JP2007109787A - Contactless dc galvanometer - Google Patents

Contactless dc galvanometer Download PDF

Info

Publication number
JP2007109787A
JP2007109787A JP2005297604A JP2005297604A JP2007109787A JP 2007109787 A JP2007109787 A JP 2007109787A JP 2005297604 A JP2005297604 A JP 2005297604A JP 2005297604 A JP2005297604 A JP 2005297604A JP 2007109787 A JP2007109787 A JP 2007109787A
Authority
JP
Japan
Prior art keywords
current
magnetic core
direct current
annular magnetic
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297604A
Other languages
Japanese (ja)
Inventor
Wahei Inoue
和平 井上
Takashi Sasaki
喬 佐々木
Koji Funada
孝次 船田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2005297604A priority Critical patent/JP2007109787A/en
Publication of JP2007109787A publication Critical patent/JP2007109787A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless DC galvanometer including a transformer structure that can detect a ripple corresponding to the primary DC current of a DC line 1 to be measured with a secondary coil, and can measure large current of DC current in contactless manner. <P>SOLUTION: The mutual induction coupling factor K between a pair of coils (3, 4) with a core 5 interposed is kept minimized by the excitation and DC bias of the core 5 by a DC excitation coil 2, and it is eased by the excitation of the core 5 by a primary DC current in the offset direction, thereby measuring a DC current value on the primary side by using current induced by a detection coil 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非接触型直流電流検流器に関する。   The present invention relates to a non-contact type DC current galvanometer.

交流で高電圧、大電流を測定する変圧器をそれぞれ計器用変圧器、変流器と呼ぶ。   Transformers that measure high voltage and large current with alternating current are called instrument transformers and current transformers, respectively.

変圧器、変流器では、1次巻線の電圧、電流を2次巻線に誘起させて、これに接続された計器で、電圧や電流を計測する。   In transformers and current transformers, the voltage and current of the primary winding are induced in the secondary winding, and the voltage and current are measured by a meter connected to the secondary winding.

特許文献1に開示された変流装置は、透磁率改善、直流バイアス結合係数の制御などであるが、精度向上に使用されているもので、これは交流回路用の変流器に関するものであって、直流回路用の直流電流用の変流器でない。従って直流電流の変流器としてであって共用できるものではない。   The current transformer disclosed in Patent Document 1 is used for improving the magnetic permeability, controlling the DC bias coupling coefficient, etc., and is used for improving accuracy, and this relates to a current transformer for an AC circuit. Therefore, it is not a DC current transformer for a DC circuit. Therefore, it is a DC current transformer and cannot be shared.

次に、直流回路の変流に対しては接触型の電圧降下法などが通常行われているが、これは構造の極めて簡単なものであり、古くから使用されているが、直流電流を分流するので、接触的で、分流器は単純であるが此れが問題である。   Next, the contact-type voltage drop method is usually used for DC circuit current transformation, but this is an extremely simple structure and has been used for a long time. Therefore, it is a contact and the shunt is simple but this is a problem.

また、新たに開発され、市場に商品化されているものにホール素子を利用したものが見受けられている程度である。   In addition, the newly developed products that have been commercialized in the market are those that use Hall elements.

このホール素子そのものは微小な形状の直流変換素子で、検出部は点であり、大電流の場合の変流器では、磁心の断面は大きく、点によって全断面の磁束を表現し、また磁心にスリットなどを設け、埋め込まれる為に直流変換の精度に尚開発の余地が残されている。
特開平5−29167号公報(図1、図8)
This Hall element itself is a DC converter element with a very small shape, the detection part is a point, and in a current transformer in the case of a large current, the cross section of the magnetic core is large, and the magnetic flux of the entire cross section is represented by the point. Since the slits are provided and embedded, there is still room for development in the accuracy of DC conversion.
Japanese Patent Laid-Open No. 5-29167 (FIGS. 1 and 8)

そこで、本発明は、変圧器機能を含む非接触型直流電流変流器を提供することを目的とするもので、被測定1次電流の測定に対して、磁心の飽和特性を利用して、コイル間の結合係数を変化させ、その検出コイルより、前記の直流電流を計測するものである。   Therefore, the present invention aims to provide a non-contact type DC current transformer including a transformer function, and utilizes the saturation characteristic of the magnetic core for the measurement of the primary current to be measured. The coupling coefficient between the coils is changed, and the direct current is measured from the detection coil.

この第1の手段は交流電流よりの交流を半波整流した直流分に、脈動の含まれる脈動電流の流れる脈動励磁コイル、1次直流電流を検出、表示するための検出コイル、磁心の飽和と、直流バイアス用の直流励磁コイル、などが環状磁心に巻回され、前記磁心の中心部を貫通する単巻構造の1次直流電流の流れる被測定直流線等で非接触型直流検流器が構成される。   This first means includes a pulsation exciting coil in which a pulsating current including pulsation flows, a detection coil for detecting and displaying a primary DC current, and saturation of a magnetic core. A DC excitation coil for a DC bias is wound around an annular magnetic core, and a non-contact type DC galvanometer is connected to a DC line to be measured having a single-winding primary DC current passing through the center of the magnetic core. Composed.

第2の手段は、直流励磁コイルの励磁による直流バイアスで、脈動励磁コイルと検出コイルとの間の結合係数を磁心の磁気飽和特性で最小にしておき、直流励磁コイルの励磁方向とは逆向きの方向の磁界が発生するように、流れる1次直流電流により環状磁心の透磁率を変化させ、前記線輪間の結合係数を増大させ、これにより検出コイルに脈動励磁コイルで誘起される脈動電圧が増加するので、前記の1次直流電流を検出、表示させることができるものである。   The second means is a DC bias generated by excitation of the DC excitation coil. The coupling coefficient between the pulsation excitation coil and the detection coil is minimized by the magnetic saturation characteristic of the magnetic core, and is opposite to the excitation direction of the DC excitation coil. The pulsating voltage induced by the pulsation excitation coil in the detection coil is increased by changing the permeability of the annular magnetic core by the flowing primary DC current so that a magnetic field in the direction of Therefore, the primary DC current can be detected and displayed.

第3の手段は、脈動波励磁用電源は脈動波と同様に直流励磁とを兼ねて発生できる商用交流域は矩形波交流を半波整流し、これをそのまま利用する。仮に交流の全波整流した場合は出力は単なる直流電流となって本願の機能を果たすことはできない。   In the third means, the power source for pulsating wave excitation rectifies a rectangular wave alternating current in a half-wave rectification in a commercial alternating current region that can be generated also for direct current excitation as well as the pulsating wave, and uses this as it is. If AC full-wave rectification is performed, the output is simply a DC current and cannot perform the function of the present application.

本発明によれば、変圧器機能を含めた非接触型直流電流検流器が提供される。環状磁心を介して1次直流電流に対応した脈動波を検出コイルに誘起させ大電流を検出測定するものである。   According to the present invention, a non-contact type DC current galvanometer including a transformer function is provided. A pulsating wave corresponding to the primary DC current is induced in the detection coil via the annular magnetic core, and a large current is detected and measured.

以下、図面を参照して、本発明の実施形態について説明する。但し、本実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などに特定的な記載があっても、本発明をそれのみに限定する趣旨ではない。   Embodiments of the present invention will be described below with reference to the drawings. However, even if there are specific descriptions in the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the present embodiment, the present invention is not intended to be limited thereto.

図1は、本実施形態の非接触型直流電流検流器の概念図である。この非接触型直流電流検流器は、直流電源21と、直流バイアス脈流電源31と、環状磁心5と、環状磁心5に巻回され直流電源21からの直流電流を流す直流励磁コイル2と、環状磁心5に巻回され直流バイアス脈流電源31からの脈流電流を流す脈動励磁コイル3と、環状磁心5に巻回され環状磁心5の中心部を通り抜け1次直流電流を流す直流線1と、環状磁心5に巻回され1次直流を検出する検出コイル4とを備える。この非接触型直流電流検流器では、直流励磁コイル2の励磁により、脈動励磁コイル3と検出コイル4との間の結合係数を最小とし、直流励磁コイル2に流れる直流電流とは逆向きに流れる1次直流により結合係数を増大させ、検出コイル4に誘起された電流を検出する。ここに、直流励磁コイル2が環状磁心5を励磁する磁界は、環状磁心5を飽和値まで励磁し、且つ、直流線1が環状磁心5を励磁する磁界より大きく、直流電流は所定値に設定され、脈動波形も所定波形に設定される。なお、脈動電流の波形は、正弦波又は理想的には矩形波の半波整流波形である。   FIG. 1 is a conceptual diagram of a non-contact type direct current galvanometer of the present embodiment. This non-contact type DC current galvanometer includes a DC power source 21, a DC bias pulsating power source 31, an annular magnetic core 5, and a DC exciting coil 2 that is wound around the annular magnetic core 5 and flows a DC current from the DC power source 21. A pulsation exciting coil 3 that is wound around the annular magnetic core 5 and flows a pulsating current from a DC bias pulsating current source 31; 1 and a detection coil 4 that is wound around an annular magnetic core 5 and detects primary DC. In this non-contact type DC current galvanometer, the excitation coefficient of the DC excitation coil 2 minimizes the coupling coefficient between the pulsation excitation coil 3 and the detection coil 4 so that the DC current flowing in the DC excitation coil 2 is in the opposite direction. The coupling coefficient is increased by the flowing primary direct current, and the current induced in the detection coil 4 is detected. Here, the magnetic field that the DC exciting coil 2 excites the annular magnetic core 5 excites the annular magnetic core 5 to a saturation value, and the DC wire 1 is larger than the magnetic field that excites the annular magnetic core 5, and the direct current is set to a predetermined value. The pulsation waveform is also set to a predetermined waveform. The waveform of the pulsating current is a half-wave rectified waveform of a sine wave or ideally a rectangular wave.

ここで、本実施形態の非接触型直流電流検流器の動作原理について説明する。   Here, the operation principle of the non-contact type DC current galvanometer of the present embodiment will be described.

環状磁心5の直流電流による励磁において、その磁心の磁化が飽和に至るまでの透磁率μ(=B/H)は、直流線1に流れる1次直流電流の値によって変化する。   In the excitation by the direct current of the annular magnetic core 5, the magnetic permeability μ (= B / H) until the magnetization of the magnetic core reaches saturation varies depending on the value of the primary direct current flowing through the direct current line 1.

図1には、パーマロイなどの高透磁率の環状磁心5を直流磁界Hで磁化したときの透磁率μの変化を示す透磁率特性曲線である。μは、Hがゼロのときμiであり、Hの増加に伴って増加して最大値μmに達し、Hによって環状磁心5が飽和まで磁化される過程で急激に低下し、飽和磁化に達するとμiより小さいμfとなる。本発明は、このμとHの関係を利用する。   FIG. 1 is a magnetic permeability characteristic curve showing a change in the magnetic permeability μ when a high magnetic permeability annular magnetic core 5 such as Permalloy is magnetized by a DC magnetic field H. μ is μi when H is zero, and increases as H increases to reach the maximum value μm. When the annular core 5 is magnetized to saturation by H, it rapidly decreases, and when saturation magnetization is reached. μf is smaller than μi. The present invention uses this relationship between μ and H.

直流励磁コイル2による直流磁界Hにより、環状磁心5の透磁率がμfになると、脈動励磁コイルと検出コイルとの間の相互誘導結合係数Kも最小値となる。この状態で1次直流(直流電流)の直流磁界により透磁率をμfからμm付近まで復帰させると、結合係数Kは最小値から最大値へ変化する。したがって、その範囲で(図2に示すa点からB点までの範囲で)検出コイル4の電流を検出することにより、1次直流電流を測定することができる。ここに、a点からB点までの範囲は、透磁率が略線形に変化する範囲であり、結合係数Kも略線形に変化する。   When the magnetic permeability of the annular magnetic core 5 becomes μf due to the DC magnetic field H generated by the DC excitation coil 2, the mutual induction coupling coefficient K between the pulsation excitation coil and the detection coil also becomes the minimum value. In this state, when the magnetic permeability is restored from μf to near μm by a direct current magnetic field of primary direct current (direct current), the coupling coefficient K changes from the minimum value to the maximum value. Therefore, the primary DC current can be measured by detecting the current of the detection coil 4 within that range (in the range from point a to point B shown in FIG. 2). Here, the range from the point a to the point B is a range where the magnetic permeability changes substantially linearly, and the coupling coefficient K also changes substantially linearly.

a点は、半波整流電流、或いは矩形波電流を脈動励磁コイルに流して環状磁心5を励磁するため、被検出電流がゼロ付近であるときは検出出力の立ち上がりが鈍る。線形性のよい領域は、図2に示すA点からB点までの領域であるとする。すでに説明したように、一対のコイル(脈動励起コイル3と検出コイル4)間の相互誘導結合係数Kは直流励磁コイルを流れる直流電流値により変化し、磁化が飽和に達するにしたがい、小さな値になり、脈動励磁コイル3の脈動電流が検出コイルに誘起されにくくなる。そこで、本発明の非接触型直流電流検流器は、環状磁心5の飽和磁化で、脈動電流の誘起を抑制された状態にしておき、被測定直流による環状磁心の励磁で結合係数を緩和(増大)させ、これを検出、測定する構造としたものである。本発明は、前述のように環状磁心5にかける磁化状態を検出の媒体とするもので、環状磁心5の特性は軟磁性体であり、励磁に対しては飽和に至るまで略線形的に磁化され、ヒステリシスを無視できる磁性体であることが条件である。そして、1次直流電流検出のために、環状磁心5の磁化の進捗度を検出し、その基準値を得るために直流励磁コイル2が捲回されて環状磁心5が直流励磁される。また、他の一対コイルとは、環状磁心5を介して脈動電流で励磁される脈動励磁コイル3と、この脈動電流の電圧が誘起される検出コイル4を指す。ここで、環状磁心5が、直流励磁コイル2を流れる整流電流の直流分で励磁されれば、一対のコイル間の結合係数Kがほぼ線形的に変化し、環状磁心5が飽和状態に達する。この状態で、結合係数が1次測定電流により線形的に応答するならば、脈動電流による電圧は検出コイル4に誘起されることになる。しかし、このような結合係数Kの抑止効果は整流電流のみでは得られないので、直流励磁を強めるような補償(直流バイアスなど)が必要になる。以上の補償が行われた状態において、直流線1を流れる電流による環状磁心5の直流励磁が前述の一定直流励磁を相殺する方向であれば、1次直流電流値を検出コイル4により検出可能になる。ここで、磁心の励磁特性、コイル間の結合係数が線形に変換されることができ、あるいは、総合的に線形的な変換であれば云うまでもなく、1次直流電流値は線形的に変換されれば、単なるセンサでなく、いわゆる計測用直流電流非接触型直流電流検流器と称することもできよう。なお、脈流励磁コイル3の励磁は、交流電流の整流直後の電流で、脈動電流も直流の脈動である。この脈動による出力検出コイルへの誘起電圧はパルス状の交流電圧になる。相殺後の直流励磁は、コイルへの直流バイアスの変化で、これが検出される。もし、商用交流電圧で励磁すれば、その交流の半波(たとえば負電圧)は正電圧の半波によるバイアスを相殺させてしまい、非効率的なものになる。本発明では、交流の半波整流、或いは更に矩形波を使用することにより、励磁は有効なものになる。被測定直流線に1次直流電流が流れればこれによる直流励磁で、磁心の磁化が緩和されて、一対のコイル間の結合係数が増加し、出力検出コイルへの誘起電圧値より1次直流電流値を出力検出コイルで検出できることになって、直流非接触型直流電流検流器が構成されたことになる。この場合、環状磁心の励磁は整流直後のために脈動があり、平滑な直流電流でないので、出力直流の零付近の立ち上がりが緩慢な非線形性を示す。線形特性を得るためには、平滑な直流電源で環状磁心の立ち上がり部分だけの励磁で出力零付近(図2のaからAの範囲)の非線形部を補償することは容易である。ところで、磁心を飽和させることで脈動交流コイルと出力検出線との結合係数を完全に0とすることは交流電流の整流電流のみでは難しい。しかし、出力零付近の値に出力検出回路を比較回路で補償させれば、0点への推移は容易である。   At point a, a half-wave rectified current or a rectangular wave current is passed through the pulsation exciting coil to excite the annular magnetic core 5, so that the detection output rises slowly when the detected current is near zero. The region with good linearity is a region from point A to point B shown in FIG. As described above, the mutual inductive coupling coefficient K between the pair of coils (the pulsation excitation coil 3 and the detection coil 4) changes depending on the value of the direct current flowing through the direct current excitation coil, and becomes a small value as the magnetization reaches saturation. Thus, the pulsating current of the pulsation exciting coil 3 is hardly induced in the detection coil. Therefore, the non-contact type DC current galvanometer of the present invention is in a state in which the induction of the pulsating current is suppressed by the saturation magnetization of the annular magnetic core 5, and the coupling coefficient is relaxed by exciting the annular magnetic core by the measured DC ( And a structure for detecting and measuring this. The present invention uses the state of magnetization applied to the annular magnetic core 5 as a detection medium as described above, and the characteristic of the annular magnetic core 5 is a soft magnetic material. It is a condition that the magnetic material is capable of ignoring hysteresis. Then, in order to detect the primary DC current, the degree of progress of magnetization of the annular magnetic core 5 is detected, and in order to obtain the reference value, the DC exciting coil 2 is wound and the annular magnetic core 5 is DC excited. The other pair of coils refers to a pulsation exciting coil 3 that is excited by a pulsating current through an annular magnetic core 5 and a detection coil 4 in which the voltage of the pulsating current is induced. Here, if the annular magnetic core 5 is excited by the direct current component of the rectified current flowing through the direct current excitation coil 2, the coupling coefficient K between the pair of coils changes substantially linearly, and the annular magnetic core 5 reaches a saturated state. In this state, if the coupling coefficient responds linearly with the primary measurement current, a voltage due to the pulsating current is induced in the detection coil 4. However, since the effect of suppressing the coupling coefficient K cannot be obtained only by the rectified current, compensation (DC bias or the like) that enhances DC excitation is required. In the state in which the above compensation is performed, if the DC excitation of the annular magnetic core 5 by the current flowing through the DC wire 1 is in a direction that cancels the above-described constant DC excitation, the primary DC current value can be detected by the detection coil 4. Become. Here, the excitation characteristics of the magnetic core and the coupling coefficient between the coils can be converted linearly, or, of course, the primary DC current value is converted linearly, as long as it is a linear conversion overall. If so, it may be called a so-called measurement DC current non-contact type DC current galvanometer, not just a sensor. The excitation of the pulsating current exciting coil 3 is a current immediately after the rectification of the alternating current, and the pulsating current is also a direct current pulsation. The induced voltage to the output detection coil due to this pulsation becomes a pulsed AC voltage. The DC excitation after cancellation is detected by a change in the DC bias applied to the coil. If excitation is performed with a commercial AC voltage, the AC half-wave (eg, negative voltage) cancels the bias due to the positive half-wave, and becomes inefficient. In the present invention, excitation is effective by using AC half-wave rectification or further using a rectangular wave. When a primary DC current flows through the DC line to be measured, the direct current excitation causes the magnetization of the magnetic core to be relaxed, the coupling coefficient between the pair of coils increases, and the primary DC from the induced voltage value to the output detection coil. Since the current value can be detected by the output detection coil, a DC non-contact type DC current galvanometer is configured. In this case, the excitation of the annular magnetic core has a pulsation immediately after rectification, and is not a smooth direct current, so that the rise of the output direct current near zero shows a slow nonlinearity. In order to obtain a linear characteristic, it is easy to compensate for a non-linear portion near the output zero (range from a to A in FIG. 2) by exciting only the rising portion of the annular magnetic core with a smooth DC power source. By the way, it is difficult to make the coupling coefficient between the pulsating AC coil and the output detection line completely zero by saturating the magnetic core with only the rectified current of the AC current. However, if the output detection circuit is compensated to a value near zero by the comparison circuit, the transition to the zero point is easy.

以上、本発明の実施形態について説明したが、本発明は、変圧器の構成を利用したものであるが、大電流、高電圧も測定することができることは明らかである。   As mentioned above, although embodiment of this invention was described, although this invention utilizes the structure of a transformer, it is clear that a large current and a high voltage can also be measured.

図1では、各コイルは集中捲きで図示してあるが、実際は環状磁心5全体にわたって数層に重ね捲きした。非接触型直流電流検流器の全体の構造は単純な形状で、その中心部を単巻構造の直流線1が貫通しているだけである。しかし、各コイルは、集中巻きでも差し支えないため、直流線路などの測定用クランプ構造とすることも可能である。   In FIG. 1, each coil is illustrated in a concentrated manner, but actually, the coils are overlaid in several layers over the entire annular magnetic core 5. The entire structure of the non-contact type DC current galvanometer has a simple shape, and only a single-winding DC wire 1 passes through the center portion thereof. However, since each coil may be concentrated winding, a measuring clamp structure such as a DC line can be used.

図3は、試作品で、脈流として半波整流を使用する場合の非接触型直流電流検流器の概略図であり、2は整流直後の直流分と脈動分の両者を共用した励磁コイルであり、6はダイオードなどの半波整流素子である。コイル2と、コイル4は、図1と同様に環状磁心5の表面全体にわたって捲線されている。捲線後の外径はφ22mm、内径はφ8mm、厚みは12mm程度の小型のものであり、磁心はφ0.6mmの市販の鉄線を環状にしてこれに捲線した。線形性補償装置は省略した。   Fig. 3 is a schematic diagram of a non-contact type DC current galvanometer when a half-wave rectification is used as a pulsating flow in a prototype. 6 is a half-wave rectifier such as a diode. The coil 2 and the coil 4 are wound over the entire surface of the annular magnetic core 5 as in FIG. The outer diameter after the winding was φ22 mm, the inner diameter was φ8 mm, and the thickness was about 12 mm. The linearity compensator was omitted.

図4は、脈動電流波形として半波整流を使用した場合(図3参照)の非接触型直流電流検流器の出力特性曲線であり、1次直流電流に対して、出力電流特性は、略線形であり、整流の励磁電流を変えた場合の1次直流電流(被測定直流電流)との関係を示した150Aの特性曲線である。   FIG. 4 is an output characteristic curve of a non-contact type DC current galvanometer when half-wave rectification is used as a pulsating current waveform (see FIG. 3). The output current characteristic is approximately equal to the primary DC current. It is a 150A characteristic curve that is linear and shows the relationship with the primary DC current (DC current to be measured) when the rectification excitation current is changed.

非接触型直流電流検流器の概略図である。It is the schematic of a non-contact type direct current galvanometer. 高透磁率環状磁心の透磁率変化曲線である。It is a permeability change curve of a high permeability annular magnetic core. 半波整流波形の脈動電流を使用する非接触型直流電流検流器の概念図である。It is a conceptual diagram of the non-contact-type direct current galvanometer which uses the pulsating current of a half-wave rectification waveform. 非接触型直流電流検流器の特性の一例を示す出力特性曲線である。It is an output characteristic curve which shows an example of the characteristic of a non-contact-type direct current galvanometer.

符号の説明Explanation of symbols

1 被測定直流線
2 直流励磁コイル
21 直流電源
3 脈流励磁コイル
31 直流バイアス脈流電源
4 検出コイル
5 環状磁心
6 半波整流素子
7 電流計
DESCRIPTION OF SYMBOLS 1 DC line to be measured 2 DC excitation coil 21 DC power supply 3 Pulsed excitation coil 31 DC bias pulsating power supply 4 Detection coil 5 Annular magnetic core 6 Half-wave rectifier 7 Ammeter

Claims (3)

直流電源と、
直流バイアス脈流電源と、
環状磁心と、
前記環状磁心に巻回され、前記直流電源からの直流電流を流す直流励磁コイルと、
前記環状磁心に巻回され、前記直流(以下、直流バイアスという。)脈流電源からの脈流電流を流す脈動励磁コイルと、
前記環状磁心の中心部を通り抜け、単巻構造の1次直流を流す直流線と、
前記環状磁心に巻回され、前記1次直流電流を検出する検出コイルとを備える非接触型直流電流検流器であって、
前記直流励磁コイルの磁心の飽和と直流バイアスにより、前記脈動励磁コイルと前記検出コイルとの間の結合係数を最小とし、
前記直流励磁コイルに流れる直流電流とは逆向きに流れる前記1次直流により前記結合係数を増大させ、
前記検出コイルに誘起された電流を検出することを特徴とする非接触型直流電流検流器。
DC power supply,
DC bias pulsating power supply,
An annular magnetic core,
A DC exciting coil wound around the annular magnetic core and for passing a DC current from the DC power source;
A pulsation exciting coil that is wound around the annular magnetic core and flows a pulsating current from the DC (hereinafter referred to as DC bias) pulsating current source;
A direct current line passing through the center of the annular magnetic core and passing a primary direct current of a single winding structure;
A non-contact type direct current galvanometer comprising a detection coil wound around the annular magnetic core and detecting the primary direct current,
Due to the saturation of the magnetic core of the DC excitation coil and the DC bias, the coupling coefficient between the pulsation excitation coil and the detection coil is minimized,
The coupling coefficient is increased by the primary direct current flowing in the direction opposite to the direct current flowing in the direct current excitation coil,
A non-contact type DC current galvanometer which detects a current induced in the detection coil.
前記直流励磁コイルが前記環状磁心を励磁する磁界は前記環状磁心を飽和値まで励磁し、且つ、直流線が前記環状磁心を励磁する磁界より大きく、
前記直流電流は所定値に設定され、前記脈動波形も所定波形に設定されることを特徴とする請求項1記載の非接触型直流電流検流器。
The magnetic field that the DC exciting coil excites the annular magnetic core excites the annular magnetic core to a saturation value, and the DC wire is larger than the magnetic field that excites the annular magnetic core,
The non-contact type direct current galvanometer according to claim 1, wherein the direct current is set to a predetermined value, and the pulsation waveform is also set to a predetermined waveform.
前記脈動電流の前記所定波形は、正弦波交流又は矩形波交流の半波整流波形の脈動波形であることを特徴とする請求項2記載の非接触型直流電流検流器。   The non-contact type DC current galvanometer according to claim 2, wherein the predetermined waveform of the pulsating current is a pulsating waveform of a half-wave rectified waveform of a sine wave alternating current or a rectangular wave alternating current.
JP2005297604A 2005-10-12 2005-10-12 Contactless dc galvanometer Pending JP2007109787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297604A JP2007109787A (en) 2005-10-12 2005-10-12 Contactless dc galvanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297604A JP2007109787A (en) 2005-10-12 2005-10-12 Contactless dc galvanometer

Publications (1)

Publication Number Publication Date
JP2007109787A true JP2007109787A (en) 2007-04-26

Family

ID=38035434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297604A Pending JP2007109787A (en) 2005-10-12 2005-10-12 Contactless dc galvanometer

Country Status (1)

Country Link
JP (1) JP2007109787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576005A (en) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 Alternating current transformer
CN111965569A (en) * 2020-07-06 2020-11-20 南方电网科学研究院有限责任公司 DC magnetic bias level measurement method, device and system for on-line operation transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576005A (en) * 2014-12-30 2015-04-29 深圳市科陆电子科技股份有限公司 Alternating current transformer
CN111965569A (en) * 2020-07-06 2020-11-20 南方电网科学研究院有限责任公司 DC magnetic bias level measurement method, device and system for on-line operation transformer

Similar Documents

Publication Publication Date Title
JP5308500B2 (en) Geomagnetic sensor
US6411078B1 (en) Current sensor apparatus
US9383392B2 (en) Current sensor
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JP5943768B2 (en) DC current detector
US9638823B2 (en) Metal sensor
JP6188430B2 (en) Current detector
JP2008002876A (en) Current sensor and electronic watthour meter
JP2009210406A (en) Current sensor and watthour meter
JP4565072B2 (en) Magnetic field sensor
JP4716030B2 (en) Current sensor
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP2007109787A (en) Contactless dc galvanometer
JP2003075475A (en) Ac current sensor
JP2010127889A (en) Flux-gate type magnetic sensor
JP2008014921A (en) Direct-current detecting method and dc detector
JP2007033222A (en) Current sensor
JP4884384B2 (en) Broadband current detector
JPH0618568A (en) Current sensor
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JP2000266786A (en) Current sensor
JP2019138796A (en) Zero-flux type current sensor
JP2008101914A (en) Current sensor and electronic watthour meter
JPH0529167A (en) Current transformer