WO2007108172A1 - Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board - Google Patents

Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board Download PDF

Info

Publication number
WO2007108172A1
WO2007108172A1 PCT/JP2006/323425 JP2006323425W WO2007108172A1 WO 2007108172 A1 WO2007108172 A1 WO 2007108172A1 JP 2006323425 W JP2006323425 W JP 2006323425W WO 2007108172 A1 WO2007108172 A1 WO 2007108172A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
exposure
photosensitive
compound
pattern
Prior art date
Application number
PCT/JP2006/323425
Other languages
French (fr)
Japanese (ja)
Inventor
Masanobu Takashima
Kazuhiro Fujimaki
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006072693A external-priority patent/JP2007248843A/en
Priority claimed from JP2006072747A external-priority patent/JP2007248846A/en
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007108172A1 publication Critical patent/WO2007108172A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer

Definitions

  • Photosensitive composition photosensitive film, photosensitive laminate, method for forming permanent pattern, and printed circuit board
  • the present invention relates to a photosensitive composition, a photosensitive film, a photosensitive laminate, and a photosensitive laminate capable of efficiently forming a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist pattern).
  • the present invention relates to a permanent pattern forming method using a laminate, and a printed board on which a permanent pattern is formed by the permanent pattern forming method.
  • a photosensitive film in which a photosensitive layer is formed by applying and drying a photosensitive composition on a support has been used.
  • a method for producing the permanent pattern for example, a laminate is formed by laminating the photosensitive film on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed. After the exposure, the photosensitive layer is developed to form a pattern, and then subjected to a curing process or the like to form the permanent pattern.
  • the photosensitive composition for the purpose of improving stability and the like, a copolymer of a (meth) acrylic monomer having an aliphatic hydrocarbon group having 1 to 6 carbon atoms and (meth) acrylic acid is used.
  • a photosensitive composition containing a polymer compound obtained by adding a (meth) acrylate compound having an epoxy group to a polymer see Patent Document 1.
  • a photosensitive composition comprising a polymer compound in which an unsaturated compound having an alicyclic epoxy group is added to a copolymer having a carboxyl group in a side chain for the same purpose as the above proposal is proposed. (See Patent Document 2).
  • the epoxy compound is roughly classified into a liquid form and a solid form.
  • the former has fluidity, so that the melt viscosity is lowered and the embedding property in the obtained film is good, while the glass transition temperature (Tg) and elastic modulus of the film are lowered.
  • Tg glass transition temperature
  • the latter is advantageous in that it lacks fluidity but does not lower the Tg of the resulting film and has a high elastic modulus. Therefore, in a photosensitive composition generally used for forming a liquid resist type permanent pattern, both are used together so that both advantages can be exhibited as much as possible.
  • the polymerizable compound is composed only of an aliphatic ester monomer (for example, dipentaerythritol hexaatalylate, trimethylolpropane tritalylate, trimethylolpropane trimethacrylate).
  • an aliphatic ester monomer for example, dipentaerythritol hexaatalylate, trimethylolpropane tritalylate, trimethylolpropane trimethacrylate.
  • PET polyethylene terephthalate
  • Patent Document 1 Japanese Patent Laid-Open No. 3-172301
  • Patent Document 2 Japanese Patent Laid-Open No. 10-10726
  • Patent Document 3 JP-A-7-199457
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the conventional problems and achieve the following objects.
  • Photosensitive composition, photosensitive film, photosensitive laminate, and method for forming permanent pattern using photosensitive laminate which can efficiently form patterns (protective film, interlayer insulating film, solder resist pattern, etc.) And a printed circuit board on which a pattern is formed by the permanent pattern forming method.
  • the present invention contains a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, and the binder includes an acidic group and an ethylene.
  • the photosensitive composition containing a high molecular compound having a ionic unsaturated bond in the side chain and the thermal cross-linking agent containing two or more types of rosins defines a binder and a thermal cross-linking agent used in combination. It was discovered that high-definition permanent patterns can be efficiently formed with high sensitivity and high resolution, excellent electroless gold plating resistance, and via and through-hole embedding.
  • the polymer composition includes a binder, two or more polymerizable compounds, a photopolymerization initiator, and a thermal crosslinking agent, and the binder has a polymer compound having an acidic group and an ethylenically unsaturated bond in a side chain.
  • Photosensitive composition containing two or more types of monomers and excellent in sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and high-efficiency permanent pattern We found that it was possible to form well. [0009]
  • the present invention is based on the above findings of the present inventor, and means for solving the above problems are as follows. That is,
  • the binder includes a polymer compound having an acidic group and an ethylenically unsaturated bond in the side chain, and is polymerizable.
  • the photosensitive composition is characterized in that at least one of the ionic compound and the thermal crosslinking agent contains two or more compounds.
  • a thermal crosslinking agent is an epoxy compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative.
  • Thermal crosslinking agent is an epoxy compound, oxetane compound, polyisocyanate compound, compound obtained by reacting polyisocyanate compound with a blocking agent, and melamine derivative power
  • the photosensitive composition according to any one of ⁇ 1> to ⁇ 2>, wherein two or more selected.
  • the thermal crosslinking agent is an epoxy compound, and the epoxy compound is selected from a novolac epoxy compound, a bisphenol epoxy compound, a heterocyclic ring-containing epoxy compound, and an alicyclic epoxy compound.
  • Thermal crosslinking agent power The photosensitive composition according to ⁇ 4>, comprising an epoxy compound having an epoxy equivalent of 90 to 400 gZeq. And an epoxy compound having an epoxy equivalent of 150 to 9, OOOg / eq.
  • thermosensitive composition according to any one of ⁇ 1> to ⁇ 5>, wherein at least one of the thermal crosslinking agents is alkali-insoluble.
  • thermosetting accelerator a thermosetting accelerator
  • ⁇ 12> The photosensitive composition according to any one of ⁇ 10> and ⁇ 11>, comprising a monomer having a mass average molecular weight of 200 to 9,000.
  • Noinda Noinda
  • ⁇ 16> The photosensitive composition according to any one of ⁇ 1> to ⁇ 15>, wherein the polymer compound contains 0.5 to 3. OmeqZg of an ethylenically unsaturated bond.
  • the acid group of the polymer compound is a carboxyl group, and the content of the carboxyl group in the polymer compound is 1.0 to 4. OmeqZg. It is a photosensitive composition.
  • ⁇ 18> The photosensitive composition according to any one of ⁇ 1> to ⁇ 17>, wherein the polymer compound has a mass average molecular weight of 10,000 or more and less than 100,000.
  • 1 2 and 3 represent a hydrogen atom or a monovalent organic group.
  • L represents an organic group and may be omitted.
  • Ar represents an aromatic group.
  • the photopolymerization initiator is a halogenated hydrocarbon derivative, hexaryl biimidazole, an oxime derivative, an organic peroxide, a thio compound, a ketone compound, or an aromatic onium salt.
  • ⁇ 21> The photosensitive composition according to any one of ⁇ 1> to ⁇ 20>, wherein the photosensitive composition contains a sensitizer.
  • a photosensitive film comprising a support and a photosensitive layer comprising the photosensitive composition according to any one of 1) to 22) on the support. .
  • ⁇ 26> The photosensitive film according to any one of ⁇ 23> to ⁇ 25>, which is long and wound in a roll.
  • a photosensitive laminate comprising a photosensitive layer made of the photosensitive composition according to any one of ⁇ 1> to 22 above on a substrate.
  • ⁇ 29> The photosensitive laminate according to ⁇ 28>, wherein the photosensitive layer is formed of the photosensitive film according to any one of ⁇ 23> to ⁇ 27>.
  • ⁇ 30> The photosensitive laminate according to any one of ⁇ 28> to ⁇ 29>, wherein the photosensitive layer has a thickness of 1 to 100 / ⁇ ⁇ .
  • a pattern forming apparatus comprising: a light irradiating unit capable of irradiating light; and a light modulating unit that modulates light from the light irradiating unit and exposes the photosensitive layer in the photosensitive film. It is.
  • the light irradiation unit irradiates light toward the light modulation unit.
  • the light modulation means modulates light received from the light irradiation means.
  • the light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit.
  • the pattern forming apparatus according to ⁇ 31> wherein the pattern is modulated according to a signal.
  • the light modulation unit since the light modulation unit includes the pattern signal generation unit, the light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated according to
  • the light modulation means has n pixel parts, and forms any less than n pixel parts continuously arranged from the n pixel parts.
  • the pattern forming apparatus according to ⁇ 33> can be controlled in accordance with pattern information.
  • the light from the light irradiating means is modulated at high speed by controlling any less than n pixel parts arranged continuously from the pixel parts in accordance with the pattern information.
  • ⁇ 34> The pattern forming apparatus according to any one of ⁇ 31>, ⁇ 33>, wherein the light modulation means is a spatial light modulation element.
  • ⁇ 35> The pattern forming apparatus according to ⁇ 34>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • ⁇ 36> The pattern forming apparatus according to any one of ⁇ 33>, ⁇ 35>, wherein the pixel part is a micromirror.
  • the light irradiation unit can synthesize and irradiate two or more lights.
  • the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth.
  • the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces, respectively, and couples them to the multimode optical fiber.
  • the pattern forming apparatus according to any one of the above 31> Karaku 37>.
  • the light irradiation unit may collect the laser beams irradiated with the plurality of laser forces by the collective optical system and couple the laser beams to the multimode optical fiber.
  • exposure is performed with exposure light having a deep focal depth.
  • the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • a permanent pattern forming method comprising exposing the photosensitive layer in the photosensitive laminate according to any one of ⁇ 28> to ⁇ 30>.
  • ⁇ 40> The method for forming a permanent pattern according to ⁇ 39>, wherein the exposure is performed using a laser beam having a wavelength of 350 to 415 nm.
  • the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head
  • the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and 42.
  • the permanent pattern forming method according to any one of ⁇ 39> to 41, which is performed by relatively moving the exposure head in a scanning direction.
  • the exposure head is subjected to N-exposure (where N is a natural number greater than or equal to 2) out of the usable pixel parts by the use pixel part designating unit. ) Is specified, and the pixel part is controlled by the pixel part control means so that only the pixel part specified by the use pixel part specifying means is involved in exposure.
  • N is a natural number greater than or equal to 2
  • the pixel part control means so that only the pixel part specified by the use pixel part specifying means is involved in exposure.
  • the exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for exposure of a joint area between the heads, which is an overlapped exposure area on the exposed surface formed by the plurality of exposure heads.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads.
  • the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, so that the mounting of the exposure head Variations in the resolution and density unevenness of the pattern formed in the connecting area between the heads on the exposed surface of the photosensitive layer due to a shift in the position and the mounting angle are equalized.
  • the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
  • the exposure is performed by a plurality of exposure heads, and the used pixel part specifying means is involved in exposure other than the inter-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the permanent pattern forming method according to ⁇ 43> wherein the pixel part used to realize N double exposure in an area other than the head-to-head connection area among the picture element parts is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion specifying unit overlaps the exposed surface formed by the plurality of exposure heads.
  • ⁇ 46> The method for forming a permanent pattern according to any one of ⁇ 42> to ⁇ 45>, wherein the N force of N exposure is a natural number of 3 or more.
  • the N force of N exposure is a natural number of 3 or more.
  • multiple drawing is performed by using a natural number of N force 3 or more in N double exposure.
  • a light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface
  • a pixel part selection means for selecting a pixel part to be
  • the used pixel part specifying means specifies the used pixel part to be used for realizing the N double exposure in units of rows.
  • the permanent pattern formation according to any one of ⁇ 42> to ⁇ 47> Is the method.
  • a light spot position detection unit based on at least two light spot positions detected, a light spot column direction on the surface to be exposed and a scanning direction of the exposure head when the exposure head is tilted
  • the actual inclination angle ⁇ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle ⁇ ' and the set inclination angle ⁇ .
  • This is a permanent pattern forming method as described in the above.
  • the actual inclination angle ⁇ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined.
  • the pixel parts from the first line to the T line are selected as the used pixel parts from ⁇ 47> to ⁇ 50>, the permanent pattern forming method according to any one of the above.
  • the permanent pattern forming method according to any one of the above ⁇ 47> Karaku 51, wherein the pixel part excluding the unused pixel part is selected as the used pixel part.
  • connection area between the heads which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads
  • the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area.
  • N (N ⁇ 1) column-by-column drawings are used for N of N double exposures.
  • N of N multiple exposures among the usable pixel parts can be specified.
  • (N-1) Reference exposure is performed using only the pixel part constituting the pixel part column for each column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
  • the above-mentioned pixel part rows constituting 1ZN rows are configured.
  • N of N double exposures among the usable pixel parts can be specified.
  • the reference exposure is performed using only the pixel part constituting the pixel part column for each 1ZN row, and a simple single-drawn pattern is obtained. As a result, the picture element part in the head-to-head connection region is easily specified.
  • the used pixel part specifying means includes a slit and a photodetector as light spot position detecting means, and an arithmetic unit connected to the photodetector as a pixel part selecting means ⁇ 57> !, a method for forming a permanent pattern as described in any of the above.
  • ⁇ 59> The method for forming a permanent pattern according to any one of ⁇ 42> to ⁇ 58>, which is a natural number of N force 3 or more and 7 or less in N double exposure.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs the light emitted from the light irradiation unit.
  • a pattern signal generation unit that generates a control signal based on the pattern information to be formed
  • the pattern signal generation unit outputs the light emitted from the light irradiation unit.
  • ⁇ 42> to ⁇ 59> to be modulated according to the generated control signal
  • the permanent pattern forming method according to any one of the above.
  • the light modulation unit includes the pattern signal generation unit, so that light emitted from the light irradiation unit is transmitted by the pattern signal generation unit. Modulated according to the generated control signal.
  • ⁇ 62> The method for forming a permanent pattern according to the above item 61, wherein the spatial light modulation element is a digital micromirror device (DMD).
  • DMD digital micromirror device
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber.
  • the light irradiating means can condense the laser light irradiated with each of the plurality of laser forces by the converging optical system and couple it to the multimode optical fiber. Therefore, exposure is performed with exposure light having a deep depth of focus. As a result, the exposure to the photosensitive film is performed with extremely high definition. For example, if the photosensitive layer is subsequently developed, A fine pattern is formed.
  • ⁇ 67> The permanent pattern forming method according to any one of ⁇ 39> to ⁇ 66>, wherein the photosensitive layer is developed after the exposure.
  • a high-definition pattern is formed by developing the photosensitive layer after the exposure.
  • ⁇ 68> The method for forming a permanent pattern according to ⁇ 67>, wherein a permanent pattern is formed after development.
  • ⁇ 69> A permanent pattern formed by the pattern forming method according to any one of ⁇ 39> and 68. Since the permanent pattern described in 68> is formed by the pattern forming method, it has excellent chemical resistance, surface hardness, heat resistance, and the like, and has high definition, and is a multilayer wiring board for semiconductors and components. This is useful for high-density mounting on PCBs and build-up wiring boards.
  • the pattern according to the above item 69 which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern. Since the permanent pattern described in 70> is at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the wiring has an external force or the like depending on the insulating property, heat resistance, etc. of the film. Protected from impact and bending.
  • Photosensitive composition capable of efficiently forming high-definition permanent patterns (interlayer insulation film, solder resist pattern, etc.) with excellent accuracy, resolution, tackiness, electroless gold plating resistance, and storage stability. It is possible to provide a permanent laminate, a permanent pattern forming method using the photosensitive laminate, a permanent pattern formed by the permanent pattern forming method, and a printed circuit board on which the permanent pattern is formed.
  • FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
  • FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
  • FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
  • FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
  • FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
  • FIG. 6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
  • FIG. 7A is a perspective view for explaining the operation of the DMD.
  • FIG. 7B is a perspective view for explaining the operation of the DMD.
  • FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
  • FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
  • FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
  • FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
  • FIG. 12 is an explanatory view showing an example of unevenness occurring in a no-turn on the exposed surface when there is a relative position shift between adjacent exposure heads.
  • FIG. 13 shows the positions of the exposure areas by the two adjacent exposure heads and the corresponding slits. It is the top view which showed arrangement
  • FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
  • FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
  • FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
  • FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
  • FIG. 18A is an explanatory view showing an example of magnification distortion.
  • FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
  • FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
  • FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
  • FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
  • FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
  • the photosensitive composition of the first aspect of the present invention includes a binder, a polymerizable compound, a photopolymerization initiator, and two or more thermal crosslinking agents, preferably includes a thermosetting accelerator, and if necessary. And other ingredients.
  • the thermal crosslinking agent preferably contains two or more compounds, and at least one of them is alkali-insoluble from the viewpoint of gold plating resistance.
  • the compound is not particularly limited and may be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability is improved.
  • an epoxy compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative are selected. Two or more types can be used.
  • “the thermal crosslinking agent includes two or more compounds” means, for example, that the thermal crosslinking agent includes two or more compounds as a mixture. To do.
  • Examples of the epoxy compound include an epoxy compound having at least two oxysilane groups in one molecule, and an epoxy compound including at least two epoxy groups having an alkyl group at the 3-position in one molecule. Etc.
  • Examples of the epoxy compound having at least two oxysilane groups in one molecule include, for example, a bixylenol type or biphenol type epoxy resin ("YX4000 Japan Epoxy Resin Co., Ltd.") or a mixture thereof.
  • Heterocyclic epoxy resins having an isocyanurate skeleton (“TEPIC; manufactured by Nissan Chemical Industries, Ltd.”, "Araldite PT810; manufactured by Ciba 'Specialty'Chemicals"), bisphenol A type epoxy resin, novolak Type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, talesol novolac type epoxy resin, halogenated epoxy resin Fats (for example, low brominated epoxy resins, high halogenated epoxy resins, brominated phenols Borak type epoxy resin), aryl group-containing bisphenol A type epoxy resin, trisphenol methane type epoxy resin, diphenol dimethanol type epoxy resin, phenol biphenol type epoxy resin, dicyclopentagen Type epoxy resin (“HP-7200, HP-7200H; manufactured by Dainippon Ink Chemical Co., Ltd.”), glycidylamine type epoxy resin (diaminodiphenylmethane type epoxy resin, dig
  • an epoxy compound containing at least two epoxy groups having an alkyl group at the ⁇ -position in one molecule can be used.
  • Particularly preferred are compounds containing an epoxy group whose position is substituted with an alkyl group (more specifically, a ⁇ -alkyl-substituted glycidyl group or the like).
  • the epoxy compound containing at least the epoxy group having an alkyl group at the j8 position is composed of at least one epoxy group in which all of two or more epoxy groups contained in one molecule may be 13 alkyl-substituted glycidyl groups.
  • the group may be a j8-alkyl substituted glycidyl group.
  • the epoxy compound containing an epoxy group having an alkyl group at the 13-position is based on the total amount of the epoxy compound contained in the photosensitive composition.
  • the ratio power of the / 3-alkyl-substituted glycidyl group in all epoxy groups is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the j8-alkyl-substituted glycidyl group is not particularly limited and can be appropriately selected according to the purpose.
  • epoxy compound containing an epoxy group having an alkyl group at the / 3-position for example, an epoxy compound derived from a polyvalent phenol compound and a j8-alkylephalohydrin is preferable.
  • the / 3-alkylepino and rhohydrin are not particularly limited and can be appropriately selected according to the purpose.
  • j8-methylepichlorohydrin, 13 methylepibromohydrin, 13- J8-methylepihalohydrin such as methylepifluorohydrin; 13-ethylepichlorohydrin, j8-ethylepibu mouth mohydrin, —ethylepifluorohydrin, etc.
  • ⁇ -propyle ⁇ -Propinoreepihalohydrin such as chlorohydrin, ⁇ -propylepib mouth mohydrin, ⁇ -propinoreepifluorohydrin; ⁇ 8-butinoreepichlorohydrin, j8-butylepib mouth mohydrin, j8-butylepihydrohydrin, etc. Pihalohydrin; and the like.
  • ⁇ -methylepino and rhohydrin are preferable from the viewpoints of reactivity with the polyhydric phenol and fluidity.
  • the polyhydric phenol compound is not particularly limited as long as it is a compound containing two or more aromatic hydroxyl groups in one molecule, and can be appropriately selected according to the purpose.
  • Bisphenol compounds such as bisphenol A, bisphenol F and bisphenol S, biphenol compounds such as biphenol and tetramethylbiphenol, naphthol compounds such as dihydroxynaphthalene and binaphthol, phenol-formaldehyde polycondensates, etc.
  • C1-C10 monoalkyl substituted phenol-formaldehyde polycondensate such as phenol novolac resin, creso-one formaldehyde polycondensate, etc.
  • C1-C10 dialkyl substituted phenol such as xylenol-formaldehyde polycondensate Ruformaldehyde polycondensates, bisphenol compounds such as bisphenol A formaldehyde polycondensates, etc.
  • Formaldehyde polycondensates, copolycondensates of phenol and monoalkyl-substituted phenols having 1 to 10 carbon atoms with formaldehyde, phenol Le compound and polyaddition products of di Bulle benzene and the like are preferable.
  • Examples of the epoxy compound containing an epoxy group having an alkyl group at the / 3-position include di-13-alkyl glycidyl ether of bisphenol A, di- ⁇ -alkyl glycidyl ether of bisphenol F, and bisphenol S 13 bisphenol compounds such as alkyl glycidyl ethers / 3 alkyl glycidyl ethers; biphenols ge 13 alkyl glycidyl ethers, tetramethylbiphenol diols 13 biphenol compounds such as alkyl glycidyl ethers 13 alkyl glycidyl ethers; dihydroxy Naphthalene Gee / 3 Alkyl Glycidyl Ether, Binaphthol Gee 13 Alkyl Glycidyl Ether, etc.
  • phenolic compound of formaldehyde polycondensate represented by the following structural formula (ii): j8-alkyl glycidyl ether.
  • R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 20.
  • R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • n is an integer of 0 to 20 Represents.
  • epoxy compounds containing an epoxy group having an alkyl group at the 13-position may be used alone or in combination of two or more. It is also possible to use an epoxy compound having at least two oxirane groups in one molecule and an epoxy compound containing an epoxy group having an alkyl group at the j8 position.
  • epoxy compound commercially available products and mixtures thereof described in JP-A-2005-182004 [0037] can also be suitably used.
  • Examples of the oxetane compound include oxetane compounds having at least two oxetal groups in one molecule.
  • polyisocyanate compound a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is at least 2 Aliphatic, cycloaliphatic or aromatic substituted aliphatic compounds containing two isocyanate groups may be derivatized.
  • bifunctional isocyanates eg, mixtures of 1,3 and 1,4-phenolic diisocyanates, 2, 4 and 2,6 toluene diisocyanates, 1, 3 —And 1, 4 xylylene diisocyanate, bis (4 —isocyanate monophenyl) methane, bis (4-isocyanatecyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate
  • Polyfunctional alcohols such as trimethylolpropane, pentalysitol, glycerin, etc .; an alkylene oxide adduct of the polyfunctional alcohol and the bifunctional isocyanate Adduct: Cyclic ring such as hexamethylene diisocyanate, hexamethylene 1,6 diisocyanate and its derivatives Trimer; and the like.
  • a compound obtained by reacting a blocking agent with the polyisocyanate compound that is, a compound obtained by reacting a blocking agent with the isocyanate group of polyisocyanate and its derivatives.
  • the agent include alcohols (for example, isopropanol, tert-butanol, etc.), ratatas (for example, epsilon prolatatam, etc.), phenols (for example, phenol, crezo-monore, p-tert-butinorephenol, p— sec Butylphenol, p-sec amylphenol, p-octylphenol, p noninolephenol, etc.), heterocyclic hydroxyl compounds (eg, 3-hydroxypyridine, 8-hydroxyquinoline, etc.), active methylene compounds (For example, dialkyl malonate, methyl ethyl ketoxime, acetyl acetone, alkyl acetoacetoxime, acetooxime, acetooxi
  • Examples of the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, etc.). These may be used alone or in combination of two or more. Among these, hexamethylated methylol melamine is particularly preferred, because alkylated methylol melamine is preferred because it has good storage stability and is effective in improving the surface hardness of the photosensitive layer or the film strength itself of the cured film. .
  • thermo crosslinking agents for example, a combination of bifunctional compounds, a combination of a bifunctional compound and a trifunctional or higher compound, and a combination of a monofunctional compound and a polyfunctional compound are preferable. . Of these, combinations of bifunctional compounds and combinations of bifunctional compounds with trifunctional or higher compounds are particularly preferred.
  • the bifunctional compound is preferably a bisphenol type epoxy compound in an epoxy compound. Specifically, a bisphenol A type, a bisphenol F type, a bisphenol S type, and a biphenol type force are selected. A combination of the two is preferred. Also, combinations of bisphenol type epoxy compounds and novolak type epoxy compounds, combinations of bisphenol type epoxy compounds and heterocyclic ring-containing epoxy compounds, bisphenol type epoxy compounds and alicyclic epoxy compounds. Combinations with products, combinations of novolak epoxy compounds with heterocyclic ring-containing epoxy compounds, and combinations of heterocyclic epoxy compounds and alicyclic epoxy compounds are also preferred.
  • the combination of the thermal crosslinking agents for example, in terms of epoxy equivalent, a combination of an epoxy compound of 90 to 400 gZeq. And an epoxy compound of 150 to 9, OOOg / eq. Is preferable, and 90 to 300 g / eq. Threaded combination of ⁇ composite with 150-8,000g / eq. It is preferable. That is, when the thermal crosslinking agent is a mixture containing two or more kinds of compounds, the epoxy equivalent force of the mixture is preferably 150 to 400 gZeq. More preferably, it is 150 to 300 g / eq. preferable.
  • the epoxy equivalent can be measured based on JIS K 7236.
  • the solid content of the thermal crosslinking agent in the photosensitive composition is preferably 1 to 50% by mass, more preferably 3 to 30% by mass. When the solid content is less than 1% by mass, no improvement in the film strength of the cured film is observed, and when it exceeds 50% by mass, the developability and exposure sensitivity may decrease.
  • examples of the thermal curing accelerator include amine compounds (for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N , N dimethylbenzylamine, 4-methoxy-N, N dimethylbenzylamine, 4-methyl-N, N dimethylbenzylamine, etc., quaternary ammonium salt compounds (eg, triethylbenzylammo) -Um chloride, etc.), block isocyanate compounds (for example, dimethylamine), imidazole derivative bicyclic amidine compounds and salts thereof (for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethylyl 4- Methylimidazole, 2 phenol imidazole, 4 —phenol imidazole, 1-cyanethyl-2 —Phenol imidazole, 1- (2-
  • the solid content in the solid content of the photosensitive composition of the epoxy compound, the oxetane compound, and a thermosetting accelerator capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. It is.
  • a thermal crosslinking agent other than the epoxy compound or the oxetane compound as the thermal crosslinking agent for example, an amine compound (for example, dicyandiamide, benzyldimethylamine) 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methylN, N-dimethylbenzylamine, etc., quaternary ammonium salt compounds (for example, trie Benzylbenzyl ammonium chloride), block isocyanate compounds (eg, dimethylamine), imidazole derivative bicyclic amidine compounds, and salts thereof (eg, imidazole, 2-methylimidazole, 2-ethylimidazole) , 2-ethyl 4-methylimidazole, 2-phenolimidazole, 4-phenolimidazole 1 cyanoethyl 2 phenol imidazole, 1-
  • an amine compound for example, dicyandiamide
  • a curing catalyst for the thermal crosslinking agent or a compound capable of promoting thermal curing other than those described above is not particularly limited as long as it can accelerate the reaction between these and a carboxyl group.
  • the solid content in the photosensitive composition of the thermal crosslinking agent and the thermal curing accelerator capable of accelerating thermal curing between these and a carboxylic acid is preferably 0.01 to 15% by mass.
  • ⁇ Binder> a polymer compound containing an acidic group and an ethylenically unsaturated bond in the side chain is used.
  • the acidic group include a carboxyl group, a phosphate group, and a sulfonate group.
  • a carboxyl group is preferable from the viewpoint of obtaining raw materials.
  • a compound which is insoluble in water and swells or dissolves in an alkaline aqueous solution is preferable.
  • the binder include at least one polymerizable double bond in the molecule, for example, an acrylic group such as a (meth) acrylate group or a (meth) acrylamide group, a vinyl ester of carboxylic acid, a butyl ether, Various polymerizable double bonds such as aryl ether can be used. More specifically, an acrylic resin containing a carboxyl group as an acidic group, a cyclic ether group-containing polymerizable compound, for example, a glycidyl ester of an unsaturated fatty acid such as glycidyl acrylate, glycidyl methacrylate, cinnamic acid, or an alicyclic group.
  • an acrylic resin containing a carboxyl group as an acidic group a cyclic ether group-containing polymerizable compound, for example, a glycidyl ester of an unsaturated fatty acid such as glycidyl acrylate, glycidy
  • an epoxy group-containing polymerizable compound such as an epoxy group (for example, an epoxy group such as cyclohexenoxide in the same molecule) and a compound having a (meth) aryryl group, etc.
  • an isocyanate group-containing polymerizable compound such as isocyanatoethyl (meth) acrylate to an acrylic resin containing an acidic group and a hydroxyl group, an acrylic resin containing an anhydride group.
  • examples thereof include compounds obtained by adding a polymerizable compound containing a hydroxyl group such as hydroxyalkyl (meth) acrylate to fat.
  • a cyclic ether group-containing polymerizable compound such as glycidyl metatalylate is copolymerized with a butyl monomer such as (meth) atalyloyl alkyl ester, and (meth) acrylic acid is added to the side chain epoxy group.
  • a cyclic ether group-containing polymerizable compound such as glycidyl metatalylate is copolymerized with a butyl monomer such as (meth) atalyloyl alkyl ester, and (meth) acrylic acid is added to the side chain epoxy group.
  • the compound etc. which are obtained by making it also include.
  • Examples of these include Japanese Patent No. 2763775, Japanese Patent Application Laid-Open No. 3-172301, Japanese Patent Application Laid-Open No. 2000-232264, and the like.
  • the binder is obtained by adding a polymerizable compound containing a cyclic ether group (for example, a group having an epoxy group or an oxetane group in a partial structure) to part of an acidic group of the polymer compound, and a polymer compound
  • a polymerizable compound containing a cyclic ether group for example, a group having an epoxy group or an oxetane group in a partial structure
  • the polymer compound is selected from any of those obtained by adding a carboxyl group-containing polymerizable compound to a part or all of the cyclic ether group.
  • the addition reaction between the acidic group and the compound having a cyclic ether group is preferably carried out in the presence of a catalyst. It is preferable that the physical strength and neutral strength are also selected.
  • the binder contains a carboxyl group and a heterocycle in the side chain, or a polymer containing an aromatic group and an ethylenically unsaturated bond in the side chain.
  • Compound preferred.
  • aromatic group including the heterocycle examples include a benzene ring, and 2 to 3 benzene rings formed a condensed ring. And those in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
  • aromatic group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indur group, an acenaphthyl group, a fluorene group, a benzopyrrole ring group, a benzofuran ring group, a benzothiophene ring group, Pyrazole ring group, isoxazole ring group, isothiazole ring group, indazole ring group, benzisoxazole ring group, benzoisothiazole ring group, imidazole ring group, oxazole ring group, thiazole ring group, benzimidazole ring group, benz Oxazole ring group, benzothiazole ring group, pyridine ring group, quinoline ring group, isoquinoline ring group, pyridazine ring group, pyrimidine ring group, pyrazine ring group,
  • the aromatic group may have a substituent.
  • substituents include, for example, a halogen atom, an amino group which may have a substituent, an alkoxycarbonyl group, a hydroxyl group, An ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, each of which may have a substituent, an alkyl group, an alkyl group, an alkyl group, an aryl group, a heterocyclic group, etc. Can be mentioned.
  • alkyl group examples include linear alkyl groups having 1 to 20 carbon atoms, branched alkyl groups, and cyclic alkyl groups.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, Pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, hexadecyl, octadecyl, eicosyl, isopropyl, isobutyl, Sbutyl, t butyl, isopentyl, neopentyl, 1 methylbutyl, isohexyl, 2-ethylhexyl, 2-methylhexyl, cyclohexyl, cyclopentyl, 2-norbornyl, etc.
  • a linear alkyl group having 1 to 12 carbon atoms a branched alkyl group having 3 to 12 carbon atoms, and a cyclic alkyl group having 5 to 10 carbon atoms are preferable.
  • Examples of the substituent that the alkyl group may have include a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom.
  • substituents include halogen atoms (one F, one Br, one Cl, one), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group.
  • sulfonate group alkoxysulfol group, aryloxysulfol group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N dialkylsulfinaimoyl group, N Lylsulfinamoyl group, N, N dialylsulfinamoyl group, N-alkyl-N arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group, N-arylsulfamoyl group Group, N, N diallylsulfamoyl group, N alkyl—Narylsulfamoyl group, phosphono group (one PO H) and its conjugate base group (phosphonate group and
  • Dialkylphosphono group (one PO (alkyl)) (hereinafter “alkyl” means an alkyl group)
  • a diarylphosphono group (one PO (aryl)) (hereinafter “aryl” means an aryl group)
  • Alkylaryl phosphono group PO (alkyl) (aryl)
  • monoalkyl phosphono group PO (alkyl) (aryl)
  • alkyl and its conjugate base group (referred to as alkylphosphonate group), monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group, monoarylphosphonate group
  • Phonoxy group (one OPO H) and its conjugate base group (referred to as phosphonatoxy group), dia
  • alkylaryl phosphonoxy group one OPO (alkyl) (aryl)
  • a group (referred to as an aryl phosphonatoxy group), a cyan group, a nitro group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, a silyl group, and the like.
  • alkyl group in these substituents include the aforementioned alkyl groups.
  • aryl group in the above substituent include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, a phthalyl group, a chlorophenol group, a bromophenyl group, a chloromethyl group.
  • Phenyl group hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxylphenol group, benzoylphenol group, methylthiophenol group, phenolthiol group Group, methylaminophenol group, dimethylaminophenol group, acetylaminophenol group, carboxyphenol group, methoxycarbonyl group, ethoxyphenol group, phenoxycarbon group , N-phenylcarbamoyl file group, cyanophyl group, sulfophenyl group, sulfonaphthoyl group, phosphonophenol group, phosphonatophenol group, etc. That.
  • alkenyl group in the substituent examples include a bur group, a 1 probe group, a 1-butur group, a cinnamyl group, and a 2-chloro-1-ether group.
  • alkyl group in the substituent examples include an ethur group, a 1-propynyl group, a 1-buturyl group, and a trimethylsilylethynyl group.
  • Examples 1 Ashiru in the substituent group (1 .. I) are a hydrogen atom, the above-described alkyl group, such as Ariru group.
  • halogen atoms (1 F, 1 Br, 1 Cl, 1 1), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N alkylamino groups, N, N-dialkylamino groups, Aryloxy group, N-alkyl-force rubermoyloxy group, N-aryl force-rubamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbol group, force-rubamoyl group, N-alkyl-force rubermoyl Group, N, N dialkyl-force rubamoyl group, N allyl force rubamoyl group, N alkyl N allyl force rubamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkyls
  • heterocyclic group in the substituent examples include, for example, a pyridyl group, a piperidyl group.
  • silyl group in the substituent examples include a trimethylsilyl group.
  • the alkylene group in the alkyl group is, for example, a divalent organic residue obtained by removing one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms.
  • a linear alkylene group having 1 to 12 carbon atoms a branched alkylene group having 3 to 12 carbon atoms, a cyclic alkylene group having 5 to 10 carbon atoms, etc. Is preferred.
  • substituted alkyl group obtained by combining such a substituent with an alkylene group include chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, isopropoxymethyl.
  • Examples of the aryl group include a benzene ring, a group in which 2 to 3 benzene rings form a condensed ring, and a group in which a benzene ring and a 5-membered unsaturated ring form a condensed ring. .
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a acenaphthenyl group, and a fluorenyl group.
  • a phenol group and a naphthyl group are preferable.
  • the alkyl group may have a substituent or an aryl group having such a substituent (hereinafter also referred to as “substituted aryl group”), for example, ring formation of the aforementioned aryl group
  • substituent on the carbon atom include a group consisting of a monovalent nonmetallic atomic group other than a hydrogen atom.
  • the aryl group may have, for example, the alkyl group, the substituted alkyl group, or the alkyl group that is described above as the substituent may be preferable.
  • substituted aryl group examples include a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a tamale group, a chlorophenol group, a bromophenol group, a fluorophenol group, a chloromethyl group.
  • Phenyl group trifluoromethylphenol group, hydroxyphenyl group, methoxyphenyl group, methoxymethoxyphenyl group, aryloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, Tolylthiophenyl group, ethylaminophenyl group, germanaminophenyl group, morpholinophenol group, acetyloxyphenyl group, benzoylphenyl group, N cyclohexylcarbamoylphenyl group, N Phenylcarbamoyl phenyl group, Acetylaminophenol group, N-Methylbenzoylaminophenol group, Carboxyphenol group, Methoxycarbol Benzyl group, aryloxy-hydroxyl-phenyl group, chlorophenol-oxyl-hydroxyl-phenyl group, strong rubamoyl-phenol group, N-methylcarbamoyl-phenol group, N, N
  • the Aruke - Le group (C (R 02) C (R 03) (R 04)) and alkyl - as Le group (an C ⁇ C (R. 5)), for example, R ° 2, R ° 3 , R ° 4 , and R ° 5 are groups having a non-valent nonmetallic atomic group.
  • Examples of 2 , R ° 3 , R ° 4 , and R ° 5 include a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group. Specific examples thereof include those shown as the above-mentioned examples. Among these, a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, and a cyclic alkyl group are preferable.
  • alkenyl group and alkyl group! / Specific examples include vinyl group, 1-port perl group, 1-butul group, 1 pentale group, 1 hex. -Luyl group, 1-Otatur group, 1-Methyl-1 Propyl group, 2-Methyl-1 Propyl group, 2-Methyl-1-Butur group, 2-Fuilleru 1-Ethul group, 2-Chrome- 1-Ethul group, Etul group, 1-Propyl group, 1-Butul group, and Feule group.
  • heterocyclic group include a pyridyl group exemplified as a substituent for a substituted alkyl group.
  • R 6 0 has 6 include Chino a group comprising a monovalent nonmetallic atom group exclusive of a hydrogen atom.
  • oxy groups include, for example, alkoxy groups, aryloxy groups, acyloxy groups, rubamoyloxy groups, N alkyl rubamoyloxy groups, N alkaryl carbamoyloxy groups, N, N dialkyl rubamoyloxy groups, N, N diaryl forces.
  • a ruberamoyloxy group, an N alkyl N aryl group, a rubermoyloxy group, an alkyl snoreoxy group, an arenoresnoreoxy group, a phosphono-oxy group, and a phosphonato-oxy group are preferred.
  • alkyl group and aryl group in these include the alkyl groups, substituted alkyl groups, aryl groups, and substituted aryl groups described above.
  • examples of the acyl group (R 7 CO 2) in the acyloxy group include those in which 7 is an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group exemplified in the above examples.
  • substituents an alkoxy group, an aryloxy group, an acyloxy group, and an arylsulfoxy group are more preferable.
  • preferred oxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, pentyloxy, hexyloxy, dodecyloxy, benzyloxy, allyloxy, phenethyloxy, carboxyethyloxy, methoxy Carbo-ruethyloxy group, ethoxycarbo-ruethyloxy group, methoxyethoxy group, phenoxyethoxy group, methoxyethoxy group, ethoxyethoxy group, morpholinoethoxy group, morpholinopropyloxy group, aralkyloxyethoxy group, phenoxy group, triloxy Group, xylyloxy group, mesityloxy group, mesityloxy group, tamoxy group, methoxyphenyl group, ethoxyphenyl group, black-end phenol group , Buromofue - Ruokishi group, Ase
  • An amido group (R 8 NH-, (R 09 ) (R 01 °) N-) includes, for example, R ° 8 , 9 , and R G1G are monovalent except for a hydrogen atom. Non-metallic atomic groups are also included. In addition, R 9 may be bonded to form a ring.
  • amino group examples include an N-alkylamino group, an N, N dialkylamino group, an N allylamino group, an N, N dialylamino group, an N-alkyl-N allylamino group, an acylamine group, and an N-alkylacylamino group.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • Ashiruamino group, N-alkyl ⁇ sill ⁇ amino group, N ⁇ reel ⁇ sill ⁇ amino group definitive Ashiru group (R 7 CO-) of 7 are as defined above.
  • an N alkylamino group, an N, N dialkylamino group, an N arylamino group, and an acylamino group are more preferable.
  • preferred amino groups include methylamino group, ethylamino group, jetylamino group, morpholino group, piperidino group, pyrrolidino group, phenolamino group, benzoylamino group, acetylamino group and the like.
  • the power group is mentioned.
  • a sulfo group for example, an alkyl sulfo group, an aryl sulfo group and the like are preferable.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • sulfo group examples include a butyl sulfo group, a phenol sulfo group, and a closed-end phenol sulfo group.
  • the sulfonate group (one SO-) is, as described above, a conjugate base group of the sulfo group (one SO H). It means an ionic group and is usually preferably used together with a counter cation. As such counter cations, generally known ones can be appropriately selected and used. For example, oniums (for example, ammoniums, sulfomes, phosphomes) And sodium ions, azimuths, etc.) and metal ions (for example, Na +, K +, Ca 2+ , Zn 2+, etc.).
  • Examples of the carbo group include those in which 13 is a group having a non-valent atomic group with a valence of-.
  • carbol groups include formyl, acyl, carboxyl, alkoxycarbol, aryloxycarbol, strong rubamoyl, N alkyl, rubamoyl, N, N dialkyl.
  • Examples include a rubermoyl group, an N-aryl force rubermoyl group, an N, N-diaryl force rubermoyl group, and an N-alkyl N, -aryl force-rubamoyl group.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • Examples of the carbonyl group include formyl group, acyl group, carboxyl group, alkoxy group, aryloxycarbo group, rubamoyl group, N-alkyl group rubamoyl group, N, N dialkyl group rubamoyl.
  • Group, N-aryl rubamoyl group is preferable, and formyl group, acyl group, alkoxycarbol group, and aryloxycarbol group are more preferable.
  • the carbonyl group include a formyl group, a acetyl group, a benzoyl group, a carboxy group, a methoxy carbo ol group, an ethoxy carbo yl group, an ar aroxy carboxy group, a dimethylamino pheno group.
  • Preferred examples include a ruthel carbol group, a methoxy carbo methoxy carbo ol group, an N-methyl carbamoyl group, an N phen carbamoyl group, an N, N decyl rubamoyl group, a morpholino carbo ol group and the like.
  • Examples of the sulfiel group (R 14 — SO) include those having a group consisting of a non-valent nonmetallic atomic group.
  • Examples of such sulfiel groups include alkyl sulfiel groups, aryl sulfiel groups, sulfinamoyl groups, N-alkyl sulfinamoyl groups, N, N dialkyl groups. Examples include a rusulfinamoyl group, an N-arylsulfinamoyl group, an N, N-diarylsulfinamoyl group, and an N-alkyl-N-arylsulfinamoyl group. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Of these, the alkylsulfur group and the arylsulfier group are preferred.
  • substituted sulfiel group examples include a hexyl sulfiel group, a benzyl sulfyl group, and a tolyl sulfyl group.
  • the phosphono group means a group in which one or two of the hydroxyl groups on the phosphono group are substituted with another organic oxo group.
  • dialkylphosphono group, diarylphosphono group, A reel phosphono group, a monoalkyl phosphono group, a monoaryl phosphono group and the like are preferable.
  • dialkylphosphono groups and diarylphosphono groups are more preferred.
  • the phosphono group include a jetyl phosphono group, a dibutyl phosphono group, and a diphenyl phosphono group.
  • the phosphonato group (PO H-, -PO H-) is, as described above, a phosphono group (PO
  • H means a conjugated base anion group derived from acid first dissociation or acid second dissociation
  • counter cation generally known ones can be appropriately selected. For example, various kinds of atoms (ammonium, sulfo-ums, phospho-umms, ododoniums) ), Metal ions (Na +, K +, Ca 2+ , Zn 2+ etc.).
  • the phosphonato group may be a conjugated basic anion group obtained by substituting one of the phosphono groups with an organic oxo group.
  • 1 PO H (alkyl) a conjugated salt of a monoarylphosphono group (PO H (aryl))
  • the aromatic group includes one or more radically polymerizable compounds containing an aromatic group and, if necessary, one or more other radically polymerizable compounds as copolymerization components. It can be manufactured legally.
  • radical polymerization method examples include a suspension polymerization method or a solution polymerization method. Etc.
  • a compound represented by the structural formula (A) and a compound represented by the structural formula (B) are preferable.
  • R, R, and R represent a hydrogen atom or a monovalent organic group.
  • L represents an organic group and may be omitted.
  • Ar represents an aromatic group that may contain a heterocycle.
  • the organic group of L is, for example, a polyvalent organic group of non-metallic nuclear power, including 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, and 0 to 50 atoms. Of oxygen atoms, 1 to 100 hydrogen atoms, and 0 to 20 sulfur nuclear powers.
  • examples of the organic group of L include those formed by combining the following structural units, polyvalent naphthalene, polyvalent anthracene and the like.
  • the linking group of L may have a substituent.
  • substituents include the halogen atom, hydroxyl group, carboxyl group, sulfonate group, nitro group, cyan group, amide group, amino group described above.
  • the structural formula (A) is more preferable in terms of sensitivity.
  • those having a linking group that are preferred from the viewpoint of stability are L 1-4 organic groups, which are C 1-4 alkylene groups in the non-image area. Preferred in terms of removability (developability).
  • the compound represented by the structural formula (A) is a compound containing a structural unit of the following structural formula (I).
  • the compound represented by the structural formula (B) is a compound containing a structural unit represented by the following structural formula ( ⁇ ). Of these, the structural unit of the structural formula (I) is preferable from the viewpoint of storage stability.
  • R, R, R, and Ar are the structural formulas (I) and ( ⁇ ).
  • R and R are hydrogen atoms, and R is a methyl group.
  • an alkylene group having 1 to 4 carbon atoms is preferable in terms of removability (imageability) of a non-image area.
  • the compound represented by the structural formula (A) or the compound represented by the structural formula (B) is not particularly limited, and examples thereof include the following exemplified compounds (1) to (30). It is done.
  • the content of the aromatic group that may contain a hetero ring in the binder is not particularly limited, but when the total structural unit of the polymer compound is 100 mol%, the structural formula (I) It is preferred to contain 20 mol% or more of the structural unit represented. It is more preferred to contain 30 to 45 mol%. When the content is less than 20 mol, storage stability may be lowered, and when it exceeds 45 mol%, developability may be lowered. [0085] Ethylenically unsaturated bond
  • the ethylenically unsaturated bond is not particularly limited and may be appropriately selected according to the purpose.
  • those represented by the following structural formulas (III) to (v) are preferable.
  • R to R are each independently an l-valent organic group.
  • X and Y each independently represent an oxygen atom, a sulfur atom, or —N—R.
  • Z represents an oxygen atom, a sulfur atom, -N-R, or a phenylene group.
  • R is a hydrogen atom
  • Or represents a monovalent organic group.
  • each R is independently, for example, a hydrogen atom, a hydrogen atom that may have a substituent or an alkyl group, and a methyl group that are radically reactive. Is more preferable because it is high.
  • R and R are each independently, for example, a hydrogen atom, a halogen atom,
  • It has a mino group, a carboxyl group, an alkoxycarbo group, a sulfo group, a nitro group, a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent.
  • Examples include a hydrogen atom, a carboxyl group, an alkoxycarbonyl group, an alkyl group which may have a substituent, and a substituent.
  • Aryl basic force More preferable because of high radical reactivity.
  • Examples of R include a hydrogen atom that is preferably an alkyl group which may have a substituent.
  • examples of the substituent that can be introduced include an alkyl group, an alkyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a halogen atom, an amino group, an alkylamino group, an arylamino group, and a carboxyl group.
  • R to R may be, for example, a hydrogen atom, a halogen atom, or R
  • Mino group dialkylamino group, carboxyl group, alkoxycarbo group, sulfo group, nitrogen group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituent Having an alkoxy group that may have a substituent, an allyloxy group that may have a substituent, an alkylamino group that may have a substituent, an arylamino group that may have a substituent, and a substituent.
  • an aryl group may preferably have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent, an alkyl group. Even if it has a substituent, the aryl group is more preferred! /.
  • R includes, for example, a hydrogen atom and a substituent. But
  • Alkyl groups and the like are more preferred because of high hydrogen atom and methyl group s radical reactivity.
  • R 1 and R 2 are each independently, for example, hydrogen atom, halogen atom, amino
  • Z represents an oxygen atom, a sulfur atom, -NR-, or a phenyl group optionally having a substituent.
  • R represents an alkyl group which may have a substituent, a hydrogen atom,
  • a til group, an ethyl group, and an isopropyl group are preferable because they have high radical reactivity.
  • the content of the ethylenically unsaturated bond in the polymer compound is not particularly limited. Repulsive force 0.5 to 3. Omeq / g force is preferable, 1.0 to 3. Omeq / g force ⁇ is more preferable, 1. 5-2.8 meqZg is particularly preferred. If the content is less than 0.5 meqZg, the sensitivity may be low because the amount of curing reaction is small. 3. If the content is more than OmeqZg, the storage stability may deteriorate.
  • the content (meqZg) can be measured, for example, by iodine value titration.
  • the method of introducing an ethylenically unsaturated bond represented by the structural formula (III) into the side chain is not particularly limited, but examples thereof include a polymer compound containing a carboxyl group in the side chain and ethylene. It can be obtained by addition reaction of a compound having an unsaturated bond and an epoxy group.
  • the polymer compound containing a carboxyl group in the side chain is, for example, one or more radically polymerizable compounds containing a carboxyl group and, if necessary, one other radically polymerizable compound as a copolymerization component.
  • the above can be produced by a normal radical polymerization method, and examples of the radical polymerization method include suspension polymerization method and solution polymerization method.
  • the compound having an ethylenically unsaturated bond and an epoxy group is not particularly limited as long as it has these, and examples thereof include a compound represented by the following structural formula (VI) and (VII). Are preferred. In particular, the use of the compound represented by the structural formula (VI) is preferable from the viewpoint of increasing sensitivity.
  • R represents a hydrogen atom or a methyl group.
  • L represents an organic group
  • the W represents a 4- to 7-membered aliphatic hydrocarbon group.
  • L is More preferred is an alkylene group having 1 to 4 carbon atoms.
  • the compound represented by the structural formula (VI) or the compound represented by the structural formula (VII) is not particularly limited, and examples thereof include the following exemplified compounds (31) to (40).
  • radical polymerizable compound containing a carboxyl group examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, ink-mouthed tonic acid, maleic acid, and p-carboxyl styrene. Particularly preferred are acrylic acid and methacrylic acid.
  • Examples of the introduction reaction to the side chain include tertiary amines such as triethylamine and benzylmethylamine, quaternary ammonia such as dodecyltrimethylammonium chloride, tetramethylammonium chloride, and tetraethylammonium chloride.
  • the reaction can be carried out by reacting in an organic solvent at a reaction temperature of 50 to 150 ° C. for several hours to several tens of hours using a -um salt, pyridine, triphenylphosphine or the like as a catalyst.
  • the structural unit having an ethylenically unsaturated bond in the side chain is not particularly limited.
  • a structure represented by the following structural formula (m), a structure represented by the structural formula (iv), and a mixture thereof are preferable.
  • Ra to Rc represent a hydrogen atom or a monovalent organic group.
  • 1 ⁇ represents a hydrogen atom or a methyl group.
  • the content in the polymer compound having the structure represented by the structural formula (iii) to the structure represented by the structural formula (iv) is preferably 20 mol% or more, more preferably 20 to 50 mol%. 25-45 mol% is particularly preferred. If the content is less than 20 mol%, the curing reaction amount is small, so that the sensitivity may be low. If the content is more than 50 mol%, the storage stability may be deteriorated.
  • the polymer compound of the present invention may have a carboxyl group in order to improve various performances such as non-image area removability.
  • the carboxyl group can be imparted to the polymer compound by copolymerizing a radical polymerizable compound having an acid group.
  • Examples of the acid group having such radical polymerizability include carboxylic acid, sulfonic acid, and phosphoric acid group, and carboxylic acid is particularly preferable.
  • the radically polymerizable compound having a carboxyl group can be appropriately selected depending on the purpose, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, cucumber tonic acid, and ink fountain. Examples include acid, maleic acid, and ⁇ -carboxyl styrene. Among these, acrylic acid, methacrylic acid, and p-carboxyl styrene are preferable. These may be used alone or in combination of two or more.
  • the content of the carboxyl group in the binder is 1.0 to 4. OmeqZg, preferably 1.5 to 3. Omeq / g.
  • the content is less than 1. Omeq / g, the developability may be insufficient, and when it exceeds 4. OmeqZg, image strength damage may be easily caused by alkaline water development.
  • the polymer compound of the present invention may be copolymerized with another radical polymerizable compound in addition to the above-mentioned radical polymerizable compound. It is preferable.
  • radical polymerizable compound examples include radically polymerizable compounds such as acrylic acid esters, methacrylate esters, and styrenes.
  • acrylic esters such as alkyl acrylate, methacrylic esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy
  • acrylic esters such as alkyl acrylate, methacrylic esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy
  • styrene and halogen styrene include styrene and halogen styrene.
  • acrylates those having 1 to 20 carbon atoms in the alkyl group are preferable.
  • methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, and ethyl acrylate are preferable.
  • examples include atarylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate.
  • Examples of the aryl acrylate include a file acrylate.
  • methacrylic acid esters those having 1 to 20 carbon atoms of the alkyl group are preferable.
  • Rate amyl methacrylate, hexyl methacrylate, cyclohexenomethacrylate, benzyl methacrylate, chlorbendyl methacrylate, octyl methacrylate, ginseng, 4-hydroxybutynole methacrylate, 5 hydroxy
  • Examples include pentinoremetatalylate, 2, 2 dimethyl-3-hydroxypropyl metatalylate, trimethylolpropane monometatalate, pentaerythritol monometatalate, glycidyl metatalylate, furfuryl metatalylate, tetrahydrofurfuryl metatalylate, etc.
  • aryl methacrylate examples include phenyl methacrylate and uddernore methacrylate. Rate, naphthylmetatalate and the like.
  • styrenes examples include methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, jetyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl styrene, chloromethyl.
  • examples include styrene, trifluoromethyl styrene, ethoxymethyl styrene, and acetomethyl styrene.
  • alkoxystyrene examples include methoxystyrene, 4-methoxy-13-methylstyrene, dimethoxystyrene, and the like.
  • halogen styrene examples include chloro styrene, dichloro styrene, trichloro styrene, tetrachloro styrene, pentachloro styrene, bromo styrene, dibromo styrene, odo styrene, fluor styrene, trifluoro styrene, 2-bromo trifluoromethyl styrene. 4 Fluoro 3-trifluoromethylstyrene and the like.
  • radically polymerizable compounds may be used alone or in combination of two or more.
  • the solvent used in the synthesis of the polymer compound of the present invention is not particularly limited and can be appropriately selected according to the purpose.
  • the molecular weight of the polymer compound of the present invention is preferably 10,000 or more in terms of mass average molecular weight, more preferably 10,000 to 50,000 force! /. If the mass average molecular weight force S is less than 10,000, the cured film strength may be insufficient, and if it exceeds 50,000, the developability tends to be lowered. Further, the polymer compound of the present invention may contain an unreacted monomer. In this case, the content of the monomer in the polymer compound is preferably 15% by mass or less. Yes.
  • the polymer compound according to the present invention may be used singly or in combination of two or more. Moreover, you may mix and use another high molecular compound. In this case, the content of the other polymer compound in the polymer compound of the present invention is preferably 50% by mass or less, more preferably 30% by mass or less.
  • the solid content of the binder in the photosensitive composition is preferably 5 to 80% by mass, more preferably 10 to 70% by mass.
  • the polymerizable compound is not particularly limited and may be appropriately selected depending on the purpose.
  • a compound having one or more ethylenically unsaturated bonds is preferable.
  • Examples of the ethylenically unsaturated bond include, for example, a (meth) ataryloyl group, a (meth) acrylamido group, a styryl group, a butyl group such as butyl ester and butyl ether, and a allylic group such as allyl ether allyl ester, and the like. Is mentioned.
  • the compound having one or more ethylenically unsaturated bonds is not particularly limited, and can be appropriately selected depending on the purpose.
  • a monomer having a (meth) acryl group is selected. At least one is preferably mentioned.
  • the monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane ditalylate, neopentylglycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol hexane (Meth) acrylate, dipentaerythritol penta (meth) acrylate,
  • trimethylolpropane tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
  • the content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. is there.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.
  • hexarylbiimidazole for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.
  • hexarylbiimidazole for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.
  • oxime derivatives for example, those having a triazine skeleton, those
  • photopolymerization initiators include the compounds described in [0288] to [0309] of JP-A-2005-258431.
  • the photopolymerization initiators may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
  • Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others.
  • sensitizers thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others.
  • plasticizers for example, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like
  • adhesion promoters to the substrate surface and others.
  • conductive particles fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.
  • the sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible laser, or the like as a light irradiation means described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
  • substances for example, radical generator, acid generator, etc.
  • energy transfer, electron transfer, etc. for example, energy transfer, electron transfer, etc.
  • Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
  • the sensitizer can be appropriately selected from known sensitizers without particular limitations.
  • known polynuclear aromatics for example, pyrene, perylene, triphenylene
  • Xanthenes for example, fluorescein, eosin, erythrosine synth, rhodamine B, rose bengal
  • cyanines for example, indocarboyanine, thiacarboyanine, oxacarboyanine
  • merocyanines for example, merocyanine, carbomerocyanine
  • Thiazines eg, thionine, methylene blue, toluidine blue
  • atalidines eg, ataridin orange, chloroflavin, acriflavine, 9 phenyllacridin, 1,7-bis (9,9,1 ataridinyl) heptane
  • anthraquinone E.g., anthraquinone
  • squalium e.g.,
  • thixanthone compounds thixanthone, isopropyl thixanthone, 2,4 jetylthioxanthone, 1-clooxy-4 propyloxythixanthone, QuantacureQTX, etc.
  • Preferred are compounds in which a heterocyclic ring is condensed with a heterocyclic ring (condensed ring-based compound), and an amine compound substituted with at least two aromatic hydrocarbon rings and V of the aromatic heterocyclic ring.
  • hetero condensed ring ketone compounds (ataridon compounds, thixanthone compounds, coumarin compounds, etc.) and atalidine compounds are more preferable.
  • attaridone compounds and thixanthone compounds are particularly preferable.
  • the amine compound substituted with any one of the at least two aromatic hydrocarbon rings and aromatic heterocyclic rings is a sensitizer having an absorption maximum with respect to light in a wavelength range of 330 to 450 nm.
  • a di-substituted aminobenzene compound having a heterocyclic group as a substituent at a carbon atom at the para position relative to an amino group on the benzene ring, an amino group on the benzene ring In contrast, a di-substituted amino-benzene compound having a substituent containing a sulfo-limino group at the carbon atom at the para position, a di-substituted amino-benzene compound having a carbostyryl skeleton, and at least two aromatics Examples thereof include compounds having a di-substituted amino-benzene as a partial structure, such as a compound having a structure in which a ring is bonded to a nitrogen atom.
  • one type may be used alone, or two or more types may be used in combination.
  • the content of the sensitizer is preferably 0.01 to 4% by mass, more preferably 0.02 to 2% by mass, and particularly preferably 0.05 to 1% by mass in the total solid content of the photosensitive composition. preferable.
  • the sensitivity When the content is less than 0.01% by mass, the sensitivity may be lowered, and when it exceeds 4% by mass, the shape of the pattern may be deteriorated.
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
  • thermal polymerization inhibitor examples include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-t-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitroso compounds, and chelates of troso compounds with A1.
  • the content of the thermal polymerization inhibitor is preferably 0.001 to 5% by mass, more preferably 0.005 to 2% by mass with respect to the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred. When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
  • the plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
  • plasticizer examples include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate.
  • Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as norephthalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as sulfate; 4 Amides such as toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl seba Aliphatic dibasic acid esters such as keto, dibutyl sebac
  • the content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
  • the coloring pigment is not particularly limited and can be appropriately selected according to the purpose.
  • Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR ( CI Pigment 'Yellow 83), Permanent' Carmine FBB (CI Pigment 'Red 146), Hoster Balm Red ESB (CI Pigment' Violet 19), Permanent 'Rubi I FBH (CI Pigment' Red 11) Huster 'Pink B Splash (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolite 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, CI Pigment 'Red 122, CI Pigment 'Red 149, CI Pigment' Red 168
  • the solid content in the solid content of the photosensitive composition of the coloring pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.01 to 10% by mass is preferable, and 0.05 to 5% by mass is more preferable.
  • the photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary.
  • Inorganic pigments and organic fine particles can be added.
  • the inorganic pigment can be appropriately selected from known ones that are not particularly limited.
  • kaolin barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
  • the average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering.
  • the organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ⁇ , an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
  • the amount of the extender is preferably 5 to 60% by mass.
  • the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced.
  • the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, The film quality becomes fragile, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film may be impaired.
  • a loose adhesion promoter can be used.
  • adhesion promoter examples include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638.
  • the content of the adhesion promoter is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, based on all components of the photosensitive layer. % To 5% by mass is particularly preferred.
  • the photosensitive composition according to the first aspect of the present invention has high sensitivity and high resolution, electroless gold plating resistance, and via and through-through resistance by specifying a binder and a thermal crosslinking agent to be used together. It is excellent in the embedding property of the tool, and a high-definition permanent pattern can be efficiently formed. Therefore, it can be widely used as a printed wiring board, color filter, pillar material, rib material, spacer, partition member and other display members, holograms, micromachines, proofs and other permanent patterns. It can be suitably used for forming a permanent pattern on a printed circuit board.
  • the photosensitive composition according to the second aspect of the present invention contains a binder, two or more polymerizable compounds, a photopolymerization initiator, and a thermal crosslinking agent, and if necessary, other components.
  • the noinder, photopolymerization initiator, and other components are as already described in the first embodiment.
  • the polymerizable compound includes two or more monomers.
  • the monomer is not particularly limited and can be appropriately selected depending on the purpose. For example, the number of functional groups is different.
  • Two or more monomers are preferred.
  • Examples of the two or more monomers having different numbers of functional groups include a combination of a monofunctional monomer and a polyfunctional monomer, and a combination of polyfunctional monomers.
  • Examples of the combination of the polyfunctional monomers include a combination of a bifunctional monomer and a trifunctional or higher monomer, and a combination of a bifunctional to tetrafunctional monomer and a pentafunctional or higher monomer. Of these, at least one is more preferably a monomer having 4 or more functional groups.
  • the monomer is preferably a monomer having at least one of urethane groups, aryl groups, ester groups, ether groups, and groups derived from an epoxy compound.
  • the monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose.
  • JP-A-2005-258431 [
  • the monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose.
  • a polyhydric alcohol compound having an aryl group a polyvalent amine compound.
  • esters or amides of unsaturated carboxylic acids with at least any of the above compounds and polyamino amino alcohol compounds for example, JP-A-2005-258431, [0264] to [0271]. And the like.
  • the monomer having an ester group is not particularly limited as long as it has an ester group, and can be appropriately selected depending on the purpose.
  • polyester acrylic oligomer (CN series manufactured by Sartoma Co., Ltd.), Daicel Examples include polyester acrylic oligomers manufactured by Cytec.
  • the monomer having an ether group is not particularly limited as long as it has an ether group, and can be appropriately selected according to the purpose. Examples thereof include monomers containing alkylene oxide as a structural unit.
  • alkylene oxide examples include ethylene oxide, propylene oxide, butylene oxide, and a mixture thereof (for example, a mixture of ethylene oxide and propylene oxide).
  • Examples of the monomer containing an alkylene oxide as a structural unit include polyalkylene glycol di (meth) acrylate and polyalkylene glycol mono (meth) acrylate.
  • polyethylene glycol di (meth) acrylate polyethylene glycol mono (meth) acrylate
  • polyethylene glycol mono (meth) acrylate polypropylene di (meth) acrylate
  • the monomer having a group derived from the epoxy compound is not particularly limited as long as it has this, and may be appropriately selected depending on the purpose.
  • a commercially available epoxy compound may be (meth) acrylic. Examples include compounds to which an acid has been added.
  • the mass average molecular weight of the monomer having at least one of the urethane group, aryl group, ester group, ether group, and epoxy compound strength is, for example, 200 to 9,000 force S Preferable ⁇ , Preferable over 250 to 8,000 force S ⁇ , 300 to 7,000 force S Particularly preferred.
  • examples of the polymerizable compound include aliphatic groups. It is preferable to include at least one selected from ester monomers.
  • the aliphatic ester-based monomer is not particularly limited and can be appropriately selected depending on the purpose.
  • Atalylate trimethylolpropane tri Atalylate, trimethylolpropane ditalylate, neopentylglycol di (meth) talarate, pentaerythritol tetra (meth) atalylate, pentaerythritol tri (meth) attalylate, dipentaerythritol hexa (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, and the like.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol hex (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferred.
  • the content ratio of the monomer having at least one of the urethane group, aryl group, ester group, ether group, and epoxy compound force-derived group to the aliphatic ester monomer is expressed by mass ratio. 1: 100-100: 1 is preferred 1: 20-20: 1 is more preferred 1: 10 to 10: 1 is particularly preferred.
  • the total solid content in the photosensitive composition solid content of the polymerizable compound is 5 to
  • the adhesiveness of the photosensitive layer may become too strong.
  • the thermal cross-linking agent can be appropriately selected according to the purpose for which there is no particular limitation.
  • thermal cross-linking agent examples include epoxy resins in a range that does not adversely affect developability and the like in order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition.
  • the photosensitive composition according to the second embodiment of the present invention combines sensitivity, resolution, tackiness, electroless plating resistance, and storage by combining monomers other than aliphatic ester monomers as the polymerizable compound. Excellent stability and high-definition permanent patterns can be formed efficiently. For this reason, it can be suitably used for the same application as the photosensitive composition of the first embodiment.
  • the photosensitive film of the present invention has at least a support and a photosensitive layer having the above-mentioned photosensitive composition of the present invention on the support, and a thermoplastic resin layer or the like is appropriately selected depending on the purpose. Other layers are laminated.
  • the photosensitive layer is formed using the photosensitive composition of the present invention.
  • the minimum energy of light used for the exposure is not changed after the exposure and development. Scratch, it is Ri preferably good it is preferred instrument 0. 2 ⁇ 100mj / cm 2 It is 0. l ⁇ 200mi / cm 2, and still more preferably is 0. 5 ⁇ 50mjZcm 2 instrument l ⁇ Particularly preferred is 30 miZcm 2 .
  • capri may occur in the processing step, and if it exceeds 200 mjZcm 2 , the time required for exposure may become longer and the processing speed may become slower. .
  • the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
  • the thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure.
  • the development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
  • the thickness of the cured layer and the thickness of the photosensitive layer before exposure are within ⁇ 1 m, it is considered that the thickness of the cured layer is not changed by exposure and development.
  • a method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film thickness measuring device for example, Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
  • the thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. However, if it is omitted, 1 to: L00 ⁇ m force S, preferably 2 to 50 ⁇ m force S 4-30 ⁇ m force S is particularly preferable.
  • the support can be appropriately selected according to the purpose for which there is no particular limitation. However, it is preferable that the photosensitive layer is peelable and has good light transmittance. Further, the surface is smooth. It is more preferable that the sex is good.
  • the support and protective film Specifically, for example, it is described in JP-A-2005-258431, [0342] to [0348].
  • a cushion layer an oxygen barrier layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface
  • a protective layer may be provided on the photosensitive layer.
  • the cushion layer is not particularly limited and may be appropriately selected depending on the purpose, and may be swellable or soluble or insoluble in an alkaline liquid.
  • thermoplastic resin examples include, for example, an ethylene / acrylate copolymer copolymer, styrene, and (meth) (Meth) such as saponified acrylate copolymer, kento of butyltoluene and (meth) acrylic ester copolymer, poly (meth) acrylate, butyl (meth) acrylate and vinyl acetate Acrylic ester copolymers, etc., (meth) acrylic acid ester and (meth) acrylic acid copolymer, styrene, (meth) acrylic acid ester and (meth) acrylic acid copolymer Etc.
  • an ethylene / acrylate copolymer copolymer styrene
  • (meth) (Meth) such as saponified acrylate copolymer, kento of butyltoluene and (meth) acrylic ester copolymer, poly (meth) acrylate, butyl (meth) acryl
  • the softness point (Vicat) of the thermoplastic resin in this case is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 80 ° C or less is preferable.
  • the above-mentioned thermoplastic resin has a softness point of 80 ° C or less, as well as “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Association, Issued on October 25, 1968).
  • the organic polymers whose soft spot is about 80 ° C or less those that are soluble in alkaline liquids are listed.
  • various plasticizers compatible with the organic polymer material are added to the organic polymer material so that a substantial softness can be obtained. It is also possible to lower the point below 80 ° C.
  • the interlayer adhesive strength of the photosensitive film is not particularly limited, and can be appropriately selected according to the purpose.
  • the support and the cushion layer can be selected. It is preferable that the interlayer adhesion between them is the smallest.
  • the interlayer adhesive strength only the support is peeled off from the photosensitive film, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is removed using an alkaline developer. Can be developed. Further, after exposing the photosensitive layer while leaving the support, the photosensitive film force is peeled off, and the photosensitive layer is developed using an alkaline developer.
  • the method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected according to the purpose.
  • a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used.
  • a method of adding a surfactant, a release agent and the like is used.
  • the plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Alcohols and esters such as zircphosphate, uddernoresiphosphate and biphenyldiphosphate, amides such as toluenesulfonamide, and the like.
  • thermoplastic resin examples include a copolymer whose main component is an essential copolymer component of ethylene.
  • the copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose.
  • ethylene vinyl acetate copolymer (EV A) ethylene-ethyl acrylate. Copolymer (EEA) and the like.
  • the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose.
  • the adhesive strength between the photosensitive layer and the cushion layer is preferably the smallest.
  • the method for adjusting the interlayer adhesive force can be appropriately selected depending on the purpose without any particular limitation.
  • various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected.
  • the ethylene copolymerization ratio in the copolymer containing ethylene as an essential copolymerization component can be appropriately selected according to the purpose without any particular limitation, but is preferably 60 to 90 mass%, for example. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred.
  • the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce the photosensitive film.
  • the thickness of the cushion layer can be selected as appropriate according to the purpose for which there is no particular limitation.
  • Force f column; t is 5-50 111 girls, 10-50 111 girls Preferably, 15-40111.
  • the thickness is less than 5 m, unevenness on the surface of the substrate and unevenness followability to bubbles and the like may be reduced, and a high-definition permanent pattern may not be formed. Problems such as increased load may occur.
  • the oxygen barrier layer is preferably a film having a thickness of preferably about 0.5 to 5 ⁇ m, and is preferably formed mainly of polybulal alcohol.
  • the said photosensitive film can be manufactured as follows, for example. First, the material contained in the photosensitive composition is dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution for a photosensitive film.
  • the solvent can be appropriately selected depending on the purpose without any particular limitation.
  • Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and n-xanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diisoptyl ketone;
  • Esters such as ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate; aromatic carbonization such as toluene, xylene, benzene, and ethylbenzene Hydrogens: Halogenated hydrocarbons such as tetrasalt carbon, trichloroethylene, blackform, 1, 1, 1-trichlor
  • the photosensitive resin composition solution is coated on the support and dried to form a photosensitive layer, whereby a photosensitive film can be produced.
  • the method for applying the photosensitive composition solution is not particularly limited.
  • the force can be selected appropriately according to the purpose.
  • spray method roll coating method, spin coating method, slit coating method, etatrusion.
  • the coating method include a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the photosensitive film is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
  • the length of the long photosensitive film is not particularly limited. For example, a range force of 10-20,000 m can be appropriately selected. In addition, slitting may be performed for the convenience of the user, and a long body in the range of 100 1,000 m may be rolled. In this case, it is preferable that the support is wound up so as to be the outermost side.
  • the roll-shaped photosensitive film may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, the end face should have a separator (especially moisture-proof, desiccant). It is preferable to use materials with low moisture permeability.
  • the photosensitive laminate is formed by laminating at least the photosensitive layer on a substrate and other layers appropriately selected according to the purpose.
  • the substrate is a substrate to be processed on which a photosensitive layer is formed, or a transfer target to which at least the photosensitive layer of the photosensitive film of the present invention is transferred, and is appropriately selected depending on the purpose without particular limitation. For example, it can be arbitrarily selected from those having a high surface smoothness to those having a rough surface.
  • a so-called substrate in which a plate-like substrate is preferred is used. Specific examples include known printed wiring boards (printed boards), glass plates (soda glass plates, etc.), synthetic resin films, paper, metal plates, and the like.
  • Examples of the method for producing the photosensitive laminate include, as the first aspect, a method of applying the photosensitive composition to the surface of the substrate and drying, and as the second aspect, in the photosensitive film of the present invention.
  • a method of laminating by transferring at least one of heating and pressurizing at least one of the photosensitive layer and transferring force is mentioned.
  • the photosensitive composition is applied and dried on the substrate to form a photosensitive layer.
  • the coating and drying method can be appropriately selected according to the purpose without any particular limitation.
  • the photosensitive composition is dissolved, emulsified or dispersed on the surface of the substrate in water or a solvent.
  • a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
  • the solvent of the photosensitive composition solution can be appropriately selected depending on the purpose without particular limitation, and examples thereof include the same solvents as those used for the photosensitive film. They are
  • One type may be used alone or two or more types may be used in combination. Also, add a known surfactant.
  • the coating method and drying conditions are appropriately selected depending on the purpose without any particular limitation.
  • the same method and conditions as those used for the photosensitive film can be used.
  • the photosensitive film of the present invention is laminated on the surface of the substrate while performing at least one of heating and pressing.
  • the protective film it is preferable that the protective film is peeled off and laminated so that the photosensitive layer overlaps the substrate.
  • the heating temperature is not particularly limited, and can be appropriately selected according to the purpose. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
  • the pressure of the pressurization is not particularly limited, and can be appropriately selected depending on the purpose. For example, 0.1 to 1. OMPa force is preferable, 0.2 to 0.8 MPa force is more preferable! / ⁇ .
  • the apparatus for performing at least one of the heating is not particularly limited and may be appropriately selected depending on the purpose.
  • a laminator for example, Taisei Laminanee VP-II,-Chigo Morton Co., Ltd.
  • Preferable examples include VP130).
  • the photosensitive film and the photosensitive laminate of the present invention can efficiently form a high-definition permanent pattern by using the photosensitive composition of the present invention, a protective film, an interlayer insulating film, And various patterns such as permanent patterns such as solder resist patterns, color filters, pillar materials, rib materials, spacers, manufacturing liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc.
  • permanent patterns such as solder resist patterns, color filters, pillar materials, rib materials, spacers, manufacturing liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc.
  • it can be suitably used for forming a permanent pattern on a printed circuit board.
  • the photosensitive film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned in the formation of the permanent pattern, the photosensitive film of the present invention is high. Ion migration does not occur in the acceleration test (HAST) High-definition permanent patterns with excellent heat resistance and moisture resistance can be obtained, so that lamination to the substrate is performed more precisely.
  • HAST acceleration test
  • the pattern forming apparatus of the present invention includes the photosensitive layer and includes at least a light irradiation unit and a light modulation unit.
  • the permanent pattern forming method of the present invention includes at least an exposure step, and includes other steps such as an appropriately selected imaging step.
  • the said pattern formation apparatus of this invention is clarified through description of the said permanent pattern formation method of this invention.
  • the photosensitive layer in the photosensitive film of the present invention is exposed.
  • the photosensitive film and the base material of the present invention are as described above.
  • the exposure target is not particularly limited as long as it is the photosensitive layer in the photosensitive film, and can be appropriately selected according to the purpose. It is preferable that this is performed on a laminated body formed by laminating the optical film while performing at least one of heating and pressing.
  • the exposure can be appropriately selected according to the purpose without any particular limitation, and powers such as digital exposure and analog exposure are preferable. Among these, digital exposure is preferable.
  • the analog exposure can be appropriately selected depending on the purpose without any particular limitation. For example, exposure is performed with a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, or the like through a negative mask having a predetermined pattern. A method is mentioned.
  • the digital exposure can be appropriately selected according to the purpose without any particular limitation.
  • a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal.
  • light For example, n light (where n is a natural number of 2 or more) two-dimensional light receiving means and receiving light from the light irradiating means.
  • the exposure head is arranged so that the column direction of the predetermined inclination angle ⁇ is set, and, for the exposure head, N-exposure (N double exposure) of the usable pixel parts by the used pixel part designating means.
  • N is a natural number of 2 or more
  • N double exposure refers to a straight line parallel to the scanning direction of the exposure head on the exposed surface in almost all of the exposed region on the exposed surface of the photosensitive layer. Refers to exposure with a setting that intersects the N light spot rows (pixel rows) irradiated to the.
  • the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit.
  • the arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
  • the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads.
  • the number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution.
  • N double exposure and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method.
  • N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
  • the pattern forming apparatus is a V-type flatbed type exposure apparatus, and as shown in FIG. 1, a sheet-like photosensitive material 12 in which at least the photosensitive layer in the photosensitive film is laminated.
  • a flat moving stage 14 is provided.
  • Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16.
  • the stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable.
  • the pattern forming device 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
  • a U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18.
  • a scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side.
  • the scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14.
  • the scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
  • an X axis and a Y axis that are orthogonal to each other are defined in a plane parallel to the surface of the stage 14, as shown in FIG.
  • the "U" shape opens in the direction of the X axis.
  • Ten slits 28 are formed at regular intervals. Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side.
  • the slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of ⁇ 45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
  • the position of the slit 28 is substantially coincident with the center of the exposure head 30.
  • the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30.
  • the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34.
  • the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
  • each slit 28 in the stage 14 is a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later.
  • a single cell type photodetector (not shown) is incorporated.
  • each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
  • the operation mode of the pattern forming apparatus at the time of exposure may be a mode in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved stepwise.
  • the exposure operation may be performed with the exposure head stationary at the destination position.
  • Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle ⁇ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12.
  • the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
  • the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
  • each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
  • the part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
  • each of the exposure heads 30 is a light modulation unit that modulates incident light for each pixel part according to image data (modulation for each pixel part).
  • DMD36 (made by Texas Instruments Inc., USA) as a spatial light modulator.
  • This DMD36 is a controller as a pixel part control means having a data processing part and a mirror drive control part. Connected to the trawler.
  • the data processing unit of this controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
  • a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32.
  • a fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36
  • the mirrors 42 to be used are arranged in this order.
  • the lens system 40 is schematically shown.
  • the lens system 40 includes a pair of combination lenses 44 for collimating the laser light emitted from the fiber array light source 38, and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
  • a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed.
  • the lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
  • the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 ⁇ m!
  • the light modulating means has n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements, and the picture elements can be controlled according to the pattern information As long as it is a thing, it can select suitably according to the objective without a restriction
  • Examples of the spatial light modulator include a digital micromirror device (DMD). , MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), optical element that modulates transmitted light by electro-optic effect (PLZT element), liquid crystal light shirter (FLC), etc.
  • DMD digital micromirror device
  • MEMS Micro Electro Mechanical Systems
  • PZT element optical element that modulates transmitted light by electro-optic effect
  • FLC liquid crystal light shirter
  • the light modulation means has pattern signal generation means for generating a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device.
  • the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged.
  • micromirrors 58 that can be driven by a controller connected to DMD36, that is usable are only 1024 columns x 256 rows.
  • the data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases.
  • Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof.
  • the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction.
  • the SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
  • DMD36 SRAM cell memory cell 56 mm.
  • each micromirror 58 supported by the support is Inclined to one of ⁇ ⁇ degrees (for example, ⁇ 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center.
  • Fig. 7 ⁇ ⁇ shows a state tilted to + ⁇ degrees when the micromirror 58 is on
  • Fig. 7 ⁇ shows a state tilted to ⁇ degrees when the micromirror 58 is off Show the state.
  • the laser light B incident on the DMD 36 moves in the inclination direction of each micromirror 58. Reflected.
  • FIG. 6 shows an example in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 58 is performed by the controller connected to the DM D36.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
  • the light irradiation means can be appropriately selected according to the purpose without any particular limitation.
  • a known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the wavelength of the ultraviolet to visible light is preferably 300-1,500 nm, more preferably 320-8 OOrnn force, particularly preferably 330-650 mn force! / ,.
  • the wavelength of the laser light is, for example, 200 to 1,500 nm force, more preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force.
  • a means capable of irradiating the combined laser for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • the used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced.
  • the set tilt angle ⁇ in the column direction of the pixel part (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle ⁇ , which is exactly double exposure using a 1024 column x 256 row pixel part
  • the ideal also uses a slightly larger angle.
  • This angle ⁇ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
  • the angle ⁇ is about 0.45 degrees according to the equation 3. Therefore, the set inclination angle ⁇ is, for example, about 0.50 degrees. An angle of degrees should be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is an angle close to the set inclination angle ⁇ .
  • FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example.
  • the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface the light spot in the m-th row 3 ⁇ 4 ⁇ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
  • FIG. 8 shows a pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
  • FIG. 8 for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
  • the set tilt angle 0 is set to a slightly larger angle than the above angle 0.
  • FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform.
  • the cause of this angular distortion is the various aberrations and misalignment of the optical system between the DMD36 and the exposed surface, the distortion of the DMD36 itself, and the placement error of the micromirrors. Etc.
  • the angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure.
  • the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
  • the slit 28 and the photodetector are used as the light spot position detecting means.
  • the actual inclination angle ⁇ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle ⁇ ′.
  • a process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle ⁇ , the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
  • FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28.
  • the size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
  • the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle ⁇ ′.
  • the positions of P (l, 512) and ⁇ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle ⁇ ′.
  • FIG. 10 is a top view illustrating a method for detecting the position of the light spot (256, 512).
  • the stage 14 is slowly moved to relatively move the slit 28 along the ⁇ axis direction, and the light spot ⁇ (256, 512
  • the slit 28 is positioned at an arbitrary position such that) comes between the upstream slit 28a and the downstream slit 28b.
  • the value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector.
  • the coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as ⁇ .
  • a natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure.
  • the micro area is such that the total area of the overexposed area and the underexposed area is minimized with respect to the ideal double exposure.
  • the mirror can be selected as the micromirror that is actually used.
  • the smallest natural number equal to or greater than the value t may be derived.
  • a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
  • a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure It can be selected as a micromirror to be actually used.
  • FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
  • T 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force.
  • a signal for setting the angle in the always-off state is sent by the pixel part control means. Is not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
  • the inclination angle of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle ⁇ ⁇ measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
  • the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
  • the actual inclination angle ⁇ ′ of the 512th ray array is measured, and the actual inclination angle ⁇ is used to derive the equation (4).
  • the micromirror 58 to be used is selected based on T.
  • the actual inclination angle ⁇ ′ the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used.
  • a plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle ⁇ '.
  • the average value or the median value is set to the actual inclination angle ⁇ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
  • the exposure is not ideal for ideal N double exposure. It is possible to realize exposure that places more importance on the elimination of areas that become legs, for example, to realize exposure that minimizes the area of areas that are overexposed and does not cause areas that are underexposed. Is possible.
  • the identification of the actual inclination angle ⁇ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row).
  • the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n) may be specified.
  • one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected.
  • the actual inclination angle ⁇ ′ can be obtained from these positional information.
  • the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line is obtained.
  • the actual inclination angle ⁇ ′ may be specified.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle ⁇ of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle ⁇ that is exactly double exposure.
  • This angle ⁇ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
  • the pattern forming apparatus 10 includes each exposure head 30, that is, each DM. It is assumed that D36 is initially adjusted so that the mounting angle of D36 becomes this angle ⁇ .
  • Fig. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
  • FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
  • FIG. 12 The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 with the stage 14 stationary.
  • Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing.
  • every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B.
  • the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
  • the light spot position detection is performed. Using a combination of slit 28 and photodetector as means, exposure head 30 and 30 force
  • the position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means. [0242] Detection of one position (coordinate)
  • FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
  • the size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
  • Figure 14 shows an example of detecting the position of light spot P (256, 1024) in exposure area 32.
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream.
  • the slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0).
  • the value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
  • the position of light spot ⁇ (256, 1) in exposure area 32 is Detection is performed by a combination of a slit 28 and a photodetector as a position detection means.
  • exposure area 32 is a combination of a slit 28 and a photodetector as a position detection means.
  • each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of P (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
  • the micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
  • the detection operation ends.
  • the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
  • the micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
  • the position of the light spot P (256, N) in the exposure area 32 is detected for the number N of N double exposures.
  • the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020)
  • the force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
  • an exposure area 32 Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
  • the X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
  • the micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
  • the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
  • the light spot P (l, 1020) force of exposure area 32 is also P (m -Micromirror force corresponding to 2, 1020) Specified as a micromirror not used in this exposure.
  • micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
  • the total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
  • the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area are determined when specifying the light spot that constitutes the shaded area 72 in FIG. 32 of
  • micromirror May be specified as a micromirror that is not used during the main exposure.
  • a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
  • the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
  • a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
  • the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
  • the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads reduces image variability and density unevenness, making it possible to achieve ideal N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30.
  • the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and the 1024 columns x 256 rows of usable pixel parts (micrometers).
  • the degree shall be adopted.
  • This angle ⁇ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
  • FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. , And relative mounting angle error between each exposure head 30 and 30
  • phase of exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
  • the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows.
  • a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
  • Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle ⁇ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
  • processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
  • the actual inclination angle ⁇ ′ is specified by the light spot P (l,
  • a computing device connected to the photodetector is used. As with the arithmetic unit in the embodiment (1) described above,
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • the (T + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
  • the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
  • the number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
  • the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
  • the relative position shift in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
  • a set of the slit 28 and the single cell type photodetector is used as a means for detecting the position of the light spot on the surface to be exposed.
  • the force that was used is not limited to this, V, or any other form can be used.
  • a two-dimensional detector can be used.
  • the actual inclination angle ⁇ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained.
  • a micromirror to be used is selected based on ⁇ ⁇
  • a usable micromirror may be selected without going through the derivation of the actual inclination angle ⁇ ′.
  • the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
  • magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36.
  • Figure 18B from each micromirror 58 on the DMD 36, There is also a form of beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam powers and different beam diameters.
  • magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposed light surface.
  • this light distortion can be attributed to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the lenses 52 and 54 in FIGS. 5A and 5B, which are single lenses). This is caused by unevenness in the amount of light caused by DMD36 itself.
  • These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
  • the residual elements of the pattern distortion in these forms are also the above-mentioned angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
  • every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
  • the result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle.
  • the analysis of the result of the reference exposure is a visual analysis by the operator.
  • FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
  • reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples.
  • the sampled reference exposure Based on the results, it is possible to specify the micromirror to be used during the main exposure by checking the variation in resolution and uneven density, or by estimating the actual tilt angle.
  • a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done.
  • a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
  • FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
  • Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
  • a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
  • the two exposure heads form the surface to be exposed. Ideal for areas other than the head-to-head connection area A state close to a typical double exposure can be realized.
  • FIGS. 21A and 21B show an example of a mode in which reference exposure is performed using a single exposure head and using only micromirror groups constituting adjacent rows corresponding to IZN rows of the total number of light spot rows. It is explanatory drawing shown.
  • a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
  • Figure 22 shows multiple exposure heads, and two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30), each corresponding to 1ZN rows of the total number of light spots
  • FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
  • the micro-micrometer used during the main exposure Can be specified.
  • the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time.
  • a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
  • the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good.
  • the triple exposure power is set to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
  • the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
  • the development is performed by removing an unexposed portion of the photosensitive layer.
  • the removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
  • the developer can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include alkaline aqueous solutions, aqueous developers, organic solvents, etc. Among these, weakly alkaline aqueous solutions are mentioned. preferable.
  • Examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid.
  • Examples include lithium, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, and borax.
  • the pH of the weakly alkaline aqueous solution is, for example, preferably about 9 to about 8 to 12: L 1 is more preferable.
  • Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
  • the temperature of the developer is a force that can be appropriately selected according to the developability of the photosensitive layer. For example, about 25 to 40 ° C. is preferable.
  • the developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.)
  • an organic solvent for example, alcohols, ketones, esters, ethers, amides, latatones, etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
  • the curing treatment step is a step of performing a curing treatment on the photosensitive layer in the formed pattern after the development step is performed.
  • the curing treatment step can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include full-surface exposure treatment and full-surface heat treatment.
  • Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development. By this overall exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the permanent pattern is cured.
  • a force that can be appropriately selected according to the purpose without particular limitation a UV exposure machine such as an ultra-high pressure mercury lamp, an exposure machine using a xenon lamp, a laser exposure machine, etc. are suitable.
  • the exposure dose is usually 10 to 2,000 mj / cm 2 .
  • Examples of the entire surface heat treatment method include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the development. By heating the entire surface, the permanent The film strength on the surface of the permanent pattern is increased.
  • the heating temperature in the entire surface heating is preferably 120 to 250 ° C, more preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, the resin in the photosensitive composition may be decomposed, resulting in film quality. May be weak and brittle.
  • the heating time in the whole surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the pattern forming method is a permanent pattern forming method for forming at least one of a protective film, an interlayer insulating film, and a solder resist pattern
  • the pattern is permanently formed on the printed wiring board by the permanent pattern forming method.
  • a pattern can be formed and soldering can be performed as follows.
  • the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), and a solder resist, and prevents external impact and conduction between adjacent electrodes.
  • the wiring may be subjected to impact or bending by an external force.
  • the interlayer insulating film is useful for high-density mounting of semiconductors and components on, for example, a multilayer wiring board and a build-up wiring board.
  • a permanent pattern such as a protective film, an interlayer insulating film, and a solder resist pattern, etc. It can be suitably used for various pattern formation, manufacturing of liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, partition walls, holograms, micromachines, proofs, etc. It can be suitably used for forming a permanent pattern on a substrate.
  • a permanent pattern such as a protective film, an interlayer insulating film, and a solder resist pattern, etc. It can be suitably used for various pattern formation, manufacturing of liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, partition walls, holograms, micromachines, proofs, etc. It can be suitably used for forming a permanent pattern on a substrate.
  • the mass average molecular weight (Mw) of the obtained polymer compound was 15,000 as a result of measurement by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • * 1 represents a mixture of the structure represented by the following structural formula (a) and the structure represented by the following structural formula (b).
  • the mass average molecular weight (Mw) of the obtained polymer compound was polystyrene as a standard substance. As a result of measuring by gel permeation chromatography (GPC), it is 25,000 and 7 pieces.
  • Photopolymerization initiator I-1 (Ciba Specialty Chemicals Inc., Irgacure 819 (Arylphosphine oxide compound)) ⁇ 6 parts by mass
  • Sensitizer thixanthone compound represented by the following formula S— 1 (6) parts by mass
  • the barium sulfate dispersion is composed of 30 parts by mass of barium sulfate (manufactured by Nigaku Kogyo Co., Ltd., ⁇ 30), the polymer compound 1 (solid mass in the 1-methoxy-2-propanol solution) 30 parts by weight) 29.2 parts by weight, CI pigment 'Blue 15: 3 0.2 parts by weight, CI pigment' Yellow 185 0.05 parts by weight, and methyl ethyl ketone 40.55 parts by weight premixed Thereafter, it was prepared by using a motor mill ⁇ -200 (manufactured by Eiger) and dispersing for 3.5 hours at a peripheral speed of 9 mZs using Zircoyu beads having a diameter of 1. Omm.
  • the substrate was prepared by subjecting the surface of a copper-clad laminate (no through hole, copper thickness 1 2 / z m) on which wiring had been formed, to a chemical polishing treatment.
  • the photosensitive composition was applied by screen printing using a 120 mesh Tetron screen so that the thickness after drying was 30 m, and hot air circulation type at 80 ° C. for 15 minutes.
  • a photosensitive layer was formed by drying with a dryer, and a photosensitive laminated body in which the copper-clad laminate and the photosensitive layer were laminated in this order was prepared.
  • the photosensitive laminates were evaluated by the following methods for the shortest development time, sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness.
  • Table 2 shows the results other than the shortest development time.
  • the photosensitive layer in the photosensitive laminate prepared above by using a pattern forming apparatus described below, from 0. lruJ / cm 2 until lOOruJ / cm 2 at 2 1/2 times the interval of light energy of different light Were exposed twice to cure a part of the photosensitive layer.
  • a 1 mass% sodium carbonate aqueous solution at 30 ° C is sprayed on the entire surface of the photosensitive layer on the copper-clad laminate at a spray pressure of 0.15 MPa, twice the minimum development time. After spraying, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured.
  • a sensitivity curve was obtained by plotting the relationship between the amount of light irradiation and the thickness of the cured layer. From the sensitivity curve, the amount of light energy when the thickness of the cured region was the same 30 m as that of the photosensitive layer before exposure was determined as the amount of light energy necessary for curing the photosensitive layer.
  • DMD 36 controlled to drive only 1024 ⁇ 256 6 rows, and optical for imaging the light shown in FIGS. 5A and 5B on the photosensitive film
  • a pattern forming apparatus 10 having an exposure head 30 having a system was used.
  • each exposure head 30, ie each DMD 36 is slightly larger than the angle ⁇ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
  • This angle 0 is the number of N exposures N, the available micromirrors
  • the power shown for every other column of micromirrors 58 that can be used is divided into the exposure pattern by pixel column group A and the exposure pattern by pixel column group B.
  • the exposure pattern is a superposition of these two exposure patterns.
  • a set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
  • the angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
  • micromirrors corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17 the area 82 covered by the oblique lines in FIG.
  • micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors not used during the main exposure.
  • a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
  • the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32 are formed by a plurality of the exposure heads in the exposure areas 32 and 32.
  • test substrate is subjected to electroless gold plating according to the process described below, the appearance of the test substrate is changed, and a peeling test using a cellophane adhesive tape is performed. It was evaluated with.
  • test substrate as a printed circuit board that has been subjected to heat treatment (post-beta treatment) to form a solder resist pattern (permanent pattern), is a 30 ° C acid degreasing solution (Mexdermit Japan, Metex L-5B 20% by mass)
  • the sample was immersed in an aqueous solution for 3 minutes and then immersed in running water for 3 minutes and washed with water.
  • this substrate was immersed in a 30 ° C catalyst solution (Meltex, 10 mass% aqueous solution of Metal Plate Actuator 350) for 7 minutes, then immersed in running water for 3 minutes, washed with water, then 8 5 ° nickel plating solution of C (Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6) was immersed for 20 minutes, after the electroless nickel plating, 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed in running water for 30 seconds to 1 minute and washed with water.
  • a 30 ° C catalyst solution Mobalx, 10 mass% aqueous solution of Metal Plate Actuator 350
  • 8 5 ° nickel plating solution of C Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6
  • 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed
  • a copper-clad laminate having an insulating layer thickness of 200 ⁇ m, a copper thickness of 18 ⁇ m, and a through hole having a diameter of 100 ⁇ m at a pitch of 5 mm was prepared by subjecting the surface to chemical polishing treatment.
  • the photosensitive composition was applied by a screen printing method using a 120 mesh Tetron screen so that the thickness after drying was 30 m, and a hot-air circulating drier at 80 ° C for 15 minutes.
  • the photosensitive layer is formed by applying and drying to a thickness of 30 m after drying.
  • a photosensitive laminate in which a photosensitive layer was formed on both sides of the copper clad laminate was prepared. Thereafter, the vicinity of the through-hole portion was cut with scissors and polished with a sandpaper (roughing: # 600 and main cutting: # 1200) until the cross-section of the through-hole portion could be observed. The through-hole cross section was observed and the embedding property was evaluated based on the following criteria.
  • the photosensitive laminate is irradiated with double exposure so that a horizontal line pattern in a direction orthogonal to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed.
  • a pattern was formed on the area in the same manner as (3) in the resolution measurement.
  • any five points of a line with a line width of 50 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ⁇ ), and the edge position in the field of view was observed.
  • edge roughness is preferably as the value is small because it exhibits good performance.
  • the photosensitive composition solution obtained in Example 1 was applied to a PET (polyethylene terephthalate) film having a thickness of 16 m, a width of 30 Omm, and a length of 200 m as the support with a bar coater, and 80 ° C.
  • a photosensitive layer having a thickness of 30 m was formed by drying in a hot air circulation dryer.
  • a polypropylene film having a thickness of 20 ⁇ m, a width of 310 mm, and a length of 210 m was formed as a protective film on the photosensitive layer. Were laminated by lamination to produce the photosensitive film.
  • the photosensitive film of the photosensitive film is in contact with the copper-clad laminate, and the protective film on the photosensitive film is peeled off, and a vacuum laminator (A photosensitive laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) are laminated in this order. Prepared.
  • the crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
  • the photosensitive laminate was evaluated for sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness.
  • the resolution, electroless gold plating resistance, and edge roughness were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • a part of the photosensitive layer is cured from the support side in the same manner as in Example 1 by the pattern forming apparatus described in Example 1. I let you. After standing at room temperature for 10 minutes, the support was peeled from the photosensitive laminate, and the amount of light energy required to cure the photosensitive layer was measured in the same manner as in Example 1.
  • the substrate was prepared by subjecting a surface of a copper clad laminate having an insulating layer thickness of 200 ⁇ m, a copper thickness of 18 ⁇ m, and a through hole having a diameter of 100 m at a pitch of 5 mm to chemical polishing.
  • the photosensitive layer of the photosensitive film is in contact with the copper-clad laminate on both sides of the copper-clad laminate. In this way, while peeling off the protective film on the photosensitive film, it was laminated using a vacuum laminator (manufactured by Nichigo Morton Co., Ltd., VP130), the copper-clad laminate, the photosensitive layer, and the polyethylene
  • a vacuum laminator manufactured by Nichigo Morton Co., Ltd., VP130
  • the crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
  • Example 2 a mixture of a bisphenol A-based epoxy compound and a bisphenol F-based epoxy compound is combined with a bisphenol F-type epoxy compound (Epototo manufactured by Tohto Kasei Co., Ltd.) as shown in Table 1.
  • Novolak type epoxy compound epoxy equivalent 210 g / eq.
  • Example 2 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and heterocycle-containing epoxy compound (Nissan Chemical Co., TEPIC-S, epoxy equivalent 100g / eq.) 2 parts by mass.
  • TEPIC-S epoxy equivalent 100g / eq.
  • Example 2 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and alicyclic ring-containing epoxy compound (Nippon Kayaku Co., Ltd., XD-100, epoxy equivalent 250g / eq.) 2 parts by mass Except for the above, sensitivity, resolution, electroless gold plating resistance, The embedding property of the luhole and the edge roughness were evaluated. The results are shown in Table 2.
  • Example 2 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 4 parts by mass and novolac epoxy compound obtained in Synthesis Example 3 (epoxy equivalent 5, OOOg / eq.) 2 parts by mass.
  • the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 2 as shown in Table 1, the thermal crosslinking agent was 3 parts by mass of epototo ZX-1059 and a novolac type epoxy compound (Etototo YDCN-704L, epoxy equivalent 210 g, manufactured by Toto Kasei Co., Ltd.) / eq.)
  • a novolac type epoxy compound (Etototo YDCN-704L, epoxy equivalent 210 g, manufactured by Toto Kasei Co., Ltd.) / eq.)
  • the sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that the amount was changed to 2 parts by mass. The results are shown in Table 2.
  • Example 2 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by weight and 1,4 bis [(3 methyl 3 oxeta-lmethoxy) methyl] benzene (oxetane compound) 2 parts by weight.
  • the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 2 the polymer compound 1 was replaced with the polymer compound 2 obtained in Synthesis Example 2 as shown in Table 1, except that it was replaced with 87.4 parts by mass. Sensitivity, resolution, electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 10 (Example 10) In Example 2, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula I 2 and the sensitizer was replaced with 0.6 parts by mass of N-methyl attaridone. , Sensitivity, resolution, electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 3 the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by Formula I 2 as shown in Table 1, in the same manner as in Example 3, the sensitivity, resolution, The electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. Table the results
  • Example 4 the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula I 3 as shown in Table 1, in the same manner as in Example 4, the sensitivity, resolution, The electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. Table the results
  • Example 5 the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formulas 1-4 as shown in Table 1.
  • electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 2 instead of the pattern forming apparatus, a glass negative mask having a pattern similar to the above was prepared separately, and this negative mask was brought into contact with the photosensitive laminate, and an exposure amount of 40 miZcm 2 was obtained using an ultrahigh pressure mercury lamp. And exposed. After that, the sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that development was performed in the same manner as in Example 2 and the resolution was measured. It was. The results are shown in Table 2.
  • Example 14 a mixture of a bisphenol A-based epoxy compound and a bisphenol F-based epoxy compound was combined with a bisphenol F-type epoxy compound as shown in Table 1 (Epototo manufactured by Tohto Kasei Co., Ltd.). YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and Novolak type epoxy compound (Etototo YDCN— 704L, epoxy equivalent 210 g / eq.) 2 parts by mass Except for the above, sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 14. The results are shown in Table 2.
  • Example 14 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound was prepared as shown in Table 1, bisphenol F type epoxy resin (manufactured by Tohto Kasei Co., Ltd. Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and heterocycle-containing epoxy compound (Nissan Chemical Co., TEPIC-S, epoxy equivalent 100g / eq.) 2 parts by mass Except for the above, in the same manner as in Example 14, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
  • Example 14 a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound was prepared as shown in Table 1, as shown in Table 1. Seisha, Epototo YDF-8170C, epoxy equivalent 160g / eq.) 3 parts by mass and alicyclic ring-containing epoxy compound (Nippon Kayaku Co., Ltd., XD-100, epoxy equivalent 250g / eq.) 2 mass The sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 14 except that the part was replaced with the part. The results are shown in Table 2.
  • Example 14 the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula 1-4 as shown in Table 1.
  • electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. The results are shown in Table 2.

Abstract

A photosensitive composition which can be efficiently formed into a highly precise permanent pattern (protective film, interlayer dielectric, solder resist pattern, etc.); a photosensitive film; a photosensitive layered product; a method of forming a permanent pattern from the photosensitive layered product; and a printed wiring board having a pattern formed by the permanent-pattern formation method. The photosensitive composition comprises a binder, at least one polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, wherein the binder comprises a polymer having an acid group and an ethylenically unsaturated bond in a side chain and at least either of the polymerizable compound and the thermal crosslinking agent comprises two or more compounds.

Description

明 細 書  Specification
感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法 、及びプリント基板  Photosensitive composition, photosensitive film, photosensitive laminate, method for forming permanent pattern, and printed circuit board
技術分野  Technical field
[0001] 本発明は、高精細な永久パターン (保護膜、層間絶縁膜、及びソルダーレジストパ ターンなど)を効率よく形成可能な感光性組成物、感光性フィルム、感光性積層体、 該感光性積層体を用いた永久パターン形成方法、及び該永久パターン形成方法に より永久パターンが形成されるプリント基板に関する。  The present invention relates to a photosensitive composition, a photosensitive film, a photosensitive laminate, and a photosensitive laminate capable of efficiently forming a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist pattern). The present invention relates to a permanent pattern forming method using a laminate, and a printed board on which a permanent pattern is formed by the permanent pattern forming method.
背景技術  Background art
[0002] 従来より、ソルダーレジストパターンなどの永久パターンを形成するに際して、支持 体上に感光性組成物を塗布、乾燥することにより感光層を形成させた感光性フィルム が用いられている。前記永久パターンの製造方法としては、例えば、前記永久パター ンが形成される銅張積層板等の基体上に、前記感光性フィルムを積層させて積層体 を形成し、該積層体における前記感光層に対して露光を行い、該露光後、前記感光 層を現像してパターンを形成させ、その後硬化処理等を行うことにより前記永久バタ ーンが形成される。  Conventionally, when a permanent pattern such as a solder resist pattern is formed, a photosensitive film in which a photosensitive layer is formed by applying and drying a photosensitive composition on a support has been used. As a method for producing the permanent pattern, for example, a laminate is formed by laminating the photosensitive film on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed. After the exposure, the photosensitive layer is developed to form a pattern, and then subjected to a curing process or the like to form the permanent pattern.
[0003] 前記感光性組成物としては、安定性等を向上させる目的で、炭素原子数 1〜6個の 脂肪族炭化水素基を有する (メタ)アクリルモノマーと、(メタ)アクリル酸との共重合体 に、エポキシ基を有する (メタ)アタリレート化合物を付加させた高分子化合物を含む 感光性組成物が提案されている (特許文献 1参照)。また、前記提案とほぼ同様な目 的で、側鎖にカルボキシル基を有する共重合体に、脂環式エポキシ基を有する不飽 和化合物を付加させた高分子化合物を含む感光性組成物が提案されて!ヽる (特許 文献 2参照)。更に、耐熱性ゃ耐薬品性等の性能を向上させる目的で、不飽和二重 結合を有し、かつ特定の範囲の酸価及び分子量のバインダーポリマーと、不飽和二 重結合とを有し、かつ特定の酸価及びエポキシ等量のエポキシィ匕合物とを組成物中 に含有させる感光性組成物が提案されて!ヽる (特許文献 3参照)。  [0003] As the photosensitive composition, for the purpose of improving stability and the like, a copolymer of a (meth) acrylic monomer having an aliphatic hydrocarbon group having 1 to 6 carbon atoms and (meth) acrylic acid is used. There has been proposed a photosensitive composition containing a polymer compound obtained by adding a (meth) acrylate compound having an epoxy group to a polymer (see Patent Document 1). Also, a photosensitive composition comprising a polymer compound in which an unsaturated compound having an alicyclic epoxy group is added to a copolymer having a carboxyl group in a side chain for the same purpose as the above proposal is proposed. (See Patent Document 2). Furthermore, for the purpose of improving performance such as heat resistance and chemical resistance, it has an unsaturated double bond, a binder polymer having a specific range of acid value and molecular weight, and an unsaturated double bond, In addition, there has been proposed a photosensitive composition containing an epoxy compound having a specific acid value and an epoxy equivalent amount in the composition (see Patent Document 3).
しかし、これらの感光性組成物においても、感度及び保存安定性は不十分であり、 特にレーザ走査露光によるパターン潜像形成において、露光部の硬化が不十分で、 アルカリ現像工程で画像部が除去されてしまったり、感光性組成物をフィルム化して 長尺ロール形態にした場合、経時で端面の融着が起こり、その融着部分がラミネート 時に、積層体の露光面に落下することで、露光時に露光パターンの断線等の故障が 起こる問題があった。更に、アルカリ可溶性のエポキシ榭脂を使用した場合には、金 めっき処理プロセスで基板との密着が不良となり、感光性組成物の浮きが観られ、め つき潜りが認められる現象が起こるなどの問題があった。 However, even in these photosensitive compositions, the sensitivity and storage stability are insufficient. Especially in pattern latent image formation by laser scanning exposure, when the exposed area is not sufficiently cured, the image area is removed in the alkali development process, or the photosensitive composition is made into a long roll form when the photosensitive composition is formed into a long roll. In this case, the end face is melted, and the fused part falls on the exposed surface of the laminate during lamination, causing a problem such as disconnection of the exposure pattern at the time of exposure. Furthermore, when alkali-soluble epoxy resin is used, problems such as poor adhesion to the substrate during the gold plating process, floating of the photosensitive composition, and a phenomenon in which lagging is observed. was there.
[0004] ここで、前記エポキシィ匕合物としては、液状のものと固体状のものとに大別される。  Here, the epoxy compound is roughly classified into a liquid form and a solid form.
これらのうち、前者は、流動性があるので、溶融粘度が下がり、得られる膜における埋 め込み性が良 ヽ利点がある一方で、前記膜のガラス転移温度 (Tg)及び弾性率を下 げる問題がある。これに対し、後者は、流動性に欠ける一方で、得られる膜の Tgを下 げず、弾性率も高いという利点がある。したがって、一般に液状レジストタイプの永久 ノターン形成に用いられる感光性組成物では、両者を併用して双方の利点を可能な 限り発揮できるようにして 、る。  Among these, the former has fluidity, so that the melt viscosity is lowered and the embedding property in the obtained film is good, while the glass transition temperature (Tg) and elastic modulus of the film are lowered. There is a problem. On the other hand, the latter is advantageous in that it lacks fluidity but does not lower the Tg of the resulting film and has a high elastic modulus. Therefore, in a photosensitive composition generally used for forming a liquid resist type permanent pattern, both are used together so that both advantages can be exhibited as much as possible.
し力しながら、従来の感光性組成物では、単に液状のものと固体状のものとを併用 しているにすぎず、バインダーとの関係で、具体的にそれぞれどのような化合物を併 用すると、より優れた効果が得られるかについては検討されていな力つた。特に、感 度、保存性、及びタック性が優れたフィルム型であって、熱架橋剤を含む感光性組成 物では、前記エポキシィ匕合物を 2種以上併用すること自体が提案されて 、な力つた。  However, in the conventional photosensitive composition, only a liquid form and a solid form are used together, and what kind of compound is specifically used in combination with the binder. However, it was unstudied whether a better effect could be obtained. In particular, in a photosensitive composition having excellent sensitivity, storage stability, and tackiness, and including a thermal crosslinking agent, it has been proposed to use two or more of the above epoxy compounds in combination. I helped.
[0005] また、重合性ィ匕合物が脂肪族エステル系のモノマー(例えば、ジペンタエリスリトー ルへキサアタリレート、トリメチロールプロパントリアタリレート、トリメチロールプロパント リメタクリレート)のみで構成されて 、ると、ポリエチレンテレフタレート(PET)等の支 持体の剥がしやすさ (タック性)が不十分であり、支持体を剥がす際に硬化感光層を 傷付けるという問題があった。  [0005] In addition, the polymerizable compound is composed only of an aliphatic ester monomer (for example, dipentaerythritol hexaatalylate, trimethylolpropane tritalylate, trimethylolpropane trimethacrylate). Then, there was a problem that the support such as polyethylene terephthalate (PET) was not easily peeled off (tackiness), and the cured photosensitive layer was damaged when the support was peeled off.
[0006] 特許文献 1 :特開平 3— 172301号公報 [0006] Patent Document 1: Japanese Patent Laid-Open No. 3-172301
特許文献 2:特開平 10— 10726号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-10726
特許文献 3 :特開平 7— 199457号公報  Patent Document 3: JP-A-7-199457
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0007] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。  [0007] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the conventional problems and achieve the following objects.
即ち、本発明は、第 1に、バインダー及び併用する熱架橋剤を規定することにより、 高感度及び高解像度で、無電解金メッキ耐性、及びビアやスルーホールの埋め込み 性に優れ、高精細な永久パターン (保護膜、層間絶縁膜、及びソルダーレジストパタ ーンなど)を効率よく形成可能な感光性組成物、感光性フィルム、感光性積層体、前 記感光性積層体を用いた永久パターン形成方法、及び前記永久パターン形成方法 によりパターンが形成されるプリント基板を提供することを目的とする。  That is, according to the present invention, first, by defining a binder and a thermal crosslinking agent to be used in combination, high sensitivity and high resolution, excellent electroless gold plating resistance, via and through-hole embedding properties, and high-definition permanent. Photosensitive composition, photosensitive film, photosensitive laminate, and method for forming permanent pattern using photosensitive laminate, which can efficiently form patterns (protective film, interlayer insulating film, solder resist pattern, etc.) And a printed circuit board on which a pattern is formed by the permanent pattern forming method.
第 2に、脂肪族エステル系のモノマー以外のモノマーを組み合わせることにより、感 度、解像度、タック性、無電解金メッキ耐性、及び保存安定性に優れ、高精細な永久 ノターン (層間絶縁膜、ソルダーレジストパターンなど)を効率よく形成可能な感光性 組成物、感光性フィルム、感光性積層体、前記感光性積層体を用いた永久パターン 形成方法、前記永久パターン形成方法により形成される永久パターン、及び前記永 久パターンが形成されるプリント基板を提供することを目的とする。  Secondly, by combining monomers other than aliphatic ester monomers, it has excellent sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability and high-definition permanent pattern (interlayer insulation film, solder resist) Pattern, etc.) can be efficiently formed, a photosensitive film, a photosensitive laminate, a permanent pattern forming method using the photosensitive laminate, a permanent pattern formed by the permanent pattern forming method, and the An object is to provide a printed circuit board on which a permanent pattern is formed.
課題を解決するための手段  Means for solving the problem
[0008] 前記課題を解決するため、本発明者らが鋭意検討を行った結果、バインダー、重 合性化合物、光重合開始剤、及び熱架橋剤を含み、前記バインダーが、酸性基とェ チレン性不飽和結合とを側鎖に有する高分子化合物を含み、かつ熱架橋剤が、 2種 以上の榭脂を含む感光性組成物が、バインダー及び併用する熱架橋剤を規定する ことにより、高感度及び高解像度で、無電解金メッキ耐性、及びビアやスルーホール の埋め込み性に優れ、高精細な永久パターンを効率よく形成可能であることを知見 した。 [0008] As a result of intensive studies by the present inventors in order to solve the above-mentioned problems, the present invention contains a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, and the binder includes an acidic group and an ethylene. The photosensitive composition containing a high molecular compound having a ionic unsaturated bond in the side chain and the thermal cross-linking agent containing two or more types of rosins defines a binder and a thermal cross-linking agent used in combination. It was discovered that high-definition permanent patterns can be efficiently formed with high sensitivity and high resolution, excellent electroless gold plating resistance, and via and through-hole embedding.
また、バインダー、 2種以上の重合性ィ匕合物、光重合開始剤、及び熱架橋剤を含 み、前記バインダーが、酸性基とエチレン性不飽和結合とを側鎖に有する高分子化 合物を含み、かつ重合性化合物が、 2種以上のモノマーを含む感光性組成物が、感 度、解像度、タック性、無電解金メッキ耐性、及び保存安定性に優れ、高精細な永久 ノターンを効率よく形成可能であることを知見した。 [0009] 本発明は、本発明者の前記知見に基づくものであり、前記課題を解決するための 手段としては、以下の通りである。即ち、 In addition, the polymer composition includes a binder, two or more polymerizable compounds, a photopolymerization initiator, and a thermal crosslinking agent, and the binder has a polymer compound having an acidic group and an ethylenically unsaturated bond in a side chain. Photosensitive composition containing two or more types of monomers and excellent in sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and high-efficiency permanent pattern We found that it was possible to form well. [0009] The present invention is based on the above findings of the present inventor, and means for solving the above problems are as follows. That is,
< 1 > ノ インダー、重合性化合物、光重合開始剤、及び熱架橋剤を含み、前記 バインダーが、酸性基とエチレン性不飽和結合とを側鎖に有する高分子化合物を含 み、かつ重合性ィヒ合物及び熱架橋剤の少なくともいずれ力が、 2種以上の化合物を 含むことを特徴とする感光性組成物である。  <1> Including a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, the binder includes a polymer compound having an acidic group and an ethylenically unsaturated bond in the side chain, and is polymerizable. The photosensitive composition is characterized in that at least one of the ionic compound and the thermal crosslinking agent contains two or more compounds.
< 2> 熱架橋剤が、エポキシィ匕合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合 物、ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物、及びメラミン 誘導体から選択される少なくとも 1種である前記 < 1 >に記載の感光性組成物である  <2> A thermal crosslinking agent is an epoxy compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative. The photosensitive composition according to <1>, wherein the photosensitive composition is at least one selected.
< 3 > 熱架橋剤が、エポキシィ匕合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合 物、ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物、及びメラミン 誘導体力 選択される 2種以上である前記 < 1 >から < 2 >のいずれかに記載の感 光性組成物である。 <3> Thermal crosslinking agent is an epoxy compound, oxetane compound, polyisocyanate compound, compound obtained by reacting polyisocyanate compound with a blocking agent, and melamine derivative power The photosensitive composition according to any one of <1> to <2>, wherein two or more selected.
<4> 熱架橋剤がエポキシィ匕合物であり、該エポキシィ匕合物がノボラック型ェポキ シ化合物、ビスフエノール型エポキシィ匕合物、複素環含有エポキシ化合物、及び脂 環式エポキシ化合物から選択される 、ずれか 2種である前記 < 3 >に記載の感光性 組成物である。  <4> The thermal crosslinking agent is an epoxy compound, and the epoxy compound is selected from a novolac epoxy compound, a bisphenol epoxy compound, a heterocyclic ring-containing epoxy compound, and an alicyclic epoxy compound. The photosensitive composition according to <3>, wherein there are at least two types.
< 5 > 熱架橋剤力 エポキシ当量 90〜400gZeq.のエポキシ化合物と、ェポキ シ当量 150〜9, OOOg/eq.のエポキシ化合物とを含む前記 < 4 >に記載の感光性 組成物である。  <5> Thermal crosslinking agent power The photosensitive composition according to <4>, comprising an epoxy compound having an epoxy equivalent of 90 to 400 gZeq. And an epoxy compound having an epoxy equivalent of 150 to 9, OOOg / eq.
< 6 > 熱架橋剤の少なくとも 1種が、アルカリ不溶性である前記 < 1 >から < 5 > の!ヽずれかに記載の感光性組成物である。  <6> The photosensitive composition according to any one of <1> to <5>, wherein at least one of the thermal crosslinking agents is alkali-insoluble.
< 7> 熱硬化促進剤を含む前記 < 1 >から < 6 >のいずれかに記載の感光性組 成物である。  <7> The photosensitive composition according to any one of <1> to <6>, including a thermosetting accelerator.
[0010] < 8 > 重合性ィヒ合物力 エチレン性不飽和結合を 1つ以上有する化合物を含む < 1 >から < 7 >のいずれかに記載の感光性組成物である。  [0010] <8> Polymerizable ionic compound strength [0010] The photosensitive composition according to any one of <1> to <7>, comprising a compound having one or more ethylenically unsaturated bonds.
< 9 > 重合性化合物が、官能基数の異なる 2種以上のモノマーを含む前記 < 1 > から < 2 >及びく 6 >力ら < 8 >の!、ずれかに記載の感光性組成物である。 <9> The above <1>, wherein the polymerizable compound contains two or more monomers having different numbers of functional groups To <2> and 6> force <8>, the photosensitive composition according to any one of the above.
<10> 重合性化合物が、ウレタン基、ァリール基、エステル基、エーテル基、及 びエポキシ化合物から誘導された基の少なくとも 、ずれかを有するモノマーを含む前 記 < 9 >に記載の感光性組成物である。  <10> The photosensitive composition according to <9>, wherein the polymerizable compound includes a monomer having at least one of a group derived from a urethane group, an aryl group, an ester group, an ether group, and an epoxy compound. It is a thing.
く 11 > 重合性化合物が、 4個以上の官能基を有するモノマーを含む前記く 9 > からく 10 >のいずれかに記載の感光性組成物である。  <11> The photosensitive composition according to any one of <9> to <10>, wherein the polymerizable compound contains a monomer having 4 or more functional groups.
<12> 質量平均分子量が、 200〜9, 000のモノマーを含む前記 <10>からく 11 >の 、ずれかに記載の感光性組成物である。  <12> The photosensitive composition according to any one of <10> and <11>, comprising a monomer having a mass average molecular weight of 200 to 9,000.
<13> 重合性化合物が、脂肪族エステル系のモノマーを含む前記く 1>からく 2 >及び< 6 >から < 12 >の!、ずれかに記載の感光性組成物である。  <13> The photosensitive composition according to any one of <1> to <2> and <6> to <12>, wherein the polymerizable compound contains an aliphatic ester monomer.
<14> 重合性化合物が、(メタ)アクリル基を有するモノマー力 選択される少なく とも 1種を含む前記 <1>から <2>及び <6>から <8>のいずれかに記載の感光 性組成物である。  <14> The photosensitivity according to any one of <1> to <2> and <6> to <8>, wherein the polymerizable compound contains at least one monomer power having a (meth) acryl group. It is a composition.
<15> ノインダ一力 酸性基と、ヘテロ環を含んでもよい芳香族基と、エチレン 性不飽和結合とを側鎖に有する高分子化合物を含む前記 < 1>から < 14 >のいず れかに記載の感光性組成物である。  <15> Noinda One of the above <1> to <14>, which includes a polymer compound having an acidic group, an aromatic group that may contain a heterocyclic ring, and an ethylenically unsaturated bond in the side chain. It is a photosensitive composition as described in above.
<16> 高分子化合物が、エチレン性不飽和結合を 0.5〜3. OmeqZg含有する 前記く 1>からく 15 >のいずれかに記載の感光性組成物である。  <16> The photosensitive composition according to any one of <1> to <15>, wherein the polymer compound contains 0.5 to 3. OmeqZg of an ethylenically unsaturated bond.
<17> 高分子化合物の酸基が、カルボキシル基であり、前記カルボキシル基の 前記高分子化合物における含有量が、 1.0〜4. OmeqZgである前記 <1>から < 16 >のいずれかに記載の感光性組成物である。  <17> The acid group of the polymer compound is a carboxyl group, and the content of the carboxyl group in the polymer compound is 1.0 to 4. OmeqZg. It is a photosensitive composition.
<18> 高分子化合物の質量平均分子量が、 10, 000以上 100, 000未満である 前記く 1>からく 17 >のいずれかに記載の感光性組成物である。  <18> The photosensitive composition according to any one of <1> to <17>, wherein the polymer compound has a mass average molecular weight of 10,000 or more and less than 100,000.
<19> 高分子化合物が、下記構造式 (I)で表される構造単位を 20mol%以上含 有する前記く 1>からく 18 >のいずれかに記載の感光性組成物である。  <19> The photosensitive composition according to any one of <1> to <18>, wherein the polymer compound contains 20 mol% or more of a structural unit represented by the following structural formula (I).
[化 1] / Ri R3、 [Chemical 1] / Ri R3,
■-c— c 構造式(Π  ■ -c— c structural formula (Π
R2 C一 0—— L一 Ar R 2 C 1 0—— L 1 Ar
II  II
0  0
ただし、前記構造式 (I)中、 R、 R R  However, in the structural formula (I), R, R R
1 2、及び 3は水素原子又は 1価の有機基を表す。 1 2 and 3 represent a hydrogen atom or a monovalent organic group.
Lは有機基を表し、なくてもよい。 Arは芳香族基を表す。 L represents an organic group and may be omitted. Ar represents an aromatic group.
[0012] <20> 光重合開始剤が、ハロゲン化炭化水素誘導体、へキサァリールビイミダゾ ール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム 塩、メタ口セン類、及びァシルホスフィンォキシドィ匕合物から選択される少なくとも 1種 を含む前記く 1>からく 19 >のいずれかに記載の感光性組成物である。 <20> The photopolymerization initiator is a halogenated hydrocarbon derivative, hexaryl biimidazole, an oxime derivative, an organic peroxide, a thio compound, a ketone compound, or an aromatic onium salt. The photosensitive composition according to any one of 1> to 19>, comprising at least one selected from the group consisting of:
<21> 感光性組成物が、増感剤を含む前記く 1>からく 20 >のいずれかに記 載の感光性組成物である。  <21> The photosensitive composition according to any one of <1> to <20>, wherein the photosensitive composition contains a sensitizer.
<22> 増感剤が、ヘテロ縮環系化合物である前記く 21 >に記載の感光性組成 物である。  <22> The photosensitive composition according to <21>, wherein the sensitizer is a hetero-fused ring compound.
[0013] <23> 支持体と、該支持体上に前記く 1>からく 22>のいずれかに記載の感 光性組成物からなる感光層を有することを特徴とする感光性フィルムである。  [0013] <23> A photosensitive film comprising a support and a photosensitive layer comprising the photosensitive composition according to any one of 1) to 22) on the support. .
<24> 支持体が、合成樹脂を含み、かつ透明である前記く 23 >に記載の感光 性フィルムである。  <24> The photosensitive film according to <23>, wherein the support includes a synthetic resin and is transparent.
<25> 支持体が、長尺状である前記く 23>からく 24>のいずれかに記載の感 光性フィルムである。  <25> The photosensitive film according to any one of the items <23> to <24>, wherein the support has a long shape.
<26> 長尺状であり、ロール状に巻かれてなる前記 <23>から <25>のいず れかに記載の感光性フィルムである。  <26> The photosensitive film according to any one of <23> to <25>, which is long and wound in a roll.
<27> 感光性フィルムにおける感光層上に保護フィルムを有する前記く 23>か ら < 26 >の!、ずれかに記載の感光性フィルムである。  <27> The photosensitive film according to any one of <23> to <26>, wherein the photosensitive film has a protective film on the photosensitive layer.
[0014] <28> 基体上に、前記 <1>からく 22>のいずれかに記載の感光性組成物か らなる感光層を有することを特徴とする感光性積層体である。 [0014] <28> A photosensitive laminate comprising a photosensitive layer made of the photosensitive composition according to any one of <1> to 22 above on a substrate.
<29> 感光層が、前記 <23>から <27>のいずれかに記載の感光性フィルム により形成された前記く 28 >に記載の感光性積層体である。 < 30> 感光層の厚みが 1〜100 /ζ πιである前記 < 28 >から < 29 >のいずれか に記載の感光性積層体である。 <29> The photosensitive laminate according to <28>, wherein the photosensitive layer is formed of the photosensitive film according to any one of <23> to <27>. <30> The photosensitive laminate according to any one of <28> to <29>, wherein the photosensitive layer has a thickness of 1 to 100 / ζ πι.
く 31 > 前記く 28 >からく 30 >のいずれかに記載の感光性積層体における感 光層を備えており、  31> The photosensitive layered body according to any one of 28> Karaku 30> is provided,
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記感光性フィ ルムにおける感光層に対して露光を行う光変調手段とを少なくとも有することを特徴 とするパターン形成装置である。前記く 31 >に記載のパターン形成装置においては 、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が 、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前 記感光層に対して露光させる。例えば、その後、前記感光層を現像すると、高精細な パターンが形成される。  A pattern forming apparatus comprising: a light irradiating unit capable of irradiating light; and a light modulating unit that modulates light from the light irradiating unit and exposes the photosensitive layer in the photosensitive film. It is. In the pattern forming apparatus described in <31>, the light irradiation unit irradiates light toward the light modulation unit. The light modulation means modulates light received from the light irradiation means. The light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, a high-definition pattern is formed.
< 32> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 31 >に記載のバタ ーン形成装置である。前記 < 32>に記載のパターン形成装置においては、前記光 変調手段が前記パターン信号生成手段を有することにより、前記光照射手段から照 射される光が該パターン信号生成手段により生成した制御信号に応じて変調される  <32> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit. The pattern forming apparatus according to <31>, wherein the pattern is modulated according to a signal. In the pattern forming apparatus according to <32>, since the light modulation unit includes the pattern signal generation unit, the light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated according to
< 33 > 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 31 >からく 32>の 、ずれかに記載のパターン形成装置である o前記 < 33 >に記載のパターン形成装置においては、前記光変調手段における n 個の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報 に応じて制御することにより、前記光照射手段からの光が高速で変調される。 <33> The light modulation means has n pixel parts, and forms any less than n pixel parts continuously arranged from the n pixel parts. In the pattern forming apparatus according to <33>, the pattern forming apparatus according to <33> can be controlled in accordance with pattern information. The light from the light irradiating means is modulated at high speed by controlling any less than n pixel parts arranged continuously from the pixel parts in accordance with the pattern information.
< 34> 光変調手段が、空間光変調素子である前記く 31 >からく 33 >のいずれ かに記載のパターン形成装置である。  <34> The pattern forming apparatus according to any one of <31>, <33>, wherein the light modulation means is a spatial light modulation element.
< 35 > 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記 < 34 >に記載のパターン形成装置である。 < 36 > 描素部が、マイクロミラーである前記く 33 >からく 35 >のいずれかに記 載のパターン形成装置である。 <35> The pattern forming apparatus according to <34>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD). <36> The pattern forming apparatus according to any one of <33>, <35>, wherein the pixel part is a micromirror.
< 37> 光照射手段が、 2以上の光を合成して照射可能である前記く 31 >からく 36 >の 、ずれかに記載のパターン形成装置である。前記く 37 >に記載のパターン 形成装置においては、前記光照射手段が 2以上の光を合成して照射可能であること により、露光が焦点深度の深い露光光によって行われる。この結果、前記感光層へ の露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極 めて高精細なパターンが形成される。  <37> The pattern forming apparatus according to any one of the above items <31>, <36>, wherein the light irradiation unit can synthesize and irradiate two or more lights. In the pattern forming apparatus described in <37>, the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
< 38 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結 合させる集合光学系とを有する前記く 31 >からく 37 >のいずれかに記載のパター ン形成装置である。前記 < 38 >に記載のパターン形成装置においては、前記光照 射手段が、前記複数のレーザ力 それぞれ照射されたレーザ光が前記集合光学系 により集光され、前記マルチモード光ファイバに結合可能であることにより、露光が焦 点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細 に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが 形成される。  <38> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces, respectively, and couples them to the multimode optical fiber. The pattern forming apparatus according to any one of the above 31> Karaku 37>. In the pattern forming apparatus according to <38>, the light irradiation unit may collect the laser beams irradiated with the plurality of laser forces by the collective optical system and couple the laser beams to the multimode optical fiber. Thus, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
[0016] < 39 > 前記 < 28 >から < 30>のいずれかに記載の感光性積層体における感 光層に対して露光を行うことを含むことを特徴とする永久パターン形成方法である。  <39> A permanent pattern forming method comprising exposing the photosensitive layer in the photosensitive laminate according to any one of <28> to <30>.
<40> 露光が、 350〜415nmの波長のレーザ光を用いて行われる前記く 39 > に記載の永久パターン形成方法である。  <40> The method for forming a permanent pattern according to <39>, wherein the exposure is performed using a laser beam having a wavelength of 350 to 415 nm.
<41 > 露光が、形成するパターン情報に基づいて像様に行われる前記く 39 > 力ら< 40 >の!、ずれかに記載の永久パターン形成方法である。  <41> The method for forming a permanent pattern according to any one of the above items <39>, wherein exposure is performed imagewise based on pattern information to be formed.
[0017] <42> 露光が、光照射手段、及び前記光照射手段からの光を受光し出射する n 個(ただし、 nは 2以上の自然数)の 2次元状に配列された描素部を有し、パターン情 報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露 光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなす ように配置された露光ヘッドを用い、 前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われる前 記 < 39 >からく 41 >のいずれかに記載の永久パターン形成方法である。前記 <4 2 >に記載の永久パターン形成方法においては、前記露光ヘッドについて、使用描 素部指定手段により、使用可能な前記描素部のうち、 N重露光 (ただし、 Nは 2以上 の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描 素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素 部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動さ せて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる 前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度の むらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記 感光層を現像することにより、高精細なパターンが形成される。 [0017] <42> Light irradiation means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts that receive and emit light from the light irradiation means. And an exposure head provided with a light modulation means capable of controlling the image element portion according to pattern information, wherein the column direction of the image element portion is set to a predetermined value with respect to the scanning direction of the exposure head. Using an exposure head arranged at an inclination angle of Θ, With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and 42. The permanent pattern forming method according to any one of <39> to 41, which is performed by relatively moving the exposure head in a scanning direction. In the permanent pattern forming method described in <4 2>, the exposure head is subjected to N-exposure (where N is a natural number greater than or equal to 2) out of the usable pixel parts by the use pixel part designating unit. ) Is specified, and the pixel part is controlled by the pixel part control means so that only the pixel part specified by the use pixel part specifying means is involved in exposure. The By performing exposure by moving the exposure head relative to the photosensitive layer in the scanning direction, the exposure head is formed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition pattern.
<43 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を 実現するために使用する前記描素部を指定する前記 < 42 >に記載の永久パターン 形成方法である。前記 < 43 >に記載の永久パターン形成方法においては、露光が 複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドに より形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与 する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現するために使 用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度 のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パタ ーンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光 が高精細に行われる。例えば、その後、前記感光層を現像することにより、高精細な パターンが形成される。 <44> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域にお ける N重露光を実現するために使用する前記描素部を指定する前記 < 43 >に記載 の永久パターン形成方法である。前記 < 44 >に記載の永久パターン形成方法にお いては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前 記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領 域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外における N重 露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッド の取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領 域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。こ の結果、前記感光層への露光が高精細に行われる。例えば、その後、前記感光層を 現像することにより、高精細なパターンが形成される。 <43> The exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for exposure of a joint area between the heads, which is an overlapped exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to the above <42>, wherein among the element parts, the image element part used for realizing N double exposure in the inter-head connection region is designated. In the method for forming a permanent pattern as described in <43>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads. Among the picture element parts involved in the exposure of the head-to-head joint area, the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, so that the mounting of the exposure head Variations in the resolution and density unevenness of the pattern formed in the connecting area between the heads on the exposed surface of the photosensitive layer due to a shift in the position and the mounting angle are equalized. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer. <44> The exposure is performed by a plurality of exposure heads, and the used pixel part specifying means is involved in exposure other than the inter-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to <43>, wherein the pixel part used to realize N double exposure in an area other than the head-to-head connection area among the picture element parts is designated. In the permanent pattern forming method according to <44>, the exposure is performed by a plurality of exposure heads, and the used pixel portion specifying unit overlaps the exposed surface formed by the plurality of exposure heads. By specifying the pixel part used for realizing N-fold exposure in areas other than the inter-head connection area among the image element parts related to exposure other than the inter-head connection area that is the exposure area, Variations in the resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head are equalized. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
<45 > 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描 素部の列方向の間隔 P、及び露光ヘッドを傾斜させた状態にぉ 、て該露光ヘッドの 走査方向と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin Θ ≥Ν δを満たす Θ に対し、 θ≥ Θ の関係を満たすように設定される前記 < 4 ideal ideal ideal  <45> Setting inclination angle Θ force N N number of double exposures, number s of pixel portions in the row direction, interval P in the row direction of the pixel portions, and exposure with the exposure head tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the scanning direction of the head, the above equation is set to satisfy the relationship θ≥ Θ for Θ satisfying the following equation: spsin Θ ≥ δ δ <4 ideal ideal ideal
2 >から < 44 >の!、ずれかに記載の永久パターン形成方法である。  From 2> to <44>, the permanent pattern forming method described in any of the above.
<46 > N重露光の N力 3以上の自然数である前記 <42>から <45 >のいず れかに記載の永久パターン形成方法である。前記く 46 >に記載の永久パターン形 成方法においては、 N重露光の N力 3以上の自然数であることにより、多重描画が 行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付 角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度の ばらつきや濃度のむらが、より精密に均される。  <46> The method for forming a permanent pattern according to any one of <42> to <45>, wherein the N force of N exposure is a natural number of 3 or more. In the method for forming a permanent pattern described in the above 46>, multiple drawing is performed by using a natural number of N force 3 or more in N double exposure. As a result, due to the effect of filling, variations in the resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to a shift in the mounting position and mounting angle of the exposure head are more precisely leveled.
<47> 使用描素部指定手段が、  <47> Use pixel part designation means
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と Used to realize N double exposure based on the detection result of the light spot position detection means A pixel part selection means for selecting a pixel part to be
を備える前記 < 42 >力らく 46 >の 、ずれか〖こ記載の永久パターン形成方法である  The method for forming a permanent pattern according to <42>
<48 > 使用描素部指定手段が、 N重露光を実現するために使用する使用描素 部を、行単位で指定する前記 < 42 >から < 47 >の 、ずれかに記載の永久パターン 形成方法である。 <48> The used pixel part specifying means specifies the used pixel part to be used for realizing the N double exposure in units of rows. The permanent pattern formation according to any one of <42> to <47> Is the method.
[0019] <49 > 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光 ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走 查方向とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ ' と設定傾斜角度 Θとの誤差を吸収するように使用描素部を選択する前記く 47>力 く 48 >の!、ずれかに記載の永久パターン形成方法である。  <49> A light spot position detection unit, based on at least two light spot positions detected, a light spot column direction on the surface to be exposed and a scanning direction of the exposure head when the exposure head is tilted The actual inclination angle Θ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle Θ' and the set inclination angle Θ. This is a permanent pattern forming method as described in the above.
< 50> 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の 光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、 中央値、最大値、及び最小値のいずれかである前記 < 49 >に記載の永久パターン 形成方法である。  <50> The actual inclination angle Θ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined. The method for forming a permanent pattern according to <49>, wherein the permanent pattern is either a maximum value or a minimum value.
く 51 > 描素部選択手段が、実傾斜角度 Θ 'に基づき、 ttan Θ ' =N (ただし、 Nは N重露光数の Nを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における 1行目から前記 T行目の前記 描素部を、使用描素部として選択する前記 < 47 >から< 50 >の 、ずれかに記載の 永久パターン形成方法である。  51> The pixel part selection means derives the natural number T close to t that satisfies the relationship ttan Θ '= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ'. , M rows (where m represents a natural number greater than or equal to 2) In the arranged pixel parts, the pixel parts from the first line to the T line are selected as the used pixel parts from <47> to < 50>, the permanent pattern forming method according to any one of the above.
< 52> 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは Ν重露光数の Νを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における、 (T+ 1)行目力 m行目の前 記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、 使用描素部として選択する前記 <47>からく 51 >のいずれかに記載の永久パター ン形成方法である。  <52> The pixel part selection means derives the natural number T near t satisfying the relationship of ttan 0 '= Ν (where Ν represents Ν of the double exposure number) based on the actual inclination angle θ Ί. , M line (where m represents a natural number greater than or equal to 2), the (T + 1) line power in the arranged pixel part is identified as an unused pixel part, The permanent pattern forming method according to any one of the above <47> Karaku 51, wherein the pixel part excluding the unused pixel part is selected as the used pixel part.
[0020] < 53 > 描素部選択手段が、複数の描素部列により形成される被露光面上の重 複露光領域を少なくとも含む領域において、 (1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、 [0020] <53> In a region including at least a multiple exposure region on an exposed surface formed by a plurality of pixel portion columns, (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure.
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、  (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じな 、ように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur with respect to the ideal N double exposure.
の!、ずれかである前記 < 47 >から < 52 >の 、ずれかに記載の永久パターン形成 方法である。 of! The method for forming a permanent pattern according to any one of <47> to <52>, which is a displacement.
< 54> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重 複露光領域であるヘッド間つなぎ領域において、  <54> In the connection area between the heads, which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、  (2) In relation to the ideal N double exposure, the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area. A means for identifying an unused pixel part from the pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、  (3) For the ideal N-double exposure, the area of the overexposed area is minimized, and the pixel part involved in the exposure of the connecting area between the heads is used so that the underexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、 の!、ずれかである前記 < 47 >から < 53 >の 、ずれかに記載の永久パターン形成 方法である。 (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; of! The method for forming a permanent pattern according to any one of <47> to <53>, which is misalignment.
< 55 > 不使用描素部が、行単位で特定される前記 < 54 >に記載の永久パター ン形成方法である。  <55> The permanent pattern forming method according to <54>, wherein the unused pixel portion is specified in units of lines.
[0021] < 56 > 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前 記描素部のみを使用して参照露光を行う前記 <42>からく 55 >のいずれかに記載 の永久パターン形成方法である。前記 < 56 >に記載の永久パターン形成方法にお いては、使用描素部指定手段において使用描素部を指定するために、使用可能な 前記描素部のうち、 N重露光の Nに対し、(N—1)列毎の描素部列を構成する前記 描素部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる 。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  [0021] <56> In order to specify the used pixel part in the used pixel part specifying means, out of the usable pixel parts, N (N−1) column-by-column drawings are used for N of N double exposures. The permanent pattern forming method according to any one of <42> and <55>, wherein the reference exposure is performed using only the drawing element portion constituting the element row. In the method for forming a permanent pattern described in <56>, in order to specify a used pixel part in the used pixel part specifying means, N of N multiple exposures among the usable pixel parts can be specified. , (N-1) Reference exposure is performed using only the pixel part constituting the pixel part column for each column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
< 57> 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部行を構成する前記 描素部のみを使用して参照露光を行う前記く 42>からく 55 >のいずれかに記載の 永久パターン形成方法である。前記く 57 >に記載の永久パターン形成方法におい ては、使用描素部指定手段において使用描素部を指定するために、使用可能な前 記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部列を構成する前記描素 部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる。こ の結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  <57> In order to specify the used pixel part in the used pixel part specifying means, among the available pixel parts, for the N-exposure N, the above-mentioned pixel part rows constituting 1ZN rows are configured. The permanent pattern forming method according to any one of the above items 42> to 55>, wherein the reference exposure is performed using only the pixel part. In the permanent pattern forming method described in the above item 57>, in order to specify the used pixel part in the used pixel part specifying means, N of N double exposures among the usable pixel parts can be specified. The reference exposure is performed using only the pixel part constituting the pixel part column for each 1ZN row, and a simple single-drawn pattern is obtained. As a result, the picture element part in the head-to-head connection region is easily specified.
[0022] < 58 > 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器 、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記 < 42 >から < 57 >の!、ずれかに記載の永久パターン形成方法である。  <58> From the above <42>, the used pixel part specifying means includes a slit and a photodetector as light spot position detecting means, and an arithmetic unit connected to the photodetector as a pixel part selecting means <57> !, a method for forming a permanent pattern as described in any of the above.
< 59 > N重露光の N力 3以上 7以下の自然数である前記 <42>から < 58 >の V、ずれかに記載の永久パターン形成方法である。  <59> The method for forming a permanent pattern according to any one of <42> to <58>, which is a natural number of N force 3 or more and 7 or less in N double exposure.
[0023] < 60> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 42 >から < 59 >の いずれかに記載の永久パターン形成方法である。前記 < 60 >に記載の永久パター ン形成方法にぉ 、ては、前記光変調手段が前記パターン信号生成手段を有するこ とにより、前記光照射手段から照射される光が該パターン信号生成手段により生成し た制御信号に応じて変調される。 <60> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs the light emitted from the light irradiation unit. <42> to <59> to be modulated according to the generated control signal The permanent pattern forming method according to any one of the above. In the permanent pattern forming method according to <60>, the light modulation unit includes the pattern signal generation unit, so that light emitted from the light irradiation unit is transmitted by the pattern signal generation unit. Modulated according to the generated control signal.
< 61 > 光変調手段が、空間光変調素子である前記く 42>からく 60>のいずれ かに記載の永久パターン形成方法である。  <61> The permanent pattern forming method according to any one of the above <42> to <60>, wherein the light modulation means is a spatial light modulation element.
< 62> 空間光変調素子が、デジタル ·マイクロミラー ·デバイス (DMD)である前 記く 61 >に記載の永久パターン形成方法である。  <62> The method for forming a permanent pattern according to the above item 61, wherein the spatial light modulation element is a digital micromirror device (DMD).
< 63 > 描素部が、マイクロミラーである前記く 42>からく 62>のいずれかに記 載の永久パターン形成方法である。  <63> The permanent pattern forming method according to any one of the above <42>, <62>, wherein the picture element portion is a micromirror.
< 64> パターン情報が表すパターンの所定部分の寸法が、指定された使用描素 部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する 変換手段を有する前記 < 42 >から < 63 >の 、ずれかに記載の永久パターン形成 方法である。  <64> From the <42> having the conversion means for converting the pattern information so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the designated used pixel part 63> is a method for forming a permanent pattern as described in any of the above.
< 65 > 光照射手段が、 2以上の光を合成して照射可能である前記く 42>からく 64 >の 、ずれかに記載の永久パターン形成方法である。前記く 65 >に記載の永 久パターン形成方法にぉ 、ては、前記光照射手段が 2以上の光を合成して照射可 能であることにより、露光が焦点深度の深い露光光によって行われる。この結果、前 記感光性フィルムへの露光が極めて高精細に行われる。例えば、その後、前記感光 層を現像すると、極めて高精細なパターンが形成される。  <65> The permanent pattern forming method according to any one of the above <42> and <64>, wherein the light irradiation means can synthesize and irradiate two or more lights. According to the permanent pattern forming method described in 65> above, since the light irradiation means can synthesize and irradiate two or more lights, exposure is performed by exposure light having a deep focal depth. . As a result, the photosensitive film is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 66 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結 合させる集合光学系とを有する前記く 42>からく 65 >のいずれかに記載の永久パ ターン形成方法である。前記く 66 >に記載の永久パターン形成方法においては、 前記光照射手段が、前記複数のレーザ力 それぞれ照射されたレーザ光が前記集 合光学系により集光され、前記マルチモード光ファイバに結合可能であることにより、 露光が焦点深度の深い露光光で行われる。この結果、前記感光性フィルムへの露光 が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高 精細なパターンが形成される。 <66> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. The method for forming a permanent pattern according to any one of the above-mentioned 42> Karaku 65> having the above. In the method for forming a permanent pattern according to the above 66>, the light irradiating means can condense the laser light irradiated with each of the plurality of laser forces by the converging optical system and couple it to the multimode optical fiber. Therefore, exposure is performed with exposure light having a deep depth of focus. As a result, the exposure to the photosensitive film is performed with extremely high definition. For example, if the photosensitive layer is subsequently developed, A fine pattern is formed.
[0025] < 67> 露光が行われた後、感光層の現像を行う前記 < 39 >から < 66 >のいず れかに記載の永久パターン形成方法である。前記く 67 >に記載の永久パターン形 成方法においては、前記露光が行われた後、前記感光層を現像することにより、高 精細なパターンが形成される。  <67> The permanent pattern forming method according to any one of <39> to <66>, wherein the photosensitive layer is developed after the exposure. In the method for forming a permanent pattern described in <67>, a high-definition pattern is formed by developing the photosensitive layer after the exposure.
< 68 > 現像が行われた後、永久パターンの形成を行う前記く 67 >に記載の永 久パターン形成方法である。  <68> The method for forming a permanent pattern according to <67>, wherein a permanent pattern is formed after development.
[0026] < 69 > 前記 < 39 >からく 68 >のいずれかに記載のパターン形成方法により形 成されることを特徴とする永久パターンである。該く 68 >に記載の永久パターンは、 前記パターン形成方法により形成されるので、優れた耐薬品性、表面硬度、耐熱性 などを有し、かつ高精細であり、半導体や部品の多層配線基板やビルドアップ配線 基板などへの高密度実装に有用である。  [0026] <69> A permanent pattern formed by the pattern forming method according to any one of <39> and 68. Since the permanent pattern described in 68> is formed by the pattern forming method, it has excellent chemical resistance, surface hardness, heat resistance, and the like, and has high definition, and is a multilayer wiring board for semiconductors and components. This is useful for high-density mounting on PCBs and build-up wiring boards.
< 70> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かである前記く 69 >に記載のパターンである。該く 70 >に記載の永久パターンは 、保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかであるの で、該膜の有する絶縁性、耐熱性などにより、配線が外部力ゝらの衝撃や曲げなどから 保護される。  <70> The pattern according to the above item 69, which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern. Since the permanent pattern described in 70> is at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the wiring has an external force or the like depending on the insulating property, heat resistance, etc. of the film. Protected from impact and bending.
[0027] < 71 > 前記 < 39 >からく 68 >のいずれかに記載の永久パターン形成方法によ り永久パターンが形成されることを特徴とするプリント基板である。  [0027] <71> A printed circuit board wherein a permanent pattern is formed by the permanent pattern forming method according to any one of <39> and 68.
発明の効果  The invention's effect
[0028] 本発明によると、従来における問題を解決することができ、第 1に、バインダー及び 併用する熱架橋剤を規定することにより、高感度及び高解像度で、無電解金メッキ耐 性、及びビアやスルーホールの埋め込み性に優れ、高精細な永久パターン (保護膜 、層間絶縁膜、及びソルダーレジストパターンなど)を効率よく形成可能な感光性組 成物、感光性フィルム、感光性積層体、前記感光性積層体を用いた永久パターン形 成方法、及び前記永久パターン形成方法によりパターンが形成されるプリント基板を 提供することができる。  [0028] According to the present invention, conventional problems can be solved. First, by specifying a binder and a thermal crosslinking agent used in combination, high sensitivity and high resolution, electroless gold plating resistance, and via Photosensitive composition, photosensitive film, photosensitive laminate, which can efficiently form high-definition permanent patterns (such as protective films, interlayer insulating films, and solder resist patterns). A permanent pattern forming method using a photosensitive laminate, and a printed board on which a pattern is formed by the permanent pattern forming method can be provided.
第 2に、脂肪族エステル系のモノマー以外のモノマーを組み合わせることにより、感 度、解像度、タック性、無電解金メッキ耐性、及び保存安定性に優れ、高精細な永久 ノターン (層間絶縁膜、ソルダーレジストパターンなど)を効率よく形成可能な感光性 組成物、感光性フィルム、感光性積層体、前記感光性積層体を用いた永久パターン 形成方法、前記永久パターン形成方法により形成される永久パターン、及び前記永 久パターンが形成されるプリント基板を提供することができる。 Second, by combining monomers other than aliphatic ester monomers, Photosensitive composition, photosensitive film, and photosensitivity capable of efficiently forming high-definition permanent patterns (interlayer insulation film, solder resist pattern, etc.) with excellent accuracy, resolution, tackiness, electroless gold plating resistance, and storage stability. It is possible to provide a permanent laminate, a permanent pattern forming method using the photosensitive laminate, a permanent pattern formed by the permanent pattern forming method, and a printed circuit board on which the permanent pattern is formed.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、パターン形成装置の一例の外観を示す斜視図である。 FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
[図 2]図 2は、パターン形成装置のスキャナの構成の一例を示す斜視図である。  FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
[図 3A]図 3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図で ある。 FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
[図 3B]図 3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。  FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
[図 4]図 4は、露光ヘッドの概略構成の一例を示す斜視図である。  FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
[図 5A]図 5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。  FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
[図 5B]図 5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。  FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
[図 6]図 6は、図 1のパターン形成装置の DMDの一例を示す部分拡大図である。  6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
[図 7A]図 7Aは、 DMDの動作を説明するための斜視図である。  FIG. 7A is a perspective view for explaining the operation of the DMD.
[図 7B]図 7Bは、 DMDの動作を説明するための斜視図である。  FIG. 7B is a perspective view for explaining the operation of the DMD.
[図 8]図 8は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上 のパターンに生じるむらの例を示した説明図である。  FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
[図 9]図 9は、 1つの DMDによる露光エリアと、対応するスリットとの位置関係を示した 上面図である。  FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
[図 10]図 10は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
[図 11]図 11は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上 のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 11] FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
[図 12]図 12は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上の ノターンに生じるむらの例を示した説明図である。 [FIG. 12] FIG. 12 is an explanatory view showing an example of unevenness occurring in a no-turn on the exposed surface when there is a relative position shift between adjacent exposure heads.
[図 13]図 13は、隣接する 2つの露光ヘッドによる露光エリアと、対応するスリットとの位 置関係を示した上面図である。 [FIG. 13] FIG. 13 shows the positions of the exposure areas by the two adjacent exposure heads and the corresponding slits. It is the top view which showed arrangement | positioning relationship.
[図 14]図 14は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
[図 15]図 15は、図 12の例において選択された使用画素のみが実動され、被露光面 上のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 15] FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
[図 16]図 16は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある 際に、被露光面上のパターンに生じるむらの例を示した説明図である。  FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
[図 17]図 17は、図 16の例において選択された使用描素部のみを用いた露光を示す 説明図である。  FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
[図 18A]図 18Aは、倍率歪みの例を示した説明図である。  FIG. 18A is an explanatory view showing an example of magnification distortion.
[図 18B]図 18Bは、ビーム径歪みの例を示した説明図である。  FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
[図 19A]図 19Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 19B]図 19Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 20]図 20は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である  FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
[図 21A]図 21Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。 FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
[図 21B]図 21Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。  FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
[図 22]図 22は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である 発明を実施するための最良の形態  FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads. BEST MODE FOR CARRYING OUT THE INVENTION
(感光性組成物) (Photosensitive composition)
〔第 1の形態〕 [First form]
本発明の第 1の形態の感光性組成物は、バインダー、重合性化合物、光重合開始 剤、及び 2種以上の熱架橋剤を含み、好ましくは熱硬化促進剤を含み、必要に応じ て、その他の成分を含んでなる。 The photosensitive composition of the first aspect of the present invention includes a binder, a polymerizable compound, a photopolymerization initiator, and two or more thermal crosslinking agents, preferably includes a thermosetting accelerator, and if necessary. And other ingredients.
[0031] <熱架橋剤 >  [0031] <Thermal crosslinking agent>
前記熱架橋剤としては、 2種以上の化合物を含み、金メッキ耐性の観点から、少なく とも 1種がアルカリ不溶性であることが好ましい。前記化合物としては、特に制限はな く、 目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感 光層の硬化後の膜強度を改良するために、現像性等に悪影響を与えない範囲で、 例えば、エポキシィ匕合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合物、ポリイソシァ ネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体から選 択される 2種以上を用いることができる。なお、本発明において、「熱架橋剤が 2種以 上の化合物を含む」とは、例えば、熱架橋剤が、混合物として、 2種以上の化合物を 含んで 、る場合をも 、うものとする。  The thermal crosslinking agent preferably contains two or more compounds, and at least one of them is alkali-insoluble from the viewpoint of gold plating resistance. The compound is not particularly limited and may be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability is improved. For example, an epoxy compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative are selected. Two or more types can be used. In the present invention, “the thermal crosslinking agent includes two or more compounds” means, for example, that the thermal crosslinking agent includes two or more compounds as a mixture. To do.
[0032] 前記エポキシィ匕合物としては、例えば、 1分子中に少なくとも 2つのォキシラン基を 有するエポキシィ匕合物、 /3位にアルキル基を有するエポキシ基を少なくとも 1分子中 に 2つ含むエポキシ化合物などが挙げられる。  [0032] Examples of the epoxy compound include an epoxy compound having at least two oxysilane groups in one molecule, and an epoxy compound including at least two epoxy groups having an alkyl group at the 3-position in one molecule. Etc.
[0033] 前記 1分子中に少なくとも 2つのォキシラン基を有するエポキシィ匕合物としては、例 えば、ビキシレノール型もしくはビフエノール型エポキシ榭脂(「YX4000ジャパンェ ポキシレジン社製」等)又はこれらの混合物、イソシァヌレート骨格等を有する複素環 式エポキシ榭脂(「TEPIC ;日産化学工業 (株)製」、「ァラルダイト PT810 ;チバ 'ス ぺシャルティ'ケミカルズ社製」等)、ビスフエノール A型エポキシ榭脂、ノボラック型ェ ポキシ榭脂、ビスフエノール F型エポキシ榭脂、水添ビスフエノール A型エポキシ榭脂 、ビスフエノール S型エポキシ榭脂、フエノールノボラック型エポキシ榭脂、タレゾール ノボラック型エポキシ榭脂、ハロゲン化エポキシ榭脂(例えば低臭素化エポキシ榭脂 、高ハロゲン化エポキシ榭脂、臭素化フエノールノボラック型エポキシ榭脂など)、ァリ ル基含有ビスフエノール A型エポキシ榭脂、トリスフエノールメタン型エポキシ榭脂、 ジフエ-ルジメタノール型エポキシ榭脂、フエノールビフエ-レン型エポキシ榭脂、ジ シクロペンタジェン型エポキシ榭脂(「HP— 7200, HP— 7200H ;大日本インキ化 学工業 (株)製」等)、グリシジルァミン型エポキシ榭脂(ジアミノジフヱ-ルメタン型ェ ポキシ榭脂、ジグリシジルァ二リン、トリグリシジルァミノフエノール等)、グリジジルエス テル型エポキシ榭脂(フタル酸ジグリシジルエステル、アジピン酸ジグリシジルエステ ル、へキサヒドロフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等) ヒダントイン型エポキシ榭脂、脂環式エポキシ榭脂(3, 4—エポキシシクロへキシルメ チルー 3' , 4 '—エポキシシクロへキサンカルボキシレート、ビス(3, 4—エポキシシク 口へキシルメチル)アジペート、ジシクロペンタジェンジエポキシド、「GT— 300、 GT —400、 ZEHPE3150 ;ダイセルィ匕学工業製」等、)、イミド型脂環式エポキシ榭脂、 トリヒドロキシフエ-ルメタン型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭 脂、テトラフエ-ロールエタン型エポキシ榭脂、グリシジルフタレート榭脂、テトラグリシ ジルキシレノィルエタン榭脂、ナフタレン基含有エポキシ榭脂(ナフトールァラルキル 型エポキシ榭脂、ナフトールノボラック型エポキシ榭脂、 4官能ナフタレン型エポキシ 榭脂、市販品としては「ESN— 190, ESN— 360 ;新日鉄化学 (株)製」、「HP— 403 2, EXA-4750, EXA— 4700 ;大日本インキ化学工業 (株)製」等)、フエノール化 合物とジビュルベンゼンゃジシクロペンタジェン等のジォレフイン化合物との付カロ反 応によって得られるポリフヱノール化合物と、ェピクロルヒドリンとの反応物、 4ービ- ルシクロへキセン— 1 オキサイドの開環重合物を過酢酸等でエポキシィ匕したもの、 線状含リン構造を有するエポキシ榭脂、環状含リン構造を有するエポキシ榭脂、 a メチルスチルベン型液晶エポキシ榭脂、ジベンゾィルォキシベンゼン型液晶ェポキ シ榭脂、ァゾフエ-ル型液晶エポキシ榭脂、ァゾメチンフエ-ル型液晶エポキシ榭脂 、ビナフチル型液晶エポキシ榭脂、アジン型エポキシ榭脂、グリシジルメタアタリレート 共重合系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂 (株)製」等)、シクロへキ シルマレイミドとグリシジルメタアタリレートとの共重合エポキシ榭脂、ビス(グリシジル ォキシフエ-ル)フルオレン型エポキシ榭脂、ビス(グリシジルォキシフエ-ル)ァダマ ンタン型エポキシ榭脂などが挙げられる力 これらに限られるものではない。これらの エポキシ榭脂は、 1種単独で使用してもよいし、 2種以上を併用してもよい。 [0033] Examples of the epoxy compound having at least two oxysilane groups in one molecule include, for example, a bixylenol type or biphenol type epoxy resin ("YX4000 Japan Epoxy Resin Co., Ltd.") or a mixture thereof. Heterocyclic epoxy resins having an isocyanurate skeleton ("TEPIC; manufactured by Nissan Chemical Industries, Ltd.", "Araldite PT810; manufactured by Ciba 'Specialty'Chemicals"), bisphenol A type epoxy resin, novolak Type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, talesol novolac type epoxy resin, halogenated epoxy resin Fats (for example, low brominated epoxy resins, high halogenated epoxy resins, brominated phenols Borak type epoxy resin), aryl group-containing bisphenol A type epoxy resin, trisphenol methane type epoxy resin, diphenol dimethanol type epoxy resin, phenol biphenol type epoxy resin, dicyclopentagen Type epoxy resin (“HP-7200, HP-7200H; manufactured by Dainippon Ink Chemical Co., Ltd.”), glycidylamine type epoxy resin (diaminodiphenylmethane type epoxy resin, diglycidyl dilin, triglyceride) Glycidylaminophenol etc.), glycidyl es Tell type epoxy resin (phthalic acid diglycidyl ester, adipic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, dimer acid diglycidyl ester, etc.) Hydantoin type epoxy resin, cycloaliphatic epoxy resin (3, 4—Epoxycyclohexylmethyl 3 ′, 4 ′ —Epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, dicyclopentadiene epoxide, “GT-300, GT-400, ZEHPE3150 ; Manufactured by Daicel Chemical Industries, Ltd.), imide type alicyclic epoxy resin, trihydroxyphenol methane type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenol-roll ethane type epoxy resin, glycidyl phthalate Fatty acid, Tetraglycylicylylyl ethane oil, Naphthalene group Epoxy resin (naphthol aralkyl type epoxy resin, naphthol novolak type epoxy resin, tetrafunctional naphthalene type epoxy resin, commercially available products such as "ESN-190, ESN-360; manufactured by Nippon Steel Chemical Co., Ltd." “HP—403 2, EXA-4750, EXA—4700; manufactured by Dainippon Ink and Chemicals, Inc.), etc.), phenol reaction with diolefin compounds such as dibutenebenzene and dicyclopentagen A reaction product of a polyphenol compound obtained by the above and an epichlorohydrin, an epoxy ring-opening polymer of 4-bicyclocyclohexene-1 oxide with peracetic acid, etc., an epoxy having a linear phosphorus-containing structure Resin, epoxy resin with cyclic phosphorus structure, a methyl stilbene type liquid crystal epoxy resin, dibenzoyl benzene type liquid crystal epoxy resin, azophenol type liquid crystal epoxy resin , Azomethine file type liquid crystal epoxy resin, binaphthyl type liquid crystal epoxy resin, azine type epoxy resin, glycidyl meta acrylate copolymer epoxy resin ("CP-50S, CP-50M; manufactured by NOF Corporation") Etc.), Copolymerized epoxy resin of cyclohexylmaleimide and glycidylmethacrylate, bis (glycidyloxyphenyl) fluorene type epoxy resin, bis (glycidyloxyphenyl) adamantane type epoxy resin, etc. The power that can be mentioned is not limited to these. These epoxy resins may be used alone or in combination of two or more.
また、 1分子中に少なくとも 2つのォキシラン基を有する前記エポキシィ匕合物以外に 、 β位にアルキル基を有するエポキシ基を少なくとも 1分子中に 2つ含むエポキシィ匕 合物を用いることができ、 β位がアルキル基で置換されたエポキシ基 (より具体的に は、 β—アルキル置換グリシジル基など)を含む化合物が特に好ましい。 前記 j8位にアルキル基を有するエポキシ基を少なくとも含むエポキシィ匕合物は、 1 分子中に含まれる 2個以上のエポキシ基のすべてが 13 アルキル置換グリシジル基 であってもよぐ少なくとも 1個のエポキシ基が j8—アルキル置換グリシジル基であつ てもよい。 In addition to the epoxy compound having at least two oxysilane groups in one molecule, an epoxy compound containing at least two epoxy groups having an alkyl group at the β-position in one molecule can be used. Particularly preferred are compounds containing an epoxy group whose position is substituted with an alkyl group (more specifically, a β-alkyl-substituted glycidyl group or the like). The epoxy compound containing at least the epoxy group having an alkyl group at the j8 position is composed of at least one epoxy group in which all of two or more epoxy groups contained in one molecule may be 13 alkyl-substituted glycidyl groups. The group may be a j8-alkyl substituted glycidyl group.
[0035] 前記 13位にアルキル基を有するエポキシ基を含むエポキシィ匕合物は、室温におけ る保存安定性の観点から、前記感光性組成物中に含まれる前記エポキシィ匕合物全 量中における、全エポキシ基中の /3—アルキル置換グリシジル基の割合力 30%以 上であるのが好ましぐ 40%以上であるのがより好ましぐ 50%以上であるのが特に 好ましい。  [0035] From the viewpoint of storage stability at room temperature, the epoxy compound containing an epoxy group having an alkyl group at the 13-position is based on the total amount of the epoxy compound contained in the photosensitive composition. The ratio power of the / 3-alkyl-substituted glycidyl group in all epoxy groups is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
前記 j8—アルキル置換グリシジル基としては、特に制限は無ぐ 目的に応じて適宜 選択することができ、例えば、 j8—メチルダリシジル基、 13ーェチルダリシジル基、 13 プロピルグリシジル基、 13ーブチルダリシジル基、などが挙げられ、これらの中でも 、前記感光性榭脂組成物の保存安定性を向上させる観点、及び合成の容易性の観 点力ら、 j8—メチルダリシジル基が好ましい。  The j8-alkyl-substituted glycidyl group is not particularly limited and can be appropriately selected according to the purpose. For example, j8-methyldaricidyl group, 13-ethyldaricidyl group, 13 propylglycidyl group, 13- Among them, a j8-methyldaricidyl group is preferable from the viewpoint of improving the storage stability of the photosensitive resin composition and the viewpoint of ease of synthesis.
[0036] 前記 /3位にアルキル基を有するエポキシ基を含むエポキシィ匕合物としては、例え ば、多価フエノール化合物と j8—アルキルェピハロヒドリンとから誘導されたエポキシ 化合物が好ましい。 [0036] As the epoxy compound containing an epoxy group having an alkyl group at the / 3-position, for example, an epoxy compound derived from a polyvalent phenol compound and a j8-alkylephalohydrin is preferable.
[0037] 前記 /3—アルキルェピノ、ロヒドリンとしては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、 j8—メチルェピクロロヒドリン、 13 メチルェピブロモヒドリ ン、 13ーメチルェピフロロヒドリン等の j8—メチルェピハロヒドリン; 13ーェチルェピクロ ロヒドリン、 j8—ェチルェピブ口モヒドリン、 —ェチルェピフロロヒドリン等の —ェチ ルェピハロヒドリン; β—プロピルェピクロロヒドリン、 β—プロピルェピブ口モヒドリン、 β プロピノレエピフロロヒドリン等の β プロピノレエピハロヒドリン; βーブチノレエピク ロロヒドリン、 j8—ブチルェピブ口モヒドリン、 j8—ブチルェピフロロヒドリン等の j8—ブ チルェピハロヒドリン;などが挙げられる。これらの中でも、前記多価フエノールとの反 応性及び流動性の観点から、 β—メチルェピノ、ロヒドリンが好ましい。  [0037] The / 3-alkylepino and rhohydrin are not particularly limited and can be appropriately selected according to the purpose. For example, j8-methylepichlorohydrin, 13 methylepibromohydrin, 13- J8-methylepihalohydrin, such as methylepifluorohydrin; 13-ethylepichlorohydrin, j8-ethylepibu mouth mohydrin, —ethylepifluorohydrin, etc. —ethylepihalohydrin; β-propyle Β-Propinoreepihalohydrin such as chlorohydrin, β-propylepib mouth mohydrin, β-propinoreepifluorohydrin; β8-butinoreepichlorohydrin, j8-butylepib mouth mohydrin, j8-butylepihydrohydrin, etc. Pihalohydrin; and the like. Among these, β-methylepino and rhohydrin are preferable from the viewpoints of reactivity with the polyhydric phenol and fluidity.
[0038] 前記多価フエノール化合物としては、 1分子中に 2以上の芳香族性水酸基を含有 する化合物であれば、特に制限は無ぐ 目的に応じて適宜選択することができ、例え ば、ビスフエノール A、ビスフエノール F、ビスフエノール S等のビスフエノール化合物、 ビフエノール、テトラメチルビフエノール等のビフエノール化合物、ジヒドロキシナフタレ ン、ビナフトール等のナフトール化合物、フエノールーホルムアルデヒド重縮合物等 のフエノールノボラック榭脂、クレゾ一ルーホルムアルデヒド重縮合物等の炭素数 1〜 10のモノアルキル置換フエノールーホルムアルデヒド重縮合物、キシレノールーホル ムアルデヒド重縮合物等の炭素数 1〜10のジアルキル置換フエノールーホルムアル デヒド重縮合物、ビスフエノール A ホルムアルデヒド重縮合物等のビスフエノール化 合物 ホルムアルデヒド重縮合物、フエノールと炭素数 1〜10のモノアルキル置換フ ェノールとホルムアルデヒドとの共重縮合物、フエノール化合物とジビュルベンゼンの 重付加物などが挙げられる。これらの中でも、例えば、流動性及び保存安定性を向 上させる目的で選択する場合には、前記ビスフエノールイ匕合物が好ましい。 [0038] The polyhydric phenol compound is not particularly limited as long as it is a compound containing two or more aromatic hydroxyl groups in one molecule, and can be appropriately selected according to the purpose. Bisphenol compounds such as bisphenol A, bisphenol F and bisphenol S, biphenol compounds such as biphenol and tetramethylbiphenol, naphthol compounds such as dihydroxynaphthalene and binaphthol, phenol-formaldehyde polycondensates, etc. C1-C10 monoalkyl substituted phenol-formaldehyde polycondensate such as phenol novolac resin, creso-one formaldehyde polycondensate, etc. C1-C10 dialkyl substituted phenol such as xylenol-formaldehyde polycondensate Ruformaldehyde polycondensates, bisphenol compounds such as bisphenol A formaldehyde polycondensates, etc. Formaldehyde polycondensates, copolycondensates of phenol and monoalkyl-substituted phenols having 1 to 10 carbon atoms with formaldehyde, phenol Le compound and polyaddition products of di Bulle benzene and the like. Among these, for example, when selecting for the purpose of improving fluidity and storage stability, the above-mentioned bisphenol compound is preferable.
前記 /3位にアルキル基を有するエポキシ基を含むエポキシィ匕合物としては、例え ば、ビスフエノール Aのジ一 13—アルキルグリシジルエーテル、ビスフエノール Fのジ β アルキルグリシジルエーテル、ビスフエノール Sのジー 13 アルキルグリシジ ルエーテル等のビスフエノール化合物のジー /3 アルキルグリシジルエーテル;ビフ ェノールのジー 13 アルキルグリシジルエーテル、テトラメチルビフエノールのジー 13 アルキルグリシジルエーテル等のビフエノール化合物のジー 13 アルキルグリシジ ルエーテル;ジヒドロキシナフタレンのジー /3 アルキルグリシジルエーテル、ビナフ トールのジー 13 アルキルグリシジルエーテル等のナフトール化合物の 13 アルキ ルグリシジルエーテル;フエノールーホルムアルデヒド重縮合物のポリ 13 アルキ ルグリシジルエーテル;クレゾ一ルーホルムアルデヒド重縮合物のポリ 13 アルキ ルグリシジルエーテル等の炭素数 1〜10のモノアルキル置換フエノールーホルムァ ルデヒド重縮合物のポリ 13 アルキルグリシジルエーテル;キシレノールーホルム アルデヒド重縮合物のポリ 13 アルキルグリシジルエーテル等の炭素数 1〜10の ジアルキル置換フエノールーホルムアルデヒド重縮合物のポリ 13 アルキルグリシ ジルエーテル;ビスフエノール Α—ホルムアルデヒド重縮合物のポリ 13 アルキル グリシジルエーテル等のビスフエノール化合物 ホルムアルデヒド重縮合物のポリ β アルキルグリシジルエーテル;フエノール化合物とジビュルベンゼンの重付カロ物 のポリ β アルキルグリシジルエーテル;などが挙げられる。 Examples of the epoxy compound containing an epoxy group having an alkyl group at the / 3-position include di-13-alkyl glycidyl ether of bisphenol A, di-β-alkyl glycidyl ether of bisphenol F, and bisphenol S 13 bisphenol compounds such as alkyl glycidyl ethers / 3 alkyl glycidyl ethers; biphenols ge 13 alkyl glycidyl ethers, tetramethylbiphenol diols 13 biphenol compounds such as alkyl glycidyl ethers 13 alkyl glycidyl ethers; dihydroxy Naphthalene Gee / 3 Alkyl Glycidyl Ether, Binaphthol Gee 13 Alkyl Glycidyl Ether, etc. 13 Alkylicidyl Ethers; Phenolic Formaldehyde Polycondensate Poly 13 Alkyl glycidyl ether; poly 13 alkyl glycidyl ether of crezo-l-formaldehyde polycondensate such as poly 13 alkyl glycidyl ether, etc. monoalkyl-substituted phenol-formaldehyde polycondensate such as poly 13 alkyl glycidyl ether; xylenol-form aldehyde Poly 13 alkyl glycidyl ethers such as poly 13 alkyl glycidyl ethers of polycondensates such as dialkyl substituted phenol-formaldehyde polycondensates of poly 13 alkyl glycidyl ethers; bisphenol ポ リ -formaldehyde polycondensates of poly 13 alkyl glycidyl ethers, etc. Bisphenol compound Formaldehyde polycondensate poly β-alkyl glycidyl ether; phenol compound and dibulene benzene Of poly β alkyl glycidyl ether.
これらの中でも、下記構造式 (i)で表されるビスフ ノールイ匕合物、及びこれとェピク ロロヒドリンなど力 得られる重合体力 誘導される β—アルキルグリシジルエーテル Among these, bisphenol compounds represented by the following structural formula (i), and their epoxides such as epichlorohydrin can be obtained. Polymer-induced β-alkyl glycidyl ether
、及び下記構造式 (ii)で表されるフ ノールイ匕合物 ホルムアルデヒド重縮合物のポ リー j8—アルキルグリシジルエーテルが好ましい。 And phenolic compound of formaldehyde polycondensate represented by the following structural formula (ii): j8-alkyl glycidyl ether.
[化 2]  [Chemical 2]
Figure imgf000024_0001
Figure imgf000024_0001
[化 3]  [Chemical 3]
R 〇 0 0  R ○ 0 0
〇 厂 〇 Π 〇 〇 〇 〇 Π 〇
R" R" 構造式(ii)  R "R" structural formula (ii)
」 n N
ただし、前記構造式 (i)中、 Rは水素原子及び炭素数 1〜6のアルキル基のいずれ かを表し、 nは 0〜20の整数を表す。  However, in the structural formula (i), R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 20.
ただし、前記構造式 (ii)中、 Rは水素原子及び炭素数 1〜6のアルキル基のいずれ かを表し、 R"は水素原子、及び CHのいずれかを表し、 nは 0〜20の整数を表す。  In the structural formula (ii), R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R "represents either a hydrogen atom or CH, and n is an integer of 0 to 20 Represents.
3  Three
これら 13位にアルキル基を有するエポキシ基を含むエポキシィ匕合物は、 1種単独で 使用してもよいし、 2種以上を併用してもよい。また 1分子中に少なくとも 2つのォキシ ラン基を有するエポキシィ匕合物、及び j8位にアルキル基を有するエポキシ基を含む エポキシィ匕合物を併用することも可能である。  These epoxy compounds containing an epoxy group having an alkyl group at the 13-position may be used alone or in combination of two or more. It is also possible to use an epoxy compound having at least two oxirane groups in one molecule and an epoxy compound containing an epoxy group having an alkyl group at the j8 position.
[0040] 更に、前記エポキシィ匕合物としては、特開 2005— 182004号公報〔0037〕に記載 の市販品及びその混合物も、好適に用いることができる。  [0040] Further, as the epoxy compound, commercially available products and mixtures thereof described in JP-A-2005-182004 [0037] can also be suitably used.
[0041] 前記ォキセタンィ匕合物としては、例えば、 1分子内に少なくとも 2つのォキセタ-ル 基を有するォキセタンィ匕合物が挙げられる。  [0041] Examples of the oxetane compound include oxetane compounds having at least two oxetal groups in one molecule.
具体的には、例えば、ビス [ (3—メチルー 3—ォキセタニルメトキシ)メチル]エーテ ル、ビス [ (3 ェチルー 3—ォキセタ -ルメトキシ)メチル]エーテル、 1, 4 ビス [ (3 —メチルー 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ (3 ェチル 3 ォキセタ -ルメトキシ)メチル]ベンゼン、( 3—メチル 3—ォキセタ -ル)メチルァ タリレート、(3—ェチルー 3—ォキセタ -ル)メチルアタリレート、(3—メチルー 3—ォ キセタ -ル)メチルメタタリレート、(3—ェチルー 3—ォキセタ -ル)メチルメタタリレート 又はこれらのオリゴマーある 、は共重合体等の多官能ォキセタン類の他、ォキセタン 基を有する化合物と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、力ルド型ビスフエ ノーノレ類、カリックスァレーン類、カリックスレゾノレシンアレーン類、シルセスキォキサ ン等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタ ン環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げら れる。 Specifically, for example, bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetaylmethoxy) methyl] ether, 1,4bis [(3 —Methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4bis [(3 ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl phthalate, (3-ethyl-3-oxeta- (L) methyl acrylate, (3-methyl-3-oxeta-l) methyl metatalylate, (3-ethyl-3-oxeta-methyl) methyl metatalylate or oligomers thereof are polyfunctionals such as copolymers In addition to oxetanes, compounds having an oxetane group and those having hydroxyl groups such as novolac resin, poly (p-hydroxystyrene), force-type bisphenol noles, calixarenes, calixresornoresin arenes, silsesquioxanes, etc. Etheric compounds with fats, etc., and other unsaturated monomers having an oxetane ring and alkyl (meta And a copolymer of Atari rate also cited et al are.
[0042] また、前記ポリイソシァネートイ匕合物としては、特開平 5— 9407号公報記載のポリイ ソシァネートイ匕合物を用いることができ、該ポリイソシァネートイ匕合物は、少なくとも 2 つのイソシァネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物 力 誘導されていてもよい。具体的には、 2官能イソシァネート(例えば、 1, 3 フエ- レンジイソシァネートと 1, 4 フエ-レンジイソシァネートとの混合物、 2, 4 及び 2, 6 トルエンジイソシァネート、 1, 3—及び 1, 4 キシリレンジイソシァネート、ビス(4 —イソシァネート一フエ-ル)メタン、ビス(4—イソシァネートシクロへキシル)メタン、ィ ソフォロンジイソシァネート、へキサメチレンジイソシァネート、トリメチルへキサメチレ ンジイソシァネート等)、該 2官能イソシァネートと、トリメチロールプロパン、ペンタリス ルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンォキ サイド付加体と、前記 2官能イソシァネートとの付加体;へキサメチレンジイソシァネー ト、へキサメチレン 1, 6 ジイソシァネート及びその誘導体等の環式三量体;など が挙げられる。  [0042] Further, as the polyisocyanate compound, a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is at least 2 Aliphatic, cycloaliphatic or aromatic substituted aliphatic compounds containing two isocyanate groups may be derivatized. Specifically, bifunctional isocyanates (eg, mixtures of 1,3 and 1,4-phenolic diisocyanates, 2, 4 and 2,6 toluene diisocyanates, 1, 3 —And 1, 4 xylylene diisocyanate, bis (4 —isocyanate monophenyl) methane, bis (4-isocyanatecyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate Polyfunctional alcohols such as trimethylolpropane, pentalysitol, glycerin, etc .; an alkylene oxide adduct of the polyfunctional alcohol and the bifunctional isocyanate Adduct: Cyclic ring such as hexamethylene diisocyanate, hexamethylene 1,6 diisocyanate and its derivatives Trimer; and the like.
[0043] 前記ポリイソシァネートイ匕合物にブロック剤を反応させて得られる化合物、すなわち ポリイソシァネート及びその誘導体のイソシァネート基にブロック剤を反応させて得ら れる化合物における、ソシァネート基ブロック剤としては、アルコール類 (例えば、イソ プロパノール、 tert ブタノール等)、ラタタム類 (例えば、 ε一力プロラタタム等)、フ エノーノレ類(例えば、フエノーノレ、クレゾ一ノレ、 p— tert ブチノレフエノーノレ、 p— sec ブチルフエノール、 p— sec ァミルフエノール、 p—ォクチルフエノール、 p ノニノレ フエノール等)、複素環式ヒドロキシルイ匕合物(例えば、 3—ヒドロキシピリジン、 8—ヒド 口キシキノリン等)、活性メチレンィ匕合物(例えば、ジアルキルマロネート、メチルェチ ルケトキシム、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセトォキシム、 シクロへキサノンォキシム等)などが挙げられる。これらの他、特開平 6— 295060号 公報記載の分子内に少なくとも 1つの重合可能な二重結合及び少なくとも 1つのプロ ックイソシァネート基のいずれかを有する化合物などを用いることができる。 [0043] A compound obtained by reacting a blocking agent with the polyisocyanate compound, that is, a compound obtained by reacting a blocking agent with the isocyanate group of polyisocyanate and its derivatives. Examples of the agent include alcohols (for example, isopropanol, tert-butanol, etc.), ratatas (for example, epsilon prolatatam, etc.), phenols (for example, phenol, crezo-monore, p-tert-butinorephenol, p— sec Butylphenol, p-sec amylphenol, p-octylphenol, p noninolephenol, etc.), heterocyclic hydroxyl compounds (eg, 3-hydroxypyridine, 8-hydroxyquinoline, etc.), active methylene compounds (For example, dialkyl malonate, methyl ethyl ketoxime, acetyl acetone, alkyl acetoacetoxime, acetooxime, cyclohexanone oxime, etc.). In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
[0044] 前記メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラ ミン (メチロール基を、メチル、ェチル、ブチルなどでエーテルィ匕したィ匕合物)などが 挙げられる。これらは 1種単独で使用してもよいし、 2種以上を併用してもよい。これら の中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体 の向上に有効である点で、アルキル化メチロールメラミンが好ましぐへキサメチル化 メチロールメラミンが特に好まし 、。 [0044] Examples of the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, etc.). These may be used alone or in combination of two or more. Among these, hexamethylated methylol melamine is particularly preferred, because alkylated methylol melamine is preferred because it has good storage stability and is effective in improving the surface hardness of the photosensitive layer or the film strength itself of the cured film. .
[0045] 前記熱架橋剤の組み合わせとしては、例えば、 2官能の化合物同士の組み合わせ 、 2官能の化合物と 3官能以上の化合物との組み合わせ、単官能の化合物と多官能 の化合物との組み合わせが好ましい。これらの中でも、 2官能の化合物同士の組み 合わせ、 2官能の化合物と 3官能以上の化合物との組み合わせが特に好ま 、。  [0045] As the combination of the thermal crosslinking agents, for example, a combination of bifunctional compounds, a combination of a bifunctional compound and a trifunctional or higher compound, and a combination of a monofunctional compound and a polyfunctional compound are preferable. . Of these, combinations of bifunctional compounds and combinations of bifunctional compounds with trifunctional or higher compounds are particularly preferred.
[0046] 前記 2官能の化合物としては、エポキシ化合物における、ビスフエノール型エポキシ 化合物が好ましぐ具体的には、ビスフエノール A型、ビスフエノール F型、ビスフエノ ール S型、及びビフヱノール型力 選ばれる 2種の組み合わせが好ましい。また、ビス フエノール型エポキシ化合物とノボラック型エポキシ化合物との組み合わせ、ビスフエ ノール型エポキシィ匕合物と複素環含有エポキシィ匕合物との組み合わせ、ビスフエノ ール型エポキシィ匕合物と脂環式エポキシィ匕合物との組み合わせ、ノボラック型ェポキ シ化合物と複素環含有エポキシ化合物との組み合わせ、複素環エポキシ化合物と脂 環式エポキシィ匕合物との組み合わせも好まし 、。  [0046] The bifunctional compound is preferably a bisphenol type epoxy compound in an epoxy compound. Specifically, a bisphenol A type, a bisphenol F type, a bisphenol S type, and a biphenol type force are selected. A combination of the two is preferred. Also, combinations of bisphenol type epoxy compounds and novolak type epoxy compounds, combinations of bisphenol type epoxy compounds and heterocyclic ring-containing epoxy compounds, bisphenol type epoxy compounds and alicyclic epoxy compounds. Combinations with products, combinations of novolak epoxy compounds with heterocyclic ring-containing epoxy compounds, and combinations of heterocyclic epoxy compounds and alicyclic epoxy compounds are also preferred.
[0047] 前記熱架橋剤の組み合わせは、例えば、エポキシ当量では、 90〜400gZeq.の エポキシ化合物と、 150〜9, OOOg/eq.のエポキシ化合物との組み合わせが好ま しく、 90〜300g/eq.のィ匕合物と、 150〜8, 000g/eq.のィ匕合物との糸且み合わせ 力 り好ましい。すなわち、前記熱架橋剤が 2種以上の化合物を含む混合物である 場合には、該混合物のエポキシ当量力 150〜400gZeq.であることが好ましぐ 1 50〜300g/eq.であることがより好ましい。なお、エポキシ当量は、 JIS K 7236に 基づ 、て測定することができる。 [0047] As the combination of the thermal crosslinking agents, for example, in terms of epoxy equivalent, a combination of an epoxy compound of 90 to 400 gZeq. And an epoxy compound of 150 to 9, OOOg / eq. Is preferable, and 90 to 300 g / eq. Threaded combination of 匕 composite with 150-8,000g / eq. It is preferable. That is, when the thermal crosslinking agent is a mixture containing two or more kinds of compounds, the epoxy equivalent force of the mixture is preferably 150 to 400 gZeq. More preferably, it is 150 to 300 g / eq. preferable. The epoxy equivalent can be measured based on JIS K 7236.
前記樹脂の含有量比は、エポキシ当量の値が、小さい方の榭脂を榭脂 A、高い方 の榭脂を榭脂 Bとした場合に、例えば質量比で、 A: B= 1: 100〜: LOO : 1が好ましぐ 1 : 20〜20: 1がより好ましぐ 1: 10〜: LO : 1が特に好ましい。  The content ratio of the resin is such that, when the resin having the smaller epoxy equivalent is the resin A and the resin having the higher epoxy resin is the resin B, the mass ratio is, for example, A: B = 1: 100 ~: LOO: 1 is preferred 1: 20-20: 1 is more preferred 1: 10 ~: LO: 1 is particularly preferred.
[0048] 前記熱架橋剤の前記感光性組成物中の固形分含有量は、 1〜50質量%が好まし ぐ 3〜30質量%がより好ましい。該固形分含有量が 1質量%未満であると、硬化膜 の膜強度の向上が認められず、 50質量%を超えると、現像性の低下や露光感度の 低下を生ずることがある。  [0048] The solid content of the thermal crosslinking agent in the photosensitive composition is preferably 1 to 50% by mass, more preferably 3 to 30% by mass. When the solid content is less than 1% by mass, no improvement in the film strength of the cured film is observed, and when it exceeds 50% by mass, the developability and exposure sensitivity may decrease.
[0049] <熱硬化促進剤 >  [0049] <Thermosetting accelerator>
前記熱架橋剤としてのエポキシ化合物や前記ォキセタン化合物の熱硬化を促進す るため、熱硬化促進剤として、例えば、アミンィ匕合物(例えば、ジシアンジアミド、ベン ジルジメチルァミン、 4— (ジメチルァミノ) N, N ジメチルベンジルァミン、 4—メト キシ—N, N ジメチルベンジルァミン、 4ーメチルー N, N ジメチルベンジルァミン 等)、 4級アンモ-ゥム塩ィ匕合物(例えば、トリェチルベンジルアンモ -ゥムクロリド等) 、ブロックイソシァネートイ匕合物(例えば、ジメチルァミン等)、イミダゾール誘導体二環 式アミジン化合物及びその塩(例えば、イミダゾール、 2—メチルイミダゾール、 2—ェ チルイミダゾール、 2 ェチルー 4ーメチルイミダゾール、 2 フエ-ルイミダゾール、 4 —フエ-ルイミダゾール、 1—シァノエチル— 2—フエ-ルイミダゾール、 1— (2—シァ ノエチル) 2 ェチル 4—メチルイミダゾール等)、リンィ匕合物(例えば、トリフエ- ルホスフィン等)、グアナミン化合物(例えば、メラミン、グアナミン、ァセトグアナミン、 ベンゾグアナミン等)、 S トリァジン誘導体 (例えば、 2, 4 ジァミノ一 6—メタタリロイ ルォキシェチル— S トリァジン、 2 ビニル—2, 4 ジァミノ S トリアジン、 2 ビ -ル一 4, 6 ジァミノ一 S トリァジン'イソシァヌル酸付カ卩物、 2, 4 ジァミノ一 6— メタクリロイルォキシェチル一 S -トリァジン'イソシァヌル酸付加物等)などを用いるこ とができる。これらは 1種単独で使用してもよぐ 2種以上を併用してもよい。なお、前 記エポキシ榭脂化合物や前記ォキセタンィ匕合物の硬化触媒、あるいは、これらと力 ルポキシル基の反応を促進することができるものであれば、特に制限はなぐ上記以 外の熱硬化を促進可能な化合物を用いてもょ 、。 In order to accelerate the thermal curing of the epoxy compound as the thermal crosslinking agent or the oxetane compound, examples of the thermal curing accelerator include amine compounds (for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N , N dimethylbenzylamine, 4-methoxy-N, N dimethylbenzylamine, 4-methyl-N, N dimethylbenzylamine, etc., quaternary ammonium salt compounds (eg, triethylbenzylammo) -Um chloride, etc.), block isocyanate compounds (for example, dimethylamine), imidazole derivative bicyclic amidine compounds and salts thereof (for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethylyl 4- Methylimidazole, 2 phenol imidazole, 4 —phenol imidazole, 1-cyanethyl-2 —Phenol imidazole, 1- (2-cyanoethyl) 2 ethyl 4-methylimidazole, etc., phosphorus compounds (eg, triphosphine), guanamine compounds (eg, melamine, guanamine, acetate guanamine, benzoguanamine, etc.) ), S-triazine derivatives (for example, 2,4 diamine-6-metatalloy rochechetyl- S triazine, 2-vinyl-2,4 diamine S-triazine, 2-vinyl-1,4 diamine S-triazine 'isocyanuric acid 2, 4-diamino-6-methacryloyloxychetyl S-triazine 'isocyanuric acid adduct, etc.) can be used. These may be used alone or in combination of two or more. Before The epoxy resin compound and the oxetane compound curing catalyst, or a compound capable of promoting thermal curing other than the above, as long as it can promote the reaction between the epoxy resin and the oxetane compound and a forceful oxyl group. You can use
前記エポキシ化合物、前記ォキセタン化合物、及びこれらとカルボン酸との熱硬化 を促進可能な熱硬化促進剤の前記感光性組成物固形分中の固形分含有量は、通 常 0. 01〜15質量%である。  The solid content in the solid content of the photosensitive composition of the epoxy compound, the oxetane compound, and a thermosetting accelerator capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. It is.
[0050] また、前記熱架橋剤としてのエポキシ化合物や前記ォキセタン化合物以外の熱架 橋剤の熱硬化を促進するため、熱硬化促進剤として、例えば、ァミン化合物 (例えば 、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジメチルァミノ) N, N ジメチル ベンジルァミン、 4—メトキシ一 N, N ジメチルベンジルァミン、 4—メチル N, N— ジメチルベンジルァミン等)、 4級アンモ-ゥム塩化合物(例えば、トリェチルベンジル アンモ-ゥムクロリド等)、ブロックイソシァネートイ匕合物(例えば、ジメチルァミン等)、 イミダゾール誘導体二環式アミジンィ匕合物及びその塩 (例えば、イミダゾール、 2—メ チルイミダゾール、 2 ェチルイミダゾール、 2 ェチルー 4ーメチルイミダゾール、 2 —フエ-ルイミダゾール、 4 -フエ-ルイミダゾール、 1 シァノエチル 2 フエ-ル イミダゾール、 1一(2 シァノエチル) 2 ェチルー 4ーメチルイミダゾール等)、リン 化合物(例えば、トリフエニルホスフィン等)、グアナミン化合物(例えば、メラミン、グァ ナミン、ァセトグアナミン、ベンゾグアナミン等)、 S トリァジン誘導体 (例えば、 2, 4 —ジァミノ一 6—メタクリロイルォキシェチル一 S トリァジン、 2 ビニル 2, 4 ジァ ミノ一 S トリアジン、 2 ビュル一 4, 6 ジァミノ一 S トリァジン 'イソシァヌル酸付 加物、 2, 4 ジアミノー 6—メタクリロイルォキシェチルー S—トリアジン'イソシァヌル 酸付加物等)などを用いることができる。これらは 1種単独で使用してもよぐ 2種以上 を併用してもよい。なお、前記熱架橋剤の硬化触媒、あるいは、これらとカルボキシル 基の反応を促進することができるものであれば、特に制限はなぐ上記以外の熱硬化 を促進可能な化合物を用いてもょ 、。 [0050] Further, in order to accelerate the thermal curing of a thermal crosslinking agent other than the epoxy compound or the oxetane compound as the thermal crosslinking agent, for example, an amine compound (for example, dicyandiamide, benzyldimethylamine) 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methylN, N-dimethylbenzylamine, etc., quaternary ammonium salt compounds (for example, trie Benzylbenzyl ammonium chloride), block isocyanate compounds (eg, dimethylamine), imidazole derivative bicyclic amidine compounds, and salts thereof (eg, imidazole, 2-methylimidazole, 2-ethylimidazole) , 2-ethyl 4-methylimidazole, 2-phenolimidazole, 4-phenolimidazole 1 cyanoethyl 2 phenol imidazole, 1- (2 cyanoethyl) 2 ethyl 4-methylimidazole, etc.), phosphorus compounds (eg, triphenylphosphine), guanamine compounds (eg, melamine, guanamine, acetate guanamine, benzoguanamine, etc.), S-triazine derivatives (e.g., 2,4-diamino-6-methacryloyloxychetyl S-triazine, 2-vinyl 2,4-diamino-I S-triazine, 2-bul-1,4,6-diamino-S triazine with isocyanuric acid And 2,4 diamino-6-methacryloyloxychetyl S-triazine'isocyanuric acid adduct, etc.) can be used. These may be used alone or in combination of two or more. It should be noted that a curing catalyst for the thermal crosslinking agent or a compound capable of promoting thermal curing other than those described above is not particularly limited as long as it can accelerate the reaction between these and a carboxyl group.
前記熱架橋剤、及びこれらとカルボン酸との熱硬化を促進可能な熱硬化促進剤の 前記感光性組成物中の固形分含有量は、 0. 01〜15質量%が好ましい。  The solid content in the photosensitive composition of the thermal crosslinking agent and the thermal curing accelerator capable of accelerating thermal curing between these and a carboxylic acid is preferably 0.01 to 15% by mass.
[0051] <バインダー > 前記ノインダーとしては、酸性基とエチレン性不飽和結合を側鎖に含む高分子化 合物を用いる。前記酸性基としては、例えば、カルボキシル基、リン酸基、スルホン酸 基等が挙げられる力 原料入手の点からカルボキシル基が好まし ヽ。 [0051] <Binder> As the noinder, a polymer compound containing an acidic group and an ethylenically unsaturated bond in the side chain is used. Examples of the acidic group include a carboxyl group, a phosphate group, and a sulfonate group. A carboxyl group is preferable from the viewpoint of obtaining raw materials.
前記ノ インダ一としては、水に不溶で、かつ、アルカリ性水溶液により膨潤あるいは 溶解する化合物が好ましい。  As the noder, a compound which is insoluble in water and swells or dissolves in an alkaline aqueous solution is preferable.
また、前記バインダーとしては、分子内に少なくとも 1つの重合可能な二重結合、例 えば、(メタ)アタリレート基又は (メタ)アクリルアミド基等のアクリル基、カルボン酸のビ -ルエステル、ビュルエーテル、ァリルエーテル等の各種重合性二重結合を用いる ことができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル榭脂 に、環状エーテル基含有重合性化合物、たとえばグリシジルアタリレート、グリシジル メタタリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、脂環式エポキシ 基 (たとえば同一分子中にシクロへキセンォキシド等のエポキシ基)と (メタ)アタリロイ ル基を有する化合物等のエポキシ基含有の重合性ィ匕合物を付加させて得られるィ匕 合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル榭脂に、イソシ アナートェチル (メタ)アタリレート等のイソシァネート基含有の重合性ィ匕合物を付加さ せて得られる化合物、無水物基を含有するアクリル榭脂に、ヒドロキシアルキル (メタ) アタリレート等の水酸基を含有する重合性ィ匕合物を付加させて得られる化合物なども 挙げられる。また、グリシジルメタタリレートなどの環状エーテル基含有重合性ィ匕合物 と(メタ)アタリロイルアルキルエステルなどのビュルモノマーを共重合し、側鎖のェポ キシ基に (メタ)アクリル酸を付加させて得られる化合物なども挙げられる。  Examples of the binder include at least one polymerizable double bond in the molecule, for example, an acrylic group such as a (meth) acrylate group or a (meth) acrylamide group, a vinyl ester of carboxylic acid, a butyl ether, Various polymerizable double bonds such as aryl ether can be used. More specifically, an acrylic resin containing a carboxyl group as an acidic group, a cyclic ether group-containing polymerizable compound, for example, a glycidyl ester of an unsaturated fatty acid such as glycidyl acrylate, glycidyl methacrylate, cinnamic acid, or an alicyclic group. Compound obtained by adding an epoxy group-containing polymerizable compound such as an epoxy group (for example, an epoxy group such as cyclohexenoxide in the same molecule) and a compound having a (meth) aryryl group, etc. Can be mentioned. In addition, a compound obtained by adding an isocyanate group-containing polymerizable compound such as isocyanatoethyl (meth) acrylate to an acrylic resin containing an acidic group and a hydroxyl group, an acrylic resin containing an anhydride group. Examples thereof include compounds obtained by adding a polymerizable compound containing a hydroxyl group such as hydroxyalkyl (meth) acrylate to fat. In addition, a cyclic ether group-containing polymerizable compound such as glycidyl metatalylate is copolymerized with a butyl monomer such as (meth) atalyloyl alkyl ester, and (meth) acrylic acid is added to the side chain epoxy group. The compound etc. which are obtained by making it also include.
これらの例は、特許 2763775号公報、特開平 3— 172301号公報、特開 2000— 2 32264号公報などが挙げられる。  Examples of these include Japanese Patent No. 2763775, Japanese Patent Application Laid-Open No. 3-172301, Japanese Patent Application Laid-Open No. 2000-232264, and the like.
これらの中で、前記バインダーが、高分子化合物の酸性基の一部に環状エーテル 基 (たとえばエポキシ基、ォキセタン基を部分構造に有する基)含有重合性化合物を 付加させたもの、および高分子化合物の環状エーテル基の一部または全部にカル ボキシル基含有重合性ィ匕合物を付加させたもののいずれかから選択された高分子 化合物であることが、さらに好ましい。この際、酸性基と環状エーテル基を有する化合 物との付加反応は触媒存在下で実施するのが好ましぐ特に、その触媒が酸性化合 物および中性ィ匕合物力も選択されるものであることが好ましい。 Among these, the binder is obtained by adding a polymerizable compound containing a cyclic ether group (for example, a group having an epoxy group or an oxetane group in a partial structure) to part of an acidic group of the polymer compound, and a polymer compound It is more preferable that the polymer compound is selected from any of those obtained by adding a carboxyl group-containing polymerizable compound to a part or all of the cyclic ether group. At this time, the addition reaction between the acidic group and the compound having a cyclic ether group is preferably carried out in the presence of a catalyst. It is preferable that the physical strength and neutral strength are also selected.
その中でも、感光性組成物の経時での現像安定性の点から、バインダーは側鎖に 、カルボキシル基とヘテロ環を含んでもょ ヽ芳香族基及び側鎖にエチレン性不飽和 結合を含む高分子化合物が好ま 、。  Among them, from the viewpoint of the development stability of the photosensitive composition over time, the binder contains a carboxyl group and a heterocycle in the side chain, or a polymer containing an aromatic group and an ethylenically unsaturated bond in the side chain. Compound preferred.
[0053] 一へテロ環を含んでもよい芳香族基  [0053] An aromatic group which may contain a single hetero ring
前記へテロ環を含んでもょ ヽ芳香族基 (以下、単に「芳香族基」と称することもある。 )としては、例えば、ベンゼン環、 2個から 3個のベンゼン環が縮合環を形成したもの、 ベンゼン環と 5員不飽和環が縮合環を形成したものをなどが挙げられる。  Examples of the aromatic group including the heterocycle (hereinafter, sometimes simply referred to as “aromatic group”) include a benzene ring, and 2 to 3 benzene rings formed a condensed ring. And those in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
前記芳香族基の具体例としては、フエ-ル基、ナフチル基、アントリル基、フエナント リル基、インデュル基、ァセナフテュル基、フルォレ -ル基、ベンゾピロール環基、ベ ンゾフラン環基、ベンゾチォフェン環基、ピラゾール環基、イソキサゾール環基、イソ チアゾール環基、インダゾール環基、ベンゾイソキサゾール環基、ベンゾイソチアゾー ル環基、イミダゾール環基、ォキサゾール環基、チアゾール環基、ベンズイミダゾー ル環基、ベンズォキサゾール環基、ベンゾチアゾール環基、ピリジン環基、キノリン環 基、イソキノリン環基、ピリダジン環基、ピリミジン環基、ピラジン環基、フタラジン環基 、キナゾリン環基、キノキサリン環基、ァシリジン環基、フエナントリジン環基、カルバゾ ール環基、プリン環基、ピラン環基、ピぺリジン環基、ピぺラジン環基、インドール環 基、インドリジン環基、クロメン環基、シンノリン環基、アタリジン環基、フエノチアジン 環基、テトラゾール環基、トリアジン環基などが挙げられる。これらの中では、炭化水 素芳香族基が好ましぐフエニル基、ナフチル基がより好ましい。  Specific examples of the aromatic group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indur group, an acenaphthyl group, a fluorene group, a benzopyrrole ring group, a benzofuran ring group, a benzothiophene ring group, Pyrazole ring group, isoxazole ring group, isothiazole ring group, indazole ring group, benzisoxazole ring group, benzoisothiazole ring group, imidazole ring group, oxazole ring group, thiazole ring group, benzimidazole ring group, benz Oxazole ring group, benzothiazole ring group, pyridine ring group, quinoline ring group, isoquinoline ring group, pyridazine ring group, pyrimidine ring group, pyrazine ring group, phthalazine ring group, quinazoline ring group, quinoxaline ring group, assiridin ring group , Phenanthridine ring group, carbazole ring group, purine ring group, pyran ring group Piperidine ring group, piperidines Rajin ring group, an indole ring group, an indolizine ring group, a chromene ring group, a cinnoline ring group, Atarijin ring group, phenothiazine ring group, a tetrazole ring group, such as a triazine ring group. Of these, a phenyl group and a naphthyl group, which are preferably hydrocarbon aromatic groups, are more preferred.
[0054] 前記芳香族基は、置換基を有していてもよぐ前記置換基としては、例えば、ハロゲ ン原子、置換基を有してもよいアミノ基、アルコキシカルボ-ル基、水酸基、エーテル 基、チオール基、チォエーテル基、シリル基、ニトロ基、シァノ基、それぞれ置換基を 有してもよい、アルキル基、ァルケ-ル基、アルキ-ル基、ァリール基、ヘテロ環基、 などが挙げられる。  [0054] The aromatic group may have a substituent. Examples of the substituent include, for example, a halogen atom, an amino group which may have a substituent, an alkoxycarbonyl group, a hydroxyl group, An ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, each of which may have a substituent, an alkyl group, an alkyl group, an alkyl group, an aryl group, a heterocyclic group, etc. Can be mentioned.
[0055] 前記アルキル基としては、例えば、炭素原子数が 1から 20までの直鎖状のアルキル 基、分岐状のアルキル基、環状のアルキル基などが挙げられる。  [0055] Examples of the alkyl group include linear alkyl groups having 1 to 20 carbon atoms, branched alkyl groups, and cyclic alkyl groups.
前記アルキル基の具体例としては、メチル基、ェチル基、プロピル基、ブチル基、 ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシ ル基、ドデシル基、トリデシル基、へキサデシル基、ォクタデシル基、エイコシル基、ィ ソプロピル基、イソブチル基、 S ブチル基、 t ブチル基、イソペンチル基、ネオペン チル基、 1 メチルブチル基、イソへキシル基、 2—ェチルへキシル基、 2—メチルへ キシル基、シクロへキシル基、シクロペンチル基、 2—ノルボル-ル基などが挙げられ る。これらの中では、炭素原子数 1から 12までの直鎖状のアルキル基、炭素原子数 3 力 12までの分岐状のアルキル基、炭素原子数 5から 10までの環状のアルキル基が 好ましい。 Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, Pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, hexadecyl, octadecyl, eicosyl, isopropyl, isobutyl, Sbutyl, t butyl, isopentyl, neopentyl, 1 methylbutyl, isohexyl, 2-ethylhexyl, 2-methylhexyl, cyclohexyl, cyclopentyl, 2-norbornyl, etc. Can be mentioned. Among these, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, and a cyclic alkyl group having 5 to 10 carbon atoms are preferable.
前記アルキル基が有してもよい置換基としては、例えば、水素原子を除く一価の非 金属原子団からなる基が挙げられる。このような置換基としては、例えば、ハロゲン原 子(一 F、 一 Br、 一 Cl、 一1)、ヒドロキシル基、アルコキシ基、ァリーロキシ基、メルカプ ト基、アルキルチオ基、ァリールチオ基、アルキルジチォ基、ァリールジチォ基、アミ ノ基、 N アルキルアミノ基、 N, N ジアルキルアミノ基、 N ァリールアミノ基、 N, N ジァリールアミノ基、 N—アルキル—N ァリールアミノ基、ァシルォキシ基、カル バモイルォキシ基、 N アルキル力ルバモイルォキシ基、 N ァリール力ルバモイル ォキシ基、 N, N ジアルキル力ルバモイルォキシ基、 N, N ジァリール力ルバモイ ルォキシ基、 N—アルキル—N ァリール力ルバモイルォキシ基、アルキルスルホキ シ基、ァリールスルホキシ基、ァシルチオ基、ァシルァミノ基、 N—アルキルァシルァ ミノ基、 N ァリールァシルァミノ基、ウレイド基、 N' アルキルウレイド基、 N,, N,一 ジアルキルウレイド基、 N,ーァリールウレイド基、 N,, N,ージァリールウレイド基、 N, アルキル N,ーァリールウレイド基、 N アルキルウレイド基、 N ァリールゥレイ ド基、 N' アルキル N アルキルウレイド基、 N' アルキル N ァリールゥレイ ド基、 N,, N,—ジアルキル— N アルキルウレイド基、 N,, N,—ジアルキル— N— ァリールウレイド基、 N,ーァリール—N—アルキルウレイド基、 N,ーァリール N— ァリールウレイド基、 N,, N,—ジァリール— N アルキルウレイド基、 N,, N,—ジァ リール—N ァリールウレイド基、 N,一アルキル N,ーァリール—N—アルキルウレ イド基、 N' アルキル—N'—ァリール—N ァリールウレイド基、アルコキシカルボ ニルァミノ基、ァリーロキシカルボ-ルァミノ基、 N—アルキル—N—アルコキシカル ボ-ルァミノ基、 N—アルキル—N ァリーロキシカルボ-ルァミノ基、 N ァリール N アルコキシカルボ-ルァミノ基、 N ァリール N ァリーロキシカルボ-ルァ ミノ基、ホルミル基、ァシル基、カルボキシル基、アルコキシカルボ-ル基、ァリーロキ シカルボ-ル基、力ルバモイル基、 N—アルキル力ルバモイル基、 N, N ジアルキ ルカルバモイル基、 N ァリール力ルバモイル基、 N, N ジァリール力ルバモイル基 、 N—アルキル—N ァリール力ルバモイル基、アルキルスルフィエル基、ァリールス ルフィ-ル基、アルキルスルホ-ル基、ァリールスルホ-ル基、スルホ基(一 SO H) Examples of the substituent that the alkyl group may have include a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom. Examples of such substituents include halogen atoms (one F, one Br, one Cl, one), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylthio group, alkyldithio group, aryldithio group. Group, amino group, N alkylamino group, N, N dialkylamino group, N allylamino group, N, N dialylamino group, N-alkyl-N allylamino group, acyloxy group, carbamoyloxy group, N alkyl power ruberamoyloxy group, N Aryl force ruberamoyloxy group, N, N dialkyl force ruberamoyloxy group, N, N diaryl force ruberamoyloxy group, N-alkyl-N allyl force ruberamoyloxy group, alkylsulfoxy group, allylsulfoxy group, acylylthio group, acylamino group , N-alkyl acylamino groups, N aryl Acylamino group, ureido group, N 'alkyl ureido group, N, N, monodialkyl ureido group, N, aryl ureido group, N, N, diaryl ureido group, N, alkyl N, aryl Ureido, N alkylureido, N arylureido, N 'alkyl N alkylureido, N' alkyl N arylureido, N ,, N, —dialkyl— N alkylureido, N ,, N, —dialkyl— N—aryl ureido group, N, ar reel—N—alkyl ureido group, N, ar reel N—aryl ureido group, N ,, N, —diaryl—N alkyl ureido group, N ,, N, —dia reel— N aryleureido group, N, monoalkyl N, aryl-N-alkylureido group, N 'alkyl-N'-aryl-N aryleureido group, alkoxycarbonyl Amino group, § Lee b propoxycarbonyl - Ruamino group, N- alkyl -N- Arukokishikaru Boramino group, N-alkyl-N aryloxycarbolumino group, N aryl N alkoxycarbonylamino group, N aryl Naryoxycarboamino group, formyl group, acyl group, carboxyl group, alkoxycarbo group Group, aryloxycarbonyl group, force rubermoyl group, N-alkyl force rubermoyl group, N, N dialkylcarbamoyl group, N allyl force rubermoyl group, N, N diaryl force rubermoyl group, N-alkyl-N allyl force rubermoyl group Group, alkyl sulfier group, arylsulfur group, alkylsulfol group, arylsulfol group, sulfo group (one SO H)
3 及びその共役塩基基 (スルホナト基と称す)、アルコキシスルホ -ル基、ァリーロキシ スルホ-ル基、スルフイナモイル基、 N—アルキルスルフイナモイル基、 N, N ジァ ルキルスルフィイナモイル基、 N ァリールスルフイナモイル基、 N, N ジァリールス ルフイナモイル基、 N—アルキル—N ァリールスルフイナモイル基、スルファモイル 基、 N—アルキルスルファモイル基、 N, N ジアルキルスルファモイル基、 N ァリ 一ルスルファモイル基、 N, N ジァリールスルファモイル基、 N アルキル— N ァ リールスルファモイル基、ホスホノ基(一 PO H )及びその共役塩基基 (ホスホナト基と  3 and its conjugated base group (referred to as sulfonate group), alkoxysulfol group, aryloxysulfol group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N dialkylsulfinaimoyl group, N Lylsulfinamoyl group, N, N dialylsulfinamoyl group, N-alkyl-N arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group, N-arylsulfamoyl group Group, N, N diallylsulfamoyl group, N alkyl—Narylsulfamoyl group, phosphono group (one PO H) and its conjugate base group (phosphonate group and
3 2  3 2
称す)、ジアルキルホスホノ基(一 PO (alkyl) ) (以下、「alkyl」はアルキル基を意味 Dialkylphosphono group (one PO (alkyl)) (hereinafter “alkyl” means an alkyl group)
3 2  3 2
する。)、ジァリールホスホノ基(一 PO (aryl) ) (以下、「aryl」はァリール基を意味す To do. ), A diarylphosphono group (one PO (aryl)) (hereinafter “aryl” means an aryl group)
3 2  3 2
る。)、アルキルァリールホスホノ基( PO (alkyl) (aryl) )、モノアルキルホスホノ基( The ), Alkylaryl phosphono group (PO (alkyl) (aryl)), monoalkyl phosphono group (
3  Three
PO (alkyl) )及びその共役塩基基 (アルキルホスホナト基と称す)、モノアリールホ PO (alkyl)) and its conjugate base group (referred to as alkylphosphonate group), monoarylphospho
3 Three
スホノ基( PO H (aryl) )及びその共役塩基基 (ァリールホスホナト基と称す)、ホス Suphono group (PO H (aryl)) and its conjugated base group (referred to as arylphosphonate group), phosphine group
3  Three
ホノォキシ基(一 OPO H )及びその共役塩基基 (ホスホナトォキシ基と称す)、ジァ Phonoxy group (one OPO H) and its conjugate base group (referred to as phosphonatoxy group), dia
3 2  3 2
ルキルホスホノォキシ基(一OPO H (alkyl) )、ジァリールホスホノォキシ基(一OPO Ruylphosphonoxy group (one OPO H (alkyl)), diarylphosphonoxy group (one OPO
3 2  3 2
(arvl) )、アルキルァリールホスホノォキシ基(一 OPO (alkyl) (aryl) )、モノアルキ (arvl)), alkylaryl phosphonoxy group (one OPO (alkyl) (aryl)), monoalkyl
3 2 3 3 2 3
ルホスホノォキシ基 ( - OPO H (alkyl) )及びその共役塩基基(アルキルホスホナト Ruphosphonooxy group (-OPO H (alkyl)) and its conjugate base group (alkylphosphonate
3  Three
ォキシ基と称す)、モノアリールホスホノォキシ基(一 OPO H (aryl) )及びその共役塩 ), Monoarylphosphonooxy group (one OPO H (aryl)), and conjugated salts thereof
3  Three
基 (ァリールホスホナトォキシ基と称す)、シァノ基、ニトロ基、ァリール基、アルケニル 基、アルキニル基、ヘテロ環基、シリル基などが挙げられる。 And a group (referred to as an aryl phosphonatoxy group), a cyan group, a nitro group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, a silyl group, and the like.
これら置換基におけるアルキル基の具体例としては、前述のアルキル基が挙げられ る。 前記置換基におけるァリール基の具体例としては、フエ-ル基、ビフエニル基、ナフ チル基、トリル基、キシリル基、メシチル基、タメ-ル基、クロロフヱ-ル基、ブロモフエ -ル基、クロロメチルフエ-ル基、ヒドロキシフエ-ル基、メトキシフエ-ル基、エトキシ フエ-ル基、フエノキシフエ-ル基、ァセトキシフエ-ル基、ベンゾイロキシフエ-ル基 、メチルチオフエ-ル基、フエ-ルチオフエ-ル基、メチルァミノフエ-ル基、ジメチル ァミノフエ-ル基、ァセチルァミノフエ-ル基、カルボキシフエ-ル基、メトキシカルボ -ルフエ-ル基、エトキシフエ-ルカルポ-ル基、フエノキシカルボ-ルフエ-ル基、 N フエ-ルカルバモイルフヱ-ル基、シァノフエ-ル基、スルホフヱ-ル基、スルホ ナトフエ-ル基、ホスホノフエ-ル基、ホスホナトフエ-ル基などが挙げられる。 Specific examples of the alkyl group in these substituents include the aforementioned alkyl groups. Specific examples of the aryl group in the above substituent include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, a phthalyl group, a chlorophenol group, a bromophenyl group, a chloromethyl group. Phenyl group, hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxylphenol group, benzoylphenol group, methylthiophenol group, phenolthiol group Group, methylaminophenol group, dimethylaminophenol group, acetylaminophenol group, carboxyphenol group, methoxycarbonyl group, ethoxyphenol group, phenoxycarbon group , N-phenylcarbamoyl file group, cyanophyl group, sulfophenyl group, sulfonaphthoyl group, phosphonophenol group, phosphonatophenol group, etc. That.
前記置換基におけるァルケ-ル基の具体例としては、ビュル基、 1 プロべ-ル基 、 1—ブテュル基、シンナミル基、 2—クロ口— 1—ェテュル基などが挙げられる。 前記置換基におけるアルキ-ル基の具体例としては、ェチュル基、 1 プロピニル 基、 1ーブチュル基、トリメチルシリルェチニル基などが挙げられる。  Specific examples of the alkenyl group in the substituent include a bur group, a 1 probe group, a 1-butur group, a cinnamyl group, and a 2-chloro-1-ether group. Specific examples of the alkyl group in the substituent include an ethur group, a 1-propynyl group, a 1-buturyl group, and a trimethylsilylethynyl group.
前記置換基におけるァシル基 ( 1。。一)の 1としては、水素原子、前述のアルキ ル基、ァリール基などが挙げられる。 Examples 1 Ashiru in the substituent group (1 .. I) are a hydrogen atom, the above-described alkyl group, such as Ariru group.
これらの置換基の中でも、ハロゲン原子(一 F、 一Br、 一Cl、 一1)、アルコキシ基、ァ リーロキシ基、アルキルチオ基、ァリールチオ基、 N アルキルアミノ基、 N, N—ジァ ルキルアミノ基、ァシルォキシ基、 N—アルキル力ルバモイルォキシ基、 N ァリール 力ルバモイルォキシ基、ァシルァミノ基、ホルミル基、ァシル基、カルボキシル基、ァ ルコキシカルボ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N アルキル力 ルバモイル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基、 N アルキル N ァリール力ルバモイル基、スルホ基、スルホナト基、スルファモイル 基、 N—アルキルスルファモイル基、 N, N ジアルキルスルファモイル基、 N ァリ 一ルスルファモイル基、 N—アルキル—N ァリールスルファモイル基、ホスホノ基、 ホスホナト基、ジアルキルホスホノ基、ジァリールホスホノ基、モノアルキルホスホノ基 、アルキルホスホナト基、モノアリールホスホノ基、ァリールホスホナト基、ホスホノォキ シ基、ホスホナトォキシ基、ァリール基、アルケニル基などが好ましい。  Among these substituents, halogen atoms (1 F, 1 Br, 1 Cl, 1 1), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N alkylamino groups, N, N-dialkylamino groups, Aryloxy group, N-alkyl-force rubermoyloxy group, N-aryl force-rubamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbol group, force-rubamoyl group, N-alkyl-force rubermoyl Group, N, N dialkyl-force rubamoyl group, N allyl force rubamoyl group, N alkyl N allyl force rubamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group N-arylsulfamoyl group, N-alkyl-N arylsulfamoyl group, phosphine Group, phosphonato group, dialkylphosphono group, diarylphosphono group, monoalkylphosphono group, alkylphosphonato group, monoarylphosphono group, arylophosphonate group, phosphonoxoxy group, phosphonatoxy group, aryl group And an alkenyl group are preferred.
また、前記置換基におけるヘテロ環基としては、例えば、ピリジル基、ピベリジ-ル 基などが挙げられ、前記置換基におけるシリル基としてはトリメチルシリル基などが挙 げられる。 Examples of the heterocyclic group in the substituent include, for example, a pyridyl group, a piperidyl group. Examples of the silyl group in the substituent include a trimethylsilyl group.
一方、前記アルキル基における、アルキレン基としては、例えば、前述の炭素数 1か ら 20までのアルキル基上の水素原子の ヽずれか 1つを除し、 2価の有機残基としたも のが挙げられ、例えば、炭素原子数 1から 12までの直鎖状のアルキレン基、炭素原 子数 3から 12までの分岐状のアルキレン基、炭素原子数 5から 10までの環状のアル キレン基などが好ましい。  On the other hand, the alkylene group in the alkyl group is, for example, a divalent organic residue obtained by removing one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. For example, a linear alkylene group having 1 to 12 carbon atoms, a branched alkylene group having 3 to 12 carbon atoms, a cyclic alkylene group having 5 to 10 carbon atoms, etc. Is preferred.
このような置換基とアルキレン基を組み合わせることで得られる置換アルキル基の、 好ましい具体例としては、クロロメチル基、ブロモメチル基、 2—クロ口ェチル基、トリフ ルォロメチル基、メトキシメチル基、イソプロポキシメチル基、ブトキシメチル基、 s ブ トキシブチル基、メトキシェトキシェチル基、ァリルォキシメチル基、フエノキシメチル 基、メチルチオメチル基、トリルチオメチル基、ピリジルメチル基、テトラメチルピベリジ -ルメチル基、 N ァセチルテトラメチルピベリジ-ルメチル基、トリメチルシリルメチ ル基、メトキシェチル基、ェチルアミノエチル基、ジェチルァミノプロピル基、モルホリ ノプロピル基、ァセチルォキシメチル基、ベンゾィルォキシメチル基、 N シクロへキ シルカルバモイルォキシェチル基、 N フエ-ルカルバモイルォキシェチル基、ァセ チルアミノエチル基、 N メチルベンゾィルァミノプロピル基、 2—ォキソェチル基、 2 ォキソプロピル基、カルボキシプロピル基、メトキシカルボ-ルェチル基、ァリルォ キシカルボ-ルブチル基、クロ口フエノキシカルボ-ルメチル基、力ルバモイルメチル 基、 N—メチルカルバモイルェチル基、 N, N ジプロピル力ルバモイルメチル基、 N (メトキシフヱ-ル)力ルバモイルェチル基、 N—メチルー N— (スルホフヱ-ル)力 ルバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基 、 N ェチルスルファモイルメチル基、 N, N ジプロピルスルファモイルプロピル基、 N トリルスルファモイルプロピル基、 N—メチルー N (ホスホノフエ-ル)スルファモ ィルォクチル基、ホスホノブチル基、ホスホナトへキシル基、ジェチルホスホノブチル 基、ジフエ-ルホスホノプロピル基、メチルホスホノブチル基、メチルホスホナトブチル 基、トリルホスホノへキシル基、トリルホスホナトへキシル基、ホスホノォキシプロピル基 、ホスホナトォキシブチル基、ベンジル基、フエネチル基、 a メチルベンジル基、 1 ーメチルー 1 フエ-ルェチル基、 p—メチルベンジル基、シンナミル基、ァリル基、 1 プロべ-ルメチル基、 2—ブテュル基、 2—メチルァリル基、 2—メチルプロべ-ルメ チル基、 2 プロピニル基、 2 プチ二ル基、 3 ブチュル基などが挙げられる。 Preferable specific examples of the substituted alkyl group obtained by combining such a substituent with an alkylene group include chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, isopropoxymethyl. Group, butoxymethyl group, s-butoxybutyl group, methoxyethoxychetyl group, aralkyloxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, pyridylmethyl group, tetramethylpiberidyl-methyl group, N Acetyltetramethylpiberidylmethyl group, trimethylsilylmethyl group, methoxyethyl group, ethylaminoethyl group, jetylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N Cyclohexylcarbamoyloxychetyl group N-phenylcarbamoyloxychetyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxoethyl group, 2-oxopropyl group, carboxypropyl group, methoxycarboxyl butyl group, aralkyloxycarboxylbutyl group N-methylcarbamoylmethyl group, N, N-dipropyl-powered rubermoylmethyl group, N (methoxyphenyl) -powered rubamoyl-ethyl group, N-methyl-N- (sulfo-vinyl) -powered rubermoylmethyl Group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N dipropylsulfamoylpropyl group, N tolylsulfamoylpropyl group, N-methyl-N (phosphonophenol) sulfamo Iloctyl group Phonobutyl, phosphonatohexyl, jetylphosphonobutyl, diphenylphosphonopropyl, methylphosphonobutyl, methylphosphonatobutyl, tolylphosphonohexyl, tolylphosphonatohexyl, phosphonooxypropyl , Phosphonatoxybutyl group, benzyl group, phenethyl group, a methylbenzyl group, 1 -Methyl-1 phenethyl group, p-methylbenzyl group, cinnamyl group, allyl group, 1-propylmethyl group, 2-buturyl group, 2-methylaryl group, 2-methylpropylmethyl group, 2-propynyl group, 2 Examples include a butyryl group and a 3 butur group.
[0060] 前記ァリール基としては、例えば、ベンゼン環、 2個から 3個のベンゼン環が縮合環 を形成したもの、ベンゼン環と 5員不飽和環が縮合環を形成したものなどが挙げられ る。 [0060] Examples of the aryl group include a benzene ring, a group in which 2 to 3 benzene rings form a condensed ring, and a group in which a benzene ring and a 5-membered unsaturated ring form a condensed ring. .
前記ァリール基の具体例としては、例えば、フエ-ル基、ナフチル基、アントリル基、 フエナントリル基、インデニル基、ァセナフテニル基、フルォレニル基などが挙げられ る。これらの中では、フエ-ル基、ナフチル基が好ましい。  Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a acenaphthenyl group, and a fluorenyl group. Of these, a phenol group and a naphthyl group are preferable.
前記アルキル基は置換基を有してもよぐこのような置換基を有するァリール基 (以 下、「置換ァリール基」と称することもある。)としては、例えば、前述のァリール基の環 形成炭素原子上に置換基として、水素原子以外の一価の非金属原子団からなる基 を有するものが挙げられる。  The alkyl group may have a substituent or an aryl group having such a substituent (hereinafter also referred to as “substituted aryl group”), for example, ring formation of the aforementioned aryl group Examples of the substituent on the carbon atom include a group consisting of a monovalent nonmetallic atomic group other than a hydrogen atom.
前記ァリール基が有してもよい置換基としては、例えば、前述のアルキル基、置換 アルキル基、前記アルキル基が有してもょ 、置換基として示したものが好まし 、。  As the substituent that the aryl group may have, for example, the alkyl group, the substituted alkyl group, or the alkyl group that is described above as the substituent may be preferable.
[0061] 前記置換ァリール基の好ましい具体例としては、ビフヱニル基、トリル基、キシリル基 、メシチル基、タメ-ル基、クロ口フエ-ル基、ブロモフエ-ル基、フルオロフェ-ル基 、クロロメチルフエ-ル基、トリフルォロメチルフエ-ル基、ヒドロキシフエ-ル基、メトキ シフエ-ル基、メトキシェトキシフエ-ル基、ァリルォキシフエ-ル基、フエノキシフエ- ル基、メチルチオフエ-ル基、トリルチオフエ-ル基、ェチルアミノフヱ-ル基、ジェチ ルァミノフエ-ル基、モルホリノフエ-ル基、ァセチルォキシフエ-ル基、ベンゾィルォ キシフエ-ル基、 N シクロへキシルカルバモイルォキシフエ-ル基、 N フエ-ルカ ルバモイルォキシフエ-ル基、ァセチルァミノフエ-ル基、 N メチルベンゾィルァミノ フエ-ル基、カルボキシフヱ-ル基、メトキシカルボ-ルフヱ-ル基、ァリルォキシカル ボ -ルフヱ-ル基、クロロフヱノキシカルボ-ルフヱ-ル基、力ルバモイルフヱ-ル基 、 N—メチルカルバモイルフエ-ル基、 N, N ジプロピル力ルバモイルフエ-ル基、 N— (メトキシフヱ-ル)力ルバモイルフヱ-ル基、 N—メチルー N— (スルホフヱ-ル) 力ルバモイルフヱ-ル基、スルホフヱ-ル基、スルホナトフヱ-ル基、スルファモイル フエ-ル基、 N ェチルスルファモイルフエ-ル基、 N, N ジプロピルスルファモイ ルフエ-ル基、 N トリルスルファモイルフエ-ル基、 N—メチル N— (ホスホノフエ -ル)スルファモイルフヱ-ル基、ホスホノフヱ-ル基、ホスホナトフヱ-ル基、ジェチ ルホスホノフヱ-ル基、ジフヱ-ルホスホノフヱ-ル基、メチルホスホノフヱ-ル基、メ チルホスホナトフヱ-ル基、トリルホスホノフエ-ル基、トリルホスホナトフヱ-ル基、ァ リルフエ-ル基、 1 プロぺ-ルメチルフエ-ル基、 2—ブテユルフェ-ル基、 2—メチ ルァリルフエ-ル基、 2—メチルプロべ-ルフヱ-ル基、 2—プロピ-ルフヱ-ル基、 2 ブチュルフエ-ル基、 3—ブチュルフエ-ル基などが挙げられる。 [0061] Preferable specific examples of the substituted aryl group include a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a tamale group, a chlorophenol group, a bromophenol group, a fluorophenol group, a chloromethyl group. Phenyl group, trifluoromethylphenol group, hydroxyphenyl group, methoxyphenyl group, methoxymethoxyphenyl group, aryloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, Tolylthiophenyl group, ethylaminophenyl group, germanaminophenyl group, morpholinophenol group, acetyloxyphenyl group, benzoylphenyl group, N cyclohexylcarbamoylphenyl group, N Phenylcarbamoyl phenyl group, Acetylaminophenol group, N-Methylbenzoylaminophenol group, Carboxyphenol group, Methoxycarbol Benzyl group, aryloxy-hydroxyl-phenyl group, chlorophenol-oxyl-hydroxyl-phenyl group, strong rubamoyl-phenol group, N-methylcarbamoyl-phenol group, N, N dipropyl-strong rubamoyl-phenol group, N — (Methoxy file) Forced rubermoyl file group, N-Methyl-N— (Sulfophenyl) Forced rubermoyl file group, Sulfofol filed group, Sulfonato filed group, Sulfamoyl Phenol group, N-ethylsulfamoylphenol, N, N Dipropylsulfamoylphenol, N-tolylsulfamoylphenol, N-methyl N- (phosphonophenol) sulfamoyl Benzyl group, Phosphonophyl group, Phosphonatophenol group, German phosphonophenol group, Diphenyl phosphonophenol group, Methyl phosphonophenol group, Methyl phosphonaphthol group, Tolyl phosphonophenol Group, tolylphosphonatophenol group, arylphenyl group, 1-propylmethylphenol group, 2-butenephenol group, 2-methylarylphenol group, 2-methylpropylphenol group , 2-propyl furol group, 2-butyr fur group, 3-but fur fur group and the like.
[0062] 前記ァルケ-ル基( C (R02) = C (R03) (R04) )及びアルキ-ル基(一 C≡ C (R。5) ) としては、例えば、 R°2、 R°3、 R°4、及び R°5がー価の非金属原子団からなる基のもの が挙げられる。 [0062] The Aruke - Le group (C (R 02) = C (R 03) (R 04)) and alkyl - as Le group (an C≡ C (R. 5)), for example, R ° 2, R ° 3 , R ° 4 , and R ° 5 are groups having a non-valent nonmetallic atomic group.
前記 2、 R°3、 R°4、 R°5としては、例えば、水素原子、ハロゲン原子、アルキル基、 置換アルキル基、ァリール基、置換ァリール基などが挙げられる。これらの具体例とし ては、前述の例として示したものを挙げることができる。これらの中でも、水素原子、ハ ロゲン原子、炭素原子数 1から 10までの直鎖状のアルキル基、分岐状のアルキル基 、環状のアルキル基が好ましい。 Examples of 2 , R ° 3 , R ° 4 , and R ° 5 include a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group. Specific examples thereof include those shown as the above-mentioned examples. Among these, a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, and a cyclic alkyl group are preferable.
[0063] 前記ァルケ-ル基及びアルキ-ル基の好まし!/、具体例としては、ビニル基、 1ープ 口ぺ-ル基、 1ーブテュル基、 1 ペンテ-ル基、 1一へキセ -ル基、 1—オタテュル 基、 1ーメチルー 1 プロぺ-ル基、 2—メチルー 1 プロぺ-ル基、 2—メチルー 1 ブテュル基、 2—フエ-ルー 1—エテュル基、 2—クロ口— 1—エテュル基、ェチュル 基、 1 プロピ-ル基、 1ーブチュル基、フエ-ルェチュル基などが挙げられる。 前記へテロ環基としては、例えば、置換アルキル基の置換基として例示したピリジ ル基などが挙げられる。  [0063] Preference is given to the above-mentioned alkenyl group and alkyl group! /, Specific examples include vinyl group, 1-port perl group, 1-butul group, 1 pentale group, 1 hex. -Luyl group, 1-Otatur group, 1-Methyl-1 Propyl group, 2-Methyl-1 Propyl group, 2-Methyl-1-Butur group, 2-Fuelulu 1-Ethul group, 2-Chrome- 1-Ethul group, Etul group, 1-Propyl group, 1-Butul group, and Feule group. Examples of the heterocyclic group include a pyridyl group exemplified as a substituent for a substituted alkyl group.
[0064] 前記ォキシ基 (R 60 )としては、 6が水素原子を除く一価の非金属原子団から なる基であるちのが挙げられる。 [0064] As the Okishi group (R 6 0) has 6 include Chino a group comprising a monovalent nonmetallic atom group exclusive of a hydrogen atom.
このようなォキシ基としては、例えば、アルコキシ基、ァリーロキシ基、ァシルォキシ 基、力ルバモイルォキシ基、 N アルキル力ルバモイルォキシ基、 N ァリールカル バモイルォキシ基、 N, N ジアルキル力ルバモイルォキシ基、 N, N ジァリール力 ルバモイルォキシ基、 N アルキル N ァリール力ルバモイルォキシ基、アルキル スノレホキシ基、ァリーノレスノレホキシ基、ホスホノ才キシ基、ホスホナト才キシ基などが 好ましい。 Examples of such oxy groups include, for example, alkoxy groups, aryloxy groups, acyloxy groups, rubamoyloxy groups, N alkyl rubamoyloxy groups, N alkaryl carbamoyloxy groups, N, N dialkyl rubamoyloxy groups, N, N diaryl forces. A ruberamoyloxy group, an N alkyl N aryl group, a rubermoyloxy group, an alkyl snoreoxy group, an arenoresnoreoxy group, a phosphono-oxy group, and a phosphonato-oxy group are preferred.
これらにおけるアルキル基及びァリール基としては、前述のアルキル基、置換アル キル基、ァリール基、及び置換ァリール基として示したものを挙げることができる。また 、ァシルォキシ基におけるァシル基 (R 7CO )としては、 7が、先の例として挙げた アルキル基、置換アルキル基、ァリール基ならびに置換ァリール基のものを挙げるこ とができる。これらの置換基の中では、アルコキシ基、ァリーロキシ基、ァシルォキシ 基、ァリールスルホキシ基がより好ましい。 Examples of the alkyl group and aryl group in these include the alkyl groups, substituted alkyl groups, aryl groups, and substituted aryl groups described above. In addition, examples of the acyl group (R 7 CO 2) in the acyloxy group include those in which 7 is an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group exemplified in the above examples. Of these substituents, an alkoxy group, an aryloxy group, an acyloxy group, and an arylsulfoxy group are more preferable.
好ましいォキシ基の具体例としては、メトキシ基、エトキシ基、プロピルォキシ基、ィ ソプロピルォキシ基、ブチルォキシ基、ペンチルォキシ基、へキシルォキシ基、ドデシ ルォキシ基、ベンジルォキシ基、ァリルォキシ基、フエネチルォキシ基、カルボキシェ チルォキシ基、メトキシカルボ-ルェチルォキシ基、エトキシカルボ-ルェチルォキシ 基、メトキシェトキシ基、フエノキシエトキシ基、メトキシェトキシェトキシ基、エトキシェ トキシェトキシ基、モルホリノエトキシ基、モルホリノプロピルォキシ基、ァリロキシエト キシエトキシ基、フエノキシ基、トリルォキシ基、キシリルォキシ基、メシチルォキシ基、 メシチルォキシ基、タメ-ルォキシ基、メトキシフエ-ルォキシ基、エトキシフエ-ルォ キシ基、クロ口フエ-ルォキシ基、ブロモフエ-ルォキシ基、ァセチルォキシ基、ベン ゾィルォキシ基、ナフチルォキシ基、フエ-ルスルホ-ルォキシ基、ホスホノォキシ基 、ホスホナトォキシ基などが挙げられる。  Specific examples of preferred oxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, pentyloxy, hexyloxy, dodecyloxy, benzyloxy, allyloxy, phenethyloxy, carboxyethyloxy, methoxy Carbo-ruethyloxy group, ethoxycarbo-ruethyloxy group, methoxyethoxy group, phenoxyethoxy group, methoxyethoxy group, ethoxyethoxy group, morpholinoethoxy group, morpholinopropyloxy group, aralkyloxyethoxy group, phenoxy group, triloxy Group, xylyloxy group, mesityloxy group, mesityloxy group, tamoxy group, methoxyphenyl group, ethoxyphenyl group, black-end phenol group , Buromofue - Ruokishi group, Asechiruokishi group, Ben Zoiruokishi group, Nafuchiruokishi group, Hue - Rusuruho - Ruokishi group, Hosuhonookishi group, etc. Hosuhonatokishi group.
アミド基を含んでもよ!、ァミノ基 (R 8NH―、 (R09) (R01°) N-)としては、例えば、 R° 89、及び RG1Gが水素原子を除く一価の非金属原子団カもなる基のものが挙げら れる。なお、 R°9と とは結合して環を形成してもよい。 An amido group (R 8 NH-, (R 09 ) (R 01 °) N-) includes, for example, R ° 8 , 9 , and R G1G are monovalent except for a hydrogen atom. Non-metallic atomic groups are also included. In addition, R 9 may be bonded to form a ring.
前記アミノ基としては、例えば、 N—アルキルアミノ基、 N, N ジアルキルアミノ基、 N ァリールアミノ基、 N, N ジァリールアミノ基、 N—アルキル— N ァリールァミノ 基、ァシルァミノ基、 N—アルキルァシルァミノ基、 N ァリールァシルァミノ基、ゥレイ ド基、 N' アルキルウレイド基、 Ν,, N,ージアルキルウレイド基、 N'—ァリールウレ イド基、 Ν,, N,ージァリールウレイド基、 N' アルキル—N'—ァリールウレイド基、 N アルキルウレイド基、 N ァリールウレイド基、 N,一アルキル N アルキルウレ イド基、 N '—アルキル— N ァリールウレイド基、 N,, N '—ジアルキル— N アルキ ルゥレイド基、 N,一アルキル N,ーァリールウレイド基、 Ν,, N,ージアルキル—N アルキルウレイド基、 Ν,, N,ージアルキル N,ーァリールウレイド基、 N,ーァリー ルー N—アルキルウレイド基、 N,ーァリール—N ァリールウレイド基、 N,, N,ージ ァリール—N—アルキルウレイド基、 N,, N,ージァリール—N ァリールウレイド基、 N,—アルキル N,—ァリール— N アルキルウレイド基、 N,—アルキル N,—ァ リール—N ァリールウレイド基、アルコキシカルボ-ルァミノ基、ァリーロキシカルボ -ルァミノ基、 N アルキル— N アルコキシカルボ-ルァミノ基、 N アルキル— N ーァリーロキシカルボ-ルァミノ基、 N ァリール N アルコキシカルボ-ルァミノ 基、 N ァリール N ァリーロキシカルボ-ルァミノ基などが挙げられる。これらに おけるアルキル基及びァリール基としては、前述のアルキル基、置換アルキル基、ァ リール基、及び置換ァリール基として示したものが挙げられる。また、ァシルァミノ基、 N アルキルァシルァミノ基、 N ァリールァシルァミノ基おけるァシル基 (R 7CO— )の 7は前述の通りである。これらのうち、 N アルキルアミノ基、 N, N ジアルキル アミノ基、 N ァリールアミノ基、ァシルァミノ基がより好ましい。 Examples of the amino group include an N-alkylamino group, an N, N dialkylamino group, an N allylamino group, an N, N dialylamino group, an N-alkyl-N allylamino group, an acylamine group, and an N-alkylacylamino group. , N allylamylamino group, ureido group, N 'alkylureido group, Ν ,, N, dialkylureido group, N'- allyleureido group, Ν ,, N, diarylureido group, N 'Alkyl—N'—aryl ureido group, N alkylureido group, N arylureido group, N, monoalkyl N alkylureido group, N'-alkyl-N arylureido group, N ,, N'-dialkyl-N alkylureido group, N, monoalkyl N, Allyleureido group, ー ,, N, dialkyl-N alkylureido group, Ν ,, N, dialkylN, arleureido group, N, ally roux N-alkylureido group, N, allyleureide-N arylureido N, N, N-alkyl ureido group, N, N, N-aryl ureido group, N, N-alkyl N, N-alkyl ureido group, N, N-alkyl N —Alyl—N Alleureido group, alkoxycarbolumino group, aryloxycarbo-lumino group, N alkyl—N alkoxycarbolamamino group, N alkyl Kill-N-aryloxycarbolamino group, N-aryl N-alkoxycarbolamino group, N-aryl N-aryloxycarbolamino group and the like. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Further, Ashiruamino group, N-alkyl § sill § amino group, N § reel § sill § amino group definitive Ashiru group (R 7 CO-) of 7 are as defined above. Among these, an N alkylamino group, an N, N dialkylamino group, an N arylamino group, and an acylamino group are more preferable.
好ましいァミノ基の具体例としては、メチルァミノ基、ェチルァミノ基、ジェチルァミノ 基、モルホリノ基、ピペリジノ基、ピロリジノ基、フエ-ルァミノ基、ベンゾィルァミノ基、 ァセチルァミノ基などが挙げられる。  Specific examples of preferred amino groups include methylamino group, ethylamino group, jetylamino group, morpholino group, piperidino group, pyrrolidino group, phenolamino group, benzoylamino group, acetylamino group and the like.
[0066] 前記スルホ -ル基 ( 11 SO—)としては、例えば、 11がー価の非金属原子団 [0066] The sulfo - as Le group (11 SO-), for example, 11 over-valent non-metal atomic group
2  2
力 なる基のものが挙げられる。  The power group is mentioned.
このようなスルホ-ル基としては、例えば、アルキルスルホ-ル基、ァリールスルホ- ル基などが好ましい。これらにおけるアルキル基及びァリール基としては、前述のァ ルキル基、置換アルキル基、ァリール基、及び置換ァリール基として示したものが挙 げられる。  As such a sulfo group, for example, an alkyl sulfo group, an aryl sulfo group and the like are preferable. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
前記スルホ-ル基の具体例としては、ブチルスルホ -ル基、フエ-ルスルホ -ル基 、クロ口フエ-ルスルホ-ル基などが挙げられる。  Specific examples of the sulfo group include a butyl sulfo group, a phenol sulfo group, and a closed-end phenol sulfo group.
[0067] 前記スルホナト基(一 SO—)は、前述のとおり、スルホ基(一 SO H)の共役塩基陰 イオン基を意味し、通常は対陽イオンとともに使用されるのが好ましい。 このような対陽イオンとしては、一般に知られるものを適宜選択して用いることができ 、例えば、ォ-ゥム類 (例えば、アンモ-ゥム類、スルホ -ゥム類、ホスホ-ゥム類、ョ 一ドニゥム類、アジ-ゥム類等)、金属イオン類 (例えば、 Na+、 K+、 Ca2+、 Zn2+等) が挙げられる。 [0067] The sulfonate group (one SO-) is, as described above, a conjugate base group of the sulfo group (one SO H). It means an ionic group and is usually preferably used together with a counter cation. As such counter cations, generally known ones can be appropriately selected and used. For example, oniums (for example, ammoniums, sulfomes, phosphomes) And sodium ions, azimuths, etc.) and metal ions (for example, Na +, K +, Ca 2+ , Zn 2+, etc.).
[0068] 前記カルボ-ル基 (R 13— CO )としては、例えば、 13がー価の非金属原子団 力 なる基のものが挙げられる。 [0068] Examples of the carbo group (R 13 — CO 2) include those in which 13 is a group having a non-valent atomic group with a valence of-.
このようなカルボ-ル基としては、例えば、ホルミル基、ァシル基、カルボキシル基、 アルコキシカルボ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N アルキル 力ルバモイル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基、 N, N ジァリール力ルバモイル基、 N—アルキル N,ーァリール力ルバモイル基な どが挙げられる。これらにおけるアルキル基及びァリール基としては、前述のアルキ ル基、置換アルキル基、ァリール基、及び置換ァリール基として示したものが挙げら れる。  Examples of such carbol groups include formyl, acyl, carboxyl, alkoxycarbol, aryloxycarbol, strong rubamoyl, N alkyl, rubamoyl, N, N dialkyl. Examples include a rubermoyl group, an N-aryl force rubermoyl group, an N, N-diaryl force rubermoyl group, and an N-alkyl N, -aryl force-rubamoyl group. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
前記カルボ-ル基としては、ホルミル基、ァシル基、カルボキシル基、アルコキシ力 ルポ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N—アルキル力ルバモイ ル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基が好ましく、 ホルミル基、ァシル基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル基がより好 ましい。  Examples of the carbonyl group include formyl group, acyl group, carboxyl group, alkoxy group, aryloxycarbo group, rubamoyl group, N-alkyl group rubamoyl group, N, N dialkyl group rubamoyl. Group, N-aryl rubamoyl group is preferable, and formyl group, acyl group, alkoxycarbol group, and aryloxycarbol group are more preferable.
前記カルボ-ル基の具体例としては、ホルミル基、ァセチル基、ベンゾィル基、カル ボキシル基、メトキシカルボ-ル基、エトキシカルボ-ル基、ァリルォキシカルボ-ル 基、ジメチルァミノフエ-ルェテュルカルボ-ル基、メトキシカルボ-ルメトキシカルボ -ル基、 N—メチルカルバモイル基、 N フエ-ルカルバモイル基、 N, N ジェチル 力ルバモイル基、モルホリノカルボ-ル基などが好適に挙げられる。  Specific examples of the carbonyl group include a formyl group, a acetyl group, a benzoyl group, a carboxy group, a methoxy carbo ol group, an ethoxy carbo yl group, an ar aroxy carboxy group, a dimethylamino pheno group. Preferred examples include a ruthel carbol group, a methoxy carbo methoxy carbo ol group, an N-methyl carbamoyl group, an N phen carbamoyl group, an N, N decyl rubamoyl group, a morpholino carbo ol group and the like.
[0069] 前記スルフィエル基 (R 14— SO )としては、 "がー価の非金属原子団からなる 基のものが挙げられる。 [0069] Examples of the sulfiel group (R 14 — SO) include those having a group consisting of a non-valent nonmetallic atomic group.
このようなスルフィエル基としては、例えば、アルキルスルフィエル基、ァリールスル フィエル基、スルフイナモイル基、 N—アルキルスルフイナモイル基、 N, N ジアルキ ルスルフイナモイル基、 N ァリールスルフイナモイル基、 N, N ジァリールスルフィ ナモイル基、 N アルキル N ァリールスルフイナモイル基などが挙げられる。これ らにおけるアルキル基及びァリール基としては、前述のアルキル基、置換アルキル基 、ァリール基、及び置換ァリール基として示したものが挙げられる。これらの中でも、ァ ルキルスルフィ-ル基、ァリールスルフィエル基が好まし 、。 Examples of such sulfiel groups include alkyl sulfiel groups, aryl sulfiel groups, sulfinamoyl groups, N-alkyl sulfinamoyl groups, N, N dialkyl groups. Examples include a rusulfinamoyl group, an N-arylsulfinamoyl group, an N, N-diarylsulfinamoyl group, and an N-alkyl-N-arylsulfinamoyl group. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Of these, the alkylsulfur group and the arylsulfier group are preferred.
前記置換スルフィエル基の具体例としては、へキシルスルフィエル基、ベンジルス ルフィ-ル基、トリルスルフィ-ル基などが好適に挙げられる。  Specific examples of the substituted sulfiel group include a hexyl sulfiel group, a benzyl sulfyl group, and a tolyl sulfyl group.
[0070] 前記ホスホノ基とは、ホスホノ基上の水酸基の一つ乃至二つが他の有機ォキソ基に よって置換されたものを意味し、例えば、前述のジアルキルホスホノ基、ジァリールホ スホノ基、アルキルァリールホスホノ基、モノアルキルホスホノ基、モノアリールホスホノ 基などが好ましい。これらの中では、ジアルキルホスホノ基、ジァリールホスホノ基がよ り好ましい。 [0070] The phosphono group means a group in which one or two of the hydroxyl groups on the phosphono group are substituted with another organic oxo group. For example, the above-mentioned dialkylphosphono group, diarylphosphono group, A reel phosphono group, a monoalkyl phosphono group, a monoaryl phosphono group and the like are preferable. Of these, dialkylphosphono groups and diarylphosphono groups are more preferred.
前記ホスホノ基のより好ましい具体例としては、ジェチルホスホノ基、ジブチルホス ホノ基、ジフエ-ルホスホノ基などが挙げられる。  More preferable specific examples of the phosphono group include a jetyl phosphono group, a dibutyl phosphono group, and a diphenyl phosphono group.
[0071] 前記ホスホナト基( PO H 一、 -PO H—)とは、前述のとおり、ホスホノ基( PO [0071] The phosphonato group (PO H-, -PO H-) is, as described above, a phosphono group (PO
3 2 3  3 2 3
H )の、酸第一解離、又は酸第二解離に由来する共役塩基陰イオン基を意味する H) means a conjugated base anion group derived from acid first dissociation or acid second dissociation
3 2 3 2
。通常は対陽イオンと共に使用されるのが好ましい。このような対陽イオンとしては、 一般に知られるものを適宜選択することができ、例えば、種々のォ-ゥム類 (アンモ- ゥム類、スルホ -ゥム類、ホスホ-ゥム類、ョードニゥム類、アジ-ゥム類等)、金属ィ オン類 (Na+、 K+、 Ca2+、 Zn2+等)が挙げられる。 . Usually, it is preferable to use it with a counter cation. As such counter cations, generally known ones can be appropriately selected. For example, various kinds of atoms (ammonium, sulfo-ums, phospho-umms, ododoniums) ), Metal ions (Na +, K +, Ca 2+ , Zn 2+ etc.).
[0072] 前記ホスホナト基は、ホスホノ基の内、水酸基を一つ有機ォキソ基に置換したもの の共役塩基陰イオン基であってもよぐこのような具体例としては、前述のモノアルキ ルホスホノ基(一 PO H (alkyl) )、モノアリールホスホノ基( PO H (aryl) )の共役塩 [0072] The phosphonato group may be a conjugated basic anion group obtained by substituting one of the phosphono groups with an organic oxo group. 1 PO H (alkyl)), a conjugated salt of a monoarylphosphono group (PO H (aryl))
3 3  3 3
基が挙げられる。  Groups.
[0073] 前記芳香族基は、芳香族基を含有するラジカル重合性化合物 1種以上と、必要に 応じて共重合成分として他のラジカル重合性ィ匕合物 1種以上とを通常のラジカル重 合法によって製造することできる。  [0073] The aromatic group includes one or more radically polymerizable compounds containing an aromatic group and, if necessary, one or more other radically polymerizable compounds as copolymerization components. It can be manufactured legally.
前記ラジカル重合法としては、例えば、一般的に懸濁重合法あるいは溶液重合法 などが挙げられる。 Examples of the radical polymerization method include a suspension polymerization method or a solution polymerization method. Etc.
前匕記芳香族基を含有するラジカル重合性化合物としては、例えば、構造式 (A)で 表される化合物、構造式 (B)で表される化合物が好ま 、。  As the radically polymerizable compound containing the aromatic group described above, for example, a compound represented by the structural formula (A) and a compound represented by the structural formula (B) are preferable.
造式(A)Formula (A)
Figure imgf000041_0001
ただし、前記構造式 (A)中、 R、 R、及び Rは水素原子又は 1価の有機基を表す
Figure imgf000041_0001
In the structural formula (A), R, R, and R represent a hydrogen atom or a monovalent organic group.
1 2 3  one two Three
。 Lは有機基を表し、なくてもよい。 Arはへテロ環を含んでもよい芳香族基を表す。  . L represents an organic group and may be omitted. Ar represents an aromatic group that may contain a heterocycle.
[化 5] 構造式 (B) [Chemical 5] Structural formula (B)
Figure imgf000041_0002
Figure imgf000041_0002
ただし、前記構造式 (B)中、 R、 R、及び R 並びに、 Arは前記構造式 (A)と同じ  However, in the structural formula (B), R, R, and R and Ar are the same as the structural formula (A).
1 2 3、  one two Three,
意を表す。  I express my will.
[0075] 前記 Lの有機基としては、例えば、非金属原子力 なる多価の有機基であり、 1から 60個までの炭素原子、 0個から 10個までの窒素原子、 0個から 50個までの酸素原子 、 1個から 100個までの水素原子、及び 0個から 20個までの硫黄原子力 成り立つも のが挙げられる。  [0075] The organic group of L is, for example, a polyvalent organic group of non-metallic nuclear power, including 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, and 0 to 50 atoms. Of oxygen atoms, 1 to 100 hydrogen atoms, and 0 to 20 sulfur nuclear powers.
より具体的には、前記 Lの有機基としては、下記の構造単位が組み合わさって構成 されるもの、多価ナフタレン、多価アントラセンなどを挙げることができる。  More specifically, examples of the organic group of L include those formed by combining the following structural units, polyvalent naphthalene, polyvalent anthracene and the like.
[0076] [化 6] [0076] [Chemical 6]
Figure imgf000042_0001
Figure imgf000042_0001
O O O II II II  O O O II II II
-N-C-N- — o-c-o- — c- H H  -N-C-N- — o-c-o- — c- H H
Figure imgf000042_0002
Figure imgf000042_0002
[0077] 前記 Lの連結基は置換基を有してもよぐ前記置換基としては、前述のハロゲン原 子、ヒドロキシル基、カルボキシル基、スルホナト基、ニトロ基、シァノ基、アミド基、アミ ノ基、アルキル基、ァルケ-ル基、アルキ-ル基、ァリール基、置換ォキシ基、置換ス ルホ-ル基、置換カルボ-ル基、置換スルフィエル基、スルホ基、ホスホノ基、ホスホ ナト基、シリル基、ヘテロ環基が挙げられる。  [0077] The linking group of L may have a substituent. Examples of the substituent include the halogen atom, hydroxyl group, carboxyl group, sulfonate group, nitro group, cyan group, amide group, amino group described above. Group, alkyl group, alkyl group, alkyl group, aryl group, substituted oxy group, substituted sulfol group, substituted carbole group, substituted sulfiel group, sulfo group, phosphono group, phosphonate group, silyl group Group and heterocyclic group.
[0078] 前記構造式 (A)で表される化合物、及び構造式 (B)で表される化合物にぉ 、ては 、構造式 (A)の方が感度の点で好ましい。また、前記構造式 (A)のうち、連結基を有 しているものが安定性の点で好ましぐ前記 Lの有機基としては、炭素数 1〜4のアル キレン基が非画像部の除去性 (現像性)の点で好まし 、。  [0078] Among the compounds represented by the structural formula (A) and the compounds represented by the structural formula (B), the structural formula (A) is more preferable in terms of sensitivity. Among the structural formulas (A), those having a linking group that are preferred from the viewpoint of stability are L 1-4 organic groups, which are C 1-4 alkylene groups in the non-image area. Preferred in terms of removability (developability).
前記構造式 (A)で表される化合物は、下記構造式 (I)の構造単位を含む化合物と なる。また、前記構造式 (B)で表される化合物は、下記構造式 (Π)の構造単位を含 む化合物となる。この内、構造式 (I)の構造単位の方が、保存安定性の点で好ましい  The compound represented by the structural formula (A) is a compound containing a structural unit of the following structural formula (I). The compound represented by the structural formula (B) is a compound containing a structural unit represented by the following structural formula (式). Of these, the structural unit of the structural formula (I) is preferable from the viewpoint of storage stability.
[0079] [化 7] 構造式( I )
Figure imgf000043_0001
[0079] [Chemical 7] Structural formula (I)
Figure imgf000043_0001
構造式(Π )Structural formula (Π)
Figure imgf000043_0002
Figure imgf000043_0002
ただし、前記構造式 (I)及び (Π)中、 R、 R、及び R、並びに、 Arは前記構造式(  However, in the structural formulas (I) and (Π), R, R, R, and Ar are the structural formulas (
1 2 3  one two Three
A)及び (B)と同じ意を表す。  Same meaning as A) and (B).
前記構造式 (I)及び (Π)において、 R及び Rは水素原子、 Rはメチル基である事  In the structural formulas (I) and (Π), R and R are hydrogen atoms, and R is a methyl group.
1 2 3  one two Three
力 非画像部の除去性 (現像性)の点で好まし!/、。  Power Preferable in terms of non-image area removability (developability)!
また、前記構造式 (I)の Lは、炭素数 1〜4のアルキレン基が非画像部の除去性 (現 像性)の点で好ましい。  In addition, as the L in the structural formula (I), an alkylene group having 1 to 4 carbon atoms is preferable in terms of removability (imageability) of a non-image area.
[0080] 前記構造式 (A)で表される化合物又は構造式 (B)で表される化合物としては、特 に制限はないが、例えば、以下の例示化合物(1)〜(30)が挙げられる。  [0080] The compound represented by the structural formula (A) or the compound represented by the structural formula (B) is not particularly limited, and examples thereof include the following exemplified compounds (1) to (30). It is done.
[0081] [ィ匕 9] [0081] [9]
Figure imgf000044_0001
化 10]
Figure imgf000045_0001
Figure imgf000044_0001
10]
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0002
L 丫 CH5 L 丫 CH 5
Figure imgf000045_0003
Figure imgf000045_0003
(29) (29)
Figure imgf000045_0004
Figure imgf000045_0004
[0083] 前記例示化合物(1)〜(30)の中でも、 (5)、 (6)、 (11)、(14)、及び(28)が好ま しぐこれらの中でも、(5)及び (6)が保存安定性及び現像性の点でより好ましい。  [0083] Among the exemplified compounds (1) to (30), among these, (5), (6), (11), (14), and (28) are preferred, and (5) and (6 ) Is more preferable in terms of storage stability and developability.
[0084] 前記へテロ環を含んでもよい芳香族基の前記バインダーにおける含有量は、特に 制限はないが、高分子化合物の全構造単位を 100mol%とした場合に、前記構造式 (I)で表される構造単位を 20mol%以上含有することが好ましぐ 30〜45mol%含 有することがより好ましい。前記含有量が 20mol未満であると、保存安定性が低くな ることがあり、 45mol%を超えると現像性が低下することがある。 [0085] エチレン性不飽和結合 [0084] The content of the aromatic group that may contain a hetero ring in the binder is not particularly limited, but when the total structural unit of the polymer compound is 100 mol%, the structural formula (I) It is preferred to contain 20 mol% or more of the structural unit represented. It is more preferred to contain 30 to 45 mol%. When the content is less than 20 mol, storage stability may be lowered, and when it exceeds 45 mol%, developability may be lowered. [0085] Ethylenically unsaturated bond
前記エチレン性不飽和結合としては、特に制限はなぐ 目的に応じて適宜選択する ことができるが、例えば、下記構造式 (III)〜(v)で表されるものが好ましい。  The ethylenically unsaturated bond is not particularly limited and may be appropriately selected according to the purpose. For example, those represented by the following structural formulas (III) to (v) are preferable.
[0086] [化 11]  [0086] [Chemical 11]
o  o
— X- C R3 — X- CR 3
>=< 構造式(m )  > = <Structural formula (m)
Ri f¾ f¾ R8 Ri f¾ f¾ R 8
- Y- c- c = c 構造式(IV )  -Y- c- c = c Structural formula (IV)
R5 ¾ ^7  R5 ¾ ^ 7
Ri i Ri i
~ Z~ = ? 構造式(V ) ~ Z ~ =? Structural formula (V)
R9 R10 R 9 R 10
ただし、前記構造式 (m)〜(v)中、 R〜R は、それぞれ独立して l価の有機基を  However, in the structural formulas (m) to (v), R to R are each independently an l-valent organic group.
1 11  1 11
表す。 X及び Yは、それぞれ独立して、酸素原子、硫黄原子、又は— N— Rを表す。  To express. X and Y each independently represent an oxygen atom, a sulfur atom, or —N—R.
4 Four
Zは、酸素原子、硫黄原子、 -N-R、又はフエ二レン基を表す。 Rは、水素原子、 Z represents an oxygen atom, a sulfur atom, -N-R, or a phenylene group. R is a hydrogen atom,
4 4  4 4
又は 1価の有機基を表す。  Or represents a monovalent organic group.
[0087] 前記構造式 (III)において、 Rとしては、それぞれ独立して、例えば、水素原子、置 換基を有してもよいアルキル基などが好ましぐ水素原子、メチル基がラジカル反応 性が高いことからより好ましい。 [0087] In the structural formula (III), each R is independently, for example, a hydrogen atom, a hydrogen atom that may have a substituent or an alkyl group, and a methyl group that are radically reactive. Is more preferable because it is high.
前記 R及び Rとしては、それぞれ独立して、例えば、水素原子、ハロゲン原子、ァ R and R are each independently, for example, a hydrogen atom, a halogen atom,
2 3 twenty three
ミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、ニトロ基、シァノ基、置 換基を有してもよいアルキル基、置換基を有してもよいァリール基、置換基を有しても よいアルコキシ基、置換基を有してもよいァリールォキシ基、置換基を有してもよいァ ルキルアミノ基、置換基を有してもよいァリールアミノ基、置換基を有してもよいアルキ ルスルホニル基、置換基を有してもよいァリールスルホ-ル基などが挙げられ、水素 原子、カルボキシル基、アルコキシカルボ-ル基、置換基を有してもよいアルキル基 、置換基を有してもよいァリール基力 ラジカル反応性が高いことからより好ましい。 前記 Rとしては、例えば、置換基を有してもよいアルキル基などが好ましぐ水素原 It has a mino group, a carboxyl group, an alkoxycarbo group, a sulfo group, a nitro group, a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Alkyl group which may have a substituent, an alkyloxy group which may have a substituent, an alkylamino group which may have a substituent, an arylamino group which may have a substituent, an alkylsulfonyl which may have a substituent Group, an arylaryl group which may have a substituent, and the like. Examples include a hydrogen atom, a carboxyl group, an alkoxycarbonyl group, an alkyl group which may have a substituent, and a substituent. Aryl basic force More preferable because of high radical reactivity. Examples of R include a hydrogen atom that is preferably an alkyl group which may have a substituent.
4 Four
子、メチル基、ェチル基、イソプロピル基力ラジカル反応性が高いことからより好まし い。 It is more preferable because of its high radical reactivity. Yes.
ここで、導入しうる前記置換基としては、例えば、アルキル基、ァルケ-ル基、アル キニル基、ァリール基、アルコキシ基、ァリーロキシ基、ハロゲン原子、アミノ基、アル キルアミノ基、ァリールアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基 、ニトロ基、シァノ基、アミド基、アルキルスルホ-ル基、ァリールスルホ-ル基などが 挙げられる。  Here, examples of the substituent that can be introduced include an alkyl group, an alkyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a halogen atom, an amino group, an alkylamino group, an arylamino group, and a carboxyl group. And alkoxycarbonyl group, sulfo group, nitro group, cyano group, amide group, alkylsulfol group, arylol group and the like.
[0088] 前記構造式 (IV)において、 R〜Rとしては、例えば、水素原子、ハロゲン原子、了  [0088] In the structural formula (IV), R to R may be, for example, a hydrogen atom, a halogen atom, or R
4 8  4 8
ミノ基、ジアルキルアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、二 トロ基、シァノ基、置換基を有してもよいアルキル基、置換基を有してもよいァリール 基、置換基を有してもよいアルコキシ基、置換基を有してもよいァリールォキシ基、置 換基を有してもよいアルキルアミノ基、置換基を有してもよいァリールアミノ基、置換 基を有してもょ 、アルキルスルホ-ル基、置換基を有してもょ 、ァリールスルホ-ル 基などが好ましぐ水素原子、カルボキシル基、アルコキシカルボ-ル基、置換基を 有してもょ 、アルキル基、置換基を有してもょ 、ァリール基がより好まし!/、。  Mino group, dialkylamino group, carboxyl group, alkoxycarbo group, sulfo group, nitrogen group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituent Having an alkoxy group that may have a substituent, an allyloxy group that may have a substituent, an alkylamino group that may have a substituent, an arylamino group that may have a substituent, and a substituent. It may have an alkyl sulfonyl group or a substituent, but an aryl group may preferably have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent, an alkyl group. Even if it has a substituent, the aryl group is more preferred! /.
導入しうる前記置換基としては、前記構造式 (III)において挙げたものが例示される [0089] 前記構造式 (V)にお 、て、 Rとしては、例えば、水素原子、置換基を有してもょ 、  Examples of the substituent that can be introduced include those listed in the structural formula (III). [0089] In the structural formula (V), R includes, for example, a hydrogen atom and a substituent. But
9  9
アルキル基などが好ましぐ水素原子、メチル基力 sラジカル反応性が高いことからより 好ましい。  Alkyl groups and the like are more preferred because of high hydrogen atom and methyl group s radical reactivity.
前記 R 、 R としては、それぞれ独立して、例えば、水素原子、ハロゲン原子、アミ R 1 and R 2 are each independently, for example, hydrogen atom, halogen atom, amino
10 11 10 11
ノ基、ジアルキルアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、 -ト 口基、シァノ基、置換基を有してもよいアルキル基、置換基を有してもよいァリール基 、置換基を有してもよいアルコキシ基、置換基を有してもよいァリールォキシ基、置換 基を有してもよいアルキルアミノ基、置換基を有してもよいァリールアミノ基、置換基を 有してもょ 、アルキルスルホ-ル基、置換基を有してもょ 、ァリールスルホ-ル基な どが好ましぐ水素原子、カルボキシル基、アルコキシカルボ-ル基、置換基を有して もよ!/、アルキル基、置換基を有してもよ!、ァリール基力ラジカル反応性が高 、ことから より好まし 、。 ここで、導入しうる前記置換基としては、構造式 (III)において挙げたものが例示され る。 Group, dialkylamino group, carboxyl group, alkoxycarbonyl group, sulfo group, -toco group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituted An alkoxy group which may have a group, an aryloxy group which may have a substituent, an alkylamino group which may have a substituent, an arylamino group which may have a substituent, and a substituent It may have an alkyl sulfonyl group or a substituent, but an aryl sulfonyl group or the like may have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent which is preferable! /, May have an alkyl group or a substituent !, more preferable because of high aryl radical reactivity. Here, examples of the substituent that can be introduced include those listed in the structural formula (III).
前記 Zとしては、酸素原子、硫黄原子、 -NR ―、又は置換基を有してもよいフエ  Z represents an oxygen atom, a sulfur atom, -NR-, or a phenyl group optionally having a substituent.
13  13
二レン基を表す。 R は、置換基を有してもよいアルキル基などを表し、水素原子、メ  Represents a dilene group. R represents an alkyl group which may have a substituent, a hydrogen atom,
13  13
チル基、ェチル基、イソプロピル基力 sラジカル反応性が高いことから好ましい。  A til group, an ethyl group, and an isopropyl group are preferable because they have high radical reactivity.
[0090] 前記構造式 (III)〜 (V)で表される側鎖エチレン性不飽和結合の中でも、構造式 (II I)のものが、重合反応性が高く感度が高くなり、より好ましい。  [0090] Among the side chain ethylenically unsaturated bonds represented by the structural formulas (III) to (V), those having the structural formula (II I) are more preferable because of high polymerization reactivity and high sensitivity.
前記エチレン性不飽和結合の前記高分子化合物における含有量は、特に制限は な ヽ力 0. 5〜3. Omeq/g力好ましく、 1. 0〜3. Omeq/g力 ^より好ましく、 1. 5〜2 . 8meqZgが特に好ましい。前記含有量が 0. 5meqZg未満であると、硬化反応量 が少ないため低感度となることがあり、 3. OmeqZgより多いと、保存安定性が劣化す ることがある。  The content of the ethylenically unsaturated bond in the polymer compound is not particularly limited. Repulsive force 0.5 to 3. Omeq / g force is preferable, 1.0 to 3. Omeq / g force ^ is more preferable, 1. 5-2.8 meqZg is particularly preferred. If the content is less than 0.5 meqZg, the sensitivity may be low because the amount of curing reaction is small. 3. If the content is more than OmeqZg, the storage stability may deteriorate.
ここで、前記含有量 (meqZg)は、例えば、ヨウ素価滴定により測定することができ る。  Here, the content (meqZg) can be measured, for example, by iodine value titration.
[0091] 前記構造式 (III)で表されエチレン性不飽和結合を側鎖に導入する方法としては、 特に制限はないが、例えば、側鎖にカルボキシル基を含有する高分子化合物とェチ レン性不飽和結合及びエポキシ基を有する化合物を付加反応させることで得ること ができる。  [0091] The method of introducing an ethylenically unsaturated bond represented by the structural formula (III) into the side chain is not particularly limited, but examples thereof include a polymer compound containing a carboxyl group in the side chain and ethylene. It can be obtained by addition reaction of a compound having an unsaturated bond and an epoxy group.
前記側鎖にカルボキシル基を含有する高分子化合物は、例えば、カルボキシル基 を含有するラジカル重合性化合物 1種以上と、必要に応じて共重合成分として他のラ ジカル重合性ィ匕合物 1種以上とを通常のラジカル重合法によって製造することでき、 前記ラジカル重合法としては、例えば、懸濁重合法、溶液重合法などが挙げられる。  The polymer compound containing a carboxyl group in the side chain is, for example, one or more radically polymerizable compounds containing a carboxyl group and, if necessary, one other radically polymerizable compound as a copolymerization component. The above can be produced by a normal radical polymerization method, and examples of the radical polymerization method include suspension polymerization method and solution polymerization method.
[0092] 前記エチレン性不飽和結合及びエポキシ基を有する化合物としては、これらを有す れば特に制限はないが、例えば、下記構造式 (VI)で表される化合物及び (VII)で表 される化合物が好ましい。特に、構造式 (VI)で表される化合物を使用するほうが、高 感度化の点で好ましい。  [0092] The compound having an ethylenically unsaturated bond and an epoxy group is not particularly limited as long as it has these, and examples thereof include a compound represented by the following structural formula (VI) and (VII). Are preferred. In particular, the use of the compound represented by the structural formula (VI) is preferable from the viewpoint of increasing sensitivity.
[化 12] CH2 構造式(VI)[Chemical 12] CH 2 structural formula (VI)
Figure imgf000049_0001
Figure imgf000049_0001
ただし、前記構造式 (VI)中、 は水素原子又はメチル基を表す。 は有機基を表 す。  However, in said structural formula (VI), represents a hydrogen atom or a methyl group. Represents an organic group.
[化 13]
Figure imgf000049_0002
[Chemical 13]
Figure imgf000049_0002
ただし、前記構造式 (VII)中、 Rは水素原子又はメチル基を表す。 Lは有機基を表  However, in said structural formula (VII), R represents a hydrogen atom or a methyl group. L represents an organic group
2 2  twenty two
す。 Wは 4〜7員環の脂肪族炭化水素基を表す。 The W represents a 4- to 7-membered aliphatic hydrocarbon group.
前記構造式 (VI)で表される化合物及び構造式 (VII)で表される化合物の中でも、 構造式 (VI)で表される化合物が好ましぐ前記構造式 (VI)においても、 Lが炭素数 1〜4のアルキレン基のものがより好まし 、。  Among the compounds represented by the structural formula (VI) and the structural formula (VII), in the structural formula (VI) in which the compound represented by the structural formula (VI) is preferred, L is More preferred is an alkylene group having 1 to 4 carbon atoms.
前記構造式 (VI)で表される化合物又は構造式 (VII)で表される化合物としては、特 に制限はないが、例えば、以下の例示化合物(31)〜 (40)が挙げられる。  The compound represented by the structural formula (VI) or the compound represented by the structural formula (VII) is not particularly limited, and examples thereof include the following exemplified compounds (31) to (40).
[化 14] [Chemical 14]
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0003
Figure imgf000050_0003
Figure imgf000050_0004
Figure imgf000050_0005
Figure imgf000050_0004
Figure imgf000050_0005
[0094] 前記カルボキシル基を含有するラジカル重合性ィ匕合物しては、例えば、アクリル酸 、メタクリル酸、ィタコン酸、クロトン酸、インク口トン酸、マレイン酸、 p—カルボキシルス チレンなどがあり、特に好ましいものは、アクリル酸、メタクリル酸などが挙げられる。  [0094] Examples of the radical polymerizable compound containing a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, ink-mouthed tonic acid, maleic acid, and p-carboxyl styrene. Particularly preferred are acrylic acid and methacrylic acid.
[0095] 前記側鎖への導入反応としては、例えば、トリェチルァミン、ベンジルメチルァミン 等の 3級ァミン、ドデシルトリメチルアンモ -ゥムクロライド、テトラメチルアンモ-ゥムク 口ライド、テトラエチルアンモ -ゥムクロライド等の 4級アンモ-ゥム塩、ピリジン、トリフ ェニルフォスフィンなどを触媒として有機溶剤中、反応温度 50〜 150°Cで数時間〜 数十時間反応させることにより行うことができる。  [0095] Examples of the introduction reaction to the side chain include tertiary amines such as triethylamine and benzylmethylamine, quaternary ammonia such as dodecyltrimethylammonium chloride, tetramethylammonium chloride, and tetraethylammonium chloride. The reaction can be carried out by reacting in an organic solvent at a reaction temperature of 50 to 150 ° C. for several hours to several tens of hours using a -um salt, pyridine, triphenylphosphine or the like as a catalyst.
[0096] 前記側鎖にエチレン性不飽和結合を有する構造単位としては、特に制限はないが[0096] The structural unit having an ethylenically unsaturated bond in the side chain is not particularly limited.
、例えば、下記構造式 (m)で表される構造、構造式 (iv)で表される構造、及びこれら の混合により表されるものが好ましい。 For example, a structure represented by the following structural formula (m), a structure represented by the structural formula (iv), and a mixture thereof are preferable.
[化 15] 構造式(iii )[Chemical 15] Structural formula (iii)
Figure imgf000051_0001
Figure imgf000051_0001
構 m造^式( iNv ))Structure m formula (iNv))
Figure imgf000051_0002
Figure imgf000051_0002
ただし、前記構造式 (iii)及び (iv)中、 Ra〜Rcは水素原子又は 1価の有機基を表す 。 1^は水素原子又はメチル基を表す。 は連結基を有してもよい有機基を表す。  However, in the structural formulas (iii) and (iv), Ra to Rc represent a hydrogen atom or a monovalent organic group. 1 ^ represents a hydrogen atom or a methyl group. Represents an organic group which may have a linking group.
[0097] 前記構造式 (iii)で表される構造乃至構造式 (iv)で表される構造の高分子化合物に おける含有量は、 20mol%以上が好ましぐ 20〜50mol%がより好ましぐ 25-45 mol%が特に好ましい。前記含有量が 20mol%未満では、硬化反応量が少ないた め低感度となることがあり、 50mol%より多いと、保存安定性が劣化することがある。 [0097] The content in the polymer compound having the structure represented by the structural formula (iii) to the structure represented by the structural formula (iv) is preferably 20 mol% or more, more preferably 20 to 50 mol%. 25-45 mol% is particularly preferred. If the content is less than 20 mol%, the curing reaction amount is small, so that the sensitivity may be low. If the content is more than 50 mol%, the storage stability may be deteriorated.
[0098] —力ノレボキシノレ基一 [0098] —Strength of Noreboxinole
本発明の高分子化合物においては、非画像部除去性などの諸性能を向上させる ために、カルボキシル基を有していてもよい。  The polymer compound of the present invention may have a carboxyl group in order to improve various performances such as non-image area removability.
前記カルボキシル基は、酸基を有するラジカル重合性化合物を共重合させることに より、前記高分子化合物に付与することができる。  The carboxyl group can be imparted to the polymer compound by copolymerizing a radical polymerizable compound having an acid group.
このようなラジカル重合性が有する酸基としては、例えば、カルボン酸、スルホン酸 、リン酸基などが挙げられ、カルボン酸が特に好ましい。  Examples of the acid group having such radical polymerizability include carboxylic acid, sulfonic acid, and phosphoric acid group, and carboxylic acid is particularly preferable.
前記カルボキシル基を有するラジカル重合性ィ匕合物としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、アクリル酸、メタクリル酸、ィタコン酸、ク 口トン酸、インク口トン酸、マレイン酸、 ρ—カルボキシルスチレンなどが挙げられ、これ らの中でも、アクリル酸、メタクリル酸、 p—カルボキシルスチレンが好ましい。これらは 、 1種単独で用いてもよいし、 2種以上を併用してもよい。  The radically polymerizable compound having a carboxyl group can be appropriately selected depending on the purpose, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, cucumber tonic acid, and ink fountain. Examples include acid, maleic acid, and ρ-carboxyl styrene. Among these, acrylic acid, methacrylic acid, and p-carboxyl styrene are preferable. These may be used alone or in combination of two or more.
[0099] 前記カルボキシル基のバインダーにおける含有量は、 1. 0〜4. OmeqZgであり、 1. 5〜3. Omeq/gが好ましい。前記含有量が 1. Omeq/g未満では現像性が不十 分となることがあり、 4. OmeqZgを越えるとアルカリ水現像による画像強度ダメージを 受けやすくなることがある。 [0100] 本発明の高分子化合物は、画像強度などの諸性能を向上する目的で、前述のラジ カル重合性ィ匕合物の他に、更に他のラジカル重合性化合物を共重合させることが好 ましい。 [0099] The content of the carboxyl group in the binder is 1.0 to 4. OmeqZg, preferably 1.5 to 3. Omeq / g. When the content is less than 1. Omeq / g, the developability may be insufficient, and when it exceeds 4. OmeqZg, image strength damage may be easily caused by alkaline water development. [0100] In order to improve various performances such as image strength, the polymer compound of the present invention may be copolymerized with another radical polymerizable compound in addition to the above-mentioned radical polymerizable compound. It is preferable.
前記他のラジカル重合性ィ匕合物としては、例えば、アクリル酸エステル類、メタタリ ル酸エステル類、スチレン類など力 選ばれるラジカル重合性ィ匕合物などが挙げられ る。  Examples of the other radical polymerizable compound include radically polymerizable compounds such as acrylic acid esters, methacrylate esters, and styrenes.
[0101] 具体的には、アルキルアタリレート等のアクリル酸エステル類、ァリールアタリレート、 アルキルメタタリレート等のメタクリル酸エステル類、ァリールメタタリレート、スチレン、 アルキルスチレン等のスチレン類、アルコキシスチレン、ハロゲンスチレンなどが挙げ られる。  [0101] Specifically, acrylic esters such as alkyl acrylate, methacrylic esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy Examples include styrene and halogen styrene.
前記アクリル酸エステル類としては、アルキル基の炭素原子数は 1〜20のものが好 ましぐ例えば、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル、アクリル酸 ブチル、アクリル酸ァミル、アクリル酸ェチルへキシル、アクリル酸ォクチル、アクリル 酸 tーォクチル、クロルェチルアタリレート、 2, 2—ジメチルヒドロキシプロピルアタリ レート、 5—ヒドロキシペンチノレアタリレート、トリメチロールプロパンモノアタリレート、ぺ ンタエリスリトールモノアタリレート、グリシジルアタリレート、ベンジルアタリレート、メト キシベンジルアタリレート、フルフリルアタリレート、テトラヒドロフルフリルアタリレートな どが挙げられる。  As the acrylates, those having 1 to 20 carbon atoms in the alkyl group are preferable. For example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, and ethyl acrylate. Xylyl, octyl acrylate, t-octyl acrylate, chlorethyl acrylate, 2,2-dimethylhydroxypropyl acrylate, 5-hydroxypentinorea acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, glycidyl Examples include atarylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate.
前記ァリールアタリレートとしては、例えば、フエ-ルアタリレートなどが挙げられる。  Examples of the aryl acrylate include a file acrylate.
[0102] 前記メタクリル酸エステル類としては、アルキル基の炭素原子は 1〜20のものが好 ましぐ例えば、メチノレメタタリレート、ェチノレメタタリレート、プロピノレメタタリレート、イソ プロピルメタタリレート、ァミルメタタリレート、へキシルメタタリレート、シクロへキシノレメ タクリレート、ベンジルメタタリレート、クロルべンジルメタタリレート、ォクチルメタクリレ 一卜、 4ーヒドロキシブチノレメタタリレート、 5 ヒドロキシペンチノレメタタリレート、 2, 2 ジメチルー 3—ヒドロキシプロピルメタタリレート、トリメチロールプロパンモノメタタリ レート、ペンタエリスリトールモノメタタリレート、グリシジルメタタリレート、フルフリルメタ タリレート、テトラヒドロフルフリルメタタリレートなどが挙げられる。 [0102] As the methacrylic acid esters, those having 1 to 20 carbon atoms of the alkyl group are preferable. For example, methinoremethalate, ethinoremethacrylate, propinoremethacrylate, isopropylmethacrylate. Rate, amyl methacrylate, hexyl methacrylate, cyclohexenomethacrylate, benzyl methacrylate, chlorbendyl methacrylate, octyl methacrylate, ginseng, 4-hydroxybutynole methacrylate, 5 hydroxy Examples include pentinoremetatalylate, 2, 2 dimethyl-3-hydroxypropyl metatalylate, trimethylolpropane monometatalate, pentaerythritol monometatalate, glycidyl metatalylate, furfuryl metatalylate, tetrahydrofurfuryl metatalylate, etc. Be
前記ァリールメタタリレートとしては、例えば、フエニルメタタリレート、クレジノレメタタリ レート、ナフチルメタタリレートなどが挙げられる。 Examples of the aryl methacrylate include phenyl methacrylate and crezinore methacrylate. Rate, naphthylmetatalate and the like.
[0103] 前記スチレン類としては、例えば、メチルスチレン、ジメチルスチレン、トリメチルスチ レン、ェチルスチレン、ジェチルスチレン、イソプロピルスチレン、ブチルスチレン、へ キシルスチレン、シクロへキシルスチレン、デシルスチレン、ベンジルスチレン、クロル メチルスチレン、トリフルオルメチルスチレン、エトキシメチルスチレン、ァセトキシメチ ルスチレンなどが挙げられる。  [0103] Examples of the styrenes include methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, jetyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl styrene, chloromethyl. Examples include styrene, trifluoromethyl styrene, ethoxymethyl styrene, and acetomethyl styrene.
前記アルコキシスチレンとしては、例えば、メトキシスチレン、 4—メトキシ一 3—メチ ルスチレン、ジメトキシスチレンなどが挙げられる。  Examples of the alkoxystyrene include methoxystyrene, 4-methoxy-13-methylstyrene, dimethoxystyrene, and the like.
前記ハロゲンスチレンとしては、例えばクロノレスチレン、ジクロノレスチレン、トリクロノレ スチレン、テトラクロルスチレン、ペンタク口ルスチレン、ブロムスチレン、ジブロムスチ レン、ョードスチレン、フルオルスチレン、トリフルオルスチレン、 2 ブロム一 4 トリフ ルオルメチルスチレン、 4 フルオル 3—トリフルオルメチルスチレンなどが挙げら れる。  Examples of the halogen styrene include chloro styrene, dichloro styrene, trichloro styrene, tetrachloro styrene, pentachloro styrene, bromo styrene, dibromo styrene, odo styrene, fluor styrene, trifluoro styrene, 2-bromo trifluoromethyl styrene. 4 Fluoro 3-trifluoromethylstyrene and the like.
これらのラジカル重合性化合物は、 1種単独で使用してもよいし、 2種以上を併用し てもよい。  These radically polymerizable compounds may be used alone or in combination of two or more.
[0104] 本発明の高分子化合物を合成する際に用いられる溶媒としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、エチレンジクロリド、シクロへキサノン 、メチルェチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、 エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 2 ーメトキシェチルアセテート、 1ーメトキシ 2—プロパノール、 1ーメトキシ 2—プロ ピルアセテート、 N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、ジメチル スルホキシド、トルエン、酢酸ェチル、乳酸メチル、乳酸ェチルなどが挙げられる。こ れらは、 1種単独で用いてもよいし、 2種以上を混合して用いてもよい。  [0104] The solvent used in the synthesis of the polymer compound of the present invention is not particularly limited and can be appropriately selected according to the purpose. For example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone , Methanol, Ethanol, Propanol, Butanol, Ethylene Glycolanol Monomethine Reethenore, Ethylene Glycol Nole Mono Ethenore Ethenore, 2-Methoxy Ethyl Acetate, 1-Methoxy 2-propanol, 1-Methoxy 2-Propyl Acetate, N , N dimethylformamide, N, N dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, ethyl lactate and the like. These may be used alone or in combination of two or more.
[0105] 本発明の高分子化合物の分子量は、質量平均分子量で、 10, 000以上が好ましく 、 10, 000〜50, 000力より好まし!/、。前記質量平均分子量力 S 10, 000を下回ると硬 化膜強度が不足することがあり、 50, 000を超えると現像性が低下する傾向にある。 また、本発明の高分子化合物中には、未反応の単量体を含んでいてもよい。この 場合、前記単量体の前記高分子化合物における含有量は、 15質量%以下が好まし い。 [0105] The molecular weight of the polymer compound of the present invention is preferably 10,000 or more in terms of mass average molecular weight, more preferably 10,000 to 50,000 force! /. If the mass average molecular weight force S is less than 10,000, the cured film strength may be insufficient, and if it exceeds 50,000, the developability tends to be lowered. Further, the polymer compound of the present invention may contain an unreacted monomer. In this case, the content of the monomer in the polymer compound is preferably 15% by mass or less. Yes.
[0106] 本発明に係る高分子化合物は、 1種単独で用いてもよいし、 2種以上を混合して用 いてもよい。また、他の高分子化合物を混合して用いてもよい。この場合、前記他の 高分子化合物の前記本発明の高分子化合物における含有量は、 50質量%以下が 好ましぐ 30質量%以下がより好ましい。  [0106] The polymer compound according to the present invention may be used singly or in combination of two or more. Moreover, you may mix and use another high molecular compound. In this case, the content of the other polymer compound in the polymer compound of the present invention is preferably 50% by mass or less, more preferably 30% by mass or less.
[0107] 前記バインダーの前記感光性組成物中の固形分含有量は、 5〜80質量%が好ま しぐ 10〜70質量%がより好ましい。 [0107] The solid content of the binder in the photosensitive composition is preferably 5 to 80% by mass, more preferably 10 to 70% by mass.
[0108] <重合性化合物 > <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、エチレン性不飽和結合を 1つ以上有する化合物が好ましい。  The polymerizable compound is not particularly limited and may be appropriately selected depending on the purpose. For example, a compound having one or more ethylenically unsaturated bonds is preferable.
[0109] 前記エチレン性不飽和結合としては、例えば、(メタ)アタリロイル基、(メタ)アクリル アミド基、スチリル基、ビュルエステルやビュルエーテル等のビュル基、ァリルエーテ ルゃァリルエステル等のァリル基、などが挙げられる。 [0109] Examples of the ethylenically unsaturated bond include, for example, a (meth) ataryloyl group, a (meth) acrylamido group, a styryl group, a butyl group such as butyl ester and butyl ether, and a allylic group such as allyl ether allyl ester, and the like. Is mentioned.
[0110] 前記エチレン性不飽和結合を 1つ以上有する化合物としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 例えば、(メタ)アクリル基を有するモノマー カゝら選択される少なくとも 1種が好適に挙げられる。 [0110] The compound having one or more ethylenically unsaturated bonds is not particularly limited, and can be appropriately selected depending on the purpose. For example, a monomer having a (meth) acryl group is selected. At least one is preferably mentioned.
[0111] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ (メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル (メタ)アタリレート等の単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)アタリレート、ペンタ エリトリトールトリ(メタ)アタリレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジ ペンタエリトリトールペンタ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、 トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイルォ キシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリン トリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノール等の多官能 アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で (メタ) アタリレートイ匕したもの、特公昭 48— 41708号、特公昭 50— 6034号、特開昭 51— 37193号等の各公報に記載されているウレタンアタリレート類;特開昭 48— 64183 号、特公昭 49 43191号、特公昭 52— 30490号等の各公報に記載されているポリ エステルアタリレート類;エポキシ榭脂と (メタ)アクリル酸の反応生成物であるェポキ シアタリレート類等の多官能アタリレートやメタタリレートなどが挙げられる。これらの中 でも、トリメチロールプロパントリ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)ァク リレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジペンタエリトリトールペンタ (メタ)アタリレートが特に好ましい。 [0111] The monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane ditalylate, neopentylglycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol hexane (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (atalylooxypropyl) ether, tri (atalylooxychetyl) isocyanurate, tri (atalyloyl) Oxchetyl) cyanurate, glycerin tri (meth) acrylate, trimethylolpropane, glycerin, bisphenol etc. After addition reaction of ethylene oxide and propylene oxide with alcohol, (meth) talate toy, JP-B 48-41708, JP-B 50-6034, JP-A 51-37193, etc. Polyurethane acrylates described in JP-A-48-64183, JP-B-49 43191, JP-B-52-30490, etc .; And polyfunctional acrylates such as epoxysialates, which are reaction products of acrylic acid, and metatalates. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
[0112] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、 5〜50質 量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満で あると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量%を 超えると、感光層の粘着性が強くなりすぎることがある。  [0112] The content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. is there.
[0113] <光重合開始剤 >  [0113] <Photoinitiator>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
[0114] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、へキサァリールビイミ ダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォニ ゥム塩、メタ口セン類などが挙げられる。これらの中でも、感光層の感度、保存性、及 び感光層とプリント配線板形成用基板との密着性等の観点から、ホスフィンォキシド 化合物、ォキシム誘導体、ケトンィヒ合物、へキサァリールビイミダゾール系化合物が 好ましい。 [0114] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like. Among these, phosphine oxide compounds, oxime derivatives, ketonic compounds, hexaryl biimidazoles from the viewpoints of sensitivity and storage stability of the photosensitive layer and adhesion between the photosensitive layer and the printed wiring board forming substrate. Compounds preferable.
具体的には、例えば、特開 2005— 258431号公報の〔0288〕〜〔0309〕に記載さ れている化合物などが挙げられる。前記光重合開始剤は、 1種単独で用いてもよいし 、 2種以上を併用してもよい。  Specific examples include the compounds described in [0288] to [0309] of JP-A-2005-258431. The photopolymerization initiators may be used alone or in combination of two or more.
[0115] 前記光重合開始剤の前記感光性組成物における含有量は、 0. 1〜30質量%が 好ましく、 0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。  [0115] The content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
[0116] <その他の成分 >  [0116] <Other ingredients>
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、着色剤 (着 色顔料あるいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤 及びその他の助剤類 (例えば、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤 、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用しても よい。  Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others. (For example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.) Also good.
これらの成分を適宜含有させることにより、目的とする感光性組成物の安定性、写 真性、膜物性などの性質を調整することができる。  By appropriately containing these components, it is possible to adjust properties such as stability, photosensitivity, and film physical properties of the intended photosensitive composition.
[0117] 増感剤ー [0117] Sensitizer
感光層への露光における露光感度や感光波長を調整する目的で、前記光重合開 始剤に加えて、増感剤を添加することが可能である。  In order to adjust the exposure sensitivity and the photosensitive wavelength in exposure to the photosensitive layer, it is possible to add a sensitizer in addition to the photopolymerization initiator.
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ及び可視 光レーザなどにより適宜選択することができる。  The sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible laser, or the like as a light irradiation means described later.
前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)するこ とにより、ラジカルや酸等の有用基を発生することが可能である。  The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
[0118] 前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開 2001— 3057 34号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増感色素、 (2) 電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容 型開始剤 (三元開始系)]などの組合せが挙げられる。 [0118] Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
[0119] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが できるが、例えば、公知の多核芳香族類 (例えば、ピレン、ペリレン、トリフエ二レン)、 キサンテン類(例えば、フルォレセイン、ェォシン、エリス口シン、ローダミン B、ローズ ベンガル)、シァニン類(例えば、インドカルボシァニン、チアカルボシァニン、ォキサ カルボシァニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チア ジン類(例えば、チォニン、メチレンブルー、トルイジンブルー)、アタリジン類(例えば 、アタリジンオレンジ、クロロフラビン、ァクリフラビン、 9 フエ二ルァクリジン、 1, 7— ビス(9, 9,一アタリジニル)ヘプタン)、アントラキノン類 (例えば、アントラキノン)、スク ァリウム類 (例えば、スクァリウム)、アタリドン類 (例えば、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N—ブチルークロロアタリドン(例えば、 2 —クロ口— 10—ブチルアタリドン等)など)、クマリン類(例えば、 3- (2—ベンゾフロイ ル) 7 ジェチルァミノクマリン、 3— (2 ベンゾフロイル) 7— (1—ピロリジ -ル) クマリン、 3 ベンゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) —7—ジェチルァミノクマリン、 3— (4—ジメチルァミノべンゾィル) 7—ジェチルアミ ノクマリン、 3, 3,一カルボニルビス(5, 7—ジ一 n—プロポキシクマリン)、 3, 3,一力 ルポ-ルビス(7—ジェチルァミノクマリン)、 3—べンゾィルー 7—メトキシクマリン、 3 - (2—フロイル) 7—ジェチルァミノクマリン、 3— (4—ジェチルァミノシンナモイル )—7—ジェチルァミノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3 ベンゾィル—5, 7 ジプロポキシクマリン、特開平 5— 19475号、特開平 7— 27 1028号、特開 2002— 363206号、特開 2002— 363207号、特開 2002— 36320 8号、特開 2002— 363209号等の各公報に記載のクマリンィ匕合物など)、及びチォ キサントン化合物(チォキサントン、イソプロピルチォキサントン、 2, 4 ジェチルチオ キサントン、 1—クロ口— 4 プロピルォキシチォキサントン、 QuantacureQTX等)な どがあげられ、が挙げられ、これらの中でも、芳香族環ゃ複素環が縮環した化合物( 縮環系化合物)、並びに、少なくとも 2つの芳香族炭化水素環及び芳香族複素環の V、ずれかで置換されたァミン系化合物が好ま 、。 [0119] The sensitizer can be appropriately selected from known sensitizers without particular limitations. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), Xanthenes (for example, fluorescein, eosin, erythrosine synth, rhodamine B, rose bengal), cyanines (for example, indocarboyanine, thiacarboyanine, oxacarboyanine), merocyanines (for example, merocyanine, carbomerocyanine), Thiazines (eg, thionine, methylene blue, toluidine blue), atalidines (eg, ataridin orange, chloroflavin, acriflavine, 9 phenyllacridin, 1,7-bis (9,9,1 ataridinyl) heptane), anthraquinone (E.g., anthraquinone), squalium (e.g., squalium), attaridone (e.g., attaridone, chloroatalidone, N-methyl attaridone, N-butyl attaridone, N-butyl-chloro attaridone (e.g. 2 — The ), Coumarins (eg 3- (2—benzofuryl) 7 jetylaminocoumarin, 3— (2 benzofuroyl) 7— (1—pyrrolidyl) coumarin, 3 Benzyl 7 Jetylaminocoumarin, 3- (2-methoxybenzoyl) —7-Jetylaminocoumarin, 3 -— (4-Dimethylaminobenzoyl) 7-Jetylaminocoumarin, 3, 3, monocarbonylbis ( 5, 7-di-n-propoxycoumarin), 3, 3, one-strength reporter bis (7-jetylaminocoumarin), 3-benzoroux 7-methoxycoumarin, 3- (2-furoyl) 7-je Tyraminocoumarin, 3- (4-Detylaminocinnamoyl) -7-Detylaminocoumarin, 7-Methoxy-1- (3-pyridylcarbo) coumarin, 3 Benzyl-5,7 dipropoxy Coumarin, JP-A-5- No. 19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, JP-A-2002-363820, JP-A-2002-363209, etc. Etc.), and thixanthone compounds (thixanthone, isopropyl thixanthone, 2,4 jetylthioxanthone, 1-clooxy-4 propyloxythixanthone, QuantacureQTX, etc.) and the like. Preferred are compounds in which a heterocyclic ring is condensed with a heterocyclic ring (condensed ring-based compound), and an amine compound substituted with at least two aromatic hydrocarbon rings and V of the aromatic heterocyclic ring.
前記縮環系化合物の中でも、ヘテロ縮環系ケトンィ匕合物(アタリドン系化合物、チォ キサントン系化合物、クマリン系化合物等)、及びアタリジン系化合物がより好ましい。 前記へテロ縮環系ケトン化合物の中でも、アタリドンィ匕合物及びチォキサントンィ匕合 物が特に好ましい。 [0121] 前記少なくとも 2つの芳香族炭化水素環及び芳香族複素環のいずれかで置換され たァミン系化合物は、 330〜450nmの波長域の光に対して吸収極大を有する増感 剤であることが好ましぐ例えば、ジ置換ァミノべンゾフエノン系化合物、ベンゼン環上 のァミノ基に対し、パラ位の炭素原子に複素環基を置換基として有するジ置換アミノ ベンゼン系化合物、ベンゼン環上のアミノ基に対し、パラ位の炭素原子にスルホ- ルイミノ基を含む置換基を有するジ置換アミノーベンゼン系化合物、及びカルボスチ リル骨格を形成したジ置換アミノーベンゼン系化合物、並びに、少なくとも 2個の芳香 族環が窒素原子に結合した構造を有する化合物等のジ置換アミノーベンゼンを部分 構造として有する化合物が挙げられる。 Among the condensed ring compounds, hetero condensed ring ketone compounds (ataridon compounds, thixanthone compounds, coumarin compounds, etc.) and atalidine compounds are more preferable. Of the hetero-fused ketone compounds, attaridone compounds and thixanthone compounds are particularly preferable. [0121] The amine compound substituted with any one of the at least two aromatic hydrocarbon rings and aromatic heterocyclic rings is a sensitizer having an absorption maximum with respect to light in a wavelength range of 330 to 450 nm. For example, a di-substituted aminobenzene compound having a heterocyclic group as a substituent at a carbon atom at the para position relative to an amino group on the benzene ring, an amino group on the benzene ring In contrast, a di-substituted amino-benzene compound having a substituent containing a sulfo-limino group at the carbon atom at the para position, a di-substituted amino-benzene compound having a carbostyryl skeleton, and at least two aromatics Examples thereof include compounds having a di-substituted amino-benzene as a partial structure, such as a compound having a structure in which a ring is bonded to a nitrogen atom.
[0122] 前記増感剤は、 1種を単独で用いてもよいし、 2種以上を併用してもよい。 [0122] As the sensitizer, one type may be used alone, or two or more types may be used in combination.
前記増感剤の含有量は、前記感光性組成物全固形分中 0. 01〜4質量%が好まし ぐ 0. 02〜2質量%がより好ましぐ 0. 05〜1質量%が特に好ましい。  The content of the sensitizer is preferably 0.01 to 4% by mass, more preferably 0.02 to 2% by mass, and particularly preferably 0.05 to 1% by mass in the total solid content of the photosensitive composition. preferable.
前記含有量が、 0. 01質量%未満となると、感度が低下することがあり、 4質量%を 超えると、パターンの形状が悪ィ匕することがある。  When the content is less than 0.01% by mass, the sensitivity may be lowered, and when it exceeds 4% by mass, the shape of the pattern may be deteriorated.
[0123] 熱重合禁止剤 [0123] Thermal polymerization inhibitor
前記熱重合禁止剤は、前記感光層における前記重合性化合物の熱的な重合又は 経時的な重合を防止するために添加してもよ 、。  The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
前記熱重合禁止剤としては、例えば、 4—メトキシフエノール、ハイドロキノン、アル キルまたはァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2—ヒド ロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅、フエ ノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、ピリジン 、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブルー、銅と 有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソィ匕合物、 -ト ロソ化合物と A1とのキレート、などが挙げられる。  Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-t-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitroso compounds, and chelates of troso compounds with A1.
[0124] 前記熱重合禁止剤の含有量は、前記感光層の前記重合性化合物に対して 0. 00 1〜5質量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に 好ましい。 前記含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあ り、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。 [0124] The content of the thermal polymerization inhibitor is preferably 0.001 to 5% by mass, more preferably 0.005 to 2% by mass with respect to the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred. When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
[0125] 可塑剤 [0125] Plasticizer
前記可塑剤は、前記感光層の膜物性 (可撓性)をコントロールするために添加して ちょい。  The plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソプチ ルフタレート、ジヘプチルフタレート、ジォクチルフタレート、ジシクロへキシルフタレ ート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジ フエ-ルフタレート、ジァリルフタレート、ォクチルカプリールフタレート等のフタル酸ェ ステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート 、ジメチルダリコースフタレート、ェチノレフタリーノレエチノレグリコレート、メチルフタリー ルェチルダリコレート、ブチノレフタリーノレブチノレグリコレート、トリエチレングリコールジ カブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフエ-ル ホスフェート等のリン酸エステル類; 4 トルエンスルホンアミド、ベンゼンスルホンアミ ド、 N—n—ブチルベンゼンスルホンアミド、 N—n—ブチルァセトアミド等のアミド類; ジイソブチルアジペート、ジォクチルアジペート、ジメチルセバケート、ジブチルセパ ケート、ジォクチルセパケート、ジォクチルァゼレート、ジブチルマレート等の脂肪族 二塩基酸エステル類;タエン酸トリエチル、タエン酸トリブチル、グリセリントリァセチル エステル、ラウリン酸ブチル、 4, 5 ジエポキシシクロへキサン 1, 2 ジカルボン酸 ジォクチル等、ポリエチレングリコール、ポリプロピレングリコール等のダリコール類が 挙げられる。  Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate. Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as norephthalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as sulfate; 4 Amides such as toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl seba Aliphatic dibasic acid esters such as keto, dibutyl sebacate, dioctyl sepacate, dioctyl azelate, dibutyl malate; triethyl taenoate, tributyl taenoate, glycerin triacetyl ester, butyl laurate, 4, 5 Diepoxycyclohexane 1,2 Dicarboxylic acid dioctyl, etc., and polyethylene glycol, polypropylene glycol and other Daricols.
[0126] 前記可塑剤の含有量は、前記感光層の全成分に対して 0. 1〜50質量%が好まし ぐ 0. 5〜40質量%がより好ましぐ 1〜30質量%が特に好ましい。  [0126] The content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
[0127] 一着色顔料  [0127] Monochromatic pigment
前記着色顔料としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、ビク卜! J ピュア一ブルー BO (C. I. 42595)、オーラミン(C. I. 41000)、 フアット'ブラック HB (C. I. 26150)、モノライト'エロー GT(C. I.ビグメント 'エロー 1 2)、パーマネント 'エロー GR(C. I.ピグメント 'エロー 17)、パーマネント 'エロー HR( C. I.ビグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146 )、ホスターバームレッド ESB (C. I.ピグメント 'バイオレット 19)、パーマネント 'ルビ 一 FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ(C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ピグメント 'ブルー 15)、モノライト'ファー スト'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ビグメント 'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメント 'レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント.グリーン 36、 C . I.ビグメント 'ブルー 15 : 1、 C. I.ビグメント 'ブルー 15 :4、 C. I.ビグメント 'ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I.ピグメント.ブ ルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用しても よい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用すること ができる。 The coloring pigment is not particularly limited and can be appropriately selected according to the purpose. For example, Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR ( CI Pigment 'Yellow 83), Permanent' Carmine FBB (CI Pigment 'Red 146), Hoster Balm Red ESB (CI Pigment' Violet 19), Permanent 'Rubi I FBH (CI Pigment' Red 11) Huster 'Pink B Splash (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolite 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, CI Pigment 'Red 122, CI Pigment 'Red 149, CI Pigment' Red 168, CI Pigment 'Red 177, CI Pigment' Red 180, CI Pigment 'Red 192, CI Pigment. Red 215, CI Pigment.Green 7, CI Pigment.Green 36, C.I. Pigment 'Blue 15: 1, CI Pigment' Blue 15: 4, CI Pigment 'Blue 15: 6, CI Pig Instrument. Blue 22, CI Pigment. Blue 60, CI Pigment. Such as Blu-64, and the like. These may be used alone or in combination of two or more. If necessary, a dye appropriately selected from known dyes can be used.
[0128] 前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形 成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔 料の種類により異なる力 一般的には 0. 01〜10質量%が好ましぐ 0. 05〜5質量 %がより好ましい。  [0128] The solid content in the solid content of the photosensitive composition of the coloring pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.01 to 10% by mass is preferable, and 0.05 to 5% by mass is more preferable.
[0129] 一体質顔料 [0129] Monolithic pigment
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるい は線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く 抑えることを目的として、無機顔料や有機微粒子を添加することができる。  The photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary. Inorganic pigments and organic fine particles can be added.
前記無機顔料としては、特に制限はなぐ公知のものの中から適宜選択することが でき、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸化 ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、 クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、 マイ力などが挙げられる。  The inorganic pigment can be appropriately selected from known ones that are not particularly limited. For example, kaolin, barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
前記無機顔料の平均粒径は、 10 m未満が好ましぐ 3 m以下がより好ましい。 該平均粒径が 10 m以上であると、光錯乱により解像度が劣化することがある。 前記有機微粒子としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、メラミン榭脂、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられ る。また、平均粒径 1〜5 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂から なる球状多孔質微粒子などを用いることができる。 The average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering. The organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ζπι, an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
[0130] 前記体質顔料の添加量は、 5〜60質量%が好ましい。該添加量が 5質量%未満で あると、十分に線膨張係数を低下させることができないことがあり、 60質量%を超える と、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久バタ ーンを用いて配線を形成する場合にお!、て、配線の保護膜としての機能が損なわれ ることがある。  [0130] The amount of the extender is preferably 5 to 60% by mass. When the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced. When the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, The film quality becomes fragile, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film may be impaired.
[0131] 密着促進剤  [0131] Adhesion promoter
本発明の感光性組成物を用いて形成される感光層を含む感光性フィルムの、各層 間の密着性、又は前記感光性フィルムと基体との密着性を向上させるために、各層 に公知の 、わゆる密着促進剤を用いることができる。  In order to improve the adhesion between each layer of the photosensitive film including the photosensitive layer formed using the photosensitive composition of the present invention, or the adhesion between the photosensitive film and the substrate, known for each layer, A loose adhesion promoter can be used.
[0132] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報等に記載の密着促進剤が好適挙げられる 。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2—メ ルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトベン ズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3— モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モ ルホリノメチル チアジアゾール - 2-チオン、及び 2 メルカプト 5—メチルチオ ーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシベン ゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げられ る。  [0132] Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyl diuriazole-2 thione, 3-morpholinomethyl 5 phenyl oxadiazole 2 thione, 5 amino 3 morpholinomethyl thiadiazole-2-thione, and 2 mercapto 5-methylthiothiadiazole, triazole, tetrazole, benzotriazole, carboxybenzazotriazole, amino group-containing benzotriazole, silane cup Examples include ring agents.
[0133] 前記密着促進剤の含有量は、前記感光層の全成分に対して 0. 001質量%〜20 質量%が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1質量%〜5質量%が特に 好ましい。  [0133] The content of the adhesion promoter is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, based on all components of the photosensitive layer. % To 5% by mass is particularly preferred.
[0134] 本発明の第 1の形態の感光性組成物は、バインダー及び併用する熱架橋剤を規定 することにより、高感度及び高解像度で、無電解金メッキ耐性、及びビアやスルーホ ールの埋め込み性に優れ、高精細な永久パターンを効率よく形成可能である。この ため、プリント配線板、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディス プレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用とし て広く用いることができ、特に、プリント基板の永久パターン形成用に好適に用いるこ とがでさる。 [0134] The photosensitive composition according to the first aspect of the present invention has high sensitivity and high resolution, electroless gold plating resistance, and via and through-through resistance by specifying a binder and a thermal crosslinking agent to be used together. It is excellent in the embedding property of the tool, and a high-definition permanent pattern can be efficiently formed. Therefore, it can be widely used as a printed wiring board, color filter, pillar material, rib material, spacer, partition member and other display members, holograms, micromachines, proofs and other permanent patterns. It can be suitably used for forming a permanent pattern on a printed circuit board.
[0135] 〔第 2の形態〕  [Second form]
本発明の第 2の形態の感光性組成物は、バインダー、 2種以上の重合性化合物、 光重合開始剤、及び熱架橋剤を含み、必要に応じて、その他の成分を含んでなる。 ノインダー、光重合開始剤、及びその他の成分については、前記第 1の形態で既に 説明した通りである。  The photosensitive composition according to the second aspect of the present invention contains a binder, two or more polymerizable compounds, a photopolymerization initiator, and a thermal crosslinking agent, and if necessary, other components. The noinder, photopolymerization initiator, and other components are as already described in the first embodiment.
[0136] <重合性化合物 > [0136] <Polymerizable compound>
前記重合性化合物としては、 2種以上のモノマーを含む。該モノマーとしては、特に 制限はなぐ 目的に応じて適宜選択することができるが、例えば、官能基数の異なる The polymerizable compound includes two or more monomers. The monomer is not particularly limited and can be appropriately selected depending on the purpose. For example, the number of functional groups is different.
2種以上のモノマーが好まし 、。 Two or more monomers are preferred.
[0137] 前記官能基数の異なる 2種以上のモノマーとしては、例えば、単官能モノマーと多 官能モノマーとの組み合わせ、多官能モノマー同士の組み合わせが挙げられる。 前記多官能モノマー同士の組み合わせとしては、 2官能モノマーと 3官能以上のモ ノマーとの組み合わせ、 2〜4官能のモノマーと 5官能以上のモノマーとの組み合わ せなどが挙げられる。これらの中でも、少なくとも 1種が 4個以上の官能基を有するモ ノマーであることがより好ま U、。 [0137] Examples of the two or more monomers having different numbers of functional groups include a combination of a monofunctional monomer and a polyfunctional monomer, and a combination of polyfunctional monomers. Examples of the combination of the polyfunctional monomers include a combination of a bifunctional monomer and a trifunctional or higher monomer, and a combination of a bifunctional to tetrafunctional monomer and a pentafunctional or higher monomer. Of these, at least one is more preferably a monomer having 4 or more functional groups.
[0138] 前記モノマーとしては、少なくとも 1種力 ウレタン基、ァリール基、エステル基、エー テル基、及びエポキシ化合物から誘導された基の少なくとも!/、ずれかを有するモノマ 一であることが好ましい。 [0138] The monomer is preferably a monomer having at least one of urethane groups, aryl groups, ester groups, ether groups, and groups derived from an epoxy compound.
[0139] ウレタン基を有するモノマ一一 [0139] Monomers having urethane groups
前記ウレタン基を有するモノマーとしては、ウレタン基を有する限り、特に制限は無 く、 目的に応じて適宜選択することができ、例えば、特開 2005— 258431号公報の〔 The monomer having a urethane group is not particularly limited as long as it has a urethane group, and can be appropriately selected according to the purpose. For example, JP-A-2005-258431 [
0210〕〜〔0262〕に記載されている化合物、ダイセル.サイテック社製のウレタン (メタ0210] to [0262], Daicel Urethane manufactured by Cytec Corporation (Metal
)アタリレートのウレタン (メタ)アタリレートイ匕合物、第一工業製薬社製のウレタン (メタ) アタリレートのウレタン (メタ)アタリレートイ匕合物、新中村化学社製のウレタン (メタ)ァ クリレートイ匕合物などが挙げられる。 ) Atarilate Urethane (Meth) Atalerito Toy Compound, Urethane (Meth) from Daiichi Kogyo Seiyaku Co., Ltd. The urethane (meth) atrelate toy compound of Atalylate and the urethane (meth) acrylate compound made by Shin-Nakamura Chemical Co., Ltd. can be mentioned.
[0140] ーァリール基を有するモノマ一一  [0140] Monomer having a reel group
前記ァリール基を有するモノマーとしては、ァリール基を有する限り、特に制限はな く、 目的に応じて適宜選択することができるが、例えば、ァリール基を有する多価アル コール化合物、多価アミンィ匕合物及び多価ァミノアルコールィ匕合物の少なくともいず れカと不飽和カルボン酸とのエステル又はアミドなどが挙げられ、例えば、特開 2005 - 258431号公報の〔0264〕〜〔0271〕に記載されて 、る化合物などが挙げられる。  The monomer having an aryl group is not particularly limited as long as it has an aryl group, and can be appropriately selected according to the purpose. For example, a polyhydric alcohol compound having an aryl group, a polyvalent amine compound. And esters or amides of unsaturated carboxylic acids with at least any of the above compounds and polyamino amino alcohol compounds, for example, JP-A-2005-258431, [0264] to [0271]. And the like.
[0141] エステル基を有するモノマ一一  [0141] Monomers having ester groups
前記エステル基を有するモノマーとしては、エステル基を有する限り、特に制限はな く、 目的に応じて適宜選択することができる力 例えば、ポリエステルアクリルオリゴマ 一(サートマ一社製 CNシリーズ等)、ダイセル'サイテック社製のポリエステルアクリル オリゴマーなどが挙げられる。  The monomer having an ester group is not particularly limited as long as it has an ester group, and can be appropriately selected depending on the purpose. For example, polyester acrylic oligomer (CN series manufactured by Sartoma Co., Ltd.), Daicel Examples include polyester acrylic oligomers manufactured by Cytec.
[0142] エーテル基を有するモノマ一一  [0142] Monomers with ether groups
前記エーテル基を有するモノマーとしては、エーテル基を有する限り、特に制限は なぐ 目的に応じて適宜選択することができるが、例えば、アルキレンォキシドを構造 単位として含むモノマーが挙げられる。  The monomer having an ether group is not particularly limited as long as it has an ether group, and can be appropriately selected according to the purpose. Examples thereof include monomers containing alkylene oxide as a structural unit.
前記アルキレンォキシドとしては、例えば、エチレンォキシド、プロピレンォキシド、 ブチレンォキシド、これらの混合物(例えば、エチレンォキシドとプロピレンォキシドと の混合)が挙げられる。  Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and a mixture thereof (for example, a mixture of ethylene oxide and propylene oxide).
前記アルキレンォキシドを構造単位として含むモノマーとしては、例えば、ポリアル キレングリコールジ (メタ)アタリレート、ポリアルキレングリコールモノ(メタ)アタリレート などが挙げられる。  Examples of the monomer containing an alkylene oxide as a structural unit include polyalkylene glycol di (meth) acrylate and polyalkylene glycol mono (meth) acrylate.
より具体的には例えば、ポリエチレングリコールジ (メタ)アタリレート、ポリエチレング リコールモノ(メタ)アタリレート、ポリプロピレンジ(メタ)アタリレート、ポリプロピレンモノ More specifically, for example, polyethylene glycol di (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene di (meth) acrylate, polypropylene mono
(メタ)アタリレート、ポリエチレングリコールポリプロピレングリコールジ (メタ)アタリレー ト、ポリエチレングリコールポリプロピレングリコールモノ (メタ)アタリレートなどが挙げら れる。 市販品としては、例えば、新中村ィ匕学社製の NKエステルイ匕合物などが挙げられる (Meth) acrylate, polyethylene glycol polypropylene glycol di (meth) acrylate, polyethylene glycol polypropylene glycol mono (meth) acrylate. As a commercial item, for example, NK Estoiy compound manufactured by Shin-Nakamura
[0143] エポキシ化合物から誘導された基を有するモノマ一一 [0143] Monomers having groups derived from epoxy compounds
前記エポキシィ匕合物から誘導された基を有するモノマーとしては、これを有する限り 、特に制限はなぐ 目的に応じて適宜選択することができるが、例えば、市販のェポ キシ化合物に (メタ)アクリル酸を付加した化合物などが挙げられる。  The monomer having a group derived from the epoxy compound is not particularly limited as long as it has this, and may be appropriately selected depending on the purpose. For example, a commercially available epoxy compound may be (meth) acrylic. Examples include compounds to which an acid has been added.
[0144] 前記ウレタン基、ァリール基、エステル基、エーテル基、及びエポキシ化合物力ゝら誘 導された基の少なくともいずれかを有するモノマーの質量平均分子量は、例えば、 2 00〜9, 000力 S好まし <、 250〜8, 000力 Sより好まし <、 300〜7, 000力 S特に好まし い。  [0144] The mass average molecular weight of the monomer having at least one of the urethane group, aryl group, ester group, ether group, and epoxy compound strength is, for example, 200 to 9,000 force S Preferable <, Preferable over 250 to 8,000 force S <, 300 to 7,000 force S Particularly preferred.
[0145] また、前記重合性化合物としては、ウレタン基、ァリール基、エステル基、エーテル 基、及びエポキシィ匕合物から誘導された基の少なくとも 、ずれかを有するモノマーの 他に、例えば、脂肪族エステル系のモノマーから選択される少なくとも 1種を含むこと が好ましい。  In addition to the monomer having at least one of a group derived from a urethane group, an aryl group, an ester group, an ether group, and an epoxy compound, examples of the polymerizable compound include aliphatic groups. It is preferable to include at least one selected from ester monomers.
[0146] 脂肪族エステル系のモノマ一一  [0146] Aliphatic ester monomers
前記脂肪族エステル系のモノマーとしては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、フエノキシェチル (メタ)アタリレート等の単官能アタリレート や単官能メタタリレート;トリメチロールェタントリアタリレート、トリメチロールプロパントリ アタリレート、トリメチロールプロパンジアタリレート、ネオペンチルグリコールジ(メタ)ァ タリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ペンタエリスリトールトリ(メタ) アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、ジペンタエリスリトール ペンタ (メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、などが挙げられる。 これらの中でも、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールテト ラ(メタ)アタリレート、ジペンタエリスリトールへキサ (メタ)アタリレート、ジペンタエリスリ トールペンタ (メタ)アタリレートが特に好まし 、。  The aliphatic ester-based monomer is not particularly limited and can be appropriately selected depending on the purpose. Atalylate, trimethylolpropane tri Atalylate, trimethylolpropane ditalylate, neopentylglycol di (meth) talarate, pentaerythritol tetra (meth) atalylate, pentaerythritol tri (meth) attalylate, dipentaerythritol hexa (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, and the like. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hex (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferred.
[0147] 前記ウレタン基、ァリール基、エステル基、エーテル基、及びエポキシ化合物力 誘 導された基の少なくともいずれかを有するモノマーと、脂肪族エステル系のモノマーと の含有量比は、質量比で、 1 : 100〜100 : 1が好ましぐ 1 : 20〜20 : 1がより好ましく 、 1 : 10〜10 : 1が特に好ましぃ。 [0147] The content ratio of the monomer having at least one of the urethane group, aryl group, ester group, ether group, and epoxy compound force-derived group to the aliphatic ester monomer is expressed by mass ratio. 1: 100-100: 1 is preferred 1: 20-20: 1 is more preferred 1: 10 to 10: 1 is particularly preferred.
[0148] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量の合計は、 5〜[0148] The total solid content in the photosensitive composition solid content of the polymerizable compound is 5 to
50質量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未 満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量50% by mass is preferred 10-40% by mass is more preferred. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur.
%を超えると、感光層の粘着性が強くなりすぎることがある。 If it exceeds%, the adhesiveness of the photosensitive layer may become too strong.
[0149] <熱架橋剤 > [0149] <Thermal crosslinking agent>
前記熱架橋剤としては、特に制限はなぐ目的に応じて適宜選択することができる The thermal cross-linking agent can be appropriately selected according to the purpose for which there is no particular limitation.
1S 金メッキ耐性の観点から、アルカリ不溶性であることが好ましい。前記熱架橋剤と しては、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良す るために、現像性等に悪影響を与えない範囲で、例えば、エポキシィ匕合物、ォキセタ ン化合物、ポリイソシァネートイ匕合物、ポリイソシァネートイ匕合物にブロック剤を反応さ せて得られる化合物、及びメラミン誘導体力 選択される少なくとも 1種を用いることが できる。 From the viewpoint of 1S gold plating resistance, it is preferably insoluble in alkali. Examples of the thermal cross-linking agent include epoxy resins in a range that does not adversely affect developability and the like in order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition. A compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and at least one selected from melamine derivatives it can.
これらの具体的成分及び含有量については、前記第 1の形態で既に述べた通りで ある。  These specific components and contents are as already described in the first embodiment.
[0150] 本発明の第 2の形態の感光性組成物は、重合性化合物として、脂肪族エステル系 のモノマー以外のモノマーを組み合わせることにより、感度、解像度、タック性、無電 解金メッキ耐性、及び保存安定性に優れ、高精細な永久パターンを効率よく形成可 能である。このため、前記第 1の形態の感光性組成物と同様の用途に好適に用いる ことができる。  [0150] The photosensitive composition according to the second embodiment of the present invention combines sensitivity, resolution, tackiness, electroless plating resistance, and storage by combining monomers other than aliphatic ester monomers as the polymerizable compound. Excellent stability and high-definition permanent patterns can be formed efficiently. For this reason, it can be suitably used for the same application as the photosensitive composition of the first embodiment.
[0151] (感光性フィルム) [0151] (Photosensitive film)
本発明の感光性フィルムは、支持体と、該支持体上に本発明の前記感光性組成物 力もなる感光層を少なくとも有し、目的に応じて、熱可塑性榭脂層等の適宜選択され るその他の層を積層してなる。  The photosensitive film of the present invention has at least a support and a photosensitive layer having the above-mentioned photosensitive composition of the present invention on the support, and a thermoplastic resin layer or the like is appropriately selected depending on the purpose. Other layers are laminated.
[0152] <感光層 > [0152] <Photosensitive layer>
前記感光層は、本発明の感光性組成物を用いて形成される。  The photosensitive layer is formed using the photosensitive composition of the present invention.
また、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚 みを該露光及び現像後にお 、て変化させな 、前記露光に用いる光の最小エネルギ 一は、 0. l〜200mi/cm2であることが好ましぐ 0. 2〜100mj/cm2であることがよ り好ましく、 0. 5〜50mjZcm2であることが更に好ましぐ l〜30miZcm2であること が特に好ましい。 In the case where the photosensitive layer is exposed and developed, the minimum energy of light used for the exposure is not changed after the exposure and development. Scratch, it is Ri preferably good it is preferred instrument 0. 2~100mj / cm 2 It is 0. l~200mi / cm 2, and still more preferably is 0. 5~50mjZcm 2 instrument l~ Particularly preferred is 30 miZcm 2 .
前記最小エネルギー力 0. lmjZcm2未満であると、処理工程にてカプリが発生 することがあり、 200mjZcm2を超えると、露光に必要な時間が長くなり、処理スピー ド、が遅くなることがある。 If the minimum energy force is less than 0.1 lmjZcm 2 , capri may occur in the processing step, and if it exceeds 200 mjZcm 2 , the time required for exposure may become longer and the processing speed may become slower. .
[0153] ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させ ない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば 、前記感光層を露光したときの前記露光に用いた光のエネルギー量 (露光量)と、前 記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ (感度曲線)から求めることができる。  Here, “the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development” is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露 光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化 層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値であ る。  The thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure. The development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとが ± 1 m以内で あるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。  Here, when the thickness of the cured layer and the thickness of the photosensitive layer before exposure are within ± 1 m, it is considered that the thickness of the cured layer is not changed by exposure and development.
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限 はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機 (例えば、サーフコム 1400D (東京精密社製) )などを用いて測定する方法が挙げら れる。  A method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose. However, a film thickness measuring device, a surface roughness measuring device (for example, Surfcom) 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
[0154] 前記感光層の厚みは、特に制限はなぐ目的に応じて適宜選択することができるが 、 ί列免ば、、 1〜: L00 μ m力 S好ましく、 2〜50 μ m力 Sより好ましく、 4〜30 μ m力 S特に好ま しい。  [0154] The thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. However, if it is omitted, 1 to: L00 μm force S, preferably 2 to 50 μm force S 4-30 μm force S is particularly preferable.
[0155] く支持体及び保護フィルム >  [0155] Supports and protective films>
前記支持体としては、特に制限はなぐ目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましぐ更に表 面の平滑性が良好であることがより好まし 、。前記支持体及び保護フィルムとしては、 具体的には、例えば、特開 2005— 258431号公報の〔0342〕〜〔0348〕に記載され ている。 The support can be appropriately selected according to the purpose for which there is no particular limitation. However, it is preferable that the photosensitive layer is peelable and has good light transmittance. Further, the surface is smooth. It is more preferable that the sex is good. As the support and protective film, Specifically, for example, it is described in JP-A-2005-258431, [0342] to [0348].
[0156] <その他の層 >  [0156] <Other layers>
前記感光性フィルムにおけるその他の層としては、特に制限はなぐ 目的に応じて 適宜選択することができ、例えば、クッション層、酸素遮断層(PC層)、剥離層、接着 層、光吸収層、表面保護層などの層を有してもよい。これらの層を 1種単独で有して いてもよぐ 2種以上を有していてもよい。また、前記感光層上に保護フィルムを有し ていてもよい。  Other layers in the photosensitive film are not particularly limited and can be appropriately selected according to the purpose. For example, a cushion layer, an oxygen barrier layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface You may have layers, such as a protective layer. These layers may be used alone or in combination of two or more. Further, a protective film may be provided on the photosensitive layer.
[0157] クッション層  [0157] Cushion layer
前記クッション層としては、特に制限はなぐ 目的に応じて適宜選択することができ、 アルカリ性液に対して膨潤性乃至可溶性であってもよぐ不溶性であってもよ 、。  The cushion layer is not particularly limited and may be appropriately selected depending on the purpose, and may be swellable or soluble or insoluble in an alkaline liquid.
[0158] 前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記 熱可塑性榭脂としては、例えば、エチレンとアクリル酸エステル共重合体のケンィ匕物 、スチレンと (メタ)アクリル酸エステル共重合体のケン化物、ビュルトルエンと (メタ)ァ クリル酸エステル共重合体のケンィ匕物、ポリ (メタ)アクリル酸エステル、(メタ)アクリル 酸ブチルと酢酸ビニル等の (メタ)アクリル酸エステル共重合体等のケンィ匕物、(メタ) アクリル酸エステルと (メタ)アクリル酸との共重合体、スチレンと (メタ)アクリル酸エス テルと (メタ)アクリル酸との共重合体などが挙げられる。  [0158] In the case where the cushion layer is swellable or soluble in an alkaline liquid, examples of the thermoplastic resin include, for example, an ethylene / acrylate copolymer copolymer, styrene, and (meth) (Meth) such as saponified acrylate copolymer, kento of butyltoluene and (meth) acrylic ester copolymer, poly (meth) acrylate, butyl (meth) acrylate and vinyl acetate Acrylic ester copolymers, etc., (meth) acrylic acid ester and (meth) acrylic acid copolymer, styrene, (meth) acrylic acid ester and (meth) acrylic acid copolymer Etc.
[0159] この場合の熱可塑性榭脂の軟ィ匕点 (Vicat)は、特に制限はなぐ 目的に応じて適 宜選択することができる力 例えば、 80°C以下が好ましい。  [0159] The softness point (Vicat) of the thermoplastic resin in this case is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 80 ° C or less is preferable.
前記軟ィ匕点が 80°C以下の熱可塑性榭脂としては、上述した熱可塑性榭脂の他、「 プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連 合会編著、工業調査会発行、 1968年 10月 25日発行)による軟ィ匕点が約 80°C以下 の有機高分子の内、アルカリ性液に可溶なものが挙げられる。また、軟ィ匕点が 80°C 以上の有機高分子物質においても、該有機高分子物質中に該有機高分子物質と相 溶性のある各種の可塑剤を添加して実質的な軟ィ匕点を 80°C以下に下げることも可 能である。  In addition to the above-mentioned thermoplastic resin, the above-mentioned thermoplastic resin has a softness point of 80 ° C or less, as well as “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Association, Issued on October 25, 1968). Among the organic polymers whose soft spot is about 80 ° C or less, those that are soluble in alkaline liquids are listed. In addition, even in an organic polymer material having a soft softening point of 80 ° C or higher, various plasticizers compatible with the organic polymer material are added to the organic polymer material so that a substantial softness can be obtained. It is also possible to lower the point below 80 ° C.
[0160] また、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には 、前記感光性フィルムの層間接着力としては、特に制限はなぐ 目的に応じて適宜選 択することができるが、例えば、各層の層間接着力の中で、前記支持体と前記クッシ ヨン層との間の層間接着力が、最も小さいことが好ましい。このような層間接着力とす ることにより、前記感光性フィルムから前記支持体のみを剥離し、前記クッション層を 介して前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像する ことができる。また、前記支持体を残したまま、前記感光層を露光した後、前記感光 性フィルム力 前記支持体のみを剥離し、アルカリ性の現像液を用いて該感光層を 現像することちでさる。 [0160] When the cushion layer is swellable or soluble in an alkaline liquid, The interlayer adhesive strength of the photosensitive film is not particularly limited, and can be appropriately selected according to the purpose. For example, among the interlayer adhesive strength of each layer, the support and the cushion layer can be selected. It is preferable that the interlayer adhesion between them is the smallest. With such an interlayer adhesive strength, only the support is peeled off from the photosensitive film, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is removed using an alkaline developer. Can be developed. Further, after exposing the photosensitive layer while leaving the support, the photosensitive film force is peeled off, and the photosensitive layer is developed using an alkaline developer.
[0161] 前記層間接着力の調整方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に公知のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法が挙げられる。  [0161] The method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected according to the purpose. For example, a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used. , A method of adding a surfactant, a release agent and the like.
[0162] 前記可塑剤としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、ポリプロピレングリコール、ポリエチレングリコール、ジォクチルフタレート、ジ へプチノレフタレート、ジブチノレフタレート、トリクレジルフォスフェート、クレジノレジフエ -ルフォスフェート、ビフエ-ルジフエ-ルフォスフェート等のアルコール類やエステ ル類;トルエンスルホンアミド等のアミド類、などが挙げられる。  [0162] The plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose. Alcohols and esters such as zircphosphate, crezinoresiphosphate and biphenyldiphosphate, amides such as toluenesulfonamide, and the like.
[0163] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記熱可塑性榭 脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げ られる。  [0163] When the cushion layer is insoluble in an alkaline liquid, examples of the thermoplastic resin include a copolymer whose main component is an essential copolymer component of ethylene.
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなぐ 目的 に応じて適宜選択することができる力 例えば、エチレン 酢酸ビニル共重合体 (EV A)、エチレン—ェチルアタリレート共重合体 (EEA)などが挙げられる。  The copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose. For example, ethylene vinyl acetate copolymer (EV A), ethylene-ethyl acrylate. Copolymer (EEA) and the like.
[0164] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記感光性フィ ルムの層間接着力としては、特に制限はなぐ 目的に応じて適宜選択することができ るが、例えば、各層の層間接着力の中で、前記感光層と前記クッション層との接着力 力 最も小さいことが好ましい。このような層間接着力とすることにより、前記感光性フ イルムカゝら前記支持体及びクッション層を剥離し、前記感光層を露光した後、アルカリ 性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したま ま、前記感光層を露光した後、前記感光性フィルムから前記支持体と前記クッション 層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。 [0164] When the cushion layer is insoluble in an alkaline liquid, the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose. Of the interlayer adhesive strength of each layer, the adhesive strength between the photosensitive layer and the cushion layer is preferably the smallest. With such an interlayer adhesive strength, the support and cushion layer are peeled off from the photosensitive film carrier, the photosensitive layer is exposed, and then the photosensitive layer is developed using an alkaline developer. be able to. Also, leave the support In addition, after the photosensitive layer is exposed, the support and the cushion layer are peeled off from the photosensitive film, and the photosensitive layer can be developed using an alkaline developer.
[0165] 前記層間接着力の調整方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に各種のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法、以下に説明するエチレン共重合比 を調整する方法などが挙げられる。  [0165] The method for adjusting the interlayer adhesive force can be appropriately selected depending on the purpose without any particular limitation. For example, various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected. , A method of adding a surfactant, a release agent, and the like, and a method of adjusting the ethylene copolymerization ratio described below.
[0166] 前記エチレンを必須の共重合成分とする共重合体におけるエチレン共重合比は、 特に制限はなぐ目的に応じて適宜選択することができるが、例えば、 60〜90質量 %が好ましぐ 60〜80質量%がより好ましぐ 65〜80質量%が特に好ましい。  [0166] The ethylene copolymerization ratio in the copolymer containing ethylene as an essential copolymerization component can be appropriately selected according to the purpose without any particular limitation, but is preferably 60 to 90 mass%, for example. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred.
前記エチレンの共重合比が、 60質量%未満になると、前記クッション層と前記感光 層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困 難となることがあり、 90質量%を超えると、前記クッション層と前記感光層との層間接 着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく 、前記クッション層を含む感光性フィルムの製造が困難となることがある。  When the ethylene copolymerization ratio is less than 60% by mass, the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce the photosensitive film.
[0167] 前記クッション層の厚みは、特に制限はなぐ目的に応じて適宜選択することができ る力 f列; tは、、 5〜50 111カ女子ましく、 10〜50 111カ0り女子ましく、 15〜40 111カ に好ましい。  [0167] The thickness of the cushion layer can be selected as appropriate according to the purpose for which there is no particular limitation. Force f column; t is 5-50 111 girls, 10-50 111 girls Preferably, 15-40111.
前記厚みが、 5 m未満になると、基体の表面における凹凸や、気泡等への凹凸 追従性が低下し、高精細な永久パターンを形成できないことがあり、 50 mを超える と、製造上の乾燥負荷増大等の不具合が生じることがある。  If the thickness is less than 5 m, unevenness on the surface of the substrate and unevenness followability to bubbles and the like may be reduced, and a high-definition permanent pattern may not be formed. Problems such as increased load may occur.
[0168] 酸素遮断層(PC層) [0168] Oxygen barrier layer (PC layer)
前記酸素遮断層は、通常ポリビュルアルコールを主成分として形成されることが好 ましぐ厚みが 0. 5〜5 μ m程度の被膜であることが好ましい。  The oxygen barrier layer is preferably a film having a thickness of preferably about 0.5 to 5 μm, and is preferably formed mainly of polybulal alcohol.
[0169] 〔感光性フィルムの製造方法〕 [Method for producing photosensitive film]
前記感光性フィルムは、例えば、次のようにして製造することができる。 まず、前記感光性組成物に含まれる材料を、水又は溶剤に溶解、乳化又は分散さ せて、感光性フィルム用の感光性榭脂組成物溶液を調製する。  The said photosensitive film can be manufactured as follows, for example. First, the material contained in the photosensitive composition is dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution for a photosensitive film.
[0170] 前記溶媒としては、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 sec ーブタノール、 n キサノール等のアルコール類;アセトン、メチルェチルケトン、メ チルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなどのケトン類;酢酸ェチ ル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸ェチル、フタル酸ジメ チル、安息香酸ェチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、 キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;四塩ィ匕炭素、トリクロ 口エチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチレン、モノクロ口べンゼ ンなどのハロゲンィ匕炭化水素類;テトラヒドロフラン、ジェチルエーテル、エチレンダリ コーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 1ーメトキシー 2 プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルァセトアミド、ジメチ ルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよ ぐ 2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。 [0170] The solvent can be appropriately selected depending on the purpose without any particular limitation. Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and n-xanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and diisoptyl ketone; Esters such as ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate; aromatic carbonization such as toluene, xylene, benzene, and ethylbenzene Hydrogens: Halogenated hydrocarbons such as tetrasalt carbon, trichloroethylene, blackform, 1, 1, 1-trichloroethane, methylene chloride, monochrome benzene; tetrahydrofuran, jetyl ether, ethylene Cornole Monomethino Rete Les, ethylene glycol Honoré monomethyl E Chino les ether Honoré, ethers such as 1 Metokishi 2-propanol; dimethylformamide, dimethyl § Seth amides, dimethicone Le sulfoxide, and sulfolane. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.
[0171] 次に、前記支持体上に前記感光性榭脂組成物溶液を塗布し、乾燥させて感光層 を形成し、感光性フィルムを製造することができる。  [0171] Next, the photosensitive resin composition solution is coated on the support and dried to form a photosensitive layer, whereby a photosensitive film can be produced.
[0172] 前記感光性組成物溶液の塗布方法としては、特に制限はなぐ 目的に応じて適宜 選択することができる力 例えば、スプレー法、ロールコート法、回転塗布法、スリット コート法、エタストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート 法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。  [0172] The method for applying the photosensitive composition solution is not particularly limited. The force can be selected appropriately according to the purpose. For example, spray method, roll coating method, spin coating method, slit coating method, etatrusion. Examples of the coating method include a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。  The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0173] 前記感光性フィルムは、例えば、円筒状の卷芯に巻き取って、長尺状でロール状 に巻かれて保管されるのが好ま 、。 [0173] The photosensitive film is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
前記長尺状の感光性フィルムの長さは、特に制限はなぐ例えば、 10-20, 000m の範囲力も適宜選択することができる。また、ユーザーが使いやすいようにスリットカロ ェし、 100 1, 000mの範囲の長尺体をロール状にしてもよい。なお、この場合には 、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール 状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフ ユージョンを防止する観点から、端面にはセパレーター (特に防湿性のもの、乾燥剤 入りのもの)を設置するのが好ましぐまた梱包も透湿性の低い素材を用いるのが好ま しい。 The length of the long photosensitive film is not particularly limited. For example, a range force of 10-20,000 m can be appropriately selected. In addition, slitting may be performed for the convenience of the user, and a long body in the range of 100 1,000 m may be rolled. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped photosensitive film may be slit into a sheet shape. From the viewpoint of protecting the end face and preventing edge fusion during storage, the end face should have a separator (especially moisture-proof, desiccant). It is preferable to use materials with low moisture permeability.
[0174] (感光性積層体)  [0174] (Photosensitive laminate)
前記感光性積層体は、基体上に、前記感光層を少なくとも有し、目的に応じて適宜 選択されるその他の層を積層してなる。  The photosensitive laminate is formed by laminating at least the photosensitive layer on a substrate and other layers appropriately selected according to the purpose.
[0175] <基体> [0175] <Substrate>
前記基体は、感光層が形成される被処理基体、又は本発明の感光性フィルムの少 なくとも感光層が転写される被転写体となるもので、特に制限はなぐ目的に応じて適 宜選択することができ、例えば、表面平滑性の高いものから凸凹のある表面を持つも のまで任意に選択できる。板状の基体が好ましぐいわゆる基板が使用される。具体 的には、公知のプリント配線用の基板 (プリント基板)、ガラス板 (ソーダガラス板など) 、合成樹脂性のフィルム、紙、金属板などが挙げられる。  The substrate is a substrate to be processed on which a photosensitive layer is formed, or a transfer target to which at least the photosensitive layer of the photosensitive film of the present invention is transferred, and is appropriately selected depending on the purpose without particular limitation. For example, it can be arbitrarily selected from those having a high surface smoothness to those having a rough surface. A so-called substrate in which a plate-like substrate is preferred is used. Specific examples include known printed wiring boards (printed boards), glass plates (soda glass plates, etc.), synthetic resin films, paper, metal plates, and the like.
[0176] 〔感光性積層体の製造方法〕 [Method for producing photosensitive laminate]
前記感光性積層体の製造方法として、第 1の態様として、前記感光性組成物を前 記基体の表面に塗布し乾燥する方法が挙げられ、第 2の態様として、本発明の感光 性フィルムにおける少なくとも感光層を加熱及び加圧の少なくとも ヽずれかを行 、な 力 転写して積層する方法が挙げられる。  Examples of the method for producing the photosensitive laminate include, as the first aspect, a method of applying the photosensitive composition to the surface of the substrate and drying, and as the second aspect, in the photosensitive film of the present invention. A method of laminating by transferring at least one of heating and pressurizing at least one of the photosensitive layer and transferring force is mentioned.
[0177] 前記第 1の態様の感光性積層体の製造方法は、前記基体上に、前記感光性組成 物を塗布及び乾燥して感光層を形成する。 [0177] In the method for producing a photosensitive laminate of the first aspect, the photosensitive composition is applied and dried on the substrate to form a photosensitive layer.
前記塗布及び乾燥の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記基体の表面に、前記感光性組成物を、水又は溶剤に溶解、 乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させる ことにより積層する方法が挙げられる。  The coating and drying method can be appropriately selected according to the purpose without any particular limitation. For example, the photosensitive composition is dissolved, emulsified or dispersed on the surface of the substrate in water or a solvent. And a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
[0178] 前記感光性組成物溶液の溶剤としては、特に制限はなぐ目的に応じて適宜選択 することができ、前記感光性フィルムに用いたものと同じ溶剤が挙げられる。これらは[0178] The solvent of the photosensitive composition solution can be appropriately selected depending on the purpose without particular limitation, and examples thereof include the same solvents as those used for the photosensitive film. They are
、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を 添カロしてちょい。 One type may be used alone or two or more types may be used in combination. Also, add a known surfactant.
[0179] 前記塗布方法及び乾燥条件としては、特に制限はなぐ目的に応じて適宜選択す ることができ、前記感光性フィルムに用いたものと同じ方法及び条件で行う。 [0179] The coating method and drying conditions are appropriately selected depending on the purpose without any particular limitation. The same method and conditions as those used for the photosensitive film can be used.
[0180] 前記第 2の態様の感光性積層体の製造方法は、前記基体の表面に本発明の感光 性フィルムを加熱及び加圧の少なくともいずれかを行いながら積層する。なお、前記 感光性フィルムが前記保護フィルムを有する場合には、該保護フィルムを剥離し、前 記基体に前記感光層が重なるようにして積層するのが好ま 、。  [0180] In the method for producing a photosensitive laminate of the second aspect, the photosensitive film of the present invention is laminated on the surface of the substrate while performing at least one of heating and pressing. In the case where the photosensitive film has the protective film, it is preferable that the protective film is peeled off and laminated so that the photosensitive layer overlaps the substrate.
前記加熱温度は、特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、 15〜180°Cが好ましぐ 60〜140°Cがより好ましい。  The heating temperature is not particularly limited, and can be appropriately selected according to the purpose. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
前記加圧の圧力は、特に制限はなぐ 目的に応じて適宜選択することができ、例え ば、、 0. 1〜1. OMPa力好ましく、 0. 2〜0. 8MPa力 ^より好まし!/ヽ。  The pressure of the pressurization is not particularly limited, and can be appropriately selected depending on the purpose. For example, 0.1 to 1. OMPa force is preferable, 0.2 to 0.8 MPa force is more preferable! /ヽ.
[0181] 前記加熱の少なくともいずれかを行う装置としては、特に制限はなぐ 目的に応じて 適宜選択することができ、例えば、ラミネーター (例えば、大成ラミネータネ土製 VP— I I、 -チゴ一モートン (株)製 VP130)などが好適に挙げられる。 [0181] The apparatus for performing at least one of the heating is not particularly limited and may be appropriately selected depending on the purpose. For example, a laminator (for example, Taisei Laminanee VP-II,-Chigo Morton Co., Ltd.) Preferable examples include VP130).
[0182] 本発明の感光性フィルム及び感光性積層体は、本発明の感光性組成物を用いるこ とにより、高精細な永久パターンを効率よく形成可能であるため、保護膜、層間絶縁 膜、及びソルダーレジストパターン等の永久パターン、などの各種パターン形成用、 カラーフィルタ、柱材、リブ材、スぺーサ一、隔壁などの液晶構造部材の製造用、ホロ グラム、マイクロマシン、プルーフなどのパターン形成用などに好適に用いることがで き、特に、プリント基板の永久パターン形成用に好適に用いることができる。 [0182] Since the photosensitive film and the photosensitive laminate of the present invention can efficiently form a high-definition permanent pattern by using the photosensitive composition of the present invention, a protective film, an interlayer insulating film, And various patterns such as permanent patterns such as solder resist patterns, color filters, pillar materials, rib materials, spacers, manufacturing liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc. For example, it can be suitably used for forming a permanent pattern on a printed circuit board.
特に、本発明の感光性フィルムは、該フィルムの厚みが均一であるため、永久パタ ーンの形成に際し、永久パターン (保護膜、層間絶縁膜、ソルダーレジストなど)を薄 層化しても、高加速度試験 (HAST)においてイオンマイグレーションの発生がなぐ 耐熱性、耐湿性に優れた高精細な永久パターンが得られるため、基材への積層がよ り精細に行われる。  In particular, since the photosensitive film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned in the formation of the permanent pattern, the photosensitive film of the present invention is high. Ion migration does not occur in the acceleration test (HAST) High-definition permanent patterns with excellent heat resistance and moisture resistance can be obtained, so that lamination to the substrate is performed more precisely.
[0183] (パターン形成装置及び永久パターン形成方法) [0183] (Pattern forming apparatus and permanent pattern forming method)
本発明のパターン形成装置は、前記感光層を備えており、光照射手段と光変調手 段とを少なくとも有する。  The pattern forming apparatus of the present invention includes the photosensitive layer and includes at least a light irradiation unit and a light modulation unit.
[0184] 本発明の永久パターン形成方法は、露光工程を少なくとも含み、適宜選択した現 像工程等のその他の工程を含む。 なお、本発明の前記パターン形成装置は、本発明の前記永久パターン形成方法の 説明を通じて明らかにする。 [0184] The permanent pattern forming method of the present invention includes at least an exposure step, and includes other steps such as an appropriately selected imaging step. In addition, the said pattern formation apparatus of this invention is clarified through description of the said permanent pattern formation method of this invention.
[0185] 〔露光工程〕  [Exposure process]
前記露光工程は、本発明の感光性フィルムにおける感光層に対し、露光を行うェ 程である。本発明の前記感光性フィルム、及び基材の材料については上述の通りで ある。  In the exposure step, the photosensitive layer in the photosensitive film of the present invention is exposed. The photosensitive film and the base material of the present invention are as described above.
[0186] 前記露光の対象としては、前記感光性フィルムにおける感光層である限り、特に制 限はなく、目的に応じて適宜選択することができ、例えば、上述のように、基材上に感 光性フィルムを加熱及び加圧の少なくとも ヽずれかを行!ヽながら積層して形成した積 層体に対して行われることが好ま 、。  [0186] The exposure target is not particularly limited as long as it is the photosensitive layer in the photosensitive film, and can be appropriately selected according to the purpose. It is preferable that this is performed on a laminated body formed by laminating the optical film while performing at least one of heating and pressing.
[0187] 前記露光としては、特に制限はなぐ目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光等が挙げられる力 これらの中でもデジタル露光が好ましい。  [0187] The exposure can be appropriately selected according to the purpose without any particular limitation, and powers such as digital exposure and analog exposure are preferable. Among these, digital exposure is preferable.
[0188] 前記アナログ露光としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、所定のパターンを有するネガマスクを介して、高圧水銀灯、超高圧水銀灯 、キセノンランプなどで露光を行なう方法が挙げられる。  [0188] The analog exposure can be appropriately selected depending on the purpose without any particular limitation. For example, exposure is performed with a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, or the like through a negative mask having a predetermined pattern. A method is mentioned.
[0189] 前記デジタル露光としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号 に応じて変調させた光を用いて行うことが好ましぐ例えば、前記感光層に対し、光照 射手段、及び前記光照射手段からの光を受光し出射する n個(ただし、 nは 2以上の 自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記描素部 を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に 対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置された露光 ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前 記描素部のうち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を 指定し、前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手 段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を 行い、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行う方 法が好ましい。 [0190] 本発明において「N重露光」とは、前記感光層の被露光面上の露光領域の略すベ ての領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上 に照射された N本の光点列 (画素列)と交わるような設定による露光を指す。ここで、「 光点列 (画素列)」とは、前記描素部により生成された描素単位としての光点 (画素) の並びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すも のとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよぐたとえば 平行四辺形状の配置等であってもよ 、。 [0189] The digital exposure can be appropriately selected according to the purpose without any particular limitation. For example, a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal. For example, it is preferable to use light. For example, n light (where n is a natural number of 2 or more) two-dimensional light receiving means and receiving light from the light irradiating means. An exposure head having light modulation means capable of controlling the drawing unit according to pattern information, the drawing unit being arranged in a scanning direction of the exposure head. The exposure head is arranged so that the column direction of the predetermined inclination angle Θ is set, and, for the exposure head, N-exposure (N double exposure) of the usable pixel parts by the used pixel part designating means. Where N is a natural number of 2 or more) Specify the element part, and control the element part of the exposure head so that only the element part specified by the used element part specifying unit is involved in the exposure by the element part control means. It is preferable that the exposure head is moved relative to the photosensitive layer in the scanning direction. In the present invention, “N double exposure” refers to a straight line parallel to the scanning direction of the exposure head on the exposed surface in almost all of the exposed region on the exposed surface of the photosensitive layer. Refers to exposure with a setting that intersects the N light spot rows (pixel rows) irradiated to the. Here, the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit. Refers to a sequence of The arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
ここで、露光領域の「略すベての領域」と述べたのは、各描素部の両側縁部では、 描素部列を傾斜させたことにより、前記露光ヘッドの走査方向に平行な直線と交わる 使用描素部の描素部列の数が減るため、かかる場合に複数の露光ヘッドをつなぎ合 わせるように使用したとしても、該露光ヘッドの取付角度や配置等の誤差により、走査 方向に平行な直線と交わる使用描素部の描素部列の数がわずかに増減することが あるため、また、各使用描素部の描素部列間のつなぎの、解像度分以下のごくわず かな部分では、取付角度や描素部配置等の誤差により、走査方向と直交する方向に 沿った描素部のピッチが他の部分の描素部のピッチと厳密に一致せず、走査方向に 平行な直線と交わる使用描素部の描素部列の数が ± 1の範囲で増減することがある ためである。なお、以下の説明では、 Nが 2以上の自然数である N重露光を総称して 「多重露光」という。さらに、以下の説明では、本発明の露光装置又は露光方法を、 描画装置又は描画方法として実施した形態について、「N重露光」及び「多重露光」 に対応する用語として、「N重描画」及び「多重描画」という用語を用いるものとする。 前記 N重露光の Nとしては、 2以上の自然数であれば、特に制限はなぐ目的に応 じて適宜選択することができる力 3以上の自然数が好ましぐ 3以上 7以下の自然数 力 り好ましい。  Here, the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution. In the small part, due to errors such as the mounting angle and pixel part placement, the pixel part pitch along the direction perpendicular to the scanning direction does not exactly match the pixel part pitch of the other part, and scanning is not possible. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction increases or decreases within the range of ± 1. Because there is. In the following description, N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”. Furthermore, in the following description, “N double exposure” and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method. The term “multiple drawing” shall be used. N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
[0191] 本発明の永久パターン形成方法に係るパターン形成装置の一例について図面を 参照しながら説明する。  [0191] An example of a pattern forming apparatus according to the permanent pattern forming method of the present invention will be described with reference to the drawings.
前記パターン形成装置としては、 Vヽゎゆるフラットベッドタイプの露光装置とされて おり、図 1に示すように、前記感光性フィルムにおける少なくとも前記感光層が積層さ れてなるシート状の感光材料 12 (以下、「感光層 12」ということがある)を表面に吸着 して保持する平板状の移動ステージ 14を備えている。 4本の脚部 16に支持された厚 い板状の設置台 18の上面には、ステージ移動方向に沿って延びた 2本のガイド 20 が設置されている。ステージ 14は、その長手方向がステージ移動方向を向くように配 置されると共に、ガイド 20によって往復移動可能に支持されている。なお、このパタ ーン形成装置 10には、ステージ 14をガイド 20に沿って駆動するステージ駆動装置( 図示せず)が設けられている。 The pattern forming apparatus is a V-type flatbed type exposure apparatus, and as shown in FIG. 1, a sheet-like photosensitive material 12 in which at least the photosensitive layer in the photosensitive film is laminated. (Hereinafter sometimes referred to as “photosensitive layer 12”) A flat moving stage 14 is provided. Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The pattern forming device 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
[0192] 設置台 18の中央部には、ステージ 14の移動経路を跨ぐようにコの字状のゲート 22 が設けられている。コの字状のゲート 22の端部の各々は、設置台 18の両側面に固 定されている。このゲート 22を挟んで一方の側にはスキャナ 24が設けられ、他方の 側には感光材料 12の先端及び後端を検知する複数 (たとえば 2個)のセンサ 26が設 けられている。スキャナ 24及びセンサ 26はゲート 22に各々取り付けられて、ステージ 14の移動経路の上方に固定配置されている。なお、スキャナ 24及びセンサ 26は、こ れらを制御する図示しな 、コントローラに接続されて 、る。  A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side. The scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
[0193] ここで、説明のため、ステージ 14の表面と平行な平面内に、図 1に示すように、互い に直交する X軸及び Y軸を規定する。  [0193] Here, for explanation, an X axis and a Y axis that are orthogonal to each other are defined in a plane parallel to the surface of the stage 14, as shown in FIG.
[0194] ステージ 14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の 端縁部には、 X軸の方向に向カゝつて開く「く」の字型に形成されたスリット 28が、等間 隔で 10本形成されている。各スリット 28は、上流側に位置するスリット 28aと下流側に 位置するスリット 28bと力もなつている。スリット 28aとスリット 28bとは互いに直交すると ともに、 X軸に対してスリット 28aは— 45度、スリット 28bは +45度の角度を有している  [0194] At the upstream edge along the scanning direction of the stage 14 (hereinafter, sometimes simply referred to as "upstream"), the "U" shape opens in the direction of the X axis. Ten slits 28 are formed at regular intervals. Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
[0195] スリット 28の位置は、前記露光ヘッド 30の中心と略一致させられている。また、各ス リット 28の大きさは、対応する露光ヘッド 30による露光エリア 32の幅を十分覆う大きさ とされている。また、スリット 28の位置としては、隣接する露光済み領域 34間の重複 部分の中心位置と略一致させてもよい。この場合、各スリット 28の大きさは、露光済み 領域 34間の重複部分の幅を十分覆う大きさとする。 [0195] The position of the slit 28 is substantially coincident with the center of the exposure head 30. In addition, the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
[0196] ステージ 14内部の各スリット 28の下方の位置には、それぞれ、後述する使用描素 部指定処理において、描素単位としての光点を検出する光点位置検出手段としての 単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述 する使用描素部指定処理にお!、て、前記描素部の選択を行う描素部選択手段とし ての演算装置(図示せず)に接続されている。 [0196] The position below each slit 28 in the stage 14 is a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later. A single cell type photodetector (not shown) is incorporated. In addition, each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
[0197] 露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に 移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移 動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であ つてもよい。  [0197] The operation mode of the pattern forming apparatus at the time of exposure may be a mode in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved stepwise. The exposure operation may be performed with the exposure head stationary at the destination position.
[0198] < <露光ヘッド > >  [0198] <<Exposure head>>
各露光ヘッド 30は、後述する内部のデジタル 'マイクロミラ一'デバイス(DMD) 36 の各描素部 (マイクロミラー)列方向が、走査方向と所定の設定傾斜角度 Θをなすよ うに、スキャナ 24に取り付けられている。このため、各露光ヘッド 30による露光エリア 32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ 14の移動に伴い 、感光層 12には露光ヘッド 30ごとに帯状の露光済み領域 34が形成される。図 2及 び図 3Bに示す例では、 2行 5列の略マトリックス状に配列された 10個の露光ヘッドが 、スキャナ 24に備えられている。  Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle Θ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in FIGS. 2 and 3B, the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
なお、以下において、 m行目の n列目に配列された個々の露光ヘッドを示す場合は 、露光ヘッド 30 と表記し、 m行目の n列目に配列された個々の露光ヘッドによる露 mn  In the following, when the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
光エリアを示す場合は、露光エリア 32 と表記する。  When the light area is indicated, it is expressed as exposure area 32.
mn  mn
[0199] また、図 3A及び図 3Bに示すように、帯状の露光済み領域 34のそれぞれが、隣接 する露光済み領域 34と部分的に重なるように、ライン状に配列された各行の露光へ ッド 30の各々は、その配列方向に所定間隔 (露光エリアの長辺の自然数倍、本実施 形態では 2倍)ずらして配置されている。このため、 1行目の露光エリア 32 と露光ェ  Further, as shown in FIGS. 3A and 3B, the exposure exposure of each row arranged in a line so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34 is performed. Each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
11 リア 32 との間の露光できない部分は、 2行目の露光エリア 32 により露光することが 11 The part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
12 21 12 21
できる。  it can.
[0200] 露光ヘッド 30の各々は、図 4、図 5A及び図 5Bに示すように、入射された光を画像 データに応じて描素部ごとに変調する光変調手段 (描素部ごとに変調する空間光変 調素子)として、 DMD36 (米国テキサス 'インスツルメンッ社製)を備えている。この D MD36は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコン トローラに接続されている。このコントローラのデータ処理部では、入力された画像デ ータに基づいて、露光ヘッド 30ごとに、 DMD36上の使用領域内の各マイクロミラー を駆動制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処 理部で生成した制御信号に基づいて、露光ヘッド 30ごとに、 DMD36の各マイクロミ ラーの反射面の角度を制御する。 As shown in FIGS. 4, 5A, and 5B, each of the exposure heads 30 is a light modulation unit that modulates incident light for each pixel part according to image data (modulation for each pixel part). DMD36 (made by Texas Instruments Inc., USA) as a spatial light modulator. This DMD36 is a controller as a pixel part control means having a data processing part and a mirror drive control part. Connected to the trawler. The data processing unit of this controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
[0201] 図 4に示すように、 DMD36の光入射側には、光ファイバの出射端部 (発光点)が露 光エリア 32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を 備えたファイバアレイ光源 38、ファイバアレイ光源 38から出射されたレーザ光を補正 して DMD上に集光させるレンズ系 40、このレンズ系 40を透過したレーザ光を DMD 36に向けて反射するミラー 42がこの順に配置されている。なお図 4では、レンズ系 4 0を概略的に示してある。  [0201] As shown in FIG. 4, on the light incident side of the DMD 36, a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. A fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36 The mirrors 42 to be used are arranged in this order. In FIG. 4, the lens system 40 is schematically shown.
[0202] 上記レンズ系 40は、図 5A及び図 5Bに詳しく示すように、ファイバアレイ光源 38か ら出射されたレーザ光を平行光化する 1対の組合せレンズ 44、平行光化されたレー ザ光の光量分布が均一になるように補正する 1対の組合せレンズ 46、及び光量分布 が補正されたレーザ光を DMD36上に集光する集光レンズ 48で構成されている。  [0202] As shown in detail in Figs. 5A and 5B, the lens system 40 includes a pair of combination lenses 44 for collimating the laser light emitted from the fiber array light source 38, and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
[0203] また、 DMD36の光反射側には、 DMD36で反射されたレーザ光を感光層 12の被 露光面上に結像するレンズ系 50が配置されている。レンズ系 50は、 DMD36と感光 層 12の被露光面とが共役な関係となるように配置された、 2枚のレンズ 52及び 54か らなる。  [0203] On the light reflection side of the DMD 36, a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed. The lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
[0204] 本実施形態では、ファイバアレイ光源 38から出射されたレーザ光は、実質的に 5倍 に拡大された後、 DMD36上の各マイクロミラーからの光線が上記のレンズ系 50によ つて約 5 μ mに絞られるように設定されて!、る。  [0204] In the present embodiment, the laser light emitted from the fiber array light source 38 is substantially magnified five times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 μm!
[0205] 一光変調手段  [0205] One-light modulation means
前記光変調手段としては、 n個(ただし、 nは 2以上の自然数)の 2次元状に配列さ れた前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なもので あれば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、空間光変 調素子が好ましい。  The light modulating means has n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements, and the picture elements can be controlled according to the pattern information As long as it is a thing, it can select suitably according to the objective without a restriction | limiting especially, For example, a spatial light modulation element is preferable.
[0206] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Spatial Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。 [0206] Examples of the spatial light modulator include a digital micromirror device (DMD). , MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), optical element that modulates transmitted light by electro-optic effect (PLZT element), liquid crystal light shirter (FLC), etc. Among these, DMD is preferable.
[0207] また、前記光変調手段は、形成するパターン情報に基づ 、て制御信号を生成する パターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。  [0207] Further, it is preferable that the light modulation means has pattern signal generation means for generating a control signal based on pattern information to be formed. In this case, the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  The control signal can be appropriately selected according to the purpose for which there is no particular limitation. For example, a digital signal is preferably used.
[0208] 以下、前記光変調手段の一例について図面を参照しながら説明する。  [0208] Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD36は図 6に示すように、 SRAMセル (メモリセル) 56上〖こ、各々描素(ピクセ ル)を構成する描素部として、多数のマイクロミラー 58が格子状に配列されてなるミラ 一デバイスである。本実施形態では、 1024列 X 768行のマイクロミラー 58が配され てなる DMD36を使用する力 このうち DMD36に接続されたコントローラにより駆動 可能すなわち使用可能なマイクロミラー 58は、 1024列 X 256行のみであるとする。 DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して 1 ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用 することにより 1ライン当りの変調速度が速くなる。各マイクロミラー 58は支柱に支えら れており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお 、本実施形態では、各マイクロミラー 58の反射率は 90%以上であり、その配列ピッチ は縦方向、横方向ともに 13. 7 mである。 SRAMセル 56は、ヒンジ及びヨークを含 む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CMO Sのものであり、全体はモノリシック(一体型)に構成されている。  As shown in FIG. 6, the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device. In this embodiment, the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, micromirrors 58 that can be driven by a controller connected to DMD36, that is usable, are only 1024 columns x 256 rows. Suppose that The data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction. The SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
[0209] DMD36の SRAMセル (メモリセル) 56〖こ、所望の 2次元パターンを構成する各点 の濃度を 2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー 58が、対角線を中心として DMD36が配置された基板側に対して ± α度 (たとえば ± 10度)のいずれかに傾く。図 7Αは、マイクロミラー 58がオン状態である + α度に 傾いた状態を示し、図 7Βは、マイクロミラー 58がオフ状態である α度に傾いた状 態を示す。このように、画像信号に応じて、 DMD36の各ピクセルにおけるマイクロミ ラー 58の傾きを、図 6に示すように制御することによって、 DMD36に入射したレーザ 光 Bはそれぞれのマイクロミラー 58の傾き方向へ反射される。 [0209] DMD36 SRAM cell (memory cell) 56 mm. When an image signal representing the density of each point constituting the desired two-dimensional pattern is written in binary, each micromirror 58 supported by the support is Inclined to one of ± α degrees (for example, ± 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center. Fig. 7 示 し shows a state tilted to + α degrees when the micromirror 58 is on, and Fig. 7 、 shows a state tilted to α degrees when the micromirror 58 is off Show the state. In this way, by controlling the inclination of the micromirror 58 in each pixel of the DMD 36 as shown in FIG. 6 according to the image signal, the laser light B incident on the DMD 36 moves in the inclination direction of each micromirror 58. Reflected.
[0210] 図 6には、 DMD36の一部を拡大し、各マイクロミラー 58が + α度又は α度に制御 されている状態の一例を示す。それぞれのマイクロミラー 58のオンオフ制御は、 DM D36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミ ラー 58で反射したレーザ光 Bが進行する方向には、光吸収体(図示せず)が配置さ れている。  FIG. 6 shows an example in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + α degrees or α degrees. The on / off control of each micromirror 58 is performed by the controller connected to the DM D36. In addition, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
[0211] 一光照射手段  [0211] Single light irradiation means
前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。  The light irradiation means can be appropriately selected according to the purpose without any particular limitation. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, etc. fluorescent tube, LED, A known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。  The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
[0212] 前記紫外から可視光線の波長は、例えば、 300-1, 500nmが好ましぐ 320-8 OOrnn力より好ましく、 330〜650mn力特に好まし!/、。  [0212] The wavelength of the ultraviolet to visible light is preferably 300-1,500 nm, more preferably 320-8 OOrnn force, particularly preferably 330-650 mn force! / ,.
前記レーザ光の波長は、例えば、 200〜1, 500nm力好ましく、 300〜800nm力よ り好ましく、 330〜500mn力更に好ましく、 400〜450mn力 ^特に好まし!/、。  The wavelength of the laser light is, for example, 200 to 1,500 nm force, more preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force.
[0213] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザビームを集光して前記 マルチモード光ファイバに結合させる集合光学系とを有する手段が好ま 、。  [0213] As means capable of irradiating the combined laser, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber. Preferred is a means having a collective optical system.
[0214] 前記合波レーザを照射可能な手段 (ファイバアレイ光源)としては、例えば、特開 20 05 258431号公報〔0109〕〜〔0146〕に記載の手段が挙げられる。 [0214] As means (fiber array light source) capable of irradiating the combined laser, for example, JP-A-20 No. 05 258431 gazette [0109] to [0146].
[0215] < <使用描素部指定手段 > > [0215] <<Used pixel part specification method>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上に お!、て検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基 づき、 N重露光を実現するために使用する描素部を選択する描素部選択手段とを少 なくとも備えることが好まし 、。  The used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
以下、前記使用描素部指定手段による、 N重露光に使用する描素部の指定方法 の例について説明する。  Hereinafter, an example of a method for designating a pixel part to be used for N double exposure by the used pixel part designation unit will be described.
[0216] (1)単一露光ヘッド内における使用描素部の指定方法 [0216] (1) How to specify the pixel part to be used in a single exposure head
本実施形態(1)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、各露光ヘッド 30の取付角度誤差に起因する解像度のばらつき と濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指定方法 を説明する。  In the present embodiment (1), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced. We will explain how to specify the pixel parts to be used to achieve ideal double exposure.
[0217] 露光ヘッド 30の走査方向に対する描素部(マイクロミラー 58)の列方向の設定傾斜 角度 Θとしては、露光ヘッド 30の取付角度誤差等がない理想的な状態であれば、使 用可能な 1024列 X 256行の描素部を使用してちょうど 2重露光となる角度 Θ より  [0217] The set tilt angle Θ in the column direction of the pixel part (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used as long as there is no mounting angle error of the exposure head 30 etc. From the angle Θ, which is exactly double exposure using a 1024 column x 256 row pixel part
ideal も、若干大きい角度を採用するものとする。  The ideal also uses a slightly larger angle.
この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラー 58の列方向の個数 s  This angle Θ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
ideal  ideal
、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光ヘッド 30を傾斜させた状 態においてマイクロミラーによって形成される走査線のピッチ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1)  The following formula 1, spsin θ ≥ Ν δ (formula), with respect to the column spacing p of the usable micromirrors 58 and the pitch δ of the scanning lines formed by the micromirrors with the exposure head 30 inclined. 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
となる。本実施形態(1)では、上記のとおり s = 256、 N = 2であるので、前記式 3より、 角度 Θ は約 0. 45度である。したがって、設定傾斜角度 Θは、たとえば 0. 50度程 度の角度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光 ヘッド 30すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となる ように、初期調整されているものとする。 It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle Θ is about 0.45 degrees according to the equation 3. Therefore, the set inclination angle Θ is, for example, about 0.50 degrees. An angle of degrees should be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is an angle close to the set inclination angle Θ.
[0218] 図 8は、上記のように初期調整されたパターン形成装置 10において、 1つの露光へ ッド 30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに 生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部 (マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位として の光点にっ 、て、第 m行目の光点 ¾τ (m)、第 n列目の光点を c (n)、第 m行第 n列の 光点を P (m, n)とそれぞれ表記するものとする。  [0218] FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example. In the following drawings and description, the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface, the light spot in the m-th row ¾τ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
[0219] 図 8の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、使用可能なマイクロミラー 58からの光点群のパターンを示し、下段部分 は、上段部分に示したような光点群のパターンが現れて 、る状態でステージ 14を移 動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示 したものである。  [0219] The upper part of FIG. 8 shows a pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
なお、図 8では、説明の便宜のため、使用可能なマイクロミラー 58の奇数列による 露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  In FIG. 8, for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
[0220] 図 8の例では、設定傾斜角度 0を上記の角度 0 よりも若干大きい角度を採用し [0220] In the example shown in Fig. 8, the set tilt angle 0 is set to a slightly larger angle than the above angle 0.
ideal  ideal
た結果として、また露光ヘッド 30の取付角度の微調整が困難であるために、実際の 取付角度と上記の設定傾斜角度 Θとが誤差を有する結果として、被露光面上のいず れの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーに よる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の 描素部列により形成された、被露光面上の重複露光領域において、理想的な 2重露 光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。  As a result of this, and because it is difficult to finely adjust the mounting angle of the exposure head 30, there is an error between the actual mounting angle and the set inclination angle Θ. Also in FIG. Specifically, in an overlapped exposure area on the exposed surface formed by a plurality of pixel part rows in both an exposure pattern by an odd-numbered micromirror and an exposure pattern by an even-numbered micromirror. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
[0221] さらに、図 8の例では、被露光面上に現れるパターン歪みの一例であって、被露光 面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じてい る。このような角度歪みが生じる原因としては、 DMD36と被露光面間の光学系の各 種収差やアラインメントずれ、及び DMD36自体の歪みやマイクロミラーの配置誤差 等が挙げられる。 Furthermore, the example of FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” is generated in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform. The The cause of this angular distortion is the various aberrations and misalignment of the optical system between the DMD36 and the exposed surface, the distortion of the DMD36 itself, and the placement error of the micromirrors. Etc.
図 8の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列 ほど小さく、図の右方の列ほど大きくなつている形態の歪みである。この角度歪みの 結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく 、図の右方に示した被露光面上ほど大きくなつている。  The angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
[0222] 上記したような、複数の描素部列により形成された、被露光面上の重複露光領域に おける濃度むらを軽減するために、前記光点位置検出手段としてスリット 28及び光 検出器の組を用い、露光ヘッド 30ごとに実傾斜角度 Θ 'を特定し、該実傾斜角度 Θ ' に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を 用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 実傾斜角度 θ Ίま、光点位置検出手段が検出した少なくとも 2つの光点位置に基づ き、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光へ ッドの走査方向とがなす角度により特定される。 [0222] In order to reduce density unevenness in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows as described above, the slit 28 and the photodetector are used as the light spot position detecting means. The actual inclination angle Θ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle Θ ′. A process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle θ, the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
以下、図 9及び図 10を用いて、前記実傾斜角度 Θ 'の特定、及び使用画素選択処 理について説明する。  Hereinafter, the actual inclination angle Θ ′ and the used pixel selection process will be described with reference to FIGS.
[0223] 一実傾斜角度 の特定 [0223] Specifying the actual inclination angle
図 9は、 1つの DMD36による露光エリア 32と、対応するスリット 28との位置関係を 示した上面図である。スリット 28の大きさは、露光エリア 32の幅を十分覆う大きさとさ れている。  FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
本実施形態(1)の例では、露光エリア 32の略中心に位置する第 512列目の光点 列と露光ヘッド 30の走査方向とがなす角度を、上記の実傾斜角度 Θ 'として測定す る。具体的には、 DMD36上の第 1行目第 512列目のマイクロミラー 58、及び第 256 行目第 512列目のマイクロミラー 58をオン状態とし、それぞれに対応する被露光面 上の光点 P (l, 512)及び Ρ (256, 512)の位置を検出し、それらを結ぶ直線と露光 ヘッドの走査方向とがなす角度を実傾斜角度 Θ 'として特定する。  In the example of the present embodiment (1), the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle Θ ′. The Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and Ρ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle Θ ′.
[0224] 図 10は、光点 Ρ (256, 512)の位置の検出手法を説明した上面図である。 FIG. 10 is a top view illustrating a method for detecting the position of the light spot (256, 512).
まず、第 256行目第 512列目のマイクロミラー 58を点灯させた状態で、ステージ 14 をゆっくり移動させてスリット 28を Υ軸方向に沿って相対移動させ、光点 Ρ (256, 512 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, YO)と する。この座標 (XO, YO)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。 First, with the micromirror 58 in the 256th row and the 512th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Υ axis direction, and the light spot Ρ (256, 512 The slit 28 is positioned at an arbitrary position such that) comes between the upstream slit 28a and the downstream slit 28b. Let the coordinates of the intersection of the slit 28a and the slit 28b at this time be (XO, YO). The value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0225] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 10における右方に相対 移動させる。そして、図 10において二点鎖線で示すように、光点 P (256, 512)の光 が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止さ せる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256, 512)の位置として記録する。  [0225] Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0226] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 10におけ る左方に相対移動させる。そして、図 10において二点鎖線で示すように、光点 P (25 6, 512)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を 光点 P (256, 512)の位置として記録する。  [0226] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0227] 以上の測定結果から、光点 P (256, 512)の被露光面上における位置を示す座標  [0227] From the above measurement results, coordinates indicating the position of the light spot P (256, 512) on the exposed surface
(X, Y)を、 Χ=ΧΟ+ (Υ1— Y2)Z2、 Y= (Y1 +Y2)Z2の計算により決定する。同 様の測定により、 P (l, 512)の位置を示す座標も決定し、それぞれの座標を結ぶ直 線と、露光ヘッド 30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度 Θ と して特定する。  (X, Y) is determined by calculating Χ = ΧΟ + (Υ1—Y2) Z2 and Y = (Y1 + Y2) Z2. By the same measurement, the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as Θ.
[0228] 使用描素部の選択  [0228] Selection of used pixel part
このようにして特定された実傾斜角度 Θ 'を用い、前記光検出器に接続された前記 演算装置は、下記式 4  Using the actual inclination angle Θ ′ specified in this way, the arithmetic unit connected to the photodetector is expressed by the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近!ヽ自然数 Tを導出し、 DMD36上の 1行目から T行目の マイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行 う。これにより、第 512列目付近の露光領域において、理想的な 2重露光に対して、 露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロ ミラーを、実際に使用するマイクロミラーとして選択することができる。 A natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure. As a result, in the exposure area near the 512th column, the micro area is such that the total area of the overexposed area and the underexposed area is minimized with respect to the ideal double exposure. The mirror can be selected as the micromirror that is actually used.
[0229] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、第 512列目付近の露光領域において、 理想的な 2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不 足となる領域が生じな 、ようなマイクロミラーを、実際に使用するマイクロミラーとして 選択することができる。  [0229] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, in the exposure area in the vicinity of the 512th column, a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
また、値 t以下の最大の自然数を導出することとしてもよい。その場合、第 512列目 付近の露光領域において、理想的な 2重露光に対して、露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  It is also possible to derive the maximum natural number less than the value t. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure. It can be selected as a micromirror to be actually used.
[0230] 図 11は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミ ラーが生成した光点のみを用いて行った露光において、図 8に示した被露光面上の むらがどのように改善されるかを示した説明図である。  FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
この例では、上記の自然数 Tとして T= 253が導出され、第 1行目力も第 253行目 のマイクロミラーが選択されたものとする。選択されな力つた第 254行目から第 256行 目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に 設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図 1 1に示すとおり、第 512列目付近の露光領域では、露光過多及び露光不足は、ほぼ 完全に解消され、理想的な 2重露光に極めて近い均一な露光が実現される。  In this example, it is assumed that T = 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force. For the micromirrors in the 254th to 256th lines that have not been selected, a signal for setting the angle in the always-off state is sent by the pixel part control means. Is not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
[0231] 一方、図 11の左方の領域(図中の c (l)付近)では、前記角度歪みにより、被露光 面上における光点列の傾斜角度が中央付近(図中の c (512)付近)の領域における 光線列の傾斜角度よりも小さくなつている。したがって、 c (512)を基準として測定さ れた実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーのみによる露光では、偶数 列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的 な 2重露光に対して露光不足となる領域がわずかに生じてしまう。  On the other hand, in the left region of FIG. 11 (near c (l) in the figure), the inclination angle of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle θ Ί measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補 完され、前記角度歪みによる露光むらを、 2重露光による埋め合わせの効果で最小と することができる。 However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the areas where the exposure amount is insufficient are compensated for each other, and the uneven exposure due to the angular distortion is performed. With the effect of offset by double exposure can do.
[0232] また、図 11の右方の領域(図中の c (1024)付近)では、前記角度歪みにより、被露 光面上における光線列の傾斜角度が、中央付近(図中の c (512)付近)の領域にお ける光線列の傾斜角度よりも大きくなつている。したがって、 c (512)を基準として測 定された実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーによる露光では、図に 示すように、理想的な 2重露光に対して露光過多となる領域がわずかに生じてしまう。 し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完 され、前記角度歪による濃度むらを、 2重露光による埋め合わせの効果で最小とする ことができる。  [0232] Also, in the region on the right side of Fig. 11 (near c (1024) in the figure), the angle of inclination of the light beam on the exposed light surface is near the center (c ( It is larger than the angle of inclination of the ray train in the area near 512). Therefore, in the exposure with the micromirror selected based on the actual tilt angle θ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns overlap each other, the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
[0233] 本実施形態(1)では、上述のとおり、第 512列目の光線列の実傾斜角度 Θ 'が測 定され、該実傾斜角度 Θ を用い、前記式 (4)により導出された Tに基づいて使用す るマイクロミラー 58を選択したが、前記実傾斜角度 Θ 'の特定方法としては、複数の 描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角 度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを 実傾斜角度 Θ 'として特定し、前記式 4等によって実際の露光時に実際に使用する マイクロミラーを選択する形態としてもょ 、。  In the present embodiment (1), as described above, the actual inclination angle Θ ′ of the 512th ray array is measured, and the actual inclination angle Θ is used to derive the equation (4). The micromirror 58 to be used is selected based on T. As a method for specifying the actual inclination angle Θ ′, the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used. A plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle Θ '. As a form to select the micro mirror to be used.
前記平均値又は前記中央値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対し て露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現すること ができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最 小に抑えられ、かつ、露光過多となる領域の描素単位数 (光点数)と、露光不足とな る領域の描素単位数 (光点数)とが等しくなるような露光を実現することが可能である また、前記最大値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光過 多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足 となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を 実現することが可能である。  When the average value or the median value is set to the actual inclination angle Θ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
さらに、前記最小値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光不 足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多 となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を 実現することが可能である。 Furthermore, if the minimum value is the actual tilt angle Θ ′, the exposure is not ideal for ideal N double exposure. It is possible to realize exposure that places more importance on the elimination of areas that become legs, for example, to realize exposure that minimizes the area of areas that are overexposed and does not cause areas that are underexposed. Is possible.
[0234] 一方、前記実傾斜角度 Θ の特定は、同一の描素部の列(光点列)中の少なくとも 2 つの光点の位置に基づく方法に限定されない。例えば、同一描素部列 c (n)中の 1 つ又は複数の光点の位置と、該 c (n)近傍の列中の 1つ又は複数の光点の位置とか ら求めた角度を、実傾斜角度 Θ 'として特定してもよい。  On the other hand, the identification of the actual inclination angle Θ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n), The actual inclination angle Θ ′ may be specified.
具体的には、 c (n)中の 1つの光点位置と、露光ヘッドの走査方向に沿って直線上 かつ近傍の光点列に含まれる 1つ又は複数の光点位置とを検出し、これらの位置情 報から、実傾斜角度 Θ 'を求めることができる。さらに、 c (n)列近傍の光点列中の少 なくとも 2つの光点(たとえば、 c (n)を跨ぐように配置された 2つの光点)の位置に基 づいて求めた角度を、実傾斜角度 Θ 'として特定してもよい。  Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected. The actual inclination angle Θ ′ can be obtained from these positional information. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. The actual inclination angle Θ ′ may be specified.
[0235] 以上のように、パターン形成装置 10を用いた本実施形態(1)の使用描素部の指定 方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度の ばらつきや濃度のむらを軽減し、理想的な N重露光を実現することができる。  [0235] As described above, according to the specification method of the used pixel part of the present embodiment (1) using the pattern forming apparatus 10, the variation in resolution due to the effect of the mounting angle error of each exposure head or the pattern distortion, Reduces density unevenness and achieves ideal N double exposure.
[0236] (2)複数露光ヘッド間における使用描素部の指定方法 < 1 >  [0236] (2) Specification method of used pixel part between multiple exposure heads <1>
本実施形態(2)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な状態からのずれに起因する解 In this embodiment (2), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30. In the connection area, the solution caused by the deviation of the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction from the ideal state.
12 21 12 21
像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Describes how to specify the pixel part to be used in order to reduce the variation in image density and uneven density, and to realize ideal double exposure.
[0237] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度 Θとしては、露光ヘッド 30の 取付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描 素部マイクロミラー 58を使用してちょうど 2重露光となる角度 Θ を採用するものとす [0237] The set tilt angle Θ of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle Θ that is exactly double exposure.
ideal  ideal
る。  The
この角度 Θ は、上記の実施形態(1)と同様にして前記式 1〜3から求められる。  This angle Θ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
ideal  ideal
本実施形態(2)において、パターン形成装置 10は、各露光ヘッド 30すなわち各 DM D36の取付角度がこの角度 Θ となるように、初期調整されているものとする。 In the present embodiment (2), the pattern forming apparatus 10 includes each exposure head 30, that is, each DM. It is assumed that D36 is initially adjusted so that the mounting angle of D36 becomes this angle Θ.
ideal  ideal
[0238] 図 12は、上記のように初期調整されたパターン形成装置 10において、 2つの露光 ヘッド(一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な  [0238] Fig. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
12 21  12 21
状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示し た説明図である。各露光ヘッドの X軸方向に関する相対位置のずれは、露光ヘッド 間の相対位置の微調整が困難であるために生じ得るものである。  FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
[0239] 図 12の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58 [0239] The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 with the stage 14 stationary.
12 21  12 21
力もの光点群のパターンを示した図である。図 12の下段部分は、上段部分に示した ような光点群のパターンが現れている状態でステージ 14を移動させて連続露光を行 つた際に、被露光面上に形成される露光パターンの状態を、露光エリア 32 と 32  It is the figure which showed the pattern of the light spot group of force. The lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing. The state of exposure areas 32 and 32
12 21 につ 、て示したものである。  12 21 is shown here.
なお、図 12では、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露 光パターンを、画素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに 分けて示してあるが、実際の被露光面上における露光パターンは、これら 2つの露光 パターンを重ね合わせたものである。  In FIG. 12, for convenience of explanation, every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B. However, the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
[0240] 図 12の例では、上記した X軸方向に関する露光ヘッド 30 と 30 との間の相対位 [0240] In the example of FIG. 12, the relative position between the exposure heads 30 and 30 in the X-axis direction described above.
12 21  12 21
置の、理想的な状態からのずれの結果として、画素列群 Aによる露光パターンと画素 列群 Bによる露光パターンとの双方で、露光エリア 32 と 32 の前記ヘッド間つなぎ  As a result of the deviation from the ideal state, the connection between the heads of the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B is performed.
12 21  12 21
領域にお 、て、理想的な 2重露光の状態よりも露光量過多な部分が生じてしまって いる。  In the area, there is an overexposed part than the ideal double exposure state.
[0241] 上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド 間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点 位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 と 30 力  [0241] In order to reduce density unevenness appearing in the inter-head connecting region formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), the light spot position detection is performed. Using a combination of slit 28 and photodetector as means, exposure head 30 and 30 force
12 21 の光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点 のいくつかについて、その位置 (座標)を検出する。該位置 (座標)に基づいて、前記 描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光 に使用するマイクロミラーを選択する処理を行うものとする。 [0242] 一位置 (座標)の検出 The position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means. [0242] Detection of one position (coordinate)
図 13は、図 12と同様の露光エリア 32 及び 32 と、対応するスリット 28との位置関  FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
12 21  12 21
係を示した上面図である。スリット 28の大きさは、露光ヘッド 30 と 30 による露光済  It is the top view which showed engagement. The size of the slit 28 is already exposed by the exposure heads 30 and 30.
12 21  12 21
み領域 34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド 30 と 30 に  Large enough to cover the width of the overlap between areas 34, i.e. exposure heads 30 and 30
12 21 より被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。  The size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
[0243] 図 14は、一例として露光エリア 32 の光点 P (256, 1024)の位置を検出する際の [0243] Figure 14 shows an example of detecting the position of light spot P (256, 1024) in exposure area 32.
21  twenty one
検出手法を説明した上面図である。  It is a top view explaining the detection method.
まず、第 256行目第 1024列目のマイクロミラーを点灯させた状態で、ステージ 14を ゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 1024 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, Y0)と する。この座標 (XO, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror in the 256th row and the 1024th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side. At this time, the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0). The value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0244] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 14における右方に相対 移動させる。そして、図 14において二点鎖線で示すように、光点 P (256, 1024)の 光が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止 させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256 , 1024)の位置として記録する。  [0244] Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
[0245] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 14におけ る左方に相対移動させる。そして、図 14において二点鎖線で示すように、光点 P (25 6, 1024)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を、 光点 P (256, 1024)として記録する。  [0245] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
[0246] 以上の測定結果から、光点 P (256, 1024)の被露光面における位置を示す座標 ( X, Y)を、 X=X0+ (Y1—Y2)Z2、 Υ= (Υ1 +Υ2)Ζ2の計算により決定する。  [0246] From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 1024) on the exposed surface are: X = X0 + (Y1-Y2) Z2, Υ = (Υ1 + Υ2) Determined by calculation of Ζ2.
[0247] 不使用描素部の特定  [0247] Identification of unused pixel parts
図 12の例では、まず、露光エリア 32 の光点 Ρ (256, 1)の位置を、上記の光点位 置検出手段としてスリット 28と光検出器の組により検出する。続いて、露光エリア 32 In the example of Fig. 12, first, the position of light spot Ρ (256, 1) in exposure area 32 is Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
21 の第 256行目の光点行 r (256)上の各光点の位置を、 P (256, 1024) , P (256, 10 23) · · ·と順番に検出していき、露光エリア 32 の光点 P (256, 1)よりも大きい X座標  The position of each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of P (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
12  12
を示す露光エリア 32 の光点 P (256, n)が検出されたところで、検出動作を終了す When the light spot P (256, n) in the exposure area 32 indicating is detected, the detection operation ends.
21  twenty one
る。そして、露光エリア 32 の光点列 c (n+ l)から c (1024)を構成する光点に対応 The And it corresponds to the light spots that compose c (1024) from light spot sequence c (n + l) in exposure area 32
21  twenty one
するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特 定する。 The micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
例えば、図 12において、露光エリア 32 の光点 P (256, 1020)力 露光エリア 32  For example, in FIG. 12, the light spot P (256, 1020) force in the exposure area 32 Exposure area 32
21 1 の光点 P (256, 1)よりも大きい X座標を示し、その露光エリア 32 の光点 P (256, 1 21 Shows an X coordinate larger than light spot P (256, 1) of 1 and light spot P (256, 1) of exposure area 32
2 21 2 21
020)が検出されたところで検出動作が終了したとすると、図 15において斜線で覆わ れた部分 70に相当する露光エリア 32 の第 1021行力も第 1024行を構成する光点  020) is detected, the detection operation ends.In FIG. 15, the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
21  twenty one
に対応するマイクロミラー力 本露光時に使用しないマイクロミラーとして特定される。 次に、 N重露光の数 Nに対して、露光エリア 32 の光点 P (256, N)の位置が検出 The micromirror force corresponding to is specified as a micromirror that is not used during the main exposure. Next, the position of the light spot P (256, N) in the exposure area 32 is detected for the number N of N double exposures.
12  12
される。本実施形態(2)では、 N = 2であるので、光点 P (256, 2)の位置が検出され る。 Is done. In this embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
続いて、露光エリア 32  Next, exposure area 32
21の光点列のうち、上記で本露光時に使用しないマイクロミラ 一に対応する光点列として特定されたものを除き、最も右側の第 1020列を構成する 光点の位置を、 P (l, 1020)力も順番に P (l, 1020)、 P (2, 1020) · · ·と検出して いき、露光エリア 32 の光点 P (256, 2)よりも大きい X座標を示す光点 P (m, 1020)  Except for the 21 light spot sequences identified above as the light spot train corresponding to the micromirror that is not used during the main exposure, the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020) The force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
12  12
が検出されたところで、検出動作を終了する。 When is detected, the detection operation is terminated.
その後、前記光検出器に接続された演算装置において、露光エリア 32  Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
12の光点 P ( 12 light spots P (
256, 2)の X座標と、露光エリア 32 の光点 P (m, 1020)及び P (m— 1, 1020)の X 256, 2) and X of the light spots P (m, 1020) and P (m—1, 1020) in the exposure area 32
21  twenty one
座標とが比較され、露光エリア 32 の光点 P (m, 1020)の X座標の方が露光エリア 3 The X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
21  twenty one
2 の光点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020) If the X coordinate of light spot P (256, 2) of 2 is close, light spot P (l, 1020) of exposure area 32
12 21 12 21
力も P (m— 1, 1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラ 一として特定される。 The micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
また、露光エリア 32 の光点 P (m—1, 1020)の X座標の方が露光エリア 32 の光  In addition, the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
21 12 点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020)力も P (m - 2, 1020)に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特 定される。 21 When close to the X coordinate of 12 point P (256, 2), the light spot P (l, 1020) force of exposure area 32 is also P (m -Micromirror force corresponding to 2, 1020) Specified as a micromirror not used in this exposure.
さらに、露光エリア 32 の光点 P (256, N— 1)すなわち光点 P (256, 1)の位置と、  Furthermore, the position of the light spot P (256, N-1) in the exposure area 32, that is, the light spot P (256, 1),
12  12
露光エリア 32 の次列である第 1019列を構成する各光点の位置についても、同様  The same applies to the position of each light spot that constitutes column 1019, which is the next column of exposure area 32.
21  twenty one
の検出処理及び使用しないマイクロミラーの特定が行われる。  Detection processing and micromirrors that are not used are identified.
[0249] その結果、たとえば、図 15において網掛けで覆われた領域 72を構成する光点に対 応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。 これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設 定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。  As a result, for example, micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
[0250] このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイク 口ミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択すること により、露光エリア 32 と 32 の前記ヘッド間つなぎ領域において、理想的な 2重露  [0250] In this way, by identifying micromirrors that are not used during actual exposure and selecting those that are not used as microphone mirrors during actual exposure, exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
12 21  12 21
光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とする ことができ、図 15の下段に示すように、理想的な 2重露光に極めて近い均一な露光 を実現することができる。  The total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
[0251] なお、上記の例においては、図 15において網掛けで覆われた領域 72を構成する 光点の特定に際し、露光エリア 32 の光点 P (256, 2)の X座標と、露光エリア 32 の [0251] In the above example, the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area are determined when specifying the light spot that constitutes the shaded area 72 in FIG. 32 of
12 21 光点 P (m, 1020)及び P (m— 1, 1020)の X座標との比較を行わずに、ただちに、 露光エリア 32 の光点 P (l, 1020)力ら P (m— 2, 1020)に対応するマイクロミラー  12 21 Without comparing P (m, 1020) and P (m—1, 1020) with the X-coordinates, the light spot P (l, 1020) force in the exposure area 32 immediately increases P (m— 2, 1020)
21  twenty one
を、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド 間つなぎ領域にぉ 、て、理想的な 2重露光に対して露光過多となる領域の面積が最 小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用す るマイクロミラーとして選択することができる。  May be specified as a micromirror that is not used during the main exposure. In that case, a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
また、露光エリア 32 の光点 P (l, 1020)力ら P (m— 1, 1020)に対応するマイクロ  In addition, the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
21  twenty one
ミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記へ ッド間つなぎ領域において、理想的な 2重露光に対して露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。 さらに、前記ヘッド間つなぎ領域において、理想的な 2重描画に対して露光過多と なる領域の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)と が等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。 You may identify a mirror as a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used. Further, in the connecting area between the heads, the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
[0252] 以上のように、パターン形成装置 10を用いた本実施形態(2)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれに起因する解 像度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。 [0252] As described above, according to the method for designating the used picture element portion of the present embodiment (2) using the pattern forming apparatus 10, the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads. It reduces image variability and density unevenness, making it possible to achieve ideal N double exposure.
[0253] (3)複数露光ヘッド間における使用描素部の指定方法 < 2 > [0253] (3) Specification method of used pixel part between multiple exposure heads <2>
本実施形態(3)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光 In this embodiment (3), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. In the connection area, the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
12 21 12 21
ヘッドの取付角度誤差、及び 2つの露光ヘッド間の相対取付角度誤差に起因する解 像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Designation of the pixel part to be used to realize ideal double exposure by reducing the variation in resolution and density unevenness caused by the head mounting angle error and the relative mounting angle error between the two exposure heads A method will be described.
[0254] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、露光ヘッド 30の取 付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描素 部(マイクロミラー 58)を使用してちょうど 2重露光となる角度 Θ よりも若干大きい角 [0254] The set tilt angle of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and the 1024 columns x 256 rows of usable pixel parts (micrometers). An angle slightly larger than Θ, which is exactly double exposure using mirror 58)
ideal  ideal
度を採用するものとする。  The degree shall be adopted.
この角度 Θ は、前記式 1〜3を用いて上記(1)の実施形態と同様にして求められ  This angle Θ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
ideal  ideal
る値であり、本実施形態では、上記のとおり s = 256、 N= 2であるので、角度 Θ は  In this embodiment, since s = 256 and N = 2 as described above, the angle Θ is
ideal 約 0. 45度である。したがって、設定傾斜角度 0は、たとえば 0. 50度程度の角度を 採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光ヘッド 30す なわち各 DMD36の取付角度がこの設定傾斜角度 0に近い角度となるように、初期 調整されているものとする。  ideal About 0.45 degrees. Therefore, for the set inclination angle 0, for example, an angle of about 0.50 degrees may be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle 0 within the adjustable range.
[0255] 図 16は、上記のように各露光ヘッド 30すなわち各 DMD36の取付角度が初期調 整されたパターン形成装置 10において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30 )の取付角度誤差、並びに各露光ヘッド 30 と 30 間の相対取付角度誤差[0255] FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. , And relative mounting angle error between each exposure head 30 and 30
2 21 12 21 2 21 12 21
及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示し た説明図である。 And examples of unevenness in the pattern on the exposed surface due to the effect of the relative position shift FIG.
[0256] 図 16の例では、図 12の例と同様の、 X軸方向に関する露光ヘッド 30 と 30 の相  In the example of FIG. 16, the phase of exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
12 21 対位置のずれの結果として、一列おきの光点群 (画素列群 A及び B)による露光パタ ーンの双方で、露光エリア 32 と 32 の被露光面上の前記露光ヘッドの走査方向と  12 21 As a result of the misalignment of the position, the scanning direction of the exposure head on the exposed surface in the exposure areas 32 and 32 in both exposure patterns with every other light spot group (pixel array group A and B). When
12 21  12 21
直交する座標軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露 光量過多な領域 74が生じ、これが濃度むらを引き起こしている。  In the overlapping exposure areas on the orthogonal coordinate axes, there is an area 74 where the amount of exposure is excessive compared to the ideal double exposure state, which causes uneven density.
さらに、図 16の例では、各露光ヘッドの設定傾斜角度 Θを前記式(1)を満たす角 度 Θ よりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整 ideal  Further, in the example of FIG. 16, the result of setting the tilt angle Θ of each exposure head slightly larger than the angle Θ satisfying the above equation (1) and fine adjustment of the mounting angle of each exposure head ideal
が困難であるために、実際の取付角度が上記の設定傾斜角度 0からずれてしまった ことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で 重複する露光領域以外の領域でも、一列おきの光点群 (画素列群 A及び B)による露 光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領 域である描素部列間つなぎ領域において、理想的な 2重露光の状態よりも露光過多 となる領域 76が生じ、これがさらなる濃度むらを引き起こしている。  As a result of the fact that the actual mounting angle has deviated from the above-mentioned set inclination angle 0 because of the difficulty of the exposure, the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows. In the connecting region between sub-rows, a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
[0257] 本実施形態(3)では、まず、各露光ヘッド 30 と 30 の取付角度誤差及び相対取 [0257] In this embodiment (3), first, the mounting angle error of each of the exposure heads 30 and 30 and the relative position are adjusted.
12 21  12 21
付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。 具体的には、前記光点位置検出手段としてスリット 28及び光検出器の組を用い、 露光ヘッド 30 と 30 のそれぞれについて、実傾斜角度 Θ 'を特定し、該実傾斜角  Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle Θ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
12 21  12 21
度 θ Ίこ基づき、前記描素部選択手段として光検出器に接続された演算装置を用い て、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。  Based on the angle θ, processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
[0258] 一実傾斜角度 の特定 [0258] Specifying the actual inclination angle
実傾斜角度 Θ 'の特定は、露光ヘッド 30 ついては露光エリア 32 内の光点 P (l,  The actual inclination angle Θ ′ is specified by the light spot P (l,
12 12  12 12
1)と Ρ (256, 1)の位置を、露光ヘッド 30 については露光エリア 32 内の光点 P (l  The positions of 1) and Ρ (256, 1) and the light spot P (l
21 21  21 21
, 1024)と Ρ (256, 1024)の位置を、それぞれ上述した実施形態(2)で用いたスリツ ト 28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走 查方向とがなす角度を測定することにより行われる。  , 1024) and Ρ (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), respectively, and the inclination angle of the straight line connecting them and the exposure head This is done by measuring the angle between the running direction.
[0259] 不使用描素部の特定 [0259] Identification of unused pixel parts
そのようにして特定された実傾斜角度 Θ 'を用いて、光検出器に接続された演算装 置は、上述した実施形態(1)における演算装置と同様、下記式 4 Using the actual inclination angle Θ 'thus identified, a computing device connected to the photodetector is used. As with the arithmetic unit in the embodiment (1) described above,
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出し、 DMD36上の第 (T+ 1)行目力も第 256行目のマイクロミラーを、本露光 に使用しないマイクロミラーとして特定する処理を行う。  The (T + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
例えば、露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 255  For example, T = 254 for exposure head 30 and Τ = 255 for exposure head 30
12 21  12 21
が導出されたとすると、図 17において斜線で覆われた部分 78及び 80を構成する光 点に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特定される。 これにより、露光エリア 32 と 32 のうちヘッド間つなぎ領域以外の各領域において  Is derived, the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
12 21  12 21
、理想的な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計 面積を最小とすることができる。  The total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
[0260] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、露光エリア 32 と 32 の、複数の露光へ [0260] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
12 21  12 21
ッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の 各領域において、理想的な 2重露光に対して露光量過多となる面積が最小になり、 かつ露光量不足となる面積が生じな 、ようになすことができる。  In each area other than the head-to-head connection area, which is the overlapping exposure area on the exposed surface formed by the head, the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient This can be done without creating an area.
あるいは、値 t以下の最大の自然数を導出することとしてもよい。その場合、露光ェ リア 32 32  Or it is good also as deriving the maximum natural number below value t. In that case, exposure area 32 32
12と 21の、複数の露光ヘッドにより形成された被露光面上の重複露光領域 であるヘッド間つなぎ領域以外の各領域にぉ 、て、理想的な 2重露光に対して露光 不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになす ことができる。  Areas that are underexposed for ideal double exposure in areas 12 and 21 other than the joint area between the heads, which are overlapping exposure areas on the exposed surface formed by multiple exposure heads Therefore, it is possible to prevent an area that is overexposed and has a minimum area.
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つ なぎ領域以外の各領域において、理想的な 2重露光に対して、露光過多となる領域 の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)とが等しくな るように、本露光時に使用しな 、マイクロミラーを特定することとしてもよ!/、。  The number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads ( It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
[0261] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、図 12から図 15を用いて説明した本実施形態( 3)と同様の処理がなされ、図 17において斜線で覆われた領域 82及び網掛けで覆わ れた領域 84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用 しな 、マイクロミラーとして追加される。 [0261] Then, with respect to the micromirror corresponding to the light spot other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17, this embodiment (3) described with reference to FIGS. The same processing was performed, and the area 82 shaded in FIG. 17 and the shaded area are covered. Micromirrors corresponding to the light spots constituting the region 84 are identified and added as micromirrors that are not used during the main exposure.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しない。  With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
[0262] 以上のように、パターン形成装置 10を用いた本実施形態(3)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれ、並びに各露 光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像 度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0262] As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the pattern forming apparatus 10, the relative position shift in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
[0263] 以上、パターン形成装置 10による使用描素部指定方法ついて詳細に説明したが、 上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の 変更が可能である。  [0263] The method for designating the used pixel part by the pattern forming apparatus 10 has been described in detail above. However, the above embodiments (1) to (3) are merely examples, and various methods can be used without departing from the scope of the present invention. It can be changed.
[0264] また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するため の手段として、スリット 28と単一セル型の光検出器の組を用いた力 これに限られず V、かなる形態のものを用いてもよぐたとえば 2次元検出器等を用いてもょ 、。  [0264] In the above embodiments (1) to (3), as a means for detecting the position of the light spot on the surface to be exposed, a set of the slit 28 and the single cell type photodetector is used. The force that was used is not limited to this, V, or any other form can be used. For example, a two-dimensional detector can be used.
[0265] さらに、上記の実施形態(1)〜(3)では、スリット 28と光検出器の組による被露光面 上の光点の位置検出結果から実傾斜角度 Θ 'を求め、その実傾斜角度 θ Ίこ基づい て使用するマイクロミラーを選択したが、実傾斜角度 Θ 'の導出を介さずに使用可能 なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能 なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃 度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も 、本発明の範囲に含まれるものである。  Further, in the above embodiments (1) to (3), the actual inclination angle Θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained. Although a micromirror to be used is selected based on θ Ί, a usable micromirror may be selected without going through the derivation of the actual inclination angle Θ ′. In addition, for example, the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
[0266] なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの 他にも、種々の形態が存在する。  [0266] Note that there are various forms of pattern distortion that can occur on the exposed surface, in addition to the angular distortion described in the above example.
一例としては、図 18Aに示すように、 DMD36上の各マイクロミラー 58からの光線 力 異なる倍率で露光面上の露光エリア 32に到達してしまう倍率歪みの形態がある また、別の例として、図 18Bに示すように、 DMD36上の各マイクロミラー 58からの 光線力、異なるビーム径で被露光面上の露光エリア 32に到達してしまうビーム径歪 みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、 DMD36と被露 光面間の光学系の各種収差やアラインメントずれに起因して生じる。 As an example, as shown in FIG. 18A, there is a form of magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36. As shown in Figure 18B, from each micromirror 58 on the DMD 36, There is also a form of beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam powers and different beam diameters. These magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposed light surface.
さらに別の例として、 DMD36上の各マイクロミラー 58からの光線力 異なる光量で 被露光面上の露光エリア 32に到達してしまう光量歪みの形態もある。この光量歪み は、各種収差やアラインメントずれのほか、 DMD36と被露光面間の光学要素(例え ば、 1枚レンズである図 5A及び図 5Bのレンズ 52及び 54)の透過率の位置依存性や 、 DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、 被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。  As another example, there is a form of light amount distortion that reaches the exposure area 32 on the surface to be exposed with a different light amount from each micromirror 58 on the DMD 36. In addition to various aberrations and misalignment, this light distortion can be attributed to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the lenses 52 and 54 in FIGS. 5A and 5B, which are single lenses). This is caused by unevenness in the amount of light caused by DMD36 itself. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
[0267] 上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選 択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要 素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむ らを、各露光ヘッドの露光領域全体にわたって軽減することができる。  [0267] According to the above embodiments (1) to (3), after selecting the micromirrors actually used in the main exposure, the residual elements of the pattern distortion in these forms are also the above-mentioned angular distortion. As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
[0268] < <参照露光 > >  [0268] <<Reference exposure>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N— 1)列おきのマイクロミラー列、又は全光点行のうち 1ZN行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行 、、均一な露光を実現できる ように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマ イク口ミラーを特定することとしてもよ 、。  As a modified example of the above embodiments (1) to (3), among available micromirrors, every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露 光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するな どの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であって ちょい。  The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle. The analysis of the result of the reference exposure is a visual analysis by the operator.
[0269] 図 19A及び図 19Bは、単一露光ヘッドを用い、(N—1)列おきのマイクロミラーの みを使用して参照露光を行う形態の一例を示した説明図である。  FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 19 Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照 露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光 結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定し たりすることで、本露光時において使用するマイクロミラーを指定することができる。 例えば、図 19Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイク 口ミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使 用されるものとして指定される。偶数列の光点列については、別途同様に参照露光 を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列 に対するパターンと同一のパターンを適用してもよい。 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. The sampled reference exposure Based on the results, it is possible to specify the micromirror to be used during the main exposure by checking the variation in resolution and uneven density, or by estimating the actual tilt angle. For example, a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び 偶数列双方のマイクロミラーを使用した本露光においては、理想的な 2重露光に近い 状態が実現できる。  By specifying the micromirrors used during the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using both the odd-numbered and even-numbered micromirrors.
図 20は、複数の露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して 参照露光を行う形態の一例を示した説明図である。  FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 20に実線で示した、 X軸方向に関して隣接する 2つの露光ヘッド(一例として露光へ ッド 30 と 30 )の奇数列の光点列に対応するマイクロミラーのみを使用して、参照 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference is made by using only micromirrors corresponding to odd-numbered light spot rows of two exposure heads adjacent to each other in the X-axis direction (for example, exposure heads 30 and 30) shown by a solid line in FIG.
12 21 12 21
露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に 基づき、 2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の 領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したり することで、本露光時にお!、て使用するマイクロミラーを指定することができる。 Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
例えば、図 20に斜線で覆って示す領域 86及び網掛けで示す領域 88内の光点列 に対応するマイクロミラー以外のマイクロミラー力 奇数列の光点を構成するマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点 列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを 指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用して ちょい。  For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数 列及び偶数列双方のマイクロミラーを使用した本露光においては、 2つの露光ヘッド により被露光面上に形成される前記ヘッド間つなぎ領域以外の領域にぉ 、て、理想 的な 2重露光に近い状態が実現できる。 In this way, by specifying the micromirrors that are actually used during the main exposure, in the main exposure using both the odd-numbered and even-numbered micromirrors, the two exposure heads form the surface to be exposed. Ideal for areas other than the head-to-head connection area A state close to a typical double exposure can be realized.
[0271] 図 21A及び図 21Bは、単一露光ヘッドを用い、全光点行数の IZN行に相当する 隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を 示した説明図である。 [0271] FIGS. 21A and 21B show an example of a mode in which reference exposure is performed using a single exposure head and using only micromirror groups constituting adjacent rows corresponding to IZN rows of the total number of light spot rows. It is explanatory drawing shown.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 21 Aに実線で示した 1行目から 128 ( = 256/2)行目の光点に対応するマイクロミラ 一のみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプ ル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを 旨定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only a micromirror corresponding to the light spot in the first to 128 (= 256/2) rows shown by the solid line in FIG. 21A, and the reference exposure result is output as a sample. Based on the reference exposure result outputted from the sample, the micromirror to be used in the main exposure can be specified.
例えば、図 21 Bに斜線で覆つて示す光点群に対応するマイクロミラー以外のマイク 口ミラーが、第 1行目から第 128行目のマイクロミラー中、本露光時にお 、て実際に使 用されるものとして指定され得る。第 129行目から第 256行目のマイクロミラーについ ては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定して もよいし、第 1行目から第 128行目のマイクロミラーに対するパターンと同一のパター ンを適用してもよ 、。  For example, a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows. Can be specified as For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner, and the micromirror to be used during the main exposure may be designated, or the first to 128th lines may be designated. You can apply the same pattern as for the micromirror.
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイ クロミラーを使用した本露光においては、理想的な 2重露光に近い状態が実現できる  By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
[0272] 図 22は、複数の露光ヘッドを用い、 X軸方向に関して隣接する 2つの露光ヘッド( 一例として露光ヘッド 30 と 30 )について、それぞれ全光点行数の 1ZN行に相当 [0272] Figure 22 shows multiple exposure heads, and two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30), each corresponding to 1ZN rows of the total number of light spots
12 21  12 21
する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一 例を示した説明図である。  FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 22に実線で示した第 1行目力も第 128 ( = 256Z2)行目の光点に対応するマイクロ ミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記 サンプル出力された参照露光結果に基づき、 2つの露光ヘッドにより被露光面上に 形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむら を最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミ ラーを指定することができる。 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, the first line force indicated by the solid line in FIG. 22 is also subjected to reference exposure using only the micromirror corresponding to the light spot of the 128th (= 256Z2) line, and the reference exposure result is output as a sample. Based on the reference exposure result output from the sample, the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. In addition, the micro-micrometer used during the main exposure Can be specified.
例えば、図 22に斜線で覆って示す領域 90及び網掛けで示す領域 92内の光点列 に対応するマイクロミラー以外のマイクロミラー力 第 1行目から第 128行目のマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。第 129行目か ら第 256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に 使用するマイクロミラーを指定してもよ 、し、第 1行目から第 128行目のマイクロミラー に対するパターンと同一のパターンを適用してもよい。  For example, the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time. For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、 2つの露光 ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において 理想的な 2重露光に近い状態が実現できる。  By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
[0273] 以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を 2重露光と する場合について説明した力 これに限定されず、 2重露光以上のいかなる多重露 光としてもよい。特に 3重露光力 7重露光程度とすることにより、高解像度を確保し、 解像度のばらつき及び濃度むらが軽減された露光を実現することができる。  [0273] In the above embodiments (1) to (3) and the modified examples, the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good. In particular, by setting the triple exposure power to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
[0274] また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表 す 2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応 部分の寸法と一致するように、画像データを変換する機構が設けられて ヽることが好 ましい。そのように画像データを変換することによって、所望の 2次元パターンどおり の高精細なパターンを被露光面上に形成することができる。  [0274] Further, in the exposure apparatus according to the embodiment and the modification example described above, the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
[0275] 〔現像工程〕  [Development process]
前記現像としては、前記感光層の未露光部分を除去することにより行われる。 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  The development is performed by removing an unexposed portion of the photosensitive layer. The removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
[0276] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも 、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例え ば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム 、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナト リウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる [0276] The developer can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include alkaline aqueous solutions, aqueous developers, organic solvents, etc. Among these, weakly alkaline aqueous solutions are mentioned. preferable. Examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid. Nat Examples include lithium, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, and borax.
[0277] 前記弱アルカリ性の水溶液の pHは、例えば、約 8〜12が好ましぐ約 9〜: L 1がより 好ましい。前記弱アルカリ性の水溶液としては、例えば、 0. 1〜5質量%の炭酸ナトリ ゥム水溶液又は炭酸カリウム水溶液などが挙げられる。 [0277] The pH of the weakly alkaline aqueous solution is, for example, preferably about 9 to about 8 to 12: L 1 is more preferable. Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
前記現像液の温度は、前記感光層の現像性に合わせて適宜選択することができる 力 例えば、約 25〜40°Cが好ましい。  The temperature of the developer is a force that can be appropriately selected according to the developability of the photosensitive layer. For example, about 25 to 40 ° C. is preferable.
[0278] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、ェタノ ールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよ 、。  [0278] The developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) In order to accelerate development, an organic solvent (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
[0279] 〔硬化処理工程〕  [Curing process]
前記硬化処理工程は、前記現像工程が行われた後、形成されたパターンにおける 感光層に対して硬化処理を行う工程である。  The curing treatment step is a step of performing a curing treatment on the photosensitive layer in the formed pattern after the development step is performed.
前記硬化処理工程としては、特に制限はなぐ目的に応じて適宜選択することがで きるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。  The curing treatment step can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include full-surface exposure treatment and full-surface heat treatment.
[0280] 前記全面露光処理の方法としては、例えば、前記現像後に、前記永久パターンが 形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、 前記感光層を形成する感光性組成物中の榭脂の硬化が促進され、前記永久パター ンの表面が硬化される。  [0280] Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development. By this overall exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the permanent pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができる力 例えば、超高圧水銀灯などの UV露光機、キセノンランプ使用の露光 機、レーザ露光機などが好適に挙げられる。露光量は、通常 10〜2, 000mj/cm2 である。 As the apparatus for performing the entire surface exposure, a force that can be appropriately selected according to the purpose without particular limitation.For example, a UV exposure machine such as an ultra-high pressure mercury lamp, an exposure machine using a xenon lamp, a laser exposure machine, etc. are suitable. Can be mentioned. The exposure dose is usually 10 to 2,000 mj / cm 2 .
[0281] 前記全面加熱処理の方法としては、前記現像の後に、前記永久パターンが形成さ れた前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永 久パターンの表面の膜強度が高められる。 [0281] Examples of the entire surface heat treatment method include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the development. By heating the entire surface, the permanent The film strength on the surface of the permanent pattern is increased.
前記全面加熱における加熱温度は、 120〜250°Cが好ましぐ 120〜200°Cがより 好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が得ら れないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ、膜 質が弱く脆くなることがある。  The heating temperature in the entire surface heating is preferably 120 to 250 ° C, more preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, the resin in the photosensitive composition may be decomposed, resulting in film quality. May be weak and brittle.
前記全面加熱における加熱時間は、 10〜120分が好ましぐ 15〜60分がより好ま しい。  The heating time in the whole surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0282] 一保護膜、層間絶縁膜、ソルダーレジストパターン形成方法  [0282] Method for forming one protective film, interlayer insulating film, solder resist pattern
前記パターンの形成方法が、保護膜、層間絶縁膜、及びソルダーレジストパターン の少なくとも ヽずれかを形成する永久パターン形成方法である場合には、プリント配 線板上に前記永久パターン形成方法により、永久パターンを形成し、更に、以下のよ うに半田付けを行うことができる。  When the pattern forming method is a permanent pattern forming method for forming at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the pattern is permanently formed on the printed wiring board by the permanent pattern forming method. A pattern can be formed and soldering can be performed as follows.
即ち、前記現像により、前記永久パターンである硬化層が形成され、前記プリント配 線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部 位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、 半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜 あるいは絶縁膜 (層間絶縁膜)、ソルダーレジストとしての機能を発揮し、外部からの 衝撃や隣同士の電極の導通が防止される。  That is, by the development, a hardened layer that is the permanent pattern is formed, and the metal layer is exposed on the surface of the printed wiring board. The metal layer exposed on the surface of the printed wiring board is plated with gold and then soldered. Then, semiconductors and parts are mounted on the soldered parts. At this time, the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), and a solder resist, and prevents external impact and conduction between adjacent electrodes.
[0283] 前記パターン形成装置及び永久パターン形成方法においては、前記永久パター ン形成方法により形成される永久パターンが、前記保護膜又は前記層間絶縁膜であ ると、配線を外部力もの衝撃や曲げ力も保護することができ、特に、前記層間絶縁膜 である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や 部品の高密度実装に有用である。  [0283] In the pattern forming apparatus and the permanent pattern forming method, if the permanent pattern formed by the permanent pattern forming method is the protective film or the interlayer insulating film, the wiring may be subjected to impact or bending by an external force. In particular, the interlayer insulating film is useful for high-density mounting of semiconductors and components on, for example, a multilayer wiring board and a build-up wiring board.
[0284] 本発明の前記永久パターン形成方法は、本発明の前記感光性積層体を用いるた め、保護膜、層間絶縁膜、及びソルダーレジストパターン等の永久パターン、などの 各種パターン形成用、カラーフィルタ、柱材、リブ材、スぺーサ一、隔壁等の液晶構 造部材の製造、ホログラム、マイクロマシン、プルーフなどの製造に好適に使用するこ とができ、特に、プリント基板の永久パターン形成に好適に使用することができる。 実施例 [0284] Since the method for forming a permanent pattern of the present invention uses the photosensitive laminate of the present invention, a permanent pattern such as a protective film, an interlayer insulating film, and a solder resist pattern, etc. It can be suitably used for various pattern formation, manufacturing of liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, partition walls, holograms, micromachines, proofs, etc. It can be suitably used for forming a permanent pattern on a substrate. Example
[0285] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0285] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0286] (合成例 1) [0286] (Synthesis example 1)
1, OOOmL三口フラスコに 1-メトキシ— 2—プロパノール 159gを入れ、窒素気流下 、 85。Cまで加熱した。これに、ベンジルメタタリレート 63. 4g、メタクリル酸 72. 3g、 V — 601 (和光純薬製) 4. 15gの 1—メトキシ— 2—プロパノール 159g溶液を、 2時間 かけて滴下した。滴下終了後、更に 5時間加熱して反応させた。次いで、加熱を止め 、ベンジルメタタリレート Zメタクリル酸(30Z70mol%比)の共重合体を得た。  1, 159g of 1-methoxy-2-propanol was put into a three-neck flask of OOOmL, and under a nitrogen stream, 85. Heated to C. To this, 63.4 g of benzyl metatalylate, 72.3 g of methacrylic acid, V-601 (manufactured by Wako Pure Chemical Industries) 4.15 g of a 1-methoxy-2-propanol 159 g solution was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was further continued by heating for 5 hours. Next, the heating was stopped, and a copolymer of benzyl metatalylate Z methacrylic acid (30Z70 mol% ratio) was obtained.
次に、前記共重合体溶液の内、 120. Ogを 300mL三口フラスコに移し、グリシジル メタタリレート 16. 6g、p—メトキシフエノール 0. 16gをカ卩え、撹拌し溶解させた。溶解 後、トリフエ-ルホスフィン 2.4gを加え、 100°Cに加熱し、付加反応を行った。グリシジ ルメタタリレートが消失したことを、ガスクロマトグラフィーで確認し、加熱を止めた。 1 —メトキシ— 2—プロノ V—ルを加え、固形分 30質量%の下記構造式で表される高 分子化合物 1の溶液を調製した。  Next, 120. Og of the copolymer solution was transferred to a 300 mL three-necked flask, and 16.6 g of glycidyl metatalylate and 0.16 g of p-methoxyphenol were added and stirred to dissolve. After dissolution, 2.4 g of triphenylphosphine was added and heated to 100 ° C. to carry out an addition reaction. The disappearance of glycidyl methacrylate was confirmed by gas chromatography, and heating was stopped. 1-Methoxy-2-pronool V was added to prepare a solution of high molecular compound 1 represented by the following structural formula having a solid content of 30% by mass.
得られた高分子化合物の質量平均分子量 (Mw)は、ポリスチレンを標準物質とした ゲルパーミエーシヨンクロマトグラフィー法 (GPC)により測定した結果、 15, 000であ つた o  The mass average molecular weight (Mw) of the obtained polymer compound was 15,000 as a result of measurement by gel permeation chromatography (GPC) using polystyrene as a standard substance.
また、水酸ィ匕ナトリウムを用いた滴定から、固形分あたりの酸価 (カルボキシル基の 含有量)は、 2. 2meqZgであった。  From the titration using sodium hydroxide sodium salt, the acid value (carboxyl group content) per solid content was 2.2 meqZg.
更に、ヨウ素価滴定により求めた固形分あたりのエチレン性不飽和結合の含有量( C = C価)は、 2. lmeq/gであった。  Furthermore, the content of ethylenically unsaturated bonds per solid (C = C value) determined by iodine value titration was 2. lmeq / g.
[化 16]
Figure imgf000102_0001
[Chemical 16]
Figure imgf000102_0001
* 1は下記構造式 (a)で表される構造、及び下記構造式 (b)で表される構造の混合 を表す。 * 1 represents a mixture of the structure represented by the following structural formula (a) and the structure represented by the following structural formula (b).
[化 17] 構造式 [Chemical formula 17] Structural formula
Figure imgf000102_0002
Figure imgf000102_0002
镇造式(b )Forging formula (b)
Figure imgf000102_0003
Figure imgf000102_0003
(合成例 2) (Synthesis Example 2)
1, OOOmL三口フラスコに 1-メトキシ— 2—プロパノール 159gを入れ、窒素気流下 、 85°Cまで加熱した。これに、ベンジルメタタリレート 63. 4g、スチレン 12.5g、メタタリ ル酸 62g、 V— 601 (和光純薬製) 4. 15gの 1—メトキシ— 2—プロパノール 159g溶 液を、 2時間かけて滴下した。滴下終了後、更に 5時間加熱して反応させた。次いで 、加熱を止め、ベンジルメタタリレート Zスチレン Zメタクリル酸(30ZlOZ60mol% 比)の共重合体を得た。  In a 1, OOOmL three-necked flask, 159 g of 1-methoxy-2-propanol was placed and heated to 85 ° C. under a nitrogen stream. To this, 63.4 g of benzylmetatalate, 12.5 g of styrene, 62 g of metatalic acid, V-601 (manufactured by Wako Pure Chemical Industries), 4.15 g of 1-methoxy-2-propanol 159 g solution was added dropwise over 2 hours. did. After completion of the dropwise addition, the reaction was further continued by heating for 5 hours. Next, the heating was stopped, and a copolymer of benzyl metatalylate Z styrene Z methacrylic acid (30 ZlOZ 60 mol% ratio) was obtained.
次に、前記共重合体溶液の内、 120. Ogを 300mL三口フラスコに移し、グリシジル メタタリレート 12. lg、p—メトキシフエノール 0. 16gを加え、撹拌し溶解させた。溶解 後、トリフエ-ルホスフィン 2.4gを加え、 100°Cに加熱し、付加反応を行った。グリシジ ルメタタリレートが消失したことを、ガスクロマトグラフィーで確認し、加熱を止めた。 1 —メトキシ— 2—プロノ V—ルを加え、固形分 30質量%の下記構造式で表される高 分子化合物 2の溶液を調製した。  Next, 120. Og of the copolymer solution was transferred to a 300 mL three-necked flask, and 12. lg of glycidyl metatalylate and 0.16 g of p-methoxyphenol were added and stirred to dissolve. After dissolution, 2.4 g of triphenylphosphine was added and heated to 100 ° C. to carry out an addition reaction. The disappearance of glycidyl methacrylate was confirmed by gas chromatography, and heating was stopped. 1-Methoxy-2-pronol V- was added to prepare a solution of high molecular compound 2 represented by the following structural formula having a solid content of 30% by mass.
得られた高分子化合物の質量平均分子量 (Mw)は、ポリスチレンを標準物質とした ゲルパーミエーシヨンクロマトグラフィー法 (GPC)により測定した結果、 25, 000であ つ 7こ。 The mass average molecular weight (Mw) of the obtained polymer compound was polystyrene as a standard substance. As a result of measuring by gel permeation chromatography (GPC), it is 25,000 and 7 pieces.
また、水酸ィ匕ナトリウムを用いた滴定から、固形分あたりの酸価 (カルボキシル基の 含有量)は、 2. 2meqZgであった。  From the titration using sodium hydroxide sodium salt, the acid value (carboxyl group content) per solid content was 2.2 meqZg.
更に、ヨウ素価滴定により求めた固形分あたりのエチレン性不飽和結合の含有量( C = C価)は、 2. lmeq/gであった。  Furthermore, the content of ethylenically unsaturated bonds per solid (C = C value) determined by iodine value titration was 2. lmeq / g.
[化 18]
Figure imgf000103_0001
[Chemical 18]
Figure imgf000103_0001
30 10 27 33  30 10 27 33
[0288] (合成例 3)  [0288] (Synthesis example 3)
フエノールノボラック型エポキシ榭脂 (東都化成社製、 YDPN— 702) 110質量部を プロピレングリコールモノメチルエーテルアセテート 150質量部に加熱しながら溶解し 、次いでアクリル酸 34質量部及びべンジルジメチルァミン 0. 8質量部を加え、 100〜 120°Cで 8時間反応を続けた後、テトラヒドロ無水フタル酸 35質量部を加え、 100°C で 8時間反応させて酸価 70mgKOHZg、エポキシ当量 5, 000g/eq.の不飽和二 重結合含有エポキシ化合物を得た。  110 parts by weight of phenol novolac type epoxy resin (manufactured by Toto Kasei Co., Ltd., YDPN-702) was dissolved in 150 parts by weight of propylene glycol monomethyl ether acetate, and then 34 parts by weight of acrylic acid and benzyldimethylamine 0. Add 8 parts by mass and continue the reaction at 100-120 ° C for 8 hours, then add 35 parts by mass of tetrahydrophthalic anhydride, react at 100 ° C for 8 hours, acid value 70 mg KOHZg, epoxy equivalent 5,000 g / eq An unsaturated double bond-containing epoxy compound was obtained.
[0289] (実施例 1) [0289] (Example 1)
感光性組成物の調製  Preparation of photosensitive composition
各成分を下記の量で配合して、感光性組成物溶液を調製した。  Each component was mix | blended in the following quantity and the photosensitive composition solution was prepared.
〔感光性組成物溶液の各成分量〕  [Each component amount of photosensitive composition solution]
•前記高分子化合物 1 (前記 1—メトキシ— 2 プロパノール溶液中に固形分質量 30 質量%) · · · 87. 4質量部  • Polymer compound 1 (solid content 30% by mass in the 1-methoxy-2-propanol solution) 87.4 parts by mass
'ジペンタエリスリトールへキサアタリレート(重合性化合物) · · · 12質量部  'Dipentaerythritol hexaatalylate (polymerizable compound) · · · 12 parts by mass
•光重合開始剤 I - 1 (チバ ·スペシャルティ ·ケミカルズ社製、ィルガキュア 819 (ァシ ルホスフィンォキシドィ匕合物)) · · · 6質量部  • Photopolymerization initiator I-1 (Ciba Specialty Chemicals Inc., Irgacure 819 (Arylphosphine oxide compound)) ··· 6 parts by mass
•下記式 S— 1で表される増感剤(チォキサントン系化合物) · · ·(). 6質量部  • Sensitizer (thixanthone compound) represented by the following formula S— 1 (6) parts by mass
'ビスフエノール Α系エポキシ化合物とビスフエノール F系エポキシ化合物との混合物 (東都化成社製、ェポトート ZX— 1059、エポキシ等量 165gZeq. 、 (アルカリ不溶 性の熱架橋剤)) · ' · 5質量部 'Bisphenol A mixture of エ ポ キ シ -type epoxy compound and bisphenol F-type epoxy compound (Toto Kasei Co., Ltd., Epototo ZX-1059, epoxy equivalent 165gZeq., (Alkali-insoluble thermal crosslinking agent)) · · · 5 parts by mass
'熱硬化促進剤(ジシアンジアミド) - - -0. 50質量部  'Thermosetting accelerator (dicyandiamide)---0.50 parts by mass
'フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 %2—ブタノン溶液) · · ·0. 2質量部  'Fluorosurfactant (Megafac F-176, manufactured by Dainippon Ink and Chemicals, 30 mass% 2-butanone solution) ··· 0.2 parts by mass
'硫酸バリウム分散液 (堺化学工業社製、 Β-30) · · ·40質量部  'Barium sulfate dispersion (Tsubaki Chemical Industry Co., Ltd., Β-30) · · · 40 parts by mass
•メチルェチルケトン. . . 15質量部  • Methyl ethyl ketone ... 15 parts by mass
なお、前記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学工業 (株)製、 Β30) 30質 量部、前記高分子化合物 1 (前記 1—メトキシ— 2—プロパノール溶液中に固形分質 量 30質量%)溶液 29. 2質量部、 C. I.ビグメント 'ブルー 15 : 3 0. 2質量部、 C. I. ビグメント 'イェロー 185 0. 05質量部、及びメチルェチルケトン 40. 55質量部を予 め混合した後、モーターミル Μ— 200 (アイガー社製)で、直径 1. Ommのジルコユア ビーズを用い、周速 9mZsにて 3. 5時間分散して調製した。  In addition, the barium sulfate dispersion is composed of 30 parts by mass of barium sulfate (manufactured by Nigaku Kogyo Co., Ltd., Β30), the polymer compound 1 (solid mass in the 1-methoxy-2-propanol solution) 30 parts by weight) 29.2 parts by weight, CI pigment 'Blue 15: 3 0.2 parts by weight, CI pigment' Yellow 185 0.05 parts by weight, and methyl ethyl ketone 40.55 parts by weight premixed Thereafter, it was prepared by using a motor mill 周 -200 (manufactured by Eiger) and dispersing for 3.5 hours at a peripheral speed of 9 mZs using Zircoyu beads having a diameter of 1. Omm.
[化 19]  [Chemical 19]
Figure imgf000104_0001
Figure imgf000104_0001
[0290] 感光性積層体の調製  [0290] Preparation of photosensitive laminate
次に、前記基体として、配線形成済みの銅張積層板 (スルーホールなし、銅厚み 1 2 /z m)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性 組成物をスクリーン印刷法により、 120メッシュのテトロンスクリーンを用いて、乾燥後 厚みが 30 mとなるように塗布し、 80°Cで 15分間熱風循環式乾燥機で乾燥させて 感光層を形成し、前記銅張積層板と、前記感光層とがこの順に積層された感光性積 層体を調製した。  Next, the substrate was prepared by subjecting the surface of a copper-clad laminate (no through hole, copper thickness 1 2 / z m) on which wiring had been formed, to a chemical polishing treatment. On the copper-clad laminate, the photosensitive composition was applied by screen printing using a 120 mesh Tetron screen so that the thickness after drying was 30 m, and hot air circulation type at 80 ° C. for 15 minutes. A photosensitive layer was formed by drying with a dryer, and a photosensitive laminated body in which the copper-clad laminate and the photosensitive layer were laminated in this order was prepared.
[0291] 前記感光性積層体について、それぞれ以下の方法により、最短現像時間、感度、 解像度、無電解金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評 価を行った。最短現像時間以外の結果を表 2に示す。  [0291] The photosensitive laminates were evaluated by the following methods for the shortest development time, sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness. Table 2 shows the results other than the shortest development time.
[0292] <最短現像時間の評価 > 前記銅張積層板上の前記感光層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液 を 0. 15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始力 銅張 積層板上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時 間とした。なお、前記最短現像時間は 14秒であった。 [0292] <Evaluation of the shortest development time> Spraying the entire surface of the photosensitive layer on the copper clad laminate with a 1 mass% sodium carbonate aqueous solution at 30 ° C at a pressure of 0.15 MPa, the spray initiation force of the sodium carbonate aqueous solution. The photosensitive layer on the copper clad laminate is The time required for dissolution and removal was measured, and this was taken as the shortest development time. The shortest development time was 14 seconds.
[0293] <感度の評価 > [0293] <Evaluation of sensitivity>
前記調製した感光性積層体における感光層に対し、以下に説明するパターン形成 装置を用いて、 0. lruJ/cm2から 21/2倍間隔で lOOruJ/cm2までの光エネルギー 量の異なる光を照射して 2重露光し、前記感光層の一部の領域を硬化させた。室温 にて 10分間静置した後、銅張積層板上の感光層の全面に、 30°Cの 1質量%炭酸ナ トリウム水溶液をスプレー圧 0. 15MPaにて前記最短現像時間の 2倍の時間スプレ 一し、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、 光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。該感度曲線か ら、硬化領域の厚みが露光前の感光層と同じ 30 mとなった時の光エネルギー量を 、感光層を硬化させるために必要な光エネルギー量とした。 The photosensitive layer in the photosensitive laminate prepared above by using a pattern forming apparatus described below, from 0. lruJ / cm 2 until lOOruJ / cm 2 at 2 1/2 times the interval of light energy of different light Were exposed twice to cure a part of the photosensitive layer. After standing at room temperature for 10 minutes, a 1 mass% sodium carbonate aqueous solution at 30 ° C is sprayed on the entire surface of the photosensitive layer on the copper-clad laminate at a spray pressure of 0.15 MPa, twice the minimum development time. After spraying, the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Next, a sensitivity curve was obtained by plotting the relationship between the amount of light irradiation and the thickness of the cured layer. From the sensitivity curve, the amount of light energy when the thickness of the cured region was the same 30 m as that of the photosensitive layer before exposure was determined as the amount of light energy necessary for curing the photosensitive layer.
[0294] < <パターン形成装置 > > [0294] <<Pattern forming device>>
前記光照射手段として特開 2005— 258431号公報に記載の合波レーザ光源と、 前記光変調手段として図 6に概略図を示した主走査方向にマイクロミラー 58が 1024 個配列されたマイクロミラー列が、副走査方向に 768組配列された内、 1024個 X 25 6列のみを駆動するように制御した DMD36と、図 5A及び図 5Bに示した光を前記感 光性フィルムに結像する光学系とを有する露光ヘッド 30を備えたパターン形成装置 10を用いた。  A combined laser light source described in JP-A-2005-258431 as the light irradiating means, and a micromirror array in which 1024 micromirrors 58 are arranged in the main scanning direction schematically shown in FIG. 6 as the light modulating means. However, among the 768 pairs arranged in the sub-scanning direction, DMD 36 controlled to drive only 1024 × 256 6 rows, and optical for imaging the light shown in FIGS. 5A and 5B on the photosensitive film A pattern forming apparatus 10 having an exposure head 30 having a system was used.
[0295] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、使用可能な 1024 列 X 256行のマイクロミラー 58を使用してちょうど 2重露光となる角度 Θ よりも若干  [0295] The tilt angle of each exposure head 30, ie each DMD 36, is slightly larger than the angle Θ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
ideal  ideal
大き 、角度を採用した。この角度 0 は、 N重露光の数 N、使用可能なマイクロミラ  Adopted the size and angle. This angle 0 is the number of N exposures N, the available micromirrors
ideal  ideal
一 58の列方向の個数 s、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光 ヘッド 30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッ チ δに対し、下記式 1、  (1) The number s in the column direction of 58, the interval p in the column direction of the usable micromirrors 58, and the pitch δ of the scanning line formed by the micromirrors when the exposure head 30 is tilted, ,
spsin θ ≥Ν δ (式 1) により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2) spsin θ ≥Ν δ (Equation 1) Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
であり、 s = 256, N = 2であるので、角度 0 は約 0. 45度である。したがって、設  Since s = 256, N = 2, the angle 0 is about 0.45 degrees. Therefore, the setting
ideal  ideal
定傾斜角度 0としては、たとえば 0. 50度を採用した。  As the constant inclination angle 0, for example, 0.50 degrees was adopted.
[0296] まず、 2重露光における解像度のばらつきと露光むらを補正するため、被露光面の 露光パターンの状態を調べた。結果を図 16に示した。図 16においては、ステージ 14 を静止させた状態で感光性フィルム 12の被露光面上に投影される、露光ヘッド 30 [0296] First, the state of the exposure pattern on the surface to be exposed was examined in order to correct the variation in resolution and uneven exposure in double exposure. The results are shown in FIG. In FIG. 16, the exposure head 30 projected onto the exposed surface of the photosensitive film 12 with the stage 14 stationary.
12 と 30 が有する DMD36の使用可能なマイクロミラー 58からの光点群のパターンを  The pattern of light spots from the micromirror 58 that DMD36 has 12 and 30
21  twenty one
示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている 状態でステージ 14を移動させて連続露光を行った際に、被露光面上に形成される 露光パターンの状態を、露光エリア 32 と 32 について示した。なお、図 16では、説  Indicated. The state of the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part. Are shown for exposure areas 32 and 32. In Figure 16, the theory
12 21  12 21
明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露光パターンを、画素列 群 Aによる露光パターンと画素列群 Bによる露光パターンとに分けて示した力 実際 の被露光面上における露光パターンは、これら 2つの露光パターンを重ね合わせた ものである。  For the sake of clarity, the power shown for every other column of micromirrors 58 that can be used is divided into the exposure pattern by pixel column group A and the exposure pattern by pixel column group B. The exposure pattern is a superposition of these two exposure patterns.
[0297] 図 16に示したとおり、露光ヘッド 30 と 30 の間の相対位置の、理想的な状態から  [0297] From the ideal state of the relative position between exposure heads 30 and 30, as shown in FIG.
12 21  12 21
のずれの結果として、画素列群 Aによる露光パターンと画素列群 Bによる露光パター ンとの双方で、露光エリア 32 と 32 の前記露光ヘッドの走査方向と直交する座標  As a result of the shift, the coordinates orthogonal to the scanning direction of the exposure head in the exposure areas 32 and 32 in both the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B.
12 21  12 21
軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露光過多な領域 が生じていることが判る。  It can be seen that there are overexposed areas in the overlapping exposure areas on the axis than in the ideal double exposure state.
[0298] 前記光点位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 [0298] A set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
12 ついては露光エリア 32 内の光点 P (l, 1)と P (256, 1)の位置を、露光ヘッド 30  12, the positions of the light spots P (l, 1) and P (256, 1) in the exposure area 32
12 21 については露光エリア 32 内の光点 P (l, 1024)と P (256, 1024)の位置を検出し  For 12 21, the positions of light spots P (l, 1024) and P (256, 1024) within the exposure area 32 are detected.
21  twenty one
、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。  The angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
[0299] 実傾斜角度 Θ 'を用いて、下記式 4 ttan 0 (式 4) [0299] Using the actual inclination angle Θ ', the following equation 4 ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出した。露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 25  Derived. T = 254 for exposure head 30, 、 = 25 for exposure head 30
12 21  12 21
5がそれぞれ導出された。その結果、図 17において斜線で覆われた部分 78及び 80 を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。  5 were derived respectively. As a result, the micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
[0300] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、同様にして図 17にお 、て斜線で覆われた領 域 82及び網掛けで覆われた領域 84を構成する光点に対応するマイクロミラーが特 定され、本露光時に使用しないマイクロミラーとして追加された。 [0300] Thereafter, with respect to the micromirror corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17, the area 82 covered by the oblique lines in FIG. In addition, micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors not used during the main exposure.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しな 、ように制御した。  For the micromirrors identified as not used at the time of exposure, a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
これにより、露光エリア 32 と 32 のうち、複数の前記露光ヘッドで形成された被露  As a result, the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32.
12 21  12 21
光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域にお!、て、理想的 な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最 小とすることができる。  Minimize the total area of overexposed and underexposed areas for ideal double exposure in each area other than the head-to-head connection area, which is the overlapping exposure area on the optical surface. It can be.
[0301] <解像度の評価 > [0301] <Resolution evaluation>
前記最短現像時間の評価方法と同じ方法及び条件で前記感光性積層体を作製し 、室温(23°C、 55%RH)にて 10分間静置した。得られた感光性積層体の感光層上 から、前記パターン形成装置を用いて、ライン Zスペース = 1Z1でライン幅 10〜: LO 0 mまで 1 μ m刻みで各線幅の露光を行う。この際の露光量は、前記感光層を硬化 させるために必要な光エネルギー量である。室温にて 10分間静置した後、銅張積層 板上の感光層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15M Paにて前記最短現像時間の 2倍の時間スプレーし、未硬化領域を溶解除去する。こ の様にして得られた硬化榭脂パターン付き銅張積層板の表面を光学顕微鏡で観察 し、硬化榭脂パターンのラインにッマリ、ョレ等の異常が無ぐかつスペース形成可能 な最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好 である。 <無電解金めつき耐性の評価 > The photosensitive laminate was produced under the same method and conditions as the evaluation method for the shortest development time, and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the photosensitive layer of the obtained photosensitive laminate, exposure is carried out for each line width in increments of 1 μm from the line Z space = 1Z1 to the line width 10 to: LO 0 m using the pattern forming apparatus. The amount of exposure at this time is the amount of light energy necessary to cure the photosensitive layer. After standing at room temperature for 10 minutes, a 1 mass% sodium carbonate aqueous solution at 30 ° C is sprayed over the entire surface of the photosensitive layer on the copper-clad laminate at a spray pressure of 0.1MPa for twice the minimum development time. Then, the uncured region is dissolved and removed. The surface of the copper-clad laminate with a cured resin pattern obtained in this way is observed with an optical microscope. The line width was measured and used as the resolution. The smaller the numerical value, the better the resolution. <Evaluation of resistance to electroless gold plating>
後述する工程に従って前記試験基板に無電解金めつきを行ない、その試験基板に っ 、て外観の変化及びセロハン粘着テープを用いたピーリング試験を行な 、、レジ スト皮膜の剥離状態を以下の基準で評価した。  The test substrate is subjected to electroless gold plating according to the process described below, the appearance of the test substrate is changed, and a peeling test using a cellophane adhesive tape is performed. It was evaluated with.
評価基準  Evaluation criteria
〇:外観変化もなぐレジスト皮膜の剥離も全くない。  ◯: There is no peeling of the resist film with no change in appearance.
△:外観の変化はな 、が、レジスト皮膜にわずかに剥れがある。  Δ: No change in appearance, but the resist film is slightly peeled off.
X:レジスト皮膜の浮きが見られ、めっき潜りが認められ、ピーリング試験でレジスト 皮膜の剥れが大きい。  X: The resist film is lifted, plating latencies are observed, and peeling of the resist film is large in the peeling test.
-—無電解金めつき工程— - 前記感光性積層体について、前記レーザ露光によるパターユング、及び現像後、 超高圧水銀灯により lOOmjZcm2で全面露光(ポスト露光)を行い、力つ 150°C60 分の加熱処理(ポストベータ処理)をしてソルダーレジストパターン(永久パターン)を 形成したプリント基板としての試験基板を、 30°Cの酸性脱脂液(日本マクダーミット社 製、 Metex L— 5Bの 20質量%水溶液)に 3分間浸漬した後、流水中に 3分間浸漬 して水洗した。 -—Electroless gold plating process—-After patterning with the laser exposure and development, the entire surface of the photosensitive laminate was exposed with lOOmjZcm 2 (post-exposure) with an ultra-high pressure mercury lamp. A test substrate as a printed circuit board that has been subjected to heat treatment (post-beta treatment) to form a solder resist pattern (permanent pattern), is a 30 ° C acid degreasing solution (Mexdermit Japan, Metex L-5B 20% by mass) The sample was immersed in an aqueous solution for 3 minutes and then immersed in running water for 3 minutes and washed with water.
次いで、 14. 3質量%過硫酸アンチモン水溶液に室温で 3分間浸漬した後、流水 中に 3分間浸漬して水洗し、更に、 10質量%硫酸水溶液に室温で試験基板を 1分間 浸漬した後、流水中に 30秒〜 1分間浸漬して水洗した。  Next, after immersing in 14.3% by mass antimony persulfate aqueous solution for 3 minutes at room temperature, after immersing in running water for 3 minutes and rinsing, and further immersing the test substrate in 10% by mass sulfuric acid aqueous solution at room temperature for 1 minute. It was immersed in running water for 30 seconds to 1 minute and washed with water.
次に、この基板を 30°Cの触媒液 (メルテックス社製、メタルプレートァクチべ一ター 3 50の 10質量%水溶液)に 7分間浸漬後、流水中に 3分間浸漬して水洗し、次いで 8 5°Cのニッケルめっき液 (メルテックス社製、メルプレート Ni—865M、 20容量0 /0水溶 液、 pH4. 6)に 20分間浸漬し、無電解ニッケルめっきを行った後、 10質量%硫酸水 溶液に室温で 1分間浸漬後、流水中に 30秒〜 1分間浸漬して水洗した。 Next, this substrate was immersed in a 30 ° C catalyst solution (Meltex, 10 mass% aqueous solution of Metal Plate Actuator 350) for 7 minutes, then immersed in running water for 3 minutes, washed with water, then 8 5 ° nickel plating solution of C (Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6) was immersed for 20 minutes, after the electroless nickel plating, 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed in running water for 30 seconds to 1 minute and washed with water.
次いで、試験基板を 75°Cの金めつき液 (奥野製薬工業社製、 OPCムデンゴールド 、 pH12〜13、厚付け金めつき 0. 3 /z m)に 4分間浸漬し、無電解金めつきを行った 後、流水中に 3分間浸漬して水洗し後、更に、 60°Cの温水で 3分間浸漬して十分に 水洗後、乾燥し、無電解金めつきした試験基板を得た。 [0303] <スルーホールの埋め込み性 > Next, immerse the test substrate in a 75 ° C gold plating solution (Okuno Pharmaceutical Co., Ltd., OPC Muden Gold, pH 12-13, thick gold plating 0.3 / zm) for 4 minutes, and electroless gold plating After immersing, immersed in running water for 3 minutes, washed with water, further immersed in warm water of 60 ° C for 3 minutes, sufficiently washed with water, dried, and an electroless gold-plated test substrate was obtained. . [0303] <Through hole fillability>
前記基体として、絶縁層の厚み 200 μ m、銅厚 18 μ mで、 5mmピッチに直径 100 μ mのスルーホールを有する銅張積層板を、表面に化学研磨処理を施して調製した 。該銅張積層板上に、前記感光性組成物をスクリーン印刷法により、 120メッシュの テトロンスクリーンを用いて、乾燥後厚みが 30 mとなるように塗布し、 80°C15分間 熱風循環式乾燥機で乾燥させて感光層を形成し、更に前記感光層を形成したのと 反対側の面にも同様に、乾燥後厚みが 30 mとなるように塗布及び乾燥して感光層 を形成することにより、前記銅張積層板の両面に感光層が形成された感光性積層体 を調製した。その後、スルーホール部近傍をはさみでカットし、紙やすり(荒削り: # 6 00及び本削り: # 1200)でスルーホール部の断面が観察できるまで研磨した。スル 一ホール断面を観察し、埋め込み性について下記基準に基づいて評価した。  As the substrate, a copper-clad laminate having an insulating layer thickness of 200 μm, a copper thickness of 18 μm, and a through hole having a diameter of 100 μm at a pitch of 5 mm was prepared by subjecting the surface to chemical polishing treatment. On the copper clad laminate, the photosensitive composition was applied by a screen printing method using a 120 mesh Tetron screen so that the thickness after drying was 30 m, and a hot-air circulating drier at 80 ° C for 15 minutes. To form a photosensitive layer, and on the surface opposite to the side where the photosensitive layer was formed, similarly, the photosensitive layer is formed by applying and drying to a thickness of 30 m after drying. A photosensitive laminate in which a photosensitive layer was formed on both sides of the copper clad laminate was prepared. Thereafter, the vicinity of the through-hole portion was cut with scissors and polished with a sandpaper (roughing: # 600 and main cutting: # 1200) until the cross-section of the through-hole portion could be observed. The through-hole cross section was observed and the embedding property was evaluated based on the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇:スルーホールが完全に埋め込まれていた。  ○: The through hole was completely embedded.
△:スルーホールにわずかにボイドが認められた力 観察した断面積の 90%以上埋 め込まれていた。  Δ: Force with slight voids observed in the through-holes 90% or more of the observed cross-sectional area was embedded.
X:スルーホールに明らかにボイドが認められ、埋め込まれた面積が、観察した断面 積の 90%未満であった。  X: Clearly voids were observed in the through hole, and the embedded area was less than 90% of the observed cross-sectional area.
[0304] <エッジラフネスの評価 >  [0304] <Evaluation of edge roughness>
前記感光性積層体に、前記パターン形成装置を用いて、前記露光ヘッドの走査方 向と直交する方向の横線パターンが形成されるように照射して 2重露光し、前記感光 層の一部の領域を前記解像度の測定における(3)と同様にしてパターンを形成した 。得られたパターンのうち、ライン幅 50 mのラインの任意の 5箇所について、レーザ 顕微鏡 (VK— 9500、キーエンス (株)製;対物レンズ 50倍)を用いて観察し、視野内 のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所 (谷底部)との 差を絶対値として求め、観察した 5箇所の平均値を算出し、これをエッジラフネスとし た。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。  Using the pattern forming apparatus, the photosensitive laminate is irradiated with double exposure so that a horizontal line pattern in a direction orthogonal to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed. A pattern was formed on the area in the same manner as (3) in the resolution measurement. Among the obtained patterns, any five points of a line with a line width of 50 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ×), and the edge position in the field of view was observed. Of these, the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was obtained as an absolute value, and the average value of the five observed points was calculated, and this was used as edge roughness. The edge roughness is preferably as the value is small because it exhibits good performance.
[0305] (実施例 2)  [0305] (Example 2)
感光性フィルムの製造 実施例 1で得られた感光性組成物溶液を、前記支持体としての厚み 16 m、幅 30 Omm、長さ 200mの PET (ポリエチレンテレフタレート)フィルム上に、バーコ一ター で塗布し、 80°C熱風循環式乾燥機中で乾燥して、厚み 30 mの感光層を形成した o次いで、該感光層の上に、保護フィルムとして、膜厚 20 μ m、幅 310mm、長さ 210 mのポリプロピレンフィルムをラミネーシヨンにより積層し、前記感光性フィルムを製造 した。 Production of photosensitive film The photosensitive composition solution obtained in Example 1 was applied to a PET (polyethylene terephthalate) film having a thickness of 16 m, a width of 30 Omm, and a length of 200 m as the support with a bar coater, and 80 ° C. A photosensitive layer having a thickness of 30 m was formed by drying in a hot air circulation dryer. Next, a polypropylene film having a thickness of 20 μm, a width of 310 mm, and a length of 210 m was formed as a protective film on the photosensitive layer. Were laminated by lamination to produce the photosensitive film.
[0306] 感光性積層体の調製  [0306] Preparation of photosensitive laminate
次に、前記基体として実施例 1と同じ銅張積層板上に、前記感光性フィルムの感光 層が前記銅張積層板に接するようにして前記感光性フィルムにおける保護フィルムを 剥がしながら、真空ラミネーター(二チゴーモートン (株)社製、 VP130)を用いて積層 させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム (支 持体)とがこの順に積層された感光性積層体を調製した。  Next, on the same copper-clad laminate as in Example 1 as the substrate, the photosensitive film of the photosensitive film is in contact with the copper-clad laminate, and the protective film on the photosensitive film is peeled off, and a vacuum laminator ( A photosensitive laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) are laminated in this order. Prepared.
圧着条件は、真空引きの時間 40秒、圧着温度 70°C、圧着圧力 0. 2MPa、加圧時 間 10秒とした。  The crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
[0307] 前記感光性積層体にっ ヽて、感度、解像度、無電解金メッキ耐性、スルーホール の埋め込み性、及びエッジラフネスの評価を行った。なお、解像度、無電解金メッキ 耐性、及びエッジラフネスについては、実施例 1と同様にして評価を行った。結果を 表 2に示す。  [0307] The photosensitive laminate was evaluated for sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness. The resolution, electroless gold plating resistance, and edge roughness were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0308] <感度の評価 >  [0308] <Evaluation of sensitivity>
前記調製した感光性積層体における感光性フィルムの感光層に対し、前記支持体 側から、実施例 1で説明したパターン形成装置により実施例 1と同様にして前記感光 層の一部の領域を硬化させた。室温にて 10分間静置した後、前記感光性積層体か ら前記支持体を剥がし取り、実施例 1と同様にして感光層を硬化させるために必要な 光エネルギー量を測定した。  For the photosensitive layer of the photosensitive film in the prepared photosensitive laminate, a part of the photosensitive layer is cured from the support side in the same manner as in Example 1 by the pattern forming apparatus described in Example 1. I let you. After standing at room temperature for 10 minutes, the support was peeled from the photosensitive laminate, and the amount of light energy required to cure the photosensitive layer was measured in the same manner as in Example 1.
[0309] <スルーホールの埋め込み性 >  [0309] <Through hole fillability>
前記基体として、絶縁層の厚み 200 μ m、銅厚 18 μ mで、 5mmピッチに直径 100 mのスルーホールを有する銅張積層板の表面に化学研磨処理を施して調製した。 該銅張積層板上両面に、前記感光性フィルムの感光層が前記銅張積層板に接する ようにして前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネータ 一 (二チゴーモートン (株)社製、 VP130)を用いて積層させ、前記銅張積層板と、前 記感光層と、前記ポリエチレンテレフタレートフィルム (支持体)とがこの順に積層され た感光性積層体を調製した。 The substrate was prepared by subjecting a surface of a copper clad laminate having an insulating layer thickness of 200 μm, a copper thickness of 18 μm, and a through hole having a diameter of 100 m at a pitch of 5 mm to chemical polishing. The photosensitive layer of the photosensitive film is in contact with the copper-clad laminate on both sides of the copper-clad laminate. In this way, while peeling off the protective film on the photosensitive film, it was laminated using a vacuum laminator (manufactured by Nichigo Morton Co., Ltd., VP130), the copper-clad laminate, the photosensitive layer, and the polyethylene A photosensitive laminate in which a terephthalate film (support) was laminated in this order was prepared.
圧着条件は、真空引きの時間 40秒、圧着温度 70°C、圧着圧力 0. 2MPa、加圧時 間 10秒とした。  The crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
その後、実施例 1と同様にして埋め込み性について評価した。  Thereafter, the embedding property was evaluated in the same manner as in Example 1.
[0310] (実施例 3) [0310] (Example 3)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシィ匕合物 (東都 化成社製 ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、ノボラッ ク型エポキシィ匕合物(東都化成社製、ェポトート YDCN— 704L、エポキシ等量 210 g/eq. ) 2質量部とに代えた以外は、実施例 2と同様にして、感度、解像度、無電解 金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結 果を表 2に示す。  In Example 2, a mixture of a bisphenol A-based epoxy compound and a bisphenol F-based epoxy compound is combined with a bisphenol F-type epoxy compound (Epototo manufactured by Tohto Kasei Co., Ltd.) as shown in Table 1. YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and Novolak type epoxy compound (Etototo YDCN— 704L, epoxy equivalent 210 g / eq.) 2 parts by mass Except for the above, in the same manner as in Example 2, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
[0311] (実施例 4) [0311] (Example 4)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、複素環含 有エポキシィ匕合物(日産化学社製、 TEPIC— S、エポキシ等量 100g/eq. ) 2質量部 とに代えた以外は、実施例 2と同様にして、感度、解像度、無電解金メッキ耐性、スル 一ホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。  In Example 2, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and heterocycle-containing epoxy compound (Nissan Chemical Co., TEPIC-S, epoxy equivalent 100g / eq.) 2 parts by mass In the same manner as in Example 2, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated in the same manner as in Example 2. The results are shown in Table 2.
[0312] (実施例 5) [0312] (Example 5)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、脂環式環 含有エポキシ化合物(日本化薬社製、 XD- 100、エポキシ等量 250g/eq. ) 2質量 部とに代えた以外は、実施例 2と同様にして、感度、解像度、無電解金メッキ耐性、ス ルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。 In Example 2, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and alicyclic ring-containing epoxy compound (Nippon Kayaku Co., Ltd., XD-100, epoxy equivalent 250g / eq.) 2 parts by mass Except for the above, sensitivity, resolution, electroless gold plating resistance, The embedding property of the luhole and the edge roughness were evaluated. The results are shown in Table 2.
[0313] (実施例 6) [0313] (Example 6)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 4質量部と、合成例 3 で得られたノボラック型エポキシィ匕合物(エポキシ等量 5, OOOg/eq. ) 2質量部とに 代えた以外は、実施例 2と同様にして、感度、解像度、無電解金メッキ耐性、スルー ホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。  In Example 2, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 4 parts by mass and novolac epoxy compound obtained in Synthesis Example 3 (epoxy equivalent 5, OOOg / eq.) 2 parts by mass In the same manner as in Example 2, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
[0314] (実施例 7) [Example 7]
実施例 2において、熱架橋剤を、表 1に示すように、ェポトート ZX— 1059を 3質量 部と、ノボラック型エポキシィ匕合物 (東都化成社製、ェポトート YDCN— 704L、ェポ キシ等量 210g/eq. ) 2質量部とに代えた以外は、実施例 2と同様にして、感度、解 像度、無電解金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価 を行った。結果を表 2に示す。  In Example 2, as shown in Table 1, the thermal crosslinking agent was 3 parts by mass of epototo ZX-1059 and a novolac type epoxy compound (Etototo YDCN-704L, epoxy equivalent 210 g, manufactured by Toto Kasei Co., Ltd.) / eq.) The sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that the amount was changed to 2 parts by mass. The results are shown in Table 2.
[0315] (実施例 8) [0315] (Example 8)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、 1, 4 ビ ス [ (3 メチル 3 ォキセタ -ルメトキシ)メチル]ベンゼン (ォキセタン化合物) 2質 量部とに代えた以外は、実施例 2と同様にして、感度、解像度、無電解金メッキ耐性 、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示 す。  In Example 2, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound is prepared as shown in Table 1, bisphenol F epoxy resin (manufactured by Tohto Kasei Co., Ltd., Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by weight and 1,4 bis [(3 methyl 3 oxeta-lmethoxy) methyl] benzene (oxetane compound) 2 parts by weight In the same manner as in Example 2, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
[0316] (実施例 9)  [Example 9]
実施例 2において、前記高分子化合物 1を、表 1に示すように、合成例 2で得られた 高分子化合物 2 ; 87. 4質量部に代えた以外は、実施例 2と同様にして、感度、解像 度、無電解金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を 行った。結果を表 2に示す。  In Example 2, the polymer compound 1 was replaced with the polymer compound 2 obtained in Synthesis Example 2 as shown in Table 1, except that it was replaced with 87.4 parts by mass. Sensitivity, resolution, electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[0317] (実施例 10) 実施例 2において、光重合開始剤を下記式 I 2で表される化合物 2質量部に、増 感剤を N メチルアタリドン 0. 6質量部に代えた以外は、実施例 2と同様にして、感 度、解像度、無電解金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネス の評価を行った。結果を表 2に示す。 [0317] (Example 10) In Example 2, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula I 2 and the sensitizer was replaced with 0.6 parts by mass of N-methyl attaridone. , Sensitivity, resolution, electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[化 20]
Figure imgf000113_0001
[Chemical 20]
Figure imgf000113_0001
[0318] (実施例 11)  [0318] (Example 11)
実施例 3において、光重合開始剤を、表 1に示すように、前記式 I 2で表される化 合物 2質量部に代えた以外は、実施例 3と同様にして、感度、解像度、無電解金メッ キ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 In Example 3, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by Formula I 2 as shown in Table 1, in the same manner as in Example 3, the sensitivity, resolution, The electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. Table the results
2に示す。 Shown in 2.
[0319] (実施例 12) [0319] (Example 12)
実施例 4において、光重合開始剤を、表 1に示すように、下記式 I 3で表される化 合物 2質量部に代えた以外は、実施例 4と同様にして、感度、解像度、無電解金メッ キ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 In Example 4, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula I 3 as shown in Table 1, in the same manner as in Example 4, the sensitivity, resolution, The electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. Table the results
2に示す。 Shown in 2.
[化 21]  [Chemical 21]
Figure imgf000113_0002
Figure imgf000113_0002
(実施例 13)  (Example 13)
実施例 5において、光重合開始剤を、表 1に示すように、下記式 1— 4で表される化 合物 2質量部に代えた以外は、実施例 5と同様にして、感度、解像度、無電解金メッ キ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。  In Example 5, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formulas 1-4 as shown in Table 1. In addition, electroless gold plating resistance, through-hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[化 22]
Figure imgf000114_0001
[Chemical 22]
Figure imgf000114_0001
[0321] (実施例 14)  [0321] (Example 14)
実施例 2において、前記パターン形成装置の代わりに、これと同様なパターンを有 するガラス製ネガマスクを別途作製し、このネガマスクを感光性積層体上に接触させ て超高圧水銀灯で 40miZcm2の露光量で露光した。その後、実施例 2と同様な方 法で現像し、解像度を測定した以外は、実施例 2と同様にして感度、解像度、無電解 金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結 果を表 2に示す。 In Example 2, instead of the pattern forming apparatus, a glass negative mask having a pattern similar to the above was prepared separately, and this negative mask was brought into contact with the photosensitive laminate, and an exposure amount of 40 miZcm 2 was obtained using an ultrahigh pressure mercury lamp. And exposed. After that, the sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that development was performed in the same manner as in Example 2 and the resolution was measured. It was. The results are shown in Table 2.
[0322] (実施例 15)  [0322] (Example 15)
実施例 14にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシィ匕合物 (東都 化成社製 ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、ノボラッ ク型エポキシィ匕合物(東都化成社製、ェポトート YDCN— 704L、エポキシ等量 210 g/eq. ) 2質量部とに代えた以外は、実施例 14と同様にして、感度、解像度、無電解 金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結 果を表 2に示す。  In Example 14, a mixture of a bisphenol A-based epoxy compound and a bisphenol F-based epoxy compound was combined with a bisphenol F-type epoxy compound as shown in Table 1 (Epototo manufactured by Tohto Kasei Co., Ltd.). YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and Novolak type epoxy compound (Etototo YDCN— 704L, epoxy equivalent 210 g / eq.) 2 parts by mass Except for the above, sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 14. The results are shown in Table 2.
[0323] (実施例 16)  [0323] (Example 16)
実施例 14にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、複素環含 有エポキシィ匕合物(日産化学社製、 TEPIC— S、エポキシ等量 100g/eq. ) 2質量部 とに代えた以外は、実施例 14と同様にして、感度、解像度、無電解金メッキ耐性、ス ルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。  In Example 14, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound was prepared as shown in Table 1, bisphenol F type epoxy resin (manufactured by Tohto Kasei Co., Ltd. Epototo YDF— 8170C, epoxy equivalent 160g / eq.) 3 parts by mass and heterocycle-containing epoxy compound (Nissan Chemical Co., TEPIC-S, epoxy equivalent 100g / eq.) 2 parts by mass Except for the above, in the same manner as in Example 14, the sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated. The results are shown in Table 2.
[0324] (実施例 17)  [0324] (Example 17)
実施例 14にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、表 1に示すように、ビスフエノール F型エポキシ榭脂 (東都化 成社製、ェポトート YDF— 8170C、エポキシ等量 160g/eq. ) 3質量部と、脂環式環 含有エポキシ化合物(日本化薬社製、 XD- 100、エポキシ等量 250g/eq. ) 2質量 部とに代えた以外は、実施例 14と同様にして、感度、解像度、無電解金メッキ耐性、 スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す In Example 14, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound was prepared as shown in Table 1, as shown in Table 1. Seisha, Epototo YDF-8170C, epoxy equivalent 160g / eq.) 3 parts by mass and alicyclic ring-containing epoxy compound (Nippon Kayaku Co., Ltd., XD-100, epoxy equivalent 250g / eq.) 2 mass The sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 14 except that the part was replaced with the part. The results are shown in Table 2.
[0325] (実施例 18) [0325] (Example 18)
実施例 14において、光重合開始剤を、表 1に示すように、下記式 1—4で表される化 合物 2質量部に代えた以外は、実施例 14と同様にして、感度、解像度、無電解金メ ツキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を 表 2に示す。  In Example 14, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula 1-4 as shown in Table 1. In addition, electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[化 23]
Figure imgf000115_0001
[Chemical 23]
Figure imgf000115_0001
[0326] (実施例 19)  [0326] (Example 19)
実施例 15において、光重合開始剤を、表 1に示すように、前記式 1—4で表される化 合物 2質量部に代えた以外は、実施例 15と同様にして、感度、解像度、無電解金メ ツキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を 表 2に示す。  In Example 15, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by Formula 1-4 as shown in Table 1. In addition, electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[0327] (実施例 20) [0327] (Example 20)
実施例 16において、光重合開始剤を、表 1に示すように、前記式 1—4で表される化 合物 2質量部に代えた以外は、実施例 16と同様にして、感度、解像度、無電解金メ ツキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を 表 2に示す。  In Example 16, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by Formula 1-4 as shown in Table 1. In addition, electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. The results are shown in Table 2.
[0328] (実施例 21) [0328] (Example 21)
実施例 17において、光重合開始剤を、表 1に示すように、前記式 1—4で表される化 合物 2質量部に代えた以外は、実施例 17と同様にして、感度、解像度、無電解金メ ツキ耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を 表 2に示す。 In Example 17, the photopolymerization initiator was changed to 2 parts by mass of the compound represented by Formula 1-4 as shown in Table 1, and the sensitivity and resolution were the same as in Example 17. In addition, electroless gold plating resistance, through hole embedding, and edge roughness were evaluated. The result It is shown in Table 2.
[0329] (実施例 22)  [0329] (Example 22)
実施例 2において、前記式 3に基づき N= lとして設定傾斜角度 Θを算出し、前記 式 4に基づき ttan Θ ' = 1の関係を満たす値 tに最も近 、自然数 Tを導出し、 N重露光 (N= l)を行ったこと以外は、実施例 2と同様にして、感度、解像度、無電解金メッキ 耐性、スルーホールの埋め込み性、及びエッジラフネスの評価を行った。結果を表 2 に示す。  In Example 2, the set inclination angle Θ is calculated with N = l based on Equation 3 above, the natural number T is derived closest to the value t satisfying the relationship of ttan Θ ′ = 1 based on Equation 4 above, and N The sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that exposure (N = 1) was performed. The results are shown in Table 2.
[0330] (比較例 1)  [0330] (Comparative Example 1)
実施例 2にお!/、て、ビスフエノール A系エポキシ化合物とビスフエノール F系ェポキ シ化合物との混合物を、ビスフエノール A型エポキシィ匕合物 (東都化成社製、ェポト ート YD— 128、エポキシ等量 190g/eq. )に代えた以外は、実施例 2と同様にして、 感度、解像度、無電解金メッキ耐性、スルーホールの埋め込み性、及びエッジラフネ スの評価を行った。結果を表 2に示す。  In Example 2, a mixture of a bisphenol A epoxy compound and a bisphenol F epoxy compound was mixed with a bisphenol A epoxy compound (Epotote YD-128, manufactured by Tohto Kasei Co., Ltd.). The sensitivity, resolution, electroless gold plating resistance, through hole embedding property, and edge roughness were evaluated in the same manner as in Example 2 except that the epoxy equivalent was changed to 190 g / eq. The results are shown in Table 2.
[0331] (比較例 2) [0331] (Comparative Example 2)
実施例 2において、前記高分子化合物 1を、下記式 B— 1で表される化合物(1ーメ トキシ— 2—プロパノール溶液中に固形分質量 30質量%) ; 87. 4質量部に代えた以 外は、実施例 2と同様にして、感度、解像度、無電解金メッキ耐性、スルーホールの 埋め込み性、及びエッジラフネスの評価を行った。結果を表 2に示す。
Figure imgf000116_0001
In Example 2, the polymer compound 1 was replaced with a compound represented by the following formula B-1 (solid content: 30% by mass in 1-methoxy-2-propanol solution); 87.4 parts by mass Except for the above, the sensitivity, resolution, electroless gold plating resistance, through-hole embedding property, and edge roughness were evaluated in the same manner as in Example 2. The results are shown in Table 2.
Figure imgf000116_0001
w 30, OOO  w 30, OOO
酸価 2. Omeqノ g  Acid number 2. Omeq g
C = C価 Omeq/g  C = C value Omeq / g
[0332] [表 1] 光 合 タイプ 熱架橋剤 バインダー &7 [0332] [Table 1] Photosynthesis type Thermal crosslinking agent Binder & 7
開始剤 液状 ビスフエノール F型 ビスフエノール A型  Initiator Liquid Bisphenol F type Bisphenol A type
実施例 1 高分子化合物 1 ーザ レジスト エポキシ化合物 エポキシ化合物 1-1 レ ビスフエノール F型 ビスフエノール A型 Example 1 Polymer compound 1 The resist Epoxy compound Epoxy compound 1-1 Lebisphenol F type Bisphenol A type
実施例 2 フィルム 高分子化合物 1 Example 2 Film Polymer compound 1
エポキシ化合物 エポキシ化合物 1-1 レーザ ビスフエノール F型 ノボラック型ェポキ  Epoxy compound Epoxy compound 1-1 Laser Bisphenol F type Novolac type Epoxy
実施例 3 フィルム 高分子化合物 1 1 レーザ エポキシ化合物 シ化合物 -1 ビスフエノール F型 複素環型エポキシ Example 3 Film Polymer Compound 1 1 Laser Epoxy Compound B Compound -1 Bisphenol F Type Heterocyclic Epoxy
実施例 4 フィルム 高分子化合物 1 Example 4 Film Polymer Compound 1
エポキシ化合物 化合物 1-1 レーザ ビスフエノール F型 脂環式型エポキシ  Epoxy compound Compound 1-1 Laser Bisphenol F type Alicyclic epoxy
実施例 5 フィルム 高分子化合物 1 1 レーザ エポキシ化合物 化合物 -1 ビスフエノール F型 ノボラック型ェポキ Example 5 Film Polymer Compound 1 1 Laser Epoxy Compound Compound -1 Bisphenol F type novolak type Epoxy
実施例 6 フィルム 高分子化合物 1 Example 6 Film Polymer Compound 1
エポキシ化合物 シ化合物 1-1 レーザ ビスフエノール F型 ビスフエノール A型 ノボラック型ェポキ  Epoxy compound Si compound 1-1 Laser Bisphenol F type Bisphenol A type Novolac type Epoxy
実施例 7 フィルム 高分子化合物 1 1-1 レーザ エポキシ化合物 エポキシ化合物 シ化合物 Example 7 Film Polymer Compound 1 1-1 Laser Epoxy Compound Epoxy Compound B Compound
ビスフエノール F型  Bisphenol F type
実施例 8 フィルム 才キセケノ化合物 高分子化合物 1 1-1 レーザ エポキシ化合物 Example 8 Film Age xeno compound High molecular compound 1 1-1 Laser Epoxy compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
実施例 9 フィルム 高分子化合物 2 1-1 レーザ エポキシ化合物 エポキシ化合物 Example 9 Film Polymer Compound 2 1-1 Laser Epoxy Compound Epoxy Compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
実施例 1〇 フィルム 高分子化合物 1 1-2 レーザ エポキシ化合物 エポキシ化合物 Example 10 Film Polymer Compound 1 1-2 Laser Epoxy Compound Epoxy Compound
ビスフエノール F型 ノボラック型ェポキ  Bisphenol F type novolak type Epoch
実施例 11 フィルム 高分子化合物 1 1-3 レーザ エポキシ化合物 シ化合物 Example 11 Film Polymer Compound 1 1-3 Laser Epoxy Compound B Compound
ビスフエノール F型 複素環型エポキシ  Bisphenol F type heterocyclic epoxy
実施例 12 フィルム 高分子化合物 1 1-3 レーザ エポキシ化合物 化合物 Example 12 Film Polymer Compound 1 1-3 Laser Epoxy Compound Compound
ビスフエノール F型 脂環式型エポキシ  Bisphenol F type alicyclic epoxy
実施例 13 フィルム 高分子化合物 1 1-4 レーザ エポキシ化合物 化合物 Example 13 Film Polymer Compound 1 1-4 Laser Epoxy Compound Compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
実施例 14 フィルム 高分子化合物 1 1-1 アナログ エポキシ化合物 エポキシ化合物 Example 14 Film Polymer Compound 1 1-1 Analog Epoxy Compound Epoxy Compound
ビスフエノール F型 ノボラック型ェポキ  Bisphenol F type novolak type Epoch
実施例 15 フィルム 高分子化合物 1 1-1 アナログ エポキシ化合物 シ化合物 Example 15 Film Polymer Compound 1 1-1 Analog Epoxy Compound B Compound
ビスフエノール F型 複素環型エポキシ  Bisphenol F type heterocyclic epoxy
実施例 16 フィルム 高分子化合物 1 1-1 アナログ エポキシ化合物 化合物 Example 16 Film Polymer Compound 1 1-1 Analog Epoxy Compound Compound
ビスフエノール F型 脂環式型エポキシ  Bisphenol F type alicyclic epoxy
実施例 1フ フィルム 高分子化合物 1 1-1 アナログ エポキシ化合物 化合物 Example 1 Film Polymer Compound 1 1-1 Analog Epoxy Compound Compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
実施例 18 フィルム 高分子化合物 1 1-4 アナログ エポキシ化合物 エポキシ化合物 Example 18 Film Polymer Compound 1 1-4 Analog Epoxy Compound Epoxy Compound
ビスフエノール F型 ノボラック型ェポキ  Bisphenol F type novolak type Epoch
実施例 19 フィルム 高分子化合物 1 1-4 アナログ エポキシ化合物 シ化合物 Example 19 Film Polymer Compound 1 1-4 Analog Epoxy Compound B Compound
ビスフエノール F型 複素環型エポキシ  Bisphenol F type heterocyclic epoxy
実施例 2〇 フィルム 高分子化合物 1 1-4 アナログ エポキシ化合物 化合物 Example 20 Film Polymer Compound 1 1-4 Analog Epoxy Compound Compound
ビスフエノール F型 脂環式型エポキシ  Bisphenol F type alicyclic epoxy
実施例 21 フィルム 高分子化合物 1 1-4 アナログ エポキシ化合物 化合物 Example 21 Film Polymer Compound 1 1-4 Analog Epoxy Compound Compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
実施例 22 フィルム 高分子化合物 1 1-1 レーザ エポキシ化合物 エポキシ化合物 Example 22 Film Polymer compound 1 1-1 Laser Epoxy compound Epoxy compound
ビスフエノール A型  Bisphenol A type
比較例 1 フィルム 高分子化合物 1 1-1 レーザ エポキシ化合物 Comparative Example 1 Film Polymer Compound 1 1-1 Laser Epoxy Compound
ビスフエノール F型 ビスフエノール A型  Bisphenol F type Bisphenol A type
比較例 2 フィルム B-1 1-1 レーザ エポキシ化合物 エポキシ化合物 Comparative Example 2 Film B-1 1-1 Laser Epoxy Compound Epoxy Compound
表 2] Table 2]
感度 解像度 無電解金 スルーホールの エッジラフネス Sensitivity Resolution Electroless gold Through-hole edge roughness
(mJ/cm ) [ ji m) メツキ耐性 埋め込み性 ( m)  (mJ / cm) [ji m) Sticking resistance Embeddability (m)
実施例 1 69 40 〇 〇 1.5  Example 1 69 40 ○ ○ 1.5
実施例 2 42 30 0 〇 1.3  Example 2 42 30 0 〇 1.3
実施例 3 45 30 〇 〇 1.3  Example 3 45 30 ○ ○ 1.3
実施例 4 45 30 〇 〇 1.3  Example 4 45 30 ○ ○ 1.3
実施例 5 45 30 〇 〇 1.3  Example 5 45 30 ○ ○ 1.3
実施例 6 50 35 0 〇 1.3  Example 6 50 35 0 〇 1.3
実施例フ 44 30 〇 〇 1.3  Example 44 30 ○ ○ 1.3
実施例 8 45 30 0 〇 1.3  Example 8 45 30 0 ○ 1.3
実施例 9 48 30 〇 〇 1.3  Example 9 48 30 ○ ○ 1.3
実施例 10 28 30 〇 〇 1.3  Example 10 28 30 ○ ○ 1.3
実施例 11 29 30 0 〇 1.3  Example 11 29 30 0 〇 1.3
実施例 12 32 30 〇 〇 1.3  Example 12 32 30 ○ ○ 1.3
実施例 13 27 30 0 〇 1.3  Example 13 27 30 0 〇 1.3
実施例 14 - 35 0 〇 2.3  Example 14-35 0 〇 2.3
実施例 15 - 35 〇 〇 2.3  Example 15-35 ○ ○ 2.3
実施例 16 - 35 0 〇 2.3  Example 16-35 0 〇 2.3
実施例 17 - 35 〇 〇 2.3  Example 17-35 ○ ○ 2.3
実施例 18 - 35 0 〇 2.3  Example 18-35 0 〇 2.3
実施例 19 - 35 0 〇 2.3  Example 19-35 0 〇 2.3
実施例 20 - 35 〇 〇 2.3  Example 20-35 ○ ○ 2.3
実施例 21 - 35 0 〇 2.3  Example 21-35 0 ○ 2.3
実施例 22 42 30 〇 〇 2.0  Example 22 42 30 ○ ○ 2.0
比較例 1 43 30 〇 Δ 1.3  Comparative Example 1 43 30 ○ Δ 1.3
比較例 2 148 37 X 〇 1.5  Comparative Example 2 148 37 X ○ 1.5
表 2の結果から、実施例 1〜22では、熱架橋剤が 2種以上の化合物を含む本発明 の感光性組成物を用いるため、無電解金メッキ耐性及びスルーホールの埋め込み性 に優れることが判った。特に、感光性フィルムを作製した実施例 2〜22では、解像度 も高いことが判った。また、レーザ露光を行なった実施例 2〜13及び 22では、感度も 高いことが判った。  From the results of Table 2, it was found that in Examples 1 to 22, the thermal crosslinking agent used the photosensitive composition of the present invention containing two or more kinds of compounds, so that it was excellent in electroless gold plating resistance and through hole embedding. It was. In particular, in Examples 2 to 22 where photosensitive films were produced, it was found that the resolution was also high. It was also found that Examples 2 to 13 and 22 subjected to laser exposure had high sensitivity.
一方、 2重露光における解像度のばらつきと露光むらを補正した実施例 2〜13のパ ターンは、エッジラフネスも小さ 、ことが判った。  On the other hand, it was found that the edge roughness was small in the patterns of Examples 2 to 13 in which the variation in resolution and the exposure unevenness in the double exposure were corrected.
(実施例 23) (Example 23)
各成分を下記の量で配合して、感光性組成物溶液を調製した以外は、実施例 1と 同様にして感光性積層体を調製した。  A photosensitive laminate was prepared in the same manner as in Example 1 except that each component was blended in the following amounts to prepare a photosensitive composition solution.
〔感光性組成物溶液の各成分量〕 [Each component amount of photosensitive composition solution]
•前記高分子化合物 1(前記 1—メトキシ— 2—プロパノール溶液中に固形分質量 30 質量%)···87.4質量部  • The polymer compound 1 (solid content in the 1-methoxy-2-propanol solution is 30% by mass) ... 87.4 parts by mass
'ジペンタエリスリトールへキサアタリレート(重合性ィ匕合物) · · ·4質量部  'Dipentaerythritol hexaatalylate (polymerizable compound) · · · 4 parts by mass
•ウレタンアタリレート (重合性化合物、新中村化学社製 U— 6Η、質量平均分子量 1 , 188、 6官能) · · 8質量部 • Urethane acrylate (polymerizable compound, Shin-Nakamura Chemical Co., Ltd. U—6Η, mass average molecular weight 1 , 188, 6 functionalities) · · 8 parts by mass
•光重合開始剤 I - 1 (チバ ·スペシャルティ ·ケミカルズ社製、ィルガキュア 819 (ァシ ルホスフィンォキシドィ匕合物)) · · · 6質量部  • Photopolymerization initiator I-1 (Ciba Specialty Chemicals Inc., Irgacure 819 (Arylphosphine oxide compound)) ··· 6 parts by mass
•下記式 S— 1で表される増感剤(チォキサントン系化合物) · · · (). 6質量部  • Sensitizer (thioxanthone compound) represented by the following formula S— 1 (). 6 parts by mass
'ビスフエノール Α系エポキシ榭脂(東都化成社製 ェポトート YD— 8125、エポキシ 等量 170gZeq.、(アルカリ不溶性の熱架橋剤)) · · · 3質量部  'Bisphenol – epoxy epoxy resin (Etototo YD-8125, Toto Kasei Co., Ltd., epoxy equivalent 170gZeq. (Alkali-insoluble thermal crosslinking agent)) · · · 3 parts by mass
'熱硬化剤(ジシアンジアミド) · · ·0. 50質量部  'Thermosetting agent (dicyandiamide) ··· 0.50 parts by mass
'フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 %2—ブタノン溶液) · · ·0. 2質量部  'Fluorosurfactant (Megafac F-176, manufactured by Dainippon Ink and Chemicals, 30 mass% 2-butanone solution) ··· 0.2 parts by mass
'硫酸バリウム分散液 (堺化学工業社製、 Β-30) · · ·40質量部  'Barium sulfate dispersion (Tsubaki Chemical Industry Co., Ltd., Β-30) · · · 40 parts by mass
•メチルェチルケトン. . . 15質量部  • Methyl ethyl ketone ... 15 parts by mass
なお、前記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学工業 (株)製、 Β30) 30質 量部、前記高分子化合物 1 (前記 1—メトキシ— 2—プロパノール溶液中に固形分質 量 30質量%)溶液 29. 2質量部、 C. I.ビグメント ·ブルー 15 : 30. 2質量部、 C. I.ピ グメント'イェロー 185 0. 05質量部、及びメチルェチルケトン 40. 55質量部を予め 混合した後、モーターミル Μ— 200 (アイガー社製)で、直径 1. Ommのジルコ-アビ ーズを用い、周速 9mZsにて 3. 5時間分散して調製した。  In addition, the barium sulfate dispersion is composed of 30 parts by mass of barium sulfate (manufactured by Nigaku Kogyo Co., Ltd., Β30), the polymer compound 1 (solid mass in the 1-methoxy-2-propanol solution) 30% by weight) solution 29. 2 parts by weight, CI pigment blue 15: 30.2 parts by weight, CI pigment 'Yellow 185 0.05 parts by weight, and methyl ethyl ketone 40.55 parts by weight In a motor mill 200-200 (manufactured by Eiger), a Zirco-Aviz with a diameter of 1. Omm was used and dispersed for 3.5 hours at a peripheral speed of 9 mZs.
[化 19]  [Chemical 19]
Figure imgf000119_0001
Figure imgf000119_0001
[0335] 前記感光性積層体について、それぞれ以下の方法により、最短現像時間、感度、 解像度、タック性、無電解金メッキ耐性、及びエッジラフネスの評価を行った。なお、 最短現像時間、感度、解像度、無電解金メッキ耐性、及びエッジラフネスについては 、実施例 1と同様にして評価を行った。最短現像時間以外の結果を表 4に示す。  [0335] The photosensitive laminate was evaluated for the shortest development time, sensitivity, resolution, tackiness, electroless gold plating resistance, and edge roughness by the following methods. The shortest development time, sensitivity, resolution, electroless gold plating resistance, and edge roughness were evaluated in the same manner as in Example 1. Table 4 shows the results other than the shortest development time.
[0336] <タック性の評価 >  [0336] <Evaluation of tackiness>
前記感光性積層体における感光層の表面のタック性について下記基準に基づい て評価した。結果を表 2に示す。 〔評価基準〕 The tackiness of the surface of the photosensitive layer in the photosensitive laminate was evaluated based on the following criteria. The results are shown in Table 2. 〔Evaluation criteria〕
◎:感光層の表面に全くタック性が認められな力つた  A: The surface of the photosensitive layer did not show any tackiness.
〇:感光層の表面に強いタック性が認められな力つた  ○: Strong tackiness was not recognized on the surface of the photosensitive layer.
△:感光層の表面にややタック性が認められた  Δ: Slight tackiness was observed on the surface of the photosensitive layer
X:感光層の表面に強いタック性が認められた  X: Strong tackiness was recognized on the surface of the photosensitive layer
[0337] (実施例 24) [0337] (Example 24)
感光性積層体の調製  Preparation of photosensitive laminate
実施例 23で得られた感光性組成物溶液より、実施例 2と同様にして前記感光性フ イルム及び感光性積層体を調製した。  The photosensitive film and photosensitive laminate were prepared from the photosensitive composition solution obtained in Example 23 in the same manner as in Example 2.
[0338] 前記感光性積層体にっ ヽて、感度、解像度、タック性、保存安定性、及びエッジラ フネスの評価を行った。なお、感度については実施例 2と同様に、解像度、タック性、 及びエッジラフネスについては実施例 23と同様にして、それぞれ評価を行った。結 果を表 4に示す。 [0338] The photosensitive laminate was evaluated for sensitivity, resolution, tackiness, storage stability, and edge roughness. The sensitivity was evaluated in the same manner as in Example 2, and the resolution, tackiness, and edge roughness were evaluated in the same manner as in Example 23. The results are shown in Table 4.
[0339] <保存安定性の評価 > [0339] <Evaluation of storage stability>
一端面融着の有無  Presence or absence of end-face fusion
前記感光性フィルムをワインダ一で巻き取り、感光性フィルム原反ロールを製造した 得られた前記感光性フィルム原反ロールを同軸スリツターにてスリットして、長さ 300 mm、内径 76mmの ABS榭脂製円筒状巻き芯に、 250mm幅で 150m巻き取り、感 光性フィルムロールを作製した。  The photosensitive film was wound up with a winder to produce a photosensitive film raw roll. The obtained photosensitive film raw roll was slit with a coaxial slitter, and was 300 mm in length and 76 mm in inner diameter. A cylindrical roll core was wound up to 150 m in a width of 250 mm to produce a photosensitive film roll.
こうして得られた前記感光性フィルムロールを、黒色ポリエチレン製の筒状袋 (膜厚 : 80 m、水蒸気透過率: 25gZm2' 24hr以下)に包み、ポリプロピレン製ブッシュを 巻き芯の両端に押し込んだ。 The photosensitive film roll thus obtained was wrapped in a black polyethylene cylindrical bag (film thickness: 80 m, water vapor transmission rate: 25 gZm 2 '24 hr or less), and a polypropylene bush was pushed into both ends of the winding core.
前記ブッシュで両端を塞いだロール状のサンプルを 25°C、 55%RHで 21日間保 存後、端面融着の有無を観察し、下記基準で保存安定性の評価を行なった。  The roll-shaped sample with both ends closed with the bush was stored at 25 ° C and 55% RH for 21 days, and then observed for end face fusion, and the storage stability was evaluated according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇:端面融着が確認されず、積層体が良好に使用できる状態。  A: End face fusion is not confirmed, and the laminate can be used satisfactorily.
△:端面の一部に光沢があり、若干量の端面融着が起きて 、る状態 (使用限界)。 X:端面全面に光沢があり、端面融着が多量に発生している状態。 Δ: A part of the end face is glossy, and a slight amount of end face fusion occurs (use limit). X: State where the entire end face is glossy and a large amount of end face fusion occurs.
[0340] (実施例 25) [0340] (Example 25)
実施例 24において、ウレタンアタリレートを、表 3に示すように、 BPA系モノマー(新 中村化学社製 BPE— 500、質量平均分子量 800、 2官能) 8質量部に代えた以外 は、実施例 24と同様にして、感度、解像度、タック性、無電解金メッキ耐性、保存安 定性、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 24, except that urethane acrylate was changed to 8 parts by mass of BPA monomer (BPE-500, Shin-Nakamura Chemical Co., Ltd., mass average molecular weight 800, bifunctional) as shown in Table 3, Example 24 In the same manner as described above, the sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0341] (実施例 26) [0341] (Example 26)
実施例 24において、ウレタンアタリレートを、表 3に示すように、ポリエステルアタリレ ート (第一工業製薬社製 R- 2403、官能基数 4 (ポリエステルモノマー) ) 7質量部 に代えた以外は、実施例 2と同様にして、感度、解像度、タック性、無電解金メッキ耐 性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 24, except that the urethane acrylate was replaced with 7 parts by mass of polyester acrylate (R-2403, Daiichi Kogyo Seiyaku Co., Ltd., functional group number 4 (polyester monomer)) as shown in Table 3, In the same manner as in Example 2, the sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0342] (実施例 27) [0342] (Example 27)
実施例 24において、ウレタンアタリレートを、下記構造式で表されるエポキシアタリ レート(質量平均分子量 8, 000、酸価 80mgKOHZg) 20質量部に代えた以外は、 実施例 24と同様にして、感度、解像度、タック性、無電解金メッキ耐性、保存安定性 、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 24, the sensitivity was changed in the same manner as in Example 24 except that the urethane acrylate was replaced with 20 parts by mass of an epoxy acrylate (mass average molecular weight 8,000, acid value 80 mg KOHZg) represented by the following structural formula. , Resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[化 20]  [Chemical 20]
Figure imgf000121_0001
Figure imgf000121_0001
[0343] (実施例 28) [0343] (Example 28)
実施例 24において、ウレタンアタリレート 3質量部を、表 3に示すように、 ΝΚエステ ル 1206ΡΕ (官能基数 2 (エーテル基を有するモノマー)) 3質量部に代えた以外は、 実施例 24と同様にして、感度、解像度、タック性、無電解金メッキ耐性、保存安定性 、及びエッジラフネスの評価を行った。結果を表 4に示す。  As in Example 24, except that 3 parts by mass of urethane acrylate in Example 24 was replaced with 3 parts by mass of ester 1206 (monomer having functional group 2 (monomer having an ether group)) as shown in Table 3. Thus, sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0344] (実施例 29) 実施例 24において、前記高分子化合物 1を、表 3に示すように、合成例 2で得られ た高分子化合物 2 ; 87. 4質量部に代えた以外は、実施例 24と同様にして、感度、解 像度、タック性、無電解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行つ た。結果を表 4に示す。 [0344] (Example 29) In Example 24, except that the polymer compound 1 was replaced with the polymer compound 2 obtained in Synthesis Example 2; 87.4 parts by mass as shown in Table 3, the same as in Example 24, Sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0345] (実施例 30) [0345] (Example 30)
実施例 24において、光重合開始剤を、表 3に示すように、下記式 1— 2で表される化 合物 2質量部に代えた以外は、実施例 24と同様にして、感度、解像度、タック性、無 電解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4〖こ 示す。  In Example 24, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula 1-2 as shown in Table 3, in the same manner as in Example 24, sensitivity, resolution , Tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[化 21]
Figure imgf000122_0001
[Chemical 21]
Figure imgf000122_0001
[0346] (実施例 31)  [0346] (Example 31)
実施例 25において、光重合開始剤を、表 3に示すように、下記式 1— 3で表される化 合物 2質量部に代えた以外は、実施例 25と同様にして、感度、解像度、タック性、無 電解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4〖こ 示す。  In Example 25, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formulas 1-3 as shown in Table 3. , Tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[化 22]  [Chemical 22]
Figure imgf000122_0002
Figure imgf000122_0002
(実施例 32)  (Example 32)
実施例 26において、光重合開始剤を、表 3に示すように、下記式 1— 4で表される化 合物 2質量部に、増感剤を N—メチルアタリドン 0. 6質量部に代えた以外は、実施例 26と同様にして、感度、解像度、タック性、無電解金メッキ耐性、保存安定性、及び エッジラフネスの評価を行った。結果を表 4に示す。  In Example 26, as shown in Table 3, the photopolymerization initiator was added to 2 parts by mass of a compound represented by the following formula 1-4, and the sensitizer was added to 0.6 part by mass of N-methyl attaridone. Except for the changes, the evaluation of sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness was performed in the same manner as in Example 26. The results are shown in Table 4.
[化 23]
Figure imgf000123_0001
[Chemical 23]
Figure imgf000123_0001
[0348] (実施例 33)  [0348] (Example 33)
実施例 24において、前記パターン形成装置の代わりに、これと同様なパターンを 有するガラス製ネガマスクを別途作製し、このネガマスクを感光性積層体上に接触さ せて超高圧水銀灯で 40miZcm2の露光量で露光した。その後、実施例 24と同様な 方法で現像し、解像度を測定した以外は、実施例 24と同様にして、解像度、タック性 、無電解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4 に示す。 In Example 24, instead of the pattern forming apparatus, a glass negative mask having a similar pattern was prepared separately, and the negative mask was brought into contact with the photosensitive laminate, and an exposure amount of 40 miZcm 2 was obtained using an ultrahigh pressure mercury lamp. And exposed. Thereafter, the resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated in the same manner as in Example 24 except that development was performed in the same manner as in Example 24 and the resolution was measured. . The results are shown in Table 4.
[0349] (実施例 34)  [0349] (Example 34)
実施例 33において、ウレタンアタリレートを、表 3に示すように、ビスフエノール A型 エポキシアタリレート (新中村ィ匕学社製 EA— 1020、質量平均分子量 484、官能基 数 2) 7質量部に代えた以外は、実施例 33と同様にして、解像度、タック性、無電解金 メツキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 33, as shown in Table 3, the urethane acrylate was bisphenol A type epoxy acrylate (EA-1020, Shin-Nakamura Chemical Co., Ltd., mass average molecular weight 484, functional group number 2) in 7 parts by mass. Except for the change, the evaluation of resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness was performed in the same manner as in Example 33. The results are shown in Table 4.
[0350] (実施例 35)  [0350] (Example 35)
実施例 33において、ウレタンアタリレートを、表 3に示すように、ポリエステルアタリレ ート (第一工業製薬社製 R— 2403) 7質量部に代えた以外は、実施例 33と同様に して、解像度、タック性、無電解金メッキ耐性、保存安定性、及びエッジラフネスの評 価を行った。結果を表 4に示す。  In Example 33, as shown in Table 3, except that the urethane acrylate was replaced with 7 parts by mass of a polyester acrylate (R-2403 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), the same procedure as in Example 33 was performed. , Resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0351] (実施例 36)  [0351] (Example 36)
実施例 33において、光重合開始剤を、表 3に示すように、光重合開始剤 1— 5 (BA SF社製、ルシリン TPO—L (ァシルホスフィンォキシド)) 4質量部に代えた以外は、 実施例 33と同様にして、最短現像時間、感度、解像度、タック性、無電解金メッキ耐 性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 33, as shown in Table 3, the photopolymerization initiator was changed to 4 parts by mass of photopolymerization initiator 1-5 (manufactured by BA SF, Lucillin TPO-L (acylphosphine oxide)). In the same manner as in Example 33, the shortest development time, sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and edge roughness were evaluated. The results are shown in Table 4.
[0352] (実施例 37)  [0352] (Example 37)
実施例 34において、光重合開始剤を、表 3に示すように、下記式 1— 2で表される化 合物 2質量部に代えた以外は、実施例 34と同様にして、解像度、タック性、無電解金 メツキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示す。 In Example 34, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formula 1-2 as shown in Table 3. , Electroless gold Evaluation was made on the resistance to plating, storage stability, and edge roughness. The results are shown in Table 4.
[化 24]  [Chemical 24]
22
Figure imgf000124_0001
Figure imgf000124_0001
(実施例 38)  (Example 38)
実施例 35において、光重合開始剤を、表 3に示すように、下記式 1— 3で表される化 合物 2質量部に代えた以外は、実施例 35と同様にして、解像度、タック性、無電解金 メツキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示す。  In Example 35, the photopolymerization initiator was replaced with 2 parts by mass of the compound represented by the following formulas 1-3 as shown in Table 3. Evaluation was made on the property, electroless gold plating resistance, storage stability, and edge roughness. The results are shown in Table 4.
[化 25]  [Chemical 25]
Figure imgf000124_0002
Figure imgf000124_0002
[0354] (実施例 39)  [0354] (Example 39)
実施例 24において、前記式 3に基づき N= lとして設定傾斜角度 Θを算出し、前記 式 4に基づき ttan Θ ' = 1の関係を満たす値 tに最も近 、自然数 Tを導出し、 N重露光 (N= l)を行ったこと以外は、実施例 24と同様にして、感度、解像度、タック性、無電 解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果を表 4に示 す。  In Example 24, the set inclination angle Θ is calculated with N = l based on Equation 3 above, the natural number T is derived closest to the value t satisfying the relationship of ttan Θ ′ = 1 based on Equation 4 above, and N Except that the exposure (N = 1) was performed, the sensitivity, resolution, tackiness, electroless plating resistance, storage stability, and edge roughness were evaluated in the same manner as in Example 24. The results are shown in Table 4.
[0355] (比較例 3)  [0355] (Comparative Example 3)
実施例 24において、ジペンタエリスリトールへキサアタリレートを 8質量部用い、ウレ タンアタリレートを用いな力つた以外は、実施例 24と同様にして、感度、解像度、タツ ク性、無電解金メッキ耐性、保存安定性、及びエッジラフネスの評価を行った。結果 を表 4に示す。  In Example 24, sensitivity, resolution, tackiness, and electroless gold plating resistance were the same as in Example 24, except that 8 parts by mass of dipentaerythritol hexaatalylate was used and urethanate was used. Storage stability and edge roughness were evaluated. The results are shown in Table 4.
[0356] (比較例 4) [0356] (Comparative Example 4)
実施例 24において、前記高分子化合物 1を、下記構造式 B— 1 (1—メトキシ 2— プロパノール溶液中に固形分質量 30質量%) ; 87. 4質量部に代えた以外は、実施 例 2と同様にして、感度、解像度、タック性、無電解金メッキ耐性、保存安定性、及び エッジラフネスの評価を行った。結果を表 4に示す。 Example 2 except that in Example 24, the polymer compound 1 was replaced by the following structural formula B-1 (mass content 30% by mass in 1-methoxy 2-propanol solution); 87.4 parts by mass In the same way, sensitivity, resolution, tackiness, electroless gold plating resistance, storage stability, and The edge roughness was evaluated. The results are shown in Table 4.
[化 26]
Figure imgf000125_0001
[Chemical 26]
Figure imgf000125_0001
Mw 30, 000  Mw 30, 000
酸価 2. Omeqノ g  Acid number 2. Omeq g
C = C価 Omeqノ g  C = C value Omeq g
[0357] [表 3]  [0357] [Table 3]
Figure imgf000125_0002
Figure imgf000125_0002
表 3中の「DPHA」はジペンタエリスリトールへキサアタリレートの略である,  `` DPHA '' in Table 3 is an abbreviation for dipentaerythritol hexaatalylate.
[0358] [表 4] [0358] [Table 4]
感度 解像度 タック性 無電解金 エッジラフネス Sensitivity Resolution Tackiness Electroless gold Edge roughness
保存安定性  Storage stability
(m J/cm ) m ) メツキ耐性 m ) 実施例 23 70 40 〇 ― 1 .5  (m J / cm) m) Meat resistance m) Example 23 70 40 ○ ― 1.5
実施例 24 45 30 〇 〇 1 .3  Example 24 45 30 ○ ○ 1.3
実施例 25 48 30 〇 〇 1 .3  Example 25 48 30 ○ ○ 1.3
実施例 26 50 35 ◎ 〇 〇 1 .4  Example 26 50 35 ◎ 〇 〇 1.4
実施例 27 55 35 ◎ 〇 〇 1 .4  Example 27 55 35 ◎ 〇 〇 1.4
実施例 28 54 33 ◎ 〇 〇 1 .4  Example 28 54 33 ◎ 〇 〇 1.4
実施例 29 52 35 ◎ 〇 〇 1 .3  Example 29 52 35 ◎ 〇 〇 1.3
実施例 30 29 28 ◎ 〇 〇 1 .3  Example 30 29 28 ◎ 〇 〇 1.3
実施例 31 33 29 ◎ 〇 〇 1 .3  Example 31 33 29 ◎ 〇 〇 1.3
実施例 32 30 31 ◎ 〇 〇 1 .4  Example 32 30 31 ◎ 〇 〇 1.4
実施例 33 - 35 ◎ 〇 〇 2.3  Example 33-35 ◎ 〇 〇 2.3
実施例 34 - 35 ◎ 〇 〇 2.3  Example 34-35 ◎ 〇 〇 2.3
実施例 35 - 35 ◎ 〇 〇 2.3  Example 35-35 ◎ 〇 〇 2.3
実施例 36 - 35 ◎ 〇 〇 2.4  Example 36-35 ◎ 〇 〇 2.4
実施例 37 - 35 〇 〇 2.3  Example 37-35 ○ ○ 2.3
実施例 38 - 35 〇 〇 2.3  Example 38-35 ○ ○ 2.3
実施例 39 45 30 〇 〇 2.0  Example 39 45 30 ○ ○ 2.0
比較例 3 47 30 〇 Δ Δ 1 .3  Comparative Example 3 47 30 ○ Δ Δ 1.3
比較例 4 150 37 〇 X Δ 1 .5  Comparative Example 4 150 37 〇 X Δ 1.5
表 4の結果から、実施例 23〜39では、重合性化合物が 2種以上のモノマーを含む 本発明の感光性組成物を用いるため、タック性、無電解金メッキ耐性、及び保存安定 性に優れることが判った。特に、感光性フィルムを作製した実施例 24〜39では、解 像度も高いことが判った。また、レーザ露光を行なった実施例 24〜32及び実施例 3 9では、感度も高いことが判った。  From the results of Table 4, in Examples 23 to 39, the polymerizable compound contains two or more monomers, and thus the photosensitive composition of the present invention is used. Therefore, the tackiness, electroless gold plating resistance, and storage stability are excellent. I understood. In particular, in Examples 24 to 39 in which a photosensitive film was produced, it was found that the resolution was also high. In addition, in Examples 24-32 and Example 39 in which laser exposure was performed, it was found that the sensitivity was also high.
一方、 2重露光における解像度のばらつきと露光むらを補正した実施例 24〜32の パターンは、エッジラフネスも小さ 、ことが判った。  On the other hand, it was found that the patterns of Examples 24-32 in which the variation in resolution and the exposure unevenness in double exposure were corrected also had small edge roughness.
産業上の利用可能性 Industrial applicability
本発明の感光性組成物、感光性フィルム、及び感光性積層体は、高精細な永久パ ターンを効率よく形成可能であるため、保護膜、層間絶縁膜、及びソルダーレジスト パターン等の永久パターン、などの各種パターン形成、カラーフィルタ、柱材、リブ材 、スぺーサ一、隔壁などの液晶構造部材の製造、ホログラム、マイクロマシン、プル一 フの製造などに好適に用いることができ、特にプリント基板の永久パターン形成用に 好適に用いることができる。  Since the photosensitive composition, photosensitive film, and photosensitive laminate of the present invention can efficiently form a high-definition permanent pattern, a permanent pattern such as a protective film, an interlayer insulating film, and a solder resist pattern, Can be suitably used for the formation of various patterns such as color filters, pillar materials, rib materials, spacers, liquid crystal structural members such as partition walls, holograms, micromachines, pulls, etc. It can be suitably used for forming a permanent pattern.
本発明の永久パターン形成方法は、本発明の前記感光性積層体を用いるため、保 護膜、層間絶縁膜、及びソルダーレジストパターン等の永久パターン、などの各種パ ターン形成用、カラーフィルタ、柱材、リブ材、スぺーサ一、隔壁などの液晶構造部材 の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることができ、 特にプリント基板の永久パターン形成用に好適に用いることができる。 Since the method for forming a permanent pattern of the present invention uses the photosensitive laminate of the present invention, it is used for forming various patterns such as a protective film, an interlayer insulating film, and a permanent pattern such as a solder resist pattern, a color filter, and a column. Materials, rib materials, spacers, liquid crystal structural members such as partition walls, holograms, micromachines, proofs, etc. In particular, it can be suitably used for forming a permanent pattern on a printed circuit board.

Claims

請求の範囲 The scope of the claims
[I] バインダー、重合性化合物、光重合開始剤、及び熱架橋剤を含み、前記バインダ 一が、酸性基とエチレン性不飽和結合とを側鎖に有する高分子化合物を含み、かつ 重合性化合物及び熱架橋剤の少なくともいずれかが、 2種以上の化合物を含むこと を特徴とする感光性組成物。  [I] a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, wherein the binder includes a polymer compound having an acidic group and an ethylenically unsaturated bond in a side chain, and the polymerizable compound And at least one of the thermal crosslinking agent contains two or more kinds of compounds.
[2] 熱架橋剤が、エポキシィ匕合物、ォキセタンィ匕合物、ポリイソシァネートイ匕合物、ポリ イソシァネートイ匕合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体 力 選択される 2種以上である請求項 1に記載の感光性組成物。 [2] The thermal crosslinking agent is selected from an epoxy compound, an oxetane compound, a polyisocyanate compound, a compound obtained by reacting a polyisocyanate compound with a blocking agent, and a melamine derivative. The photosensitive composition according to claim 1, wherein there are two or more kinds.
[3] 熱架橋剤がエポキシ化合物であり、該エポキシィ匕合物がノボラック型エポキシィ匕合 物、ビスフエノール型エポキシィ匕合物、複素環含有エポキシ化合物、及び脂環式ェ ポキシィ匕合物力 選択されるいずれか 2種である請求項 2に記載の感光性組成物。 [3] The thermal crosslinking agent is an epoxy compound, and the epoxy compound is selected from a novolac type epoxy compound, a bisphenol type epoxy compound, a heterocyclic ring-containing epoxy compound, and an alicyclic epoxy compound. The photosensitive composition according to claim 2, which is any two of the above.
[4] 熱架橋剤が、エポキシ当量 90〜400gZeq.のエポキシ化合物と、エポキシ当量 1[4] The thermal crosslinking agent is an epoxy compound having an epoxy equivalent of 90 to 400 gZeq.
50-9, OOOg/eq.のエポキシィ匕合物とを含む請求項 3に記載の感光性組成物。 The photosensitive composition according to claim 3, comprising an epoxy compound of 50-9, OOOg / eq.
[5] 熱硬化促進剤を含む請求項 1から 4の ヽずれかに記載の感光性組成物。 [5] The photosensitive composition according to any one of claims 1 to 4, comprising a thermosetting accelerator.
[6] 重合性化合物が、官能基数の異なる 2種以上のモノマーを含む請求項 1及び 5の[6] The polymerizable compound according to claims 1 and 5, wherein the polymerizable compound contains two or more monomers having different numbers of functional groups.
V、ずれかに記載の感光性組成物。 V, photosensitive composition according to any of the above.
[7] 重合性化合物が、ウレタン基、ァリール基、エステル基、エーテル基、及びエポキシ 化合物から誘導された基の少なくとも 、ずれかを有するモノマーを含む請求項 6に記 載の感光性組成物。 7. The photosensitive composition according to claim 6, wherein the polymerizable compound contains a monomer having at least one of a group derived from a urethane group, aryl group, ester group, ether group, and epoxy compound.
[8] 重合性化合物が、 4個以上の官能基を有するモノマーを含む請求項 6から 7のいず れかに記載の感光性組成物。  [8] The photosensitive composition according to any one of [6] to [7], wherein the polymerizable compound contains a monomer having 4 or more functional groups.
[9] 質量平均分子量が、 200〜9, 000のモノマーを含む請求項 7から 8のいずれかに 記載の感光性組成物。 [9] The photosensitive composition according to any one of claims 7 to 8, comprising a monomer having a mass average molecular weight of 200 to 9,000.
[10] バインダーが、酸性基と、ヘテロ環を含んでもよ!ヽ芳香族基と、ヱチレン性不飽和 結合とを側鎖に有する高分子化合物を含む請求項 1から 9のいずれかに記載の感光 性組成物。  [10] The binder according to any one of claims 1 to 9, wherein the binder may include an acidic group, a heterocyclic ring, and a high molecular compound having an aromatic group and an acetylenic unsaturated bond in a side chain. Photosensitive composition.
[II] 支持体と、該支持体上に請求項 1から 10のいずれかに記載の感光性組成物力もな る感光層を有することを特徴とする感光性フィルム。 [II] A photosensitive film comprising a support and a photosensitive layer having the photosensitive composition force according to any one of claims 1 to 10 on the support.
[12] 長尺状であり、ロール状に巻かれてなる請求項 11に記載の感光性フィルム。 12. The photosensitive film according to claim 11, which is long and wound in a roll shape.
[13] 基体上に、請求項 1から 10のいずれかに記載の感光性組成物力もなる感光層を有 することを特徴とする感光性積層体。  [13] A photosensitive laminate having a photosensitive layer having a photosensitive composition strength according to any one of claims 1 to 10 on a substrate.
[14] 感光層が、請求項 11から 12のいずれかに記載の感光性フィルムにより形成された 請求項 13に記載の感光性積層体。 [14] The photosensitive laminate according to claim 13, wherein the photosensitive layer is formed of the photosensitive film according to any one of claims 11 to 12.
[15] 請求項 13から 14のいずれかに記載の感光性積層体における感光層に対して露光 を行うことを含むことを特徴とする永久パターン形成方法。 [15] A method for forming a permanent pattern, comprising exposing the photosensitive layer in the photosensitive laminate according to any one of claims 13 to 14.
[16] 露光が、 350〜415nmの波長のレーザ光を用いて行われる請求項 15に記載の永 久パターン形成方法。 16. The permanent pattern forming method according to claim 15, wherein the exposure is performed using a laser beam having a wavelength of 350 to 415 nm.
[17] 請求項 15から 16のいずれかに記載の永久パターン形成方法により永久パターン が形成されることを特徴とするプリント基板。  [17] A printed circuit board, wherein a permanent pattern is formed by the method for forming a permanent pattern according to any one of claims 15 to 16.
PCT/JP2006/323425 2006-03-16 2006-11-24 Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board WO2007108172A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006072693A JP2007248843A (en) 2006-03-16 2006-03-16 Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2006-072693 2006-03-16
JP2006-072747 2006-03-16
JP2006072747A JP2007248846A (en) 2006-03-16 2006-03-16 Photosensitive composition, film, and laminate, and permanent pattern forming method, permanent pattern, and printed circuit board

Publications (1)

Publication Number Publication Date
WO2007108172A1 true WO2007108172A1 (en) 2007-09-27

Family

ID=38522210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323425 WO2007108172A1 (en) 2006-03-16 2006-11-24 Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board

Country Status (2)

Country Link
TW (1) TW200736831A (en)
WO (1) WO2007108172A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607811B2 (en) * 2016-03-11 2019-11-20 マクセルホールディングス株式会社 Plating parts manufacturing method, plating parts, catalytic activity interference agent and electroless plating composite material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020493A (en) * 1996-06-28 1998-01-23 Nippon Chibagaigii Kk Photopolymerizable thermosetting resin composition
JP2002287353A (en) * 2001-03-28 2002-10-03 Nippon Paint Co Ltd Photosensitive solder resist composition
JP2002363231A (en) * 2001-06-06 2002-12-18 Taiyo Ink Mfg Ltd Resin composition
JP2003029402A (en) * 2001-07-19 2003-01-29 Goo Chemical Co Ltd Ultraviolet ray-curable resin composition and dry film
JP2003165827A (en) * 2001-11-29 2003-06-10 Mitsubishi Gas Chem Co Inc Photosensitive thermosetting resin composition
JP2003270786A (en) * 2002-03-14 2003-09-25 Goo Chemical Co Ltd Photosensitive resin composition, photo-solder resist ink, printed wiring board, flexible printed wiring board and dry film
JP2003280193A (en) * 2002-03-26 2003-10-02 Taiyo Ink Mfg Ltd Alkali-developable photosensitive resin composition and printed wiring board using the same
JP2005114992A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Photosetting composition, photosetting image forming material using the same, photosetting imaging material and image forming method
JP2005164816A (en) * 2003-12-01 2005-06-23 Mitsubishi Gas Chem Co Inc Photosensitive resin composition
JP2006047501A (en) * 2004-08-02 2006-02-16 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film for permanent resist, method for forming resist pattern, and printed wiring board
WO2006068048A1 (en) * 2004-12-24 2006-06-29 Fujifilm Corporation Material for pattern formation, apparatus for pattern formation, and method for pattern formation
JP2006220804A (en) * 2005-02-09 2006-08-24 Nichigo Morton Co Ltd Photosensitive resin composition and photosensitive resin laminate using it

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020493A (en) * 1996-06-28 1998-01-23 Nippon Chibagaigii Kk Photopolymerizable thermosetting resin composition
JP2002287353A (en) * 2001-03-28 2002-10-03 Nippon Paint Co Ltd Photosensitive solder resist composition
JP2002363231A (en) * 2001-06-06 2002-12-18 Taiyo Ink Mfg Ltd Resin composition
JP2003029402A (en) * 2001-07-19 2003-01-29 Goo Chemical Co Ltd Ultraviolet ray-curable resin composition and dry film
JP2003165827A (en) * 2001-11-29 2003-06-10 Mitsubishi Gas Chem Co Inc Photosensitive thermosetting resin composition
JP2003270786A (en) * 2002-03-14 2003-09-25 Goo Chemical Co Ltd Photosensitive resin composition, photo-solder resist ink, printed wiring board, flexible printed wiring board and dry film
JP2003280193A (en) * 2002-03-26 2003-10-02 Taiyo Ink Mfg Ltd Alkali-developable photosensitive resin composition and printed wiring board using the same
JP2005114992A (en) * 2003-10-07 2005-04-28 Mitsubishi Chemicals Corp Photosetting composition, photosetting image forming material using the same, photosetting imaging material and image forming method
JP2005164816A (en) * 2003-12-01 2005-06-23 Mitsubishi Gas Chem Co Inc Photosensitive resin composition
JP2006047501A (en) * 2004-08-02 2006-02-16 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film for permanent resist, method for forming resist pattern, and printed wiring board
WO2006068048A1 (en) * 2004-12-24 2006-06-29 Fujifilm Corporation Material for pattern formation, apparatus for pattern formation, and method for pattern formation
JP2006220804A (en) * 2005-02-09 2006-08-24 Nichigo Morton Co Ltd Photosensitive resin composition and photosensitive resin laminate using it

Also Published As

Publication number Publication date
TW200736831A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
JP5144495B2 (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
KR101381187B1 (en) Photosensitive composition, photosensitive film, and printed circuit board
WO2007102289A1 (en) Photosensitive composition, photosensitive film, method for permanent pattern formation using said photosensitive composition, and printed board
JP4708238B2 (en) Photosensitive film, permanent pattern forming method, and printed circuit board
JP4783678B2 (en) PHOTOSENSITIVE COMPOSITION AND METHOD FOR PRODUCING THE SAME, PHOTOSENSITIVE FILM, PHOTOSENSITIVE LAMINATE, PERMANENT PATTERN FORMING METHOD, AND PRINTED BOARD
WO2007000885A1 (en) Permanent patterning method
JP2007079120A (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus, and pattern forming method
JP2009186510A (en) Photosensitive composition, photosensitive film, photosensitive laminate, method for forming permanent pattern, and printed wiring board
JP2007197390A (en) Oxime derivative, photosensitive composition, pattern-forming material, photosensitive laminate, pattern-forming device and method for forming pattern
JP2007310027A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007310025A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP4790460B2 (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007248497A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
JP4651524B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
JP2007108629A (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP5107231B2 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP5063764B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2006129564A1 (en) Material for pattern formation, apparatus for pattern formation, and method for pattern formation
WO2007091402A1 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board
WO2007102261A1 (en) Photosensitive composition, photosensitive film, photosensitive laminate, method of forming permanent pattern and printed board
JP2007108628A (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2007248843A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007248846A (en) Photosensitive composition, film, and laminate, and permanent pattern forming method, permanent pattern, and printed circuit board
WO2007108172A1 (en) Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board
JP2008039863A (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833229

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200680053793.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833229

Country of ref document: EP

Kind code of ref document: A1