JP4884384B2 - Broadband current detector - Google Patents

Broadband current detector Download PDF

Info

Publication number
JP4884384B2
JP4884384B2 JP2007518861A JP2007518861A JP4884384B2 JP 4884384 B2 JP4884384 B2 JP 4884384B2 JP 2007518861 A JP2007518861 A JP 2007518861A JP 2007518861 A JP2007518861 A JP 2007518861A JP 4884384 B2 JP4884384 B2 JP 4884384B2
Authority
JP
Japan
Prior art keywords
current
frequency
ring cores
current detector
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007518861A
Other languages
Japanese (ja)
Other versions
JPWO2006129389A1 (en
Inventor
茂己 木下
Original Assignee
有限会社Clt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Clt filed Critical 有限会社Clt
Priority to JP2007518861A priority Critical patent/JP4884384B2/en
Publication of JPWO2006129389A1 publication Critical patent/JPWO2006129389A1/en
Application granted granted Critical
Publication of JP4884384B2 publication Critical patent/JP4884384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、可飽和リアクトルを用いた直流から低周波(8〜10kHz程度の周波数をいう)の電流を測定できる広帯域型電流検出器に関する。 The present invention relates to a broadband current detector that can measure a low-frequency (referred to as a frequency of about 8 to 10 kHz) current from a direct current using a saturable reactor.

可飽和リアクトルを用いた電流検出器としては、例えば、日本国特公昭63−25487号公報に記載のものが知られており、可飽和鉄心に巻かれた被測定電流を流す一次巻線及び一対の二次巻線とを有する可飽和リアクトルと、負荷抵抗と、前記した二次巻線に互いに逆相で電流を流す交流電源とを有している。
また、日本国特開昭61−245511号公報に記載のように、ホール素子等を用いて電流が流れる際に発生する磁界の強さを検知する電流検出器が実用化されて、主流となっている。
As a current detector using a saturable reactor, for example, the one described in Japanese Patent Publication No. Sho 63-25487 is known, and a primary winding and a pair of a current to be measured wound around a saturable iron core are known. A saturable reactor having a secondary winding, a load resistor, and an AC power source for causing currents to flow in opposite phases to the secondary winding.
Further, as described in Japanese Patent Application Laid-Open No. 61-245511, a current detector that detects the strength of a magnetic field generated when a current flows using a Hall element or the like has been put into practical use and has become mainstream. ing.

しかしながら、日本国特公昭63−25487号公報に記載の技術においては、一次巻線に流す電流が出力値に比例する領域は限定されており領域が狭く、更に、その領域を外れると非線型領域及び飽和領域を有し、比較的測定精度が悪いという問題がある。また、交流に対しては考慮されておらず、直流の測定用である。
また、日本国特開昭61−245511号公報に記載のようなホール素子等を用いた電流計においては、温度変化等でホール素子の特性が変化し、高い測定精度を維持することは困難であるという問題がある。
However, in the technique described in Japanese Patent Publication No. Sho 63-25487, the region in which the current flowing through the primary winding is proportional to the output value is limited, and the region is narrow. In addition, there is a problem that the measurement accuracy is relatively poor because of having a saturation region. In addition, it is not considered for alternating current, and is for direct current measurement.
In addition, in an ammeter using a Hall element as described in Japanese Patent Application Laid-Open No. 61-245511, it is difficult to maintain high measurement accuracy because the characteristics of the Hall element change due to a temperature change or the like. There is a problem that there is.

本発明はかかる事情に鑑みてなされたもので、比較的測定精度(例えば、0.01%以内)が高く、直流から交流まで測定可能な広帯域型電流検出器を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a broadband current detector that has a relatively high measurement accuracy (for example, within 0.01%) and can measure from direct current to alternating current.

前記目的に沿う第1の発明に係る広帯域型電流検出器は、測定電流を流す被測定導体が挿通可能な空間部を有し、該空間部を取り囲んで配置された第1及び第2の可飽和リングコアと、
前記第1、第2の可飽和リングコアにそれぞれ同一巻数で同一方向又は逆方向に巻回されて、電流を流すと逆方向に磁場を発生させる第1、第2の高周波コイルと、
前記第1、第2の高周波コイルを半径方向両側からサンドイッチ状に挟んだ状態で配置された第1、第2の不飽和リングコアと、
前記第1、第2の不飽和リングコアを中央にしてその外側に巻き付けたキャンセルコイルとを有し、
前記第1、第2の高周波コイルに前記第1、第2の可飽和リングコアが飽和する高周波電流を流し、前記第1、第2の高周波コイルにかかる差分電圧を取り出し、該差分電圧に対応する電流を、前記キャンセルコイルに流して前記第1、第2の不飽和リングコアに前記測定電流による励磁とは逆方向に励磁を与えて前記差分電圧を打ち消し、前記キャンセルコイルに流した電流から、直流から低周波領域での前記被測定導体を流れる電流を測定する。
The broadband current detector according to the first invention that meets the above-mentioned object has a space part through which a conductor to be measured for passing a measurement current can be inserted, and the first and second movable detectors are disposed so as to surround the space part. A saturated ring core,
First and second high-frequency coils that are wound around the first and second saturable ring cores with the same number of turns in the same direction or in the opposite direction, and generate a magnetic field in the opposite direction when a current is passed ;
First and second unsaturated ring cores arranged with the first and second high-frequency coils sandwiched between both radial sides;
A cancel coil wound around the first and second unsaturated ring cores around the center,
A high-frequency current that saturates the first and second saturable ring cores is caused to flow through the first and second high-frequency coils, a differential voltage applied to the first and second high-frequency coils is extracted, and the differential voltage is handled. An electric current is passed through the cancellation coil, and the first and second unsaturated ring cores are excited in the opposite direction to the excitation by the measurement current to cancel the differential voltage. The current flowing through the conductor to be measured in the low frequency region is measured.

第2の発明に係る広帯域型電流検出器は、第1の発明に係る広帯域型電流検出器において、前記第1、第2の不飽和リングコアを中央にしてその外側に巻き付けられた検出コイルを有し、該検出コイルで検知された電流を増幅して前記キャンセルコイルに流し、該キャンセルコイルに流した電流から、高周波領域での前記被測定導体を流れる電流を測定する。 A wideband current detector according to a second invention is the wideband current detector according to the first invention, comprising a detection coil wound around the first and second unsaturated ring cores in the center. Then, the current detected by the detection coil is amplified and passed through the cancel coil, and the current flowing through the measured conductor in the high frequency region is measured from the current passed through the cancel coil.

第3の発明に係る広帯域型電流検出器は、第2の発明に係る広帯域型電流検出器において、前記第1、第2の可飽和リングコアは、同一形状であって、軸方向に並べて配置されている。
そして、第4の発明に係る広帯域型電流検出器は、第2、第3の発明に係る広帯域型電流検出器において、前記第1、第2の高周波コイルには、それぞれ同一値の抵抗が直列に接続されてブリッジ回路を形成し、そのブリッジ出力を前記差分電圧とし、該差分電圧を前記第1、第2の高周波コイルを流す交流の2倍の周波数で同期整流し、平滑化してアンプで増幅して、前記キャンセルコイルに流す。
A wideband current detector according to a third invention is the wideband current detector according to the second invention, wherein the first and second saturable ring cores have the same shape and are arranged side by side in the axial direction. ing.
The broadband current detector according to the fourth invention is the broadband current detector according to the second and third inventions, wherein resistors having the same value are connected in series to the first and second high-frequency coils, respectively. The bridge output is used as the differential voltage, and the differential voltage is synchronously rectified at a frequency twice that of the alternating current flowing through the first and second high-frequency coils and smoothed by an amplifier. Amplify and flow through the cancellation coil.

本発明の一実施例にかかる広帯域型電流検出器本体の断面図である。It is sectional drawing of the wideband type | mold current detector main body concerning one Example of this invention. (A)、(B)はそれぞれ可飽和リングコア及び不飽和リングコアの磁気特性を示すグラフである。(A), (B) is a graph which shows the magnetic characteristic of a saturable ring core and an unsaturated ring core, respectively. 同広帯域型電流検出器の回路図である。It is a circuit diagram of the broadband current detector. (A)〜(F)は同広帯域型電流検出器の動作を説明するための波形図である。(A)-(F) are the wave form diagrams for demonstrating operation | movement of the broadband type current detector. (A)〜(C)は同広帯域型電流検出器の動作を説明するための波形図である。(A)-(C) is a wave form chart for explaining operation of the broadband current detector. 同広帯域型電流検出器の特性を示すグラフである。It is a graph which shows the characteristic of the broadband current detector.

続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1、図3に示すように、本発明の一実施例に係る広帯域型電流検出器10は、中央に被測定導体の一例である導線26を挿通可能な空間部11を形成する絶縁体かつ非磁性体(例えば、プラスチック又はセラミック)からなるガイド筒12を有している。このガイド筒12の周囲には同一形状の第1、第2の可飽和リングコア13、14が軸方向に並べて配置され、この第1、第2の可飽和リングコア13、14には、それぞれ同一巻数で巻回されて同一方向の電流を流すと逆方向に磁場を発生させる第1、第2の高周波コイル15、16が巻かれている。
この第1、第2の高周波コイル15、16を半径方向両側からサンドイッチ状に挟んだ状態で配置された第1、第2の不飽和リングコア17、18を有し、この第1、第2の不飽和リングコア17、18を中央にしてその外側には、巻数nのキャンセルコイル19と巻数mの検出コイル20が巻かれている。なお、この第1、第2の不飽和リングコア17、18を直流励磁した場合の磁気的特性を図2(B)に示す。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 3, the broadband current detector 10 according to an embodiment of the present invention includes an insulator that forms a space portion 11 into which a conducting wire 26, which is an example of a conductor to be measured, can be inserted. A guide cylinder 12 made of a non-magnetic material (for example, plastic or ceramic) is provided. Around the guide tube 12, first and second saturable ring cores 13 and 14 having the same shape are arranged side by side in the axial direction, and each of the first and second saturable ring cores 13 and 14 has the same number of turns. The first and second high-frequency coils 15 and 16 are wound so as to generate a magnetic field in the opposite direction when a current in the same direction is passed.
The first and second high-frequency coils 15 and 16 have first and second unsaturated ring cores 17 and 18 disposed sandwiched from both sides in the radial direction, and the first and second The unsaturated ring cores 17 and 18 are set in the center, and a cancel coil 19 having n turns and a detection coil 20 having m turns are wound on the outside thereof. The magnetic characteristics when the first and second unsaturated ring cores 17 and 18 are DC-excited are shown in FIG.

同一巻数pの第1、第2の高周波コイル15、16には、図3に示すように、周波数2fの高周波発振器21からの出力を1/2の周波数に落とす周波数変換器22を介して所定電圧Vaに増幅された周波数fの方形波(この実施例では50kHzの高周波、図4(A)参照)が、抵抗(固定抵抗)23、24(抵抗値は同じ)を介して加えられている。第1、第2の可飽和リングコア13、14は図2(A)に示すような特性の可飽和コアからなっている。そして、第1、第2の高周波コイル15、16に周波数fの方形波電圧Vaを加えた場合(即ち、周波数fの高周波電流を流した場合)、第1、第2の可飽和リングコア13、14が約3/8・λ波長及び7/8・λ波長の所で飽和するように、第1、第2の高周波コイル15、16の巻数p及び第1、第2の可飽和リングコア13、14の断面積が設定されている。
従って、第1、第2の高周波コイル15、16に、図4(A)に示すような電圧を加えると、第1の高周波コイル15には、図4(B)に示す電圧が、第2の高周波コイル16には、図4(C)に示す電圧が発生する。
As shown in FIG. 3, the first and second high-frequency coils 15 and 16 having the same number of turns p have predetermined values via a frequency converter 22 that drops the output from the high-frequency oscillator 21 having the frequency 2f to a half frequency. A square wave of frequency f amplified to voltage Va (in this embodiment, a high frequency of 50 kHz, see FIG. 4A) is applied via resistors (fixed resistors) 23 and 24 (the resistance values are the same). . The first and second saturable ring cores 13 and 14 are composed of saturable cores having characteristics as shown in FIG. When a square wave voltage Va having a frequency f is applied to the first and second high-frequency coils 15 and 16 (that is, when a high-frequency current having a frequency f is applied), the first and second saturable ring cores 13 and 13 The number of turns p of the first and second high-frequency coils 15, 16 and the first and second saturable ring cores 13, so that 14 saturates at about 3/8 · λ and 7/8 · λ wavelengths, 14 cross-sectional areas are set.
Therefore, when a voltage as shown in FIG. 4A is applied to the first and second high-frequency coils 15 and 16, the voltage shown in FIG. The voltage shown in FIG. 4C is generated in the high frequency coil 16.

第1、第2の高周波コイル15、16の巻方向は同一(例えば、右巻又は左巻)であっても逆方向であってもよいが、ガイド筒12内を挿通する測定電流を流す導線26に電流を流すと、第1、第2の高周波コイル15、16の一方の電圧が減少し、他方の電圧が増加するように、抵抗23、24にそれぞれ接続されている。そして、この抵抗23、24及び第1、第2の高周波コイル15、16がそれぞれ直列に接続されて、ブリッジ回路を形成し、その中点出力に入力トランス27の一次側コイル28が接続されている。この入力トランス27の二次側コイル29には中間タップが設けられ、180度位相の異なる出力がその両側のコイルに発生するようになっている。
従って、導線26に電流が流れない場合には、図4(B)に示す第1の高周波コイル15にかかる電圧と、図4(C)に示す第2の高周波コイル16にかかる電圧は同一となるので、その差分が入力トランス27に出力され、結局は図4(D)に示すように0(ゼロ)となる。
The winding directions of the first and second high-frequency coils 15 and 16 may be the same (for example, right-handed or left-handed) or in the reverse direction, but a conducting wire for passing a measurement current inserted through the guide tube 12 When a current is passed through 26, the voltage is connected to the resistors 23 and 24 so that one voltage of the first and second high-frequency coils 15 and 16 decreases and the other voltage increases. The resistors 23 and 24 and the first and second high frequency coils 15 and 16 are connected in series to form a bridge circuit, and the primary side coil 28 of the input transformer 27 is connected to the midpoint output thereof. Yes. The secondary coil 29 of the input transformer 27 is provided with an intermediate tap so that outputs different in phase by 180 degrees are generated in the coils on both sides thereof.
Therefore, when no current flows through the conductor 26, the voltage applied to the first high-frequency coil 15 shown in FIG. 4B is the same as the voltage applied to the second high-frequency coil 16 shown in FIG. 4C. Therefore, the difference is output to the input transformer 27 and eventually becomes 0 (zero) as shown in FIG.

ところが、導線26に電流(説明のために直流が流れたとする)が流れると、第1、第2の可飽和リングコア13、14の磁気飽和状態が変わって、図4(E)及び図4(F)に示すように、第1、第2の高周波コイル15、16にかかる電圧が変化する。これは、図2に示す可飽和リングコアのヒステリシスカーブにおいて、導線26に電流が流れることによって、0点が移動することによる。
第1、第2の高周波コイル15、16にかかる電圧の差分をブリッジ回路で検知し、入力トランス27によって差分を出力すると、図5(A)、(A)′に示すような電圧が入力トランス27の二次側のセンタータップを基準として両側に出力される。
However, when a current (direct current flows for the sake of explanation) flows through the conductor 26, the magnetic saturation state of the first and second saturable ring cores 13 and 14 changes, and FIG. 4 (E) and FIG. As shown in F), the voltage applied to the first and second high-frequency coils 15 and 16 changes. This is because the zero point moves in the hysteresis curve of the saturable ring core shown in FIG.
When the difference between the voltages applied to the first and second high-frequency coils 15 and 16 is detected by the bridge circuit and the difference is output by the input transformer 27, the voltages as shown in FIGS. 27 on the basis of the center tap on the secondary side.

この入力トランス27の二次側に発生する電圧信号(A)、(A)′を、高周波発振器21で発生させた周波数が2f(即ち、100kHz)で同期整流を行う。ここで、同期整流とは、入力トランス27の二次側に発生する180度位相の異なる電圧を、高周波発振器21で発生させた方形波信号によって、スイッチング素子(例えば、CMOS型半導体素子)を交互に切り替えて、入力トランス27から発生する信号を揃えること(即ち、整流すること)をいう。図5(B)は同期整流に使用する制御信号を、図5(C)は同期整流回路30の出力を示すことになる。 The voltage signals (A) and (A) ′ generated on the secondary side of the input transformer 27 are synchronously rectified at a frequency generated by the high frequency oscillator 21 of 2f (ie, 100 kHz). Here, the synchronous rectification means that switching elements (for example, CMOS type semiconductor elements) are alternately switched by square wave signals generated by the high frequency oscillator 21 with voltages different in phase by 180 degrees generated on the secondary side of the input transformer 27. And the signals generated from the input transformer 27 are aligned (that is, rectified). 5B shows a control signal used for synchronous rectification, and FIG. 5C shows an output of the synchronous rectification circuit 30.

ここで、同期整流回路30と通常のシリコンダイオード等を組み合わせて構成した整流回路との相違は、シリコンダイオードを使用する整流回路においてはシリコンダイオード自体の電圧降下(例えば、0.5〜0.7v)が存在するので微小信号の整流ができないこと、全ての信号が一定方向に電流が流れて直流化されるという問題があるが、同期整流回路30においては、素子自体の電圧降下がない(即ち、通常の接点と同じ)こと、及び入力信号と制御信号の位相によって、一方向の電流のみでなく逆方向の電流も発生すること(従って、完全には直流にはならない)である。
この同期整流回路30を用いることによって、導線26を流れる電流の方向及びその大きさを正確に測定できる。
Here, the difference between the rectifier circuit configured by combining the synchronous rectifier circuit 30 and a normal silicon diode or the like is that in a rectifier circuit using a silicon diode, a voltage drop (for example, 0.5 to 0.7 V) of the silicon diode itself. ) Is present, there is a problem that a minute signal cannot be rectified and all signals flow into a direct current through a constant direction. However, in the synchronous rectifier circuit 30, there is no voltage drop in the element itself (ie, The same as a normal contact), and depending on the phase of the input signal and the control signal, not only a current in one direction but also a current in the reverse direction is generated (thus, it is not completely DC).
By using this synchronous rectifier circuit 30, the direction and magnitude of the current flowing through the conductor 26 can be accurately measured.

同期整流回路30の出力を、そのままフィルター回路31に流すと、図5(C)に示す電圧波形が平均化(平滑化)されて、直流となる。ここで、アンプ32で電圧増幅を行い、アンプ33が電流増幅を行って、その出力を抵抗34が直列に接続されたキャンセルコイル19に流す。このキャンセルコイル19に流れる電流によって第1、第2の不飽和リングコア17、18に発生する磁束が、導線26を流れる電流によって第1、第2の不飽和リングコア17、18及び第1、第2の可飽和リングコア13、14に発生する磁束を打ち消すようにしている。即ち、導線26を流れる電流をd1で巻数1とし、キャンセルコイル19に流れる電流をd2とし巻数をnとした場合、d1×1=d2(1+1/α)×nの関係が成立する。従って、d2=d1/{n(1+1/α)}、即ち、d2≒d1/nとなって、d2を測定すれば、d1の値が分かる。更に、第1、第2の可飽和リングコア13、14の磁界は、約(d1×1−d2×n)と打ち消されるので、磁束が減少し、広範囲の電流を測定でき、結果として機器の小型化を図ることができる。なお、「α」は入力トランス27からアンプ33までの信号の増幅率を示し、実際には105〜106程度の増幅率を有する。従って、キャンセルコイル19を流れる電流を、抵抗34の両端の電圧より検出し、適当に校正して、測定電流とする。When the output of the synchronous rectifier circuit 30 is passed through the filter circuit 31 as it is, the voltage waveform shown in FIG. 5C is averaged (smoothed) to become direct current. Here, the amplifier 32 performs voltage amplification, the amplifier 33 performs current amplification, and the output is passed through the cancel coil 19 to which the resistor 34 is connected in series. The magnetic flux generated in the first and second unsaturated ring cores 17 and 18 by the current flowing through the cancel coil 19 is changed to the first and second unsaturated ring cores 17 and 18 and the first and second unsaturated ring cores 17 and 18 by the current flowing through the conducting wire 26. The magnetic flux generated in the saturable ring cores 13 and 14 is canceled out. That is, if the current flowing through the conductor 26 is d1 and the number of turns is 1, d2 is the current flowing through the cancel coil 19 and the number of turns is n, the relationship d1 × 1 = d2 (1 + 1 / α) × n is established. Therefore, if d2 = d1 / {n (1 + 1 / α)}, that is, d2≈d1 / n, and d2 is measured, the value of d1 is known. Furthermore, since the magnetic fields of the first and second saturable ring cores 13 and 14 are canceled out by about (d1 × 1−d2 × n), the magnetic flux is reduced and a wide range of currents can be measured, resulting in the small size of the device. Can be achieved. “Α” represents the amplification factor of the signal from the input transformer 27 to the amplifier 33, and actually has an amplification factor of about 10 5 to 10 6 . Accordingly, the current flowing through the cancel coil 19 is detected from the voltage across the resistor 34, and is appropriately calibrated to obtain the measurement current.

この実施例においては、説明のため、導線26に直流が流れた場合について、説明したが、同期整流回路30でその極性を判別しながらその大きさを測定できるので、マクロ的に見れば交流も支障なく測定できる。なお、同期整流回路30を駆動する制御信号より高周波は測定できないし、次に設けられたフィルター回路31の通過帯域によって交流の測定周波数は決定される。例えば、フィルター回路31を10kHz程度に設定しておき、それ以上の周波数に対して減衰するように設定しておけば、約10kHz程度の交流まで測定できることになる。
なお、第1、第2の可飽和リングコア13、14は、fより高い周波数にも反応するが、周波数2fで同期整流を行うので、この同期整流の周期内で第1、第2の可飽和リングコア13、14が反応しても平均化され、この回路では検出できない。但し、第1、第2の不飽和リングコア17、18の検出コイル20については同期整流を行っていないので、fより高い周波数も検知できる。また、測定電流が低い周波数の場合、検出コイル20のみで検知しようとすると、その周波数で飽和しないだけのコア断面積を必要とし、小型軽量化ができない。
In this embodiment, for the sake of explanation, a case where a direct current flows through the conductor 26 has been described. However, the synchronous rectification circuit 30 can measure the magnitude of the polarity while determining the polarity. It can be measured without hindrance. The high frequency cannot be measured by the control signal for driving the synchronous rectifier circuit 30, and the AC measurement frequency is determined by the pass band of the filter circuit 31 provided next. For example, if the filter circuit 31 is set to about 10 kHz and is set to attenuate with respect to a frequency higher than that, it is possible to measure an alternating current of about 10 kHz.
The first and second saturable ring cores 13 and 14 respond to a frequency higher than f, but perform synchronous rectification at the frequency 2f. Therefore, the first and second saturable ring cores within the period of the synchronous rectification. Even if the ring cores 13 and 14 react, they are averaged and cannot be detected by this circuit. However, since synchronous rectification is not performed for the detection coils 20 of the first and second unsaturated ring cores 17 and 18, a frequency higher than f can be detected. Further, when the measurement current has a low frequency, if it is attempted to detect only with the detection coil 20, a core cross-sectional area that does not saturate at that frequency is required, and the size and weight cannot be reduced.

次に、第1、第2の不飽和リングコア17、18に検出コイル20を配置し、その出力をアンプ33に入力させて、その出力をキャンセルコイル19に流し、導線26を流れる磁束を打ち消すようにさせると、導線26を流れる交流電流も抵抗34の両端の電圧から測定できる。この技術は周知であるので、詳しい説明を省略する。
この場合、第1、第2の可飽和リングコア13、14及びこれらに巻いた第1、第2の高周波コイル15、16によって検出される差分電圧から、導線26に流れる電流を測定する回路Aと、検知コイル20を用いて交流電流を測定する回路Bとを組み合わせると、図6に示すような特性となって、直流から高周波交流まで広範囲な電流の測定ができる。
Next, the detection coil 20 is arranged in the first and second unsaturated ring cores 17 and 18, the output is input to the amplifier 33, the output is passed to the cancel coil 19, and the magnetic flux flowing through the conductor 26 is canceled out. In this case, the alternating current flowing through the conductor 26 can also be measured from the voltage across the resistor 34. Since this technique is well known, detailed description is omitted.
In this case, a circuit A that measures the current flowing through the conductor 26 from the differential voltage detected by the first and second saturable ring cores 13 and 14 and the first and second high-frequency coils 15 and 16 wound around them. When combined with the circuit B that measures the alternating current using the detection coil 20, the characteristics shown in FIG. 6 are obtained, and a wide range of currents from direct current to high frequency alternating current can be measured.

本発明は前記実施例に限定されるものではなく、本発明の要旨を変更しない範囲での改良、又は一部省略も可能である。例えば、前記実施例においては、広帯域型電流検出器10は、直流から交流まで測定できる回路Aと、通常の交流電流を測定する回路Bとを組み合わせて構成したが、切替えスイッチを設けて、直流から交流まで測定できる回路Aと、通常の交流電流を測定する回路Bとを別々に作動させる場合も本発明は適用される。この場合、直流から交流まで測定できる回路A又は通常の交流電流を測定する回路Bを停止させる場合には、アンプ33にこれらの入力信号が入らないようにスイッチを設けることになる。 The present invention is not limited to the embodiments described above, and can be improved or partially omitted without changing the gist of the present invention. For example, in the above-described embodiment, the broadband current detector 10 is configured by combining the circuit A that can measure from direct current to alternating current and the circuit B that measures normal alternating current. The present invention is also applied to the case where the circuit A that can measure from AC to AC and the circuit B that measures normal AC current are operated separately. In this case, when the circuit A that can measure from direct current to alternating current or the circuit B that measures normal alternating current is stopped, a switch is provided so that these input signals do not enter the amplifier 33.

以上、本発明の実施例を説明したが、本発明は、この実施例に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施例や変形例の一部又は全部を組み合わせることもできる。 As mentioned above, although the embodiment of the present invention has been described, the present invention is not limited to this embodiment, and can be changed without changing the gist of the invention. Some or all of the examples may be combined.

本発明に係る広帯域型電流検出器は、第1、第2の可飽和リングコアに巻回された第1、第2の高周波コイルの差分電圧に対応する電流をキャンセルコイルに流しているので、測定電流によって第1、第2の不飽和リングコアの飽和を防止すると共に第1、第2の可飽和リングコアの飽和も防止して、直流から低周波領域の電流を、小電流から大電流まで精度よく測定できる。
そして、第1、第2の可飽和リングコアに巻かれた第1、第2の高周波コイルを、第1、第2の不飽和リングコアによって半径方向両側からサンドイッチ状に挟んでいるので、第1、第2の可飽和リングコアの磁束の飽和状態がより正確に制御され、測定精度が向上する。
In the wideband current detector according to the present invention, the current corresponding to the differential voltage between the first and second high-frequency coils wound around the first and second saturable ring cores is caused to flow through the cancel coil. The current prevents the saturation of the first and second unsaturated ring cores and the saturation of the first and second saturable ring cores, so that the current in the DC to low frequency region can be accurately measured from a small current to a large current. It can be measured.
Since the first and second high frequency coils wound around the first and second saturable ring cores are sandwiched between the first and second unsaturated ring cores from both sides in the radial direction, the first, The saturation state of the magnetic flux of the second saturable ring core is more accurately controlled, and the measurement accuracy is improved.

特に、本発明の広帯域型電流検出器において、第1、第2の不飽和リングコアを中央にしてその外側に巻き付けられた検出コイルを設け、この検出コイルで検知された電流を増幅してキャンセルコイルに流し、キャンセルコイルに流した電流から、高周波領域での被測定導体を流れる電流を測定するようにした場合には、この広帯域型電流検出器が通常のCTとしての役目も果たし、高周波領域(前記低周波領域を超える周波数をいう)での交流電流の測定が可能となる。従って、この発明においては、直流から高周波領域までの電流を精度よく測定できる。 In particular, the broadband current detector of the present invention is provided with a detection coil wound around the center of the first and second unsaturated ring cores, and a current detected by the detection coil is amplified to cancel the coil. When the current flowing through the conductor to be measured in the high frequency region is measured from the current flowing in the cancel coil, the broadband current detector also serves as a normal CT, and the high frequency region ( AC current can be measured at a frequency exceeding the low frequency region. Therefore, in the present invention, the current from the direct current to the high frequency region can be accurately measured.

また、本発明の広帯域型電流検出器においては、第1、第2の可飽和リングコアを、同一形状として、軸方向に並べて配置することによって、差分電圧の精度が高まり、より精度の良い電流測定ができる。 In the broadband current detector of the present invention, the first and second saturable ring cores have the same shape and are arranged side by side in the axial direction, so that the accuracy of the differential voltage is increased and more accurate current measurement is performed. Can do.

そして、本発明の広帯域型電流検出器において、第1、第2の高周波コイルに、それぞれ同一値の抵抗を直列に接続してブリッジ回路を形成し、そのブリッジ出力を差分電圧とし、該差分電圧をアンプで増幅して、キャンセルコイルに流すことによって、温度変化等に影響されず、より精度の高い電流測定が可能となる。 In the broadband current detector of the present invention, the first and second high-frequency coils are connected in series with resistors of the same value in series to form a bridge circuit, and the bridge output is set as a differential voltage. Is amplified by an amplifier and passed through a cancel coil, so that a more accurate current measurement can be performed without being affected by a temperature change or the like.

Claims (4)

測定電流を流す被測定導体が挿通可能な空間部を有し、該空間部を取り囲んで配置された第1及び第2の可飽和リングコアと、
前記第1、第2の可飽和リングコアにそれぞれ同一巻数で同一方向又は逆方向に巻回されて、電流を流すと逆方向に磁場を発生させる第1、第2の高周波コイルと、
前記第1、第2の高周波コイルを半径方向両側からサンドイッチ状に挟んだ状態で配置された第1、第2の不飽和リングコアと、
前記第1、第2の不飽和リングコアを中央にしてその外側に巻き付けたキャンセルコイルとを有し、
前記第1、第2の高周波コイルに前記第1、第2の可飽和リングコアが飽和する高周波電流を流し、前記第1、第2の高周波コイルにかかる差分電圧を取り出し、該差分電圧に対応する電流を、前記キャンセルコイルに流して前記第1、第2の不飽和リングコアに前記測定電流による励磁とは逆方向に励磁を与えて前記差分電圧を打ち消し、前記キャンセルコイルに流した電流から、直流から低周波領域での前記被測定導体を流れる電流を測定することを特徴とする広帯域型電流検出器。
A first and second saturable ring cores having a space part through which a conductor to be measured for passing a measurement current can be inserted, and arranged to surround the space part;
First and second high-frequency coils that are wound around the first and second saturable ring cores with the same number of turns in the same direction or in the opposite direction, and generate a magnetic field in the opposite direction when a current is passed ;
First and second unsaturated ring cores arranged with the first and second high-frequency coils sandwiched between both radial sides;
A cancel coil wound around the first and second unsaturated ring cores around the center,
A high-frequency current that saturates the first and second saturable ring cores is caused to flow through the first and second high-frequency coils, a differential voltage applied to the first and second high-frequency coils is extracted, and the differential voltage is handled. An electric current is passed through the cancellation coil, and the first and second unsaturated ring cores are excited in the opposite direction to the excitation by the measurement current to cancel the differential voltage. A wide-band current detector for measuring a current flowing through the conductor to be measured in a low frequency region.
請求項1記載の広帯域型電流検出器において、前記第1、第2の不飽和リングコアを中央にしてその外側に巻き付けられた検出コイルを有し、該検出コイルで検知された電流を増幅して前記キャンセルコイルに流し、該キャンセルコイルに流した電流から、高周波領域での前記被測定導体を流れる電流を測定することを特徴とする広帯域型電流検出器。2. The broadband current detector according to claim 1, further comprising a detection coil wound around the first and second unsaturated ring cores around the center, and amplifies the current detected by the detection coil. A wide-band current detector for measuring a current flowing through the conductor to be measured in a high frequency region from a current passed through the cancel coil and a current passed through the cancel coil. 請求項2記載の広帯域型電流検出器において、前記第1、第2の可飽和リングコアは、同一形状であって、軸方向に並べて配置されていることを特徴とする広帯域型電流検出器。3. The broadband current detector according to claim 2, wherein the first and second saturable ring cores have the same shape and are arranged side by side in the axial direction. 請求項2及び3のいずれか1項に記載の広帯域型電流検出器において、前記第1、第2の高周波コイルには、それぞれ同一値の抵抗が直列に接続されてブリッジ回路を形成し、そのブリッジ出力を前記差分電圧とし、該差分電圧を前記第1、第2の高周波コイルを流す交流の2倍の周波数で同期整流し、平滑化してアンプで増幅して、前記キャンセルコイルに流すことを特徴とする広帯域型電流検出器。4. The wideband current detector according to claim 2, wherein resistors having the same value are connected in series to the first and second high-frequency coils to form a bridge circuit. The bridge output is the differential voltage, and the differential voltage is synchronously rectified at a frequency twice that of the alternating current flowing through the first and second high-frequency coils, smoothed, amplified by an amplifier, and passed through the cancellation coil. A wideband current detector.
JP2007518861A 2005-05-31 2005-11-16 Broadband current detector Active JP4884384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007518861A JP4884384B2 (en) 2005-05-31 2005-11-16 Broadband current detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005160074 2005-05-31
JP2005160074 2005-05-31
JP2007518861A JP4884384B2 (en) 2005-05-31 2005-11-16 Broadband current detector
PCT/JP2005/021049 WO2006129389A1 (en) 2005-05-31 2005-11-16 Wide-band current detector

Publications (2)

Publication Number Publication Date
JPWO2006129389A1 JPWO2006129389A1 (en) 2008-12-25
JP4884384B2 true JP4884384B2 (en) 2012-02-29

Family

ID=37481324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007518861A Active JP4884384B2 (en) 2005-05-31 2005-11-16 Broadband current detector

Country Status (2)

Country Link
JP (1) JP4884384B2 (en)
WO (1) WO2006129389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250243A (en) * 2012-06-04 2013-12-12 Soft Energy Controls Inc Current detector and current detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111527413B (en) * 2017-12-08 2022-06-14 莱姆国际股份有限公司 Annular fluxgate current sensor
JP6826560B2 (en) * 2018-07-05 2021-02-03 横河電機株式会社 Current sensor
JP7536662B2 (en) 2020-03-06 2024-08-20 日置電機株式会社 Current Sensors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914381A (en) * 1987-05-28 1990-04-03 Barrigar & Oyen Direct-coupled fluxgate current sensor
TW434411B (en) * 1998-10-14 2001-05-16 Tdk Corp Magnetic sensor apparatus, current sensor apparatus and magnetic sensing element
JP2001264360A (en) * 2000-03-16 2001-09-26 Sumitomo Special Metals Co Ltd Dc current detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013250243A (en) * 2012-06-04 2013-12-12 Soft Energy Controls Inc Current detector and current detection method

Also Published As

Publication number Publication date
JPWO2006129389A1 (en) 2008-12-25
WO2006129389A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US9383392B2 (en) Current sensor
JP5308500B2 (en) Geomagnetic sensor
JP2007052019A (en) Magnetometer for enhancing demagnetization region
JP2009210406A (en) Current sensor and watthour meter
JP2007052018A (en) Magnetometer for torque sensor
JP4884384B2 (en) Broadband current detector
JP2016125863A (en) Current detection device
WO2021208135A1 (en) Closed-loop current transformer
JP2816175B2 (en) DC current measuring device
JP2008532012A (en) Current sensor with annular coil
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP4716030B2 (en) Current sensor
JP2019152558A (en) Current sensor and voltmeter
JP2007033222A (en) Current sensor
JP2000121307A (en) Apparatus for measuring quantity of inductive displacement
JP2008014921A (en) Direct-current detecting method and dc detector
JP5889114B2 (en) Current detector and current detection method
JP2020197381A (en) Gradient magnetic field sensor
JPH10332745A (en) Electric current sensor
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
CN212723044U (en) Closed-loop current transformer
JP6119384B2 (en) Current detector
JP2020165716A (en) Gradient magnetic field sensor
JP2020041869A (en) Magnetic sensor
JP2007109787A (en) Contactless dc galvanometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4884384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250