WO2007109618A2 - Procédé et appareil de détermination de l'altitude d'un dispositif mobile - Google Patents

Procédé et appareil de détermination de l'altitude d'un dispositif mobile Download PDF

Info

Publication number
WO2007109618A2
WO2007109618A2 PCT/US2007/064312 US2007064312W WO2007109618A2 WO 2007109618 A2 WO2007109618 A2 WO 2007109618A2 US 2007064312 W US2007064312 W US 2007064312W WO 2007109618 A2 WO2007109618 A2 WO 2007109618A2
Authority
WO
WIPO (PCT)
Prior art keywords
change
sensor
altitude
pressure
temperature
Prior art date
Application number
PCT/US2007/064312
Other languages
English (en)
Other versions
WO2007109618A3 (fr
Inventor
Thomas G. Wolf
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to BRPI0708990-2A priority Critical patent/BRPI0708990B1/pt
Priority to CN200780005006.6A priority patent/CN101379367B/zh
Priority to EP07758824.2A priority patent/EP1999431B1/fr
Priority to KR1020087022386A priority patent/KR101061756B1/ko
Priority to CA2636406A priority patent/CA2636406C/fr
Priority to JP2009501683A priority patent/JP5096453B2/ja
Publication of WO2007109618A2 publication Critical patent/WO2007109618A2/fr
Publication of WO2007109618A3 publication Critical patent/WO2007109618A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/008Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00 with calibration coefficients stored in memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/02Arrangements for preventing, or for compensating for, effects of inclination or acceleration of the measuring device; Zero-setting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/40Data acquisition and logging
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to mobile devices and more particularly to a method and apparatus for accurately determining the altitude of a mobiie device.
  • Position determination is an important and growing feature of cellular telephones and other handheld mobile devices.
  • the most prevalent approach to determining location is to embed Global Positioning System (GPS) navigation receiver capability into the mobile device.
  • GPS Global Positioning System
  • GPS-based positioning has limitations. GPS systems cannot resolve altitude accurately, in some larger and more complex devices, the GPS systems have been augmented with barometric pressure based altimeters. This provides a significant improvement in attitude accuracy.
  • a barometric altimeter responds to changes in pressure as well as changes in altitude. The altimeter can be fooled when a person enters or leaves climate-controlled rooms and buildings, or experiences other changes in environmental pressure.
  • the present invention minimizes the effects of environmental pressure changes on the determination of altitude.
  • GPS-based position determination is based upon determining the distance that the signal travels from the GPS satellites, so it is not very accurate in indoor environments and other locations, where satellite signals can be blocked, distorted or reflected.
  • the GPS-based position is less accurate in altitude, than in the horizontal position. This is why pressure-based altimeters have been added to more complex GPS systems in the past.
  • the addition of altimeters has not been implemented in low-cost consumer mobile devices because of the cost and size. There are several other limitations to using these prior art solutions.
  • the present method and apparatus minimizes the effects of e ⁇ vironmenta! pressure changes and temperature changes on the determination of altitude. Others have not solved this problem and consider it a limitation of pressure-based altimeters.
  • the method and apparatus herein consists of combining the pressure information with information from dead reckoning sensors, such as accelerometers, gyroscopes, and geomagnetic sensors, and information from temperature sensors to separate what constitutes a change in altitude from a change in environmentai pressure or temperature.
  • the simplest implementation consists of using the motion sensors to establish whether the device is at rest. If at rest, any changes in measured pressure must be environmental not altitude, and therefore should be used to recaiibrate the altimeter. This allows the system to automatically minimize barometric pressure (weather) and temperature changes on altitude measurements.
  • a more sophisticated implementation includes algorithms that interpret a rapid pressure change without associated vertical motion as a movement from one environment to another (entering a pressurized building for example), and recalibrates the altimeter for the pressure change. Similarly, when vertical acceleration is detected, the rate of vertical acceleration can be compared to the rate of pressure change, and appropriate adjustments can be made to the reported altitude.
  • An object of the present invention is to accurately determine the altitude of a mobile device taking into consideration environmental changes.
  • An advantage of the present invention is that it is a simple and inexpensive method of determining what type of environmental change is occurring and separating it from actual altitude changes.
  • the invention improves the effectiveness of a low cost pressure sensor used as an altitude sensor.
  • Fig. 1 is a block diagram depicting the components for the preferred embodiment.
  • Fig. 2 is a flow chart showing the steps involved for determining the actual change in altitude of a typical portable device.
  • mobile device refers to a device such as a cellular telephone, other wireless communication device r laptop computer, or other mobile positioning device.
  • atmospheric pressure typically varies by up to 2% depending upon weather conditions (low pressure systems vs. high pressure systems). Local atmospheric pressure also varies in an exponential manner with altitude. Near the earth's surface the scale height ho is about 9 km. For a height, h, above a reference location, the pressure is given by;
  • p ⁇ is the atmospheric pressure at the reference location
  • a pressure sensor could be used to determine changes in altitude precisely. Since other factors influence pressure, this cannot be applied directly. For example, the weather- related variations in pressure of 42% are equivalent to a change in altitude of ⁇ 182 m.
  • a pressure sensor alone cannot be used to resolve altitude to a resolution of 1 rn, as would be desired in identifying, for example, which floor of a building a person with a mobile device is on.
  • buildings or rooms within buildings can be maintained at slight negative or positive pressure relative to the outside or to other rooms, in order to manage the flow of contaminants, or to manage heating and cooling.
  • a room that is slightly positive in pressure will always have air flowing out of it, if there is an opening or leak. This wouid prevent outside dust from getting in through the opening.
  • This technique is commonly used in clean rooms used in manufacturing.
  • a containment room such as where hazardous fumes or biological hazards are used is usually maintained at a slightly lower pressure than its surroundings, so that even if a leak occurs, air flows inward, keeping the hazard contained in the room.
  • pressure differences are used within buildings to maintain the flow of heated or cooled air in a planned direction to optimize temperature control in the building. Elevated pressure in a building is also used to keep dust smog, or cold air from entering a building when doors are opened. These deliberate pressure differences are typically about 0.05% of standard atmospheric pressure, which is equivalent to changes in altitude of 4.4 m. This is much smailer than the weather-reiated changes, but stili significant, compared to the 3 m height of a typicai floor of a buiiding.
  • the scaie factor (volts/atmosphere) can also vary by up to 1 % as the temperature of the sensor changes. This can add an additional equivalent height variation of 90 m. Therefore, without compensation for these factors, it is not possible to use a pressure sensor to measure altitude with resolutions approaching 1 m.
  • the present invention provides a method for recognizing these various sources for change in the reading from a pressure sensor and isoiating those changes that truly correspond to a change in aititude. Information from other sensors is used to isoiate the source of the change in measured pressure, as shown in Fig. 1.
  • Fig. 1 shows a typical system contained in a rnobiie device.
  • the components of a typical system consist of a processor 10 for gathering and manipulating the data from the various sensors.
  • Processor 10 can be a dedicated processor or a shared processor; both of these are weli known in the art.
  • the sensors incSude one or more pressure sensors 12, one or more temperature sensors 14 and one or more motion sensors 16.
  • a memory component 18 is required to store the sensor data to determine the changes of the predetermined environment over a period of time. Again this component can be a dedicated or shared component.
  • Fig. 2 is a flow chart showing the iogic that enters into the determination of the actual altitude change.
  • actual altitude refers to a more accurate measure of altitude than that gained from a preliminary measurement by one or more pressure sensors.
  • the first step of the process is to determine whether a change in pressure is measured 20. if the pressure did not change 22, the system default determines that the aititude has not changed and the process repeats until a change in pressure is detected, if a pressure change is detected 24, a determination is made whether the motion sensors measured movement 26 of the mobile device. Sf the motion sensors detect movement 28, the next step is to determine whether the movement is in a vertical direction 30.
  • the pressure change is treated as an altitude change 34 and the process ends 36. If the motion sensors do not detect any verticai movement 56, the pressure change is deemed to be a movement to a different environment 58 and the process ends 36 without changing the aititude.
  • the processor determines whether a change in temperature is detected by the temperature sensor 40. If there is no temperature change 42, the pressure change 24 is deemed to be a change in weather conditions 44 and the process ends 36. Since a temperature change in itself is not determinative, an additional safeguard is provided. If there is a temperature change 46, a determination is made whether the rate of change of the temperature corresponds to the rate of change of pressure 48.
  • the pressure change 24 is deemed to be a change in weather conditions 44 and the process ends 36, For example, if the pressure sensor's reading is known to change by 0.1% per degree of temperature change, and the temperature sensor reports a change in temperature of 10° over 10 minutes, then the pressure reading should change by about 1% over 10 minutes due to the temperature change. If the rate of change of pressure does not approximately equa! the rate of change that the temperature change should induce, the pressure change is due to something other than temperature.
  • the algorithm can be further refined by incorporating additional rate of change information. For example, weather changes are typically quite slow, exhibiting a gradual change over a period of hours, and then stabilizing at a new value. Passing through a door into a building or a pressurized room will occur in a matter of seconds, so the pressure vs. time profile would consist of two different constant values, with an abrupt transition between them in a matter of seconds. Similarly, an accelerometer that measured motion in the vertical direction would exhibit a particular acceleration vs. time profile. This would be different for a person ascending stairs , riding an escalator or an elevator, or driving up into the mountains. But in every case, the altitude derived from the pressure should exhibit a corresponding profile with time.
  • the present invention can also be used for altimeters that have temperature compensation b ⁇ iit in, thus obviating the need for a temperature sensor.
  • the motion sensors can still be used to refine pressure based-altitude measurements.
  • the methodologies described herein may be implemented by various means depending upon the application. For example, these methodologies may be implemented in hardware, firmware, software, or a combination thereof.
  • the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs) 1 programmable logic devices (PLDs), field programmable gate arrays (FPGAs) 1 processors, conf rollers, micro-controllers, microprocessors , electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • Any machine readable medium tangibly embodying instructions may be used in implementing the methodologies described herein.
  • software codes may be stored in a memory, such as a memory of a mobile device, and executed by a processor or microprocessor.
  • Memory may be implemented within the processor or external to the processor.
  • memory refers to any type of long term, short term, volatile, nonvolatile ! or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
  • a mobile device may receive signals from navigation system satellites from Galileo (to be implemented in the future), GLONASS, NAVSTAR, GNSS, a system that uses satellites from a combination of these systems, or any future satellite positioning system ("SPS"), for use in determining position location.
  • SPS satellite positioning system
  • an SPS will also be understood to include pseudoiite systems
  • Assisted GPS techniques are also commonly used to determine mobile device position.
  • satellite positioning systems may be used alone or in combination with terrestrial positioning systems and methodologies.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Fluid Pressure (AREA)
  • Navigation (AREA)
  • Pressure Sensors (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

L'invention concerne un procédé et un appareil servant à combiner des informations de pression provenant de capteurs de pression, des informations de mouvement émanant de capteurs d'estime ou d'autres capteurs de mouvement, comme des accéléromètres, des gyroscopes et des capteurs géomagnétiques, et des informations thermiques provenant de capteurs thermiques, afin de distinguer un changement d'altitude d'un changement de pression ou de température ambiante. Un changement de pression mesurée sans un quelconque mouvement ou changement thermique doit être un changement de pression barométrique lié aux conditions météorologiques. Si un changement thermique associé a lieu, mais qu'aucun mouvement ne se produit, et que la vitesse de changement est trop rapide pour un changement météorologique normal, le changement mesuré représente un changement de la sensibilité du capteur de pression avec la température, et l'étalonnage du capteur peut être ajusté. Un changement rapide de pression associé à un mouvement horizontal mais non à un mouvement vertical mesurable représente un mouvement dans un environnement de pression différente. Seuls les changements de pression associés à un mouvement vertical mesurable constituent de véritables changements d'altitude.
PCT/US2007/064312 2006-03-20 2007-03-19 Procédé et appareil de détermination de l'altitude d'un dispositif mobile WO2007109618A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0708990-2A BRPI0708990B1 (pt) 2006-03-20 2007-03-19 Método e equipamento para determinação de altitude de um dispositivo móvel
CN200780005006.6A CN101379367B (zh) 2006-03-20 2007-03-19 用于确定移动装置的海拔高度的方法和设备
EP07758824.2A EP1999431B1 (fr) 2006-03-20 2007-03-19 Procédé et appareil de détermination de l'altitude d'un dispositif mobile
KR1020087022386A KR101061756B1 (ko) 2006-03-20 2007-03-19 이동 디바이스의 고도를 결정하는 방법 및 장치
CA2636406A CA2636406C (fr) 2006-03-20 2007-03-19 Procede et appareil de determination de l'altitude d'un dispositif mobile
JP2009501683A JP5096453B2 (ja) 2006-03-20 2007-03-19 移動体装置の高度を判断する方法及び装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US78460906P 2006-03-20 2006-03-20
US60/784,609 2006-03-20
US11/687,521 2007-03-16
US11/687,521 US8712713B2 (en) 2006-03-20 2007-03-16 Method and apparatus for determining the altitude of a mobile device

Publications (2)

Publication Number Publication Date
WO2007109618A2 true WO2007109618A2 (fr) 2007-09-27
WO2007109618A3 WO2007109618A3 (fr) 2007-11-08

Family

ID=38457696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/064312 WO2007109618A2 (fr) 2006-03-20 2007-03-19 Procédé et appareil de détermination de l'altitude d'un dispositif mobile

Country Status (9)

Country Link
US (1) US8712713B2 (fr)
EP (1) EP1999431B1 (fr)
JP (1) JP5096453B2 (fr)
KR (1) KR101061756B1 (fr)
CN (1) CN101379367B (fr)
BR (1) BRPI0708990B1 (fr)
CA (1) CA2636406C (fr)
RU (1) RU2401417C2 (fr)
WO (1) WO2007109618A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449540A (en) * 2007-05-21 2008-11-26 Suunto Oy Calibration Method for the Altitude Reading of a Mobile Device
US9612114B2 (en) 2013-01-13 2017-04-04 Qualcomm Incorporated Access network node based barometric reference pressure network

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200825768A (en) * 2006-12-13 2008-06-16 Asustek Comp Inc Portable computer and mobile phone
US20090112696A1 (en) * 2007-10-24 2009-04-30 Jung Edward K Y Method of space-available advertising in a mobile device
US9513699B2 (en) * 2007-10-24 2016-12-06 Invention Science Fund I, LL Method of selecting a second content based on a user's reaction to a first content
JP5225286B2 (ja) * 2007-11-09 2013-07-03 三菱電機株式会社 エレベータ気圧制御装置
US8700322B2 (en) * 2008-02-20 2014-04-15 Qualcomm Incorporated Efficient use of expected user altitude data to aid in determining a position of a mobile station
US9035829B2 (en) 2008-09-10 2015-05-19 Nextnav, Llc Wide area positioning systems and methods
US8917209B2 (en) 2009-09-10 2014-12-23 Nextnav, Llc Coding in a wide area positioning system (WAPS)
US9057606B2 (en) 2009-09-10 2015-06-16 Nextnav, Llc Wide area positioning system
AU2009291759B2 (en) 2008-09-10 2015-07-09 Nextnav, Llc Wide area positioning system
BRPI0917755A2 (pt) * 2008-12-15 2016-02-23 Koninkl Philips Electronics Nv método para a calibração de um detector de queda, método para o ajuste de um detector de queda, aparelho para a calibração de um detector de queda e detector de queda
DE102009001565A1 (de) * 2009-03-16 2010-09-23 Robert Bosch Gmbh Zustandserfassungseinrichtung zur Befestigung an einem Lebewesen
DE102009002314A1 (de) * 2009-04-09 2010-07-08 Robert Bosch Gmbh Ebenenfinder
US9291712B2 (en) 2009-09-10 2016-03-22 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
US9372266B2 (en) 2009-09-10 2016-06-21 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
JP5105492B2 (ja) * 2009-12-03 2012-12-26 独立行政法人産業技術総合研究所 移動体の高度計測装置
RU2444451C2 (ru) * 2010-04-05 2012-03-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Мобильный комплекс навигации и топопривязки
CN102381517B (zh) * 2010-09-06 2014-01-15 深圳市宇恒互动科技开发有限公司 一种物体运输过程的记录方法及记录器
US9234965B2 (en) * 2010-09-17 2016-01-12 Qualcomm Incorporated Indoor positioning using pressure sensors
CN103238041B (zh) * 2010-11-12 2018-01-19 内克斯特纳夫有限公司 广域定位系统
CN102175215A (zh) * 2011-02-24 2011-09-07 上海德科电子仪表有限公司 车载海拔监测装置及方法
DE102011076245A1 (de) * 2011-05-20 2012-07-12 Continental Automotive Gmbh Anordnung und Verfahren zur Lokalisierung eines Fahrzeugs
US9176217B2 (en) 2011-08-02 2015-11-03 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
US8818402B1 (en) 2012-02-14 2014-08-26 Sprint Spectrum L.P. Adjusting initial wireless coverage area transmit power based on device altitude
US8639265B1 (en) 2012-02-14 2014-01-28 Sprint Spectrum L.P. Advertising wireless coverage areas based on device altitude
US8818403B1 (en) 2012-02-14 2014-08-26 Sprint Spectrum L.P. Adjusting wireless coverage area resource assignment based on device altitude
EP2667280A1 (fr) * 2012-05-23 2013-11-27 Nxp B.V. Système de commande de dispositif et procédé de détermination d'altitude
WO2013184701A1 (fr) 2012-06-05 2013-12-12 Arun Raghupathy Systèmes et procédés pour un positionnement de localisation d'un dispositif utilisateur
US9599632B2 (en) * 2012-06-22 2017-03-21 Fitbit, Inc. Fitness monitoring device with altimeter
RU2522462C2 (ru) * 2012-09-03 2014-07-10 Игорь Николаевич Кочергин Полуавтоматическое устройство коррекции высоты полета при взлете и посадке самолетного электромеханического барометрического высотомера
US9390279B2 (en) 2012-09-11 2016-07-12 Nextnav, Llc Systems and methods for providing conditional access to transmitted information
US9286490B2 (en) 2013-09-10 2016-03-15 Nextnav, Llc Systems and methods for providing conditional access to transmitted information
US10712174B2 (en) * 2012-10-10 2020-07-14 Honeywell International Inc. Filter activation and deactivation based on comparative rates
CN103902017B (zh) * 2012-12-27 2018-04-17 北京京东尚科信息技术有限公司 移动终端及信息采集方法
US9357355B2 (en) 2013-01-14 2016-05-31 Qualcomm Incorporated Region determination control
KR20180030719A (ko) * 2013-03-15 2018-03-23 로베르트 보쉬 게엠베하 실내 네비게이션을 지원하는 분산된 기압계 네트워크
US9131347B2 (en) * 2013-04-26 2015-09-08 Qualcomm Incorporated Utilizing a pressure profile to determine a location context identifier
EP2988094A4 (fr) 2013-05-31 2017-03-22 Asahi Kasei Kabushiki Kaisha Dispositif d'identification de changements dans une direction verticale à l'aide de valeurs de mesure de pression
US9329036B2 (en) * 2014-02-21 2016-05-03 Qualcomm Incorporated Mobile device positioning based on independently obtained barometric pressure measurements
US10094905B2 (en) 2014-02-28 2018-10-09 Qualcomm Incorporated Opportunistic calibration of a barometer in a mobile device
CN105277171B (zh) * 2014-07-16 2019-01-01 中国移动通信集团公司 一种海拔高度的记录方法、记录装置及终端
EP3557184A1 (fr) * 2014-08-15 2019-10-23 Sony Corporation Appareil et procédés de télécommunications
US20160102995A1 (en) * 2014-10-10 2016-04-14 Qualcomm Incorporated Opportunistic calibration of a barometer in a mobile device
FI20146037A (fi) 2014-11-26 2016-05-27 Si Tecno Oy Menetelmä rakennuksen eri tilojen paine-eromittausta varten
US9671300B2 (en) 2015-03-16 2017-06-06 Apple Inc. Electronic devices with low-noise pressure sensors
US9952354B2 (en) 2015-09-11 2018-04-24 At&T Intellectual Property I, L.P. User equipment local barometric calibration
CN105224628A (zh) * 2015-09-24 2016-01-06 湖北文理学院 基于海拔高度的视觉资料播放方法及装置
JP6185031B2 (ja) * 2015-09-28 2017-08-23 京セラ株式会社 携帯機器、制御方法及び制御プログラム
WO2017092006A1 (fr) 2015-12-03 2017-06-08 SZ DJI Technology Co., Ltd. Systèmes à double baromètre pour amélioration de l'estimation d'altitude
WO2017104646A1 (fr) * 2015-12-18 2017-06-22 株式会社リコー Système de traitement d'informations, dispositif de traitement d'informations, procédé de traitement d'informations et support d'enregistrement
CN107014351B (zh) * 2016-01-28 2019-07-19 上海博泰悦臻网络技术服务有限公司 获取行驶车辆理想海拔值的方法及系统
CA3054590A1 (fr) * 2016-04-05 2017-10-12 Fathom Systems Inc. Etalonnage automatique de sortie de capteur de pression pour determination fiable d'altitude
US9686644B1 (en) 2016-05-15 2017-06-20 Fmr Llc Geospatial-based detection of mobile computing device movement
US10469653B2 (en) 2016-05-15 2019-11-05 Fmr Llc Proximity and movement detection of a mobile computing device during a user session
US9883403B2 (en) 2016-05-15 2018-01-30 Fmr Llc Monitoring presence of authorized user during user session based upon mobile computing device motion
US11761765B2 (en) 2016-09-09 2023-09-19 Nextnav, Llc Calibrating a pressure sensor
CN117782153A (zh) 2016-09-09 2024-03-29 内克斯特纳夫有限公司 用于校准不稳定传感器的系统和方法
US10254188B2 (en) 2016-09-09 2019-04-09 Qualcomm Incorporated Adaptive pressure sensor sampling rate
JP6297663B1 (ja) * 2016-12-13 2018-03-20 京セラ株式会社 電子機器、補正制御方法、及び補正制御プログラム
US10180319B2 (en) * 2016-12-22 2019-01-15 Nortek Security & Control Llc Device and method to determine height of a panel using elevation determination
JP6801158B2 (ja) * 2017-03-13 2020-12-16 オムロン株式会社 環境センサ
KR102350497B1 (ko) * 2017-06-20 2022-01-14 삼성전자주식회사 모션 센서로부터 획득된 데이터를 이용하여 기압 센서의 데이터를 결정하는 방법 및 이를 구현한 전자 장치
CN107720469B (zh) * 2017-08-18 2019-11-08 杭州岁丰信息技术有限公司 一种通过温度气压传感器测量电梯楼层的方法及系统
US11009376B2 (en) * 2017-10-23 2021-05-18 Polaris Wireless, Inc. Estimation of the location of a wireless terminal, based on characterizing a pressure wave
US10602326B2 (en) 2017-10-23 2020-03-24 Polaris Wireless, Inc. Detection of the occurrence of an event, based on barometric pressure measurements
CN108020374B (zh) * 2017-11-30 2020-01-14 北京小米移动软件有限公司 气压值确定方法及装置
CN108362926A (zh) * 2018-01-10 2018-08-03 云南电网有限责任公司电力科学研究院 一种电压等级识别方法及装置
JP6477950B2 (ja) * 2018-04-03 2019-03-06 株式会社ニコン 撮像装置
CN112534208B (zh) * 2018-08-09 2023-09-05 内克斯特纳夫有限公司 估计建筑物两个楼层之间高度差以用于估计两个楼层之一的高度或海拔高度的系统和方法
US10165543B1 (en) * 2018-08-13 2018-12-25 Mapsted Corp. Method and system for mobile device localization in extreme ambient conditions
US10408914B1 (en) 2018-09-28 2019-09-10 International Business Machines Corporation Enhanced elevation detection for emergency response systems
CN109458986A (zh) * 2018-11-12 2019-03-12 吴基玄 一种海拔高度计量装置
CN111664834A (zh) * 2019-03-07 2020-09-15 中国科学院上海高等研究院 室内移动体的高程位置估算方法/系统、存储介质及设备
CN112723068B (zh) * 2021-01-05 2022-11-01 纳恩博(北京)科技有限公司 电梯轿厢定位方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002944A1 (fr) * 1989-08-25 1991-03-07 Peet Bros. Company, Inc. Altimetre electronique
EP0733879A1 (fr) * 1995-03-20 1996-09-25 CATEYE Co., Ltd. Dispositif pour la mesure d'altitude
US6266583B1 (en) * 2000-03-30 2001-07-24 Litton Systems, Inc. System and method for improving the accuracy of pressure altitude determinations in an inertial navigation system
EP1312891A2 (fr) * 2001-11-19 2003-05-21 Seiko Instruments Inc. Altimètre à détection de mouvement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731831A (en) * 1956-01-24 schaefer
US2691305A (en) * 1952-05-17 1954-10-12 Lackner Company Inc Barometric altimeter
US3264876A (en) * 1955-11-29 1966-08-09 M Ten Bosch Inc Altitude and vertical velocity meter
US3621718A (en) * 1969-07-07 1971-11-23 Leigh Instr Temperature-compensated pressure-responsive instrument
JPS5590811A (en) * 1978-12-28 1980-07-09 Naonobu Shimomura Barometric altimeter
US4263804A (en) * 1979-09-10 1981-04-28 Seemann Robert A Apparatus for directly measuring density altitude in an aircraft
US4319487A (en) * 1980-01-25 1982-03-16 Dale J. Thompson Baro data indicator
RU2018867C1 (ru) 1992-02-25 1994-08-30 Всесоюзный научно-исследовательский институт радиоаппаратуры Устройство определения высоты летательного аппарата в системах вторичной радиолокации
JPH08285582A (ja) 1995-04-11 1996-11-01 Yupiteru Ind Co Ltd 高度計及びそれを用いた高度補正方法
RU2128849C1 (ru) 1997-11-20 1999-04-10 Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики Радиоизотопный высотомер
US6216064B1 (en) * 1998-02-24 2001-04-10 Alliedsignal Inc. Method and apparatus for determining altitude
EP0996004B1 (fr) * 1998-10-20 2006-06-07 Asulab S.A. Altimètre à compensation barométrique, baromètre et système de prévision météorologique
JP3854047B2 (ja) * 2000-01-31 2006-12-06 セイコーインスツル株式会社 携帯型高度計および高度演算方法
RU2179710C2 (ru) 2000-03-07 2002-02-20 Государственный инженерный университет Армении Способ регулирования в процессе эксплуатации емкостного датчика абсолютного давления для определения высоты летательных аппаратов
JP2002267443A (ja) 2001-03-12 2002-09-18 Empex Instruments Inc 気圧高度計
US6640165B1 (en) * 2002-11-26 2003-10-28 Northrop Grumman Corporation Method and system of determining altitude of flying object
US7558671B2 (en) * 2006-01-18 2009-07-07 Oro Grande Technology Llc Ubiquitous personal information device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002944A1 (fr) * 1989-08-25 1991-03-07 Peet Bros. Company, Inc. Altimetre electronique
EP0733879A1 (fr) * 1995-03-20 1996-09-25 CATEYE Co., Ltd. Dispositif pour la mesure d'altitude
US6266583B1 (en) * 2000-03-30 2001-07-24 Litton Systems, Inc. System and method for improving the accuracy of pressure altitude determinations in an inertial navigation system
EP1312891A2 (fr) * 2001-11-19 2003-05-21 Seiko Instruments Inc. Altimètre à détection de mouvement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2449540A (en) * 2007-05-21 2008-11-26 Suunto Oy Calibration Method for the Altitude Reading of a Mobile Device
GB2449540B (en) * 2007-05-21 2009-12-02 Suunto Oy Calibration method and apparatus for a mobile device
US9612114B2 (en) 2013-01-13 2017-04-04 Qualcomm Incorporated Access network node based barometric reference pressure network

Also Published As

Publication number Publication date
EP1999431A2 (fr) 2008-12-10
RU2008141278A (ru) 2010-04-27
KR101061756B1 (ko) 2011-09-02
US8712713B2 (en) 2014-04-29
CA2636406C (fr) 2013-02-19
CA2636406A1 (fr) 2007-09-27
KR20080102195A (ko) 2008-11-24
CN101379367B (zh) 2014-02-26
JP2009530647A (ja) 2009-08-27
BRPI0708990B1 (pt) 2018-04-03
JP5096453B2 (ja) 2012-12-12
RU2401417C2 (ru) 2010-10-10
CN101379367A (zh) 2009-03-04
EP1999431B1 (fr) 2018-04-18
US20070218823A1 (en) 2007-09-20
BRPI0708990A2 (pt) 2011-06-14
WO2007109618A3 (fr) 2007-11-08

Similar Documents

Publication Publication Date Title
CA2636406C (fr) Procede et appareil de determination de l'altitude d'un dispositif mobile
US8566032B2 (en) Methods and applications for altitude measurement and fusion of user context detection with elevation motion for personal navigation systems
US20180234939A1 (en) Systems and methods for determining if a receiver is inside or outside a building or area
JP5295016B2 (ja) 全地球測位システム及び推測航法(gps&dr)一体型ナビゲーションシステム、及び、移動体のナビゲーション情報を提供するための方法
US7692583B2 (en) GPS position measuring device
US10241190B2 (en) Position estimation of a receiver using anchor points
US20150006100A1 (en) Enhancing geolocation using barometric data to determine floors at a location
US11073441B2 (en) Systems and methods for determining when to calibrate a pressure sensor of a mobile device
FI124586B (fi) Menetelmä ja laite korkeuden määrittämiseksi
US9188458B2 (en) Positional information providing system, navigation system, and terminal device
US20070093962A1 (en) Altitude correction of a navigational device
US11733038B2 (en) Floor height estimation and calibration of a mobile device
US20200260406A1 (en) Systems and methods for determining if a receiver is inside or outside a building or area
US10288424B2 (en) Systems and methods for improving an estimate of receiver altitude by mitigating the effects of transmitter heating
US11262198B2 (en) Pressure assisted positioning method and device thereof
US20200049501A1 (en) Systems and methods for estimating a difference in height between two floors in a building for use in estimating a height or an altitude of one of the two floors
US20230259216A1 (en) Systems and methods for determining contexts of mobile devices
US20170123073A1 (en) Method and apparatus for saving power during synthetic positioning in gnss receivers
Lammel et al. Indoor Navigation with MEMS sensors
CN116753951A (zh) 基于多传感器融合的行人定位方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2636406

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780005006.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009501683

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007758824

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008141278

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0708990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080918