JP2013238500A - Inclined core type current sensor - Google Patents

Inclined core type current sensor Download PDF

Info

Publication number
JP2013238500A
JP2013238500A JP2012112005A JP2012112005A JP2013238500A JP 2013238500 A JP2013238500 A JP 2013238500A JP 2012112005 A JP2012112005 A JP 2012112005A JP 2012112005 A JP2012112005 A JP 2012112005A JP 2013238500 A JP2013238500 A JP 2013238500A
Authority
JP
Japan
Prior art keywords
magnetic
coil
core
current
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012112005A
Other languages
Japanese (ja)
Inventor
Takashi Tadatsu
孝 忠津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012112005A priority Critical patent/JP2013238500A/en
Publication of JP2013238500A publication Critical patent/JP2013238500A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a manufacturing cost of a winding step by detecting a current by a solenoid winding coil without requiring the necessity of a toroidal winding coil in a current sensor of a type for detecting the current by utilizing induced voltage of a coil due to a magnetic flux change, and to achieve miniaturization by simplification of winding.SOLUTION: A magnetic core including at least one solenoid winding excitation coil for allowing an excitation current including an AC component to flow and at least one solenoid winding detection coil for outputting induced voltage, arranged so as to include an arbitrary point on a magnetic flux generated when a current is allowed to flow into the detection coil arranged in vacuum and having magnetic anisotropy is installed so as to be inclined in the winding direction against the magnetic flux direction so that a direction of a magnetization easy axis of the magnetic core includes direction components of both of the magnetic flux direction of the magnetic flux passing through the point and the winding direction of the detection coil. All of the excitation coil, the detection coil and the magnetic core are arranged so as to be magnetically coupled with each other.

Description

本発明は,被計測電流回路と計測回路とを電気的に絶縁した状態で,前記被計測電流の値を計測する絶縁型の直流交流両用の電流センサに関するものである.   The present invention relates to an insulation type DC / AC current sensor that measures the value of the current to be measured in a state where the current circuit to be measured and the measurement circuit are electrically insulated.

電流センサは電気装置や電子装置でよく使われていて,近年は自然エネルギー発電電力の電池による平準化や自動車の電動化,あるいは省エネルギーのための直流給電化などで,直流電力を利用することが多くなってきており,直流電力利用の高効率化や安全性と信頼性の向上などが避けられない課題になっている.この課題を解決するためには様々な場面で電流を計測して制御する必要であるが,従来の電流センサを,コスト,寸法,安定性などから評価した場合,まだ市場ニーズを満たすまでには至っていない.   Current sensors are often used in electrical and electronic devices. In recent years, it has become possible to use DC power for leveling natural energy generated power with batteries, driving motor vehicles, or using DC power for energy saving. Increasingly, it has become an unavoidable issue to improve the efficiency and safety and reliability of DC power usage. In order to solve this problem, it is necessary to measure and control the current in various situations. However, if the conventional current sensor is evaluated based on cost, dimensions, stability, etc., it still has to meet the market needs. Not reached.

電流センサは,検出コイル方式と,磁界センサ素子方式に大別できる.最もシンプルな検出コイル方式の電流センサは交流用CTやロゴスキーコイルであるが,これらは直流を計測する事はできず,本発明の目的である直流も計測できる電流センサではない.直流も計測できる検出コイル方式の電流センサでよく知られたものには,フラックスゲート方式などの磁気変調方式があり,小さな電流の計測によく利用されている.直流を計測できる検出コイル方式の特徴は磁気コアを励磁していることである.つまり,本来変化のない直流電流の磁束に,励磁磁束を加えて磁束変化を与え,その磁束変化分をコイルで検出する際にその中に含まれる直流磁束の情報も同時に取得するものである.これで重要なのは,励磁磁束変化の中に直流磁束の情報をどのようにして含ませるかであり,その手法がすなわち検出原理の根幹である.   Current sensors can be broadly classified into the detection coil method and the magnetic field sensor element method. The simplest detection coil type current sensor is an AC CT or Rogowski coil, but these cannot measure DC and are not current sensors that can also measure DC, which is the object of the present invention. Well-known detection coil type current sensors that can also measure direct current include magnetic modulation methods such as the fluxgate method, which are often used to measure small currents. The feature of the detection coil system that can measure DC is that the magnetic core is excited. In other words, the magnetic flux is changed by adding the exciting magnetic flux to the direct current magnetic flux that is essentially unchanged, and when the change in the magnetic flux is detected by the coil, the information on the DC magnetic flux contained therein is acquired at the same time. What is important here is how to include DC flux information in the excitation flux change, and that method is the basis of the detection principle.

磁界センサ素子方式は,被計測電流が発生する磁界を計測することにより発生源の電流を計測するものであって,原理的には全ての磁界センサで電流センサを作ることが可能である.よく知られた磁界センサには,ホール素子,磁気抵抗効果素子,磁気インピーダンス素子,ファラディー素子などがあり,さらに細かく分類できる.しかし,実際には磁界センサの特徴により,電流センサに向くものとそうでないものが生じる.   The magnetic field sensor element method measures the current of the source by measuring the magnetic field generated by the current to be measured. In principle, it is possible to make a current sensor with all magnetic field sensors. Well-known magnetic field sensors include Hall elements, magnetoresistive elements, magneto-impedance elements, and Faraday elements, which can be further classified. However, depending on the characteristics of the magnetic field sensor, there are things that are suitable for current sensors and those that are not.

そのような理由から電流センサに最も多く使われている磁界センサはホール素子で,市場規模では圧倒的なシェアを占めている.特に10A程度を超える電流の計測では専らホール素子方式が使われている.これは,他の磁界センサに比べて感度が低く大電流計測に向いていることや,計測する磁界の方向が素子の薄手方向であり構造的に使いやすい特徴に加え,量産効果によって低コストで製造できるようになったことなどの相乗効果によるものである.   For these reasons, the most common magnetic field sensor used in current sensors is the Hall element, which occupies an overwhelming market share. In particular, the Hall element method is used exclusively for measuring current exceeding 10A. This is because the sensitivity is low compared to other magnetic field sensors and it is suitable for large current measurement, the direction of the magnetic field to be measured is the thin direction of the element, and it is easy to use structurally. This is due to synergistic effects such as being able to manufacture.

このホール素子を電流センサに用いる場合は,通常は被計測電流を周回するリング状の磁気コアを用い,そのリングの一部を切り欠きその間隙にホール素子を挟み込む.ところが,ホール素子は半導体であり,熱や湿気などの環境ストレスに弱く電流センサの信頼性を向上できない.これと比較して,検出コイル方式は磁性材とコイルだけで構成できるために,その点ではホール素子方式よりも信頼性が高い.   When this Hall element is used for a current sensor, a ring-shaped magnetic core that normally circulates the current to be measured is used, and a part of the ring is cut out and the Hall element is sandwiched in the gap. However, the Hall element is a semiconductor, and it is vulnerable to environmental stresses such as heat and humidity, so the reliability of the current sensor cannot be improved. Compared to this, the detection coil method can be configured with only magnetic material and coil, and in that respect, it is more reliable than the Hall element method.

しかし,従来の検出コイル方式の電流センサは,検出コイルをトロイダル巻きにする必要があり,トロイダル巻きの製造コストが高くなることが問題になっている.さらに,トロイダル巻きは小型化の障害になり,例えば携帯用電子機器で需要があるチップ素子サイズの電流センサを作ることは困難である.ちなみに,フラックスゲート方式でチップ素子サイズを試みた研究はあり,非特許文献1で報告されている.しかし同文献で筆者も述べているように精度が悪くフェールセーフ用途程度にしか使えない.また,検出コイル方式ではないがホール素子を用いた小型の提案があり,特許文献1で開示されている.これはホール素子を被計測電流に接近させることにより,計測目的としていない他の磁界,すなわち外乱の影響を小さくしようとしているが,その効果は充分ではなく,計測値の信頼性には欠ける.また,ホール素子の短所も勿論残っている.   However, the conventional detection coil type current sensor requires a toroidal winding of the detection coil, which increases the manufacturing cost of the toroidal winding. Furthermore, toroidal winding is an obstacle to miniaturization, and it is difficult to make a chip-element-sized current sensor that is in demand for portable electronic devices, for example. Incidentally, there is a research that tried the chip element size by the fluxgate method, and it is reported in Non-Patent Document 1. However, as the author stated in the same document, it is inaccurate and can only be used for fail-safe applications. In addition, there is a small proposal using a Hall element that is not a detection coil system, and is disclosed in Patent Document 1. This approach attempts to reduce the influence of other magnetic fields that are not intended for measurement, that is, disturbance, by bringing the Hall element closer to the current to be measured, but the effect is not sufficient and the reliability of the measured value is lacking. Of course, the shortcomings of the Hall element remain.

従ってチップ素子サイズが必要な携帯用電子機器などではシャント抵抗方式が使われている.しかし,シャント抵抗方式は被計測電流回路と計測回路とが絶縁されていないために,回路電位が異なる場合には電位の整合が必要になり,設計の自由度が制限される問題や,被計測電流回路から計測回路を通して制御回路にノイズが侵入して,制御の信頼性を低下させるなどの問題がある.さらに電源電流を計測する場合には,シャント抵抗による電圧降下が電源電圧の有効利用の妨げになり,限られた電源で動作させる携帯用電子機器などでは重要な課題になっている.この課題の解決策としてシャント抵抗の抵抗値をより小さくする試みがあるが,そのようにすると検出電圧が小さくなり信号処理回路の高性能化が求められることに加え,S/N比の悪化が生じ,制御の信頼性を低下させる問題が生じる.   Therefore, the shunt resistor method is used in portable electronic devices that require chip element size. However, in the shunt resistor method, the current circuit to be measured and the measurement circuit are not insulated, so if the circuit potential is different, matching of the potential is required, and the design freedom is limited. There are problems such as noise entering the control circuit from the current circuit through the measurement circuit, and reducing the control reliability. Furthermore, when measuring the power supply current, the voltage drop due to the shunt resistance hinders the effective use of the power supply voltage, which is an important issue for portable electronic devices that operate with a limited power supply. As a solution to this problem, there is an attempt to reduce the resistance value of the shunt resistor. However, in this case, the detection voltage is reduced, and high performance of the signal processing circuit is required, and the S / N ratio is deteriorated. This causes a problem that reduces control reliability.

つまり市場は,トロイダル巻きが不要の省スペースで低コストな,絶縁型の高性能な電流センサや,絶縁型でチップ素子化が可能な信頼性のある電流センサを求めている.しかしそれらを可能にする電流センサの方式が今までなかった.次の先行技術文献に示す,非特許文献2から4は先行技術の一例である.   In other words, the market demands a space-saving, low-cost, insulated high-performance current sensor that does not require toroidal winding, and a reliable current sensor that can be made into an insulated chip element. However, there has never been a current sensor system that enables them. Non-patent documents 2 to 4 shown in the following prior art documents are examples of the prior art.

特開2011‐75576号公報JP 2011-75576 A

藤山陽一,荒井賢一,他3名 「可飽和型リングコアを用いた薄膜電流センサの試作」日本応用磁気学会 22,705−708(1998)Yoichi Fujiyama, Kenichi Arai, and 3 others "Trial manufacture of thin film current sensor using saturable ring core" The Japan Society of Applied Magnetics 22, 705 − 708 (1998) 武士田健一,毛利佳年雄 「アモルファス磁性ワイヤMI素子によるコルピッツ自己発振形高感度・高速応答電流センサ」日本応用磁気学会誌 20,629−632(1996)Kenichi Takeshida, Toshio Mohri “Colpitts self-oscillation type high-sensitivity, high-speed response current sensor using amorphous magnetic wire MI element” Journal of Applied Magnetics Society of Japan 20,629 − 632 (1996) 忠津孝,笹田一郎 「磁気ブリッジを用いた非接触μA 電流センサの開発」日本応用磁気学会 311,421-426(2007)Tadatsu Takashi, Ichiro Hamada “Development of non-contact μA current sensor using magnetic bridge” Japan Society of Applied Magnetics 311, 421-426 (2007) Journal of Advanced Science, Vol.17,No.3&4,2005Journal of Advanced Science, Vol.17, No.3 & 4,2005

解決しようとする課題は,磁束変化をコイルで検出する検出コイル方式の電流センサにおいて,コイルがトロイダル巻きである問題点と,チップ素子サイズまで小さくできない問題点である.   The problems to be solved are the problem that the coil is a toroidal winding in the detection coil type current sensor that detects the magnetic flux change with the coil, and the problem that the chip element size cannot be reduced.

交流成分を含む励磁電流を流すソレノイド巻きの励磁コイルと,誘起電圧を出力するソレノイド巻きの検出コイルとを,それぞれ少なくとも一つ具備し,真空中においた前記検出コイルに電流を流した場合に生じる磁束上の任意の点を含むように置いた磁気異方性を持つ磁気コアを,その磁気コアの磁化容易軸の向きが,前記任意の点において,その点を通る前記磁束の磁束方向と,前記検出コイルの巻線方向との双方の方向成分を持つように,前記磁束方向に対して前記巻線方向に傾斜させて設置し,前記励磁コイルと,前記検出コイルと,前記磁気コアとを全てが相互に磁気結合するように配置する.   This occurs when at least one solenoid-wound excitation coil that passes an excitation current containing an AC component and at least one solenoid-wound detection coil that outputs an induced voltage, and current flows through the detection coil in a vacuum. A magnetic core having magnetic anisotropy placed so as to include an arbitrary point on the magnetic flux, the direction of the easy axis of the magnetic core being at the arbitrary point, the magnetic flux direction of the magnetic flux passing through the point, Inclined in the winding direction with respect to the magnetic flux direction so as to have both directional components with the winding direction of the detection coil, and the excitation coil, the detection coil, and the magnetic core Arrange them so that they are all magnetically coupled to each other.

本発明の傾斜コア型電流センサは,検出コイル方式の電流センサであるにもかかわらず検出コイルがソレノイド巻きであるために,従来のトロイダル巻きを必要とした検出コイル方式の電流センサに比べて作りやすく製造コスト下がるという利点と,同じくより小さな製品を作ることができるという利点とがある.つまり,トロイダル巻きは磁気コアとコイル回路とがトポロジー的に絡み合っているが故にコイルの巻回に手間がかかる.しかしソレノイド巻きは磁気コアとコイル回路とがトポロジー的に分離しているために巻線が容易である.同様の理由で小さな巻線にするにはトロイダル巻きは圧倒的に劣勢である.このように必要なコイルをトロイダル巻きにすることにより大きな産業上の効果が生じる.   The tilted core type current sensor of the present invention is made in comparison with a conventional detection coil type current sensor that requires a toroidal winding because the detection coil is a solenoid winding although it is a detection coil type current sensor. There is an advantage that it is easy to reduce manufacturing costs and an advantage that a smaller product can be made. In other words, since the toroidal winding is topologically intertwined between the magnetic core and the coil circuit, it takes time to wind the coil. However, solenoid winding is easy because the magnetic core and coil circuit are topologically separated. For the same reason, toroidal winding is overwhelmingly inferior to small windings. Thus, the big industrial effect arises by making the necessary coil toroidal winding.

検出コイル3と磁気コア1との相互配置関係を示した原理説明図.The principle explanatory view showing the mutual arrangement relation between the detection coil 3 and the magnetic core 1. 原理的な一形態を示した斜視図.A perspective view showing a principle form. 図2をコイル面方向から見た動作説明図.The operation explanatory view which looked at FIG. 2 from the coil surface direction. 合成磁界 Hc に含まれる励磁磁界 He と被計測磁界 Hx の比率の,磁気コアの傾きによる違いを示した説明図.An explanatory diagram showing the difference in the ratio of the excitation magnetic field He and the measured magnetic field Hx contained in the composite magnetic field Hc due to the inclination of the magnetic core. 被計測電流 Ix の傾きによる,磁気コアが受ける磁界の強さの違いを示した説明図.An explanatory diagram showing the difference in the strength of the magnetic field received by the magnetic core depending on the slope of the measured current Ix. 磁気コアが一つの場合の,磁気コアと励磁コイルと検出コイルと被計測電流 Ix との相互関係を示した説明図.An explanatory diagram showing the interrelationship between the magnetic core, the excitation coil, the detection coil, and the measured current Ix when there is one magnetic core. 磁気コアが複数の場合の,磁気コアと励磁コイルと検出コイルと被計測電流 Ix との相互関係を示した説明図.An explanatory diagram showing the interrelationship among the magnetic core, excitation coil, detection coil, and measured current Ix when there are multiple magnetic cores. 図6において,被計測電流がコイルの外にある場合を示した説明図.FIG. 6 is an explanatory diagram showing the case where the current to be measured is outside the coil. 被計測電流がコイルの外にある場合で,複数の磁気コアを配置するとともにコイルを変形した場合の説明図.Explanatory drawing when the measured current is outside the coil and multiple magnetic cores are placed and the coil is deformed. 被計測磁界 Hx と励磁磁界 He から合成磁束 Φc が生じることを磁気コアのB-H特性で示した説明図.An explanatory diagram showing the B-H characteristics of the magnetic core that the combined magnetic flux Φc is generated from the magnetic field to be measured Hx and the excitation magnetic field He. 一つの検出電圧 Vd から計測値を求める方法を示した説明図.An explanatory diagram showing how to obtain the measured value from one detection voltage Vd. 連結コア型差動方式の構成と動作説明図.Configuration and operation explanatory diagram of linked core type differential system. 連結コア型差動方式の磁気コア1a と1b の合成磁束およびその差動値の波形を示した説明図.An explanatory diagram showing the combined magnetic flux of differential core magnetic cores 1a and 1b and their differential values. 対向励磁型差動方式の構成と動作説明図.Configuration and operation explanatory diagram of counter excitation type differential method. 対向励磁型差動方式の磁気コア内の合成磁束およびその差動値の波形を示した説明図.An explanatory diagram showing the resultant magnetic flux and the differential value waveform in the counter-excitation differential magnetic core. 単一の検出電圧 Vd から計測値を求める方法を実現する駆動回路の例を示した説明図.An explanatory diagram showing an example of a drive circuit that realizes a method for obtaining a measurement value from a single detection voltage Vd. 連結コア型差動方式のコイルの接続方法の一例と駆動回路のブロック図を示した説明図.An explanatory diagram showing an example of a connection method of a coupled core type differential coil and a block diagram of a drive circuit. 連結コア型差動方式のコイルの接続方法の一例と差動信号を得る方法の一例を示した説明図.Explanatory drawing which showed an example of the connection method of a connection core type differential system coil, and an example of the method of obtaining a differential signal. 連結コア型差動方式のコイルの接続方法の一例と差動信号を得る方法の一例を示した説明図.Explanatory drawing which showed an example of the connection method of a connection core type differential system coil, and an example of the method of obtaining a differential signal. 連結コア型差動方式のコイルの接続方法の一例を示した説明図.Explanatory drawing which showed an example of the connection method of the coil of a connection core type differential system. 対向励磁型差動方式のコイルの接続方法と駆動回路のブロック図を示した説明図.An explanatory diagram showing a block diagram of the drive circuit and connection method of counter excitation type differential coil. 連結磁気コアとその並列配置の例を示した説明図.An explanatory diagram showing an example of a coupled magnetic core and its parallel arrangement. 磁気回路を閉じるための閉磁路コアの説明図.Illustration of a closed magnetic circuit core for closing a magnetic circuit. 連結磁気コアを用いた閉磁路コアの説明図.Illustration of a closed magnetic circuit core using a coupled magnetic core. 結晶磁気異方性の磁性材を用いた連結磁気コア集合体の説明図.Explanatory drawing of a linked magnetic core assembly using a magnetic material with magnetocrystalline anisotropy. 連結コア型差動方式の実施例の説明図.Explanatory drawing of the Example of a connection core type | mold differential system. 閉磁路コアを採用した連結コア型差動方式の実施例の説明図.Explanatory drawing of the Example of the connection core type differential system which employ | adopted the closed magnetic circuit core. 閉磁路コアに連結磁気コア構造を採用した連結コア型差動方式の実施例の説明図.Explanatory drawing of the Example of the connection core type differential system which employ | adopted the connection magnetic core structure to the closed magnetic circuit core. 連結コア型差動方式で,クランプ式にした実施例の説明図.Explanatory drawing of the example which made it a clamp type with a connection core type differential system. センサユニットを6個用いたクランプ式の実施例の説明図.Explanatory drawing of the clamp-type Example using six sensor units. 一部を切開および透視して内部が解るようにした,チップ素子サイズの実施例の説明図.An illustration of an embodiment of a chip element size in which a part is cut open and seen through to reveal the inside. 図31のA−A断面図.A − A sectional view of FIG. 図31の磁気コアの説明図.Explanatory drawing of the magnetic core of FIG. 図31の磁気コアの説明図.Explanatory drawing of the magnetic core of FIG. 磁気コアの材料をアモルファスリボンにした実施例1の入出力特性の実測値のグラフ.The graph of the measured value of the input-output characteristic of Example 1 which made the magnetic core material the amorphous ribbon. 磁気コアの材料をフェライトにした実施例1の入出力特性の実測値のグラフ.Graph of measured values of input / output characteristics of Example 1 in which magnetic core material is ferrite.

まず動作原理と構成要素について説明する.   First, the operating principle and components are explained.

検出コイル方式の電流センサは検出コイルと鎖交する磁束の変化を誘起電圧として捉えるものである.したがって次の条件が必要である.一つ目は検出コイルに磁束が鎖交すること,二つ目は被計測電流が直流であっても鎖交した磁束が変化すること,三つ目はその磁束の変化が被計測電流の大きさと方向の影響を受けていることである.こうすれば,被計測電流の情報を含んだ誘起電圧を得ることができるため,誘起電圧から被計測電流を知ることができる.   The detection coil type current sensor captures the change in magnetic flux linked to the detection coil as an induced voltage. Therefore, the following conditions are necessary. The first is that the magnetic flux is linked to the detection coil, the second is that the linked magnetic flux changes even if the measured current is DC, and the third is that the change in the magnetic flux is the magnitude of the measured current. It is influenced by the direction and direction. In this way, an induced voltage containing information on the current to be measured can be obtained, so that the current to be measured can be known from the induced voltage.

電流による磁束は電流を周回するように発生する.従ってその磁束を効率よく利用するためには電流を周回するリング状の磁気コアを設けるのが最適である.そうするとこの磁束と鎖交する検出コイルを配置するためには,コイルは必然的にトロイダル巻きになる.このように従来の検出コイル方式の検出コイルがトロイダル巻きになっているのは,被計測電流の磁束と検出コイルとを鎖交させるためである.したがって,被計測電流の磁束と検出コイルとを鎖交させることができればトロイダル巻きである必要は無い.   Magnetic flux due to current is generated around the current. Therefore, to use the magnetic flux efficiently, it is optimal to provide a ring-shaped magnetic core that circulates the current. Then, in order to arrange the detection coil interlinking with this magnetic flux, the coil inevitably becomes toroidal. The reason why the conventional detection coil type detection coil is toroidally wound is to link the magnetic flux of the current to be measured and the detection coil. Therefore, if the magnetic flux to be measured and the detection coil can be linked, there is no need for toroidal winding.

そこで,ソレノイド巻きで前記の三つの条件を満たすことができないか検討する.検討にあたり課題を単純化して,直線状に流れる被計測電流が,円形のソレノイド巻きの検出コイルの中心軸上を流れていると仮定する.そうすると,この位置関係では被計測電流の磁束はソレノイド巻きの検出コイルと鎖交しない.ところが,磁束が磁性材に誘導される性質を利用すれば,被計測電流の磁束が前記検出コイルを貫通し鎖交するように誘導することは可能である.この際,この説明では原理を理解し易くする目的で,検出コイル等の巻線材料や被計測電流導体など,磁気コア以外のものは全て非磁性材として扱う.しかし,この発明はこれを条件とするものではない.   Therefore, we will examine whether the above three conditions can be satisfied by solenoid winding. To simplify the study, it is assumed that the current to be measured flowing in a straight line flows on the central axis of a circular solenoid-wound detection coil. Then, in this positional relationship, the magnetic flux of the current to be measured does not interlink with the solenoid winding detection coil. However, if the property that magnetic flux is induced in the magnetic material is used, it is possible to induce the magnetic flux of the current to be measured to penetrate through the detection coil and to be linked. At this time, in this explanation, in order to make the principle easier to understand, all materials other than the magnetic core, such as the winding material of the detection coil and the current conductor to be measured, are treated as non-magnetic materials. However, this invention is not conditional on this.

図1は,検出コイル3と磁気コア1との相互配置関係を示した原理説明図である.これは,真空中においた検出コイルに電流を流した場合に生じる磁束上の任意の点Pを設定して,この点P含むように置いた磁気異方性を持つ磁気コアを,その磁気コアの磁化容易軸の向きが,前記任意の点Pにおいて,その点を通る前記磁束の磁束方向と前記検出コイルの巻線方向との双方の方向成分を持つように,前記磁束方向に対して前記巻線方向に傾斜させて設置したものである.   FIG. 1 is a principle explanatory diagram showing the mutual arrangement relationship between the detection coil 3 and the magnetic core 1. This is because an arbitrary point P on the magnetic flux generated when a current is passed through a detection coil placed in a vacuum, a magnetic core having magnetic anisotropy placed so as to include this point P is set as the magnetic core. The direction of the easy axis of magnetization at the arbitrary point P has the directional components of both the magnetic flux direction of the magnetic flux passing through the point and the winding direction of the detection coil with respect to the magnetic flux direction. It was installed with an inclination in the winding direction.

ここで前記の「真空中においた検出コイルに電流を流した場合に生じる磁束上の任意の点P」という表現について説明する.まず「真空中においた検出コイルに電流を流した場合」というのは,実施時に実際に検出コイルに電流を流すわけではないが,「任意の点P」の性格を明らかにするための説明である.この際「真空中」と表現しているのは,広い空間において透磁率が均一であることを意味している.仮に,コイルの近傍において,本発明の要素以外の原因で透磁率が均一でない場合は,原理説明に支障が生じるためである.したがって,本発明の実施においてはこの条件は必要ではない.   Here, the expression “any point P on the magnetic flux generated when a current is passed through a detection coil placed in a vacuum” will be described. First, “when a current is passed through a detection coil in a vacuum” does not mean that a current is actually passed through the detection coil at the time of implementation, but is an explanation for clarifying the nature of “any point P”. is there. In this case, the expression “in vacuum” means that the permeability is uniform in a wide space. If the magnetic permeability is not uniform in the vicinity of the coil for reasons other than the elements of the present invention, the explanation of the principle will be hindered. Therefore, this condition is not necessary in the practice of the present invention.

次に,「磁気異方性を持つ磁気コア」という表現について説明する.磁気異方性とは,「磁性体中の内部エネルギーが磁気モーメントの向きによって異なる性質」のことをいうが,要は磁化されやすい向きとされ難い向きがあるということで,換言すれば磁束の通りやすい方向とそうでない方向がある性質である.例えば釘を無造作に磁石に接触させて離した場合では,極めて高い確率で釘の頭部分と先端部分に磁極が現れる.これは形状磁気異方性と呼ばれ,長手方向に磁化されやすい性質をいう.この場合,磁化されやすい長手方向の軸を,磁化容易軸と言い,磁化され難い軸を磁化困難軸と言う.このような磁気異方性は,形状磁気異方性の他に,結晶磁気異方性や誘導磁気異方性がある.本発明ではこのような磁気異方性を持つ材料であればどれでも使用できる.本説明では図31,図32,図33,図面34の他は形状磁気異方性を利用した磁気コアを想定しており,図に示した磁気コアの長手方向に磁化容易軸がある.   Next, the expression “magnetic core with magnetic anisotropy” will be explained. Magnetic anisotropy refers to the property that the internal energy in a magnetic material varies depending on the direction of the magnetic moment. In short, it means that there is a direction that is not likely to be magnetized. It has the property that there are directions that are easy to pass and directions that are not. For example, when a nail is made to come in contact with a magnet at random, magnetic poles appear at the head and tip of the nail with a very high probability. This is called shape magnetic anisotropy and is easily magnetized in the longitudinal direction. In this case, the longitudinal axis that is easily magnetized is called the easy axis, and the hard axis is called the hard axis. Such magnetic anisotropy includes crystal magnetic anisotropy and induced magnetic anisotropy in addition to shape magnetic anisotropy. In the present invention, any material having such magnetic anisotropy can be used. In this description, a magnetic core using shape magnetic anisotropy is assumed in addition to FIGS. 31, 32, 33, and 34, and an easy axis of magnetization is present in the longitudinal direction of the magnetic core shown in the figure.

前記任意の点Pに前記磁気コアを置く場合の被計測電流による磁界と磁気コアの関係を説明する.前記したように円形の検出コイルの中心軸上を被計測電流が流れる場合,被計測電流による磁界および磁束の方向は検出コイルの巻線方向と重なる.このような位置関係では,前記「検出コイルに電流を流した場合」に発生する磁束の方向は,被計測電流による磁束と直角になる.この関係は全ての位置で成り立ち,前記任意の点Pでも同様である.   The relationship between the magnetic core due to the current to be measured and the magnetic core when the magnetic core is placed at the arbitrary point P will be described. As described above, when the current to be measured flows on the central axis of the circular detection coil, the direction of the magnetic field and magnetic flux due to the current to be measured overlaps the winding direction of the detection coil. In such a positional relationship, the direction of the magnetic flux generated when “current is passed through the detection coil” is perpendicular to the magnetic flux due to the current to be measured. This relationship holds at all positions, and is the same at the arbitrary point P.

この任意の点Pに前記磁気コアを置くとき,その磁気コアの磁化容易軸が,被計測電流による磁束の方向と直角になるように置くと,その磁気コアを通る被計測電流の磁束は,「検出コイルに電流を流した場合」の磁束の方向の成分は発生しない.したがって検出コイルと鎖交する磁束は生じない.また,前記磁気コアを被計測電流の磁束の方向と平行になるように置いた場合も,「検出コイルに電流を流した場合」に発生する磁束の方向の成分は発生しない.したがってこの場合も検出コイルと鎖交する磁束は生じない.つまり,磁気コアの磁化容易軸が被計測電流による磁束の方向と直角か平行の場合は,被計測電流の磁束は検出コイルと鎖交しない.因みに,トロイダルコアは前記の平行の場合に相当する.   When placing the magnetic core at this arbitrary point P, if the easy axis of the magnetic core is placed so as to be perpendicular to the direction of the magnetic flux due to the measured current, the magnetic flux of the measured current passing through the magnetic core is The component in the direction of the magnetic flux is not generated when “a current is passed through the detection coil”. Therefore, no magnetic flux interlinking with the detection coil is generated. In addition, when the magnetic core is placed parallel to the direction of the magnetic flux of the current to be measured, the magnetic flux direction component that occurs when “current is passed through the detection coil” does not occur. Therefore, no magnetic flux interlinking with the detection coil is generated in this case. In other words, when the easy axis of the magnetic core is perpendicular or parallel to the direction of the magnetic flux due to the current being measured, the magnetic flux of the current being measured does not interlink with the detection coil. Incidentally, the toroidal core corresponds to the parallel case described above.

ここで,前記磁気コアを,真空中においた検出コイルに電流を流した場合に生じる磁束の方向と,検出コイルの巻線方向との双方の方向成分を持つように,前記磁束方向に対して前記巻線方向に傾斜させて設置した場合,換言すれば,前記磁気コアの容易磁化軸が,「検出コイルに電流を流した場合」に発生する磁束に対して傾きを持ち,かつ,その傾きの方向が検出コイルの巻線方向,すなわち被計測電流の磁束方向の成分を持つように設置した場合,前記磁気コアは容易磁化軸方向に磁化されて容易磁化軸方向に磁束が生じ,被計測電流の磁束が検出コイルと鎖交するようになる.これにより被計測電流と検出コイルは磁気的結合をする.   Here, the magnetic core has a direction component of both the direction of magnetic flux generated when a current is passed through the detection coil in a vacuum and the direction of winding of the detection coil. In the case where it is installed in the direction of winding, in other words, the easy magnetization axis of the magnetic core has an inclination with respect to the magnetic flux generated when “current is passed through the detection coil”, and the inclination When the magnetic core is installed so that it has a component of the winding direction of the detection coil, that is, the magnetic flux direction of the current to be measured, the magnetic core is magnetized in the direction of the easy magnetization axis and a magnetic flux is generated in the direction of the easy magnetization axis. The magnetic flux of the current comes to interlink with the detection coil. As a result, the current to be measured and the detection coil are magnetically coupled.

以上の通り被計測電流とソレノイド巻きの検出コイルとを傾斜した磁気コアにより磁気的に結合させることができる.仮に被計測電流が交流であれば,これだけでソレノイド巻きの検出コイルに誘起電圧が発生して出力を得ることができる.つまり,従来の交流用CTの機能を有する.しかし本発明の目的は直流も検出することであり,このままでは直流電流の検出はできない.そこで,磁気コアを交流で励磁することにより直流電流も検出できるようにしたのが本発明の原理である.   As described above, the current to be measured and the solenoid-wound detection coil can be magnetically coupled by the inclined magnetic core. If the current to be measured is alternating current, an induced voltage is generated in the solenoid-wound detection coil, and output can be obtained. In other words, it has the function of a conventional AC CT. However, the object of the present invention is to detect direct current, and direct current cannot be detected as it is. Therefore, the principle of the present invention is to detect DC current by exciting the magnetic core with AC.

図2は本発明の原理的な一形態を示した斜視図である.図2はいずれもソレノイド巻きの,励磁コイル2と検出コイル3とを同軸上に配置して,被計測電流が前記両コイルを貫通して流れるようにしている.さらに,磁気コア1を,形状磁気異方性の磁化容易軸である長手方向が前記説明の傾斜をするように,前記両コイルの内側に配置している.   FIG. 2 is a perspective view showing a principle form of the present invention. In FIG. 2, the solenoid-wound excitation coil 2 and the detection coil 3 are arranged coaxially so that the current to be measured flows through both the coils. Further, the magnetic core 1 is arranged inside the coils so that the longitudinal direction, which is the easy axis of shape magnetic anisotropy, is inclined as described above.

図3は図2をコイル面の方向(側面)から見た動作説明図である.被計測電流 Ix によって生じる被計測磁界 Hx は磁気コア1の内部に被計測磁束 Φx を生じる.一方,励磁コイル2には交流成分を持つ励磁電流 Ie を流し,これによって励磁コイル2の内側に強さが変動する励磁磁界 He を生じる.よって磁気コア1の内部に励磁磁束 Φe が生じる.なお,以下の説明では原理を解りやすくするために,励磁電流 Ie は交流成分のみとして説明する.ところで,前記被計測磁束 Φx と前記励磁磁束 Φe は同一磁気コア内に同時に生じるために,実際には両者が合成された一つの磁束として存在する.よってこれを合成磁束 Φc と称する.この合成磁束 Φc は被計測磁束 Φx と励磁磁束 Φe とが同じ方向を向いている時間帯には大きくなる.しかし,励磁磁界 He が交流であるために励磁磁束 Φe は反対を向く時間帯があり,この時間帯には合成磁束 Φc は小さくなる.したがって合成磁束 Φc は励磁電流 Ie の励磁周波数 fe に同期して大きさが変動する.そして,この合成磁束 Φc は鎖交している検出コイル3に誘起電圧を生じさせる.この誘起電圧が出力できるように配線して,その出力を検出電圧 Vd と称する.このようにして被計測電流 Ix の影響を受けた検出電圧 Vd を得ることができる.この検出電圧 Vd から被計測電流 Ix の値を計測できるが,その原理と方法については後述する.   FIG. 3 is an operation explanatory diagram when FIG. 2 is viewed from the coil surface direction (side surface). The measured magnetic field Hx generated by the measured current Ix generates a measured magnetic flux Φx inside the magnetic core 1. On the other hand, an exciting current Ie having an AC component is passed through the exciting coil 2, thereby generating an exciting magnetic field He whose intensity varies inside the exciting coil 2. Therefore, an exciting magnetic flux Φe is generated inside the magnetic core 1. In the following description, the excitation current Ie is described as an AC component only to facilitate understanding of the principle. By the way, since the measured magnetic flux Φx and the excitation magnetic flux Φe are generated in the same magnetic core at the same time, they actually exist as one combined magnetic flux. Therefore, this is called the combined magnetic flux Φc. This combined magnetic flux Φc increases during the time when the measured magnetic flux Φx and the excitation magnetic flux Φe are in the same direction. However, since the excitation magnetic field He is alternating, there is a time zone in which the excitation magnetic flux Φe faces the opposite direction, and the resultant magnetic flux Φc is small during this time zone. Therefore, the magnitude of the combined magnetic flux Φc varies in synchronization with the excitation frequency fe of the excitation current Ie. This combined magnetic flux Φc generates an induced voltage in the detecting coil 3 that is linked. Wiring is performed so that this induced voltage can be output, and the output is called the detection voltage Vd. In this way, the detection voltage Vd affected by the measured current Ix can be obtained. The value of the measured current Ix can be measured from this detected voltage Vd. The principle and method will be described later.

図4は,合成磁界 Hc に含まれる励磁磁界 He と被計測磁界 Hx の比率の,磁気コアの傾きによる違いを示した説明図である.前記では磁束の観点から説明したが,ここでは磁界を用いて説明する.この図の合成磁界 Hc はすべて同じ大きさに描いた.これは合成磁界 Hcを構成する励磁磁界 He と被計測磁界 Hx 割合の,磁気コアの傾斜角による違いを比較するためである.   Figure 4 is an explanatory diagram showing the difference in the ratio of the excitation magnetic field He and the measured magnetic field Hx contained in the composite magnetic field Hc due to the inclination of the magnetic core. In the above, the explanation was made from the viewpoint of magnetic flux. The combined magnetic field Hc in this figure is drawn with the same magnitude. This is to compare the difference between the excitation magnetic field He composing the composite magnetic field Hc and the measured magnetic field Hx ratio due to the inclination angle of the magnetic core.

図4では被計測磁界 Hx と励磁磁界 He とが直角の場合として説明する.また,磁気コア1の特性を単純化して,磁化容易軸方向にのみ磁化され,磁化困難軸方向には磁化されないものとして説明する.この条件の下で磁気コア1の傾斜角θが0度であれば,合成磁界 Hc に被計測磁界 Hx は成分は含まれず,検出コイルの誘起電圧から被計測磁界 Hx の情報を得ることはできない.また,傾斜角θが90度の場合には合成磁界 Hc に励磁磁界 He 成分が含まれない.したがって,検出コイルに励磁磁界 He に起因する誘起電圧は生じず,検出コイルの誘起電圧で被計測磁界 Hx の情報を得ることはできない.被計測磁界 Hx の影響は傾斜角θが大きい方が強く,センサとしての感度が良くなる方に働く,しかし,励磁磁界 He の影響は傾斜角θが小さい方が強く,その点では傾斜角θが小さい方が,感度が良くなる.総合すると,双方が最も良い関係になる角度が存在することがわかる.そしてその角度は,小さな電流を感度よく計測するのか,それとも大電流を計測するのか,あるいは励磁電流をどの程度にするのかなど,製品仕様により最適値が異なる.また,磁気コア1を直線状にせず曲線状や屈折状にすることにより部分的に傾斜角を変え,傾斜角による特性の長所を複合的に利用することも可能である.この考え方を用いれば,後述する連結磁気コアの連結部を屈曲させずに曲線状にして,連続的に連結することができて設計の最適化に利用できる設計要素になる.   In Fig. 4, the measured magnetic field Hx and the excitation magnetic field He are described as being at right angles. In addition, the characteristics of the magnetic core 1 are simplified and described as being magnetized only in the easy axis direction and not in the hard axis direction. If the inclination angle θ of the magnetic core 1 is 0 degree under this condition, the composite magnetic field Hc does not contain the component of the magnetic field to be measured Hx, and information on the magnetic field to be measured Hx cannot be obtained from the induced voltage of the detection coil. . When the tilt angle θ is 90 degrees, the composite magnetic field Hc does not contain the excitation magnetic field He component. Therefore, the induced voltage due to the excitation magnetic field He does not occur in the detection coil, and information on the measured magnetic field Hx cannot be obtained from the induced voltage of the detection coil. The effect of the magnetic field to be measured Hx is stronger when the tilt angle θ is larger, and it works for better sensitivity as a sensor. However, the influence of the excitation magnetic field He is stronger when the tilt angle θ is smaller, and at that point the tilt angle θ The smaller the is, the better the sensitivity. Taken together, it can be seen that there is an angle where the two are in the best relationship. The angle depends on the product specifications, such as whether a small current is measured with high sensitivity, whether a large current is measured, or how much the excitation current is to be measured. It is also possible to change the tilt angle partially by making the magnetic core 1 not curved but curved or refracted, and to use the advantages of the characteristics of the tilt angle in combination. If this concept is used, the connecting part of the connecting magnetic core, which will be described later, can be continuously connected in a curved shape without bending, and the design element can be used for design optimization.

図5は,被計測電流 Ix の傾きによる,磁気コアが受ける磁界の強さの違いを示した説明図である.この図で,コイル面に垂直な一つの被計測電流 Ix-B を基準にして,被計測電流 Ix-A は被計測磁界の磁気コア方向成分Hx-a が大きく,同様に被計測電流 Ix-C は被計測磁界の磁気コア方向成分Hx-c が小さくなる.したがって,単一の磁気コアでは被計測電流 Ix の角度によりセンサの感度が変わることがわかる.この問題を改善するためには後述の図7に示すように被計測電流 Ix を中心に,対面する位置にも磁気コアを設置する方法や,図12の説明で明らかにする連結磁気コアが有効である.   Fig. 5 is an explanatory diagram showing the difference in the strength of the magnetic field received by the magnetic core depending on the slope of the measured current Ix. In this figure, based on one measured current Ix-B perpendicular to the coil surface, measured current Ix-A has a large magnetic core direction component Hx-a of the measured magnetic field. In C, the magnetic core direction component Hx-c of the measured magnetic field is small. Therefore, it can be seen that the sensitivity of the sensor varies with the angle of the current Ix to be measured in a single magnetic core. In order to improve this problem, as shown in FIG. 7 to be described later, it is effective to install a magnetic core at the facing position with the measured current Ix as the center, or the coupled magnetic core clarified in the explanation of FIG. It is.

図6は,磁気コアが一つの場合の,磁気コアと励磁コイルと検出コイルと被計測電流 Ix との相互関係を示した説明図である.この図は検出コイル3と励磁コイル2がコイルの軸方向に重なり,被計測電流 Ix はコイルの軸上を流れているように描いてある.つまり,図3を右側面から見た図である.この図で磁気コア1は紙面奥の方が下で手前側が上になるように傾いていて,そこに,磁気コアの端が見える.被計測電流 Ix は紙面の表から裏に向かっていて,慣習に従いその方向を×印で示した.   Fig. 6 is an explanatory diagram showing the interrelationship among the magnetic core, the excitation coil, the detection coil, and the measured current Ix when there is one magnetic core. In this figure, the detection coil 3 and the excitation coil 2 overlap in the axial direction of the coil, and the current Ix to be measured flows on the axis of the coil. In other words, Fig. 3 is a view from the right side. In this figure, the magnetic core 1 is tilted so that the back of the page is down and the front side is up, and the end of the magnetic core is visible there. The measured current Ix was directed from the front to the back of the page, and the direction was indicated with a cross in accordance with the convention.

図7は,磁気コアが複数の場合の,磁気コアと励磁コイルと検出コイルと被計測電流 Ix との相互関係を示した説明図である.この図は図6における磁気コア1を複数個にして,被計測電流 Ix を周回するように配置したものである.これにより,励磁コイル2と検出コイル3と被計測電流 Ix との磁気結合は強くなり,磁気コアが一つの場合に比べてより安定した計測ができるようになる.またこの様にすると,図5で説明した被計測電流 Ix の傾きの影響は,円周上で被計測電流 Ix を挟んで対向する磁気コアで相殺する働きが生じ,影響が小さくなる効果もある.   Fig. 7 is an explanatory diagram showing the interrelationship among the magnetic core, excitation coil, detection coil, and measured current Ix when there are multiple magnetic cores. In this figure, a plurality of magnetic cores 1 in FIG. 6 are arranged so as to circulate the current Ix to be measured. As a result, the magnetic coupling between the exciting coil 2, the detecting coil 3, and the current Ix to be measured is strengthened, and more stable measurement can be performed as compared with the case of one magnetic core. In this way, the influence of the slope of the measured current Ix explained in FIG. 5 has a function of canceling out by the opposing magnetic core across the measured current Ix on the circumference. .

図8は,図6において,被計測電流がコイルの外にある場合を示した説明図である.この図に示した被計測磁界 Hx と磁気コア1との関係は図6および図3に示した両者の関係と同じであり,被計測電流
Ix がコイルの外にあっても機能することがわかる.しかし,被計測電流 Ix と磁気コア1との距離が離れるために感度が下がる.
FIG. 8 is an explanatory diagram showing the case where the current to be measured is outside the coil in FIG. The relationship between the measured magnetic field Hx and the magnetic core 1 shown in this figure is the same as that shown in FIGS.
It can be seen that Ix works even outside the coil. However, the sensitivity decreases because the distance between the measured current Ix and the magnetic core 1 is increased.

図9は,被計測電流がコイルの外にある場合で,複数の磁気コアを配置するとともにコイルを変形した場合の説明図である.図8では被計測電流 Ix と磁気コア1との距離が離れている.そこで,これを改善するためにコイルを変形して被計測電流 Ix を磁気コア1に近づけた.さらに,磁気コア1を増やしてより安定するようにした.これはひとまとまりのセンサユニットとして捉えることができ,この応用を図29と図30で説明する.   Fig. 9 is an explanatory diagram when the current to be measured is outside the coil and a plurality of magnetic cores are arranged and the coil is deformed. In FIG. 8, the distance between the measured current Ix and the magnetic core 1 is large. Therefore, to improve this, the coil was deformed to bring the measured current Ix closer to the magnetic core 1. Furthermore, the magnetic core 1 was increased to make it more stable. This can be understood as a group of sensor units, and its application will be described with reference to FIGS. 29 and 30. FIG.

図10は,被計測磁界 Hx と励磁磁界 He から合成磁束 Φc が生じることを磁気コアの B-H
特性で示した説明図である.この B-H 特性は 正と負の領域を画いた一般的な磁性材の特性であるが,磁性材の B-H 特性は図に示すように原点対称である.この図では,説明を解りやすくするためにヒステリシスを省略して模式的に示している.実際の特性にはヒステリシスがあり磁束の波形が歪むものの,動作原理で重要な対称性や非線形性は変わらない.この図には,被計測磁界 Hx が0の時の励磁磁界 He の波形とその際の励磁磁束 Φe の波形を破線で示した.また,励磁磁界 He と被計測磁界 Hxとが加算され,中心がずれた磁界を合成磁界 Hc として実線で示した.そして,合成磁界 Hc による磁束を合成磁束 Φc として実線で示した.
FIG. 10 shows that the combined magnetic flux Φc is generated from the magnetic field to be measured Hx and the excitation magnetic field He.
It is an explanatory diagram showing the characteristics. This BH characteristic is a characteristic of a general magnetic material that defines positive and negative regions, but the BH characteristic of the magnetic material is symmetrical at the origin as shown in the figure. In this figure, the hysteresis is omitted for easy understanding. Although the actual characteristics have hysteresis and the magnetic flux waveform is distorted, the symmetry and nonlinearity that are important in the principle of operation do not change. In this figure, the waveform of the excitation magnetic field He when the measured magnetic field Hx is 0 and the waveform of the excitation magnetic flux Φe at that time are shown by broken lines. The excitation magnetic field He and the measured magnetic field Hx are added, and the magnetic field with the center shifted is shown as the combined magnetic field Hc with a solid line. The magnetic flux generated by the combined magnetic field Hc is shown by the solid line as the combined magnetic flux Φc.

磁性材の B-H 特性は原点対称であるために,励磁磁界 He が例えば正弦波のように正負対称であれば,励磁磁界 He だけの励磁磁束 Φe は正負対称になる.これは被計測磁界 Hx が0のときの合成磁界 Hc と合成磁束 Φc の関係でもある.ところが被計測磁界 Hx が0でない場合は,励磁磁界 He が正負対称であっても合成磁束 Φc は正負対称にならない.つまり,励磁磁界 He と被計測磁界 Hx の和である合成磁界 Hc は磁性材の B-H 特性の対称点からずれたところを中心に振れるためである.これを利用して合成磁束 Φc の正負の非対称の度合いを計測すれば被計測磁界 Hx の大きさを知ることができる.すなわち被計測電流 Ix の値を知ることができる.なお,この説明では被計測磁界 Hx の周波数は,励磁電流 Ie の周波数つまり励磁周波数 fe に対して充分に低いか,または直流である.    Since the B-H characteristics of the magnetic material are symmetric with respect to the origin, if the excitation magnetic field He is positive and negative symmetric, for example, a sine wave, the excitation magnetic flux Φe with only the excitation magnetic field He becomes positive and negative symmetric. This is also the relationship between the combined magnetic field Hc and the combined magnetic flux Φc when the measured magnetic field Hx is zero. However, if the measured magnetic field Hx is not 0, the resultant magnetic flux Φc will not be positively or negatively symmetric even if the excitation magnetic field He is symmetric. In other words, this is because the combined magnetic field Hc, which is the sum of the excitation magnetic field He and the measured magnetic field Hx, swings around a point deviated from the symmetry point of the B-H characteristic of the magnetic material. The magnitude of the measured magnetic field Hx can be determined by measuring the degree of asymmetry of the composite magnetic flux Φc using this. In other words, the value of the measured current Ix can be known. In this explanation, the frequency of the magnetic field to be measured Hx is sufficiently lower than the frequency of the excitation current Ie, that is, the excitation frequency fe, or is DC.

次に合成磁束 Φc の非対称性の度合いを検出する方法について述べる.合成磁束 Φc は励磁周波数 fe を基本周波数とした歪み波である.したがってこの合成磁束 Φc と鎖交するコイルがあれば誘起電圧を得ることができる.そのコイルがすなわち検出コイルで,図1および図2にも示した検出コイル3である.コイルの誘起電圧は磁束の微分値になるため,この場合も検出電圧 Vd は合成磁束 Φc の微分波形になる.よって検出コイル3の検出電圧 Vd を積分すれば合成磁束 Φc と同じ波形を得ることができる.ただし,検出電圧 Vd には合成磁束 Φc の直流成分が含まれていないために,検出電圧 Vd の積分値は合成磁束 Φc から直流成分を省いた波形になる.この波形やタイミングを示したのが図11である.しかし,必ずしも積分しなければならないということではなく,積分したほうが精度向上が期待できるものの積分しなくても検出することはできる.   Next, a method for detecting the degree of asymmetry of the combined magnetic flux Φc is described. The resultant magnetic flux Φc is a distorted wave with the excitation frequency fe as the fundamental frequency. Therefore, the induced voltage can be obtained if there is a coil interlinking with this combined magnetic flux Φc. That coil is the detection coil, which is the detection coil 3 shown in FIGS. Since the induced voltage of the coil is a differential value of the magnetic flux, the detected voltage Vd is also a differential waveform of the combined magnetic flux Φc in this case. Therefore, if the detection voltage Vd of the detection coil 3 is integrated, the same waveform as the combined magnetic flux Φc can be obtained. However, since the detection voltage Vd does not contain the DC component of the composite magnetic flux Φc, the integrated value of the detection voltage Vd has a waveform that excludes the DC component from the composite magnetic flux Φc. This waveform and timing are shown in FIG. However, it does not necessarily have to be integrated. Although integration can be expected to improve accuracy, it can be detected without integration.

図11は,一つの検出電圧 Vd から計測値を求める方法を示した説明図である.ここで言う「計測値」とは被計測磁界
Hx の値に比例し延いては被計測電流 Ix の値に比例した値である.同図に示した二つの検出電圧積分値 Vix および Vi0 は検出電圧
Vd を積分した電圧波形である.この検出電圧積分値には合成磁束 Φc の直流成分の情報は含まれてない.そこで,この交流波形だけから直流成分の情報を得る工夫が必要である.
FIG. 11 is an explanatory diagram showing a method for obtaining a measured value from one detection voltage Vd. “Measured value” here refers to the magnetic field to be measured.
The value proportional to the value of Hx is proportional to the value of the measured current Ix. The two detected voltage integral values Vix and Vi0 shown in the figure are the detected voltage.
This is a voltage waveform obtained by integrating Vd. This detected voltage integral value does not include the DC component information of the composite magnetic flux Φc. Therefore, it is necessary to devise a way to obtain DC component information from only this AC waveform.

図11の計測値を求める方法は,被計測電流 Ix が任意の値のときの検出電圧積分値 Vix の波形上で, Ix = 0 の時の位置を求め,その位置の値が Vix の 0 V からどれだけずれているかを求める方法である.Vix の波形は Ix が任意の値のときであるが,この図では Ix が0でない時を示している.また破線で示した Vi0 は, Ix = 0 の時の検出電圧の積分波形である.Vi0 は正負が対称で,そのゼロクロスタイミングと励磁電流 Ie の立上がりタイミングまたは立ち下がりタイミングは一致する.つまり,立ち上がりタイミングの瞬時値と,立ち下がりタイミングの瞬時値とは同じ値で,0 V になると言うことである(ただし,磁性材や回路の特性で位相がずれる場合は調整が必要).この性質を利用して,Vix の波形において,立ち上がりタイミングの時の瞬時値と,立ち下がりタイミングの時の瞬時値が同じになるタイミングを求めれば,その時の瞬時値は Vix の 0 V からずれた値を示す.この値は波形のひずみの度合いを反映しており,被計測電流 Ix の大きさに比例する.前記の瞬時値を求める具体的な方法は,前記の立ち上がりタイミングと立ち下がりタイミングの瞬時値をそれぞれサンプルホールドして,その両方の値が同じになるように,Vix の位相に対する Ie のタイミングを移相して調整する.このようにして得た瞬時値から計測値を求めることができる.この方法については後述の図16の説明でさらに具体的に説明する.   The method of obtaining the measured value in Fig. 11 is to obtain the position when Ix = 0 on the waveform of the detected voltage integral value Vix when the measured current Ix is an arbitrary value, and the value of that position is 0 V of Vix. This is a method to find out how far it is from. The waveform of Vix is when Ix is an arbitrary value, but this figure shows when Ix is not zero. Vi0 shown by the broken line is the integrated waveform of the detected voltage when Ix = 0. Vi0 is symmetric in positive and negative, and its zero-crossing timing is the same as the rising or falling timing of the excitation current Ie. In other words, the instantaneous value of the rise timing and the instantaneous value of the fall timing are the same value and become 0 V (however, adjustment is necessary if the phase is shifted due to the characteristics of the magnetic material or the circuit). Using this property, if the timing at which the instantaneous value at the rising timing and the instantaneous value at the falling timing are the same in the Vix waveform is obtained, the instantaneous value at that time deviates from 0 V of Vix. Indicates the value. This value reflects the degree of waveform distortion and is proportional to the magnitude of the measured current Ix. The specific method for obtaining the instantaneous value is to sample and hold the instantaneous value of the rise timing and fall timing, respectively, and shift the timing of Ie with respect to the phase of Vix so that both values are the same. Adjust accordingly. The measured value can be obtained from the instantaneous value obtained in this way. This method will be described more specifically in the description of FIG.

以上説明した原理により,磁気コア1と励磁コイル2と検出コイル3とがあり,全てが相互に磁気結合するように配置して,これらと磁気結合する位置に被計測電流 Ix を配置すれば,被計測電流 Ix を計測することができる.しかし,この方法では瞬時値を扱っており実用回路では瞬時値にノイズが入ることもあり精度を上げにくい可能性がある.そこで本発明を差動方式にして,より精度の向上が期待できる方法を次に提示する.差動方式は大きく2つに分類できる.一つは傾きが対称になるような一対の磁気コアを設けて,それぞれから得られる出力の差動値を求める方法であり,もう一つは一方向の傾きの磁気コアを,部位ごとに反対方向に励磁する方法である.以下説明図に基づいて詳細な説明をする.   According to the principle explained above, if there is a magnetic core 1, an excitation coil 2 and a detection coil 3, all of them are magnetically coupled to each other, and the current Ix to be measured is arranged at a position where they are magnetically coupled, The measured current Ix can be measured. However, this method handles instantaneous values, and in practical circuits, there may be noise in the instantaneous values and it may be difficult to improve accuracy. Therefore, the method that can be expected to improve accuracy by making the present invention a differential system is presented below. There are two types of differential systems. One is to provide a pair of magnetic cores with symmetrical inclinations, and to obtain the differential value of the output obtained from each. The other is to reverse the magnetic cores with one-direction inclination for each part. It is a method of exciting in the direction. The following is a detailed explanation based on the explanatory diagram.

図12は,連結コア型差動方式の構成と動作説明図であり,請求項3の発明の一例である.この方式に用いている連結磁気コアとは,図4に示した傾斜角θが正の磁気コア1a と,負の磁気コア1b
とを,双方のコアのそれぞれの磁化容易軸に沿った磁路が,直列接続になるように連結した磁気コアである.この図の連結部は励磁コイル2で隠れているが,磁気コア1aと磁気コア1bとは,機械的に接触している場合の他に,機械的には接触していなくても磁気ギャップをもって磁気的に結合した連結でも良い.この連結磁気コアの正の傾斜角の部分つまり磁気コア1a に検出コイル3a を巻き,同様に負の傾斜角の部分つまり磁気コア1b に検出コイル3b を巻く.さらに,磁気コア1a と磁気コア1b の双方つまり連結磁気コア全体に励磁磁束が発生するように励磁コイル2を巻く.この図に示したこれらのコイルは一部分にしか巻いていないが,これは説明が解りやすいようにするためであり,実際には図26に示す実施例の様にする方が実用的である.
FIG. 12 is a diagram for explaining the configuration and operation of a linked core type differential system, and is an example of the invention of claim 3. The coupled magnetic cores used in this method are a magnetic core 1a having a positive inclination angle θ and a negative magnetic core 1b shown in FIG.
Is a magnetic core in which the magnetic paths along the easy axis of both cores are connected in series. Although the connecting portion in this figure is hidden by the exciting coil 2, the magnetic core 1a and the magnetic core 1b have a magnetic gap even if they are not in mechanical contact, in addition to the case where they are in mechanical contact. A magnetically coupled connection may be used. The detection coil 3a is wound around the positive inclination angle portion of the coupled magnetic core, that is, the magnetic core 1a, and similarly the detection coil 3b is wound around the negative inclination angle portion, that is, the magnetic core 1b. Further, the exciting coil 2 is wound so that the exciting magnetic flux is generated in both the magnetic core 1a and the magnetic core 1b, that is, the entire connected magnetic core. These coils shown in this figure are wound only partially, but this is for ease of explanation, and in practice it is more practical to use the embodiment shown in FIG.

図12において,被計測電流 Ix が流れると被計測磁界 Hx が生じる.この被計測磁界 Hx は磁気コア1a の被計測磁束Φxa と磁気コア1b の被計測磁束Φxb とを生じる.この際,Φxa とΦxb とは,図中に示したX-Y 座標の Y座標では同じ向きになるが,X座標では相互に反対向きになる.一方,励磁電流 Ie による励磁磁界 He は磁気コア1a に励磁磁束
Φea を生じ,磁気コア1b には励磁磁束 Φeb を生じる.この際,Φea とΦeb とは,Y座標では相互に反対向きになり,X座標では同じ向きになる.その結果,磁気コア1a の Φxa と Φea は互いに同じ向きになり,磁気コア1b の Φxb と Φeb は互いに反対向きになる.磁気コア1a には検出コイル3a が巻いてあり,磁気コア1b には検出コイル3b が巻いてある.検出コイル3a の誘起電圧をコイルから出力して検出電圧 Vda とし,検出コイル3b の誘起電圧をコイルから出力して検出電圧 Vdb とする.連結コア型差動方式はこの検出電圧 Vda と Vdb との差動値を利用する方式である.
In Fig. 12, when the measured current Ix flows, the measured magnetic field Hx is generated. This measured magnetic field Hx generates a measured magnetic flux Φxa of the magnetic core 1a and a measured magnetic flux Φxb of the magnetic core 1b. In this case, Φxa and Φxb are in the same direction in the Y coordinate of the XY coordinates shown in the figure, but opposite in the X coordinate. On the other hand, the exciting magnetic field He caused by the exciting current Ie generates an exciting magnetic flux Φea in the magnetic core 1a and an exciting magnetic flux Φeb in the magnetic core 1b. In this case, Φea and Φeb are opposite to each other in the Y coordinate and in the same direction in the X coordinate. As a result, Φxa and Φea of magnetic core 1a are in the same direction, and Φxb and Φeb of magnetic core 1b are in opposite directions. A detection coil 3a is wound around the magnetic core 1a, and a detection coil 3b is wound around the magnetic core 1b. The induction voltage of the detection coil 3a is output from the coil as the detection voltage Vda, and the induction voltage of the detection coil 3b is output from the coil as the detection voltage Vdb. The concatenated core type differential method uses the differential value between the detected voltages Vda and Vdb.

ここで,励磁電流 Ie は励磁周波数 fe の正弦波か,あるいはそれに近い波形として説明する.しかし,本発明を実施する場合は三角波などでも良く正弦波に限るものではない.また,被計測電流 Ix の周波数は励磁周波数 fe よりも充分に低いかあるいは直流の場合で説明する.   Here, the excitation current Ie is explained as a sine wave of excitation frequency fe or a waveform close to it. However, when the present invention is implemented, a triangular wave or the like may be used, and is not limited to a sine wave. The frequency of the measured current Ix is explained below when it is sufficiently lower than the excitation frequency fe or DC.

図13は,連結コア型差動方式の磁気コア1a と1b の合成磁束およびその差動値の波形を示した説明図である.磁気コア1a の合成磁束を Φca で示し,磁気コア1b の合成磁束を Φcb で示した.また,Φca と Φcb の差動値として,Φca
− Φcb の波形を Φdif で示した.磁気コアの合成磁束
Φc は図10で説明したように,被計測磁界 Hx が0でない場合は正と負で対象にはならずに,正側と負側で振幅が異なる.図10の特性で合成磁束 Φc の振幅は,被計測磁界 Hx と励磁磁界 He が同じ方向を向いた時には大きくなり,反対を向いた時に小さくなる.連結コア型差動方式の場合,図12で示したように,磁気コア内の被計測磁界 Hx は,磁気コア1a と磁気コア1b
とでは,X 座標上で反対向きになる.従って,励磁磁界 He が向きを変えると,磁気コア1a と磁気コア1b 内では,励磁磁束は励磁磁界 He の半サイクルごとに被計測磁束に対して交互に同じ向きになったり反対向きになったりする.従って,それぞれの磁気コアの合成磁束は図13に示したΦca およびΦcb のようになる.この図は被計測電流 Ix が0でないときの波形であるが,Ix = 0 の場合は Φca と Φcb の波形は重なり,その差動値は0になる. なお,上記説明ではX 座標上の向きについてのみ議論したが,これは,Y座標方向の磁束は図12の検出コイルでは起電力に寄与せず無視できるからである.
FIG. 13 is an explanatory diagram showing the combined magnetic flux of the coupled core type differential magnetic cores 1a and 1b and the waveform of the differential value. The combined magnetic flux of the magnetic core 1a is indicated by Φca, and the combined magnetic flux of the magnetic core 1b is indicated by Φcb. In addition, as the differential value of Φca and Φcb, Φca
− The waveform of Φcb is shown as Φdif. As described with reference to FIG. 10, the composite magnetic flux Φc of the magnetic core is positive and negative when the magnetic field to be measured Hx is not 0, and does not become an object. In the characteristics of Fig. 10, the amplitude of the resultant magnetic flux Φc increases when the measured magnetic field Hx and the excitation magnetic field He face the same direction, and decreases when they face the opposite direction. In the case of the coupled core type differential method, as shown in FIG. 12, the magnetic field to be measured Hx in the magnetic core is the magnetic core 1a and the magnetic core 1b.
And in the opposite direction on the X coordinate. Therefore, when the direction of the exciting magnetic field He changes, the exciting magnetic flux alternately turns in the same direction or opposite to the measured magnetic flux every half cycle of the exciting magnetic field He in the magnetic core 1a and the magnetic core 1b. Do it. Therefore, the combined magnetic flux of each magnetic core becomes Φca and Φcb shown in FIG. This figure shows the waveform when the measured current Ix is not 0. When Ix = 0, the waveforms of Φca and Φcb overlap and the differential value is 0. In the above description, only the orientation on the X coordinate was discussed, because the magnetic flux in the Y coordinate direction can be ignored in the detection coil of Fig. 12 without contributing to the electromotive force.

図12では,磁気コア1a の合成磁束をΦca と,磁気コア1b
の合成磁束をΦcb を別々に検出して,それぞれ検出電圧 Vda
と検出電圧 Vdb を得ている.Φca とΦcb の差動値Φdif を求めるためには, Vda と Vdb をそれぞれ積分してそれらの差分を得る方法や,Vda と Vdb の差分を求めてから積分する方法がある.このようにして磁気コア1a の合成磁束Φca と磁気コア1b の合成磁束Φcb の差動値Φdif を求めることにより,その大きさから被計測電流 Ix の大きさが求まり,励磁電流 Ie との位相関係により被計測電流 Ix の向きが判る.よって被計測電流 Ix の計測できる.これを具現化する方法については,電子回路のよる方法を後述する図17から図20で説明する.
In FIG. 12, the combined magnetic flux of the magnetic core 1a is Φca and the magnetic core 1b.
The combined magnetic flux of Φcb is detected separately and the detected voltage Vda
And the detection voltage Vdb. There are two methods for obtaining the differential value Φdif of Φca and Φcb: integrating Vda and Vdb and obtaining the difference between them, and obtaining the difference between Vda and Vdb. Thus, by obtaining the differential value Φdif of the composite magnetic flux Φca of the magnetic core 1a and the composite magnetic flux Φcb of the magnetic core 1b, the magnitude of the current Ix to be measured is obtained from the magnitude, and the phase relationship with the excitation current Ie The direction of the measured current Ix can be found from. Therefore, the measured current Ix can be measured. A method for realizing this will be described with reference to FIGS. 17 to 20 described later.

図14は,対向励磁型差動方式の構成と動作説明図である.この方式は,一方向の傾きを持つ磁気コア1を,部分的に反対向きに励磁することを特徴としている.この図に示した例では磁気コア1の両端付近にそれぞれ励磁コイル2a と励磁コイル2bとを配置して反対向きに励磁し,検出コイル3は磁気コア1の全体の磁束変化を捉えられるように配置している.この図においては,励磁コイル2a による,磁気コア1の左部分に発生する励磁磁束 Φe2a は,磁気コア1内の被計測磁束 Φx に対して同じ向きで,他方の磁気コア1の右部分に発生する励磁磁束 Φe2b は,磁気コア1内の被計測磁束 Φx に対して反対向きである.ここで,Φe2a と Φx の合成磁束を Φc2a とし,Φe2b
と Φx の合成磁束を Φc2b とする.この構造では,Φe2a と Φe2b とは反対向きになるために,打ち消して励磁磁束が得られないようであるが,実際には磁気コア1の中央付近から磁気コア1の外に漏れだして磁気コア1の両端付近につながる磁束を生じる.したがって,励磁磁束が打ち消し合って消滅することはない.次にこれらの磁束の関係と検出電圧 Vd について説明する.
Figure 14 shows the configuration and operation of the counter excitation type differential system. This method is characterized by exciting the magnetic core 1 with a unidirectional inclination partially in the opposite direction. In the example shown in this figure, an exciting coil 2a and an exciting coil 2b are arranged in the vicinity of both ends of the magnetic core 1 so as to be excited in opposite directions, so that the detecting coil 3 can capture the entire magnetic flux change of the magnetic core 1. It is arranged. In this figure, the exciting magnetic flux Φe2a generated in the left part of the magnetic core 1 by the exciting coil 2a is generated in the right part of the other magnetic core 1 in the same direction with respect to the measured magnetic flux Φx in the magnetic core 1. The exciting magnetic flux Φe2b is opposite to the measured magnetic flux Φx in the magnetic core 1. Here, the combined magnetic flux of Φe2a and Φx is Φc2a, and Φe2b
And the combined magnetic flux of Φx is Φc2b. In this structure, Φe2a and Φe2b are opposite to each other, so it seems that the exciting magnetic flux cannot be obtained by canceling out. A magnetic flux is generated near both ends of 1. Therefore, the exciting magnetic flux does not cancel each other out. Next, the relationship between these magnetic fluxes and the detection voltage Vd are explained.

図15は,対向励磁型差動方式の磁気コア内の合成磁束およびその差動値の波形を示した説明図である.この図では,図14の磁気コア1の右部分に生じる合成磁束 Φc2a を細い実線で示した.また磁気コア1の右部分に生じる合成磁束 Φc2b を細い破線で示した.Φc2a も Φc2b も,Ix が0でない場合は,何れも正と負が非対称になるが,図15はその状態を示した.因みに図13に示した連結コア型差動方式のΦca と Φcb とは,図12で説明した通り,単一の励磁コイル2で励磁しているために同相である.しかし.対向励磁型差動方式のΦc2a と Φc2b とは励磁方向が反対向きで,図15に示すように位相が反転している.よって,この両磁束の和が差動値になる.この磁束の和を得るためには,Φc2a と Φc2b の誘起電圧を単一の検出コイルに発生させればよい.ただし,磁束の差動値Φdif の波形を得るためには積分が必要である.さらに,検出電圧 Vd には直流成分は含まれていない.このようにして対向励磁型差動方式で差動値 Φdif を求めることができ,その大きさから被計測電流 Ix の大きさが求まり,励磁電流 Ie との位相関係により被計測電流 Ix の向きが判る.よって被計測電流 Ix の計測ができる.これを具現化する方法については,電子回路による方法を後述する図21で説明する.   FIG. 15 is an explanatory diagram showing the composite magnetic flux in the counter excitation type differential magnetic core and the waveform of its differential value. In this figure, the combined magnetic flux Φc2a generated in the right part of the magnetic core 1 in FIG. 14 is shown by a thin solid line. The combined magnetic flux Φc2b generated in the right part of the magnetic core 1 is shown by a thin broken line. In both Φc2a and Φc2b, when Ix is not 0, both positive and negative are asymmetrical, but FIG. 15 shows this state. Incidentally, Φca and Φcb of the coupled core type differential system shown in FIG. 13 are in phase because they are excited by the single exciting coil 2 as described in FIG. However. The opposite excitation type Φc2a and Φc2b have opposite excitation directions, and the phases are reversed as shown in FIG. Therefore, the sum of these two magnetic fluxes becomes a differential value. In order to obtain the sum of the magnetic fluxes, the induced voltages of Φc2a and Φc2b should be generated in a single detection coil. However, integration is necessary to obtain the waveform of the differential value Φdif of the magnetic flux. Furthermore, the detection voltage Vd does not contain a DC component. In this way, the differential value Φdif can be obtained by the counter excitation type differential method, and the magnitude of the measured current Ix is obtained from the magnitude, and the direction of the measured current Ix is determined by the phase relationship with the exciting current Ie. I understand. Therefore, the measured current Ix can be measured. A method for realizing this will be described with reference to FIG.

次に駆動回路について説明する.   Next, the drive circuit is explained.

図16は,単一の検出電圧 Vd から計測値を求める方法を実現する駆動回路の例を示した説明図である.この方法の原理については図11でも説明した.そこで,ここではそれを実現する電子回路について説明する.図16において,左側の変成器の記号で示したコアとコイル群は本発明のセンサであり,磁気コア1と励磁コイル2と検出コイル3,および被計測電流 Ix と被計測導体6を表している.励磁コイル2には発振回路51で発生させた交流信号を励磁アンプ52で電力増幅して励磁電流 Ie を流す.検出コイル3の出力である検出電圧 Vd は積分回路53で積分して磁気コア1内の磁束の波形を再現する.この信号は図11で示した Vix または Vi0 であるが,ここでは Vi と表現する.Vi はサンプルホールド回路A 57a とサンプルホールド回路B 57b に送られる.一方,発振回路51の信号は移相回路56によって位相調整された後,その立上りタイミングをサンプルホールド回路A
57a に供給し,同様に立下りタイミングをサンプルホールド回路B 57b に供給する.
FIG. 16 is an explanatory diagram showing an example of a drive circuit that realizes a method for obtaining a measurement value from a single detection voltage Vd. The principle of this method is also explained in FIG. Here, we explain the electronic circuit that realizes this. In FIG. 16, the core and coil group indicated by the symbol of the left transformer are the sensors of the present invention, and represent the magnetic core 1, the excitation coil 2, the detection coil 3, the current Ix to be measured, and the conductor 6 to be measured. Yes. An excitation current Ie is passed through the excitation coil 2 by amplifying the AC signal generated by the oscillation circuit 51 with the excitation amplifier 52. The detection voltage Vd that is the output of the detection coil 3 is integrated by the integration circuit 53 to reproduce the waveform of the magnetic flux in the magnetic core 1. This signal is Vix or Vi0 shown in Fig. 11, but here it is expressed as Vi. Vi is sent to the sample hold circuit A 57a and the sample hold circuit B 57b. On the other hand, after the phase of the signal of the oscillation circuit 51 is adjusted by the phase shift circuit 56, its rise timing is determined by the sample hold circuit A.
Similarly, the fall timing is supplied to the sample hold circuit B 57b.

サンプルホールド回路A
57a の出力とサンプルホールド回路B 57b の出力は比較回路58で比較する.比較回路58の出力は移相回路56に帰還して移相量を調整する信号とし,比較回路58の出力が零になるように移相量が決まる.この比較回路58の出力が零のときの,サンプルホールド回路B
57b の出力電圧とサンプルホールド回路A 57a の出力電圧とは同じで,図11に示したタイミング波形の立上がりと立ち下がりのそれぞれのときの Vi の値が一致した時の電圧である.この値は被計測電流 Ix に比例した値である.この電圧をローパスフィルター(LPF)55を通して計測値出力を得る.
Sample hold circuit A
The output of 57a and the output of the sample hold circuit B 57b are compared by the comparison circuit 58. The output of the comparison circuit 58 is fed back to the phase shift circuit 56 as a signal for adjusting the amount of phase shift, and the phase shift amount is determined so that the output of the comparison circuit 58 becomes zero. Sample and hold circuit B when the output of the comparison circuit 58 is zero
The output voltage of 57b and the output voltage of the sample hold circuit A 57a are the same, and are the voltages when the values of Vi at the rise and fall of the timing waveform shown in FIG. This value is proportional to the measured current Ix. A measured value output is obtained by passing this voltage through a low-pass filter (LPF) 55.

図17は,連結コア型差動方式のコイルの接続方法の一例と駆動回路のブロック図を示した説明図である.連結コア型差動方式では検出コイル3a の検出電圧 Vda と検出コイル3b
検出電圧 Vdb との位相は同じである.従って両検出コイルを反対向きの極性で直列接続することにより,差動検出電圧 Vdd を得ることができる.図17の検出コイルの接続はそのようになっている.得られた差動検出電圧 Vdd を積分することにより磁束の差動値 Φdif に比例した電圧を得ることが出来る.この Φdif に比例した電圧を励磁周波数 fe の2倍の周波数を参照信号として同期検波し,さらにローパスフィルターでその参照信号の周波数成分を除去すれば,その出力は,大きさが被計測電流 Ix の強さに比例し極性が向きを表す計測値出力になる.この図に示した,発振回路51,励磁アンプ52,積分回路53,同期検波回路54,LPF(ローパスフィルタ回路)55の5つの回路は,後述の図18,図19,図20に示した差動検出電圧 Vdd の信号処理,および図21の検出電圧 Vd の信号処理で共通である.
FIG. 17 is an explanatory diagram showing an example of a connecting method of a coupled core type differential coil and a block diagram of a drive circuit. In the coupled core type differential system, the detection voltage Vda of the detection coil 3a and the detection coil 3b
The phase with the detection voltage Vdb is the same. Therefore, the differential detection voltage Vdd can be obtained by connecting both detection coils in series with opposite polarities. The connection of the detection coil in FIG. 17 is like that. By integrating the obtained differential detection voltage Vdd, a voltage proportional to the differential value Φdif of the magnetic flux can be obtained. If the voltage proportional to Φdif is synchronously detected using a frequency twice the excitation frequency fe as a reference signal, and the frequency component of the reference signal is removed by a low-pass filter, the output of the measured current Ix The measurement value output is proportional to the strength and the polarity indicates the direction. The five circuits shown in this figure, that is, the oscillation circuit 51, the excitation amplifier 52, the integration circuit 53, the synchronous detection circuit 54, and the LPF (low-pass filter circuit) 55 are different from those shown in FIGS. This is common to the signal processing of the motion detection voltage Vdd and the signal processing of the detection voltage Vd in FIG.

図18は,連結コア型差動方式のコイルの接続方法の一例と差動信号を得る方法の一例を示した説明図である.この図に示した検出コイルの接続方法は,検出コイル3a の検出電圧 Vda と検出コイル3b
の検出電圧 Vdb を,それぞれオペアンプの反転入力と非反転入力に接続して差動検出電圧 Vdd を得る方法である.
FIG. 18 is an explanatory diagram showing an example of a connection method of a coupled core type differential coil and an example of a method of obtaining a differential signal. The detection coil connection method shown in this figure is based on the detection voltage Vda of the detection coil 3a and the detection coil 3b.
The detection voltage Vdb is connected to the inverting input and the non-inverting input of the operational amplifier, respectively, to obtain the differential detection voltage Vdd.

図19は,連結コア型差動方式のコイルの接続方法の一例と差動信号を得る方法の一例を示した説明図である.この図に示した接続方法は,検出コイル3b の極性を反転させて接続することにより負極性の検出電圧−Vdb を得る.そして,検出コイル3a の検出電圧 Vda と加算することにより差動検出電圧 Vdd を得る.なお,この回路ではオペアンプで反転増幅されているために差動検出電圧
Vdd の極性が反転するが本質的な問題では無い.
FIG. 19 is an explanatory diagram showing an example of a connecting method of a coupled core type differential coil and an example of a method of obtaining a differential signal. In the connection method shown in this figure, the negative polarity detection voltage − Vdb is obtained by inverting the polarity of the detection coil 3b. The differential detection voltage Vdd is obtained by adding the detection voltage Vda of the detection coil 3a. In this circuit, the differential detection voltage is inverted because it is inverted and amplified by an operational amplifier.
The polarity of Vdd is reversed, but this is not an essential problem.

図20は,連結コア型差動方式のコイルの接続方法の一例を示した説明図である.この図に示した検出コイルの接続方法は図19と同じであるが,オペアンプを使用しなくても差動検出電圧 Vdd を容易に得られることを示している.この回路では検出コイル3a と3bとの感度に差がある場合に,図の二つの抵抗の大きさの比率を変えることでバランス調整できる.これに対して,図17に示した直列接続の場合は,差動検出電圧 Vdd を容易に得ることについては同じであるが,前記のバランスの調整はできない.   FIG. 20 is an explanatory view showing an example of a connection method of a coupled core type differential coil. The connection method of the detection coil shown in this figure is the same as in FIG. 19, but it shows that the differential detection voltage Vdd can be easily obtained without using an operational amplifier. In this circuit, when there is a difference in sensitivity between the detection coils 3a and 3b, the balance can be adjusted by changing the ratio of the two resistances in the figure. On the other hand, in the case of the series connection shown in FIG. 17, it is the same for easily obtaining the differential detection voltage Vdd, but the above balance cannot be adjusted.

図17から図20に,連結コア型差動方式のコイルの接続方法の例と差動信号を得る方法の例を示したが,これらのコイルの接続方法は電子回路技術ではよく知られた方法である.この目的を達成する回路は他にもあり,ここに挙げた例に限られるものではない.   FIG. 17 to FIG. 20 show examples of a connection method of a coupled core type differential coil and an example of a method of obtaining a differential signal. These coil connection methods are well known in electronic circuit technology. It is. There are other circuits that achieve this goal, and are not limited to the examples given here.

図21は,対向励磁型差動方式のコイルの接続方法と駆動回路のブロック図を示した説明図である.この図に示したセンサ部分の接続は,図14および図15で説明した通りである.その一つ実施例としては,励磁コイル2a と励磁コイル2b でそれぞれ磁気コア1の異なる半分を反対向きに励磁して,磁気コア1の全体の磁束変化を検出コイル3で検出する.この対向励磁型差動方式では検出コイル3の検出電圧 Vd がすでに差動検出電圧 Vdd になっている.よって,検出電圧 Vd をそのまま信号処理すればよい.信号を処理する回路は連結コア型差動方式の場合と同じである.   FIG. 21 is an explanatory diagram showing a block diagram of a driving circuit and a connection method of counter excitation type differential coils. The connection of the sensor part shown in this figure is as described in FIGS. As an example, the exciting coil 2a and the exciting coil 2b excite different halves of the magnetic core 1 in opposite directions, and the entire magnetic flux change of the magnetic core 1 is detected by the detecting coil 3. In this counter excitation type differential method, the detection voltage Vd of the detection coil 3 is already the differential detection voltage Vdd. Therefore, the detection voltage Vd can be processed directly. The signal processing circuit is the same as in the case of the linked core type differential system.

次に磁気コアの実施例について説明する. Next, an example of the magnetic core is described.

図22は,連結磁気コアとその並列配置の例を示した説明図である.この図では黒く塗りつぶした部分が磁性材で,他の部分は非磁性材である.またこの図に示した磁気コアは形状磁気異方性の磁性材である.ここに示した例では,磁気コア1a と磁気コア1b は反対向きに傾斜しており,図の中央で連結している.このように磁気コア1a と磁気コア1b とが連結した状態のものが連結磁気コアである.連結磁気コアは一つでも連結コア型差動方式を実現できるが,これを複数使うことで感度や安定性の向上につながる.その際,この図に示したように配置すると効果的である.この配置にすると磁気回路は並列になる.そこでこれを並列配置と称する.   FIG. 22 is an explanatory diagram showing an example of a coupled magnetic core and its parallel arrangement. In this figure, the black parts are magnetic materials, and the other parts are non-magnetic materials. The magnetic core shown in this figure is a magnetic material with shape magnetic anisotropy. In the example shown here, the magnetic core 1a and the magnetic core 1b are inclined in opposite directions and connected at the center of the figure. In this way, the magnetic core 1a and the magnetic core 1b connected to each other is a connected magnetic core. A single coupled magnetic core can realize a coupled core differential system, but using multiple coupled cores can improve sensitivity and stability. In that case, it is effective to arrange as shown in this figure. With this arrangement, the magnetic circuits are parallel. This is called parallel arrangement.

物質の磁化し易さには差があり,磁化され易いものを磁性材と呼ぶ.磁化され易さはすなわち磁気の通り易さでもあり,その度合いは磁化率や透磁率で表すことができる.磁気回路の考え方は磁界や磁束を電圧や電流の様に見立てて電気回路と同様に扱う考え方である.電気回路の抵抗に相当するものは磁気抵抗と呼ばれ,磁気の通り難さを表す.すなわち,磁気の通り易さである透磁率の逆数を磁気抵抗と呼び,通り難さを表す.磁気回路では磁束は電気回路の電流に相当し,必ず閉じたループになっている.しかし,磁気回路には電気回路と大きく異なる特徴がある.それは,磁気抵抗は電気抵抗のように大きな抵抗値を実現できないことである.最も大きな磁気抵抗は「真空」であるが,それでも最も磁気抵抗の小さい物質と比較して5桁程度の違いしかない.したがって,磁気回路においては特段の磁性材が存在しなくても,非磁性材や空気中を通って無視できない大きさの磁束がループを作る.これを励磁磁束について考えると,先に説明した磁気コアの励磁磁束は磁気コア内を容易磁化軸に沿って通り,磁気コアの端の部分などから空気中などに出て,反対側の端の部分などに入っている.ここで,「端の部分など」と言うのは,磁束は端の部分に集まり易いが他の部分からも出入りするからである.特に差動方式の場合は中央付近に磁束の出入りが集中する部分が生じる.また,「空気中など」と言うのは,センサの置き場所によっては真空中であったり他のガスであったり,あるいは樹脂などの充填材である可能性があるためである.   There is a difference in the ease of magnetization of materials, and materials that are easily magnetized are called magnetic materials. The ease of magnetization is also the ease of passing through magnetism, and the degree can be expressed by magnetic susceptibility and magnetic permeability. The idea of a magnetic circuit is to treat a magnetic field or magnetic flux like a voltage or current in the same way as an electric circuit. The thing corresponding to the resistance of the electric circuit is called magnetoresistance and represents the difficulty of passing the magnetism. In other words, the reciprocal of the magnetic permeability, which is the ease of passing through the magnetism, is called magnetoresistance and represents the difficulty of passing. In the magnetic circuit, the magnetic flux corresponds to the current in the electric circuit and is always a closed loop. However, magnetic circuits have characteristics that are very different from electrical circuits. That is, the magnetoresistor cannot realize a large resistance value like the electrical resistance. The largest magnetoresistance is “vacuum”, but it is still only about 5 orders of magnitude different from the material with the smallest magnetoresistance. Therefore, even if there is no special magnetic material in the magnetic circuit, a magnetic flux that cannot be ignored through non-magnetic material or in the air creates a loop. Considering the excitation magnetic flux, the magnetic core excitation magnetic flux described above passes through the magnetic core along the easy magnetization axis, exits from the end of the magnetic core into the air, etc., and reaches the opposite end. It is in the part. Here, the term “end part, etc.” is because magnetic flux easily collects at the end part, but also enters and exits from other parts. In particular, in the differential system, there is a part where the flux enters and exits near the center. Also, “in the air” is because there is a possibility of being in a vacuum, other gas, or a filler such as resin, depending on where the sensor is placed.

前記の説明でも解る通り,ここまでの説明では磁気コアを含む磁気回路には空気などの磁気抵抗の大きな部分がある.一定の磁界の下では磁気抵抗が大きいほど磁束は小さくなる.すなわち,所定の大きさの励磁磁束を得るためには,磁気抵抗が小さい方が励磁磁界が弱くて良いことになる.励磁磁界が弱くて良ければ励磁電流は小さくてよく効率的である.したがって,励磁磁束の磁気回路から空気などの高磁気抵抗の部分を減らすことが有意義である.そこで,その対策を次に説明する.以下の説明で「磁気回路を閉じる」と言うのは,磁気回路の磁路の殆どの部分を磁性材で構成して,空気中などに磁束が広がり難いようにすることを指している.前出の「閉じたループ」とは趣旨が異なる.   As can be seen from the above explanation, in the explanation so far, the magnetic circuit including the magnetic core has a large portion of magnetic resistance such as air. Under a constant magnetic field, the magnetic flux decreases as the magnetoresistance increases. That is, in order to obtain an excitation magnetic flux of a predetermined magnitude, the lower the magnetic resistance, the weaker the excitation magnetic field may be. If the excitation magnetic field should be weak, the excitation current can be small and efficient. Therefore, it is meaningful to reduce the part of high magnetic resistance such as air from the magnetic circuit of exciting magnetic flux. The countermeasures will be explained next. In the following explanation, “closing the magnetic circuit” means that most of the magnetic path of the magnetic circuit is made of a magnetic material so that the magnetic flux does not easily spread in the air. The idea is different from the above-mentioned “closed loop”.

図23は,磁気回路を閉じるための閉磁路コアの説明図である.この図の閉磁路コア4は磁気コア1a および 1b の連結していない方の端,つまり連結磁気コア10の両端を磁気的につないでいる.ここで,磁気的なつなぎや接続あるいは連結などは,必ずしも両方の磁性材が密着している必要は無く間隙があっても良い.それは前記の説明でも解るように磁気回路中に非磁性材の部分があっても磁気回路は充分に成り立つからである.したがって,図23の場合も連結磁気コア10と閉磁路コア4とは多少の間隙はあってもよい.この図のように閉磁路コア4を設ければ,連結磁気コア10の両端間の磁気抵抗は閉磁路コア4がない時に比べ極端に小さくなる.このようにすると,励磁電流が小さくて良くなるとともに励磁磁束が周囲の空間に広がらなくなり周囲の影響を受け難くなる.なお,励磁コイルや検出コイルは連結磁気コア10と閉磁路コア4の間に挟まった状態にする.この状態は図27や図28,または図31に示す通りである.なお,連結磁気コアと閉磁路コアは入れ替ってもよい.   FIG. 23 is an explanatory diagram of a closed magnetic circuit core for closing the magnetic circuit. The closed magnetic path core 4 in this figure magnetically connects the ends of the magnetic cores 1a and 1b that are not connected, that is, both ends of the connected magnetic core 10. Here, for magnetic connection, connection, or connection, it is not always necessary that both magnetic materials are in close contact, and there may be a gap. This is because, as can be seen from the above explanation, the magnetic circuit is sufficiently formed even if there is a non-magnetic material portion in the magnetic circuit. Therefore, also in the case of FIG. 23, the coupling magnetic core 10 and the closed magnetic circuit core 4 may have a slight gap. If the closed magnetic circuit core 4 is provided as shown in this figure, the magnetic resistance between both ends of the coupled magnetic core 10 becomes extremely smaller than when the closed magnetic circuit core 4 is not provided. In this way, the excitation current becomes smaller and better, and the excitation magnetic flux does not spread in the surrounding space, making it difficult to be affected by the surroundings. The excitation coil and detection coil are sandwiched between the connecting magnetic core 10 and the closed magnetic circuit core 4. This state is as shown in FIG. 27, FIG. 28, or FIG. The coupled magnetic core and the closed magnetic circuit core may be interchanged.

図23の連結磁気コア10は図22に示した並列配置になっている.そして,連結磁気コア10の連結部と,隣接する閉磁路コア4とは丁度重なるように配置してある.これは必要条件ではないが,磁気コアの連結部付近から漏れる磁束を閉磁路コア4で受け止めるためである.これにより磁気回路はより閉じられた状態になる.   The coupled magnetic cores 10 in FIG. 23 are arranged in parallel as shown in FIG. And the connection part of the connection magnetic core 10 and the adjacent closed magnetic circuit core 4 are arrange | positioned so that it may just overlap. This is not a necessary condition, but the closed magnetic circuit core 4 receives the magnetic flux leaking from the vicinity of the connecting portion of the magnetic core. This makes the magnetic circuit more closed.

図24は,連結磁気コアを用いた閉磁路コアの説明図である.これは閉磁路コアを連結磁気コア10と同様の形状にしたものである.このようにすると,図23で説明した閉磁路コアの役目の他に,連結磁気コア10と同様に検出機能を有するようになる.この図の場合でも閉磁路コア4の中央部分と連結磁気コア10の中央部分とは重ねていて,図23で説明した中央部分から漏れる磁束を捕捉するようにしている.   FIG. 24 is an explanatory diagram of a closed magnetic circuit core using a coupled magnetic core. This is a closed magnetic circuit core having the same shape as the connecting magnetic core 10. If it does in this way, in addition to the role of the closed magnetic circuit core demonstrated in FIG. 23, it will have a detection function similarly to the connection magnetic core 10. FIG. Even in the case of this figure, the central portion of the closed magnetic path core 4 and the central portion of the connecting magnetic core 10 are overlapped to capture the magnetic flux leaking from the central portion described in FIG.

図23および図24で説明した閉磁路コアと連結磁気コアとの重なり方については,厳密でなくても閉磁路コアの機能は発揮される.しかし性能を向上するためには閉磁路コアを採用する目的を発揮できるように配置を最適化する必要がある.   Even if the closed magnetic path core and the coupling magnetic core described in FIGS. 23 and 24 are not exactly the same, the function of the closed magnetic path core is exhibited. However, in order to improve the performance, it is necessary to optimize the arrangement so that the purpose of adopting the closed magnetic circuit core can be demonstrated.

図25は,結晶磁気異方性の磁性材を用いた連結磁気コア集合体の説明図である.結晶磁気異方性の磁性材は電磁鋼の方向性鋼板などに使われていて,珪素鋼板を圧延して作る時に結晶が並ぶようにして圧延方向に磁化軸を整列させている.この材料は変圧器のカットコアによく利用され,磁束密度を上げ漏れ磁束を少なくするために用いられる.図25の左側の図は,そのような結晶磁気異方性磁性材の薄い鋼板の図である.この図において磁化容易軸は多数の細い線を引いた方向であり,その方向を図中に太い矢印でも示した.この鋼板を図中の二点鎖線で示した「切出し線」に沿って切断して切出す.切出された鋼板は斜めに磁化容易軸を持ち,無数の磁気コアを並列配置した状態になる.これを磁気コア集合体と称する.図25の右側の図は,切出した磁気コア集合体を2枚並べた図であるが,これは連結磁気コアを無数に並列配置した状態と同じである.これを連結磁気コア集合体と称する.なお,磁気コア集合体12は切出した後裏返しにしている.   FIG. 25 is an explanatory diagram of a coupled magnetic core assembly using a magnetic material having magnetocrystalline anisotropy. The magnetic material of magnetocrystalline anisotropy is used for directional steel sheets of electromagnetic steel, and the magnetization axes are aligned in the rolling direction so that crystals are aligned when silicon steel sheets are rolled. This material is often used in transformer cut cores to increase magnetic flux density and reduce leakage flux. The figure on the left side of FIG. 25 is a view of such a thin steel plate of magnetocrystalline anisotropic magnetic material. In this figure, the easy axis is the direction in which many thin lines are drawn, and the direction is also indicated by thick arrows in the figure. Cut this steel sheet along the “cut line” indicated by the two-dot chain line in the figure. The cut steel plate has an easy axis of magnetization, and countless magnetic cores are arranged in parallel. This is called a magnetic core assembly. The figure on the right side of FIG. 25 is a diagram in which two cut out magnetic core assemblies are arranged, which is the same as a state in which an infinite number of connected magnetic cores are arranged in parallel. This is called a coupled magnetic core assembly. The magnetic core assembly 12 is turned over after being cut out.

図26は,連結コア型差動方式の実施例の説明図である.ただし,駆動回路は示していない.同図において中心線「ハ」で示した図は完成図である.中心線「イ」で示した図は組立てる前の各要素を示している.中心線「ロ」で示した図は組立て中の図である.この実施例では,円筒形の支持体に複数の連結磁気コア10を取付けている.取付け方法は磁性材により異なるが,例えば,ねじ止め,貼付け,蒸着,メッキ,一体成形,インサート成形などあり,磁気的条件を満たせば取付け方法は問わない.この連結磁気コア10の磁気コア1a 側の外周に検出コイル3aを配置し,磁気コア1b の外周に検出コイル3b を配置する.配置方法は直接巻回する方法や,予め空芯コイルを作っておき挿入する方法などあるが,方法は問わない.さらにこの外側に励磁コイル2を配置する.励磁コイル2の配置方法も特定の方法を指定するものではない.なお,励磁コイル2は検出コイル3の内側に配置してもよく,必要なことは,コイルや磁気コアが動作原理で説明した通りに磁気結合していれば良い.したがって各コイルが磁気コアの内側にあってもよく,内側と外側に別けてもよい.なお,同図に示す実施例1では磁気コアの材料はアモルファスリボンを用いて,ガラスエポキシでできた円筒形の支持体の外側に粘着材で貼付けた.コイル類は同図に示す順序で直接巻回した.この実施例では磁気コアと検出コイルと励磁コイルと閉磁路コア,および,スペーサや固定に用いた材料を全て合わせても検出部分の厚さは1mm
程度である.
FIG. 26 is an explanatory diagram of an embodiment of a connected core type differential system. However, the drive circuit is not shown. The figure indicated by the center line “c” in the figure is a completed drawing. The figure indicated by the center line “I” shows each element before assembly. The figure indicated by the center line “b” is the figure being assembled. In this embodiment, a plurality of coupled magnetic cores 10 are attached to a cylindrical support. The mounting method varies depending on the magnetic material. For example, screwing, pasting, vapor deposition, plating, integral molding, insert molding, etc., the mounting method is not limited as long as the magnetic conditions are satisfied. The detection coil 3a is disposed on the outer periphery of the coupled magnetic core 10 on the magnetic core 1a side, and the detection coil 3b is disposed on the outer periphery of the magnetic core 1b. Arrangement methods include a direct winding method and an air core coil made in advance and inserted. Furthermore, the exciting coil 2 is arranged outside this. The arrangement method of the exciting coil 2 does not specify a specific method. The excitation coil 2 may be arranged inside the detection coil 3, and what is necessary is that the coil and the magnetic core are magnetically coupled as described in the operation principle. Therefore, each coil may be inside the magnetic core, and it may be separated inside and outside. In Example 1 shown in the figure, the material of the magnetic core was affixed to the outside of a cylindrical support made of glass epoxy using an amorphous ribbon. The coils were wound directly in the order shown in the figure. In this embodiment, even if the magnetic core, the detection coil, the excitation coil, the closed magnetic circuit core, and the spacers and materials used for fixing are all combined, the thickness of the detection portion is 1 mm.
It is about.

図27は,閉磁路コアを採用した連結コア型差動方式の実施例の説明図である.前記の図26に示した状態でセンサ機能は発現するが,図23で説明したように閉磁路コアを設けると性能の向上が期待できる.そこで,図26の実施例に閉磁路コア4を配置したのがこの図27である.この図の閉磁路コアは図23で説明した通りであり,円周方向には磁気ギャップがある.これは被計測電流 Ix による磁気飽和が起り難い効果があるが,被計測電流 Ix が小さい場合など磁気飽和を問題としなければ磁気ギャップをなくして全体がつながった状態でもよい.   FIG. 27 is an explanatory diagram of an embodiment of a coupled core type differential system employing a closed magnetic circuit core. Although the sensor function is exhibited in the state shown in FIG. 26, an improvement in performance can be expected by providing a closed magnetic circuit core as described in FIG. FIG. 27 shows the arrangement of the closed magnetic circuit core 4 in the embodiment of FIG. The closed magnetic circuit core in this figure is as described in FIG. 23, and there is a magnetic gap in the circumferential direction. This has the effect that the magnetic saturation due to the measured current Ix hardly occurs. However, if the measured current Ix is small and the magnetic saturation is not a problem, the magnetic gap may be eliminated and the whole connected.

図28は,閉磁路コアに連結磁気コア構造を採用した連結コア型差動方式の実施例の説明図である.この実施例は図26で説明した実施例の外周に,図24で説明した閉磁路コアを配置している.このようにすると,磁気回路が閉じる効果のほかに,閉磁路コアの検出機能が働くために検出能力が向上する効果がある.   FIG. 28 is an explanatory diagram of an embodiment of a coupled core type differential system that employs a coupled magnetic core structure as a closed magnetic circuit core. In this embodiment, the closed magnetic circuit core described in FIG. 24 is arranged on the outer periphery of the embodiment described in FIG. In this way, in addition to the effect of closing the magnetic circuit, the detection function of the closed magnetic circuit core works, so the detection capability is improved.

図29は,連結コア型差動方式で,クランプ式にした実施例の説明図である.この実施例は図9で説明した原理的構造を実施した例である.全体としては円筒状をしており,その円筒を円周上で2分割して,センサユニットUaとセンサユニットUbとに分ける.センサユニットUaとセンサユニットUbはそれぞれ単独で本発明の電流センサの機能を有する一単位である.よって,ここではセンサユニットUbを代表にしてその構造を説明する.この実施例の磁気コアは,フェライト磁性材で連結磁気コア10の形状に製作し,これを図に示すように円弧上に並列配置して固定する.この際各連結磁気コア10は隙間を設けて固定する.次に検出コイル3a とを検出コイル3b を巻くが,図26で説明した実施例1と異なるのは,各コイルは円周上を周回せずに,円弧上に配置した連結磁気コア10の外周側と内周側を通って巻いていることである.さらに励磁コイル2も同様に巻回する.この様にすれば被計測電流 Ix をクランプすることができて既設の配線の電流を計測するのに便利である.この実施例の駆動回路はセンサユニットごとに2系統設けても良いが,実用的にはセンサユニットUaとセンサユニットUbのコイルを接続するなど,既知の技術で処理して1系統の駆動回路にすることができる.   FIG. 29 is an explanatory diagram of an embodiment in which a coupled core type differential system is clamped. This embodiment is an example in which the principle structure described in FIG. 9 is implemented. It is cylindrical as a whole, and the cylinder is divided into two parts on the circumference to divide into sensor unit Ua and sensor unit Ub. The sensor unit Ua and the sensor unit Ub are each a single unit having the function of the current sensor of the present invention. Therefore, here, the structure of sensor unit Ub is explained as a representative. The magnetic core of this embodiment is made of a ferrite magnetic material in the shape of a connecting magnetic core 10 and is fixed in parallel on an arc as shown in the figure. At this time, each connecting magnetic core 10 is fixed with a gap. Next, the detection coil 3a is wound around the detection coil 3b. The difference from the first embodiment described with reference to FIG. 26 is that each coil does not circulate on the circumference but the outer circumference of the coupled magnetic core 10 arranged on the arc. It winds through the side and the inner circumference. Further, the exciting coil 2 is wound in the same manner. In this way, the measured current Ix can be clamped, which is convenient for measuring the current in the existing wiring. Although two drive circuits may be provided for each sensor unit in this embodiment, in practice, the sensor unit Ua and the coil of the sensor unit Ub are connected to each other and processed by a known technique to form one drive circuit. can do.

図30は,図29で説明した実施例2の考え方を拡張して多数のセンサユニットUaからUfを設けた実施例である.この実施例の長所は直径の大きな導体に流れる電流を計測する際に便利である.例えば直径が1 m 程度にもおよぶような既設のパイプラインの防食電流を,パイプラインを切断すること無く計測する場合に便利である. 鋼管はその周辺との電位を適正に保つことで腐食を防ぐことができる.そこで,パイプラインには電圧を印加しているが,パイプラインは絶縁被覆はしてあるものの,ピンホールや傷の部分を通して電流が流れる.この電流を知ることでそのパイプラインの腐食状態などを知る技術があり,電流センサを設置して集中監視することが考えられている.この様にすれば腐食だけではなく,災害や事故による障害を即座に知ることができて安全性が向上する.ところが,パイプラインは非常に長い設備であるために,電源部分で電流を測っても異常個所の位置を判断することができず有益ではない.そこで,2〜3kmの間隔で計測して,任意の区間の両側の電流の差からその区間内で漏れている電流が判り,その区間の状態を知ることができる.このような用途に使う電流センサはパイプラインの敷設作業でセンサを壊さないためにも,また,既設のパイプラインに設置する場合にもクランプ式が求められる.さもなければパイプラインを切断しなくてはならなくなり実用にはならない.   FIG. 30 is an embodiment in which a large number of sensor units Ua to Uf are provided by extending the concept of the embodiment 2 described in FIG. The advantage of this embodiment is convenient when measuring the current flowing through a conductor with a large diameter. For example, it is convenient when measuring the anticorrosion current of an existing pipeline with a diameter of about 1 m without cutting the pipeline. Steel pipes can be prevented from corro- sion by maintaining an appropriate electric potential with the surrounding area. Therefore, although voltage is applied to the pipeline, the current flows through pinholes and scratches, although the pipeline is insulated. There is a technology to know the corrosion state of the pipeline by knowing this current, and it is considered to install a current sensor and perform centralized monitoring. In this way, not only corrosion but also disasters and accidents can be detected immediately, improving safety. However, since the pipeline is a very long facility, it is not useful because the location of the abnormal part cannot be determined even if the current is measured at the power source. Therefore, it can be measured at intervals of 2 〜 3km, the current leaking in that section can be found from the difference in current on both sides of any section, and the state of that section can be known. A clamp type is required for current sensors used in such applications in order not to break the sensor during pipeline laying work or to install in existing pipelines. Otherwise, the pipeline must be cut and it is not practical.

前記の防食電流は通常は数十mA程度であり,さらにパイプの直径が数十cmを越えるとそこに発生する磁界は小さく,従来のホール素子型の電流センサでは計測ができなかった.また,他の従来の電流センサでもクランプ式にできなかったり感度不足であるなどして,実用化できていない.したがって,前記の監視システムは研究は続けられているがまだ実用化にはおよんでいない.本発明の電流センサは,被計測電流 Ix が発生する磁束方向には始めからコアの間隙があり,クランプ式にしても新たな課題が生じることがない.また,励磁の方向はセンサの軸方向であり,センサの直径やクランプ構造とは関係がなく,実施例では数mAの電流を計測ができることが判っている.このように本発明はパイプラインの防食電流の計測にも有用である.   The above-mentioned anticorrosion current is usually about several tens of mA. Further, when the diameter of the pipe exceeds several tens of centimeters, the magnetic field generated there is small, and cannot be measured with a conventional Hall element type current sensor. Also, other conventional current sensors cannot be put into practical use because they cannot be clamped or lack sensitivity. Therefore, research on the monitoring system has been continued but has not yet been put into practical use. The current sensor of the present invention has a gap in the core from the beginning in the direction of the magnetic flux in which the current to be measured Ix is generated. The direction of excitation is the axial direction of the sensor, which has no relation to the diameter of the sensor or the clamp structure, and it has been found that a current of several mA can be measured in the embodiment. Thus, the present invention is also useful for measuring the anticorrosion current of pipelines.

図31は,一部を切開および透視して内部が解るようにした,チップ素子サイズの実施例を示す説明図である.この実施例では被計測電流 Ix を流す被計測電流導体6は予め配置されており,図26の実施例1のように使用時に貫通するものではない.この実施例の磁気コアは図25で説明した磁気コア集合体または連結磁気コア集合体を用いることで,小さな磁気コアを一つずつ配置する必要はなく,製作を容易にすることができる.他にも各要素をMEMS技術で製作することができより小さく作ることができる.従来の検出コイル方式ではトロイダル巻きが必要で,トロイダルコアやコイルの製作方法だけでなく,被計測電流を流す導体とコアやコイルの空間的位置や向きの都合で,チップ素子サイズにまで小さくすることは実用的コストでは製作に困難があった.しかしこの実施例は,コアは平板でよく,コイルはソレノイド巻きでよいために製作は容易であり,トロイダル巻きに比較してより小さくできる.さらに,駆動回路を集積回路にして,センサ部分と同一のパッケージ内に収納することもできる.   FIG. 31 is an explanatory view showing an example of the chip element size in which a part is cut open and seen through to reveal the inside. In this embodiment, the current conductor to be measured 6 through which the current to be measured Ix flows is arranged in advance and does not penetrate during use as in the first embodiment of FIG. The magnetic core of this embodiment uses the magnetic core assembly or the coupled magnetic core assembly described in FIG. 25, so that it is not necessary to arrange small magnetic cores one by one, and the manufacturing can be facilitated. In addition, each element can be made smaller with MEMS technology. The conventional detection coil method requires toroidal winding, and not only the toroidal core and coil manufacturing method, but also the size of the chip element is reduced due to the spatial position and orientation of the conductor to be measured and the core and coil. It was difficult to manufacture at a practical cost. However, in this embodiment, the core may be a flat plate and the coil may be a solenoid winding, so that it is easy to manufacture and can be made smaller than a toroidal winding. Furthermore, the drive circuit can be integrated and housed in the same package as the sensor part.

図32は,図31のA−A断面図である.また図33および図34は被計測電流導体6と連結磁気コア集合体13と閉磁路コア集合体43の三者の配置関係を示している.この実施例の構造は中央に被計測電流導体6があり,この被計測電流導体6を挟むように2枚の連結磁気コア集合体13を被計測電流導体6の上下に配置する.その上から図31に示すように検出コイル3と励磁コイル2を巻く.さらにその上下に閉磁路コア集合体43を配置する.この実施例の実際の厚みについて説明する.まず,被計測電流導体6が 0.5 mm の銅板,連結磁気コア集合体13と閉磁路コア集合体43がそれぞれ 0.05
mm の絶縁処理した極薄珪素鋼帯,コイルが直径 0.07 mm で2層,この寸法を図23にしたがって合計すると, 0.98 mm になる.この寸法に製造上の余裕やエポキシパッケージなどの寸法を入れても
3mm の厚さには充分に収まる.この厚さはモバイル機器等の部品として許容される寸法である.さらに,この寸法の算出例は離散的部品を組立てた例であるが,MEMS 技術を用いればさらに小型化できる.
FIG. 32 is a cross-sectional view taken along line A − A in FIG. FIG. 33 and FIG. 34 show the three relationship of the measured current conductor 6, the connected magnetic core assembly 13, and the closed magnetic circuit core assembly 43. The structure of this embodiment has a current conductor 6 to be measured at the center, and two coupled magnetic core assemblies 13 are arranged above and below the current conductor 6 to be measured so as to sandwich the current conductor 6 to be measured. From there, the detection coil 3 and the excitation coil 2 are wound as shown in FIG. In addition, a closed magnetic path core assembly 43 is arranged above and below. The actual thickness of this embodiment will be described. First, the current conductor 6 to be measured is a copper plate of 0.5 mm, the coupled magnetic core assembly 13 and the closed magnetic circuit core assembly 43 are each 0.05.
Insulated ultra-thin silicon steel strip of mm, the coil is 0.07 mm in diameter and has two layers, and when these dimensions are summed up according to Fig. 23, it becomes 0.98 mm. Even if this dimension includes dimensions such as manufacturing margin and epoxy package
It fits in a thickness of 3mm. This thickness is an acceptable dimension for parts such as mobile devices. Furthermore, this example of dimensional calculation is an example of assembling discrete parts, but the size can be further reduced by using MEMS technology.

次に一実施例の実験とその結果を示す.   Next, the experiment and the result of one example are shown.

図35は,磁気コアの材料をアモルファスリボンにした実施例1の入出力特性の実測値のグラフである.実験に用いた実施例の構造は図27と同じである.この特性測定における差動検出電圧の求め方は,図20に示した接続方法で行った.また駆動回路は図17に示した回路構成から積分回路53を省いた構成で行った.本発明を駆動する回路は磁気コア内の合成磁束 Φc を再現してから検波した方が高精度にできるが,励磁電流 Ie が正弦波かそれに近い場合は積分回路53が無くても充分に機能する.この図のグラフにおいて,縦軸は差動検出電圧 Vdd の実効値である.横軸は被計測電流 Ix である.この特性測定に用いた実施例1は直径が約20 mm で長さも約20 mm である.励磁コイルの巻数は70ターンで,2つの検出コイルはそれぞれ30ターンずつである.励磁周波数 fe は49 kHz,励磁電流 Ie は66 mA である.この入出力特性グラフから,この実施例1は 70 mV/A の感度であることがわかる.また,ヒステリシスは比較的小さく,フルスケールに対して0.01 % 以下であった.図35のグラフは,被計測電流 Ix を 0 A から 10 A にして,次に再び 0 A を経由して -10 A にし,最後に 0 A に戻している.このようにすると,ヒステリシスが顕著な特性では,Ix = 0 A
近傍で上下に膨らんだループ状の特性グラフになる.しかし,このグラフではそのような傾向は見出せず,前記とおりヒステリシスが小さいことがグラフからも伺える.
FIG. 35 is a graph of measured values of input / output characteristics of Example 1 in which the magnetic core material is an amorphous ribbon. The structure of the example used for the experiment is the same as FIG. The method of obtaining the differential detection voltage in this characteristic measurement was performed by the connection method shown in FIG. The drive circuit was constructed by omitting the integration circuit 53 from the circuit configuration shown in FIG. The circuit that drives the present invention can be made more accurate by detecting the combined magnetic flux Φc in the magnetic core and then detecting it. However, if the exciting current Ie is a sine wave or close to it, it can function sufficiently even without the integrating circuit 53. Do it. In the graph of this figure, the vertical axis is the effective value of the differential detection voltage Vdd. The horizontal axis is the measured current Ix. Example 1 used for this characteristic measurement has a diameter of about 20 mm and a length of about 20 mm. The number of excitation coil turns is 70 turns, and each of the two detection coils is 30 turns. The excitation frequency fe is 49 kHz and the excitation current Ie is 66 mA. From this input / output characteristic graph, it can be seen that the sensitivity of Example 1 is 70 mV / A. Hysteresis was relatively small, less than 0.01% of full scale. In the graph of Fig. 35, the measured current Ix was changed from 0 A to 10 A, then again passed through 0 A, changed to -10 A, and finally returned to 0 A. In this way, Ix = 0 A for characteristics with significant hysteresis
It becomes a loop-like characteristic graph that swells up and down in the vicinity. However, such a trend is not found in this graph, and it can be seen from the graph that the hysteresis is small as described above.

図36は,磁気コアの材料をフェライトにした実施例1の入出力特性の実測値のグラフである.この特性測定の差動信号の求め方も,図20に示した接続方法で行った.また駆動回路は図17に示した回路構成から積分回路53を省いた構成で行った.本発明を駆動する回路は磁気コア内の合成磁束 Φc を再現してから検波した方が高精度にできるが,励磁電流 Ie が正弦波かそれに近い場合は積分回路53が無くても充分に機能する.この図のグラフにおいて縦軸は差動検出電圧 Vdd の実効値である.横軸は被計測電流 Ix である.この特性測定に用いた実施例1は円筒形ではなく正方形の筒状にした.この正方形の一片の長さは約 20 mm で,筒の長さは約 25 mm である.また,閉磁路コアは採用していない.励磁コイルの巻数は70ターンで,2つの検出コイルはそれぞれ30ターンずつである.励磁周波数は10 kHzで,励磁電流 Ie は150
mA である.
FIG. 36 is a graph of measured values of input / output characteristics of Example 1 in which the magnetic core material is ferrite. The method for obtaining the differential signal for this characteristic measurement was also performed by the connection method shown in FIG. The drive circuit was constructed by omitting the integration circuit 53 from the circuit configuration shown in FIG. The circuit that drives the present invention can be made more accurate by detecting the combined magnetic flux Φc in the magnetic core and then detecting it. However, if the exciting current Ie is a sine wave or close to it, it can function sufficiently even without the integrating circuit 53. Do it. In the graph of this figure, the vertical axis is the effective value of the differential detection voltage Vdd. The horizontal axis is the measured current Ix. Example 1 used for this characteristic measurement was not a cylinder but a square cylinder. The length of this square piece is about 20 mm, and the length of the cylinder is about 25 mm. A closed magnetic circuit core is not used. The number of excitation coil turns is 70 turns, and each of the two detection coils is 30 turns. The excitation frequency is 10 kHz and the excitation current Ie is 150.
mA.

前記,図35および図36の特性から,磁性材の材料や形状およびコイルの巻数や励磁周波数が変わることで特性が大きく変化することがわかる.これは,設計に自由度があり,ニーズに合わせた最適化が可能であることを示唆してる.   From the characteristics shown in FIGS. 35 and 36, it can be seen that the characteristics greatly change as the material and shape of the magnetic material, the number of turns of the coil, and the excitation frequency change. This suggests that the design is flexible and can be optimized according to the needs.

二酸化炭素排出抑制やエネルギー枯渇などの問題解決の一手段として,太陽光発電や電気自動車等の実用化が進められ,徐々に普及しているのは周知の通りである.また,家庭で使う従来の交流電力も消費する際はほとんどが直流に変換して使用されている.この交流から直流への変換を家電品が個別に行うよりも一括して行った方がはるかに効率が良く,屋内直流給電も開発が進んでいる.このように例挙に事欠かないほどに直流電力の利用が進んでいる.しかし,直流電力を安全で効率よく利用するにはまだ課題があり,その一つに直流電流計測の課題がある.これには,従来は専ら交流を利用していたために直流の計測技術が交流に比べて遅れている歴史的背景もある.   As is well known, solar power generation and electric vehicles are being put into practical use as a means of solving problems such as carbon dioxide emission control and energy depletion. In addition, most of the conventional AC power used at home is consumed after being converted to DC. It is much more efficient to perform this conversion from AC to DC in a batch than home appliances individually, and indoor DC power supply is also being developed. In this way, the use of DC power is progressing so that there is no shortage of examples. However, there are still problems in using DC power safely and efficiently, and one of them is DC current measurement. This also has a historical background in which direct current measurement technology has been delayed compared to alternating current because it used exclusively alternating current.

現状は,比較的大きな電流の計測ではホール素子方式が圧倒的主流であり,ほぼ全てと言ってもいいくらいである.したがって,現在の直流大電流センサの課題はホール素子方式の課題とも言える.具体的には,1)ホール素子自体と集磁コアの双方にヒステリシスがあり精度が低い.2)これを押さえるための磁気平衡式では逆磁界発生のためのトロイダル巻きが必要で,その巻数は,フルスケール100Aの場合2000ターン以上におよぶ.3)集磁コアの断面積の確保と逆磁界発生のためのトロイダル巻きのために寸法が大きくなる.あるいはチップ素子サイズまでは小さくできない.4)ホール素子は半導体であるために使用温度範囲が狭く,高温では極端に寿命が短くなる.その他,電流センサの種類と課題は冒頭の背景技術でも述べた通りである.   At present, the Hall element method is overwhelmingly mainstream for measuring relatively large currents, and almost all can be said. Therefore, it can be said that the problem of the current DC high current sensor is that of the Hall element method. Specifically, 1) There is hysteresis in both the Hall element itself and the magnetic collecting core, and the accuracy is low. 2) The magnetic balance type to suppress this requires toroidal winding to generate a reverse magnetic field, and the number of windings is over 2000 turns in the case of full scale 100A. 3) The dimensions increase due to the toroidal winding for securing the cross-sectional area of the magnetic collecting core and generating the reverse magnetic field. Or the chip element size cannot be reduced. 4) Since the Hall element is a semiconductor, the operating temperature range is narrow, and the lifetime is extremely shortened at high temperatures. In addition, the types and issues of current sensors are as described in the background art at the beginning.

本発明は,1)ヒステリシスがフルスケールに対して0.01 % 以下と小さくできて,ホール素子方式に比べて数十分の一でありより高精度にできる.2)この性能から逆磁界発生のためのトロイダル巻きは不要であり,製造コストが上がらない.3)実施例1でも述べた通り,検出部分の厚さは従来のものに比べて薄く,実用では被計測電流用のケーブルよりも僅かに直径が膨らむ程度の寸法でよく占有空間が少ない.また,実施例3で示したようにさらに小さくでき,従来の方法ではできなかったチップ素子サイズの非接触電流センサが実現できる.これはモバイル機器などで有用である.4)原理が検出コイル方式であるために,検出部分には半導体は使用していない.必要なのは磁性材とコイルであり,劣化し難く対環境性がある.放射線にも強く宇宙や原子炉,あるいは電子や素粒子の加速器でも使用できる.また,100℃を越えるような環境でも長期間使用できる.ただし,磁性材のキュリー点以下の温度に限られる.   In the present invention, 1) Hysteresis can be reduced to 0.01% or less with respect to full scale. 2) Because of this performance, toroidal winding for generating a reverse magnetic field is unnecessary, and the manufacturing cost does not increase. 3) As described in Example 1, the thickness of the detection part is thinner than that of the conventional one, and in practice it may be a dimension that slightly expands in diameter compared to the cable for the current to be measured and occupies less space. Further, as shown in the third embodiment, a non-contact current sensor having a chip element size that could not be achieved by the conventional method can be realized. This is useful for mobile devices. 4) Because the principle is the detection coil system, no semiconductor is used in the detection part. What is needed is a magnetic material and a coil, which are resistant to deterioration and environmentally friendly. It is resistant to radiation and can be used in space, nuclear reactors, and electron and elementary particle accelerators. Also, it can be used for a long time even in an environment exceeding 100 ° C. However, it is limited to temperatures below the Curie point of magnetic materials.

さらに,実施例2で示したようにプラン式もできるが,この際,円周上に配置された各連結磁気コアがそれぞれセンサとして働き,ホール素子方式のように,検出機能が特定の場所に集中しないために,感度と耐外乱性で優位である.   Furthermore, as shown in the second embodiment, a plan type can also be used. At this time, each of the connected magnetic cores arranged on the circumference works as a sensor, and the detection function is placed at a specific place like the Hall element method. Because it does not concentrate, it is superior in sensitivity and disturbance resistance.

このように本発明は,直流交流両用で,精度,コスト,寸法,安定性をバランスよく向上しており,従来の技術では困難だった新しいニーズに対応でき,直流電力利用技術の向上の足枷になっている直流電流計測問題を改善することにより,関連製品の実用化や高性能化に貢献し,ひいてはエネルギー問題にも貢献する有益な技術である.   As described above, the present invention is for both DC and AC, and has improved accuracy, cost, dimensions, and stability in a well-balanced manner, can meet new needs that have been difficult with the conventional technology, and can improve DC power utilization technology. This is a useful technology that contributes to the practical application and high performance of related products by improving the DC current measurement problem.

1 磁気コア
10 連結磁気コア
11 磁気コア集合体
12 磁気コア集合体
13 連結磁気コア集合体
1a 磁気コア
1b 磁気コア
2 励磁コイル
2a 励磁コイル
2b 励磁コイル
3 検出コイル
3a 検出コイル
3b 検出コイル
4 閉磁路コア
43 閉磁路コア集合体
51 発振回路
52 励磁アンプ
53 積分回路
54 同期検波回路
55 LPF(ローパスフィルタ)
56 移相回路
57a サンプルホールド回路A
57b サンプルホールド回路B
58 電圧差分演算機能
59 オペアンプ
6 被計測電流導体
1 Magnetic core
10 Linked magnetic core
11 Magnetic core assembly
12 Magnetic core assembly
13 Linked magnetic core assembly
1a Magnetic core
1b magnetic core
2 Excitation coil
2a Excitation coil
2b Excitation coil
3 Detection coil
3a Detection coil
3b detection coil
4 Closed magnetic circuit core
43 Closed magnetic circuit core assembly
51 Oscillator circuit
52 Excitation amplifier
53 Integration circuit
54 Synchronous detection circuit
55 LPF (low pass filter)
56 Phase shift circuit
57a Sample hold circuit A
57b Sample hold circuit B
58 Voltage difference calculation function
59 Operational Amplifier
6 Current conductor to be measured

a 磁気コア群
b 磁気コア群
Ie 励磁電流
Ix 被計測電流
Ix-A 被計測電流
Ix-B 被計測電流
Ix-C 被計測電流
B 磁束密度
Ds 差動信号
H 磁界
Hc 合成磁界
He 励磁磁界
Hea 励磁コイル2aが発生する励磁磁界@
Heb 励磁コイル2bが発生する励磁磁界@
Hx 被計測磁界
Hx-A Ix-A
による磁界
Hx-B Ix-B
による磁界
Hx-C Ix-C
による磁界
Hx-a Hx-A の磁気コア1方向の成分
Hx-b Hx-B の磁気コア1方向の成分
Hx-c Hx-C の磁気コア1方向の成分
P 真空中においた検出コイルに電流を流した場合に生じる磁束上の任意の点
Ua センサユニット
Ub センサユニット
Uc センサユニット
Ud センサユニット
Ue センサユニット
Uf センサユニット
Vd 検出電圧
Vda 検出コイル3aの検出電圧
Vdb 検出コイル3bの検出電圧
Vdd 差動検出電圧
Vi 検出電圧積分値で Vix と Vi0 の両方を含む
Vix Ix
≠ 0 のときの検出電圧積分値
Vi0 Ix
= 0 のときの検出電圧積分値
X 直交座標のX軸
Y 直交座標のY軸
Φc 合成磁束
Φc2a Φe2a
と Φx の合成磁束
Φc2b Φe2b
と Φx の合成磁束
Φca 合成磁束
Φcb 合成磁束
Φdif 磁束の差動値
Φe 磁気コア内の励磁磁束
Φe2a 対向励磁型差動方式において励磁コイル 2a により発生する励磁磁束
Φe2b 対向励磁型差動方式において励磁コイル 2b により発生する励磁磁束
Φea 磁気コア1a内の励磁磁束
Φeb 磁気コア1b内の励磁磁束
Φx 磁気コア内の被計測磁束
Φxa 磁気コア1a内の被計測磁束
Φxb 磁気コア1b内の被計測磁束
θ 励磁磁界と磁気コアが成す角で,励磁磁界に対する磁気コアの傾斜角
a Magnetic core group
b Magnetic core group
Ie excitation current
Ix Current to be measured
Ix-A Current to be measured
Ix-B Current to be measured
Ix-C Current to be measured
B Magnetic flux density
Ds Differential signal
H magnetic field
Hc synthetic magnetic field
He excitation magnetic field
Hea Excitation magnetic field generated by excitation coil 2a
Heb Exciting magnetic field generated by exciting coil 2b
Hx Magnetic field to be measured
Hx-A Ix-A
Magnetic field by
Hx-B Ix-B
Magnetic field by
Hx-C Ix-C
Magnetic field by
Hx-a Hx-A component in one direction of magnetic core
Hx-b Hx-B magnetic core 1 direction component
Hx-c Hx-C magnetic core 1 direction component
P Any point on the magnetic flux generated when a current is passed through a detection coil in a vacuum
Ua sensor unit
Ub sensor unit
Uc sensor unit
Ud sensor unit
Ue sensor unit
Uf sensor unit
Vd detection voltage
Detection voltage of Vda detection coil 3a
Detection voltage of Vdb detection coil 3b
Vdd Differential detection voltage
Vi detection voltage integrated value includes both Vix and Vi0
Vix Ix
Detected voltage integral when ≠ 0
Vi0 Ix
Detected voltage integral value when = 0
X X axis of Cartesian coordinates
Y Cartesian Y axis Φc Composite magnetic flux Φc2a Φe2a
And Φx combined magnetic flux Φc2b Φe2b
And Φx combined magnetic flux Φca composite magnetic flux Φcb composite magnetic flux Φdif magnetic flux differential value Φe excitation magnetic flux in magnetic core Φe2a excitation magnetic flux generated by excitation coil 2a in counter excitation type differential method Φe2b excitation coil in counter excitation type differential method 2b Exciting magnetic flux Φea Exciting magnetic flux Φeb in magnetic core 1a Exciting magnetic flux Φx in magnetic core 1b Measured magnetic flux Φxa In magnetic core 1a Measured magnetic flux Φxb Measured magnetic flux θ in magnetic core 1b Excitation The angle formed by the magnetic field and the magnetic core, and the tilt angle of the magnetic core relative to the excitation magnetic field

イ 実施例1の各要素を示した図の中心線
ロ 実施例1の各要素を組立てる途中を示した図の中心線
ハ 実施例1の各要素組立完成図の中心線
ニ 実施例1の各要素組立完成品に閉磁路コアを付加した図の中心線
(B) Centerline of the figure showing each element of Example 1 (b) Centerline of the figure showing the process of assembling each element of Example 1 (c) Centerline d of each element assembly completed drawing of Example 1 Each of Example 1 Centerline of the figure with a closed magnetic circuit core added to the finished element assembly

Claims (11)

交流成分を含む励磁電流を流すソレノイド巻きの励磁コイルと,
誘起電圧を出力するソレノイド巻きの検出コイルとを,
それぞれ少なくとも一つ具備し,
真空中においた前記検出コイルに電流を流した場合に生じる磁束上の任意の点を含むように置いた磁気異方性を持つ磁気コアを,
該磁気コアの磁化容易軸の向きが,前記任意の点において,該点を通る前記磁束の磁束方向と,前記検出コイルの巻線方向との双方の方向成分を持つように,前記磁束方向に対して前記巻線方向に傾斜させて設置し,
前記励磁コイルと,前記検出コイルと,前記磁気コアとを全てが相互に磁気結合するように配置したことを特徴とする傾斜コア型電流センサ.
A solenoid-wound excitation coil for passing an exciting current containing an AC component;
A solenoid-wound detection coil that outputs an induced voltage,
At least one each
A magnetic core having a magnetic anisotropy placed so as to include an arbitrary point on the magnetic flux generated when a current is passed through the detection coil in a vacuum;
In the magnetic flux direction, the direction of the easy axis of magnetization of the magnetic core has the directional component of both the magnetic flux direction of the magnetic flux passing through the point and the winding direction of the detection coil at the arbitrary point. Inclined in the winding direction with respect to the winding direction,
An inclined core type current sensor, wherein the excitation coil, the detection coil, and the magnetic core are arranged so as to be magnetically coupled to each other.
交流成分を含む励磁電流を流すソレノイド巻きの励磁コイルと,
誘起電圧を出力するソレノイド巻きの検出コイルとを,
それぞれ少なくとも一つ具備し,
前記検出コイルのコイル面の法線に対して,該検出コイルの巻線方向に傾斜した磁化容易軸を有する,磁気異方性を持つ磁気コアを具備し,
前記励磁コイルと前記検出コイルと前記磁気コアとが全て相互に磁気結合するように配置したことを特徴とする傾斜コア型電流センサ.
A solenoid-wound excitation coil for passing an exciting current containing an AC component;
A solenoid-wound detection coil that outputs an induced voltage,
At least one each
A magnetic core having magnetic anisotropy having an easy magnetization axis inclined in the winding direction of the detection coil with respect to the normal of the coil surface of the detection coil;
An inclined core type current sensor, wherein the exciting coil, the detecting coil, and the magnetic core are all magnetically coupled to each other.
請求項1および2において,前記傾斜の傾斜角が正の角度の磁気コアと,該傾斜角が負の角度の磁気コアとを有し,前記正の角度の磁気コアと,前記負の角度の磁気コアとの,それぞれの磁化容易軸に沿った磁路が直列接続になるように磁気的の連結して連結磁気コアとして設置し,
該連結磁気コアに磁気結合した励磁コイルと,前記連結磁気コアを構成する傾斜角が正の角度の磁気コアの方により強く磁気結合した検出コイルと,同じく傾斜角が負の角度の磁気コアの方により強く磁気結合した検出コイルと,を具備したことを特徴とする傾斜コア型電流センサ.
3. The magnetic core according to claim 1, further comprising: a magnetic core having a positive inclination angle; and a magnetic core having a negative inclination angle; and the magnetic core having the positive angle; The magnetic cores are magnetically coupled so that the magnetic paths along the respective easy magnetization axes are connected in series, and are installed as coupled magnetic cores.
An excitation coil that is magnetically coupled to the coupled magnetic core, a detection coil that is more strongly magnetically coupled to the magnetic core having a positive tilt angle, and a magnetic core having a negative tilt angle. An inclined core type current sensor comprising a detection coil that is magnetically coupled to the other side.
請求項3において,複数の連結磁気コアを有し,該連結磁気コアの磁路が相互に並列になるように並列配置したことを特徴とする傾斜コア型電流センサ.   4. The inclined core type current sensor according to claim 3, comprising a plurality of coupled magnetic cores and arranged in parallel so that the magnetic paths of the coupled magnetic cores are parallel to each other. 請求項3および4において,連結磁気コアの磁路の直列接続部の傾斜角が連続的で湾曲していることを特徴とする傾斜コア型電流センサ.   5. The tilt core type current sensor according to claim 3, wherein the tilt angle of the serial connection portion of the magnetic path of the coupled magnetic core is continuous and curved. 請求項1および2において2つの励磁コイルを有し,それぞれの該励磁コイルが,磁気コアのそれぞれ異なる部位に,他の部分に比較してより強く磁気結合するように設置し,前記2つの励磁コイルに,相互に反対向きの磁束が発生するように励磁電流を流すことを特徴とする傾斜コア型電流センサ.   The two excitation coils according to claim 1 and 2, wherein each of the excitation coils is installed in a different part of the magnetic core so as to be more strongly magnetically coupled than the other parts. An inclined core type current sensor, in which exciting currents are passed through coils so that magnetic fluxes in opposite directions are generated. 請求項1から6において,少なくとも一つのコイルが被計測電流を巻回するように構成した傾斜コア型電流センサ.   7. The inclined core type current sensor according to claim 1, wherein at least one coil winds the current to be measured. 請求項1から6において,全てのコイルが被計測電流を巻回しないように構成した傾斜コア型電流センサ.   7. The inclined core type current sensor according to claim 1, wherein all the coils do not wind the current to be measured. 請求項8の構成を一単位として,該単位を少なくとも2単位具備し,各該単位が相互に離合可能に構成して,被計測電流をクランプできるようにした傾斜コア型電流センサ.   An inclined core type current sensor comprising the unit of claim 8 as a unit, the unit comprising at least two units, wherein the units can be separated from each other, and a current to be measured can be clamped. 請求項1から9において,磁気コアの傾斜角が,磁化容易軸に沿って連続的に変化していることを特徴とする傾斜コア型電流センサ.   10. The tilt core type current sensor according to claim 1, wherein the tilt angle of the magnetic core continuously changes along the easy magnetization axis. 請求項1から10において,励磁コイルと検出コイルの少なくとも一つをスパイラル巻きにしたことを特徴とする傾斜コア型電流センサ.   11. The inclined core type current sensor according to claim 1, wherein at least one of the exciting coil and the detecting coil is spirally wound.
JP2012112005A 2012-05-16 2012-05-16 Inclined core type current sensor Pending JP2013238500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112005A JP2013238500A (en) 2012-05-16 2012-05-16 Inclined core type current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112005A JP2013238500A (en) 2012-05-16 2012-05-16 Inclined core type current sensor

Publications (1)

Publication Number Publication Date
JP2013238500A true JP2013238500A (en) 2013-11-28

Family

ID=49763654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112005A Pending JP2013238500A (en) 2012-05-16 2012-05-16 Inclined core type current sensor

Country Status (1)

Country Link
JP (1) JP2013238500A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532150B1 (en) * 2013-12-09 2015-06-26 삼성전기주식회사 Othogonal type fluxgate sensor
KR20170140002A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 tilt type Hall current sensor and sensing method
CN112462306A (en) * 2020-11-02 2021-03-09 天地(常州)自动化股份有限公司 Anti-interference coal mine electromechanical equipment start-stop detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101532150B1 (en) * 2013-12-09 2015-06-26 삼성전기주식회사 Othogonal type fluxgate sensor
KR20170140002A (en) * 2016-06-10 2017-12-20 주식회사 엘지화학 tilt type Hall current sensor and sensing method
KR102086883B1 (en) 2016-06-10 2020-04-23 주식회사 엘지화학 tilt type Hall current sensor and sensing method
CN112462306A (en) * 2020-11-02 2021-03-09 天地(常州)自动化股份有限公司 Anti-interference coal mine electromechanical equipment start-stop detection method
CN112462306B (en) * 2020-11-02 2024-02-20 天地(常州)自动化股份有限公司 Anti-interference method for detecting on-off of coal mine electromechanical equipment

Similar Documents

Publication Publication Date Title
US10184959B2 (en) Magnetic current sensor and current measurement method
KR100400958B1 (en) Magnetic sensor and manufacturing method thereof
JP3286431B2 (en) DC current sensor
JP5531215B2 (en) Current sensor
CN104520721B (en) Coaxial dual-loop magnetic core coil component for high-precision cross-core closed-loop hall current sensor
JP6773726B2 (en) Magnetic field sensor
US9891293B2 (en) Magnetic sensor device preventing concentration of magnetic fluxes to a magnetic sensing element
JPH07198754A (en) Direct current sensor
WO2012002126A1 (en) Angle detection device
JP2011242273A (en) Current sensor
Ouyang et al. Current sensors based on GMR effect for smart grid applications
CN103018522A (en) Current sensor and attachment structure of the same
Ripka Contactless measurement of electric current using magnetic sensors
JP2013238500A (en) Inclined core type current sensor
JP4732705B2 (en) Magnetic field sensor
JP6162361B2 (en) Orthogonal excitation type current sensor
WO2012042336A1 (en) Electric power measurement device, and electric power measurement method
JPH0581731U (en) Current sensor
JP2016061572A (en) Magnetic field sensor
JP3093532B2 (en) DC current sensor
JP2008203166A (en) Torque sensor and torque detecting method
JPH07248365A (en) Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
KR20160150082A (en) current sensor using multilayered magnetic core
JP2006098332A (en) Magnetostriction modulating current sensor and current measuring method using this sensor
JPH0749357A (en) D.c. current sensor