JP2004103780A - Magnetic impedance element - Google Patents

Magnetic impedance element Download PDF

Info

Publication number
JP2004103780A
JP2004103780A JP2002262741A JP2002262741A JP2004103780A JP 2004103780 A JP2004103780 A JP 2004103780A JP 2002262741 A JP2002262741 A JP 2002262741A JP 2002262741 A JP2002262741 A JP 2002262741A JP 2004103780 A JP2004103780 A JP 2004103780A
Authority
JP
Japan
Prior art keywords
magnetic
impedance element
bias
magnetic field
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002262741A
Other languages
Japanese (ja)
Inventor
Takashi Otsuki
大槻 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002262741A priority Critical patent/JP2004103780A/en
Publication of JP2004103780A publication Critical patent/JP2004103780A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic impedance element wherein the variation of offset output voltage due to temperature variation is compensated and the variation of the offset of a bridge circuit is reduced. <P>SOLUTION: The magnetic impedance element comprises magnetic detection cores 10 and 11 nearly parallel to each other, and is applied with bias magnetic fields which are in nearly equally inverse direction to each other with respect to the directions of the magnetic detection cores 10 and 11 by a hard magnetic bias magnet 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主として地磁気レベル以上の磁気を、高感度で高精度にて検出するのに好適な磁気インピーダンス素子に関する。
【0002】
【従来の技術】
従来の磁気インピーダンス素子について、以下に説明する。従来の磁気インピーダンス素子の磁性膜は、以下の性質を持っている。
(1)磁性膜においては、1MHz以上の高周波電界を印加した状態では、電流の表皮深さが数ミクロン程度になる。そのため、数ミクロン程度の磁性体薄膜のインピーダンスは電流の表皮深さの影響を大きく受ける。
(2)1軸異方性を持たせた磁性体薄膜の磁化容易軸の透磁率は、磁化困難軸への印加磁場により急峻に変化する。
【0003】
表皮の深さδは、数1に示されるように、抵抗率ρ、角周波数ω、透磁率μにより決定される。
【0004】
【数1】

Figure 2004103780
【0005】
そのため、性質(2)より、表皮の深さは、磁化困難軸方向の磁場により急峻に変動し、性質(1)より、磁化困難軸方向のインピーダンスは、磁化困難軸方向の磁場により急峻に変化する。以上の性質に着目し、磁性膜を磁化困難軸に細長い形状に形成した磁気検出コアを用いた磁気センサの試みがなされてきた。
【0006】
高透磁率磁性体の外部磁場によるインピーダンス変動は、1MHz以上の高周波ドライブ電流で検出されるため、前記効果を利用した磁気センサは高周波キャリア型磁気センサとも呼ばれている。
【0007】
本出願人は、特開平10−270774号公報にて、高周波キャリア型磁気センサ素子基板上に、磁気検出コアを2辺組み入れたブリッジ回路を取り込み、抵抗辺と磁気検出コアのインピーダンスをほぼ等しくした構成を提案した。このようにすることで、磁気検出コアのインピーダンス変動を電圧変動として検出し、磁気検出感度の向上と、オフセット削減の機能を持たせることに成功した。
【0008】
さらに、特開2000−206217号公報において、抵抗辺を非磁性体にして小型化し、渦巻きコイル、薄膜コイル、磁性膜による磁気バイアス手段を提案している。
【0009】
【発明が解決しようとする課題】
従来の磁気インピーダンス素子は、抵抗辺を非磁性体にしたことで、ブリッジ回路のオフセットのばらつきが大きくなる問題点が発生した。また、磁気検出コアと抵抗辺の材質が異なることから、温度による出力オフセットの変動を補償する必要があった。
【0010】
従って、本発明の目的は、温度変動によるオフセット出力電圧の変動を補償し、さらにブリッジ回路のオフセットのばらつきを小さくした磁気インピーダンス素子を提供することである。
【0011】
【課題を解決するための手段】
本出願人は、磁石による磁気バイアスを温度、経時変動に対して影響を受けない構成としている。具体的には、2個の外部磁場に対して偶関数の特性を示す磁気検出コアが導体により接続されている素子の接続導体部より互いに逆方向で、絶対値の等しい磁気バイアスを印加するため、導体接続部付近に磁石を配置する。磁石の発生磁場は、磁気検出コア中央より逆向きに発生する。
【0012】
ここで、磁気検出コアは、印加磁場によりインピーダンスが図3に示すように変化し、外部磁場零で図3中Aのポイントに磁気バイアスされているとする。さらに、直列に接続された磁気検出コアの一方を接地し、もう一方から一定振幅の高周波駆動電圧が印加されているとする。
【0013】
被検出磁場Hextが印加された場合、片方の磁気検出コアでは、スパイラルバイアスコイルによるバイアス磁場Hbiasと同方向で、磁場の絶対値はHextが増大するにつれて増大する。そのため、インピーダンスZaが増大する。もう片方の磁気検出コアのインピーダンスは、スパイラルバイアスコイルによるバイアス磁場Hbiasと逆方向のため、磁場の絶対値はHextが増大するにつれて減少する。そのため、インピーダンスZbが減少する。
【0014】
後者の磁気検出コアが接地されていたとすると、2個の磁気検出コアの導体接続部の電圧振幅Voは、両端に印加される高周波駆動電圧の振幅をVdとおくと、式(1)のように表される。
【0015】
Vo=bVd/(Za+Zb) ・・・・・・・(1)
【0016】
Zaの増大量、Zbの減少量は、式(1)によりセンサ出力に反映される。外部磁場が零の場合には、式(1)のZa=Zbとなり、Vo=Vd/2となるため、高周波駆動電圧の振幅Vdが一定であれば、導体接続部の電圧振幅は温度、膜への張力、圧縮力、その他環境によるインピーダンス特性の変化等の要因により変動しない。
【0017】
【発明の実施の形態】
本発明の実施の形態における磁気インピーダンス素子について、以下に説明する。
【0018】
図1は、本発明の実施の形態における磁気インピーダンス素子の説明図である。また、図2は、本発明の実施の形態における磁気インピーダンス素子のバイアス磁場を発生する磁石の配置の説明図である。
【0019】
図1において、磁気インピーダンス素子は、誘電体基板1の上に磁気検出コア10,11が形成され、磁気検出コア10,11には、互いに逆方向のバイアス磁場が印加されている。また、図2より、バイアス磁石12は、磁気検出コア10,11との間の垂直な直線上に位置し、N極、S極は、前記直線上に位置している。
【0020】
誘電体基板1としては酸化珪素、珪素、そのほかガラス材、導体膜としてはTiの薄い下地膜の上にCuを形成したもの、あるいはCrを用いる、そのほか導電性を持ち、基板への密着度が強い物質であれば実用に耐える。また、絶縁膜は、酸化珪素に代表される絶縁性の基板への密着度が強い物質を膜形成すればよい。
【0021】
また、磁気検出コアのネガパターンでフォトレジストをマスキングし、アモルファス軟磁性膜を形成し、フォトレジストの洗浄を行う。さらに、回転磁場中熱処理を行って磁歪を除去し、その後、静磁場を幅方向に印加して熱処理を行い磁化容易軸を形成することで、磁気検出コア10,11が形成される。保磁力は、0.1Oe以下が望ましいが、1Oe以下であっても実用に耐える。磁化容易軸方向に磁石などで5Oe以上、望ましくは100Oe以上の静磁場を印加した状態でアモルファス軟磁性膜を形成すると、熱処理工程を省くことができる。
【0022】
ここで、長手方向の比透磁率1000、長さ1mm、幅20ミクロン、膜厚3ミクロンのアモルファス磁気検出コアの、周波数10MHzにおける磁気インピーダンス特性を、一例として図3に示す。巻数50のスパイラルコイルを形成し、磁気検出コアの間隔を1mmおいた場合の最適の磁気バイアス電流を求める場合、外部磁場1Oeを印加した状態でのスパイラルコイルヘの通電電流を変化させた場合の、スパイラル磁気センサ出力の測定を行う。測定結果を図3に示す。
【0023】
また、スパイラルコイルヘの通電電流に比例して磁気検出コアに磁気バイアスが印加され、外部磁場1Oeが印加された場合の出力が入力電圧振幅1Vp−pの半分の500mVp−pからの偏差により表され、500mVp−pからの偏差の大きい図4中のB点あるいはC点に磁気バイアスを固定すれば、外部磁場による出力変動を最も大きく取り出すことができる。
【0024】
図4は、本発明の磁気インピーダンス素子の磁石の磁性コア中点までの距離と素子出力電圧特性の説明図である。
【0025】
また、図5は、図4中のB点及びC点に磁気バイアスを固定し、外部磁場と中間接続部の電圧振幅を測定した結果である。磁気バイアスポイントが異なった場合でも、電磁場では駆動電圧振幅の半分の500mVを出力する点では変わらず、磁気感度が異なるのみである。式(1)でも示されているように、温度変化などで磁気検出コアのインピーダンスが変化した場合でも、零磁場での出力は一定に保たれる。
【0026】
【発明の効果】
本発明により、温度特性が改善された磁気インピーダンス素子を提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における磁気インピーダンス素子の説明図。
【図2】本発明の実施の形態における磁気インピーダンス素子のバイアス磁場を発生する磁石の配置の説明図。
【図3】本発明の磁気インピーダンス素子の外部磁場とインピーダンス特性の説明図。
【図4】本発明の磁気インピーダンス素子の磁石の磁性コア中点までの距離と素子出力電圧特性の説明図。
【図5】本発明の磁気インピーダンス素子の外部磁場とセンサ出力電圧特性の説明図。
【符号の説明】
1  誘電体基板
2  高周波電源
10,11  磁気検出コア
12  バイアス磁石
13  高周波電圧通電端子
14  出力端子
15  接地端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magneto-impedance element suitable for detecting magnetism at or above a terrestrial magnetism level with high sensitivity and high accuracy.
[0002]
[Prior art]
A conventional magnetic impedance element will be described below. The magnetic film of the conventional magnetic impedance element has the following properties.
(1) In the magnetic film, when a high-frequency electric field of 1 MHz or more is applied, the skin depth of the current becomes about several microns. Therefore, the impedance of the magnetic thin film of about several microns is greatly affected by the skin depth of the current.
(2) The magnetic permeability of the axis of easy magnetization of the magnetic thin film having uniaxial anisotropy changes sharply by the magnetic field applied to the axis of hard magnetization.
[0003]
The skin depth δ is determined by the resistivity ρ, the angular frequency ω, and the magnetic permeability μ, as shown in Expression 1.
[0004]
(Equation 1)
Figure 2004103780
[0005]
Therefore, from the property (2), the depth of the skin changes sharply by the magnetic field in the direction of the hard axis, and from the property (1), the impedance in the direction of the hard axis changes sharply by the magnetic field in the direction of the hard axis. I do. Focusing on the above properties, attempts have been made for a magnetic sensor using a magnetic detection core in which a magnetic film is formed in an elongated shape along a hard axis.
[0006]
Since the impedance fluctuation of the high-permeability magnetic material due to the external magnetic field is detected by a high-frequency drive current of 1 MHz or more, a magnetic sensor using the above effect is also called a high-frequency carrier-type magnetic sensor.
[0007]
In Japanese Patent Application Laid-Open No. Hei 10-270774, the present applicant incorporated a bridge circuit incorporating two sides of a magnetic detection core on a high-frequency carrier type magnetic sensor element substrate, and made the resistance side and the impedance of the magnetic detection core substantially equal. The configuration was proposed. By doing so, the impedance fluctuation of the magnetic detection core was detected as a voltage fluctuation, and the function of improving the magnetic detection sensitivity and reducing the offset was successfully achieved.
[0008]
Further, Japanese Patent Application Laid-Open No. 2000-206217 proposes a magnetic bias means using a spiral coil, a thin-film coil, and a magnetic film to reduce the size by making the resistance side a nonmagnetic material.
[0009]
[Problems to be solved by the invention]
The conventional magnetic impedance element has a problem that the offset side of the bridge circuit has a large variation due to the non-magnetic material of the resistance side. Further, since the material of the magnetic detection core and the resistance side are different, it is necessary to compensate for the fluctuation of the output offset due to the temperature.
[0010]
Accordingly, it is an object of the present invention to provide a magneto-impedance element that compensates for the fluctuation of the offset output voltage due to the temperature fluctuation and further reduces the fluctuation of the offset of the bridge circuit.
[0011]
[Means for Solving the Problems]
The present applicant has a configuration in which the magnetic bias by the magnet is not affected by temperature and aging. Specifically, in order to apply a magnetic bias having the same absolute value to the two external magnetic fields, the magnetic detecting cores exhibiting even-function characteristics in mutually opposite directions from the connection conductors of the elements connected by the conductors. A magnet is placed near the conductor connection. The magnetic field generated by the magnet is generated in the opposite direction from the center of the magnetic detection core.
[0012]
Here, it is assumed that the impedance of the magnetic detection core changes as shown in FIG. 3 due to the applied magnetic field, and the magnetic detection core is magnetically biased at a point A in FIG. 3 with no external magnetic field. Further, it is assumed that one of the magnetic detection cores connected in series is grounded, and the other is applied with a high-frequency driving voltage having a constant amplitude.
[0013]
When the detected magnetic field Hext is applied, in one of the magnetic detection cores, the absolute value of the magnetic field increases as Hext increases in the same direction as the bias magnetic field Hbias formed by the spiral bias coil. Therefore, the impedance Za increases. Since the impedance of the other magnetic detection core is in the opposite direction to the bias magnetic field Hbias by the spiral bias coil, the absolute value of the magnetic field decreases as Hext increases. Therefore, the impedance Zb decreases.
[0014]
Assuming that the latter magnetic detection core is grounded, the voltage amplitude Vo of the conductor connection portion of the two magnetic detection cores is given by the following equation (1), where Vd is the amplitude of the high-frequency drive voltage applied to both ends. Is represented by
[0015]
Vo = bVd / (Za + Zb) (1)
[0016]
The amount of increase in Za and the amount of decrease in Zb are reflected in the sensor output by equation (1). When the external magnetic field is zero, Za = Zb in equation (1) and Vo = Vd / 2, so that if the amplitude Vd of the high-frequency drive voltage is constant, the voltage amplitude of the conductor connection portion is temperature, film It does not fluctuate due to factors such as tension, compressive force, and changes in impedance characteristics due to the environment.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The magnetic impedance element according to the embodiment of the present invention will be described below.
[0018]
FIG. 1 is an explanatory diagram of a magneto-impedance element according to an embodiment of the present invention. FIG. 2 is an explanatory diagram of an arrangement of magnets for generating a bias magnetic field of the magnetic impedance element according to the embodiment of the present invention.
[0019]
In FIG. 1, the magnetic impedance element has magnetic detection cores 10 and 11 formed on a dielectric substrate 1, and bias magnetic fields in opposite directions are applied to the magnetic detection cores 10 and 11. 2, the bias magnet 12 is located on a vertical straight line between the magnetic detection cores 10 and 11, and the N pole and the S pole are located on the straight line.
[0020]
The dielectric substrate 1 is made of silicon oxide, silicon, and other glass materials. The conductive film is made of a thin underlayer of Ti with Cu formed thereon or Cr. In addition, it has conductivity and has a high degree of adhesion to the substrate. A strong substance can withstand practical use. Further, as the insulating film, a substance having a high degree of adhesion to an insulating substrate typified by silicon oxide may be formed.
[0021]
Further, the photoresist is masked with a negative pattern of the magnetic detection core, an amorphous soft magnetic film is formed, and the photoresist is washed. Further, the magnetic detection cores 10 and 11 are formed by performing a heat treatment in a rotating magnetic field to remove magnetostriction, and then applying a static magnetic field in the width direction and performing a heat treatment to form an easy axis of magnetization. The coercive force is desirably 0.1 Oe or less. If the amorphous soft magnetic film is formed in a state where a static magnetic field of 5 Oe or more, desirably 100 Oe or more is applied by a magnet or the like in the direction of the easy axis, the heat treatment step can be omitted.
[0022]
Here, FIG. 3 shows, as an example, the magnetic impedance characteristics at a frequency of 10 MHz of an amorphous magnetic detection core having a relative magnetic permeability of 1000 in the longitudinal direction, a length of 1 mm, a width of 20 μm, and a thickness of 3 μm. When a spiral coil having 50 turns is formed and the optimum magnetic bias current is obtained when the distance between the magnetic detection cores is 1 mm, the current flowing through the spiral coil when the external magnetic field 10 Oe is applied is changed. And measure the output of the spiral magnetic sensor. FIG. 3 shows the measurement results.
[0023]
Further, when a magnetic bias is applied to the magnetic detection core in proportion to the current supplied to the spiral coil, and an external magnetic field of 1 Oe is applied, the output is represented by a deviation from 500 mVp-p which is half of the input voltage amplitude of 1 Vp-p. If the magnetic bias is fixed at the point B or C in FIG. 4 which has a large deviation from 500 mVp-p, the output fluctuation due to the external magnetic field can be obtained most.
[0024]
FIG. 4 is an explanatory diagram of the distance to the magnetic core midpoint of the magnet of the magneto-impedance element of the present invention and the element output voltage characteristics.
[0025]
FIG. 5 shows the result of measuring the external magnetic field and the voltage amplitude of the intermediate connection portion while fixing the magnetic bias at points B and C in FIG. Even if the magnetic bias points are different, the electromagnetic field does not change in that it outputs 500 mV, which is half the amplitude of the drive voltage, and only the magnetic sensitivity is different. As shown in equation (1), even when the impedance of the magnetic detection core changes due to a temperature change or the like, the output at zero magnetic field is kept constant.
[0026]
【The invention's effect】
According to the present invention, a magneto-impedance element having improved temperature characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a magneto-impedance element according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of an arrangement of magnets for generating a bias magnetic field of the magneto-impedance element according to the embodiment of the present invention.
FIG. 3 is an explanatory diagram of an external magnetic field and impedance characteristics of the magnetic impedance element of the present invention.
FIG. 4 is an explanatory diagram of a distance of a magnet of the magneto-impedance element of the present invention to a magnetic core midpoint and an element output voltage characteristic.
FIG. 5 is an explanatory diagram of an external magnetic field and a sensor output voltage characteristic of the magnetic impedance element of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 dielectric substrate 2 high-frequency power supplies 10 and 11 magnetic detection core 12 bias magnet 13 high-frequency voltage supply terminal 14 output terminal 15 ground terminal

Claims (3)

2素子の磁性線構成とする磁気インピーダンス素子において、互いにほぼ平行な磁性線領域を有し、磁性線方向に対して互いにほぼ等しく逆方向のバイアス磁場が硬磁性の磁石により印加されたことを特徴とする磁気インピーダンス素子。A magneto-impedance element having a two-element magnetic line configuration, having magnetic line regions substantially parallel to each other, wherein a bias magnetic field substantially equal to and opposite to the direction of the magnetic line is applied by a hard magnetic magnet. Magnetic impedance element. 請求項1記載の磁気インピーダンス素子において、前記バイアス磁場は磁気センサが高感度となるように、前記バイアス磁場が、2素子構成の、各領域に印加されたことを特徴とする磁気インピーダンス素子。2. The magneto-impedance element according to claim 1, wherein the bias magnetic field is applied to each region of a two-element configuration so that the magnetic sensor has high sensitivity. 請求項1記載の磁気インピーダンス素子において、前記磁性線領域の中間付近に硬磁性の磁石が配置されたことを特徴とする磁気インピーダンス素子。2. The magneto-impedance element according to claim 1, wherein a hard magnet is arranged near the center of the magnetic wire region.
JP2002262741A 2002-09-09 2002-09-09 Magnetic impedance element Pending JP2004103780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262741A JP2004103780A (en) 2002-09-09 2002-09-09 Magnetic impedance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262741A JP2004103780A (en) 2002-09-09 2002-09-09 Magnetic impedance element

Publications (1)

Publication Number Publication Date
JP2004103780A true JP2004103780A (en) 2004-04-02

Family

ID=32262709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262741A Pending JP2004103780A (en) 2002-09-09 2002-09-09 Magnetic impedance element

Country Status (1)

Country Link
JP (1) JP2004103780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088021A1 (en) * 2007-01-17 2008-07-24 Fujikura Ltd. Magnetic sensor element and method for manufacturing the same
JP2012122792A (en) * 2010-12-07 2012-06-28 Alps Electric Co Ltd Magnetic sensor
US9207292B2 (en) 2011-02-02 2015-12-08 Infineon Technologies Ag Magnetoresistive device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201168A (en) * 1985-03-05 1986-09-05 Fanuc Ltd Speed detecting device
JPH0374318U (en) * 1989-11-24 1991-07-25
JPH07248365A (en) * 1994-03-10 1995-09-26 Sumitomo Metal Mining Co Ltd Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
JP2001027664A (en) * 1999-07-14 2001-01-30 Tokin Corp Magnetic sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201168A (en) * 1985-03-05 1986-09-05 Fanuc Ltd Speed detecting device
JPH0374318U (en) * 1989-11-24 1991-07-25
JPH07248365A (en) * 1994-03-10 1995-09-26 Sumitomo Metal Mining Co Ltd Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
JP2001027664A (en) * 1999-07-14 2001-01-30 Tokin Corp Magnetic sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088021A1 (en) * 2007-01-17 2008-07-24 Fujikura Ltd. Magnetic sensor element and method for manufacturing the same
JP2008197089A (en) * 2007-01-17 2008-08-28 Fujikura Ltd Magnetic sensor element and method for manufacturing the same
JP2012122792A (en) * 2010-12-07 2012-06-28 Alps Electric Co Ltd Magnetic sensor
US9207292B2 (en) 2011-02-02 2015-12-08 Infineon Technologies Ag Magnetoresistive device and method for manufacturing the same
US9523747B2 (en) 2011-02-02 2016-12-20 Infineon Technologies Ag Magnetoresistive device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Kitoh et al. Asymmetrical magneto-impedance effect in twisted amorphous wires for sensitive magnetic sensors
US4385273A (en) Transducer for measuring a current-generated magnetic field
JP3197414B2 (en) Magnetic impedance effect element
JP5518661B2 (en) Semiconductor integrated circuit, magnetic detector, electronic compass
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
EP2995962A1 (en) Magnetic current sensor and current measurement method
US20060055614A1 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
JP2001281308A (en) Magnetic sensor and position detector
EP1293792A3 (en) Magnetic detection element utilizing magneto-impedance effect, production method of the element, and portable equipment using the element
JP3341237B2 (en) Magnetic sensor element
Panina Asymmetrical giant magneto-impedance (AGMI) in amorphous wires
JP4047955B2 (en) Magnetic impedance sensor
RU2436200C1 (en) Magnetoresistive sensor
JP2000055997A (en) Magnetic sensor device and current sensor device
JP3360168B2 (en) Magnetic impedance element
JP4418986B2 (en) Magnetic field detection element and magnetic field detection method using the same
JP2004103780A (en) Magnetic impedance element
JP3676579B2 (en) Magneto-impedance element
JP4026050B2 (en) Magnetic field detection element
JP2001027664A (en) Magnetic sensor
JP2004184098A (en) Magnetic sensor element and its manufacturing method
JP2002094140A (en) Magnetic impedance effect element
JP2001221839A (en) Magnetic field sensor
JP2000055996A (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081105