωを求めることができる。
An AC power supply 20 is provided on the winding 15 of the detection unit 10.
Thus, an excitation signal V r having a frequency higher than 100 Hz, for example, is applied, and an alternating current is passed through the winding 15. As a result, the ferromagnetic portions 12 and 13 are excited,
The ferromagnetic portions 12 and 13 vibrate (expand and contract) in the longitudinal direction due to the magnetostrictive effect. Ferromagnetic material part 1 vibrating in this way
When 2 and 13 rotate at the angular velocity ω as shown in FIG. 1, the Coriolis force F c acts on the ferromagnetic parts 12 and 13. If the speed of vibration of the ferromagnetic parts 12 and 13 is v,
The Coriolis force F c has a magnitude proportional to ωv, and the direction is 90 ° in the direction of the velocity v in the direction opposite to the direction of the angular velocity ω.
It is the direction of rotation. When the ferromagnetic members 12 and 13 receive the Coriolis force F c , the supporting member 11 bends, and when one of the ferromagnetic members 12 and 13 expands, the other contracts, so that stress is applied to the ferromagnetic members 12 and 13. To work. As a result, the impedances of the ferromagnetic material portions 12 and 13 change due to the inverse magnetostrictive effect, and the amount of change in the impedance of the ferromagnetic material portions 12 and 13 differs.
13 causes a difference in impedance. Therefore, the angular velocity ω can be obtained by detecting a signal corresponding to the difference in impedance between the ferromagnetic material portions 12 and 13. In the present embodiment, in order to detect a signal according to the impedance difference between the ferromagnetic material portions 12 and 13, a high frequency power supply 21 applies a high frequency voltage V s to each ferromagnetic material portion 12 and 13, The difference between the currents flowing through the ferromagnetic parts 12, 13 is amplified by the differential amplifier 22, and the angular velocity ω can be obtained from the output of the differential amplifier 22.

【0033】以上説明したように本実施の形態に係る角
速度センサによれば、構成が簡単であるためコストを低
減することができる。また、構成が簡単であると共に、
同様の強磁性体部12,13のインピーダンスの差に応
じた信号を検出するようにしたので、ドリフトやオフセ
ットが小さく(オフセットはほとんど零にすることが可
能)、精度が向上する。更に、本実施の形態に係る角速
度センサでは、従来の圧電素子を利用した角速度センサ
に比べて、例えば10倍以上の大きな出力が得られるた
め、感度が向上する。
As described above, the angular velocity sensor according to the present embodiment has a simple structure, so that the cost can be reduced. In addition, the configuration is simple,
Since the signal corresponding to the difference in impedance between the similar ferromagnetic material portions 12 and 13 is detected, the drift and the offset are small (the offset can be almost zero) and the accuracy is improved. Further, in the angular velocity sensor according to the present embodiment, a large output of, for example, 10 times or more can be obtained as compared with the conventional angular velocity sensor using the piezoelectric element, so that the sensitivity is improved.

【0034】図5は本発明の第2の実施の形態に係る角
速度センサの構成を示す説明図である。本実施の形態に
係る角速度センサは、計測対象に取り付けられる検出部
40を備えている。検出部40は、適度の弾性率を有す
る非磁性材料で形成された支持部材41を有している。
支持部材41は、二つの細長い板状部41a,41bを
所定の間隔で平行に配置し、これら板状部41a,41
bの両端部間を連結した形状に形成されている。検出部
40は、更に、支持部材41の板状部41a,41bの
外側の平行な二面にそれぞれ設けられた磁歪効果および
逆磁歪効果を有する細長い板状の二つの強磁性体部4
2,43と、板状部41aおよび強磁性体部42の周囲
に巻回され、高周波電流の通電により強磁性体部42を
磁歪効果によって長手方向に振動(伸縮)させると共に
強磁性体部42のインピーダンスの変化を検出するため
の巻線45aと、板状部41bおよび強磁性体部43の
周囲に巻回され、高周波電流の通電により強磁性体部4
3を磁歪効果によって長手方向に振動(伸縮)させると
共に強磁性体部43のインピーダンスの変化を検出する
ための巻線45bとを有している。強磁性体部42,4
3は、第1の実施の形態における強磁性体部12,13
と同様のものであり、板状部41a,41bに対する取
り付け方法も第1の実施の形態と同様である。検出部4
0は、支持部材41の両端部近傍の2箇所を支点46と
して、測定箇所に固定されるようになっている。
FIG. 5 is an explanatory view showing the structure of the angular velocity sensor according to the second embodiment of the present invention. The angular velocity sensor according to the present embodiment includes a detection unit 40 attached to the measurement target. The detection unit 40 has a support member 41 formed of a non-magnetic material having an appropriate elastic modulus.
The support member 41 has two elongated plate-shaped portions 41a and 41b arranged in parallel at a predetermined interval, and these plate-shaped portions 41a and 41b.
It is formed in a shape in which both ends of b are connected. The detector 40 further includes two elongated plate-shaped ferromagnetic bodies 4 having a magnetostrictive effect and an inverse magnetostrictive effect, which are provided on two parallel outer surfaces of the plate-shaped portions 41a and 41b of the support member 41, respectively.
2, 43, and the plate-shaped portion 41a and the ferromagnetic material portion 42 are wound around, and the ferromagnetic material portion 42 vibrates (expands and contracts) in the longitudinal direction by the magnetostrictive effect when a high-frequency current is applied, and at the same time, the ferromagnetic material portion 42. 45a for detecting a change in impedance of the ferromagnetic material portion 4a, and is wound around the plate-like portion 41b and the ferromagnetic material portion 43.
3 has a winding 45b for vibrating (expanding and contracting) in the longitudinal direction by the magnetostrictive effect and for detecting a change in impedance of the ferromagnetic body portion 43. Ferromagnetic material parts 42, 4
3 is the ferromagnetic material parts 12, 13 in the first embodiment.
The method of attaching to the plate-shaped portions 41a and 41b is also the same as that of the first embodiment. Detection unit 4
0 is fixed to the measurement point with two points near both ends of the support member 41 as fulcrums 46.

【0035】本実施の形態に係る角速度センサは、更
に、角速度により強磁性体部42,43に作用するコリ
オリ力によって生じる板状部41a,41bの撓みに応
じて、逆磁歪効果によって生じる二つの強磁性体部4
2,43のインピーダンスの差に応じた信号を検出する
検出手段として、各巻線45a,45bに高周波電圧V
sを印加する高周波電源51と、この高周波電圧Vs
よって各巻線45a,45bに流れる電流の差を増幅す
る差動増幅器52とを備えている。
The angular velocity sensor according to the present embodiment further includes two magneto-strictive effects produced by the inverse magnetostrictive effect according to the bending of the plate-like portions 41a and 41b caused by the Coriolis force acting on the ferromagnetic portions 42 and 43 due to the angular velocity. Ferromagnetic part 4
The high frequency voltage V is applied to each of the windings 45a and 45b as a detecting means for detecting a signal corresponding to the difference in impedance between the coils 2 and 43.
A high frequency power supply 51 for applying s and a differential amplifier 52 for amplifying the difference between the currents flowing through the windings 45a and 45b by the high frequency voltage V s are provided.

【0036】次に、本実施の形態に係る角速度センサの
作用について説明する。
Next, the operation of the angular velocity sensor according to this embodiment will be described.

【0037】検出部40の各巻線45a,45bには、
高周波電源51によって、例えば1MHzの高周波電圧
が印加される。この高周波電圧は、各強磁性体部42,
43を振動させるための励磁信号と各強磁性体部42,
43のインピーダンスの変化を検出するための高周波電
圧とを兼ねたものである。この高周波電圧の印加によ
り、各強磁性体部42,43は磁歪効果によって長手方
向に振動(伸縮)する。このように振動中の強磁性体部
42,43が、図5に示したように角速度ωで回転する
と、強磁性体部42,43にはコリオリ力Fc が作用す
る。強磁性体部42,43の振動の速度をvとすると、
コリオリ力Fc は、ωvに比例した大きさを持ち、方向
は速度vの方向を角速度ωの方向と反対の方向に90°
回転した方向となる。強磁性体部42,43がコリオリ
力Fc を受けることによって支持部材41の板状部41
a,41bは撓み、強磁性体部42,43の一方が伸び
るときは他方が縮むように、強磁性体部42,43に応
力が作用する。これにより、逆磁歪効果によって強磁性
体部42,43のインピーダンスが変化すると共に、強
磁性体部42,43のインピーダンスの変化量が異なる
ため、強磁性体部42,43のインピーダンスに差に生
じる。従って、強磁性体部42,43のインピーダンス
の差に応じた信号を検出することにより、角速度ωを求
めることができる。本実施の形態では、高周波電源51
による高周波電圧の印加によって各巻線45a,45b
に流れる電流の差を差動増幅器52によって増幅し、こ
の差動増幅器52の出力より角速度ωを求めるようにな
っている。
Each of the windings 45a and 45b of the detecting section 40 includes:
The high frequency power supply 51 applies a high frequency voltage of 1 MHz, for example. This high frequency voltage is applied to each of the ferromagnetic material parts 42,
Excitation signal for vibrating 43 and each ferromagnetic material portion 42,
It also serves as a high-frequency voltage for detecting a change in the impedance of 43. By applying this high-frequency voltage, the ferromagnetic portions 42 and 43 vibrate (expand and contract) in the longitudinal direction due to the magnetostrictive effect. When the vibrating ferromagnetic parts 42 and 43 rotate at the angular velocity ω as shown in FIG. 5, the Coriolis force F c acts on the ferromagnetic parts 42 and 43. If the speed of vibration of the ferromagnetic parts 42 and 43 is v,
The Coriolis force F c has a magnitude proportional to ωv, and the direction is 90 ° in the direction of the velocity v in the direction opposite to the direction of the angular velocity ω.
It is the direction of rotation. The ferromagnetic members 42 and 43 receive the Coriolis force F c , so that the plate-like portion 41 of the support member 41.
Stress acts on the ferromagnetic material portions 42 and 43 such that the a and 41b bend and one of the ferromagnetic material portions 42 and 43 contracts when the other extends. As a result, the impedances of the ferromagnetic portions 42 and 43 change due to the inverse magnetostrictive effect, and the impedance change amounts of the ferromagnetic portions 42 and 43 differ, resulting in a difference in the impedances of the ferromagnetic portions 42 and 43. . Therefore, the angular velocity ω can be obtained by detecting the signal corresponding to the difference in impedance between the ferromagnetic material portions 42 and 43. In the present embodiment, the high frequency power source 51
Each of the windings 45a, 45b by applying a high frequency voltage by
The difference between the currents flowing in the differential amplifier 52 is amplified by the differential amplifier 52, and the angular velocity ω is obtained from the output of the differential amplifier 52.

【0038】本実施の形態に係る角速度センサのその他
の構成、作用および効果は第1の実施の形態と同様にで
ある。
Other configurations, operations and effects of the angular velocity sensor according to this embodiment are the same as those in the first embodiment.

【0039】なお、本発明は上記各実施の形態に限定さ
れず、例えば、強磁性体部12,13,42,43の形
状および材料等の条件は用途等に応じて適宜に設定する
ことができる。また、検出手段の構成は、各実施の形態
に示したものに限定されず、例えば、第1の実施の形態
における強磁性体部12,13に流れる電流の位相差や
第2の実施の形態における巻線45a,45bに流れる
電流の位相差を検出し、この位相差から角速度を求める
ようにしても良い。また、例えば、強磁性体部12,1
3、強磁性体部42および巻線45a、強磁性体部43
および巻線45bを、それぞれ、LC(インダクタンス
・コンデンサ)発振器のL(インダクタンス)となるよ
うに構成し、各LC発振器の発振周波数の変化から角速
度を求めるようにしても良い。
The present invention is not limited to the above embodiments, and the conditions such as the shapes and materials of the ferromagnetic material portions 12, 13, 42, 43 can be set appropriately according to the application. it can. Further, the configuration of the detecting means is not limited to that shown in each of the embodiments, and for example, the phase difference between the currents flowing through the ferromagnetic material portions 12 and 13 in the first embodiment and the second embodiment. It is also possible to detect the phase difference between the currents flowing in the windings 45a and 45b in the above, and obtain the angular velocity from this phase difference. Also, for example, the ferromagnetic material parts 12, 1
3, ferromagnetic material part 42 and winding 45a, ferromagnetic material part 43
Alternatively, the winding 45b and the winding 45b may be respectively configured to have L (inductance) of an LC (inductance / capacitor) oscillator, and the angular velocity may be obtained from a change in the oscillation frequency of each LC oscillator.

【0040】[0040]

【発明の効果】以上説明したように本発明の角速度セン
サによれば、強磁性体部を磁歪効果によって長手方向に
振動させ、角速度に応じたコリオリ力によって生じる支
持部材の撓みに応じて、逆磁歪効果によって生じる二つ
の強磁性体部のインピーダンスの差に応じた信号を検出
することにより、角速度を検出するようにしたので、構
成が簡単であり、しかも、従来の圧電素子を利用した角
速度センサに比べて大きな出力が得られるため感度が向
上すると共にドリフトやオフセットが小さくなるため精
度が向上するという効果を奏する。
As described above, according to the angular velocity sensor of the present invention, the ferromagnetic body portion is vibrated in the longitudinal direction by the magnetostrictive effect, and the inverse of the bending force of the support member caused by the Coriolis force depending on the angular velocity is reversed. Since the angular velocity is detected by detecting the signal according to the impedance difference between the two ferromagnetic parts generated by the magnetostrictive effect, the configuration is simple, and the angular velocity sensor using the conventional piezoelectric element is used. As compared with the above, a large output can be obtained, so that the sensitivity is improved, and the drift and the offset are reduced, so that the accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る角速度センサ
の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of an angular velocity sensor according to a first embodiment of the present invention.

【図2】図1における検出部の平面図である。FIG. 2 is a plan view of a detection unit in FIG.

【図3】図1における検出部の強磁性体部に作用する応
力とインピーダンスとの関係について説明するための斜
視図である。
FIG. 3 is a perspective view for explaining the relationship between stress and impedance that acts on the ferromagnetic body portion of the detection unit in FIG.

【図4】図3に示した素子に作用する応力とリアクタン
スとの関係を測定した結果の一例を示す特性図である。
FIG. 4 is a characteristic diagram showing an example of a result of measuring a relationship between stress acting on the element shown in FIG. 3 and reactance.

【図5】本発明の第2の実施の形態に係る角速度センサ
の構成を示す説明図である。
FIG. 5 is an explanatory diagram showing a configuration of an angular velocity sensor according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…検出部、11…支持部材、12,13…強磁性体
部、15…巻線 20…交流電源、21…高周波電源、22…差動増幅器
10 ... Detection part, 11 ... Support member, 12, 13 ... Ferromagnetic material part, 15 ... Winding 20 ... AC power supply, 21 ... High frequency power supply, 22 ... Differential amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相沢 俊雄 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Aizawa 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Sony Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平行な二面を有する細長い支持部材と、 前記支持部材の前記二面にそれぞれ設けられた磁歪効果
および逆磁歪効果を有する細長い二つの強磁性体部と、 前記強磁性体部の周囲に巻回され、交流電流の通電によ
り前記強磁性体部を磁歪効果によって長手方向に振動さ
せるための巻線と、 角速度により前記強磁性体部に作用するコリオリ力によ
って生じる前記支持部材の撓みに応じて、逆磁歪効果に
よって生じる二つの強磁性体部のインピーダンスの差に
応じた信号を検出する検出手段とを備えたことを特徴と
する角速度センサ。
1. An elongated supporting member having two parallel surfaces, two elongated ferromagnetic members having a magnetostrictive effect and an inverse magnetostrictive effect, which are provided on the two surfaces of the supporting member, respectively, and the ferromagnetic member. Of a coil for winding the ferromagnetic material portion in the longitudinal direction by magnetostriction effect by energizing with an alternating current, and of the supporting member generated by Coriolis force acting on the ferromagnetic material portion due to angular velocity. An angular velocity sensor, comprising: a detection unit that detects a signal corresponding to a difference between impedances of two ferromagnetic bodies caused by an inverse magnetostriction effect in accordance with bending.
JP8024822A 1996-01-19 1996-01-19 Angular velocity sensor Pending JPH09196686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8024822A JPH09196686A (en) 1996-01-19 1996-01-19 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8024822A JPH09196686A (en) 1996-01-19 1996-01-19 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH09196686A true JPH09196686A (en) 1997-07-31

Family

ID=12148882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8024822A Pending JPH09196686A (en) 1996-01-19 1996-01-19 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH09196686A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088246A1 (en) * 2003-03-31 2004-10-14 Tdk Corporation Gyro sensor
WO2004102117A1 (en) * 2003-05-16 2004-11-25 Tdk Corporation Angular speed sensor and angular speed detector
JP2006234411A (en) * 2005-02-22 2006-09-07 Kita Nippon Denshi Kk Oscillation gyroscope sensor
US7219547B2 (en) 2003-05-16 2007-05-22 Tdk Corporation Angular velocity sensor and angular velocity detector
JP2013089206A (en) * 2011-10-21 2013-05-13 Fuji Electric Co Ltd Wireless sensor system and wireless sensor
CN103278148A (en) * 2013-05-07 2013-09-04 上海交通大学 Two-axis microgyroscope of magnetostrictive solid oscillator
CN103684040A (en) * 2013-12-23 2014-03-26 南昌工程学院 Magnetostrictive inertial impact rotating driver

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088246A1 (en) * 2003-03-31 2004-10-14 Tdk Corporation Gyro sensor
WO2004102117A1 (en) * 2003-05-16 2004-11-25 Tdk Corporation Angular speed sensor and angular speed detector
US7219547B2 (en) 2003-05-16 2007-05-22 Tdk Corporation Angular velocity sensor and angular velocity detector
US7415879B2 (en) 2003-05-16 2008-08-26 Tdk Corporation Angular velocity sensor and angular velocity detector
JP2006234411A (en) * 2005-02-22 2006-09-07 Kita Nippon Denshi Kk Oscillation gyroscope sensor
JP2013089206A (en) * 2011-10-21 2013-05-13 Fuji Electric Co Ltd Wireless sensor system and wireless sensor
CN103278148A (en) * 2013-05-07 2013-09-04 上海交通大学 Two-axis microgyroscope of magnetostrictive solid oscillator
CN103684040A (en) * 2013-12-23 2014-03-26 南昌工程学院 Magnetostrictive inertial impact rotating driver
CN103684040B (en) * 2013-12-23 2016-02-03 南昌工程学院 Magnetostrictive inertial impact rotating driver

Similar Documents

Publication Publication Date Title
JP2818522B2 (en) How to measure torque or axial stress acting on an object
US6439051B2 (en) Vibrators, vibratory gyroscopes, devices for measuring a linear acceleration and a method of measuring a turning angular rate
JP4604037B2 (en) Resonant magnetometer device
US20020092359A1 (en) Sensor apparatus and cantilever for it
JPH05240874A (en) Angular-velocity sensor
JPS63191904A (en) Noncontact type position sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JPH09196686A (en) Angular velocity sensor
JPH1019577A (en) Angular velocity sensor
US6437483B2 (en) Vibrator, vibratory gyroscope, and vibration adjusting method
JPWO2004070408A1 (en) Magnetic sensor
US6044706A (en) Dual axial gyroscope with piezoelectric ceramics
JP4801881B2 (en) Resonance type magnetic sensor and magnetic field detection device using the same
JPH0641889B2 (en) Torque detector
Wu et al. Design, fabrication and characterization of a resonant magnetic field sensor based on mechanically coupled dual-microresonator
JP2001174263A (en) Angular-velocity detecting apparatus
WO2004088246A1 (en) Gyro sensor
JP3494096B2 (en) Vibrating gyro
JPS62184323A (en) Magneto-striction type torque sensor
US20220291302A1 (en) Measuring device for weak and slowly changing magnetic fields, in particular for biomagnetic fields
JP4058379B2 (en) Angular velocity sensor and angular velocity detector
JP2000352536A (en) Load-measuring apparatus
JP2005090971A (en) Magnetic sensor
JP2803091B2 (en) Magnetic sensor
JPH09196777A (en) Force detecting sensor