JPH07248365A - Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method - Google Patents

Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method

Info

Publication number
JPH07248365A
JPH07248365A JP3994994A JP3994994A JPH07248365A JP H07248365 A JPH07248365 A JP H07248365A JP 3994994 A JP3994994 A JP 3994994A JP 3994994 A JP3994994 A JP 3994994A JP H07248365 A JPH07248365 A JP H07248365A
Authority
JP
Japan
Prior art keywords
magnetic
sensor
wire
azimuth
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3994994A
Other languages
Japanese (ja)
Inventor
Takashi Sato
崇志 佐藤
Akio Monma
彰夫 門馬
Kaneo Mori
佳年雄 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3994994A priority Critical patent/JPH07248365A/en
Publication of JPH07248365A publication Critical patent/JPH07248365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetism sensor which has sufficient accuracy to detect the earth magnetism and can be incorporated into a device in a small type, a magnetic direction sensor and an earth magnetism measuring method using these sensors. CONSTITUTION:A magnetism detecting part 3 is composed of amorphous magnetic substance wires 1 and coils 2 to apply bias magnetic fields to the wires 1, and a magnetism sensor is composed of a pair of magnetism detecting parts arranged in parallel to each other. A magnetic direction sensor is composed of a magnetic direction detecting part constituted by orthogonally arranging two sets or three sets of magnetism sensors. When the earth magnetism is measured, a high frequency electric current of 10k to 30MHz is carried to the respective wires 1, and the bias magnetic fields whose sizes are equal to each other and directions are opposite to each other are generated in a pair of coils, and wire across terminal voltage is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地磁気等の微弱磁界を
検出し、これら微弱磁界の強さ、向き、方向を測定する
ための磁気センサ、磁気方位センサ及びそれらを用いる
磁気測定方法、磁気方位測定方法に関するものである。
なお、以下の記述で磁界の強さは地磁気の場合は全磁
力、向きは一次元における方向を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor for detecting a weak magnetic field such as geomagnetism and measuring the strength, direction and direction of the weak magnetic field, a magnetic direction sensor and a magnetic measuring method using the magnetic sensor. The present invention relates to an azimuth measuring method.
In the following description, the magnetic field strength means the total magnetic force in the case of geomagnetism, and the direction means the one-dimensional direction.

【0002】[0002]

【従来の技術】従来、例えば地磁気(数万nT,数十A
/m)を精度よく検出する磁気方位センサとして、フラ
ックスゲート型磁気センサが最もよく使われている。フ
ラックスゲート型磁気センサは、パーマロイ等の高透磁
率磁心の対称なB−H飽和特性が、外部磁界により変化
することを利用して磁界測定を行うもので、±1°の方
位測定精度を有する。しかし、地磁気検出用フラックス
ゲート型磁気センサは、原理的な理由により大型の磁心
を必要とし、センサ全体の寸法・形状を小さくすること
が不可能である。フラックスゲート型磁気センサ以外の
磁気センサとしては、半導体を用いたホール素子、磁性
体(以下、強磁性体のことを単に磁性体と称する)薄膜
を用いた磁気抵抗素子等がある。しかし、これらは寸法
・形状は小さいものの、磁界に対する感度は、地磁気を
検出するには精度が一桁足りず、正確に地磁気の検出が
できない。
2. Description of the Related Art Conventionally, for example, geomagnetism (tens of thousands nT, tens of A)
The fluxgate type magnetic sensor is most often used as a magnetic direction sensor that accurately detects / m). The fluxgate type magnetic sensor measures the magnetic field by utilizing the fact that the symmetrical BH saturation characteristic of a high permeability magnetic core such as Permalloy changes with an external magnetic field, and has an azimuth measurement accuracy of ± 1 °. . However, the fluxgate magnetic sensor for geomagnetic detection requires a large magnetic core for the reason of principle, and it is impossible to reduce the size and shape of the entire sensor. Magnetic sensors other than the fluxgate type magnetic sensor include a Hall element using a semiconductor, a magnetoresistive element using a magnetic substance (hereinafter, a ferromagnetic substance is simply referred to as a magnetic substance) thin film, and the like. However, although they are small in size and shape, their sensitivity to a magnetic field is not sufficiently accurate to detect geomagnetism by one digit, and geomagnetism cannot be accurately detected.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上述の事情
に鑑みて、地磁気を検出するのに十分な精度を有し、か
つ、小型で装置への組み込みが容易である磁気センサ及
び磁気方位センサ、並びにこれらの磁気センサ及び磁気
方位センサを用いる磁気、磁気方位の測定方法を提供す
ることを目的としている。
In view of the above-mentioned circumstances, the present invention has a sufficient accuracy for detecting geomagnetism, is small in size, and is easy to install in a device, and a magnetic direction. It is an object of the present invention to provide a sensor and a method of measuring magnetism and magnetic azimuth using these magnetic sensor and magnetic azimuth sensor.

【0004】[0004]

【課題を解決するための手段】本発明の磁気センサは、
アモルファス磁性体ワイヤとこのアモルファス磁性体ワ
イヤにバイアス磁界を与えるコイル又は永久磁石とを備
えて磁気検出部が構成され、一対のこの磁気検出部を互
いに平行に配置して構成されていることを特徴としてい
る。また、本発明の磁気方位センサは、上述した磁気セ
ンサの二組又は三組を互いに直交するように配置して構
成された磁気方位検出部を備えていることを特徴として
いる。
The magnetic sensor of the present invention comprises:
A magnetic detection unit is configured to include an amorphous magnetic wire and a coil or a permanent magnet that applies a bias magnetic field to the amorphous magnetic wire, and a pair of the magnetic detection units are arranged in parallel to each other. I am trying. Further, the magnetic azimuth sensor of the present invention is characterized by including a magnetic azimuth detecting unit configured by arranging two sets or three sets of the above-described magnetic sensors so as to be orthogonal to each other.

【0005】本発明の磁気測定方法は、アモルファス磁
性体ワイヤとこのアモルファス磁性体ワイヤにバイアス
磁界を与えるコイル又は永久磁石とを備えて磁気検出部
が構成され、一対のこの磁気検出部を互いに平行に配置
して構成された磁気センサのアモルファス磁性体ワイヤ
のそれぞれに高周波電流を通電し、対をなすコイル又は
永久磁石で強さが等しく向きが正反対のバイアス磁界を
発生させ、アモルファス磁性体ワイヤの両端電圧の差を
検出して、磁気検出部の長手方向の磁界の強さと向きを
測定することを特徴としている。
In the magnetic measuring method of the present invention, a magnetic detecting section is constituted by an amorphous magnetic wire and a coil or a permanent magnet for applying a bias magnetic field to the amorphous magnetic wire, and a pair of the magnetic detecting sections are parallel to each other. A high-frequency current is applied to each of the amorphous magnetic wires of the magnetic sensor configured by arranging them, and a pair of coils or permanent magnets generate bias magnetic fields of equal strength and opposite directions. It is characterized in that the strength and direction of the magnetic field in the longitudinal direction of the magnetic detection unit are measured by detecting the voltage difference between both ends.

【0006】また、本発明の磁気方位測定方法は、上述
した磁気センサを備え、この磁気センサの二組又は三組
を互いに直交するように配置して構成された磁気方位検
出部の各組のアモルファス磁性体ワイヤのそれぞれに高
周波電流を通電し、対をなすコイル又は永久磁石で強さ
が等しく向きが正反対のバイアス磁界を発生させ、各組
のアモルファス磁性体ワイヤの両端電圧の差を検出し
て、各組の磁気検出部の長手方向の磁界の強さと向きを
測定し、これらを合成して磁界の強さ、方位を測定する
ことを特徴としている。また、本発明の磁気測定方法及
び磁気方位測定方法は、それぞれ上述した高周波電流の
周波数が10kHz〜30MHzであることを特徴とし
ている。
Further, the magnetic azimuth measuring method of the present invention is provided with the above-mentioned magnetic sensor, and each set of the magnetic azimuth detecting section constituted by arranging two or three sets of the magnetic sensors so as to be orthogonal to each other. A high-frequency current is applied to each of the amorphous magnetic wires, and a pair of coils or permanent magnets generate bias magnetic fields of equal strength and opposite directions, and the difference between the voltages across the amorphous magnetic wires of each set is detected. Then, the strength and direction of the magnetic field in the longitudinal direction of the magnetic detection units of each set are measured, and these are combined to measure the strength and direction of the magnetic field. Further, the magnetic measuring method and the magnetic azimuth measuring method of the present invention are characterized in that the frequency of the high-frequency current described above is 10 kHz to 30 MHz, respectively.

【0007】[0007]

【作用】図1は、本発明に係る磁気センサの回路構成例
を示すが、図1を参照して作用を説明する。図中、1は
アモルファス磁性体ワイヤ(以下、a‐ワイヤと略す場
合がある)、2はアモルファス磁性体ワイヤ1にバイア
ス磁界を与えるコイル、3はアモルファス磁性体ワイヤ
1とコイル2とを備えて構成されている磁気検出部、4
は抵抗、5はアモルファス磁性体ワイヤ1に高周波電流
を通電するための高周波電源、6は増幅器、7は検波
器、8は低域フィルタ、9は差動増幅器である。そし
て、二つの磁気検出部3は対をなし、かつ、互いに平行
に配置されて磁気センサを形成している。
FIG. 1 shows an example of the circuit configuration of the magnetic sensor according to the present invention. The operation will be described with reference to FIG. In the figure, 1 is an amorphous magnetic material wire (hereinafter may be abbreviated as a-wire), 2 is a coil for applying a bias magnetic field to the amorphous magnetic material wire 1, and 3 is an amorphous magnetic material wire 1 and a coil 2. Magnetic detectors configured, 4
Is a resistor, 5 is a high frequency power source for supplying a high frequency current to the amorphous magnetic wire 1, 6 is an amplifier, 7 is a detector, 8 is a low-pass filter, and 9 is a differential amplifier. The two magnetic detectors 3 form a pair and are arranged in parallel with each other to form a magnetic sensor.

【0008】本発明で用いるアモルファス磁性体ワイヤ
1は、CoSiB系、FeCoSiB系、その他の組成
の合金を溶融した後、液体超急冷して断面が円形の線状
としてある。更に、磁歪定数λs ,磁気異方性を調整す
るために、張力アニールを施したもので、a‐ワイヤの
円周方向に強い磁気異方性を有する。磁歪定数λs につ
いていえば、磁歪定数λs の絶対値が10-6より小さく
なると、後述するワイヤ両端電圧が小さくなり、検出し
にくくなるので、−10-6<λs ≦0の範囲のものを使
用することが望ましい。アモルファス磁性体ワイヤ1の
直径は、10μから150μの範囲が検出感度が大きく
て好ましく、長さは、1mm程度以上から使用可能でる
が、出力の容易さから3mm以上が望ましい。
The amorphous magnetic wire 1 used in the present invention is formed into a linear wire having a circular cross section by melting an alloy of CoSiB type, FeCoSiB type, or any other composition and then liquid quenching. Further, tension annealing is performed to adjust the magnetostriction constant λ s and the magnetic anisotropy, and it has a strong magnetic anisotropy in the circumferential direction of the a-wire. As for the magnetostriction constant λ s , when the absolute value of the magnetostriction constant λ s becomes smaller than 10 −6, the voltage across the wire, which will be described later, becomes small and it becomes difficult to detect. Therefore, in the range of −10 −6s ≦ 0. It is desirable to use one. The diameter of the amorphous magnetic wire 1 is preferably in the range of 10 μ to 150 μ because the detection sensitivity is high, and the length can be used from about 1 mm or more, but it is preferably 3 mm or more from the viewpoint of easy output.

【0009】上述で、バイアス磁界をかけるために、公
知のコイル又は公知の永久磁石、あるいは公知のコイル
と公知の永久磁石との組み合わせが用いられる。また、
アモルファス磁性体ワイヤ1の材質、磁気センサの構造
にもよるが、インダクタンスの変化を効率的に取り出す
ために、アモルファス磁性体ワイヤ1に通電する高周波
電流の周波数fは、10kHz〜30MHzの範囲が望
ましい。10kHz〜30MHzの範囲外では、磁界に
対する感度が著しく低下するからである。
In the above, a known coil or a known permanent magnet, or a combination of a known coil and a known permanent magnet is used to apply the bias magnetic field. Also,
Although it depends on the material of the amorphous magnetic wire 1 and the structure of the magnetic sensor, the frequency f of the high-frequency current applied to the amorphous magnetic wire 1 is preferably in the range of 10 kHz to 30 MHz in order to efficiently extract the change in the inductance. . This is because the sensitivity to the magnetic field is significantly reduced outside the range of 10 kHz to 30 MHz.

【0010】アモルファス磁性体ワイヤ1に通電する高
周波電流の周波数fを、10kHz〜30MHzの範囲
に限定した根拠などについて、本発明の発明者の一人が
共著した文献を引用して追加的に説明する。「電気学会
研究会資料(マグネティックス研究会MAG−93−2
16〜223)」〔社団法人 電気学会 1993年1
1月19日発行〕中のMAG−93−219(39頁〜
48頁)「アモルファス磁性体ワイヤの磁気インピーダ
ンス効果」における記載、例えば44頁の4行目〜10
行目の記述、44頁の図6「ΔEW / EW −f特性図」
などが一つの根拠となる。
The reason why the frequency f of the high-frequency current passing through the amorphous magnetic wire 1 is limited to the range of 10 kHz to 30 MHz will be additionally described with reference to the document co-authored by one of the inventors of the present invention. . "The Institute of Electrical Engineers of Japan Material (Magnetics Workshop MAG-93-2
16-223) "[The Institute of Electrical Engineers of Japan, 1993 1
1993-19]] MAG-93-219 (Page 39-
(Page 48) "Magnetic impedance effect of amorphous magnetic wire", for example, page 44, 4th line to 10th page
Description of the row, as shown in FIG. 6, "ΔE W / E W -f characteristic diagram" of 44 pages
Etc. is one basis.

【0011】引用文献の図6は、外部磁界Hexをかけた
ときの励磁周波数fに対するワイヤ両端電圧の減少率Δ
W / EW を示している。この図より、アモルファス磁
性体ワイヤに通電すべき高周波電流の周波数fは、10
kHz〜30MHzであることが分かる。なお、望まし
い高周波電流の周波数fの範囲は、アモルファス磁性体
ワイヤの組成、製法、形状にも影響されるが、ΔEW /
W が0.1以上であることが必要である。例えば、3
kg/mm2 の張力下でアニールした直径50μのFe
CoSiB系のアモルファス磁性体ワイヤの場合、望ま
しい高周波電流の周波数fの範囲は、80kHz〜20
MHzである。また、2kg/mm2 の張力下でアニー
ルした直径30μのFeCoSiB系のアモルファス磁
性体ワイヤの場合、望ましい高周波電流の周波数fの範
囲は、300kHz〜25MHzである。そして、アモ
ルファス磁性体ワイヤが改良され、現在よりΔEW / E
W−f特性の向上したものが現れれば、アモルファス磁
性体ワイヤに通電する高周波電流の周波数fは、10k
Hz〜30MHzの範囲より拡大するであろうと推測さ
れる。
FIG. 6 of the cited document shows the reduction rate Δ of the voltage across the wire with respect to the excitation frequency f when an external magnetic field H ex is applied.
Shows the E W / E W. From this figure, the frequency f of the high frequency current to be passed through the amorphous magnetic wire is 10
It can be seen that the frequency is from kHz to 30 MHz. The desirable range of the frequency f of the high-frequency current depends on the composition, manufacturing method, and shape of the amorphous magnetic wire, but ΔE W /
It is necessary that E W is 0.1 or more. For example, 3
Fe with a diameter of 50μ annealed under a tension of kg / mm 2.
In the case of a CoSiB-based amorphous magnetic wire, a desirable range of frequency f of high frequency current is 80 kHz to 20.
MHz. Further, in the case of a FeCoSiB type amorphous magnetic wire having a diameter of 30 μ annealed under a tension of 2 kg / mm 2 , a desirable range of the frequency f of the high frequency current is 300 kHz to 25 MHz. And, the amorphous magnetic wire has been improved, and ΔE W / E
If an improved W- f characteristic appears, the frequency f of the high-frequency current passing through the amorphous magnetic wire is 10k.
It is speculated that it will expand from the range of Hz to 30 MHz.

【0012】このようなアモルファス磁性体ワイヤ1の
長手方向に、高周波電源5により高周波電流を通電する
と、a‐ワイヤ1にワイヤ両端電圧を生ずるとともに、
a‐ワイヤ1の周囲に円周磁界H0 が発生する。このと
き、a‐ワイヤ1は磁性体であるので、電流変化を阻止
する自己誘導性を示す自己インダクタンスLを有する。
ここで、アモルファス磁性体ワイヤ1の長手方向に外部
磁界Hexをかけると、外部磁界Hexの強さに応じた角度
ψ(0°<ψ<90°)だけa‐ワイヤ1の磁化ベクト
ルMが傾斜する。この結果、インダクタンスとして働く
円周方向の有効な磁化成分は、M・cosψ(0<co
sψ<1)となり、自己インダクタンスLは減少するこ
とになる。この自己インダクタンスLの変化から、アモ
ルファス磁性体ワイヤ1の長手方向にかけられた外部磁
界Hexの強さが検出でき、逆に自己インダクタンスLの
変化は、アモルファス磁性体ワイヤ1の長手方向に高周
波電流を通電したときのワイヤ両端電圧の変化から求め
られる。
When a high-frequency current is supplied from the high-frequency power source 5 in the longitudinal direction of such an amorphous magnetic wire 1, a voltage across the wire is generated in the a-wire 1, and
A circumferential magnetic field H 0 is generated around the a-wire 1. At this time, since the a-wire 1 is a magnetic material, it has a self-inductance L that exhibits self-inductivity to prevent a change in current.
Here, when an external magnetic field H ex is applied in the longitudinal direction of the amorphous magnetic wire 1, the magnetization vector M of the a-wire 1 by an angle ψ (0 ° <ψ <90 °) according to the strength of the external magnetic field H ex. Tilts. As a result, the effective magnetization component in the circumferential direction that acts as an inductance is M · cosψ (0 <co
Since sψ <1), the self-inductance L decreases. From the change in the self-inductance L, the strength of the external magnetic field H ex applied in the longitudinal direction of the amorphous magnetic wire 1 can be detected, and conversely, the change in the self-inductance L is caused by the high frequency current in the longitudinal direction of the amorphous magnetic wire 1. It is obtained from the change in the voltage across the wire when electricity is applied to the wire.

【0013】図2は、アモルファス磁性体ワイヤ1の長
手方向に外部磁界Hex(A/m)をかけ、高周波電源5
からの高周波電流をa‐ワイヤ1の両端に通電したとき
の、ワイヤ両端電圧(mAp‐p)を測定するための基
本的回路を示したものである。組成が(Fe6 Co94
72.5Si12.515のアモルファス磁性体ワイヤ1に、抵
抗値100Ωの抵抗4を直列に配置し、高周波電流の周
波数が300kHzの場合の、外部磁界Hex(A/m)
に対するワイヤ両端電圧(mVp‐p)の変化を、図3
のグラフで示してある。
In FIG. 2, an external magnetic field H ex (A / m) is applied in the longitudinal direction of the amorphous magnetic wire 1 to generate a high frequency power supply 5.
2 shows a basic circuit for measuring the voltage (mAp-p) across the wire when a high-frequency current from A is applied to both ends of the a-wire 1. The composition is (Fe 6 Co 94 ).
An external magnetic field H ex (A / m) when the resistance 4 having a resistance value of 100Ω is arranged in series on the amorphous magnetic wire 1 of 72.5 Si 12.5 B 15 and the frequency of the high frequency current is 300 kHz
The change in voltage across the wire (mVp-p) with respect to
Is shown in the graph.

【0014】図3のグラフは、外部磁界Hex±200
(A/m)付近において、ワイヤ両端電圧が最大値とな
り、外部磁界Hex0を境界に左右対称になっている。ア
モルファス磁性体ワイヤ1の材質、形状、通電する高周
波電流の周波数等によって、グラフの曲線の状態は異な
るが、いずれにおいても、磁界0(A/m)における縦
座標軸を対称軸として、図3の双峰型や山型のような対
称型の曲線となる。図3のグラフの曲線状態では、ワイ
ヤ両端電圧からは外部磁界Hexの向きは分からず、ま
た、ワイヤ両端電圧が55mVp‐p以上の場合は、外
部磁界Hexの強さも多価となって定まらず、外部磁界H
exを検出することができない。
The graph of FIG. 3 shows that the external magnetic field H ex ± 200
In the vicinity of (A / m), the voltage across the wire has the maximum value and is bilaterally symmetrical with the external magnetic field H ex 0 as a boundary. The state of the curve of the graph differs depending on the material and shape of the amorphous magnetic wire 1, the frequency of the high-frequency current to be applied, etc., but in both cases, the ordinate axis in the magnetic field 0 (A / m) is taken as the axis of symmetry, and the state of FIG. It will be a symmetrical curve such as a bimodal type or a mountain type. In the curved state of the graph of FIG. 3, the direction of the external magnetic field H ex cannot be known from the voltage across the wire, and when the voltage across the wire is 55 mVp-p or higher, the strength of the external magnetic field H ex becomes multivalued. Not determined, external magnetic field H
Cannot detect ex .

【0015】そこで、本発明の磁気センサは、アモルフ
ァス磁性体ワイヤ1と、アモルファス磁性体ワイヤ1に
バイアス磁界を与えるコイル2とを備えた磁気検出部3
を構成し、二つの磁気検出部3が対をなして互いに平行
に配置して構成せしめたものである。そして、各アモル
ファス磁性体ワイヤ1のそれぞれに、10kHz〜30
MHzの高周波電流を通電し、また、対をなすコイル2
に強さが等しく向きが正反対のバイアス磁界を発生さ
せ、各アモルファス磁性体ワイヤ1のワイヤ両端電圧の
差を検出して、磁気検出部3の長手方向の外部磁界Hex
の強さと向きを求めるようにした。すなわち、図3にお
いて例えばバイアス磁界をそれぞれ−500A/m,+
500A/mとすれば、+200A/m〜+500A/
m及び−200A/m〜−500A/mの範囲の曲線が
利用可能であり、1対のワイヤ両端電圧の差を求めれ
ば、±300A/mの範囲で外部磁界Hexの強さと向き
を測定することができる。
Therefore, the magnetic sensor of the present invention has a magnetic detecting portion 3 including an amorphous magnetic wire 1 and a coil 2 for applying a bias magnetic field to the amorphous magnetic wire 1.
The two magnetic detection units 3 form a pair and are arranged in parallel with each other. Then, each of the amorphous magnetic wires 1 has a frequency of 10 kHz to 30
A coil 2 that carries a high-frequency current of MHz and forms a pair
To generate a bias magnetic field having the same strength in the opposite direction and diametrically opposite to each other, and detecting the difference between the voltage across the wires of each amorphous magnetic wire 1 to detect the external magnetic field H ex in the longitudinal direction of the magnetic detection unit 3.
I tried to find the strength and direction of. That is, in FIG. 3, for example, a bias magnetic field of −500 A / m, +
If it is 500 A / m, +200 A / m to +500 A /
m and curves in the range of -200 A / m to -500 A / m are available, and the strength and direction of the external magnetic field H ex can be measured in the range of ± 300 A / m if the difference between the voltage across the pair of wires is obtained. can do.

【0016】図4は、二成分センサの場合における本発
明に係る磁気方位センサの磁気方位検出部の構成図で、
作用説明のためにx−y座標軸も記載してある。本発明
に係る磁気方位センサの磁気方位検出部は、上述した磁
気センサにおける磁気検出部の二組(二成分センサの場
合)又は三組(三成分センサの場合)を、互いに直交す
るように配置して構成してある。図4の場合、磁気方位
センサの磁気方位検出部10は、磁気センサの磁気検出
部3xと磁気検出部3yを、互いに直交するように配置
して構成してある。磁気検出部3xの出力値がX,磁気
検出部3yの出力値がYであれば、磁界の強さF,図示
してあるx軸からの偏りの角(偏角)θは、それぞれ下
記の式(1),式(2)で示される。 F=(X2 +Y2 1/2 ・・・・(1) θ=tan-1(Y/X) ・・・・(2)
FIG. 4 is a block diagram of the magnetic azimuth detecting section of the magnetic azimuth sensor according to the present invention in the case of a two-component sensor.
The xy coordinate axes are also shown for the purpose of explaining the operation. The magnetic azimuth detecting unit of the magnetic azimuth sensor according to the present invention is arranged so that two sets (in the case of a two-component sensor) or three sets (in the case of a three-component sensor) of the magnetic detecting units in the above-described magnetic sensor are orthogonal to each other. Is configured. In the case of FIG. 4, the magnetic azimuth detecting unit 10 of the magnetic azimuth sensor is configured by arranging the magnetic detecting units 3x and 3y of the magnetic sensor so as to be orthogonal to each other. If the output value of the magnetic detection unit 3x is X and the output value of the magnetic detection unit 3y is Y, the magnetic field strength F and the angle of deviation (deviation angle) θ from the x-axis shown in the figure are as follows. It is shown by the equations (1) and (2). F = (X 2 + Y 2 ) 1/2 ··· (1) θ = tan −1 (Y / X) ··· (2)

【0017】図示は省略してあるが、地磁気を対象とす
る三成分センサの場合は、図4のx−y座標軸を含む面
を水平面とし、x−y座標軸に対して鉛直下向きにz軸
をとる。二成分センサの場合と同様にして、磁気検出部
3xの出力値がX,磁気検出部3yの出力値がY,磁気
検出部3zの出力値がZであれば、x軸からの偏りの角
(偏角)θは、上記の式(2)で示され、全磁力F,水
平面からの磁場ベクトルの傾き(伏角)χは、それぞれ
下記の式(3),式(4)で示される。 F=(X2 +Y2 +Z2 1/2 ・・・・(3) χ=tan-1〔Z/(X2 +Y2 1/2 〕 ・・・・(4)
Although not shown, in the case of a three-component sensor for geomagnetism, the plane including the xy coordinate axes in FIG. 4 is a horizontal plane, and the z axis is vertically downward with respect to the xy coordinate axes. To take. Similarly to the case of the two-component sensor, if the output value of the magnetic detection unit 3x is X, the output value of the magnetic detection unit 3y is Y, and the output value of the magnetic detection unit 3z is Z, the angle of deviation from the x-axis is calculated. The (declination angle) θ is represented by the above equation (2), and the total magnetic force F and the inclination (angle of dip) χ of the magnetic field vector from the horizontal plane are represented by the following equations (3) and (4), respectively. F = (X 2 + Y 2 + Z 2 ) 1/2 ... (3) χ = tan -1 [Z / (X 2 + Y 2 ) 1/2 ] ... (4)

【0018】そして、二成分センサによる測定では式
(1),式(2)を、地磁気を対象とする三成分センサ
による測定では式(2),式(3)及び式(4)を計算
して、それぞれ磁界の強さFとx軸からの偏角θ,全磁
力Fとx軸からの偏角θ及び水平面からの磁場ベクトル
の伏角χを算出する。なお、地磁気を対象とする場合、
北向きにx軸、東向きにy軸、鉛直下向きにz軸をと
り、偏角θは北から東回りに測り、東偏を正に西偏を負
にとる。また、伏角χは水平面から下向き正、上向きに
負をとる。
Equations (1) and (2) are calculated for the two-component sensor, and equations (2), (3) and (4) are calculated for the three-component sensor for geomagnetism. Then, the magnetic field strength F and the deviation angle θ from the x-axis, the total magnetic force F and the deviation angle θ from the x-axis, and the dip angle χ of the magnetic field vector from the horizontal plane are calculated. If you are targeting geomagnetism,
The x-axis is oriented northward, the y-axis is oriented eastward, and the z-axis is oriented vertically downward. The declination θ is measured from north to east, and eastward is positive and westward is negative. The dip angle χ is positive in the downward direction and negative in the upward direction from the horizontal plane.

【0019】[0019]

【実施例】図1で示した本発明の磁気センサの磁気検出
部3の二組を互いに直交するように配置して、図4に示
した磁気方位検出部10を備えた磁気方位センサを製造
した。図5(a)は本発明に係る実施例における磁気方
位センサの磁気方位検出部10の平面図、図5(b)は
(a)のB−B線の断面図であって、10aは基板を示
している。磁気方位検出部10の寸法は10mm×10
mm×4mmである。また、これらの磁気センサ、磁気
方位センサを用いて本発明の磁気・磁気方位測定方法で
磁気・磁気方位を測定した。アモルファス磁性体ワイヤ
1には、組成が(Fe6 Co9472.5Si12.515で、
磁歪定数λs =−10-7,直径50μ,有効長さ5mm
のものを用いた。バイアス磁界をかけるるためのコイル
は、巻き数300,コイル径3mmであり、このコイル
で±500A/mのバイアス磁界を発生させた。抵抗4
の抵抗値は100Ω,各アモルファス磁性体ワイヤ1に
通電した高周波電流の周波数fは300kHzであっ
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Two sets of magnetic detection units 3 of the magnetic sensor of the present invention shown in FIG. 1 are arranged so as to be orthogonal to each other to manufacture a magnetic azimuth sensor having a magnetic azimuth detection unit 10 shown in FIG. did. 5A is a plan view of the magnetic azimuth detecting unit 10 of the magnetic azimuth sensor in the embodiment according to the present invention, FIG. 5B is a sectional view taken along line BB of FIG. 5A, and 10a is a substrate. Is shown. The size of the magnetic azimuth detecting unit 10 is 10 mm × 10
mm × 4 mm. Further, the magnetic / magnetic azimuth was measured by the magnetic / magnetic azimuth measuring method of the present invention using these magnetic sensors and magnetic azimuth sensors. The composition of the amorphous magnetic wire 1 is (Fe 6 Co 94 ) 72.5 Si 12.5 B 15 ,
Magnetostriction constant λ s = −10 −7 , diameter 50 μ, effective length 5 mm
I used the one. The coil for applying the bias magnetic field had 300 turns and a coil diameter of 3 mm, and this coil generated a bias magnetic field of ± 500 A / m. Resistance 4
Had a resistance value of 100Ω, and the frequency f of the high-frequency current passed through each amorphous magnetic wire 1 was 300 kHz.

【0020】本実施例における磁気・磁気方位の測定結
果を、図6及び図7によって示してある。すなわち、x
軸正方向からy軸正方向回りに測った角度を方位角φと
して、方位角φが0°〜360°の範囲における磁気検
出部3xのX出力(V),磁気検出部3yのY出力
(V)を測定した結果、図6に示すような方位角φに対
して位相差が90°の二つの正弦曲線が得られた。図6
は磁気検出部3xのX出力(V),磁気検出部3yのY
出力(V)の方位角依存性を示している。また、各方位
角φにおけるX出力、Y出力の値をマイクロコンピュー
タで演算して、これらの比よりtanθ及び方位出力の
値を求めた。なお、方位出力は、方位角φに対して1対
1に対応して得られる回路中の出力値を表している任意
単位の数値である。この結果得られた図7は、方位出力
の方位角依存性を示している。図7のグラフは直線性が
よく、方位精度±1°で磁気方位が測定できることが分
かる。
The measurement results of the magnetic and magnetic directions in this example are shown in FIGS. 6 and 7. That is, x
With an azimuth angle φ being an angle measured from the positive axis direction around the positive y axis direction, the X output (V) of the magnetic detection unit 3x and the Y output of the magnetic detection unit 3y when the azimuth angle φ is in the range of 0 ° to 360 ° ( As a result of measuring V), two sinusoidal curves having a phase difference of 90 ° with respect to the azimuth angle φ were obtained as shown in FIG. Figure 6
Is the X output (V) of the magnetic detector 3x and Y of the magnetic detector 3y.
The azimuth angle dependence of output (V) is shown. Further, the values of the X output and the Y output at each azimuth angle φ were calculated by a microcomputer, and the values of tan θ and the azimuth output were obtained from the ratios thereof. The azimuth output is a numerical value in an arbitrary unit that represents the output value in the circuit obtained in a one-to-one correspondence with the azimuth angle φ. The resulting FIG. 7 shows the azimuth angle dependence of the azimuth output. The graph of FIG. 7 has good linearity, and it can be seen that the magnetic azimuth can be measured with an azimuth accuracy of ± 1 °.

【0021】本実施例で用いた磁気方位センサの磁気方
位検出部10の寸法は、10mm×10mm×4mmで
あったが、この寸法は電子回路基板に組み込める大きさ
である。一方、市販されている従来のフラックスゲート
型磁気方位センサ(FG370形式、方位精度±1°)
の磁気方位検出部の寸法は、25mm×25mm×10
mmであって、本実施例で用いた磁気方位センサの磁気
方位検出部と比較すると、容積が約8倍に達する。図8
は、両磁気方位検出部の大きさの比較図である。更に、
本発明における磁気方位センサの磁気方位検出部は、理
論的には、5mm×5mm×2mm程度まで、小さくす
ることが可能であり、容積比は1:125に達する。
The size of the magnetic direction detecting portion 10 of the magnetic direction sensor used in this embodiment was 10 mm × 10 mm × 4 mm, which is a size that can be incorporated in an electronic circuit board. On the other hand, a conventional flux gate type magnetic bearing sensor (FG370 type, bearing accuracy ± 1 °) that is commercially available
The size of the magnetic azimuth detector is 25mm × 25mm × 10
The size is mm, and the volume reaches about 8 times that of the magnetic azimuth detecting unit of the magnetic azimuth sensor used in this embodiment. Figure 8
FIG. 4 is a comparison diagram of the sizes of both magnetic azimuth detecting units. Furthermore,
The magnetic azimuth detecting portion of the magnetic azimuth sensor in the present invention can theoretically be reduced to about 5 mm × 5 mm × 2 mm, and the volume ratio reaches 1: 125.

【0022】[0022]

【発明の効果】以上説明したように本発明の磁気・磁気
方位センサは、地磁気を検出するのに十分な精度を有し
ており、かつ、従来のフラックスゲート型磁気方位セン
サの磁気方位検出部と比較しても、容積は約1/8以下
であり、小型で装置への組み込めが容易である。
As described above, the magnetic / magnetic direction sensor of the present invention has sufficient accuracy to detect the earth's magnetism, and the magnetic direction detector of the conventional fluxgate type magnetic direction sensor. Compared with the above, the volume is about ⅛ or less, and it is small and easy to be incorporated in the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気センセの回路構成例を示す図
である。
FIG. 1 is a diagram showing a circuit configuration example of a magnetic sensor according to the present invention.

【図2】a‐ワイヤの長手方向に外部磁界をたけ両端に
高周波電流を通電したときのワイヤ両端電圧を測定する
ための基本的回路の構成例を示す図である。
FIG. 2 is a diagram showing a structural example of a basic circuit for measuring a voltage across a wire when an external magnetic field is applied in the longitudinal direction of the a-wire and a high-frequency current is applied to both ends thereof.

【図3】図2の測定回路を用いて測定した外部磁界対ワ
イヤ両端電圧のグラフである。
3 is a graph of the external magnetic field versus the voltage across the wire measured using the measurement circuit of FIG.

【図4】本発明に係る磁気方位センサの磁気方位検出部
の構成図である。
FIG. 4 is a configuration diagram of a magnetic azimuth detecting unit of the magnetic azimuth sensor according to the present invention.

【図5】(a)は本発明に係る実施例における磁気方位
センサの磁気方位検出部の平面図である。(b)は本発
明実施例の磁気方位センサの磁気方位検出部の断面図で
ある。
FIG. 5A is a plan view of a magnetic azimuth detecting unit of the magnetic azimuth sensor according to the embodiment of the present invention. (B) is sectional drawing of the magnetic direction detection part of the magnetic direction sensor of the Example of this invention.

【図6】本発明に係る磁気センサの実施例で得られた磁
気検出部のX,Y出力の方位角依存性を示すグラフであ
る。
FIG. 6 is a graph showing the azimuth angle dependence of the X and Y outputs of the magnetic detector obtained in the example of the magnetic sensor according to the present invention.

【図7】本発明に係る磁気センサの実施例で得られた方
位出力の方位角依存性を示すグラフである。
FIG. 7 is a graph showing the azimuth angle dependence of the azimuth output obtained in the example of the magnetic sensor according to the present invention.

【図8】本発明の磁気方位センサにおける磁気方位検出
部と従来のフラックスゲート型磁気方位センサの磁気方
位検出部との寸法比較図である。
FIG. 8 is a dimensional comparison diagram of the magnetic azimuth detecting unit in the magnetic azimuth sensor of the present invention and the magnetic azimuth detecting unit of the conventional fluxgate type magnetic azimuth sensor.

【符号の説明】[Explanation of symbols]

1 アモルファス磁性体ワイヤ 2 バイアス磁界を与えるコイル 3 磁気センサの磁気検出部 3x 磁気センサのx成分磁気検出部 3y 磁気センサのy成分磁気検出部 4 抵抗 5 高周波電源 6 増幅器 7 検波器 8 低域フィルタ 9 差動増幅器 10 磁気方位センサの磁気方位検出部 10a 磁気方位センサの磁気方位検出部の基板 1 Amorphous magnetic wire 2 Coil for applying bias magnetic field 3 Magnetic detection part of magnetic sensor 3x Magnetic component x detection of magnetic sensor 3y Magnetic component y detection of magnetic sensor 4 Resistor 5 High frequency power supply 6 Amplifier 7 Detector 8 Low pass filter 9 differential amplifier 10 magnetic azimuth detecting unit of magnetic azimuth sensor 10a substrate of magnetic azimuth detecting unit of magnetic azimuth sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アモルファス磁性体ワイヤと前記アモル
ファス磁性体ワイヤにバイアス磁界を与えるコイル又は
永久磁石とを備えて磁気検出部が構成され、一対の前記
磁気検出部を互いに平行に配置して構成された磁気セン
サ。
1. A magnetic detection unit is configured by including an amorphous magnetic wire and a coil or a permanent magnet that applies a bias magnetic field to the amorphous magnetic wire, and a pair of the magnetic detection units are arranged in parallel to each other. Magnetic sensor.
【請求項2】 請求項1に記載の磁気センサの二組又は
三組を互いに直交するように配置して構成された磁気方
位検出部を備えた磁気方位センサ。
2. A magnetic azimuth sensor comprising a magnetic azimuth detecting unit configured by arranging two sets or three sets of the magnetic sensor according to claim 1 so as to be orthogonal to each other.
【請求項3】 アモルファス磁性体ワイヤと前記アモル
ファス磁性体ワイヤにバイアス磁界を与えるコイル又は
永久磁石とを備えて磁気検出部が構成され、一対の前記
磁気検出部を互いに平行に配置して構成された磁気セン
サの前記アモルファス磁性体ワイヤのそれぞれに高周波
電流を通電し、対をなす前記コイル又は永久磁石で強さ
が等しく向きが正反対のバイアス磁界を発生させ、前記
アモルファス磁性体ワイヤの両端電圧の差を検出して、
前記磁気検出部の長手方向の磁界の強さと向きを測定す
る磁気測定方法。
3. A magnetic detection unit is constituted by an amorphous magnetic wire and a coil or a permanent magnet for applying a bias magnetic field to the amorphous magnetic wire, and a pair of the magnetic detection units are arranged in parallel to each other. A high-frequency current is applied to each of the amorphous magnetic wires of the magnetic sensor to generate a bias magnetic field having the same strength and opposite direction in the pair of coils or permanent magnets, and the voltage across the amorphous magnetic wires is Detect the difference,
A magnetic measurement method for measuring the strength and direction of a magnetic field in the longitudinal direction of the magnetic detection unit.
【請求項4】 請求項3に記載の磁気センサを備え、前
記磁気センサの二組又は三組を互いに直交するように配
置して構成した磁気方位検出部の各組のアモルファス磁
性体ワイヤのそれぞれに高周波電流を通電し、対をなす
前記コイル又は永久磁石に強さが等しく向きが正反対の
バイアス磁界を発生させ、各組の前記アモルファス磁性
体ワイヤの両端電圧の差を検出して、各組の磁気検出部
の長手方向の磁界の強さと向きを測定し、これらを合成
して磁界の強さ、方位を測定する磁気方位測定方法。
4. The amorphous magnetic wire of each set of the magnetic azimuth detecting unit comprising the magnetic sensor according to claim 3, wherein two or three sets of the magnetic sensors are arranged so as to be orthogonal to each other. A high-frequency current is applied to the pair of coils or permanent magnets to generate a bias magnetic field of equal strength and opposite directions, and the difference between the voltages across the amorphous magnetic wires of each set is detected to detect each set. The magnetic azimuth measuring method of measuring the strength and direction of the magnetic field in the longitudinal direction of the magnetic detection part, and synthesizing these to measure the strength and direction of the magnetic field.
【請求項5】 高周波電流の周波数が10kHz〜30
MHzである請求構3に記載の磁気測定方法。
5. The frequency of the high frequency current is 10 kHz to 30.
The magnetic measurement method according to claim 3, which has a frequency of MHz.
【請求項6】 高周波電流の周波数が10kHz〜30
MHzである請求構4に記載の磁気方位測定方法。
6. The frequency of the high frequency current is 10 kHz to 30.
The magnetic azimuth measuring method according to claim 4, wherein the magnetic azimuth is MHz.
JP3994994A 1994-03-10 1994-03-10 Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method Pending JPH07248365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3994994A JPH07248365A (en) 1994-03-10 1994-03-10 Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3994994A JPH07248365A (en) 1994-03-10 1994-03-10 Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method

Publications (1)

Publication Number Publication Date
JPH07248365A true JPH07248365A (en) 1995-09-26

Family

ID=12567223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3994994A Pending JPH07248365A (en) 1994-03-10 1994-03-10 Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method

Country Status (1)

Country Link
JP (1) JPH07248365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069475A (en) * 1996-09-17 2000-05-30 Tokin Corporation Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
US6229307B1 (en) 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
US6380735B1 (en) 1999-04-30 2002-04-30 Sumitomo Special Metals Co., Ltd. Orthogonal flux-gate type magnetic sensor
US6472868B1 (en) 1998-08-05 2002-10-29 Minebea Co., Ltd. Magnetic impedance element having at least two thin film-magnetic cores
JP2004103780A (en) * 2002-09-09 2004-04-02 Nec Tokin Corp Magnetic impedance element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069475A (en) * 1996-09-17 2000-05-30 Tokin Corporation Magnetic sensor utilizing impedance variation of a soft magnetic element in dependence upon a magnetic field strength and a method of manufacturing the same
US6255813B1 (en) 1996-09-17 2001-07-03 Tokin Corporation Magnetic sensor comprising a soft magnetic thin film element
US6472868B1 (en) 1998-08-05 2002-10-29 Minebea Co., Ltd. Magnetic impedance element having at least two thin film-magnetic cores
US6650112B2 (en) 1998-08-05 2003-11-18 Minebea Co., Ltd. Magnetics impedance element having a thin film magnetics core
US6229307B1 (en) 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
US6380735B1 (en) 1999-04-30 2002-04-30 Sumitomo Special Metals Co., Ltd. Orthogonal flux-gate type magnetic sensor
US6715198B2 (en) 1999-04-30 2004-04-06 Sumitomo Special Metals Co., Ltd. Method of manufacturing a magnetic sensor
JP2004103780A (en) * 2002-09-09 2004-04-02 Nec Tokin Corp Magnetic impedance element

Similar Documents

Publication Publication Date Title
US10184959B2 (en) Magnetic current sensor and current measurement method
US9766304B2 (en) Integrated AMR magnetoresistor with a set/reset coil having a stretch positioned between a magnetoresistive strip and a concentrating region
JP5066580B2 (en) Magnetic sensor and magnetic sensor module
US7495624B2 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
JP2002131342A (en) Current sensor
JP2009535616A (en) Thin film type triaxial fluxgate and manufacturing method thereof
US11009566B2 (en) Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
US9678177B2 (en) Magnetic sensor device for suppressing magnetic saturation
US20150160307A1 (en) Orthogonal fluxgate sensor
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
JP6845247B2 (en) Magnetic field measuring device and method using spin Hall phenomenon
KR100267207B1 (en) Crt magnetic compensating circuit with parallel amorphous wires in the sensor
JP2012063203A (en) Magnetic sensor
US11181555B2 (en) Current sensing method and current sensor
JPH07248365A (en) Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
Van Su et al. Application of the flux bending effect inan active flux-guide for low-noise planar vector TMR magnetic sensors
Hosseini et al. Optimized design and implementation of low-cost, sensitive and versatile Vibrating Sample Magnetometer
JPH1164473A (en) Magnetic sensor and magnetic orientation sensor
JPH1164474A (en) Magnetic sensor and magnetic orientation sensor
JP2003177167A (en) Magnetic sensor
JPH09311167A (en) Magnetism and magnetic direction sensor, and magnetism and magnetic direction measuring method
Garcia-Miquel et al. Magnetic field sensor based on giant magnetoimpedance
JPH05273319A (en) Geomagnetism detection type bearing sensor
JPH07110367A (en) Magnetic flux sensor using amorphous magnetic metal fiber