WO2007110368A1 - Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit - Google Patents

Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit Download PDF

Info

Publication number
WO2007110368A1
WO2007110368A1 PCT/EP2007/052755 EP2007052755W WO2007110368A1 WO 2007110368 A1 WO2007110368 A1 WO 2007110368A1 EP 2007052755 W EP2007052755 W EP 2007052755W WO 2007110368 A1 WO2007110368 A1 WO 2007110368A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifreeze
compressor unit
compressor
injected
natural gas
Prior art date
Application number
PCT/EP2007/052755
Other languages
English (en)
French (fr)
Inventor
Gaston Mathijssen
Mark Van Aarsen
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BRPI0709145-1A priority Critical patent/BRPI0709145A2/pt
Priority to EP07727230A priority patent/EP1999376A1/de
Priority to US12/225,251 priority patent/US8262365B2/en
Publication of WO2007110368A1 publication Critical patent/WO2007110368A1/de
Priority to NO20084446A priority patent/NO20084446L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the invention relates to a method for operating a compressor unit, in particular for underwater operation.
  • the invention relates to a compressor unit, in particular for underwater operation, comprising a compressor and an electric motor, which
  • Compressor unit comprising a housing having an inlet and an outlet for the conveying medium with a rotational axis about which a rotor of the compressor unit is rotatable.
  • Compressor which should serve the promotion of natural gas. Due to the special operating conditions, in particular because of the very limited accessibility both for maintenance purposes and by means of supply lines, the professional world faces great challenges. Relevant environmental regulations prohibit any material exchange between the units to be installed and the surrounding seawater. In addition, the seawater is an aggressive medium and extreme pressure and temperature conditions can be found in the different sea depths. Another requirement is that the aggregates on the one hand have an extremely long service life and on the other hand have to be designed virtually maintenance-free. To make matters worse, a significant contamination of the partially chemically aggressive medium to be promoted.
  • a compressor unit of the aforementioned type is already known from international patent application WO 02/099286 A1. With the objective of uncompromising simplification to reduce maintenance and at the same time high life is proposed there, the compressor rotor with the To make motor rotor in one piece and to store each end by means of only two radial bearings.
  • Gas hydrates are ice-like inclusion compounds in which small guest molecules, such as noble gases and various natural gas constituents, are enclosed in a cage by water molecules. Even with small amounts of liquid water and temperatures of counsellO 0 C must be expected with a hydrate formation. Presumably, the severe gas catastrophe in 1988 on the Norwegian North Sea drill rig Piper Alpha was due to such hydrate formation. Significant additional operating costs for natural gas production are also caused by gas hydrate deposits as they build up clogging in pipelines.
  • the invention has the object to provide a method for operating a compressor and a compressor unit, which minimizes the risk of gas hydrate formation, for example in the undersea production of natural gas, as far as possible.
  • a particular advantage of the invention lies in the reliable protection against hydrate formation due to the injection of antifreeze.
  • Both vulnerable components of the compressor unit can be protected as well as the entire conveying path starting from the point of injection of the fluid to the later deposition thereof.
  • the method is therefore also particularly expedient because, in the context of the chemical treatment of natural gases in a subsequent to the compressor unit after a pipeline base station, a separation of undesirable additives anyway.
  • the reliability gained manifests itself both in a higher availability of the compressor and in a high degree of safety against clogging hydrate formation in the pipeline which adjoins the compressor unit.
  • the injection of antifreeze can be done in the intake or directly in the compressor.
  • Loading of components of the compressor unit with the antifreeze is particularly useful for the bearings, the electric motor and other moving components. If there is a particular risk of hydrate formation in the overflow region of individual compressor stages, injection of antifreeze may also be expediently carried out here.
  • the primary field of application of the invention is the extraction of natural gas, since the risk of the formation of gas hydrates is relatively high here.
  • Compressor unit to inject an antifreeze at the critical points of the compressor unit, in particular at the previously mentioned points.
  • An advantageous development of the invention provides that before each scheduled machine stop a quantity of antifreeze is injected at the sensitive points of the compressor unit. Particularly useful is the use of antifreeze both before each start and before each machine stop. In the case of emergency stop of the compressor unit, the fastest possible stop of the machine is in the foreground of interest, so that a previous injection of the
  • Antifreeze is not likely to be possible. Another possibility is to initiate the injection of the antifreeze at the same time as the initiation of the machine stop.
  • the invention is based on a special
  • Figure 1 is a schematic representation of a
  • Figure 1 shows schematically a section along a compressor unit 1 according to the invention, which has as essential components a motor 2 and a compressor 3 in a gas-tight housing 4.
  • the housing 4 houses the engine 2 and the compressor 3.
  • the compressor 3 In the region of the transition from the engine 2 to the compressor 3 is the
  • Housing 4 is provided with an inlet 6 and an outlet 7, wherein through the inlet 6 by means of a suction nozzle 8, the fluid to be compressed is sucked and flows through the outlet 7, the compressed fluid.
  • the compressor unit 1 is arranged vertically in operation, wherein a motor rotor 15 of the motor 2 are united via a compressor rotor 9 of the compressor 3 to a common shaft 19 which rotates about a common vertical axis of rotation 60.
  • the motor rotor 15 is mounted in a first radial bearing 21 at the upper end of the motor rotor 15.
  • the compressor rotor 9 is mounted by means of a second radial bearing 22 in the lower position.
  • a thrust bearing 25 is provided at the upper end of the common shaft 19 - ie at the upper end of the motor rotor 15 - .
  • the radial bearings and the thrust bearing work electromagnetically and are each encapsulated.
  • the radial bearings extend in the circumferential direction about the respective bearing point of the shaft 19 and are in this case 360 ° circumferentially and undivided.
  • the compressor 3 designed as a centrifugal compressor has three compressor stages 11 which are in each case connected by means of an overflow 33.
  • the resulting at the compressor stages 11 pressure differences provide for a thrust on the compressor rotor 9, which transmits to the motor rotor 15 and against the weight of the resulting entire rotor of the compressor rotor 9 and motor rotor 15, directed, so that in nominal operation as far as possible thrust balance he follows.
  • the thrust bearing 25 can be dimensioned comparatively smaller than in a horizontal arrangement of the rotation axis 60th
  • the electromagnetic bearings 21, 22, 25 are cooled by means of a cooling system not shown in detail to the operating temperature, wherein the cooling system provides a tap in an overflow 33 of the compressor 3. From the tap a part of the pumped medium, which is preferably natural gas, passed through a filter by means of pipes and then through two separate pipes to the respective outer
  • the motor rotor 15 is surrounded by a stator 16, which has an encapsulation, so that the aggressive conveying medium 80 does not damage windings of the stator 16.
  • the encapsulation is preferably designed so that it can bear the full operating pressure. This is also because a separate cooling is provided for the stator, in which a separate cooling medium circulates.
  • the compressor rotor 9 expediently has a compressor shaft 10 on which the individual compressor stages 11 are mounted. This can preferably be done by means of a thermal shrinkage fit. Likewise, a positive connection, for example by means of polygons possible. Another embodiment provides for a fusion of different compressor stages 11 to each other, from which a one-piece compressor rotor 9 results.
  • the delivery medium 80 or natural gas NG first passes from the natural reservoir into a
  • Condensate 81 which condensates 82, among other water, separated from the gaseous phase.
  • the condensates 82 pass into a condensate line 84, into which also a subsequent dewatering line 95 opens, which introduces condensates separated in the compressor unit into the condensate line 84.
  • the condensates 82 are conveyed by a condensate pump 85 into a mixing unit 86, in which mixing with the compressed natural gas NG or
  • Delivery medium 80 takes place.
  • the resulting mixture is conveyed into a pipeline 87 towards a base station 89.
  • the compressor unit 1 has a system for distributing antifreeze 73 comprising distribution lines 94 and injection modules 72.
  • the antifreeze 73 is conveyed from a collection tank 92 by means of a metering pump 93 to the various injection modules 72 on the compressor unit 1.
  • the injection modules 72 locally the first radial bearing 21, the thrust bearing 25, the second radial bearing 22, the overflows 33 are acted upon.
  • Intake manifold 8 is another injection module 72, by means of which the antifreeze 73 is injected directly into the sucked in conveying medium 80.
  • the injected antifreeze 73 is partially, namely as far as deposited in the compressor unit 1, by a drainage 96 (at the "single-drain point") of
  • Compressor unit 1 discharged into the drainage line 95. The remainder is conveyed together with the compressed natural gas NG through the outlet 7 into the mixing unit 86.
  • the antifreeze 73, the natural gas NG and the condensate 82 are conveyed to the base station 89 to the earth's surface. Hydrate formation in the pipeline 87 is excluded due to the antifreeze 73 carried along.
  • a further condensate separator 88 provides for a drying of the natural gas NG, the condensate including the antifreeze 73 entering a conditioner 90, in which the antifreeze 73 is separated from the remaining condensate 82.
  • the treated antifreeze 73 passes through a return line 91 along the pipeline 87 back into the collection tank 92.
  • Antifreeze 73 ensures safety against hydrate formation on the one hand and compliance with relevant environmental standards on the other hand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Verdichtereinheit (1), insbesondere für den Unterwasserbetrieb. Bei einer Verdichtung ist das Risiko einer Gashydratbildung zu minimieren. Das erfindungsgemäße Verfahren beseitigt das Risiko, indem Bauelemente der Verdichtereinheit (1) mit Frostschutzmittel (73) beaufschlagt werden und/oder in den Strömungspfad des zu verdichtenden Fördermediums (Erdgas NG) ein Frostschutzmittel (73) eingespritzt wird. Daneben wird eine Verdichtereinheit zum Betrieb gemäß des erfindungsgemäßen Verfahrens vorgeschlagen.

Description

Beschreibung
Verfahren zum Betrieb einer Verdichtereinheit, Verdichtereinheit
Die Erfindung betrifft ein Verfahren zum Betrieb einer Verdichtereinheit, insbesondere für den Unterwasserbetrieb. Daneben betrifft die Erfindung eine Verdichtereinheit, insbesondere für den Unterwasserbetrieb, umfassend einen Verdichter und einen elektrischen Motor, welche
Verdichtereinheit ein Gehäuse aufweist mit einem Einlass und einem Auslass für das Fördermedium mit einer Drehachse, um welche ein Rotor der Verdichtereinheit drehbar ist.
Jüngste Entwicklungen im Bereich des Verdichterbaus fokussieren sich auch auf Unterseeanordnung großer
Verdichter, welcher der Förderung von Erdgasen dienen sollen. Aufgrund der besonderen Betriebsbedingungen, insbesondere wegen der stark eingeschränkten Zugänglichkeit sowohl zu Wartungszwecken als auch mittels Versorgungsleitungen sieht sich die Fachwelt vor großen Herausforderungen gestellt. Einschlägige Umweltbestimmungen verbieten jeglichen stofflichen Austausch zwischen den zu installierenden Aggregaten und dem umgebenden Seewasser. Hinzukommt, dass das Seewasser ein aggressives Medium ist und in den verschiedenen Meerestiefen extreme Druck- und Temperaturbedingungen anzutreffen sind. Eine weitere Anforderung besteht darin, dass die Aggregate einerseits eine äußerst hohe Standzeit aufweisen sollen und andererseits nahezu wartungsfrei ausgebildet sein müssen. Erschwerend ist zusätzlich eine nicht unerhebliche Verschmutzung des teilweise chemisch aggressiven zu fördernden Mediums.
Eine Verdichtereinheit der vorgenannten Art ist bereits aus der internationalen Patentanmeldung WO 02/099286 Al bekannt. Mit der Zielsetzung der kompromisslosen Vereinfachung zur Reduzierung des Wartungsaufwandes und bei gleichzeitig hoher Standzeit ist dort vorgeschlagen, den Verdichterrotor mit dem Motorrotor einstückig zu gestalten und mittels lediglich zweier Radiallager jeweils endseitig zu lagern.
Daneben ist es aus der europäischen Patentanmeldung EP 1 074 746 Bl bekannt, einen Turboverdichter mit drei Radiallagern auszustatten, wobei der Motorrotor mittels einer Kupplung mit dem Verdichterrotor in Verbindung steht.
Die Verdichtung von Fluiden kann in Gefrierpunktsnähe problematisch sein. Bei der Förderung von Erdgas sieht sich die Entwicklung hinsichtlich der Bildung von Gashydraten vor erhebliche Probleme gestellt. Gashydrate sind eisähnliche Einschlussverbindungen, in denen kleine Gastmoleküle, z.B. Edelgase und verschiedene Erdgasbestandteile, die in einem Käfig von Wassermolekülen umschlossen werden. Bereits bei geringen Mengen flüssigen Wassers und Temperaturen von beispielsweiselO 0C muss schon mit einer Hydratbildung gerechnet werden. Vermutlich war die schwere Gaskatastrophe im Jahr 1988 auf der norwegischen Nordseebohrinsel Piper Alpha auf eine derartige Hydratbildung zurückzuführen. Erhebliche zusätzliche Betriebskosten bei der Erdgasförderung werden außerdem durch Gashydratablagerungen verursacht, da sich diese verstopfend in Pipelines ablagern.
Die Erfindung hat es sich zur Aufgabe gemacht, ein Verfahren zum Betrieb eines Verdichters und eine Verdichtereinheit zu schaffen, welche das Risiko einer Gashydratbildung, beispielsweise bei der unterseeischen Förderung von Erdgas, weitestgehend minimiert.
Zur Lösung der Aufgabe wird erfindungsgemäß ein Verfahren zum Betrieb einer Verdichtereinheit nach Anspruch 1 und eine Verdichtereinheit nach Anspruch 11 vorgeschlagen. Die jeweils rückbezogenen Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung.
Ein besonderer Vorteil der Erfindung liegt in der zuverlässigen Absicherung gegen eine Hydratbildung aufgrund der Einspritzung des Frostschutzmittels. Auf diese Weise können sowohl anfällige Bauelemente der Verdichtereinheit geschützt werden als auch der gesamte Förderpfad beginnend ab der Stelle der Einspritzung des Fördermediums bis zur späteren Abscheidung desselben. Das Verfahren ist auch daher besonders zweckmäßig, weil im Rahmen der chemischen Aufbereitung von Erdgasen in einer sich an die Verdichtereinheit nach einer Pipeline anschließenden Basisstation ohnehin eine Abscheidung unerwünschter Zusatzstoffe erfolgt. Die gewonnene Betriebssicherheit äußert sowohl in einer höheren Verfügbarkeit des Verdichters als auch in einer hohen Sicherheit gegen verstopfende Hydratbildung in der sich an die Verdichtereinheit anschließenden Pipeline.
Die Einspritzung des Frostschutzmittels kann in dem Ansaugstutzen oder direkt in dem Verdichter erfolgen. Eine
Beaufschlagung von Bauelementen der Verdichtereinheit mit dem Frostschutzmittel ist insbesondere für die Lager, den elektrischen Motor und sonstige bewegte Bauteile zweckmäßig. Besteht eine besondere Gefährdung der Hydratbildung in dem Überströmbereich einzelner Verdichterstufen kann auch hier zweckmäßig eine Einspritzung von Frostschutzmittel erfolgen. Primäres Anwendungsgebiet der Erfindung ist die Förderung von Erdgas, da hier die Gefahr der Bildung von Gashydraten verhältnismäßig hoch ist.
Insbesondere vermögen verschiedene Alkohole die Sicherheit gegen ein Gefrieren der Gase zu gewährleisten. Sowohl aus wirtschaftlichen als auch technischen Gründen ist die Einspritzung von Methyl-Ethylen-Glycol sinnvoll.
Eine etwas sparsamere Variante, eine Sicherheit gegen die Hydratbildung zu erlangen, liegt darin vor jedem Start der
Verdichtereinheit ein Frostschutzmittel an den entscheidenden Stellen der Verdichtereinheit einzuspritzen, insbesondere an den zuvor genannten Stellen. Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass vor jedem planmäßigen Maschinenhalt eine Menge des Frostschutzmittels an den sensiblen Stellen der Verdichtereinheit eingespritzt wird. Besonders zweckmäßig ist der Einsatz des Frostschutzmittels sowohl vor jedem Start als auch vor jedem Maschinenhalt. Im Falle des Nothalts bzw. Trips der Verdichtereinheit steht der schnellstmögliche Stopp der Maschine in dem Vordergrund des Interesses, so dass ein vorheriges Einspritzen des
Frostschutzmittels in der Regel nicht möglich sein dürfte. Eine andere Möglichkeit liegt darin, gleichzeitig mit der Initiierung des Maschinenhalts die Einspritzung des Frostschutzmittels zu veranlassen.
Im Folgenden ist die Erfindung anhand eines speziellen
Ausführungsbeispiels unter Bezugnahme auf Zeichnungen näher beschrieben. Die gezeigte Ausführungsform ist lediglich zu Verdeutlichung als Beispiel der Erfindung zu verstehen. Es zeigt :
Figur 1 eine schematische Darstellung eines
Längsschnitt durch eine erfindungsgemäße Verdichtereinheit und die wesentlichen benachbarten Module, welche nach dem erfindungsgemäßen Verfahren betrieben wird.
Figur 1 zeigt schematisch einen Schnitt längs einer erfindungsgemäßen Verdichtereinheit 1, welche als wesentliche Bauteile einen Motor 2 und einen Verdichter 3 in einem gasdicht ausgebildeten Gehäuse 4 aufweist. Das Gehäuse 4 beherbergt den Motor 2 und den Verdichter 3. Im Bereich des Übergang von dem Motor 2 zu dem Verdichter 3 ist das
Gehäuse 4 mit einem Einlass 6 und einem Auslass 7 versehen, wobei durch den Einlass 6 mittels eines Ansaugstutzens 8 das zu verdichtende Fluid angesaugt wird und durch den Auslass 7 das verdichtete Fluid abströmt.
Die Verdichtereinheit 1 ist im Betrieb vertikal angeordnet, wobei ein Motorrotor 15 des Motors 2 über einem Verdichterrotor 9 des Verdichters 3 zu einer gemeinsamen Welle 19 vereint sind, die sich um eine gemeinsame vertikale Drehachse 60 dreht. Der Motorrotor 15 ist in einem ersten Radiallager 21 am oberen Ende des Motorrotors 15 gelagert.
Der Verdichterrotor 9 ist mittels eines zweiten Radiallagers 22 in unterer Position gelagert.
Am oberen Ende der gemeinsamen Welle 19 - also am oberen Ende des Motorrotors 15 - ist ein Axiallager 25 vorgesehen. Die Radiallager und das Axiallager arbeiten elektromagnetisch und sind jeweils gekapselt ausgeführt. Die Radiallager erstrecken sich hierbei in Umfangsrichtung um die jeweilige Lagerstelle der Welle 19 und sind hierbei 360° umlaufend und ungeteilt ausgebildet .
Der als Zentrifugalverdichter ausgebildete Verdichter 3 weist drei Verdichterstufen 11 auf, die jeweils mittels einer Überströmung 33 in Verbindung stehen. Die sich an den Verdichterstufen 11 ergebenen Druckdifferenzen sorgen für einen Schub an dem Verdichterrotor 9, der sich auf dem Motorrotor 15 überträgt und entgegen der Gewichtskraft des sich ergebenden gesamten Rotors aus Verdichterrotor 9 und Motorrotor 15, gerichtet ist, so dass ein im Nennbetrieb weitestgehender Schubausgleich erfolgt. Auf diese Weise kann das Axiallager 25 vergleichsweise kleiner dimensioniert sein als bei einer horizontalen Anordnung der Drehachse 60.
Die elektromagnetischen Lager 21, 22, 25 sind mittels eines nicht im Einzelnen dargestellten Kühlsystems auf Betriebstemperatur gekühlt, wobei das Kühlsystem eine Anzapfung in einer Überströmung 33 des Verdichters 3 vorsieht. Von der Anzapfung wird mittels Rohrleitungen ein Teil des Fördermediums, welches vorzugsweise Erdgas ist, durch einen Filter geleitet und anschließend durch zwei separate Rohrleitungen zu den jeweils äußeren
Lagerstellen (erstes Radiallager 21 und zweites Radiallager 22 sowie Axiallager 25) geführt. Diese Kühlung mittels des kalten Fördermediums (80) erspart zusätzliche Versorgungsleitungen . Der Motorrotor 15 ist von einem Stator 16 umgeben, der eine Kapselung aufweist, so dass das aggressive Fördermedium 80 Wicklungen des Stators 16 nicht beschädigt. Die Kapselung ist hierbei bevorzugt so ausgelegt, dass sie den vollen Betriebsdruck zu ertragen vermag. Dies auch deshalb, weil eine separate Kühlung für den Stator vorgesehen ist, in der ein eigenes Kühlmedium zirkuliert.
Der Verdichterrotor 9 weist zweckmäßig eine Verdichterwelle 10 auf, auf der die einzelnen Verdichterstufen 11 montiert sind. Dies kann bevorzugt mittels einer thermischen Schrumpfpassung erfolgen. Ebenso ist ein Formschluss, beispielsweise mittels Polygonen möglich. Eine andere Ausführungsform sieht eine Schweißung verschiedener Verdichterstufen 11 an einander vor, aus der ein einstückiger Verdichterrotor 9 resultiert.
Das Fördermedium 80 bzw. Erdgas NG gelangt aus dem natürlichen Reservoir zunächst in einen
Kondensatabscheider 81, welcher Kondensate 82, unter anderem Wasser, von der gasförmigen Phase abtrennt. Die Kondensate 82 gelangen in eine Kondensatleitung 84, in welche auch eine nachfolgende Entwässerungsleitung 95 einmündet, die in der Verdichtereinheit abgeschiedene Kondensate in die Kondensatleitung 84 einleitet. Die Kondensate 82 werden von einer Kondensatpumpe 85 in eine Mischeinheit 86 gefördert, in der eine Vermischung mit dem verdichteten Erdgas NG bzw.
Fördermedium 80 erfolgt. Das resultierende Gemisch wird in eine Pipeline 87 in Richtung einer Basisstation 89 gefördert.
Die Verdichtereinheit 1 weist ein System zur Verteilung von Frostschutzmittel 73 umfassend Verteilleitungen 94 und Einspritzmodule 72 auf. Das Frostschutzmittel 73 wird aus einem Sammeltank 92 mittels einer Dosierpumpe 93 zu den verschiedenen Einspritzmodulen 72 an der Verdichtereinheit 1 befördert. Mittels der Einspritzmodule 72 werden lokal das erste Radiallager 21, das Axiallager 25, das zweite Radiallager 22, die Überströmungen 33 beaufschlagt. An dem
Ansaugstutzen 8 befindet sich ein weiteres Einspritzmodul 72, mittels dessen das Frostschutzmittel 73 direkt in das angesaugte Fördermedium 80 eingespritzt wird.
Das eingespritzte Frostschutzmittel 73 wird teilweise, nämlich soweit in der Verdichtereinheit 1 abgeschieden, durch eine Entwässerung 96 (am „Single-Drain-Point") der
Verdichtereinheit 1 in die Entwässerungsleitung 95 abgegeben. Der Rest wird gemeinsam mit dem verdichteten Erdgas NG durch den Auslass 7 in die Mischeinheit 86 gefördert. Durch die Pipeline 87 wird das Frostschutzmittel 73, das Erdgas NG und das Kondensat 82 zur Basisstation 89 an die Erdoberfläche befördert. Eine Hydratbildung in der Pipeline 87 ist aufgrund des mitgetragenen Frostschutzmittels 73 ausgeschlossen. Vor dem Erreichen der Basisstation 89 sorgt ein weiterer Kondensatabscheider 88 für eine Trocknung des Erdgases NG, wobei das Kondensat einschließlich des Frostschutzmittels 73 in einen Aufbereiter 90 gelangt, in welchem das Frostschutzmittel 73 von dem übrigen Kondensat 82 abgetrennt wird. Das aufbereitete Frostschutzmittel 73 gelangt mittels einer Rückführleitung 91 entlang der Pipeline 87 zurück in den Sammeltank 92. Der geschlossene Kreislauf des
Frostschutzmittels 73 gewährleistet eine Sicherheit gegen Hydratbildung einerseits und andererseits die Einhaltung einschlägiger Umweltstandards.

Claims

Patentansprüche
1. Verfahren zum Betrieb einer Verdichtereinheit (1), insbesondere für den Unterwasserbetrieb, dadurch gekennzeichnet, dass Bauelemente der Verdichtereinheit (1) mit
Frostschutzmittel (73) beaufschlagt werden und/oder in den Strömungspfad des zu verdichtenden Fördermediums (Erdgas NG) ein Frostschutzmittel (73) eingespritzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Frostschutzmittel (73) direkt in den Verdichter (3) der Verdichtereinheit (1) eingespritzt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Frostschutzmittel (73) direkt in einen Ansaugstutzen (8) für das Fördermedium (Erdgas NG) eingespritzt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
Lager (Radiallager 21, 22, Axiallager 25) oder ein Motor (2) mit dem Frostschutzmittel (73) beaufschlagt werden.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
Frostschutzmittel (73) in eine Überströmung (33) zwischen zwei Verdichterstufen (11) des Verdichters (3) der Verdichtereinheit (1) eingespritzt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fördermedium Erdgas (NG) ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Frostschutzmittel (73) Methylethylenglycol (MEG) ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Frostschutzmittel (73) vor dem Start der Verdichtereinheit (1) eingespritzt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Frostschutzmittel (73) nur vor dem Start der Verdichtereinheit (1) zugegeben wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Frostschutzmittel (73) vor einem Maschinenhalt der Verdichtereinheit (1) zugegeben wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Frostschutzmittel (73) nur vor dem Start und vor dem Maschinenhalt der Verdichtereinheit (1) zugegeben wird.
12. Verdichtereinheit zum Betrieb gemäß des Verfahrens nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an dem Ansaugstutzen (8) und/oder mindestens einem
Lager (Radiallager 21, 22, Axiallager 25) und/oder an dem Motor (2) und/oder an mindestens einer Überströmung (33) zwischen zwei Verdichterstufen (11) mindestens ein Einspritzmodul (72) angeordnet ist, mittels dessen Frostschutzmittel (73) in den Strömungspfad des zu verdichtenden Fördermediums einspritzbar ist oder das entsprechende Bauteil mit Frostschutzmittel (73) beaufschlagbar ist.
PCT/EP2007/052755 2006-03-24 2007-03-22 Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit WO2007110368A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI0709145-1A BRPI0709145A2 (pt) 2006-03-24 2007-03-22 método para a operação de uma unidade compressora, e uma unidade compressora associada
EP07727230A EP1999376A1 (de) 2006-03-24 2007-03-22 Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit
US12/225,251 US8262365B2 (en) 2006-03-24 2007-03-22 Method for operation of a compressor unit, and associated compressor unit
NO20084446A NO20084446L (no) 2006-03-24 2008-10-22 Fremgangsmate for a drive en kompressorenhet og assosiert kompressorenhet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06006071.2 2006-03-24
EP06006071 2006-03-24

Publications (1)

Publication Number Publication Date
WO2007110368A1 true WO2007110368A1 (de) 2007-10-04

Family

ID=38179827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052755 WO2007110368A1 (de) 2006-03-24 2007-03-22 Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit

Country Status (7)

Country Link
US (1) US8262365B2 (de)
EP (1) EP1999376A1 (de)
CN (1) CN101410625A (de)
BR (1) BRPI0709145A2 (de)
NO (1) NO20084446L (de)
RU (1) RU2396465C2 (de)
WO (1) WO2007110368A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103810A1 (de) * 2008-03-19 2009-09-23 Siemens Aktiengesellschaft Kompressoreinheit
US9555036B2 (en) 2012-08-24 2017-01-31 Glaxosmithkline Llc Pyrazolopyrimidine compounds
EP3514396A1 (de) 2018-01-22 2019-07-24 Siemens Aktiengesellschaft Anordnung mit einem rotor und zwei lagern

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2347709T3 (es) * 2006-02-03 2010-11-03 Siemens Aktiengesellschaft Unidad de compresor.
JP2016023452A (ja) * 2014-07-18 2016-02-08 三菱重工業株式会社 圧縮機システム、これを備える海中生産システム、及び圧縮機の洗浄方法
JP2016023578A (ja) * 2014-07-18 2016-02-08 三菱重工業株式会社 圧縮機システム、これを備える海中生産システム、及び圧縮機の洗浄方法
ITUB20150643A1 (it) * 2015-05-22 2016-11-22 Nuovo Pignone Tecnologie Srl Motocompressore per installazioni sottomarine
JP7108515B2 (ja) 2018-10-25 2022-07-28 三菱重工コンプレッサ株式会社 圧縮機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB370003A (en) * 1930-12-29 1932-03-29 Benny Lockspeiser Improvements in or relating to compressed air or gas systems or apparatus
US4768888A (en) * 1987-04-29 1988-09-06 Mcneil (Ohio) Corporation Unitary bearing member and motor incorporating the same
DE19623553A1 (de) * 1996-06-13 1997-12-18 Klein Schanzlin & Becker Ag Flüssigkeitsgefüllter Unterwassermotor
WO2005003512A1 (en) * 2003-07-02 2005-01-13 Kvaerner Oilfield Products As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676847B2 (en) * 2000-02-25 2004-01-13 Ashland Inc. Monocarboxylic acid based antifreeze composition for diesel engines
GB0204139D0 (en) * 2002-02-21 2002-04-10 Alpha Thames Ltd Electric motor protection system
US6955705B1 (en) * 2004-06-02 2005-10-18 Rdc Research Llc Method and system for compressing and dehydrating wet natural gas produced from low-pressure wells
JP4747775B2 (ja) * 2005-01-11 2011-08-17 株式会社豊田自動織機 スクロール型圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB370003A (en) * 1930-12-29 1932-03-29 Benny Lockspeiser Improvements in or relating to compressed air or gas systems or apparatus
US4768888A (en) * 1987-04-29 1988-09-06 Mcneil (Ohio) Corporation Unitary bearing member and motor incorporating the same
DE19623553A1 (de) * 1996-06-13 1997-12-18 Klein Schanzlin & Becker Ag Flüssigkeitsgefüllter Unterwassermotor
WO2005003512A1 (en) * 2003-07-02 2005-01-13 Kvaerner Oilfield Products As Subsea compressor module and a method for controlling the pressure in such a subsea compressor module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103810A1 (de) * 2008-03-19 2009-09-23 Siemens Aktiengesellschaft Kompressoreinheit
WO2009115389A1 (en) * 2008-03-19 2009-09-24 Siemens Aktiengesellschaft Compressor unit
CN101978169A (zh) * 2008-03-19 2011-02-16 西门子公司 压缩机单元
US8113792B2 (en) 2008-03-19 2012-02-14 Siemens Aktiengesellschaft Compressor unit with pressure compensator
US9555036B2 (en) 2012-08-24 2017-01-31 Glaxosmithkline Llc Pyrazolopyrimidine compounds
EP3514396A1 (de) 2018-01-22 2019-07-24 Siemens Aktiengesellschaft Anordnung mit einem rotor und zwei lagern
WO2019141812A1 (de) 2018-01-22 2019-07-25 Siemens Aktiengesellschaft Anordnung mit einem rotor und zwei lagern

Also Published As

Publication number Publication date
US20090311108A1 (en) 2009-12-17
EP1999376A1 (de) 2008-12-10
RU2396465C2 (ru) 2010-08-10
US8262365B2 (en) 2012-09-11
NO20084446L (no) 2008-12-16
RU2008142114A (ru) 2010-04-27
CN101410625A (zh) 2009-04-15
BRPI0709145A2 (pt) 2011-06-28

Similar Documents

Publication Publication Date Title
EP1999376A1 (de) Verfahren zum betrieb einer verdichtereinheit, verdichtereinheit
WO2007110378A1 (de) Verdichtereinheit und montageverfahren
WO2007110271A1 (de) Verdichtereinheit und verwendung eines kühlmediums
EP1979622B1 (de) Verdichtereinheit
DE112005002969T5 (de) Hybridsteuerungssystem und -verfahren
DE2016169A1 (de) Einrichtung zur Versorgung der Kühlkanäle von Rotoren elektrischer Maschinen mit Kühlwasser
EP3108145B1 (de) Rotationsmaschine sowie verfahren für den wärmeaustausch in einer rotationsmaschine
DE112006003112T5 (de) Pumpe eines Roots-Typs und Brennstoffzellensystem
WO2017068073A1 (de) Trockengasdichtungssystem und strömungsmaschine mit einem trockengasdichtungssystem
DE8110016U1 (de) "spruehoelgekuehlter generator"
EP3115713B1 (de) Verfahren und anlage zur energiegewinnung aus geothermischer energie
EP3115712B1 (de) Verfahren und anlage zur verringerung des scalings bei der energiegewinnung aus geothermischer energie
EP2791512B1 (de) Wasserhebesystem und verfahren mit einem solchen system
EP3676484A1 (de) Kühlmittelpumpe mit anwendungsoptimiertem aufbau
WO2014095405A2 (de) Verfahren zur herstellung eines elektromotors und elektromotor
EP1741931B1 (de) Drehkolbenverdichter
DE1621529A1 (de) Verfahren fuer die Schutzschichtbildung auf den Stahlteilen von Unterwassermotoren zur Erhoehung der Lebensdauer von Unterwassermotorpumpen
AT520729B1 (de) Verfahren sowie Anlage zur Übertragung von Wärmeenergie aus oder an Grundwasser
DE102017218287A1 (de) Kraftstoffpumpe und Kraftstofffördereinheit
DE102017218172A1 (de) Verfahren zum Verhindern des Vereisens einer Wassereinspritzanlage einer Brennkraftmaschine
AT521042B1 (de) Verfahren und Vorrichtung zur Erhöhung der Abflusskapazität einer Freispiegelleitung
DE973094C (de) Kreiselpumpe
DE102017119241A1 (de) Rohr-Axialpumpe
DE102007057245A1 (de) Anlage für die geothermische Energiegewinnung und Verfahren zu deren Betrieb
DE102014014573A1 (de) Gemeinsame Verwendung einer Pipeline für Gas- und Flüssigkeitstransport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727230

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2007727230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007727230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780010512.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008142114

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12225251

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0709145

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080924