WO2007091402A1 - Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board - Google Patents

Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board Download PDF

Info

Publication number
WO2007091402A1
WO2007091402A1 PCT/JP2007/050428 JP2007050428W WO2007091402A1 WO 2007091402 A1 WO2007091402 A1 WO 2007091402A1 JP 2007050428 W JP2007050428 W JP 2007050428W WO 2007091402 A1 WO2007091402 A1 WO 2007091402A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
exposure
photosensitive
pattern
light
Prior art date
Application number
PCT/JP2007/050428
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Fujimaki
Hiroshi Kamikawa
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Priority to CN200780009807XA priority Critical patent/CN101405657B/en
Publication of WO2007091402A1 publication Critical patent/WO2007091402A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • Photosensitive composition photosensitive film, permanent pattern forming method, and printed board
  • the present invention is a photosensitive composition that is excellent in sensitivity, resolution, and storage stability, and that can efficiently form a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist pattern).
  • the present invention relates to a film, a permanent pattern forming method, and a printed board on which a permanent pattern is formed by the permanent pattern forming method.
  • a photosensitive film in which a photosensitive layer is formed by applying and drying a photosensitive composition on a support has been used.
  • a method for producing the permanent pattern for example, a laminate is formed by laminating the photosensitive film on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed. After the exposure, the photosensitive layer is developed to form a pattern, and then subjected to a curing process or the like to form the permanent pattern.
  • the photosensitive composition for the purpose of improving stability and the like, a copolymer of a (meth) acrylic monomer having an aliphatic hydrocarbon group having 1 to 6 carbon atoms and (meth) acrylic acid is used.
  • a photosensitive composition containing a polymer compound obtained by adding a (meth) acrylate compound having an epoxy group to a polymer see Patent Document 1.
  • a photosensitive composition comprising a polymer compound in which an unsaturated compound having an alicyclic epoxy group is added to a copolymer having a carboxyl group in a side chain for the same purpose as the above proposal is proposed. (See Patent Document 2).
  • the sensitivity and storage stability are insufficient.
  • the image area is removed in the alkali development process, or the photosensitive composition is made into a long roll form when the photosensitive composition is formed into a long roll.
  • the end face is fused, and the fused portion falls on the exposed surface of the laminate during lamination, resulting in a problem such as breakage of the exposure pattern at the time of exposure.
  • an alkali-soluble epoxy resin is used, there is a problem in that the adhesion with the substrate becomes poor in the gold plating process, the photosensitive composition is lifted, and a phenomenon in which plating submergence is observed occurs. was there.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-172301
  • Patent Document 2 Japanese Patent Laid-Open No. 10-10726
  • Patent Document 3 JP-A-7-199457
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention includes a predetermined polymer compound, so that it has excellent sensitivity, resolution, electroless gold plating resistance, and storage stability, and has a high-definition permanent pattern (protective film, interlayer insulating film, and solder resist pattern). Etc.) can be efficiently formed, a photosensitive film, a permanent pattern forming method using the photosensitive film, and a printed circuit board on which a permanent pattern is formed by the permanent pattern forming method. Objective.
  • the binder contains a polymer compound having an aromatic group which may contain a heterocycle and an ethylenically unsaturated bond in the side chain, sensitivity, resolution, and high-definition permanent patterns (such as protective films, interlayer insulating films, and solder resist patterns) can be efficiently formed with excellent storage stability.
  • the polymer compound has a carboxyl group in a side chain, and the content of the carboxyl group in the polymer compound is 1.0 to 4. OmeqZg.
  • the photosensitive composition according to any one of the above.
  • ⁇ 4> The photosensitive composition according to any one of ⁇ 1> to ⁇ 3>, wherein the polymer compound has a mass average molecular weight of 10,000 or more and less than 100,000.
  • 3 represents a hydrogen atom or a monovalent organic group.
  • L represents an organic group and may be omitted.
  • Ar represents an aromatic group.
  • ⁇ 6> The photosensitive composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polymerizable compound contains a compound having one or more ethylenically unsaturated bonds.
  • the photopolymerization initiator is a halogenated hydrocarbon derivative, hexarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt.
  • the alkali-insoluble thermal crosslinking agent is an epoxy compound containing at least an epoxy group having an alkyl group at j8 position.
  • a photosensitive film comprising a ⁇ 12> support and a photosensitive layer comprising the photosensitive composition according to any one of ⁇ 1> and 11 above on the support. is there.
  • ⁇ 16> The photosensitive film according to any one of ⁇ 12> to ⁇ 15>, wherein the photosensitive film is long and wound in a roll shape.
  • a pattern forming apparatus comprising: a light irradiating unit capable of irradiating light; and a light modulating unit that modulates light from the light irradiating unit and exposes the photosensitive layer in the photosensitive film. It is.
  • the light irradiating unit irradiates light toward the light modulating unit.
  • the light modulation means modulates light received from the light irradiation means.
  • the light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, A pattern is formed.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the control generated by the pattern signal generation unit generates light emitted from the light irradiation unit.
  • the pattern forming apparatus according to ⁇ 18> wherein the pattern is modulated according to a signal.
  • the light modulation unit since the light modulation unit includes the pattern signal generation unit, the light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated according to
  • the light modulation means has n pixel parts, and forms any less than n pixel parts arranged continuously from the n pixel parts.
  • n pieces of light modulating means The light from the light irradiating means is modulated at high speed by controlling any less than n pixel parts arranged continuously from among the picture element parts according to the pattern information.
  • ⁇ 21> The pattern forming apparatus according to any one of ⁇ 18>, ⁇ 20>, wherein the light modulation unit is a spatial light modulation element.
  • ⁇ 22> The pattern forming apparatus according to ⁇ 21>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • ⁇ 23> The pattern forming apparatus according to any one of the above ⁇ 20> to ⁇ 22>, wherein the pixel part is a micromirror.
  • ⁇ 24> The pattern forming apparatus according to any one of ⁇ 18>, ⁇ 23>, wherein the light irradiation means can synthesize and irradiate two or more lights.
  • the pattern forming apparatus described in the above item 24> since the light irradiation means can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
  • the light irradiation means condenses the laser beams irradiated with the plurality of lasers, the multimode optical fiber, and the plurality of laser forces, and couples the laser beams to the multimode optical fiber.
  • the pattern forming apparatus according to any one of the above items 18> to 24>, which has a collective optical system to be combined.
  • the light irradiation unit can collect the laser beams irradiated with the plurality of laser forces by the collective optical system and couple the laser beams to the multimode optical fiber.
  • exposure is performed with exposure light having a deep focal depth.
  • the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • a method for forming a permanent pattern comprising exposing the photosensitive layer of the photosensitive film according to any one of ⁇ 12> to ⁇ 17>.
  • ⁇ 27> The method for forming a permanent pattern according to ⁇ 26>, wherein the exposure is performed using a laser beam having a wavelength of 350 to 415 nm.
  • the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head
  • the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and 29.
  • the exposure head is subjected to N-fold exposure (where N is a natural number greater than or equal to 2) among the usable pixel portions by the use pixel portion specifying means.
  • the pixel part to be used for the pixel part is designated, and the picture element part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. Part is controlled.
  • the exposure head By performing exposure by moving the exposure head relative to the photosensitive layer in the scanning direction, the exposure head is formed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition pattern.
  • the exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for the exposure of the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the permanent pattern forming method according to ⁇ 29> wherein among the element parts, the image element part used for realizing N double exposure in the inter-head connection region is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads.
  • the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, so that the mounting of the exposure head Variations in the resolution and density unevenness of the pattern formed in the connecting area between the heads on the exposed surface of the photosensitive layer due to a shift in the position and the mounting angle are equalized.
  • the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
  • the exposure is performed by a plurality of exposure heads, and the used picture element specifying means is involved in exposures other than the inter-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the permanent pattern forming method according to ⁇ 30> wherein the pixel part used for realizing N double exposure in an area other than the inter-head connecting area among the picture element parts is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit overlaps the exposed surface formed by the plurality of exposure heads.
  • connection between heads on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head Variations in resolution and unevenness in density of the pattern formed outside the region are leveled.
  • the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
  • ⁇ 33> The method for forming a permanent pattern according to any one of the above ⁇ 29> Karaku 32>, which is a natural number of N force of 3 or more and N force of 3 or more.
  • the method for forming a permanent pattern described in ⁇ 33> multiple drawing is performed by using a natural number of N force 3 or more in N double exposure.
  • a light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface
  • a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure
  • ⁇ 36> The light spot column direction on the surface to be exposed and the scanning direction of the exposure head in a state where the exposure head is inclined based on at least two light spot positions detected by the light spot position detection means
  • the actual inclination angle ⁇ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle ⁇ ' and the set inclination angle ⁇ .
  • the actual inclination angle ⁇ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined.
  • the pixel part selection means is capable of overlapping on the exposed surface formed by a plurality of exposure heads.
  • the head-to-head connection area which is a double exposure area
  • the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area.
  • ⁇ 42> The permanent pattern forming method according to ⁇ 41>, wherein the unused pixel portion is specified in units of lines.
  • the ⁇ 29> force including: a used pixel part specifying unit including a slit and a photodetector as a light spot position detecting unit; and an arithmetic unit connected to the photodetector as a pixel unit selecting unit.
  • a used pixel part specifying unit including a slit and a photodetector as a light spot position detecting unit
  • an arithmetic unit connected to the photodetector as a pixel unit selecting unit.
  • ⁇ 46> The method for forming a permanent pattern according to any one of ⁇ 29>, ⁇ 45> and V, which is a natural number of N force of 3 to 7 in N double exposure.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs the light emitted from the light irradiation unit.
  • the light modulation unit since the light modulation unit includes the pattern signal generation unit, the light irradiation unit force control light generated by the pattern signal generation unit is generated. Modulated according to.
  • ⁇ 48> The method for forming a permanent pattern according to any one of ⁇ 29> to ⁇ 47>, wherein the light modulation means is a spatial light modulation element.
  • ⁇ 50> The permanent pattern forming method according to any one of ⁇ 29> to ⁇ 49>, wherein the picture element portion is a micromirror.
  • ⁇ 51> The dimension of the specified part of the pattern represented by the pattern information
  • the light irradiation means can synthesize and irradiate two or more lights.
  • the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth. .
  • the photosensitive film is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system for condensing and coupling the laser beams irradiated with the plurality of laser forces respectively to the multimode optical fiber.
  • the light irradiating means can condense the laser light irradiated with each of the plurality of laser forces by the converging optical system and couple it to the multimode optical fiber. Therefore, exposure is performed with exposure light having a deep depth of focus. As a result, the exposure to the photosensitive film is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, a very fine pattern is formed.
  • ⁇ 54> The method for forming a permanent pattern according to any one of ⁇ 26> to ⁇ 53>, wherein the photosensitive layer is developed after the exposure.
  • a high-definition pattern is formed by developing the photosensitive layer after the exposure.
  • ⁇ 56> A permanent pattern formed by the method for forming a permanent pattern according to any one of ⁇ 26> to ⁇ 55>.
  • the permanent pattern according to ⁇ 56> which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
  • the permanent pattern described in ⁇ 57> since it is at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the wiring is protected from external shock and bending due to the insulation and heat resistance of the film.
  • a photosensitive composition, a photosensitive film, a permanent pattern forming method, and a printed circuit board on which a permanent pattern is formed by the permanent pattern forming method e.g., a protective film, an interlayer insulating film, and a solder resist pattern.
  • the working mechanism for improving the sensitivity, resolution, and storage stability is not necessarily clear, but the polymer compound containing the binder has an ethylenically unsaturated bond in the side chain.
  • the insolubilization of the developer by the photopolymerization reaction occurs efficiently, and the sensitivity and resolution are improved.
  • the polymer compound has an aromatic group in the side chain
  • other components in the photosensitive composition for example, a low molecular compound such as a photopolymerization initiator and a polymerizable compound, a thermal crosslinking agent, and excellent compatibility with the oligomer, the fluidity of the photosensitive layer composition at room temperature is suppressed, the storage stability is improved, and the end face of the photosensitive composition is formed into a long roll by filming the photosensitive composition. It is thought that fusion is suppressed. Furthermore, it is considered that the improvement of the gold plating resistance was realized by using an alkali-insoluble thermal crosslinking agent.
  • FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
  • FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
  • FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
  • FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
  • FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
  • FIG. 6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
  • FIG. 7A is a perspective view for explaining the operation of the DMD.
  • FIG. 7B is a perspective view for explaining the operation of the DMD.
  • FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
  • FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
  • FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
  • FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
  • FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift between adjacent exposure heads.
  • FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
  • FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
  • FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
  • FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
  • FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
  • FIG. 18A is an explanatory view showing an example of magnification distortion.
  • FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
  • FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
  • FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
  • FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
  • FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
  • the photosensitive composition of the present invention contains a binder, a polymerizable compound, a photopolymerization initiator, and an alkali-insoluble thermal crosslinking agent, and if necessary, other components.
  • the binder includes an aromatic group that may contain a heterocycle in the side chain and a polymer compound having an ethylenically unsaturated bond in the side chain, and the polymer compound has a carboxyl group in the side chain. Is preferred.
  • the binder is preferably a compound that is insoluble in water and swells or dissolves in an alkaline aqueous solution.
  • aromatic group including the heterocycle examples include a benzene ring and two to three benzene rings formed a condensed ring. And those in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
  • aromatic group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indur group, a acenaphthyl group, a fluorine group, a benzopyrrole ring group, Nzofuran ring group, benzothiophene ring group, pyrazole ring group, isoxazole ring group, isothiazole ring group, indazole ring group, benzoisoxazole ring group, benzoisothiazole ring group, imidazole ring group, oxazole ring group, thiazole ring Group, benzimidazole ring group, benzoxazole ring group, benzothiazole ring group, pyridine ring group, quinoline ring group, isoquinoline ring group, pyridazine ring group, pyrimidine ring group, pyrazine ring group, phthal
  • the aromatic group may have a substituent.
  • substituents include a halogen atom, an amino group which may have a substituent, an alkoxy carbo group, a hydroxyl group, An ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, each of which may have a substituent, an alkyl group, an alkyl group, an alkyl group, an aryl group, a heterocyclic group, etc. Can be mentioned.
  • alkyl group examples include linear alkyl groups having 1 to 20 carbon atoms, branched alkyl groups, and cyclic alkyl groups.
  • alkyl group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Hexadecyl group, Octadecyl group, Eicosyl group, Isopropyl group, Isobutyl group, sbutyl group, tbutyl group, isopentyl group, neopentyl group, 1 methylbutyl group, isohexyl group, 2-ethylhexyl group, 2- Examples include a methylhexyl group, a cyclohexyl group, a cyclopentyl group, and a 2-norbornyl group. Among these, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl
  • Examples of the substituent that the alkyl group may have include a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom.
  • substituents include, for example, halogen atoms. (1 F, 1 Br, 1 Cl, 1), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylothio group, alkyldithio group, arylidothio group, amino group, N alkylamino group, N , N dialkylamino group, N allylamino group, N, N dialylamino group, N-alkyl-N allylamino group, acyloxy group, carbamoyloxy group, N alkyl force ruberamoyloxy group, N allyl force ruberamoyloxy group, N, N dialkyl force ruvamoyloxy Group, N, N dialyl force rubermoyloxy group, N-al
  • sulfonate group alkoxysulfol group, aryloxysulfol group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N dialkylsulfinaimoyl group, N Lillesulfinamoyl group, N, N dialels Rufinamoyl group, N-alkyl-N arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group, N arylsulfamoyl group, N, N dialylsulfamoyl group Group, N alkyl—N arylsulfamoyl group, phosphono group (one PO H) and its conjugate base group (phosphonate group and
  • Dialkylphosphono group (one PO (alkyl)) (hereinafter “alkyl” means an alkyl group)
  • a diarylphosphono group (one PO (aryl)) (hereinafter “aryl” means an aryl group)
  • Alkylaryl phosphono group PO (alkyl) (aryl)
  • monoalkyl phosphono group PO (alkyl) (aryl)
  • alkylphosphonate group monoarylphosphonate group
  • Phonoxy group (one OPO H) and its conjugate base group (referred to as phosphonatoxy group), dia
  • alkylaryl phosphonoxy group one OPO (alkyl) (aryl)
  • a group (referred to as an aryl phosphonatoxy group), a cyan group, a nitro group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, a silyl group, and the like.
  • alkyl group in these substituents include the aforementioned alkyl groups.
  • aryl group in the above substituent examples include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, a phthalyl group, a chlorophenol group, a bromophenyl group, a chloromethyl group.
  • Phenyl group hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxylphenol group, benzoylphenol group, methylthiophenyl group, phenolthiol group Group, methylaminophenol group, dimethylaminophenol group, acetylaminophenol group, carboxyphenol group, methoxycarbonyl group, ethoxyphenol group, phenoxycarbon group , N-phenylcarbamoyl file group, cyanophyl group, sulfophenyl group, sulfonaphthoyl group, phosphonophenol group, phosphonatophenol group, etc. That.
  • alkenyl group in the substituent include a bur group and a 1 probe group.
  • Specific examples of the alkyl group in the substituent include an ethur group, a 1-propynyl group, a 1-buturyl group, and a trimethylsilylethynyl group.
  • Examples of 1 of the acyl group (R ⁇ CO 2) in the substituent include a hydrogen atom, the aforementioned alkyl group, and aryl group.
  • halogen atoms (1 F, 1 Br, 1 Cl, 1 1), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N alkylamino groups, N, N-dialkylamino groups, Acyloxy group, N-alkyl force ruberamoyloxy group, N-allyl force ruberamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbol group, force rubermoyl group, N alkyl force Rubamoyl group, N, N dialkyl-force rubamoyl group, N-aryl force-rubamoyl group, N-alkyl N-aryl force-rubamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkyls
  • examples of the heterocyclic group in the substituent include a pyridyl group and a piperidyl group
  • examples of the silyl group in the substituent include a trimethylsilyl group.
  • the alkylene group in the alkyl group is, for example, a divalent organic residue obtained by removing one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms.
  • a linear alkylene group having 1 to 12 carbon atoms a branched alkylene group having 3 to 12 carbon atoms, a cyclic alkylene group having 5 to 10 carbon atoms, etc. Is preferred.
  • substituted alkyl group obtained by combining such a substituent with an alkylene group include chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, isopropoxymethyl.
  • aryl group examples include a benzene ring, a group in which 2 to 3 benzene rings form a condensed ring, and a group in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a acenaphthenyl group, and a fluorenyl group.
  • a phenol group and a naphthyl group are preferable.
  • the alkyl group may have a substituent.
  • it may be referred to as a “substituted aryl group”.
  • substituted aryl group those having a group composed of a monovalent nonmetallic atomic group other than a hydrogen atom as a substituent on the ring-forming carbon atom of the above-mentioned aryl group can be mentioned.
  • the aryl group may have, for example, the alkyl group, the substituted alkyl group, or the alkyl group that is described above as the substituent may be preferable.
  • substituted aryl group examples include a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a tamale group, a chlorophenol group, a bromophenol group, a fluorophenol group, a chloromethyl group.
  • Phenyl group trifluoromethylphenol group, hydroxyphenyl group, methoxyphenyl group, methoxymethoxyphenyl group, aryloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, Tolylthiophenyl group, ethylaminophenyl group, germanaminophenyl group, morpholinophenol group, acetyloxyphenyl group, benzoylphenyl group, N cyclohexylcarbamoylphenyl group, N Phenylcarbamoyl phenyl group, Acetylaminophenol group, N-Methylbenzoylaminophenol group, Carboxyphenol group, Methoxycarbol Benzyl group, aryloxy-hydroxyl-phenyl group, chlorophenol-oxyl-hydroxyl-phenyl group, strong rubamoyl-phenol group, N-methylcarbamoyl-phenol group, N, N
  • the Aruke - Le group (C (R 02) C (R 03) (R 04)) and alkyl - as Le group (C ⁇ C (R ° 5) ), for example, R ° 2, R ° 3 , R ° 4 , and R ° 5 are groups consisting of non-valent nonmetallic atomic groups Is mentioned.
  • Examples of 2 , R ° 3 , R ° 4 , and R ° 5 include a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group. Specific examples thereof include those shown as the above-mentioned examples. Among these, a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, and a cyclic alkyl group are preferable.
  • alkenyl group and alkyl group! Preference is given to the above-mentioned alkenyl group and alkyl group! / Specific examples include vinyl group, 1-port perl group, 1-butul group, 1 pentale group, 1 hex. -Luyl group, 1-Otatur group, 1-Methyl-1 Propyl group, 2-Methyl-1 Propyl group, 2-Methyl-1-Butur group, 2-Fu Russellu 1-Ethul group, 2-Chrome- 1-Ethul group, Etul group, 1-Propyl group, 1-Butul group, and Feule group.
  • the heterocyclic group include a pyridyl group exemplified as a substituent for a substituted alkyl group.
  • Examples of the oxy group (R 60 ) include those in which 6 is a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom.
  • oxy groups include, for example, alkoxy groups, aryloxy groups, acyloxy groups, rubamoyloxy groups, N-alkyl rubamoyloxy groups, N-aryl carbamoyloxy groups, N, N-dialkyl rubamoyloxy groups, N, N dialyl rubamoyloxy groups, N alkyl N aryl group ruberamoyloxy group, alkyl sulreoxy group, arenores noreoxy group, phosphono oxy group, phosphonato xy group and the like are preferable.
  • alkyl group and aryl group in these include the alkyl groups, substituted alkyl groups, aryl groups, and substituted aryl groups described above.
  • examples of the acyl group (R Q7 CO 2) in the acyloxy group include those in which R Q7 is an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group exemplified in the above examples.
  • substituents an alkoxy group, an aryloxy group, an acyloxy group, and an arylsulfoxy group are more preferable.
  • preferred oxy groups include methoxy, ethoxy, propyloxy, Sopropyloxy, butyloxy, pentyloxy, hexyloxy, dodecyloxy, benzyloxy, allyloxy, phenethyloxy, carboxyethyloxy, methoxycarboxyloxyloxy, ethoxycarboxyloxyloxy, methoxyethyloxy, phenoxy Ethoxy group, methoxyethoxy group, ethoxyethoxy group, morpholinoethoxy group, morpholinopropyloxy group, aralkyloxyethoxy group, phenoxy group, triloxy group, xylyloxy group, mesityloxy group, mesityloxy group, tamoxy group, methoxyphenyl group Group, ethoxyphenyl group, chlorophenol group, bromophenyl group, acetyloxy group, benzoyloxy group, naphthyloxy
  • An amido group may also be included!
  • An amino group (R ° 8 NH—, (R 09 ) (R 01 °) N-) includes, for example, R ° 8 , R 9 , and R G1 , except for a hydrogen atom. Examples of the group that can also be a non-metallic atomic group. In addition, R 9 may be bonded to form a ring.
  • amino group examples include an N-alkylamino group, an N, N dialkylamino group, an N allylamino group, an N, N dialylamino group, an N-alkyl-N allylamino group, an acylamine group, and an N-alkylacylamino group.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • Ashiruamino group, N-alkyl ⁇ sill ⁇ amino group, N ⁇ reel ⁇ sill ⁇ amino group definitive Ashiru group (R 7 CO-) of 7 are as defined above.
  • an N alkylamino group, an N, N dialkylamino group, an N arylamino group, and an acylamino group are more preferable.
  • preferred amino groups include methylamino group, ethylamino group, jetylamino group, morpholino group, piperidino group, pyrrolidino group, phenolamino group, benzoylamino group, acetylamino group and the like.
  • SO- sulfo group
  • the power group is mentioned.
  • a sulfo group for example, an alkyl sulfo group, an aryl sulfo group and the like are preferable.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • sulfo group examples include a butyl sulfo group, a phenol sulfo group, and a closed-end phenol sulfo group.
  • the sulfonate group (one SO-) is a conjugate base group of the sulfo group (one SO H).
  • oniums for example, ammoniums, sulfomes, phosphomes
  • sodium ions for example, azimuths, etc.
  • metal ions for example, Na +, K +, Ca 2+ , Zn 2+, etc.
  • Examples of the carbo group include those in which 13 is a group having a nonvalent nonmetallic atomic group.
  • carbol groups include formyl, acyl, carboxyl, alkoxycarbol, aryloxycarbol, strong rubamoyl, N alkyl, rubamoyl, N, N dialkyl.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
  • Examples of the carbonyl group include formyl group, acyl group, carboxyl group, alkoxy group, aryloxycarbo group, rubamoyl group, N-alkyl group rubamoyl group, N, N dialkyl group rubamoyl.
  • Group, N-aryl rubamoyl group is preferable, and formyl group, acyl group, alkoxycarbol group, and aryloxycarbol group are more preferable.
  • the carbonyl group include a formyl group, a acetyl group, a benzoyl group, a carboxy group, a methoxy carbo ol group, an ethoxy carbo yl group, an ar aroxy carboxy group, a dimethylamino pheno group.
  • Preferred examples include a ruthel carbol group, a methoxy carbo methoxy carbo ol group, an N-methyl carbamoyl group, an N phen carbamoyl group, an N, N decyl rubamoyl group, a morpholino carbo ol group and the like.
  • Examples of the sulfiel group (R 14 —SO 2) include those having a group consisting of a non-valent nonmetallic atomic group.
  • sulfier groups include alkyl sulfier groups, aryl sulfier groups, sulfinamoyl groups, N-alkyl sulfinamoyl groups, N, N dialsulfyl amoyl groups, N aryl sulfinamoyl groups, N, N And diarylsulfinamoyl group, N alkyl N arylsulfinamoyl group and the like.
  • alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Of these, the alkylsulfur group and the arylsulfier group are preferred.
  • substituted sulfiel group examples include a hexyl sulfiel group, a benzyl sulfyl group, and a tolyl sulfyl group.
  • the phosphono group means one in which one or two hydroxyl groups on the phosphono group are substituted with another organic oxo group.
  • Reel phosphono group, monoalkyl phosphono group, monoaryl phosphono group Groups and the like are preferred.
  • dialkylphosphono groups and diarylphosphono groups are more preferred.
  • the phosphono group include a jetyl phosphono group, a dibutyl phosphono group, and a diphenyl phosphono group.
  • the phosphonato group (PO H-, -PO H-) is, as described above, a phosphono group (PO
  • H means a conjugated base anion group derived from acid first dissociation or acid second dissociation
  • counter cation generally known ones can be appropriately selected. For example, various kinds of atoms (ammonium, sulfo-ums, phospho-umms, ododoniums) ), Metal ions (Na +, K +, Ca 2+ , Zn 2+ etc.).
  • the phosphonato group may be a conjugated basic anion group obtained by substituting one of the phosphono groups with an organic oxo group.
  • 1 PO H (alkyl) a conjugated salt of a monoarylphosphono group (PO H (aryl))
  • the aromatic group comprises one or more radically polymerizable compounds containing an aromatic group and, if necessary, one or more other radically polymerizable compounds as a copolymerization component. It can be manufactured legally.
  • Examples of the radical polymerization method generally include a suspension polymerization method and a solution polymerization method.
  • radically polymerizable compound containing an aromatic group for example, a compound represented by the following structural formula (A) and a compound represented by the following structural formula (B) are preferable.
  • R, R, and R represent a hydrogen atom or a monovalent organic group.
  • L represents an organic group and may be omitted.
  • Ar represents an aromatic group that may contain a heterocycle.
  • the organic group of L is, for example, a polyvalent organic group of non-metallic nuclear power, including 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, and 0 to 50 atoms. Of oxygen atoms, 1 to 100 hydrogen atoms, and 0 to 20 sulfur nuclear powers. NN OO &
  • examples of the organic group of L include those formed by combining the following structural units, polyvalent naphthalene, polyvalent anthracene and the like.
  • the linking group of L may have a substituent.
  • substituents include the aforementioned halogen atom, hydroxyl group, carboxyl group, sulfonate group, nitro group, cyan group, amide group, amino group.
  • Structural formula (A) is preferred in terms of sensitivity.
  • those having a linking group that are preferred from the viewpoint of stability are L 1-4 organic groups, which are C 1-4 alkylene groups in the non-image area. Preferred in terms of removability (developability).
  • the compound represented by the structural formula (A) is a compound containing a structural unit of the following structural formula (I). Further, the compound represented by the structural formula (B) is a compound containing a structural unit of the following structural formula (II). Of these, the structural unit of the structural formula (I) is preferred from the viewpoint of storage stability.
  • R and R are hydrogen atoms, and R is a methyl group.
  • an alkylene group having 1 to 4 carbon atoms is preferable in terms of removability (imageability) of a non-image area.
  • the compound represented by the structural formula (A) or the compound represented by the structural formula (B) is not particularly limited, and examples thereof include the following exemplified compounds (1) to (30). It is done.
  • the content of the aromatic group that may contain a hetero ring in the binder is not particularly limited, but when the total structural unit of the polymer compound is 100 mol%, the structural formula (I) It is preferred to contain 20 mol% or more of the structural unit represented. It is more preferred to contain 30 to 45 mol%. When the content is less than 20 mol, the storage stability is low. If it exceeds 45 mol%, the developability may decrease.
  • the ethylenically unsaturated bond is not particularly limited and may be appropriately selected according to the purpose.
  • those represented by the following structural formulas (III) to (v) are preferable.
  • R to R and R to R are each independently monovalent.
  • X and Y each independently represent an oxygen atom, a sulfur atom, or —N—R.
  • Z represents an oxygen atom, a sulfur atom, -N-R, or a phenylene group.
  • R is
  • each R independently represents, for example, a hydrogen atom, a hydrogen atom that may have a substituent or an alkyl group, and a methyl group that are radically reactive. Is more preferable because it is high.
  • R and R are each independently, for example, a hydrogen atom, a halogen atom,
  • It has a mino group, a carboxyl group, an alkoxycarbo group, a sulfo group, a nitro group, a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent.
  • Examples include a hydrogen atom, a carboxyl group, an alkoxycarbonyl group, an alkyl group which may have a substituent, and a substituent.
  • Aryl basic force More preferable because of high radical reactivity.
  • R include a hydrogen atom that is preferably an alkyl group which may have a substituent. It is more preferable because of its high radical reactivity with a thiol group, a methyl group, an ethyl group, and an isopropyl group.
  • examples of the substituent that can be introduced include an alkyl group, an alkyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a halogen atom, an amino group, an alkylamino group, an arylamino group, and a carboxyl group.
  • R to R include, for example, a hydrogen atom, a halogen atom, and R
  • Mino group dialkylamino group, carboxyl group, alkoxycarbo group, sulfo group, nitrogen group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituent Having an alkoxy group that may have a substituent, an allyloxy group that may have a substituent, an alkylamino group that may have a substituent, an arylamino group that may have a substituent, and a substituent.
  • an aryl group may preferably have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent, an alkyl group. Even if it has a substituent, the aryl group is more preferred! /.
  • R includes, for example, a hydrogen atom and a substituent. But
  • Alkyl groups and the like are more preferred because of high hydrogen atom and methyl group s radical reactivity.
  • R 1 and R 2 are each independently, for example, hydrogen atom, halogen atom, amino
  • Z represents an oxygen atom, a sulfur atom, -NR-, or a phenyl group optionally having a substituent.
  • R represents an alkyl group which may have a substituent, a hydrogen atom,
  • a til group, an ethyl group, and an isopropyl group are preferable because they have high radical reactivity.
  • the content of the ethylenically unsaturated bond in the polymer compound is not particularly limited.
  • Repulsive force 0.5 to 3.
  • Omeq / g force is preferable, 1.0 to 3.
  • Omeq / g force ⁇ is more preferable, 1. 5-2.8 meqZg is particularly preferred. If the content is less than 0.5 meqZg, the sensitivity may be low because the amount of curing reaction is small. 3. If it exceeds OmeqZg, the storage stability may deteriorate.
  • the content (meqZg) can be measured, for example, by iodine value titration.
  • the method of introducing an ethylenically unsaturated bond represented by the structural formula (III) into the side chain is not particularly limited, and examples thereof include a polymer compound and a ethylene containing a carboxyl group in the side chain. It can be obtained by addition reaction of a compound having an unsaturated bond and an epoxy group.
  • the polymer compound containing a carboxyl group in the side chain is, for example, one or more radically polymerizable compounds containing a carboxyl group and, if necessary, one other radically polymerizable compound as a copolymerization component.
  • the above can be produced by a normal radical polymerization method, and examples of the radical polymerization method include suspension polymerization method and solution polymerization method.
  • the compound having an ethylenically unsaturated bond and an epoxy group is not particularly limited as long as it has these.
  • the compound represented by the following structural formula (VI) and (VII) In particular, the use of the compound represented by the structural formula (VI) is preferable from the viewpoint of increasing sensitivity.
  • R represents a hydrogen atom or a methyl group.
  • L represents an organic group
  • the W represents a 4- to 7-membered aliphatic hydrocarbon group.
  • L is More preferred is an alkylene group having 1 to 4 carbon atoms.
  • the compound represented by the structural formula (VI) or the compound represented by the structural formula (VII) is not particularly limited, and examples thereof include the following exemplified compounds (31) to (40).
  • radical polymerizable compound containing a carboxyl group examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, ink-mouthed tonic acid, maleic acid, and p-carboxyl styrene. Particularly preferred are acrylic acid and methacrylic acid.
  • Examples of the introduction reaction to the side chain include tertiary amines such as triethylamine and benzylmethylamine, quaternary ammonia such as dodecyltrimethylammonium chloride, tetramethylammonium chloride, and tetraethylammonium chloride.
  • the reaction can be carried out by reacting in an organic solvent at a reaction temperature of 50 to 150 ° C. for several hours to several tens of hours using a -um salt, pyridine, triphenylphosphine or the like as a catalyst.
  • the structural unit having an ethylenically unsaturated bond in the side chain is not particularly limited.
  • a structure represented by the following structural formula (i), a structure represented by the structural formula (ii), And those represented by a mixture of these are preferred.
  • Ra to Rc represent a hydrogen atom or a monovalent organic group.
  • 1 ⁇ represents a hydrogen atom or a methyl group.
  • the content in the polymer compound having the structure represented by the structural formula (i) to the structure represented by the structural formula (ii) is preferably 20 mol% or more, more preferably 20 to 50 mol%. 25-45 mol% is particularly preferred.
  • the content is less than 20 mol%, the curing reaction amount is small, so that the sensitivity may be low.
  • the content exceeds 50 mol% the storage stability may be deteriorated.
  • the polymer compound of the present invention may have a carboxyl group in order to improve various performances such as non-image area removability.
  • the carboxyl group can be imparted to the polymer compound by copolymerizing a radical polymerizable compound having an acid group.
  • Examples of the acid group having such radical polymerizability include carboxylic acid, sulfonic acid, and phosphoric acid group, and carboxylic acid is particularly preferable.
  • the radically polymerizable compound having a carboxyl group can be appropriately selected depending on the purpose, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, cucumber tonic acid, and ink fountain. Examples include acid, maleic acid, and ⁇ -carboxyl styrene. Among these, acrylic acid, methacrylic acid, and p-carboxyl styrene are preferable. These may be used alone or in combination of two or more.
  • the content of the carboxyl group in the binder is 1.0 to 4. OmeqZg, preferably 1.5 to 3. Omeq / g.
  • the content is less than 1. Omeq / g, developability may be insufficient, and when it exceeds OmeqZg, image strength damage due to alkali water development may be easily caused.
  • the content (meqZg) can be measured, for example, by titration using sodium hydroxide.
  • the polymer compound of the present invention may be copolymerized with another radical polymerizable compound in addition to the above-mentioned radical polymerizable compound for the purpose of improving various performances such as image strength. It is preferable.
  • radical polymerizable compound examples include radically polymerizable compounds such as acrylic acid esters, methacrylate esters, and styrenes.
  • acrylic acid esters such as alkyl acrylate, methacrylate esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy
  • acrylic acid esters such as alkyl acrylate, methacrylate esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy
  • styrene and halogen styrene include styrene and halogen styrene.
  • acrylates those having 1 to 20 carbon atoms in the alkyl group are preferable.
  • methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, and ethyl acrylate are preferable.
  • examples include atarylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate.
  • Examples of the aryl acrylate include a file acrylate.
  • methacrylic acid esters those having 1 to 20 carbon atoms in the alkyl group are preferred.
  • aryl methacrylate examples include phenyl methacrylate, credinole methacrylate, naphthyl methacrylate, and the like.
  • styrenes examples include methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, jetyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl styrene, chloromethyl.
  • examples include styrene, trifluoromethyl styrene, ethoxymethyl styrene, and acetomethyl styrene.
  • alkoxystyrene examples include methoxystyrene, 4-methoxy-13-methylstyrene, dimethoxystyrene, and the like.
  • halogen styrene examples include chloro styrene, dichloro styrene, trichloro styrene, tetrachloro styrene, pentachloro styrene, bromo styrene, dibromo styrene, odo styrene, fluor styrene, trifluoro styrene, 2-bromo trifluoromethyl styrene. 4 Fluoro 3-trifluoromethylstyrene and the like.
  • radically polymerizable compounds may be used alone or in combination of two or more.
  • the solvent used in the synthesis of the polymer compound of the present invention is not particularly limited and can be appropriately selected according to the purpose.
  • the molecular weight of the polymer compound of the present invention is preferably 10,000 to less than 100,000, more preferably 10,000 to 50,000 force s in terms of mass average molecular weight. If the mass average molecular weight is less than 1,000, the cured film strength may be insufficient, and if it exceeds 100,000, the developability is reduced. Tend to.
  • the polymer compound of the present invention may contain an unreacted monomer.
  • the content of the monomer in the polymer compound is preferably 15% by mass or less.
  • the polymer compound according to the present invention may be used singly or in combination of two or more. Moreover, you may mix and use another high molecular compound.
  • Examples of the other polymer compounds can be appropriately selected according to the purpose without any particular limitation.
  • the epoxy atalate toy compound is a compound having a skeleton derived from an epoxy compound and containing an ethylenically unsaturated double bond and a carboxyl group in the molecule.
  • a compound can be obtained, for example, by a method of reacting a polyfunctional epoxy compound with a carboxyl group-containing monomer and further adding a polybasic acid anhydride.
  • examples of the other polymer compound include vinyl copolymers having a (meth) atarylyl group and an acidic group in the side chain other than the present invention.
  • the content of the other polymer compound in the polymer compound of the present invention is preferably 50% by mass or less, more preferably 30% by mass or less.
  • the solid content of the binder in the photosensitive composition is preferably 5 to 80% by mass, more preferably 10 to 70% by mass. When the solid content is less than 5% by mass, the film strength of the photosensitive layer may be weakened and the tackiness of the surface of the photosensitive layer may be deteriorated immediately.
  • the exposure sensitivity may decrease.
  • the polymerizable compound is not particularly limited and may be appropriately selected depending on the purpose.
  • a compound having one or more ethylenically unsaturated bonds is preferable.
  • Examples of the ethylenically unsaturated bond include a (meth) atalyloyl group, a (meth) acrylamido group, a styryl group, a butyl group such as a butyl ester and a butyl ether, and a aryl ether. And aryl groups such as ryalyl esters.
  • the compound having one or more ethylenically unsaturated bonds is not particularly limited, and can be appropriately selected depending on the purpose.
  • a monomer having a (meth) acryl group is selected. At least one is preferably mentioned.
  • the monomer having a (meth) acryl group is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane ditalylate, neopentylglycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol hexane (Meth) acrylate, dipentaerythritol penta (meth) acrylate,
  • trimethylolpropane tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
  • the solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as poor developability and reduced exposure sensitivity may occur. If it exceeds, the adhesiveness of the photosensitive layer may become too strong.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (eg, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like.
  • a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
  • Examples of the hexarylbiimidazole include 2, 2 ′ bis (2-clonal ring) 4, 4, 5, 5, 5, monotetraphenyl biimidazole, 2, 2, 1 bis ( o Fluorophore) —4, 4 ,, 5, 5, — Tetraphenol biimidazole, 2, 2, — Bis (2 bromophenol) — 4, 4, 4, 5, 5, monotetraphenol biimidazole, 2 , 2, 1 bis (2, 4 dichlorophenol) 4, 4 ,, 5, 1 tetraphenyl biimidazole, 2, 2, 1 bis (2 x 2 mouthpiece) —4, 4, 5, 5, 1-tetra (3-methoxyphenol) biimidazole, 2, 2, 1-bis (2-cyclophenol) 1, 4, 4, 5, 5, 5, 5, 1-tetra (4-methoxyphenyl) biimidazole, 2, 2, 1 bis (4-methoxyphenyl) 1, 4, 4, 5, 5, 1, tetraphenyl biimidazole 2, 2, 1, bis (2, 4 dichlorophenol
  • the biimidazoles can be easily prepared by the method disclosed in Bull. Chem. Soc. Japan, 33, 565 (1960), and J. Org. Chem, 36 (16) 2262 (1971), for example. Can be synthesized.
  • halogenated hydrocarbon compounds having a triazine skeleton examples include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), described in British Patent 1388492 A compound described in JP-A-53-133428, a compound described in DE 3337 024, a compound described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. Examples include compounds described in JP-A 62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, compounds described in US Pat. No. 421 2976, and the like. .
  • Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include 2-phenol-4,6-bis (trichloromethyl) -1,3. , 5-triazine, 2 — (4-chlorophenol) — 4, 6-bis (trichloromethyl) —1, 3, 5-triazine, 2— (4-tolyl) — 4, 6-bis (trichloromethyl) —1, 3, 5—Triazine, 2— (4-Methoxyphenyl) —4, 6-bis (trichloromethyl) —1, 3, 5—Triazine, 2- (2, 4-Dichlorophenol) — 4, 6-bis (trichloromethyl) -1,3,5-triazine, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichlor) Methyl) -1,
  • Examples of the compound described in the British Patent 1388492 include 2-styryl
  • Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy). —Naphth—1-yl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4-Ethoxy-naphtho-1-yl) —4, 6 Bis ( ⁇ Lichloromethyl) — 1, 3, 5 ⁇ riadin, 2- [4- (2-ethoxyethyl) -naphtho-1-yl] -4,6 bis (trichloromethyl) 1, 3, 5 triazine, 2- (4, 7 dimethoxy mononaphtho 1—yl) 4, 6 Bis (trichloromethyl) — 1, 3, 5 ⁇ lyazine, and 2— (acenaphthol— 5—yl) —4, 6 Bis (trichloromethyl) —1, 3, 5 triazine Etc.
  • Examples of the compounds described in the specification of German Patent 3337024 include, for example, 2- (4-styrene norfeninole) 4,6 bis (trichloromethinole) -1,3,5 triazine, 2- (4— (4-methoxystyryl) phenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (1-naphthyl vinylenephenol) 1,4 bis (trichloromethyl) 1,3 , 5 Triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene) 1,6 bis (trichloromethyl) 1, 3,5 triazine,
  • Examples of the compounds described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. include 2-methyl-4,6 bis (tribromomethyl) -1,1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) 1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) 1, 3, 5 Triazine, 2 Amamino-4-methyl-6 Tri (Bromomethyl) — 1, 3, 5 triazine and 2-methoxy-4-methyl 6-trichloromethyl 1, 3, 5 triazine.
  • Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2— (4— Naphthyl 1-Ethurhue-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Tril-Ethyl) phenol) — 4, 6 Bis (trichloromethyl) —1 , 3, 5 — Triazine, 2- (4— (4-Methoxyphenyl) ether furol) 4, 6—Bis (Trimethylromethyl) 1, 3, 5 Triazine, 2— (4— (4-Isopropylphenol) -Ruechul) Hue 4,6 bis (trichloromethyl) 1,3,5 triazine, 2— (4— (4 ethylfe-lechetur) tiv) 1,4,6 bis (trichloromethyl) 1,3,5 triazine, etc.
  • Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1,6,6 bis (trichloromethyl) 1, 3, 5 triazine and the like.
  • Examples of the compounds described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromophenol. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
  • Examples of the compounds described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl).
  • Structural formula (7) Structural formula (8)
  • ketone compound examples include benzophenone, 2 methylbenzophenone, 3 methylbenzophenone, 4 methylbenzophenone, 4-methoxybenzophenone, 2 Mouth Benzophenone, 4 Black Mouth Benzophenone, 4 Bromobenzophenone, 2-Kanoreboki Cibenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenone tetracarboxylic acid or its tetramethyl ester, 4, 4, monobis (dialkylamino) benzophenones (eg, 4, 4, monobis (dimethylamino) benzophenone, 4, 4, 1-bisdicyclohexylamino) benzophenone, 4, 4, 1-bis (jetylamino) benzophenone, 4, 4, 1-bis (dihydroxyethylamino) benzophenone, 4-methoxy-1-4′-dimethylaminobenzophenone, 4, 4'-dime
  • the meta-port mosses such as bis (7 5 -2, 4 cyclopentadiene one 1-I le?) - bis (2, 6-difluoro one 3- (IH-pyrrol-one 1-I le) Phenyl) titanium, ⁇ 5 —cyclopentagel- 6 —thamale iron (1 +) -hexafluorophosphate (1), JP-A-53-133428, JP-B-57-1819 No. 57-6096, US Pat. No. 3,615,455, and the like.
  • Atalidine derivatives for example, 9-phenol lysine, 1,7 bis (9, 9,-attalyzyl) heptane, etc.), ⁇ -phenol glycine, etc., poly Halogen compounds (eg, carbon tetrabromide, felt rib mouth methylsulfone, felt trichloromethyl ketone, etc.), coumarins (eg, 3- (2-benzofuroyl) -7-jetylaminocoumarin, 3- (2 Benzofuroyl)-7-(1-Pyrrolidyl) coumarin, 3 Benzoyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylami Nocoumarin, 3- (4-Dimethylaminobenzol) 7-Jetylaminocoumarin, 3,3,1 carborubis (5,7-di-n-propoxycoumarin), 3, 3, 3, -carborubi
  • the photopolymerization initiators may be used singly or in combination of two or more.
  • combinations of two or more include, for example, a combination of hexarylbiimidazole and 4 aminoketones described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516 and trihalomethyl-s—
  • the photopolymerization initiator include halogenated hydrocarbons having the phosphine oxides, the ⁇ -aminoalkyl ketones, and the triazine skeleton, which are compatible with laser light having a wavelength of 405 nm in the later-described exposure.
  • examples thereof include a composite photoinitiator obtained by combining a compound and an amine compound as a sensitizer described later, a hexaarylbiimidazole compound, and titanocene.
  • a-aminoalkyl ketones and an aromatic ketone compound such as thixanthone as a sensitizer.
  • the content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
  • the alkali-insoluble thermal crosslinking agent is not particularly limited and can be appropriately selected depending on the purpose.
  • a compound containing an epoxy compound can be used as long as it does not adversely affect developability.
  • epoxy compound examples include bixylenol type or biphenol type epoxy resin (“YX4000 Japan Epoxy Resin” etc.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“ TEPIC; manufactured by Nissan Chemical Industries, Ltd.
  • These epoxy resins can be used
  • an epoxy compound containing at least two epoxy groups having an alkyl group at the 8-position in a molecule can be used, and an epoxy group in which the ⁇ -position is substituted with an alkyl group (more specifically, , J8-alkyl substituted glycidyl groups, etc.) are particularly preferred.
  • the epoxy compound containing at least the epoxy group having an alkyl group at the j8 position is composed of at least one epoxy group in which all of two or more epoxy groups contained in one molecule may be 13 alkyl-substituted glycidyl groups.
  • the group may be a j8-alkyl substituted glycidyl group.
  • the / 3 alkyl-substituted glycidyl group is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include a j8-methyldaricidyl group, a 13-ethyldaricidyl group, and a 13 propylglycidyl group. 13-butyldaricidyl group, etc. Among these, from the viewpoint of improving the storage stability of the photosensitive resin composition and the viewpoint of ease of synthesis, j8-methyldaricidyl group Is preferred.
  • epoxy compound containing an epoxy group having an alkyl group at the / 3-position for example, an epoxy compound derived from a polyvalent phenol compound and a j8-alkylepihalohydrin is preferable.
  • the / 3-alkylepino and rhohydrin are not particularly limited and can be appropriately selected according to the purpose.
  • j8-methylepichlorohydrin, 13 methylepibromohydrin, 13- J8-methylepihalohydrin such as methylepifluorohydrin; 13-ethylepichlorohydrin, j8-ethylepibu mouth mohydrin, —ethylepifluorohydrin, etc.
  • ⁇ -propyle / 3-propinoreepihalohydrin such as picrohydrin, ⁇ -propylepive mouth mohydrin, ⁇ propinoreepifluorohydrin; 13-butinorepic Lorhydrin, j8-butylepiporophylline mohydrin, j8-butylepihalohydrin such as j8-butylepifluorohydrin; and the like.
  • ⁇ -methylepino and rhohydrin are preferable from the viewpoints of reactivity with the polyhydric phenol and fluidity.
  • the polyhydric phenolic compound is not particularly limited as long as it is a compound containing two or more aromatic hydroxyl groups in one molecule, and can be appropriately selected according to the purpose.
  • bisphenol compounds such as bisphenol ⁇ , bisphenol F, and bisphenol S
  • biphenol compounds such as biphenol and tetramethylbiphenol
  • naphthol compounds such as dihydroxynaphthalene and binaphthol
  • phenol-formaldehyde polycondensates C1-C10 monoalkyl substituted phenol-formaldehyde polycondensate such as phenol novolac resin, creso-one formaldehyde polycondensate, etc.
  • C1-C10 dialkyl substituted phenol such as xylenol-formaldehyde polycondensate Ruholmaldehyde polycondensate, bisphenol A formaldehyde Bisphenol compounds such as polycondensates Formaldehyde polycondensates, copolycondensates of phenol and monoalkyl-substituted phenols with 1 to 10 carbon atoms and formaldehyde, polyadducts of phenolic compounds and dibutenebenzene It is done.
  • the above-mentioned bisphenol compound is preferable.
  • Examples of the epoxy compound containing an epoxy group having an alkyl group at the / 3-position include di-13-alkyl glycidyl ether of bisphenol A, di- ⁇ -alkyl glycidyl ether of bisphenol F, and bisphenol.
  • G of S 13 Bisphenol compounds such as alkyl glycidyl ethers / 3 Alkyl glycidyl ethers; Biphenols of G 13 Alkyl glycidyl ethers, tetramethyl biphenols of G 13 Alkyl glycidyl ethers of G of 13 phenols Ether: dihydroxynaphthalene diol / 3 alkyl glycidyl ether, binaphthol diol 13 alkyl glycidyl ether 13 alk glycidyl ether; phenol-formaldehyde polycondensate polycondensate 13 alkyl glycidyl ethers; poly 13 alkyl glycidyl ethers such as poly 13 alkyl glycidyl ethers, such as poly 13 alkyl glycidyl ethers, polyalkyl alkyl glycidyl ethers; 1-13 carbon dialkyl substituted
  • the bisphenol compound represented by the following structural formula (i), and the resulting polymer force such as epichlorohydrin, induced ⁇ -alkylglycidyl ether, and the following structural formula (ii) Polyol of formaldehyde polycondensate j8-alkyl glycidyl ether is preferred.
  • R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 20.
  • R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • n is an integer of 0 to 20 Represents.
  • epoxy compounds containing an epoxy group having an alkyl group at the 13-position may be used alone or in combination of two or more.
  • An epoxy compound having at least two oxirane rings in one molecule and an epoxy compound containing an epoxy group having an alkyl group at the j8 position can be used in combination.
  • an oxetane compound can be used as the alkali-insoluble thermal crosslinking agent.
  • the oxetane compound include bis [(3-methyl-3-oxeta-l-methoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1,4 bis [( 3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate, ( 3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methyltransferase meth Tari rate or the like of these oligomers or copolymers In addition to poly
  • a polyisocyanate compound described in JP-A-5-9407 can also be used.
  • the polyisocyanate compound may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing at least two isocyanate groups.
  • bifunctional isocyanates eg, mixtures of 1,3 and 1,4-phenolic diisocyanates, 2,4- and 2,6 toluene diisocyanates, 1 , 3 and 1, 4 xylylene diisocyanate, bis (4-isocyanate monophenyl) methane, bis (4-isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate
  • Polyfunctional alcohols such as trimethylolpropane, pentalysitol, glycerin, etc .; alkylene oxide adducts of the polyfunctional alcohols and the bifunctional isocyanates.
  • Adducts rings such as hexamethylene diisocyanate, hexamethylene 1,6 diisocyanate and its derivatives Trimer;, etc., and the like.
  • a compound obtained by reacting a blocking agent with the isocyanate group of the polyisocyanate or its derivative may be used.
  • the isocyanate blocker include alcohols (for example, isopropanol, tert-butanol, etc.), ratatas (for example, ⁇ -strength prolatatum, etc.), phenols (for example, phenol, crezo-monore, p-tert-butinolephenol) Nore, p-sec butinolevenore, p-sec amylphenol, p-octylphenol, p-norphenol, etc.), heterocyclic hydroxyl compounds (eg, 3-hydroxypyridine, 8-hydroxyquinoline) And the like, and active methylene compounds (for example, dialkyl malonate, methyl ethyl ketoxime, acetyl acetone, alky
  • a melamine derivative can also be used as the alkali-insoluble thermal crosslinking agent.
  • melamine derivative examples include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, etc.). These may be used alone or in combination of two or more. Of these, hexamethylated methylol melamine is particularly preferred as alkylated methylol melamine because it has good storage stability and is effective in improving the surface hardness of the photosensitive layer or the film strength itself of the cured film. Prefer U ,.
  • an amine compound for example, dicyandiamide, benzyldimethylamine, 4 (dimethylamino) -N, N dimethylbenzylamine, 4 -Methoxy-1-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine, etc.
  • quaternary ammonium salt compounds eg, triethylbenzylammo-umchloride
  • block isocyanate Compound for example, dimethylamine
  • imidazole derivative bicyclic amidine compound and its salt for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl
  • Imidazole for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl
  • 4-Phenolimidazole 1-Cyanoethyl-2-Phen
  • the alkali-insoluble thermal crosslinking agent curing catalyst or a compound capable of promoting thermal curing other than the above is not particularly limited as long as it can promote the reaction of these with a carboxyl group. It may be used.
  • the solid content in the photosensitive composition of the alkali-insoluble thermal crosslinking agent and the compound capable of accelerating thermal curing between these and a carboxylic acid is preferably 0.01 to 15% by mass.
  • the solid content of the alkali-insoluble thermal crosslinking agent in the photosensitive composition is preferably 1 to 50% by mass, more preferably 3 to 30% by mass. When the solid content is less than 1% by mass, improvement in the film strength of the cured film is not observed, and when it exceeds 50% by mass, the developability and the exposure sensitivity may be lowered.
  • Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others.
  • sensitizers thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others.
  • plasticizers for example, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like
  • adhesion promoters to the substrate surface and others.
  • conductive particles fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.
  • the sensitizer can be appropriately selected from known sensitizers without particular limitation.
  • known polynuclear aromatics for example, pyrene, perylene, triphenylene
  • xanthenes For example, fluorescein, eosin, erythrin, rhodamine B, rose bengal
  • cyanines for example, indocarboyanine, thiacarboyanine, oxacarboyanine
  • merocyanines for example, merocyanine, carbomerocyanine
  • thiazines for example, thionine, methylene blue, toluidine blue
  • atalidines for example, , Ataridin orange, chloroflavin, acriflavine, 9 phenyllacridin, 1,7-bis (9,9, monoataridinyl) heptane
  • anthraquinones eg, anthraquinone
  • squaliums eg, squalium
  • Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron donor initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
  • the content of the sensitizer is preferably 0.01 to 4% by mass, more preferably 0.02 to 2% by mass, based on all components of the photosensitive composition. Mass% is particularly preferred.
  • the sensitivity When the content is less than 0.01% by mass, the sensitivity may be reduced. If it exceeds, the shape of the pattern may worsen.
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
  • thermal polymerization inhibitor examples include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-t-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitroso compounds, and chelates of troso compounds with A1.
  • the content of the thermal polymerization inhibitor is preferably from 0.001 to 5 mass%, more preferably from 0.005 to 2 mass%, based on the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred.
  • the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
  • the plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
  • plasticizer examples include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate.
  • Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as noreftalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as phosphate; 4 Amides such as toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl seba Aliphatic dibasic acid esters such as keto, dibutyl sebacate
  • the content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
  • the coloring pigment is not particularly limited and can be appropriately selected according to the purpose.
  • Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11) Huster's' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolight 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, CI Pigment 'Red 122, C CI Pigment 'Red 149, CI Pigment' Red
  • the solid content in the solid content of the photosensitive composition of the color pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.01 to 10% by mass is preferable, and 0.05 to 5% by mass is more preferable.
  • the photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary.
  • Inorganic pigments and organic fine particles can be added.
  • the inorganic pigment can be appropriately selected from known ones that are not particularly limited.
  • kaolin barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
  • the average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering.
  • the organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ⁇ , an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
  • the amount of the extender pigment added is preferably 5 to 60% by mass. When the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced. When the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, The film quality becomes fragile, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film may be impaired.
  • a loose adhesion promoter can be used.
  • Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638.
  • the content of the adhesion promoter is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, and 0.1 to 5% by mass with respect to all the components of the photosensitive layer. % Is particularly preferred.
  • the photosensitive composition of the present invention is excellent in sensitivity, resolution, electroless gold plating resistance, and storage stability, and can efficiently form a high-definition permanent pattern. For this reason, it can be widely used for the formation of permanent patterns such as printed wiring boards, color filters, columns, ribs, spacers, partition members, display members, holograms, micromachines, proofs, etc. It can be suitably used for a permanent pattern and a method for forming the permanent pattern.
  • the photosensitive film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned in the formation of the permanent pattern, the photosensitive film of the present invention is high. Ion migration does not occur in the acceleration test (HAST) High-definition permanent patterns with excellent heat resistance and moisture resistance can be obtained, so that lamination to the substrate is performed more precisely.
  • HAST acceleration test
  • the photosensitive film of the present invention has at least a support and a photosensitive layer having the above-mentioned photosensitive composition power of the present invention on the support, and a thermoplastic resin layer or the like is appropriately selected depending on the purpose. Other layers are laminated.
  • the photosensitive layer is formed using the photosensitive composition of the present invention. Further, in the case where the photosensitive layer is exposed and developed, the minimum energy of light used for the exposure is 0.1 l without changing the thickness of the exposed portion of the photosensitive layer after the exposure and development. It is Ri preferably good it is preferred instrument 0. 2 ⁇ 100mj / cm 2 it is ⁇ 200mi / cm 2, that it is 0. 5 ⁇ 50mjZcm 2 is more preferably tool L ⁇ 30miZcm 2 Particularly preferred.
  • capri may occur in the processing step, and if it exceeds 200 mjZcm 2 , the time required for exposure may become longer and the processing speed may become slower. .
  • the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
  • the thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure.
  • the development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
  • the thickness of the cured layer and the thickness of the photosensitive layer before exposure are within ⁇ 1 m, it is considered that the thickness of the cured layer is not changed by exposure and development.
  • a method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a film thickness measuring device for example, Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
  • the thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. However, if it is omitted, 1 to: L00 ⁇ m force S, preferably 2 to 50 ⁇ m force S 4-30 ⁇ m force S is particularly preferable.
  • the support can be appropriately selected according to the purpose without particular limitation, It is preferable that the photosensitive layer is peelable and has good light transmittance, and more preferable that the surface is smooth. Specific examples of the support and the protective film are described in Japanese Patent Application Laid-Open No. 2005-258431, [0342] and [0344] to [034 8].
  • a cushion layer an oxygen barrier layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface
  • a protective layer may be provided on the photosensitive layer.
  • the cushion layer is not particularly limited and may be appropriately selected depending on the purpose, and may be swellable or soluble or insoluble in an alkaline liquid.
  • thermoplastic resin examples include, for example, an ethylene / acrylate copolymer copolymer, styrene, and (meth) (Meth) such as saponified acrylate copolymer, kento of butyltoluene and (meth) acrylic ester copolymer, poly (meth) acrylate, butyl (meth) acrylate and vinyl acetate Acrylic ester copolymers, etc., (meth) acrylic acid ester and (meth) acrylic acid copolymer, styrene, (meth) acrylic acid ester and (meth) acrylic acid copolymer Etc.
  • the softness point (Vicat) of the thermoplastic resin in this case is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 80 ° C or less is preferable.
  • the above-mentioned thermoplastic resin has a softness point of 80 ° C or less, as well as “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Association, Issued on October 25, 1968).
  • the organic polymers whose soft spot is about 80 ° C or less those that are soluble in alkaline liquids are listed.
  • various plasticizers compatible with the organic polymer material are added to the organic polymer material so that a substantial softness can be obtained. It is also possible to lower the point below 80 ° C Noh.
  • the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose.
  • the interlayer adhesion between the support and the cushion layer is the smallest among the interlayer adhesion of each layer.
  • the interlayer adhesive strength only the support is peeled off from the photosensitive film, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is removed using an alkaline developer. Can be developed. Further, after exposing the photosensitive layer while leaving the support, the photosensitive film force is peeled off, and the photosensitive layer is developed using an alkaline developer.
  • the method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected according to the purpose.
  • a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used.
  • a method of adding a surfactant, a release agent and the like is used.
  • the plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polypropylene glycol, polyethylene glycol, dioctyl phthalate, diheptino phthalate, dibutino phthalate, and tricres. Alcohols and esters such as zircphosphate, uddernoresiphosphate and biphenyldiphosphate, amides such as toluenesulfonamide, and the like.
  • thermoplastic resin examples include a copolymer whose main component is an essential copolymer component of ethylene.
  • the copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose.
  • ethylene vinyl acetate copolymer (EV A) ethylene-ethyl acrylate. Copolymer (EEA) and the like.
  • the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected depending on the purpose.
  • the adhesive strength 1S between the photosensitive layer and the cushion layer is preferably the smallest.
  • the photosensitive film can be used. After the support and cushion layer are peeled off, and the photosensitive layer is exposed, the photosensitive layer can be developed using an alkaline developer. Further, after exposing the photosensitive layer while leaving the support, the support and the cushion layer can be peeled off from the photosensitive film, and the photosensitive layer can be developed using an alkaline developer. .
  • the method for adjusting the interlayer adhesion can be appropriately selected depending on the purpose without any particular limitation.
  • various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected.
  • the ethylene copolymerization ratio in the copolymer containing ethylene as an essential copolymerization component can be appropriately selected according to the purpose without any particular limitation, but is preferably 60 to 90% by mass, for example. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred.
  • the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce the photosensitive film.
  • the thickness of the cushion layer can be selected as appropriate according to the purpose for which there is no particular restriction.
  • F column; t is 5-50 111 girls, 10-50 111 girls Preferably, 15-40111.
  • the thickness is less than 5 m, unevenness on the surface of the substrate and unevenness followability to bubbles and the like may be reduced, and a high-definition permanent pattern may not be formed. Problems such as increased load may occur.
  • the oxygen barrier layer is preferably a film having a thickness of preferably about 0.5 to 5 ⁇ m, and is preferably formed mainly of polybulal alcohol.
  • the protective film has a function of preventing and protecting the photosensitive layer from being stained and damaged.
  • the location of the protective film provided on the photosensitive film is not particularly limited and may be appropriately selected according to the purpose.
  • the protective film provided on the photosensitive layer is usually as follows. Examples thereof include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among these, polyethylene film and polypropylene film are preferable.
  • the thickness of the protective film can be appropriately selected according to the purpose for which there is no particular restriction.
  • ⁇ column; t is preferably 5 to: LOO ⁇ m force, more preferably 8 to 30 ⁇ m force! / ⁇ .
  • the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
  • Examples of the combination of the support and the protective film include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc.
  • the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer.
  • a primer layer for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • ultraviolet irradiation treatment for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
  • the static friction coefficient between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / 1.
  • the protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer.
  • the surface treatment is performed, for example, by polio on the surface of the protective film.
  • An undercoat layer made of a polymer such as luganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed.
  • the undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
  • the said photosensitive film can be manufactured as follows, for example.
  • the material contained in the photosensitive composition is dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution for a photosensitive film.
  • the solvent is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol.
  • Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl acetate propionate, dimethyl phthalate , Esters such as ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; tetrasalt carbon, trichloroethylene, chloroform, 1, 1, 1-trichloro Halogenated carbonization of ethane, methylene chloride, monochrome benzene, etc.
  • the photosensitive resin composition solution is coated on the support and dried to form a photosensitive layer, whereby a photosensitive film can be produced.
  • the method for applying the photosensitive composition solution is not particularly limited and can be appropriately selected according to the purpose.
  • the coating method include a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
  • the drying conditions vary depending on each component, the type of solvent, the use ratio, etc. Usually, it is about 30 to 15 minutes at a temperature of 60 to 110 ° C.
  • the photosensitive film is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
  • the length of the long photosensitive film is not particularly limited. For example, a range force of 10-20, OOOm can be appropriately selected. In addition, it is possible to carry out slitting for easy use by the user and to form a long body in the range of 100 to 1,000 m into a roll shape. In this case, it is preferable that the support is wound up so as to be the outermost side.
  • the roll-shaped photosensitive film may be slit into a sheet shape.
  • a separator especially moisture-proof and desiccant-containing
  • the photosensitive laminate is formed by laminating at least the photosensitive layer on a substrate and other layers appropriately selected according to the purpose.
  • the substrate is a substrate to be processed on which a photosensitive layer is formed, or a transfer target to which at least the photosensitive layer of the photosensitive film of the present invention is transferred, and is appropriately selected depending on the purpose without particular limitation. For example, it can be arbitrarily selected from those having a high surface smoothness to those having a rough surface.
  • a so-called substrate in which a plate-like substrate is preferred is used. Specific examples include known printed wiring board manufacturing substrates (printed substrates), glass plates (soda glass plates, etc.), synthetic resin films, paper, metal plates, and the like.
  • Examples of the method for producing the photosensitive laminate include, as the first aspect, a method of applying the photosensitive composition to the surface of the substrate and drying, and as the second aspect, in the photosensitive film of the present invention.
  • a method of laminating by transferring at least one of heating and pressurizing at least one of the photosensitive layer and transferring force is mentioned.
  • the photosensitive composition is applied and dried on the substrate to form a photosensitive layer.
  • the coating and drying method can be appropriately selected according to the purpose without any particular limitation.
  • the photosensitive composition is dissolved, emulsified or dispersed on the surface of the substrate in water or a solvent.
  • a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
  • the solvent of the photosensitive composition solution can be appropriately selected according to the purpose without any particular limitation, and examples thereof include the same solvents as those used for the photosensitive film. These may be used alone or in combination of two or more. Also, add a known surfactant.
  • the coating method and drying conditions can be appropriately selected according to the purpose without particular limitation, and the same methods and conditions as those used for the photosensitive film are used.
  • the photosensitive film of the present invention is laminated on the surface of the substrate while performing at least one of heating and pressing.
  • the protective film it is preferable that the protective film is peeled off and laminated so that the photosensitive layer overlaps the substrate.
  • the heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
  • the pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular restriction. For example, 0.1 to 1. OMPa force is preferable, 0.2 to 0.8 MPa force is more preferable! / ⁇ .
  • the apparatus for performing at least one of the heating can be appropriately selected according to the purpose without any particular restriction.
  • Preferable examples include VP130).
  • the photosensitive film and the photosensitive laminate of the present invention contain a predetermined polymer compound, so that they are excellent in sensitivity, resolution, electroless gold plating resistance, and storage stability, and efficiently produce a high-definition permanent pattern. Since it can be formed well, it can be used to form various patterns such as protective films, interlayer insulation films, and permanent patterns such as solder resist patterns, and liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, and partition walls.
  • the pattern forming apparatus and the permanent pattern forming method of the present invention, and the permanent pattern shape of the printed circuit board can be suitably used for the manufacture of patterns, holograms, micromachines, proofs and the like. It can use suitably for composition.
  • the pattern forming apparatus of the present invention includes the photosensitive layer and includes at least a light irradiation unit and a light modulation unit.
  • the permanent pattern forming method of the present invention includes at least an exposure step, and includes other steps such as a suitably selected imaging step.
  • the photosensitive layer in the photosensitive film of the present invention is exposed.
  • the photosensitive film and the base material of the present invention are as described above.
  • the subject of exposure is not particularly limited as long as it is the photosensitive layer in the photosensitive film, and can be appropriately selected according to the purpose. It is preferable that this is performed on a laminated body formed by laminating the optical film while performing at least one of heating and pressing.
  • the exposure is not particularly limited and can be appropriately selected according to the purpose. Digital exposure, analog exposure, and the like are listed. Of these, digital exposure is preferable.
  • the digital exposure is not particularly limited and can be appropriately selected according to the purpose.
  • a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal.
  • light For example, n light (where n is a natural number of 2 or more) two-dimensional light receiving means and receiving light from the light irradiating means.
  • the exposure head is arranged so that the column direction of the predetermined inclination angle ⁇ is set, and, for the exposure head, N-exposure (N double exposure) of the usable pixel parts by the used pixel part designating means.
  • the pixel part controlling unit is used pixel parts designated hand A method of controlling the image area so that only the image area specified by the stage is involved in exposure, and moving the exposure head relative to the photosensitive layer in the scanning direction. preferable.
  • N double exposure refers to a straight line parallel to the scanning direction of the exposure head on the exposed surface in almost all of the exposed region on the exposed surface of the photosensitive layer.
  • the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit.
  • the arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
  • the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads.
  • the number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution.
  • N double exposure and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method.
  • N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
  • the pattern forming apparatus is a V-type flatbed type exposure apparatus, and as shown in FIG. 1, a sheet-like photosensitive material 12 in which at least the photosensitive layer in the photosensitive film is laminated.
  • a plate-like moving stage 14 is provided that adsorbs and holds the surface (hereinafter also referred to as “photosensitive layer 12”).
  • Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16.
  • the stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable.
  • the pattern forming device 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
  • a U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the movement path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18.
  • a scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side.
  • the scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14.
  • the scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
  • Ten slits 28 are formed at regular intervals.
  • Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side.
  • the slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of ⁇ 45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
  • the position of the slit 28 is substantially coincident with the center of the exposure head 30.
  • the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30.
  • the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is already exposed. It should be large enough to cover the width of the overlap between regions 34.
  • each slit 28 in the stage 14 is a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later.
  • a photodetector (not shown) is incorporated.
  • each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
  • an operation mode of the pattern forming apparatus at the time of exposure it may be a mode in which exposure is continuously performed while constantly moving the exposure head, or each step while moving the exposure head step by step.
  • the exposure operation may be performed with the exposure head stationary at the destination position.
  • Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle ⁇ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12.
  • the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
  • the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
  • each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
  • the part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
  • Each of the exposure heads 30 converts the incident light into an image as shown in FIGS. 4, 5A and 5B.
  • DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a light modulation means (spatial light modulation element that modulates each pixel part) according to data.
  • This DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part.
  • the data processing unit of this controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
  • a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32.
  • a fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36
  • the mirrors 42 to be used are arranged in this order.
  • the lens system 40 is schematically shown.
  • the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38 and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
  • a lens system 50 is formed that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12.
  • the lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
  • the laser light emitted from the fiber array light source 38 is substantially magnified 5 times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 ⁇ m!
  • the light modulating means has n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements, and the picture elements can be controlled according to the pattern information With things If there is, it can be appropriately selected according to the purpose for which there is no restriction. For example, a spatial light modulation element is preferable.
  • Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and transmission by an electro-optic effect.
  • Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
  • the light modulation means has pattern signal generation means for generating a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device.
  • the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged.
  • micromirrors 58 that can be driven by a controller connected to DMD36, that is usable are only 1024 columns x 256 rows.
  • the data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases.
  • Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof.
  • the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction.
  • the SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
  • DMD36 SRAM cell memory cell 56 mm.
  • each micromirror supported by the column 58 tilts to ⁇ a degree (for example, ⁇ 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center.
  • FIG. 7A shows a state tilted to + ⁇ degrees when the micromirror 58 is on
  • FIG. 7B shows a state tilted to a degrees when the micromirror 58 is off.
  • the laser light B incident on the DMD 36 moves in the inclination direction of each micromirror 58. Reflected.
  • FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 58 is performed by the controller connected to the DM D36.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
  • the light irradiation means can be appropriately selected according to the purpose without any particular limitation.
  • a known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the wavelength of ultraviolet to visible light is preferably 300-1, 500 nm, more preferably 320-8 OOrnn force, particularly preferably 330-650 mn force! / ,.
  • the wavelength of the laser light is, for example, 200 to 1,500 nm force, more preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force.
  • Examples of means capable of irradiating the combined laser include a plurality of lasers and a multimode laser. And a collective optical system that collects and couples the laser beams irradiated with the plurality of laser forces to the multimode optical fiber.
  • the used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced.
  • the ideal also uses a slightly larger angle.
  • This angle ⁇ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
  • the angle ⁇ is about 0.45 degrees according to the equation 3. Therefore, the set inclination angle ⁇ is ideal, for example, about 0.50 degrees.
  • FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example.
  • the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface the light spot in the m-th row 3 ⁇ 4 ⁇ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
  • FIG. 8 shows the pattern of the light spot group from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
  • FIG. 8 for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
  • the set inclination angle 0 is set to a slightly larger angle than the above angle 0.
  • FIG. 8 is an example of pattern distortion appearing on the surface to be exposed.
  • causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
  • the angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure.
  • the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
  • the slit 28 and the photodetector are used as the light spot position detecting means.
  • the actual inclination angle ⁇ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle ⁇ ′.
  • a process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle ⁇ , the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
  • FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28.
  • the size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
  • the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle ⁇ ′.
  • the positions of P (l, 512) and ⁇ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle ⁇ ′.
  • FIG. 10 is a top view illustrating the method for detecting the position of the light spot P (256, 512).
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is
  • the slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b.
  • the value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector.
  • the coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as ⁇ .
  • a process of selecting a micromirror as a micromirror to be actually used during the main exposure is performed.
  • a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
  • the smallest natural number equal to or greater than the value t may be derived.
  • a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
  • a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure It can be selected as a micromirror to be actually used.
  • FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
  • T 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force.
  • the force of the 254th line that has not been selected is also sent to the micromirror on the 256th line by the pixel part control means to send a signal for setting the angle to the off state at all times. It does not participate in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
  • the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle ⁇ ⁇ measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
  • the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
  • the actual inclination angle ⁇ ′ of the 512th ray array is measured, and the actual inclination angle ⁇ is used to derive the equation (4).
  • the micromirror 58 to be used is selected based on T.
  • the actual inclination angle ⁇ ′ the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used.
  • a plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle ⁇ '.
  • the average value or the median value is set to the actual inclination angle ⁇ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating large areas, for example, underexposure Therefore, it is possible to achieve exposure that minimizes the area of the region to be exposed and does not generate an overexposed region.
  • the minimum value is the actual inclination angle ⁇ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
  • the identification of the actual inclination angle ⁇ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row).
  • the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n) may be specified.
  • one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected.
  • the actual inclination angle ⁇ ′ can be obtained from these positional information.
  • the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line is obtained.
  • the actual inclination angle ⁇ ′ may be specified.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle 0 of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30 and can be used.
  • This angle ⁇ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
  • FIG. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
  • FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
  • FIG. 12 The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
  • Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing.
  • every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B.
  • the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
  • the light spot position detection is performed. Using a combination of slit 28 and photodetector as means, exposure head 30 and 30 force
  • the light spots constituting the head-to-head connecting region formed on the exposed surface The position (coordinates) of some of them is detected. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
  • FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
  • the size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
  • Figure 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32.
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream.
  • the slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0).
  • the value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
  • Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
  • each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of ⁇ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
  • the micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
  • the detection operation ends.
  • the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
  • the micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
  • the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020)
  • the force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
  • an exposure area 32 Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
  • the X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
  • Micromirrors with a force corresponding to P are not used during the main exposure. Identified as one.
  • the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
  • micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
  • the total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
  • micromirror May be specified as a micromirror that is not used during the main exposure.
  • a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
  • the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
  • the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
  • the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads reduces image variability and density unevenness, and realizes ideal N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30.
  • the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error of the exposure head 30, and the usable 1024 columns x 256 rows pixel part (micro Angle slightly larger than angle ⁇ , which is exactly double exposure using mirror 58)
  • the degree shall be adopted.
  • This angle ⁇ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
  • FIG. 16 shows the initial adjustment of the mounting angle of each exposure head 30, that is, each DMD 36 as described above.
  • the mounting angle error between the two exposure heads for example, the exposure head and 30
  • the relative mounting angle error between the exposure heads 30 and 30 for example, the exposure head and 30
  • FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
  • the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows.
  • a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
  • Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle ⁇ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
  • processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
  • the actual inclination angle ⁇ ′ is specified by the light spot P (l,
  • the arithmetic device connected to the photodetector using the actual inclination angle ⁇ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • the (T + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
  • the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
  • the exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
  • the area of the underexposed region is minimized with respect to the ideal double exposure, and an overexposed region is not generated. it can.
  • the number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
  • the same processing was performed, and micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and added as micromirrors that are not used during the main exposure. Is done.
  • the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
  • the relative position shifts in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
  • a set of the slit 28 and the single cell type photodetector is used as a means for detecting the position of the light spot on the surface to be exposed.
  • the force that was used is not limited to this, V, or any other form can be used.
  • a two-dimensional detector can be used.
  • the actual inclination angle ⁇ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained.
  • the micromirrors to be used are selected based on ⁇ ⁇ , a usable micromirror may be selected without involving the derivation of the actual tilt angle ⁇ ′.
  • the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
  • magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications.
  • FIG. 18B the light power from each micromirror 58 on the DMD 36, different beams
  • beam diameter distortion that reaches the exposure area 32 on the exposed surface by the diameter.
  • this light distortion can be attributed to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the lenses 52 and 54 in FIGS. 5A and 5B, which are single lenses). This is caused by unevenness in the amount of light caused by DMD36 itself.
  • These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
  • the residual elements of the pattern distortion in these forms are also the above-described angular distortion. As with the residual elements, it can be leveled out by the effect of offset by multiple exposure, and variations in resolution and density can be reduced over the entire exposure area of each exposure head.
  • every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
  • the result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle.
  • the analysis of the result of the reference exposure is a visual analysis by the operator.
  • FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head.
  • reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples.
  • a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle.
  • 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
  • FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
  • Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
  • a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
  • the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
  • FIGS. 21A and 21B show an example of a mode in which a single exposure head is used and reference exposure is performed using only micromirror groups constituting adjacent rows corresponding to IZN rows of the total number of light spot rows. It is explanatory drawing shown.
  • a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
  • Fig. 22 shows the use of multiple exposure heads, and the two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30) correspond to 1ZN rows of the total number of light spots.
  • FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
  • the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. It is possible to specify the micromirror to be used during the main exposure.
  • the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time.
  • a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
  • the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good.
  • the triple exposure power is set to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
  • the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
  • the development is performed by removing an unexposed portion of the photosensitive layer.
  • the removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
  • the developer can be appropriately selected according to the purpose without any particular limitation, and examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, and the like.
  • a weak alkaline aqueous solution is preferred.
  • the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid.
  • the pH of the weakly alkaline aqueous solution is more preferably, for example, about 9 to about 8 to 12: L1.
  • Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
  • the temperature of the developer is a force that can be appropriately selected according to the developability of the photosensitive layer. For example, about 25 to 40 ° C. is preferable.
  • the developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.)
  • an organic solvent for example, alcohols, ketones, esters, ethers, amides, latatones, etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
  • the curing treatment step is a step of performing a curing treatment on the photosensitive layer in the formed pattern after the development step is performed.
  • the curing treatment step is not particularly limited and can be appropriately selected depending on the purpose. For example, a full exposure process, a full heat treatment, and the like are preferable.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development. By this overall exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the permanent pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation.
  • a UV exposure machine such as an ultra-high pressure mercury lamp is preferably used.
  • the permanent pattern is formed after the development.
  • the method of heating the whole surface on the said laminated body is mentioned. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
  • the heating temperature in the entire surface heating is preferably 120 to 250 ° C, more preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, the resin in the photosensitive composition may be decomposed, resulting in film quality. May be weak and brittle.
  • the heating time in the whole surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the pattern forming method is a permanent pattern forming method for forming at least one of a protective film, an interlayer insulating film, and a solder resist pattern
  • the pattern is permanently formed on the printed wiring board by the permanent pattern forming method.
  • a pattern can be formed and soldering can be performed as follows.
  • the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), and a solder resist, and prevents external impact and conduction between adjacent electrodes.
  • the wiring may be subjected to impact or bending by an external force.
  • the interlayer insulating film is useful for high-density mounting of semiconductors and components on, for example, a multilayer wiring board and a build-up wiring board.
  • the method for forming a permanent pattern of the present invention uses the photosensitive film of the present invention.
  • various patterns such as protective films, interlayer insulating films, and permanent patterns such as solder resist patterns, manufacturing of liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, partition walls, holograms, etc. It can be suitably used for the manufacture of micromachines, proofs, etc., and can be particularly suitably used for forming a high-definition permanent pattern on a printed circuit board.
  • the mass average molecular weight (Mw) of the obtained polymer compound was measured by gel permeation chromatography (GPC) using polystyrene as a standard material.
  • * 1 is a mixture of the structure represented by the following structural formula (a) and the structure represented by (b) (mixing ratio is unknown), * 2 is the structural formula (c) below. It represents the structure represented and the mixture of (d) (mixing ratio is unknown).
  • Photopolymerization initiator represented by the following formula I 1 ⁇ 25. 6 parts by mass
  • Alkali insoluble thermal crosslinking agent represented by the following formula ⁇ — 1 ⁇ 60.0 parts by mass
  • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
  • the obtained photosensitive composition solution was applied on a PET (polyethylene terephthalate) film having a thickness of 16 m, a width of 300 mm, and a length of 200 m as the support with a bar coater, and an 80 ° C hot air circulating dryer.
  • the film was dried to form a photosensitive layer having a thickness of 30 m.
  • a polypropylene film having a thickness of 20 m, a width of 310 mm and a length of 210 m was laminated as a protective film by lamination to produce the photosensitive film.
  • a surface of a copper-clad laminate (no through-hole, copper thickness 12 m) on which a wiring was formed as a printed board was prepared by chemical polishing treatment.
  • a vacuum laminator Nigo Morton
  • peeling the protective film from the photosensitive film so that the photosensitive layer of the photosensitive film was in contact with the copper-clad laminate.
  • VP Co., Ltd., VP130 was used to prepare a photosensitive laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) were laminated in this order. .
  • the crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
  • the photosensitive laminate strength polyethylene terephthalate film (support) is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate.
  • Spray start force of sodium carbonate aqueous solution The time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time.
  • a sodium acid aqueous solution was sprayed at a spray pressure of 0.15 MPa for twice the shortest development time determined in (1) above, and the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Subsequently, the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve, the amount of light energy when the thickness of the cured region was the same 30 m as that of the photosensitive layer before exposure was determined as the amount of light energy necessary for curing the photosensitive layer.
  • DMD 36 controlled to drive only 1024 ⁇ 256 6 rows, and optical for imaging the light shown in FIGS. 5A and 5B on the photosensitive film
  • a pattern forming apparatus 10 having an exposure head 30 having a system was used.
  • each exposure head 30, ie each DMD 36 is slightly larger than the angle ⁇ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
  • N is the number of double exposures N, the number of micromirrors that can be used 58 s in the row direction, the spacing p of the micromirrors 58 that can be used in the row direction p, and the micromirrors with the exposure head 30 tilted.
  • N is the number of double exposures N, the number of micromirrors that can be used 58 s in the row direction, the spacing p of the micromirrors 58 that can be used in the row direction p, and the micromirrors with the exposure head 30 tilted.
  • stage 14 The exposure head 30 is projected onto the exposed surface of the photosensitive film 12 in a stationary state.
  • the power shown for every other column of micromirrors 58 that can be used is divided into the exposure pattern by pixel column group A and the exposure pattern by pixel column group B.
  • the exposure pattern is a superposition of these two exposure patterns.
  • a set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
  • the angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
  • the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32 are formed by a plurality of the exposure heads in the exposure areas 32 and 32.
  • the photosensitive laminate was produced under the same method and conditions as the method for evaluating the shortest development time in (1) and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the obtained polyethylene terephthalate film (support) of the laminate, exposure is performed for each line width in increments of 1 ⁇ m from 10 to 100 ⁇ m with a line space of lZl using the pattern forming apparatus. The exposure amount at this time is the amount of light energy required to cure the photosensitive layer of the photosensitive film measured in (2). After standing at room temperature for 10 minutes, the photosensitive laminate strength polyethylene terephthalate film (support) is peeled off.
  • the photosensitive film was wound up with a winder to produce a photosensitive film raw roll.
  • the obtained photosensitive film raw roll was slit with a coaxial slitter, and was 300 mm in length and 76 mm in inner diameter.
  • a cylindrical roll core was wound up to 150 m in a width of 250 mm to produce a photosensitive film roll.
  • the photosensitive film roll obtained in this way was made into a cylindrical bag made of black polyethylene (film thickness : 80 m, water vapor transmission rate: 25 gZm 2 '24hr or less), and a polypropylene bush was pushed into both ends of the core.
  • the roll-shaped sample with both ends closed with the bush was stored at 25 ° C and 55% RH for 21 days, and then observed for end face fusion, and the storage stability was evaluated according to the following criteria.
  • A part of the end face is glossy, and a slight amount of end face fusion occurs (use limit).
  • X State where the entire end face is glossy and a large amount of end face fusion occurs.
  • the photosensitive laminate is irradiated with double exposure so that a horizontal line pattern in a direction orthogonal to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed.
  • a pattern was formed on the area in the same manner as (3) in the resolution measurement.
  • any five points of a line with a line width of 50 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ⁇ ), and the edge position in the field of view was observed.
  • the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was obtained as an absolute value, and the average value of the five observed points was calculated, and this was used as edge roughness.
  • the edge roughness is preferably as the value is small because it exhibits good performance.
  • Example 1 a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that the polymer compound was replaced with the polymer compound shown in Table 6 below.
  • a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that each component was blended in the following amounts to prepare a photosensitive composition solution.
  • Alkali-insoluble thermal crosslinking agent represented by the formula ⁇ —1 ... 62.0 parts by mass
  • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
  • Photoinitiator 1-2 is a 1: 1 mixture of Irgacure907 and Irgacure369 (manufactured by Chinoku Special Chemicals).
  • the barium sulfate dispersion was prepared in the same manner as in Example 1.
  • test substrate is subjected to electroless gold plating according to the process described below, the appearance of the test substrate is changed, and a peeling test using a cellophane adhesive tape is performed. It was evaluated with.
  • this substrate was immersed in a 30 ° C catalyst solution (Meltex, 10 mass% aqueous solution of Metal Plate Actuator 350) for 7 minutes, then immersed in running water for 3 minutes, washed with water, then 8 5 ° nickel plating solution of C (Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6) was immersed for 20 minutes, after the electroless nickel plating, 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed in running water for 30 seconds to 1 minute and washed with water.
  • a 30 ° C catalyst solution Mobalx, 10 mass% aqueous solution of Metal Plate Actuator 350
  • 8 5 ° nickel plating solution of C Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6
  • 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed
  • Example 8 a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 8, except that the polymer compound was replaced with the polymer compound shown in Table 7 below.
  • the photosensitive film and photosensitive laminate were evaluated in the same manner as in Example 8 for sensitivity, resolution, electroless gold adhesion resistance, and storage stability. The results are shown in Table 7.
  • a photosensitive film and a laminate were produced in the same manner as in Example 8 except that a photosensitive composition solution was prepared by the following method with reference to JP-A-7-199457.
  • methyl metatalylate 50 parts by weight of acrylic acid, 80 parts by weight of benzyl metatalylate, 240 parts by weight of ethylene glycol monomethyl ether acetate, and 75 parts by weight of 2 parts by weight of azobisisopetite-tolyl as a catalyst
  • Glycidylmetatali in which 2 parts by mass of methylhydroquinone was dissolved as a thermal polymerization inhibitor after 4 hours of polymerization reaction. 45 parts by mass of the rate was added, and the mixture was further reacted for 2 hours to obtain a binder polymer (C) having a mass average molecular weight of 40,000 and an acid value of 84.
  • Phenolic novolac-type epoxy resin (manufactured by Toto Kasei Co., Ltd .: “YDPN-638”) 110 parts by mass was dissolved in 150 parts by mass of propylene glycol monomethyl ether acetate, and then 34 parts by mass of acrylic acid and benzyldimethylamine 0 After adding 8 parts by mass and continuing the reaction at 100 to 120 ° C for 8 hours, add 35 parts by mass of tetrahydrophthalic anhydride and reacting at 100 ° C for 8 hours to give an acid value of 70 and an epoxy equivalent of 5,000. A saturated double bond-containing epoxy resin (D) was obtained.
  • each component was blended in the following amounts to prepare a photosensitive composition solution, and a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 8.
  • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
  • the photosensitive film and photosensitive laminate were evaluated in the same manner as in Example 8 for sensitivity, resolution, electroless gold adhesion resistance, and storage stability. The results are shown in Table 7.
  • the photosensitive composition solution was kneaded with a three-roll mill and then coated, dried and scraped in the same manner as in Example 8.
  • the thickness unevenness was ⁇ 5 m, and the edge shape was not uniform because of the uneven shape.
  • a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that each component was blended in the following amounts to prepare a photosensitive composition solution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is a photosensitive composition which is excellent in sensitivity, resolution, electroless gold plating resistance and storage stability by containing a certain polymer compound. This photosensitive composition enables to efficiently form a high-precision permanent pattern (such as a protective film, an interlayer insulating film and a solder resist pattern). Also disclosed are a photosensitive film, a permanent pattern forming method using such a photosensitive film, and a printed board having a permanent pattern formed by such a permanent pattern forming method. Specifically disclosed is a photosensitive composition containing a binder, a polymerizable compound, a photopolymerization initiator, and an alkali-insoluble thermal crosslinking agent. The binder contains a polymer compound which has an aromatic group optionally containing a heterocycle and an ethylenically unsaturated bond in a side chain.

Description

明 細 書  Specification
感光性組成物、感光性フィルム、永久パターン形成方法、及びプリント基 板  Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board
技術分野  Technical field
[0001] 本発明は、感度、解像度、及び保存安定性に優れ、高精細な永久パターン (保護 膜、層間絶縁膜、及びソルダーレジストパターンなど)を効率よく形成可能な感光性 組成物、感光性フィルム、永久パターン形成方法、及び該永久パターン形成方法に より永久パターンが形成されたプリント基板に関する。  [0001] The present invention is a photosensitive composition that is excellent in sensitivity, resolution, and storage stability, and that can efficiently form a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist pattern). The present invention relates to a film, a permanent pattern forming method, and a printed board on which a permanent pattern is formed by the permanent pattern forming method.
背景技術  Background art
[0002] 従来より、ソルダーレジストパターンなどの永久パターンを形成するに際して、支持 体上に感光性組成物を塗布、乾燥することにより感光層を形成させた感光性フィルム が用いられている。前記永久パターンの製造方法としては、例えば、前記永久パター ンが形成される銅張積層板等の基体上に、前記感光性フィルムを積層させて積層体 を形成し、該積層体における前記感光層に対して露光を行い、該露光後、前記感光 層を現像してパターンを形成させ、その後硬化処理等を行うことにより前記永久バタ ーンが形成される。  Conventionally, when a permanent pattern such as a solder resist pattern is formed, a photosensitive film in which a photosensitive layer is formed by applying and drying a photosensitive composition on a support has been used. As a method for producing the permanent pattern, for example, a laminate is formed by laminating the photosensitive film on a substrate such as a copper clad laminate on which the permanent pattern is formed, and the photosensitive layer in the laminate is formed. After the exposure, the photosensitive layer is developed to form a pattern, and then subjected to a curing process or the like to form the permanent pattern.
[0003] 前記感光性組成物としては、安定性等を向上させる目的で、炭素原子数 1〜6個の 脂肪族炭化水素基を有する (メタ)アクリルモノマーと、(メタ)アクリル酸との共重合体 に、エポキシ基を有する (メタ)アタリレート化合物を付加させた高分子化合物を含む 感光性組成物が提案されている (特許文献 1参照)。また、前記提案とほぼ同様な目 的で、側鎖にカルボキシル基を有する共重合体に、脂環式エポキシ基を有する不飽 和化合物を付加させた高分子化合物を含む感光性組成物が提案されて!ヽる (特許 文献 2参照)。更に、耐熱性ゃ耐薬品性等の性能を向上させる目的で、不飽和二重 結合を有し、かつ特定の範囲の酸価及び分子量のバインダーポリマーと、不飽和二 重結合とを有し、かつ特定の酸価及びエポキシ等量のエポキシ榭脂とを組成物中に 含有させる感光性組成物が提案されて ヽる (特許文献 3参照)。  [0003] As the photosensitive composition, for the purpose of improving stability and the like, a copolymer of a (meth) acrylic monomer having an aliphatic hydrocarbon group having 1 to 6 carbon atoms and (meth) acrylic acid is used. There has been proposed a photosensitive composition containing a polymer compound obtained by adding a (meth) acrylate compound having an epoxy group to a polymer (see Patent Document 1). Also, a photosensitive composition comprising a polymer compound in which an unsaturated compound having an alicyclic epoxy group is added to a copolymer having a carboxyl group in a side chain for the same purpose as the above proposal is proposed. (See Patent Document 2). Furthermore, for the purpose of improving performance such as heat resistance and chemical resistance, it has an unsaturated double bond, a binder polymer having a specific range of acid value and molecular weight, and an unsaturated double bond, There has also been proposed a photosensitive composition containing a specific acid value and an epoxy equivalent of epoxy resin in the composition (see Patent Document 3).
しかし、これらの感光性組成物においても、感度及び保存安定性は不十分であり、 特にレーザ走査露光によるパターン潜像形成において、露光部の硬化が不十分で、 アルカリ現像工程で画像部が除去されてしまったり、感光性組成物をフィルム化して 長尺ロール形態にした場合、経時で端面の融着が起こり、その融着部分がラミネート 時に、積層体の露光面に落下することで、露光時に露光パターンの断線等の故障が 起こるという問題があった。また、アルカリ可溶性のエポキシ榭脂を使用した場合には 、金めつき処理プロセスで基板との密着が不良となり、感光性組成物の浮きが観られ 、めっき潜りが認められる現象が起こるなどの問題があった。 However, even in these photosensitive compositions, the sensitivity and storage stability are insufficient. Especially in pattern latent image formation by laser scanning exposure, when the exposed area is not sufficiently cured, the image area is removed in the alkali development process, or the photosensitive composition is made into a long roll form when the photosensitive composition is formed into a long roll. In this case, the end face is fused, and the fused portion falls on the exposed surface of the laminate during lamination, resulting in a problem such as breakage of the exposure pattern at the time of exposure. In addition, when an alkali-soluble epoxy resin is used, there is a problem in that the adhesion with the substrate becomes poor in the gold plating process, the photosensitive composition is lifted, and a phenomenon in which plating submergence is observed occurs. was there.
[0004] したがって、所定の高分子化合物を含むことにより、感度、解像度、無電解金メッキ 耐性、及び保存安定性に優れ、高精細な永久パターン (保護膜、層間絶縁膜、及び ソルダーレジストパターンなど)を効率よく形成可能な感光性組成物、感光性フィルム 、前記感光性フィルムを用いた永久パターン形成方法、及び該永久パターン形成方 法により永久パターンが形成されたプリント基板は未だ提供されておらず、更なる改 良開発が望まれているのが現状である。  [0004] Therefore, by including a predetermined polymer compound, it has excellent sensitivity, resolution, electroless gold plating resistance, storage stability, and high-definition permanent patterns (protective film, interlayer insulating film, solder resist pattern, etc.) A photosensitive composition, a photosensitive film, a permanent pattern forming method using the photosensitive film, and a printed board on which a permanent pattern is formed by the permanent pattern forming method have not yet been provided At present, further improvement development is desired.
[0005] 特許文献 1 :特開平 3— 172301号公報  Patent Document 1: Japanese Patent Laid-Open No. 3-172301
特許文献 2:特開平 10— 10726号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-10726
特許文献 3 :特開平 7— 199457号公報  Patent Document 3: JP-A-7-199457
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、所定の高分子化合 物を含むことにより、感度、解像度、無電解金メッキ耐性、及び保存安定性に優れ、 高精細な永久パターン (保護膜、層間絶縁膜、及びソルダーレジストパターンなど)を 効率よく形成可能な感光性組成物、感光性フィルム、前記感光性フィルムを用いた 永久パターン形成方法、及び該永久パターン形成方法により永久パターンが形成さ れたプリント基板を提供することを目的とする。 [0006] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the above-described problems and achieve the following objects. That is, the present invention includes a predetermined polymer compound, so that it has excellent sensitivity, resolution, electroless gold plating resistance, and storage stability, and has a high-definition permanent pattern (protective film, interlayer insulating film, and solder resist pattern). Etc.) can be efficiently formed, a photosensitive film, a permanent pattern forming method using the photosensitive film, and a printed circuit board on which a permanent pattern is formed by the permanent pattern forming method. Objective.
課題を解決するための手段  Means for solving the problem
[0007] 前記課題を解決するための手段としては、以下の通りである。即ち、 Means for solving the above-described problems are as follows. That is,
< 1 > ノ インダー、重合性化合物、光重合開始剤、及びアルカリ不溶性の熱架橋 剤を含み、前記バインダーが、側鎖に、ヘテロ環を含んでもよい芳香族基及びェチレ ン性不飽和結合を有する高分子化合物を含むことを特徴とする感光性組成物である<1> Ninder, polymerizable compound, photopolymerization initiator, and alkali-insoluble thermal crosslinking And a binder containing an aromatic group which may contain a heterocycle and a high molecular compound having an ethylenically unsaturated bond in the side chain.
。前記く 1 >に記載の感光性組成物においては、バインダーが、側鎖に、ヘテロ環を 含んでもよい芳香族基及びエチレン性不飽和結合を有する高分子化合物を含むこと から、感度、解像度、及び保存安定性に優れ、高精細な永久パターン (保護膜、層 間絶縁膜、及びソルダーレジストパターンなど)を効率よく形成することができる。 . In the photosensitive composition according to the above item 1>, since the binder contains a polymer compound having an aromatic group which may contain a heterocycle and an ethylenically unsaturated bond in the side chain, sensitivity, resolution, In addition, high-definition permanent patterns (such as protective films, interlayer insulating films, and solder resist patterns) can be efficiently formed with excellent storage stability.
< 2> 高分子化合物力 エチレン性不飽和結合を 0. 5〜3. OmeqZg含有する 前記 < 1 >に記載の感光性組成物である。  <2> Polymer compound strength The photosensitive composition according to <1>, which contains 0.5 to 3. OmeqZg of an ethylenically unsaturated bond.
< 3 > 高分子化合物が、側鎖にカルボキシル基を有し、前記カルボキシル基の前 記高分子化合物における含有量が、 1. 0〜4. OmeqZgである前記 < 1 >から < 2 >の 、ずれかに記載の感光性組成物である。  <3> The polymer compound has a carboxyl group in a side chain, and the content of the carboxyl group in the polymer compound is 1.0 to 4. OmeqZg. The photosensitive composition according to any one of the above.
<4> 高分子化合物の質量平均分子量が、 10, 000以上 100, 000未満である 前記く 1 >からく 3 >の 、ずれかに記載の感光性組成物である。  <4> The photosensitive composition according to any one of <1> to <3>, wherein the polymer compound has a mass average molecular weight of 10,000 or more and less than 100,000.
< 5 > 高分子化合物が、下記構造式 (I)で表される構造単位を 20mol%以上含 有する前記く 1 >力 く 4>の 、ずれかに記載の感光性組成物である。  <5> The photosensitive composition according to any one of the above <1>, wherein the polymer compound comprises 20 mol% or more of a structural unit represented by the following structural formula (I).
[化 2] [Chemical 2]
R3、  R3,
構造式 U )
Figure imgf000004_0001
C一 0—— L一 Ar
(Structure U)
Figure imgf000004_0001
C one 0—— L one Ar
ただし、前記構造式 (I)中、 R、 R However, in the structural formula (I), R, R
1 2、及び R  1 2 and R
3は水素原子又は 1価の有機基を表す。 3 represents a hydrogen atom or a monovalent organic group.
Lは有機基を表し、なくてもよい。 Arは芳香族基を表す。 L represents an organic group and may be omitted. Ar represents an aromatic group.
< 6 > 重合性化合物が、エチレン性不飽和結合を 1つ以上有する化合物を含む 前記く 1 >からく 5 >の 、ずれかに記載の感光性組成物である。  <6> The photosensitive composition according to any one of <1> to <5>, wherein the polymerizable compound contains a compound having one or more ethylenically unsaturated bonds.
< 7> 重合性化合物が、(メタ)アクリル基を有するモノマー力も選択される少なくと も 1種を含む前記く 6 >に記載の感光性組成物である。  <7> The photosensitive composition according to <6>, wherein the polymerizable compound includes at least one monomer having a (meth) acryl group.
< 8 > 光重合開始剤が、ハロゲンィ匕炭化水素誘導体、へキサァリールビイミダゾ ール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム 塩、メタ口セン類、及びァシルホスフィンォキシドィ匕合物から選択される少なくとも 1種 を含む前記く 1 >からく 7>のいずれかに記載の感光性組成物である。 <8> The photopolymerization initiator is a halogenated hydrocarbon derivative, hexarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic onium salt. 8. The photosensitive composition according to any one of 1) to 7), which comprises at least one selected from a salt, a metacathecene, and a acyl phosphinoxide compound.
< 9 > アルカリ不溶性の熱架橋剤が、エポキシ化合物を含む前記 < 1 >からく 8 >の 、ずれかに記載の感光性組成物である。  <9> The photosensitive composition according to any one of <1> to <8>, wherein the alkali-insoluble thermal crosslinking agent contains an epoxy compound.
< 10> アルカリ不溶性の熱架橋剤が、 j8位にアルキル基を有するエポキシ基を 少なくとも含むエポキシィ匕合物である前記く 9 >に記載の感光性組成物である。 く 11 > 感光性組成物が増感剤を含み、該増感剤がヘテロ縮環系ケトンである前 記く 1 >からく 10 >のいずれかに記載の感光性組成物である。  <10> The photosensitive composition according to <9>, wherein the alkali-insoluble thermal crosslinking agent is an epoxy compound containing at least an epoxy group having an alkyl group at j8 position. <11> The photosensitive composition according to any one of <1> to <10>, wherein the photosensitive composition contains a sensitizer, and the sensitizer is a hetero-fused ketone.
[0010] < 12> 支持体と、該支持体上に前記 < 1 >からく 11 >のいずれかに記載の感 光性組成物からなる感光層とを有することを特徴とする感光性フィルムである。 [0010] A photosensitive film comprising a <12> support and a photosensitive layer comprising the photosensitive composition according to any one of <1> and 11 above on the support. is there.
< 13 > 感光層の厚みが 1〜: LOO μ mである前記 < 12 >に記載の感光性フィルム である。  <13> The photosensitive film according to <12>, wherein the photosensitive layer has a thickness of 1 to: LOO μm.
< 14> 支持体が、合成樹脂を含み、かつ透明である前記く 12>からく 13 >の V、ずれかに記載の感光性フィルムである。  <14> The photosensitive film according to any one of V and shifts in <12> to <13>, wherein the support contains a synthetic resin and is transparent.
< 15 > 支持体が、長尺状である前記く 12>からく 14>のいずれかに記載の感 光性フィルムである。  <15> The photosensitive film according to any one of the above <12> to <14>, wherein the support is a long shape.
< 16 > 感光性フィルムが、長尺状であり、ロール状に巻かれてなる前記 < 12> から < 15 >の!、ずれかに記載の感光性フィルムである。  <16> The photosensitive film according to any one of <12> to <15>, wherein the photosensitive film is long and wound in a roll shape.
< 17> 感光性フィルムにおける感光層上に保護フィルムを有する前記 < 12>か ら < 16 >の!、ずれかに記載の感光性フィルムである。  <17> The photosensitive film according to <12> to <16>, wherein the photosensitive film has a protective film on the photosensitive layer.
[0011] < 18 > 前記く 12>からく 17>のいずれかに記載の感光性フィルムにおける感 光層を備えており、 [0011] <18> The photosensitive film according to any one of the above <12> and <17>, wherein the photosensitive film is provided.
光を照射可能な光照射手段と、該光照射手段からの光を変調し、前記感光性フィ ルムにおける感光層に対して露光を行う光変調手段とを少なくとも有することを特徴 とするパターン形成装置である。前記く 18 >に記載のパターン形成装置においては 、前記光照射手段が、前記光変調手段に向けて光を照射する。前記光変調手段が 、前記光照射手段から受けた光を変調する。前記光変調手段により変調した光が前 記感光層に対して露光させる。例えば、その後、前記感光層を現像すると、高精細な パターンが形成される。 A pattern forming apparatus comprising: a light irradiating unit capable of irradiating light; and a light modulating unit that modulates light from the light irradiating unit and exposes the photosensitive layer in the photosensitive film. It is. In the pattern forming apparatus described in <18>, the light irradiating unit irradiates light toward the light modulating unit. The light modulation means modulates light received from the light irradiation means. The light modulated by the light modulating means is exposed to the photosensitive layer. For example, when the photosensitive layer is subsequently developed, A pattern is formed.
< 19 > 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 18 >に記載のバタ ーン形成装置である。前記 < 19 >に記載のパターン形成装置においては、前記光 変調手段が前記パターン信号生成手段を有することにより、前記光照射手段から照 射される光が該パターン信号生成手段により生成した制御信号に応じて変調される  <19> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the control generated by the pattern signal generation unit generates light emitted from the light irradiation unit. The pattern forming apparatus according to <18>, wherein the pattern is modulated according to a signal. In the pattern forming apparatus according to <19>, since the light modulation unit includes the pattern signal generation unit, the light emitted from the light irradiation unit is converted into a control signal generated by the pattern signal generation unit. Modulated according to
< 20> 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 18 >力らく 19 >のいずれかに記載のパターン形成装置である o前記 < 20 >に記載のパターン形成装置においては、前記光変調手段における n 個の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報 に応じて制御することにより、前記光照射手段からの光が高速で変調される。 <20> The light modulation means has n pixel parts, and forms any less than n pixel parts arranged continuously from the n pixel parts. The pattern forming apparatus according to any one of the above 18> force 19 which can be controlled according to pattern information. O In the pattern forming apparatus according to <20>, n pieces of light modulating means The light from the light irradiating means is modulated at high speed by controlling any less than n pixel parts arranged continuously from among the picture element parts according to the pattern information.
< 21 > 光変調手段が、空間光変調素子である前記く 18 >からく 20>のいずれ かに記載のパターン形成装置である。  <21> The pattern forming apparatus according to any one of <18>, <20>, wherein the light modulation unit is a spatial light modulation element.
< 22> 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記 < 21 >に記載のパターン形成装置である。  <22> The pattern forming apparatus according to <21>, wherein the spatial light modulation element is a digital 'micromirror' device (DMD).
< 23 > 描素部が、マイクロミラーである前記く 20>からく 22>のいずれかに記 載のパターン形成装置である。  <23> The pattern forming apparatus according to any one of the above <20> to <22>, wherein the pixel part is a micromirror.
< 24> 光照射手段が、 2以上の光を合成して照射可能である前記く 18 >からく 23 >の 、ずれかに記載のパターン形成装置である。前記く 24 >に記載のパターン 形成装置においては、前記光照射手段が 2以上の光を合成して照射可能であること により、露光が焦点深度の深い露光光によって行われる。この結果、前記感光層へ の露光が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極 めて高精細なパターンが形成される。  <24> The pattern forming apparatus according to any one of <18>, <23>, wherein the light irradiation means can synthesize and irradiate two or more lights. In the pattern forming apparatus described in the above item 24>, since the light irradiation means can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is developed thereafter, an extremely fine pattern is formed.
< 25 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結 合させる集合光学系とを有する前記く 18 >からく 24 >のいずれかに記載のパター ン形成装置である。前記 < 25 >に記載のパターン形成装置においては、前記光照 射手段が、前記複数のレーザ力 それぞれ照射されたレーザ光が前記集合光学系 により集光され、前記マルチモード光ファイバに結合可能であることにより、露光が焦 点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細 に行われる。例えば、その後、前記感光層を現像すると、極めて高精細なパターンが 形成される。 <25> The light irradiation means condenses the laser beams irradiated with the plurality of lasers, the multimode optical fiber, and the plurality of laser forces, and couples the laser beams to the multimode optical fiber. The pattern forming apparatus according to any one of the above items 18> to 24>, which has a collective optical system to be combined. In the pattern forming apparatus according to <25>, the light irradiation unit can collect the laser beams irradiated with the plurality of laser forces by the collective optical system and couple the laser beams to the multimode optical fiber. Thus, exposure is performed with exposure light having a deep focal depth. As a result, the exposure of the photosensitive layer is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
[0012] < 26 > 前記 < 12>から < 17>のいずれかに記載の感光性フィルムにおける感 光層に対して露光を行うことを含むことを特徴とする永久パターン形成方法である。  [0012] <26> A method for forming a permanent pattern, comprising exposing the photosensitive layer of the photosensitive film according to any one of <12> to <17>.
< 27> 露光が、 350〜415nmの波長のレーザ光を用いて行われる前記く 26 > に記載の永久パターン形成方法である。  <27> The method for forming a permanent pattern according to <26>, wherein the exposure is performed using a laser beam having a wavelength of 350 to 415 nm.
< 28 > 露光が、形成するパターン情報に基づいて像様に行われる前記く 26 > 力もく 27 >のいずれかに記載の永久パターン形成方法である。  <28> The method for forming a permanent pattern according to any one of the above <26>, <27>, wherein the exposure is performed imagewise based on pattern information to be formed.
[0013] < 29 > 露光が、光照射手段、及び前記光照射手段からの光を受光し出射する n 個(ただし、 nは 2以上の自然数)の 2次元状に配列された描素部を有し、パターン情 報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露 光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなす ように配置された露光ヘッドを用い、 [0013] <29> Light irradiation means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel parts that receive and emit light from the light irradiation means And an exposure head provided with a light modulation means capable of controlling the image element portion according to pattern information, wherein the column direction of the image element portion is set to a predetermined value with respect to the scanning direction of the exposure head. Using an exposure head arranged at an inclination angle of Θ,
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行われる前 記く 26 >力 く 28 >のいずれかに記載の永久パターン形成方法である。前記く 2 9 >に記載の永久パターン形成方法においては、前記露光ヘッドについて、使用描 素部指定手段により、使用可能な前記描素部のうち、 N重露光 (ただし、 Nは 2以上 の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描 素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素 部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動さ せて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる 前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度の むらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記 感光層を現像することにより、高精細なパターンが形成される。 With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and 29. The permanent pattern forming method according to any one of 26> force 28>, which is performed by relatively moving the exposure head in a scanning direction. In the permanent pattern forming method described in the above <29>, the exposure head is subjected to N-fold exposure (where N is a natural number greater than or equal to 2) among the usable pixel portions by the use pixel portion specifying means. The pixel part to be used for the pixel part is designated, and the picture element part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. Part is controlled. By performing exposure by moving the exposure head relative to the photosensitive layer in the scanning direction, the exposure head is formed on the exposed surface of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition pattern.
< 30> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を 実現するために使用する前記描素部を指定する前記 < 29 >に記載の永久パターン 形成方法である。前記 < 30 >に記載の永久パターン形成方法においては、露光が 複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドに より形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与 する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現するために使 用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度 のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パタ ーンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光 が高精細に行われる。例えば、その後、前記感光層を現像することにより、高精細な パターンが形成される。  <30> The exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for the exposure of the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to <29>, wherein among the element parts, the image element part used for realizing N double exposure in the inter-head connection region is designated. In the method for forming a permanent pattern according to <30>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit is an overlapped exposure region on an exposed surface formed by the plurality of exposure heads. Among the picture element parts involved in the exposure of the head-to-head joint area, the picture element part used for realizing the N-fold exposure in the head-to-head joint area is designated, so that the mounting of the exposure head Variations in the resolution and density unevenness of the pattern formed in the connecting area between the heads on the exposed surface of the photosensitive layer due to a shift in the position and the mounting angle are equalized. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
< 31 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域にお ける N重露光を実現するために使用する前記描素部を指定する前記 < 30 >に記載 の永久パターン形成方法である。前記 < 31 >に記載の永久パターン形成方法にお いては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前 記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領 域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外における N重 露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッド の取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領 域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。こ の結果、前記感光層への露光が高精細に行われる。例えば、その後、前記感光層を 現像することにより、高精細なパターンが形成される。 <31> The exposure is performed by a plurality of exposure heads, and the used picture element specifying means is involved in exposures other than the inter-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to <30>, wherein the pixel part used for realizing N double exposure in an area other than the inter-head connecting area among the picture element parts is designated. In the permanent pattern forming method according to the above <31>, the exposure is performed by a plurality of exposure heads, and the used pixel portion designating unit overlaps the exposed surface formed by the plurality of exposure heads. By specifying the pixel part used for realizing N-fold exposure in areas other than the inter-head connection area among the image element parts related to exposure other than the inter-head connection area that is the exposure area, Connection between heads on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head Variations in resolution and unevenness in density of the pattern formed outside the region are leveled. As a result, the photosensitive layer is exposed with high definition. For example, a high-definition pattern is then formed by developing the photosensitive layer.
< 32> 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描 素部の列方向の間隔 P、及び露光ヘッドを傾斜させた状態にぉ 、て該露光ヘッドの 走査方向と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin Θ ≥Ν δを満たす Θ に対し、 θ≥ Θ の関係を満たすように設定される前記 < 2 iaeal ideal ideal  <32> Setting tilt angle Θ force N N number of double exposures, number s of pixel parts in the row direction, interval P of the pixel parts in the row direction, and exposure with the exposure head tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the scanning direction of the head, the above equation is set to satisfy the relationship θ≥ Θ for Θ satisfying the following equation: spsin Θ ≥ δ δ <2 iaeal ideal ideal
9 >から < 31 >のいずれかに記載の永久パターン形成方法である。  The permanent pattern forming method according to any one of 9> to <31>.
< 33 > N重露光の N力 3以上の自然数である前記 < 29 >からく 32>のぃず れかに記載の永久パターン形成方法である。前記 < 33 >に記載の永久パターン形 成方法においては、 N重露光の N力 3以上の自然数であることにより、多重描画が 行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付 角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度の ばらつきや濃度のむらが、より精密に均される。  <33> The method for forming a permanent pattern according to any one of the above <29> Karaku 32>, which is a natural number of N force of 3 or more and N force of 3 or more. In the method for forming a permanent pattern described in <33>, multiple drawing is performed by using a natural number of N force 3 or more in N double exposure. As a result, due to the effect of filling, variations in the resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to a shift in the mounting position and mounting angle of the exposure head are more precisely leveled.
[0014] < 34> 使用描素部指定手段が、 [0014] <34> Use pixel part designation means
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と  Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure;
を備える前記く 29 >からく 33 >のいずれかに記載の永久パターン形成方法である  The permanent pattern forming method according to any one of the above 29> Karaku 33>
< 35 > 使用描素部指定手段が、 N重露光を実現するために使用する使用描素 部を、行単位で指定する前記く 29 >からく 34 >のいずれかに記載の永久パターン 形成方法である。 <35> The permanent pattern forming method according to any one of the above <29>, <34>, wherein the used pixel part specifying means specifies the used pixel part to be used for realizing N double exposure in units of lines. It is.
[0015] < 36 > 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光 ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走 查方向とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ ' と設定傾斜角度 Θとの誤差を吸収するように使用描素部を選択する前記く 34>力 く 35 >の 、ずれかに記載の永久パターン形成方法である。 [0015] <36> The light spot column direction on the surface to be exposed and the scanning direction of the exposure head in a state where the exposure head is inclined based on at least two light spot positions detected by the light spot position detection means The actual inclination angle Θ 'formed by the image is determined, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle Θ' and the set inclination angle Θ. <35> The method for forming a permanent pattern described in any of the above.
< 37> 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の 光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、 中央値、最大値、及び最小値のいずれかである前記 < 36 >に記載の永久パターン 形成方法である。  <37> The actual inclination angle Θ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined. The method for forming a permanent pattern according to <36>, wherein the permanent pattern is either a maximum value or a minimum value.
く 38 > 描素部選択手段が、実傾斜角度 Θ "に基づき、 ttan Θ " =N (ただし、 Nは N重露光数の Nを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における 1行目から前記 T行目の前記 描素部を、使用描素部として選択する前記く 34>からく 37>のいずれかに記載の 永久パターン形成方法である。  38> The pixel part selection means derives the natural number T near t satisfying the relationship of ttan Θ "= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ". , M (where m represents a natural number greater than or equal to 2) In the arranged pixel part, the pixel part from the first line to the T line is selected as the used pixel part. 37> The method for forming a permanent pattern according to any one of the above.
< 39 > 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは Ν重露光数の Νを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における、 (T+ 1)行目力 m行目の前 記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、 使用描素部として選択する前記く 34 >からく 38 >のいずれかに記載の永久パター ン形成方法である。  <39> Based on the actual inclination angle θ が, the pixel part selection means derives a natural number T near t that satisfies the relationship ttan 0 '= Ν (where Ν represents Ν of the double exposure number). , M line (where m represents a natural number greater than or equal to 2), the (T + 1) line power in the arranged pixel part is identified as an unused pixel part, The permanent pattern forming method according to any one of the above items 34> Karaku 38>, wherein the pixel portion excluding the unused pixel portion is selected as the used pixel portion.
<40> 描素部選択手段が、複数の描素部列により形成される被露光面上の重 複露光領域を少なくとも含む領域において、  <40> In a region including at least a multiple exposure region on an exposed surface formed by a plurality of pixel part columns,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、  (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure.
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、  (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じな 、ように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur with respect to the ideal N double exposure.
のいずれかである前記く 34 >からく 39 >に記載の永久パターン形成方法である。 The permanent pattern forming method according to any one of the above-mentioned 34> Karaku 39>.
<41 > 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重 複露光領域であるヘッド間つなぎ領域において、 <41> The pixel part selection means is capable of overlapping on the exposed surface formed by a plurality of exposure heads. In the head-to-head connection area, which is a double exposure area,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、  (2) In relation to the ideal N double exposure, the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area. A means for identifying an unused pixel part from the pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、  (3) For the ideal N-double exposure, the area of the overexposed area is minimized, and the pixel part involved in the exposure of the connecting area between the heads is used so that the underexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、  (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
の!、ずれかである前記 < 34 >カら < 40 >の!、ずれかに記載の永久パターン形成 方法である。 of! The method for forming a permanent pattern according to <34>, <40> and <40>, which are misalignments.
<42> 不使用描素部が、行単位で特定される前記く 41 >に記載の永久パター ン形成方法である。  <42> The permanent pattern forming method according to <41>, wherein the unused pixel portion is specified in units of lines.
<43 > 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前 記描素部のみを使用して参照露光を行う前記 < 29 >からく 42>のいずれかに記載 の永久パターン形成方法である。前記 < 43 >に記載の永久パターン形成方法にお いては、使用描素部指定手段において使用描素部を指定するために、使用可能な 前記描素部のうち、 N重露光の Nに対し、(N—1)列毎の描素部列を構成する前記 描素部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる 。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。<43> In order to specify the used pixel part in the used pixel part specifying means, among the pixel parts that can be used, N (N-1) pixel part columns for each of N double exposures. The permanent pattern forming method according to any one of the above <29> Karaku 42, wherein the reference exposure is performed using only the drawing element part constituting the above. In the method for forming a permanent pattern according to <43>, in order to specify a used pixel part in the used pixel part specifying unit, among the usable pixel parts, N of N multiple exposures is used. , (N-1) Reference exposure is performed using only the pixel part constituting the pixel part sequence for each column, and a simple pattern of simple single drawing is obtained. . As a result, the picture element portion in the head-to-head connection region is easily specified.
<44> 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部行を構成する前記 描素部のみを使用して参照露光を行う前記く 29>からく 42>のいずれかに記載の 永久パターン形成方法である。前記く 44 >に記載の永久パターン形成方法におい ては、使用描素部指定手段において使用描素部を指定するために、使用可能な前 記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部列を構成する前記描素 部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる。こ の結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。 <44> In order to specify the used pixel part in the used pixel part specifying means, among the available pixel parts, for the N-exposure N, the above-mentioned pixel part row constituting 1ZN line is configured. The permanent pattern forming method according to any one of the above items 29> to 42>, wherein reference exposure is performed using only the pixel part. In the above-described permanent pattern forming method described in 44>, in order to specify the used pixel part in the used pixel part specifying means, N of N multiple exposures among the usable pixel parts to be specified. The reference exposure is performed using only the pixel part constituting the pixel part column for each 1ZN row, and a simple single-drawn pattern is obtained. As a result, the picture element part in the head-to-head connection region is easily specified.
[0018] <45> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器 、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記 < 29 >力ら< 44 >の!、ずれかに記載の永久パターン形成方法である。  [0018] <45> The <29> force including: a used pixel part specifying unit including a slit and a photodetector as a light spot position detecting unit; and an arithmetic unit connected to the photodetector as a pixel unit selecting unit. <44> !, a method for forming a permanent pattern as described in any of them.
<46> N重露光の N力 3以上 7以下の自然数である前記 < 29>からく 45>の V、ずれかに記載の永久パターン形成方法である。  <46> The method for forming a permanent pattern according to any one of <29>, <45> and V, which is a natural number of N force of 3 to 7 in N double exposure.
[0019] <47> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 29 >から < 46 >に 記載の永久パターン形成方法である。前記 < 47 >に記載のパターン形成装置にお いては、前記光変調手段が前記パターン信号生成手段を有することにより、前記光 照射手段力 照射される光が該パターン信号生成手段により生成した制御信号に応 じて変調される。  <47> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit outputs the light emitted from the light irradiation unit. The permanent pattern forming method according to <29> to <46>, wherein the modulation is performed according to the generated control signal. In the pattern forming apparatus according to <47>, since the light modulation unit includes the pattern signal generation unit, the light irradiation unit force control light generated by the pattern signal generation unit is generated. Modulated according to.
<48> 光変調手段が、空間光変調素子である前記く 29>からく 47>のいずれ かに記載の永久パターン形成方法である。  <48> The method for forming a permanent pattern according to any one of <29> to <47>, wherein the light modulation means is a spatial light modulation element.
<49> 空間光変調素子が、デジタル 'マイクロミラ一'デバイス(DMD)である前 記く 48 >に記載の永久パターン形成方法である。  <49> The method for forming a permanent pattern according to the above 48, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
< 50> 描素部が、マイクロミラーである前記く 29>からく 49>のいずれかに記 載の永久パターン形成方法である。  <50> The permanent pattern forming method according to any one of <29> to <49>, wherein the picture element portion is a micromirror.
< 51 > パターン情報が表すパターンの所定部分の寸法が、指定された使用描素 部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する 変換手段を有する前記 < 29 >から < 50 >の 、ずれかに記載の永久パターン形成 方法である。 <51> The dimension of the specified part of the pattern represented by the pattern information The permanent pattern forming method according to any one of <29> to <50>, wherein the pattern information is converted so as to coincide with a dimension of a corresponding part that can be realized by the part.
[0020] < 52> 光照射手段が、 2以上の光を合成して照射可能である前記く 29 >からく 51 >のいずれかに記載の永久パターン形成方法である。前記く 52>に記載の永 久パターン形成方法にぉ 、ては、前記光照射手段が 2以上の光を合成して照射可 能であることにより、露光が焦点深度の深い露光光によって行われる。この結果、前 記感光性フィルムへの露光が極めて高精細に行われる。例えば、その後、前記感光 層を現像すると、極めて高精細なパターンが形成される。  <52> The permanent pattern forming method according to any one of the above <29> and <51>, wherein the light irradiation means can synthesize and irradiate two or more lights. In the permanent pattern forming method described in <52>, the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth. . As a result, the photosensitive film is exposed with extremely high definition. For example, when the photosensitive layer is subsequently developed, an extremely fine pattern is formed.
< 53 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結 合させる集合光学系とを有する前記く 29 >からく 52>のいずれかに記載の永久パ ターン形成方法である。前記く 53 >に記載の永久パターン形成方法においては、 前記光照射手段が、前記複数のレーザ力 それぞれ照射されたレーザ光が前記集 合光学系により集光され、前記マルチモード光ファイバに結合可能であることにより、 露光が焦点深度の深い露光光で行われる。この結果、前記感光性フィルムへの露光 が極めて高精細に行われる。例えば、その後、前記感光層を現像すると、極めて高 精細なパターンが形成される。  <53> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system for condensing and coupling the laser beams irradiated with the plurality of laser forces respectively to the multimode optical fiber. The method for forming a permanent pattern according to any one of the above 29> Karaku 52>. In the method for forming a permanent pattern according to the above item 53>, the light irradiating means can condense the laser light irradiated with each of the plurality of laser forces by the converging optical system and couple it to the multimode optical fiber. Therefore, exposure is performed with exposure light having a deep depth of focus. As a result, the exposure to the photosensitive film is performed with extremely high definition. For example, when the photosensitive layer is subsequently developed, a very fine pattern is formed.
[0021] < 54> 露光が行われた後、感光層の現像を行う前記 < 26 >から < 53 >のいず れかに記載の永久パターン形成方法である。前記 < 55 >に記載の永久パターン形 成方法においては、前記露光が行われた後、前記感光層を現像することにより、高 精細なパターンが形成される。  [0021] <54> The method for forming a permanent pattern according to any one of <26> to <53>, wherein the photosensitive layer is developed after the exposure. In the method for forming a permanent pattern described in <55>, a high-definition pattern is formed by developing the photosensitive layer after the exposure.
< 55 > 現像が行われた後、永久パターンの形成を行う前記く 54 >に記載の永 久パターン形成方法である。  <55> The method for forming a permanent pattern according to the above item 54, wherein a permanent pattern is formed after development.
[0022] < 56 > 前記 < 26 >から < 55 >のいずれかに記載の永久パターン形成方法によ り形成されることを特徴とする永久パターンである。  [0022] <56> A permanent pattern formed by the method for forming a permanent pattern according to any one of <26> to <55>.
< 57> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かである前記 < 56 >に記載の永久パターンである。前記 < 57 >に記載の永久パタ ーンでは、保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かであるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲 げなどカゝら保護される。 <57> The permanent pattern according to <56>, which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern. The permanent pattern described in <57> In this case, since it is at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the wiring is protected from external shock and bending due to the insulation and heat resistance of the film. The
[0023] 前記 < 26 >力ら< 55 >の!、ずれかに記載の永久パターンの形成方法により永久 ノターンが形成されたことを特徴とするプリント基板である。  [0023] A printed circuit board characterized in that a permanent pattern is formed by the method for forming a permanent pattern described in <26> force <55>.
発明の効果  The invention's effect
[0024] 本発明によると、従来における問題を解決することができ、所定の高分子化合物を 含むことにより、感度、解像度、無電解金メッキ耐性、及び保存安定性に優れ、高精 細な永久パターン (保護膜、層間絶縁膜、及びソルダーレジストパターンなど)を効率 よく形成可能な感光性組成物、感光性フィルム、永久パターン形成方法、及び該永 久パターン形成方法により永久パターンが形成されたプリント基板を提供することが できる。  [0024] According to the present invention, conventional problems can be solved, and by including a predetermined polymer compound, it has excellent sensitivity, resolution, electroless gold plating resistance, and storage stability, and has a highly precise permanent pattern. A photosensitive composition, a photosensitive film, a permanent pattern forming method, and a printed circuit board on which a permanent pattern is formed by the permanent pattern forming method (e.g., a protective film, an interlayer insulating film, and a solder resist pattern). Can be provided.
本発明の感光性組成物において、感度、解像度、及び保存安定性が向上する作 用機構は必ずしも明確ではないが、バインダーの含む高分子化合物が、側鎖にェチ レン性不飽和結合を有することで、光重合反応による現像液の不溶化が効率的に起 こり、感度及び解像度が向上すると考えられる。また、前記高分子化合物が、側鎖に 芳香族基を有することで、感光性組成物中の他の成分、例えば、光重合開始剤、重 合性化合物等の低分子化合物、熱架橋剤、及びオリゴマーとの相溶性に優れるため 、室温付近での感光層組成物の流動性が抑えられ、保存安定性が向上し、感光性 組成物をフィルムして長尺ロール形態にした場合の端面の融着が抑えられると考えら れる。更に、耐金めっき性の向上はアルカリ不溶性の熱架橋剤を使用することで発現 したと考えられる。  In the photosensitive composition of the present invention, the working mechanism for improving the sensitivity, resolution, and storage stability is not necessarily clear, but the polymer compound containing the binder has an ethylenically unsaturated bond in the side chain. Thus, it is considered that the insolubilization of the developer by the photopolymerization reaction occurs efficiently, and the sensitivity and resolution are improved. In addition, since the polymer compound has an aromatic group in the side chain, other components in the photosensitive composition, for example, a low molecular compound such as a photopolymerization initiator and a polymerizable compound, a thermal crosslinking agent, And excellent compatibility with the oligomer, the fluidity of the photosensitive layer composition at room temperature is suppressed, the storage stability is improved, and the end face of the photosensitive composition is formed into a long roll by filming the photosensitive composition. It is thought that fusion is suppressed. Furthermore, it is considered that the improvement of the gold plating resistance was realized by using an alkali-insoluble thermal crosslinking agent.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は、パターン形成装置の一例の外観を示す斜視図である。 FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
[図 2]図 2は、パターン形成装置のスキャナの構成の一例を示す斜視図である。  FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
[図 3A]図 3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図で ある。  FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
[図 3B]図 3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。 [図 4]図 4は、露光ヘッドの概略構成の一例を示す斜視図である。 FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head. FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
[図 5A]図 5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。  FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
[図 5B]図 5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。  FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
[図 6]図 6は、図 1のパターン形成装置の DMDの一例を示す部分拡大図である。  6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
[図 7A]図 7Aは、 DMDの動作を説明するための斜視図である。  FIG. 7A is a perspective view for explaining the operation of the DMD.
[図 7B]図 7Bは、 DMDの動作を説明するための斜視図である。  FIG. 7B is a perspective view for explaining the operation of the DMD.
[図 8]図 8は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上 のパターンに生じるむらの例を示した説明図である。  FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
[図 9]図 9は、 1つの DMDによる露光エリアと、対応するスリットとの位置関係を示した 上面図である。  FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
[図 10]図 10は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
[図 11]図 11は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上 のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 11] FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
[図 12]図 12は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上の パターンに生じるむらの例を示した説明図である。 FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift between adjacent exposure heads.
[図 13]図 13は、隣接する 2つの露光ヘッドによる露光エリアと、対応するスリットとの位 置関係を示した上面図である。  FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
[図 14]図 14は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
[図 15]図 15は、図 12の例において選択された使用画素のみが実動され、被露光面 上のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 15] FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
[図 16]図 16は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある 際に、被露光面上のパターンに生じるむらの例を示した説明図である。  FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
[図 17]図 17は、図 16の例において選択された使用描素部のみを用いた露光を示す 説明図である。  FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
[図 18A]図 18Aは、倍率歪みの例を示した説明図である。  FIG. 18A is an explanatory view showing an example of magnification distortion.
[図 18B]図 18Bは、ビーム径歪みの例を示した説明図である。 [図 19A]図 19Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。 FIG. 18B is an explanatory diagram showing an example of beam diameter distortion. FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 19B]図 19Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 20]図 20は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である  FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
[図 21A]図 21Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。 FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
[図 21B]図 21Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。  FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
[図 22]図 22は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である 発明を実施するための最良の形態  FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] (感光性組成物) [Photosensitive composition]
本発明の感光性組成物は、バインダー、重合性化合物、光重合開始剤、及びアル カリ不溶性の熱架橋剤を含み、必要に応じて、その他の成分を含んでなる。  The photosensitive composition of the present invention contains a binder, a polymerizable compound, a photopolymerization initiator, and an alkali-insoluble thermal crosslinking agent, and if necessary, other components.
[0027] 〔バインダー〕 [0027] [Binder]
前記バインダーとしては、側鎖に、ヘテロ環を含んでもよい芳香族基及び側鎖にェ チレン性不飽和結合を有する高分子化合物を含み、前記高分子化合物は、側鎖に カルボキシル基を有することが好まし 、。  The binder includes an aromatic group that may contain a heterocycle in the side chain and a polymer compound having an ethylenically unsaturated bond in the side chain, and the polymer compound has a carboxyl group in the side chain. Is preferred.
前記バインダーは、水に不溶で、かつ、アルカリ性水溶液により膨潤乃至は溶解す る化合物が好ましい。  The binder is preferably a compound that is insoluble in water and swells or dissolves in an alkaline aqueous solution.
[0028] 一へテロ環を含んでもよい芳香族基 [0028] An aromatic group which may contain a single hetero ring
前記へテロ環を含んでもょ ヽ芳香族基 (以下、単に「芳香族基」と称することもある。 )としては、例えば、ベンゼン環、 2個から 3個のベンゼン環が縮合環を形成したもの、 ベンゼン環と 5員不飽和環が縮合環を形成したものなどが挙げられる。  Examples of the aromatic group including the heterocycle (hereinafter, sometimes simply referred to as “aromatic group”) include a benzene ring and two to three benzene rings formed a condensed ring. And those in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
前記芳香族基の具体例としては、フエ-ル基、ナフチル基、アントリル基、フエナント リル基、インデュル基、ァセナフテュル基、フルォレ -ル基、ベンゾピロール環基、ベ ンゾフラン環基、ベンゾチォフェン環基、ピラゾール環基、イソキサゾール環基、イソ チアゾール環基、インダゾール環基、ベンゾイソキサゾール環基、ベンゾイソチアゾー ル環基、イミダゾール環基、ォキサゾール環基、チアゾール環基、ベンズイミダゾー ル環基、ベンズォキサゾール環基、ベンゾチアゾール環基、ピリジン環基、キノリン環 基、イソキノリン環基、ピリダジン環基、ピリミジン環基、ピラジン環基、フタラジン環基 、キナゾリン環基、キノキサリン環基、ァシリジン環基、フエナントリジン環基、カルバゾ ール環基、プリン環基、ピラン環基、ピぺリジン環基、ピぺラジン環基、インドール環 基、インドリジン環基、クロメン環基、シンノリン環基、アタリジン環基、フエノチアジン 環基、テトラゾール環基、トリアジン環基などが挙げられる。これらの中では、炭化水 素芳香族基が好ましぐフエニル基、ナフチル基がより好ましい。 Specific examples of the aromatic group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indur group, a acenaphthyl group, a fluorine group, a benzopyrrole ring group, Nzofuran ring group, benzothiophene ring group, pyrazole ring group, isoxazole ring group, isothiazole ring group, indazole ring group, benzoisoxazole ring group, benzoisothiazole ring group, imidazole ring group, oxazole ring group, thiazole ring Group, benzimidazole ring group, benzoxazole ring group, benzothiazole ring group, pyridine ring group, quinoline ring group, isoquinoline ring group, pyridazine ring group, pyrimidine ring group, pyrazine ring group, phthalazine ring group, quinazoline ring group Quinoxaline ring group, assiridine ring group, phenanthridine ring group, carbazole ring group, purine ring group, pyran ring group, piperidine ring group, piperazine ring group, indole ring group, indolizine ring group, Chromene ring group, cinnoline ring group, atalidine ring group, phenothiazine ring group, tetrazole ring group, Such as azine ring group. Of these, a phenyl group and a naphthyl group, which are preferably hydrocarbon aromatic groups, are more preferred.
[0029] 前記芳香族基は、置換基を有していてもよぐ前記置換基としては、例えば、ハロゲ ン原子、置換基を有してもよいアミノ基、アルコキシカルボ-ル基、水酸基、エーテル 基、チオール基、チォエーテル基、シリル基、ニトロ基、シァノ基、それぞれ置換基を 有してもよい、アルキル基、ァルケ-ル基、アルキ-ル基、ァリール基、ヘテロ環基、 などが挙げられる。  [0029] The aromatic group may have a substituent. Examples of the substituent include a halogen atom, an amino group which may have a substituent, an alkoxy carbo group, a hydroxyl group, An ether group, a thiol group, a thioether group, a silyl group, a nitro group, a cyano group, each of which may have a substituent, an alkyl group, an alkyl group, an alkyl group, an aryl group, a heterocyclic group, etc. Can be mentioned.
[0030] 前記アルキル基としては、例えば、炭素原子数が 1から 20までの直鎖状のアルキル 基、分岐状のアルキル基、環状のアルキル基などが挙げられる。  [0030] Examples of the alkyl group include linear alkyl groups having 1 to 20 carbon atoms, branched alkyl groups, and cyclic alkyl groups.
前記アルキル基の具体例としては、メチル基、ェチル基、プロピル基、ブチル基、 ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデシ ル基、ドデシル基、トリデシル基、へキサデシル基、ォクタデシル基、エイコシル基、ィ ソプロピル基、イソブチル基、 s ブチル基、 t ブチル基、イソペンチル基、ネオペン チル基、 1 メチルブチル基、イソへキシル基、 2—ェチルへキシル基、 2—メチルへ キシル基、シクロへキシル基、シクロペンチル基、 2—ノルボル-ル基などが挙げられ る。これらの中では、炭素原子数 1から 12までの直鎖状のアルキル基、炭素原子数 3 力 12までの分岐状のアルキル基、炭素原子数 5から 10までの環状のアルキル基が 好ましい。  Specific examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, Hexadecyl group, Octadecyl group, Eicosyl group, Isopropyl group, Isobutyl group, sbutyl group, tbutyl group, isopentyl group, neopentyl group, 1 methylbutyl group, isohexyl group, 2-ethylhexyl group, 2- Examples include a methylhexyl group, a cyclohexyl group, a cyclopentyl group, and a 2-norbornyl group. Among these, a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, and a cyclic alkyl group having 5 to 10 carbon atoms are preferable.
[0031] 前記アルキル基が有してもよい置換基としては、例えば、水素原子を除く一価の非 金属原子団からなる基が挙げられる。このような置換基としては、例えば、ハロゲン原 子(一 F、 一 Br、 一 Cl、 一1)、ヒドロキシル基、アルコキシ基、ァリーロキシ基、メルカプ ト基、アルキルチオ基、ァリールチオ基、アルキルジチォ基、ァリールジチォ基、アミ ノ基、 N アルキルアミノ基、 N, N ジアルキルアミノ基、 N ァリールアミノ基、 N, N ジァリールアミノ基、 N—アルキル—N ァリールアミノ基、ァシルォキシ基、カル バモイルォキシ基、 N アルキル力ルバモイルォキシ基、 N ァリール力ルバモイル ォキシ基、 N, N ジアルキル力ルバモイルォキシ基、 N, N ジァリール力ルバモイ ルォキシ基、 N—アルキル—N ァリール力ルバモイルォキシ基、アルキルスルホキ シ基、ァリールスルホキシ基、ァシルチオ基、ァシルァミノ基、 N—アルキルァシルァ ミノ基、 N ァリールァシルァミノ基、ウレイド基、 N' アルキルウレイド基、 N,, N,一 ジアルキルウレイド基、 N,ーァリールウレイド基、 N,, N,ージァリールウレイド基、 N, アルキル N,ーァリールウレイド基、 N アルキルウレイド基、 N ァリールゥレイ ド基、 N' アルキル N アルキルウレイド基、 N' アルキル N ァリールゥレイ ド基、 N,, N,—ジアルキル— N アルキルウレイド基、 N,, N,—ジアルキル— N— ァリールウレイド基、 N,ーァリール—N—アルキルウレイド基、 N,ーァリール N— ァリールウレイド基、 N,, N,—ジァリール— N アルキルウレイド基、 N,, N,—ジァ リール—N ァリールウレイド基、 N,一アルキル N,ーァリール—N—アルキルウレ イド基、 N' アルキル—N'—ァリール—N ァリールウレイド基、アルコキシカルボ ニルァミノ基、ァリーロキシカルボ-ルァミノ基、 N—アルキル—N—アルコキシカル ボ-ルァミノ基、 N—アルキル—N ァリーロキシカルボ-ルァミノ基、 N ァリール N アルコキシカルボ-ルァミノ基、 N ァリール N ァリーロキシカルボ-ルァ ミノ基、ホルミル基、ァシル基、カルボキシル基、アルコキシカルボ-ル基、ァリーロキ シカルボ-ル基、力ルバモイル基、 N—アルキル力ルバモイル基、 N, N ジアルキ ルカルバモイル基、 N ァリール力ルバモイル基、 N, N ジァリール力ルバモイル基 、 N—アルキル—N ァリール力ルバモイル基、アルキルスルフィエル基、ァリールス ルフィ-ル基、アルキルスルホ-ル基、ァリールスルホ-ル基、スルホ基(一 SO H) [0031] Examples of the substituent that the alkyl group may have include a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom. Such substituents include, for example, halogen atoms. (1 F, 1 Br, 1 Cl, 1), hydroxyl group, alkoxy group, aryloxy group, mercapto group, alkylthio group, arylothio group, alkyldithio group, arylidothio group, amino group, N alkylamino group, N , N dialkylamino group, N allylamino group, N, N dialylamino group, N-alkyl-N allylamino group, acyloxy group, carbamoyloxy group, N alkyl force ruberamoyloxy group, N allyl force ruberamoyloxy group, N, N dialkyl force ruvamoyloxy Group, N, N dialyl force rubermoyloxy group, N-alkyl-N allyl force rubermoyloxy group, alkylsulfoxy group, allylsulfoxy group, acylylthio group, acylamino group, N-alkyl acylamino group, N allylicyl group Amino group, ureido group, N 'alkylurei N, N, monodialkylureido group, N, aryl ureido group, N, N, diarylureido group, N, alkyl N, aryl ureido group, N alkylureido group, N Arylureido group, N 'alkyl N alkylureido group, N' alkyl N arylureido group, N ,, N, -dialkyl-N alkylureido group, N ,, N, -dialkyl-N- arylureido group, N, N-aryl-N-alkylureido group, N, aryl-N, N-aryl-ureido group, N, N, N-aryl-N alkylureido group, N, N, N-aryl Alkyl N, aryl-N-alkylureido group, N 'alkyl-N'-aryl-N aryl-ureido group, alkoxycarbonylamino group, aryloxycarbolamino group, N- Alkyl-N-alkoxycarboamino groups, N-alkyl-N aryloxycarboamino groups, N aryl N alkoxycarboamino groups, N aryl N aryloxycarboamino groups, formyl groups, acyl groups , Carboxyl group, alkoxycarbol group, aryloxycarbonyl group, force rubamoyl group, N-alkyl force rubamoyl group, N, N dialkyl carbamoyl group, N allyl force rubermoyl group, N, N diaryl force rubamoyl group, N— Alkyl-N aryl group rubermoyl group, alkylsulfier group, arylsulfur group, alkylsulfol group, arylsulfol group, sulfo group (one SO H)
3 及びその共役塩基基 (スルホナト基と称す)、アルコキシスルホ -ル基、ァリーロキシ スルホ-ル基、スルフイナモイル基、 N—アルキルスルフイナモイル基、 N, N ジァ ルキルスルフィイナモイル基、 N ァリールスルフイナモイル基、 N, N ジァリールス ルフイナモイル基、 N—アルキル—N ァリールスルフイナモイル基、スルファモイル 基、 N—アルキルスルファモイル基、 N, N ジアルキルスルファモイル基、 N ァリ 一ルスルファモイル基、 N, N ジァリールスルファモイル基、 N アルキル— N ァ リールスルファモイル基、ホスホノ基(一 PO H )及びその共役塩基基 (ホスホナト基と 3 and its conjugated base group (referred to as sulfonate group), alkoxysulfol group, aryloxysulfol group, sulfinamoyl group, N-alkylsulfinamoyl group, N, N dialkylsulfinaimoyl group, N Lillesulfinamoyl group, N, N dialels Rufinamoyl group, N-alkyl-N arylsulfinamoyl group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group, N arylsulfamoyl group, N, N dialylsulfamoyl group Group, N alkyl—N arylsulfamoyl group, phosphono group (one PO H) and its conjugate base group (phosphonate group and
3 2  3 2
称す)、ジアルキルホスホノ基(一 PO (alkyl) ) (以下、「alkyl」はアルキル基を意味  Dialkylphosphono group (one PO (alkyl)) (hereinafter “alkyl” means an alkyl group)
3 2  3 2
する。)、ジァリールホスホノ基(一 PO (aryl) ) (以下、「aryl」はァリール基を意味す  To do. ), A diarylphosphono group (one PO (aryl)) (hereinafter “aryl” means an aryl group)
3 2  3 2
る。)、アルキルァリールホスホノ基( PO (alkyl) (aryl) )、モノアルキルホスホノ基(  The ), Alkylaryl phosphono group (PO (alkyl) (aryl)), monoalkyl phosphono group (
3  Three
-PO (alkyl) )及びその共役塩基基 (アルキルホスホナト基と称す)、モノアリールホ -PO (alkyl)) and its conjugate base group (referred to as alkylphosphonate group), monoarylphospho
3 Three
スホノ基( PO H (aryl) )及びその共役塩基基 (ァリールホスホナト基と称す)、ホス  Suphono group (PO H (aryl)) and its conjugated base group (referred to as arylphosphonate group), phosphine group
3  Three
ホノォキシ基(一 OPO H )及びその共役塩基基 (ホスホナトォキシ基と称す)、ジァ  Phonoxy group (one OPO H) and its conjugate base group (referred to as phosphonatoxy group), dia
3 2  3 2
ルキルホスホノォキシ基(一OPO H (alkyl) )、ジァリールホスホノォキシ基(一OPO  Ruylphosphonoxy group (one OPO H (alkyl)), diarylphosphonoxy group (one OPO
3 2  3 2
(arvl) )、アルキルァリールホスホノォキシ基(一 OPO (alkyl) (aryl) )、モノアルキ (arvl)), alkylaryl phosphonoxy group (one OPO (alkyl) (aryl)), monoalkyl
3 2 3 3 2 3
ルホスホノォキシ基 ( OPO H (alkyl) )及びその共役塩基基(アルキルホスホナト  Ruphosphonooxy group (OPO H (alkyl)) and its conjugate base group (alkylphosphonate
3  Three
ォキシ基と称す)、モノアリールホスホノォキシ基(一 OPO H (aryl) )及びその共役塩  ), Monoarylphosphonooxy group (one OPO H (aryl)), and conjugated salts thereof
3  Three
基 (ァリールホスホナトォキシ基と称す)、シァノ基、ニトロ基、ァリール基、アルケニル 基、アルキニル基、ヘテロ環基、シリル基などが挙げられる。  And a group (referred to as an aryl phosphonatoxy group), a cyan group, a nitro group, an aryl group, an alkenyl group, an alkynyl group, a heterocyclic group, a silyl group, and the like.
[0032] これら置換基におけるアルキル基の具体例としては、前述のアルキル基が挙げられ る。 [0032] Specific examples of the alkyl group in these substituents include the aforementioned alkyl groups.
前記置換基におけるァリール基の具体例としては、フエ-ル基、ビフエニル基、ナフ チル基、トリル基、キシリル基、メシチル基、タメ-ル基、クロロフヱ-ル基、ブロモフエ -ル基、クロロメチルフエ-ル基、ヒドロキシフエ-ル基、メトキシフエ-ル基、エトキシ フエ-ル基、フエノキシフエ-ル基、ァセトキシフエ-ル基、ベンゾイロキシフエ-ル基 、メチルチオフエ-ル基、フエ-ルチオフエ-ル基、メチルァミノフエ-ル基、ジメチル ァミノフエ-ル基、ァセチルァミノフエ-ル基、カルボキシフエ-ル基、メトキシカルボ -ルフエ-ル基、エトキシフエ-ルカルポ-ル基、フエノキシカルボ-ルフエ-ル基、 N フエ-ルカルバモイルフヱ-ル基、シァノフエ-ル基、スルホフヱ-ル基、スルホ ナトフエ-ル基、ホスホノフエ-ル基、ホスホナトフエ-ル基などが挙げられる。  Specific examples of the aryl group in the above substituent include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, a xylyl group, a mesityl group, a phthalyl group, a chlorophenol group, a bromophenyl group, a chloromethyl group. Phenyl group, hydroxyphenyl group, methoxyphenyl group, ethoxyphenyl group, phenoxyphenyl group, acetoxylphenol group, benzoylphenol group, methylthiophenyl group, phenolthiol group Group, methylaminophenol group, dimethylaminophenol group, acetylaminophenol group, carboxyphenol group, methoxycarbonyl group, ethoxyphenol group, phenoxycarbon group , N-phenylcarbamoyl file group, cyanophyl group, sulfophenyl group, sulfonaphthoyl group, phosphonophenol group, phosphonatophenol group, etc. That.
[0033] 前記置換基におけるァルケ-ル基の具体例としては、ビュル基、 1 プロべ-ル基 、 1—ブテュル基、シンナミル基、 2—クロ口— 1—ェテュル基などが挙げられる。 前記置換基におけるアルキ-ル基の具体例としては、ェチュル基、 1 プロピニル 基、 1ーブチュル基、トリメチルシリルェチニル基などが挙げられる。 [0033] Specific examples of the alkenyl group in the substituent include a bur group and a 1 probe group. 1-Butul group, Cinnamyl group, 2-Chrome opening 1-Ethul group and the like. Specific examples of the alkyl group in the substituent include an ethur group, a 1-propynyl group, a 1-buturyl group, and a trimethylsilylethynyl group.
前記置換基におけるァシル基 (R^CO )の 1としては、水素原子、前述のアルキ ル基、ァリール基などが挙げられる。 Examples of 1 of the acyl group (R ^ CO 2) in the substituent include a hydrogen atom, the aforementioned alkyl group, and aryl group.
これらの置換基の中でも、ハロゲン原子(一 F、 一Br、 一Cl、 一1)、アルコキシ基、ァ リーロキシ基、アルキルチオ基、ァリールチオ基、 N アルキルアミノ基、 N, N—ジァ ルキルアミノ基、ァシルォキシ基、 N—アルキル力ルバモイルォキシ基、 N—ァリール 力ルバモイルォキシ基、ァシルァミノ基、ホルミル基、ァシル基、カルボキシル基、ァ ルコキシカルボ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N アルキル力 ルバモイル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基、 N アルキル N ァリール力ルバモイル基、スルホ基、スルホナト基、スルファモイル 基、 N—アルキルスルファモイル基、 N, N ジアルキルスルファモイル基、 N ァリ 一ルスルファモイル基、 N—アルキル—N ァリールスルファモイル基、ホスホノ基、 ホスホナト基、ジアルキルホスホノ基、ジァリールホスホノ基、モノアルキルホスホノ基 、アルキルホスホナト基、モノアリールホスホノ基、ァリールホスホナト基、ホスホノォキ シ基、ホスホナトォキシ基、ァリール基、アルケニル基などが好ましい。  Among these substituents, halogen atoms (1 F, 1 Br, 1 Cl, 1 1), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N alkylamino groups, N, N-dialkylamino groups, Acyloxy group, N-alkyl force ruberamoyloxy group, N-allyl force ruberamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbol group, force rubermoyl group, N alkyl force Rubamoyl group, N, N dialkyl-force rubamoyl group, N-aryl force-rubamoyl group, N-alkyl N-aryl force-rubamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N dialkylsulfamoyl group N-arylsulfamoyl group, N-alkyl-N arylsulfamoyl group, Phono group, Phosphonato group, Dialkylphosphono group, Diarylphosphono group, Monoalkylphosphono group, Alkylphosphonate group, Monoarylphosphono group, Arylphosphonate group, Phosphonoxy group, Phosphonoxy group, Aryl group And an alkenyl group are preferred.
また、前記置換基におけるヘテロ環基としては、例えば、ピリジル基、ピベリジ-ル 基などが挙げられ、前記置換基におけるシリル基としてはトリメチルシリル基などが挙 げられる。  In addition, examples of the heterocyclic group in the substituent include a pyridyl group and a piperidyl group, and examples of the silyl group in the substituent include a trimethylsilyl group.
一方、前記アルキル基における、アルキレン基としては、例えば、前述の炭素数 1か ら 20までのアルキル基上の水素原子の ヽずれか 1つを除し、 2価の有機残基としたも のが挙げられ、例えば、炭素原子数 1から 12までの直鎖状のアルキレン基、炭素原 子数 3から 12までの分岐状のアルキレン基、炭素原子数 5から 10までの環状のアル キレン基などが好ましい。  On the other hand, the alkylene group in the alkyl group is, for example, a divalent organic residue obtained by removing one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. For example, a linear alkylene group having 1 to 12 carbon atoms, a branched alkylene group having 3 to 12 carbon atoms, a cyclic alkylene group having 5 to 10 carbon atoms, etc. Is preferred.
このような置換基とアルキレン基を組み合わせることで得られる置換アルキル基の、 好ましい具体例としては、クロロメチル基、ブロモメチル基、 2—クロ口ェチル基、トリフ ルォロメチル基、メトキシメチル基、イソプロポキシメチル基、ブトキシメチル基、 s ブ トキシブチル基、メトキシェトキシェチル基、ァリルォキシメチル基、フエノキシメチル 基、メチルチオメチル基、トリルチオメチル基、ピリジルメチル基、テトラメチルピベリジ -ルメチル基、 N ァセチルテトラメチルピベリジ-ルメチル基、トリメチルシリルメチ ル基、メトキシェチル基、ェチルアミノエチル基、ジェチルァミノプロピル基、モルホリ ノプロピル基、ァセチルォキシメチル基、ベンゾィルォキシメチル基、 N シクロへキ シルカルバモイルォキシェチル基、 N フエ-ルカルバモイルォキシェチル基、ァセ チルアミノエチル基、 N メチルベンゾィルァミノプロピル基、 2—ォキソェチル基、 2 ォキソプロピル基、カルボキシプロピル基、メトキシカルボ-ルェチル基、ァリルォ キシカルボ-ルブチル基、クロ口フエノキシカルボ-ルメチル基、力ルバモイルメチル 基、 N—メチルカルバモイルェチル基、 N, N ジプロピル力ルバモイルメチル基、 N (メトキシフヱ-ル)力ルバモイルェチル基、 N—メチルー N— (スルホフヱ-ル)力 ルバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基 、 N ェチルスルファモイルメチル基、 N, N ジプロピルスルファモイルプロピル基、 N トリルスルファモイルプロピル基、 N—メチルー N (ホスホノフエ-ル)スルファモ ィルォクチル基、ホスホノブチル基、ホスホナトへキシル基、ジェチルホスホノブチル 基、ジフエ-ルホスホノプロピル基、メチルホスホノブチル基、メチルホスホナトブチル 基、トリルホスホノへキシル基、トリルホスホナトへキシル基、ホスホノォキシプロピル基 、ホスホナトォキシブチル基、ベンジル基、フエネチル基、 a メチルベンジル基、 1 ーメチルー 1 フエ-ルェチル基、 p—メチルベンジル基、シンナミル基、ァリル基、 1 プロべ-ルメチル基、 2—ブテュル基、 2—メチルァリル基、 2—メチルプロべ-ルメ チル基、 2 プロピニル基、 2 プチ二ル基、 3 ブチュル基などが挙げられる。 前記ァリール基としては、例えば、ベンゼン環、 2個から 3個のベンゼン環が縮合環 を形成したもの、ベンゼン環と 5員不飽和環が縮合環を形成したものなどが挙げられ る。 Preferable specific examples of the substituted alkyl group obtained by combining such a substituent with an alkylene group include chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, methoxymethyl group, isopropoxymethyl. Group, butoxymethyl group, s Toxibutyl group, methoxyethoxychetyl group, aryloxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, pyridylmethyl group, tetramethylpiberidyl-methyl group, N-acetylmethylmethyl group Methyl group, trimethylsilylmethyl group, methoxyethyl group, ethylaminoethyl group, jetylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N cyclohexylcarbamoyloxy Shetyl group, N-phenylcarbamoyloxychetyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxoethyl group, 2-oxopropyl group, carboxypropyl group, methoxycarboxyl group, aralkyl Xycarbobutyl butyl, phenoxy N-methylcarbamoylmethyl group, N-methylcarbamoylethyl group, N, N dipropyl-powered rubermoylmethyl group, N (methoxyphenyl) -powered rubermoylethyl group, N-methyl-N- (sulfo-phenyl) force ruberamoylmethyl group, sulfobutyl group , Sulfonatobutyl group, Sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N Dipropylsulfamoylpropyl group, N-Tolylsulfamoylpropyl group, N-methyl-N (phosphonophenyl) sulfamoyloctyl group, Phosphonobutyl Group, phosphonatohexyl group, jetylphosphonobutyl group, diphenylphosphonopropyl group, methylphosphonobutyl group, methylphosphonatobutyl group, tolylphosphonohexyl group, tolylphosphonatohexyl group, phosphonooxypropyl group, Phosphonatoki Butyl group, benzyl group, phenethyl radical, a methylbenzyl group, 1-methyl-1 Hue - Ruechiru group, p- methylbenzyl group, a cinnamyl group, Ariru group, 1 Purobe - Rumechiru group, 2-Buteyuru group, 2- Mechiruariru group , 2-methylpropylmethyl group, 2 propynyl group, 2 butyl group, 3 butyr group and the like. Examples of the aryl group include a benzene ring, a group in which 2 to 3 benzene rings form a condensed ring, and a group in which a benzene ring and a 5-membered unsaturated ring form a condensed ring.
前記ァリール基の具体例としては、例えば、フエ-ル基、ナフチル基、アントリル基、 フエナントリル基、インデニル基、ァセナフテニル基、フルォレニル基などが挙げられ る。これらの中では、フエ-ル基、ナフチル基が好ましい。  Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, a acenaphthenyl group, and a fluorenyl group. Of these, a phenol group and a naphthyl group are preferable.
前記アルキル基は置換基を有してもよぐこのような置換基を有するァリール基 (以 下、「置換ァリール基」と称することもある。)としては、例えば、前述のァリール基の環 形成炭素原子上に置換基として、水素原子以外の一価の非金属原子団からなる基 を有するものが挙げられる。 The alkyl group may have a substituent. Hereinafter, it may be referred to as a “substituted aryl group”. For example, those having a group composed of a monovalent nonmetallic atomic group other than a hydrogen atom as a substituent on the ring-forming carbon atom of the above-mentioned aryl group can be mentioned.
前記ァリール基が有してもよい置換基としては、例えば、前述のアルキル基、置換 アルキル基、前記アルキル基が有してもょ 、置換基として示したものが好まし 、。  As the substituent that the aryl group may have, for example, the alkyl group, the substituted alkyl group, or the alkyl group that is described above as the substituent may be preferable.
[0036] 前記置換ァリール基の好ましい具体例としては、ビフヱニル基、トリル基、キシリル基 、メシチル基、タメ-ル基、クロ口フエ-ル基、ブロモフエ-ル基、フルオロフェ-ル基 、クロロメチルフエ-ル基、トリフルォロメチルフエ-ル基、ヒドロキシフエ-ル基、メトキ シフエ-ル基、メトキシェトキシフエ-ル基、ァリルォキシフエ-ル基、フエノキシフエ- ル基、メチルチオフエ-ル基、トリルチオフエ-ル基、ェチルアミノフヱ-ル基、ジェチ ルァミノフエ-ル基、モルホリノフエ-ル基、ァセチルォキシフエ-ル基、ベンゾィルォ キシフエ-ル基、 N シクロへキシルカルバモイルォキシフエ-ル基、 N フエ-ルカ ルバモイルォキシフエ-ル基、ァセチルァミノフエ-ル基、 N メチルベンゾィルァミノ フエ-ル基、カルボキシフヱ-ル基、メトキシカルボ-ルフヱ-ル基、ァリルォキシカル ボ -ルフヱ-ル基、クロロフヱノキシカルボ-ルフヱ-ル基、力ルバモイルフヱ-ル基 、 N—メチルカルバモイルフエ-ル基、 N, N ジプロピル力ルバモイルフエ-ル基、 N— (メトキシフヱ-ル)力ルバモイルフヱ-ル基、 N—メチルー N— (スルホフヱ-ル) 力ルバモイルフヱ-ル基、スルホフヱ-ル基、スルホナトフヱ-ル基、スルファモイル フエ-ル基、 N ェチルスルファモイルフエ-ル基、 N, N ジプロピルスルファモイ ルフエ-ル基、 N トリルスルファモイルフエ-ル基、 N—メチル N— (ホスホノフエ -ル)スルファモイルフヱ-ル基、ホスホノフヱ-ル基、ホスホナトフヱ-ル基、ジェチ ルホスホノフヱ-ル基、ジフヱ-ルホスホノフヱ-ル基、メチルホスホノフヱ-ル基、メ チルホスホナトフヱ-ル基、トリルホスホノフエ-ル基、トリルホスホナトフヱ-ル基、ァ リルフエ-ル基、 1 プロぺ-ルメチルフエ-ル基、 2—ブテユルフェ-ル基、 2—メチ ルァリルフエ-ル基、 2—メチルプロべ-ルフヱ-ル基、 2—プロピ-ルフヱ-ル基、 2 ブチュルフエ-ル基、 3—ブチュルフエ-ル基などが挙げられる。  [0036] Preferable specific examples of the substituted aryl group include a biphenyl group, a tolyl group, a xylyl group, a mesityl group, a tamale group, a chlorophenol group, a bromophenol group, a fluorophenol group, a chloromethyl group. Phenyl group, trifluoromethylphenol group, hydroxyphenyl group, methoxyphenyl group, methoxymethoxyphenyl group, aryloxyphenyl group, phenoxyphenyl group, methylthiophenyl group, Tolylthiophenyl group, ethylaminophenyl group, germanaminophenyl group, morpholinophenol group, acetyloxyphenyl group, benzoylphenyl group, N cyclohexylcarbamoylphenyl group, N Phenylcarbamoyl phenyl group, Acetylaminophenol group, N-Methylbenzoylaminophenol group, Carboxyphenol group, Methoxycarbol Benzyl group, aryloxy-hydroxyl-phenyl group, chlorophenol-oxyl-hydroxyl-phenyl group, strong rubamoyl-phenol group, N-methylcarbamoyl-phenol group, N, N dipropyl-strong rubamoyl-phenol group, N — (Methoxy file) Forced rubermoyl file group, N-Methyl-N— (Sulfophenyl) Forced rubamoyl filed group, Sulfofol group, Sulfontofyl group, Sulfamoyl filed group, N Ethylsulfamoylphenol N-, N, N Dipropylsulfamoylphenol, N-Tolylsulfamoylphenol, N-Methyl N- (Phosphophenol) sulfamoylphenol, Phosphophenol, Phosphonatophenol -Group, methylphosphonol group, diphenylphosphonol group, methylphosphonol group, methylphosphonatophenyl group, tolylphosphonophenol group, tolyl Phosphonatophenyl group, arylphenyl group, 1-propylmethylphenol group, 2-butefelphenol group, 2-methylarylphenyl group, 2-methylpropylphenol group, 2-propylphenyl group -Butyl group, 2-Buthurfel group, 3-Buthurfel group and the like.
[0037] 前記ァルケ-ル基( C (R02) = C (R03) (R04) )及びアルキ-ル基( C≡ C (R°5) ) としては、例えば、 R°2、 R°3、 R°4、及び R°5がー価の非金属原子団からなる基のもの が挙げられる。 [0037] The Aruke - Le group (C (R 02) = C (R 03) (R 04)) and alkyl - as Le group (C≡ C (R ° 5) ), for example, R ° 2, R ° 3 , R ° 4 , and R ° 5 are groups consisting of non-valent nonmetallic atomic groups Is mentioned.
前記 2、 R°3、 R°4、 R°5としては、例えば、水素原子、ハロゲン原子、アルキル基、 置換アルキル基、ァリール基、置換ァリール基などが挙げられる。これらの具体例とし ては、前述の例として示したものを挙げることができる。これらの中でも、水素原子、ハ ロゲン原子、炭素原子数 1から 10までの直鎖状のアルキル基、分岐状のアルキル基 、環状のアルキル基が好ましい。 Examples of 2 , R ° 3 , R ° 4 , and R ° 5 include a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group. Specific examples thereof include those shown as the above-mentioned examples. Among these, a hydrogen atom, a halogen atom, a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group, and a cyclic alkyl group are preferable.
[0038] 前記ァルケ-ル基及びアルキ-ル基の好まし!/、具体例としては、ビニル基、 1ープ 口ぺ-ル基、 1ーブテュル基、 1 ペンテ-ル基、 1一へキセ -ル基、 1—オタテュル 基、 1ーメチルー 1 プロぺ-ル基、 2—メチルー 1 プロぺ-ル基、 2—メチルー 1 ブテュル基、 2—フエ-ルー 1—エテュル基、 2—クロ口— 1—エテュル基、ェチュル 基、 1 プロピ-ル基、 1ーブチュル基、フエ-ルェチュル基などが挙げられる。 前記へテロ環基としては、例えば、置換アルキル基の置換基として例示したピリジ ル基などが挙げられる。  [0038] Preference is given to the above-mentioned alkenyl group and alkyl group! / Specific examples include vinyl group, 1-port perl group, 1-butul group, 1 pentale group, 1 hex. -Luyl group, 1-Otatur group, 1-Methyl-1 Propyl group, 2-Methyl-1 Propyl group, 2-Methyl-1-Butur group, 2-Fuelulu 1-Ethul group, 2-Chrome- 1-Ethul group, Etul group, 1-Propyl group, 1-Butul group, and Feule group. Examples of the heterocyclic group include a pyridyl group exemplified as a substituent for a substituted alkyl group.
[0039] 前記ォキシ基 (R 60 )としては、 6が水素原子を除く一価の非金属原子団から なる基であるちのが挙げられる。 Examples of the oxy group (R 60 ) include those in which 6 is a group composed of a monovalent nonmetallic atomic group excluding a hydrogen atom.
このようなォキシ基としては、例えば、アルコキシ基、ァリーロキシ基、ァシルォキシ 基、力ルバモイルォキシ基、 N アルキル力ルバモイルォキシ基、 N ァリールカル バモイルォキシ基、 N, N ジアルキル力ルバモイルォキシ基、 N, N ジァリール力 ルバモイルォキシ基、 N アルキル N ァリール力ルバモイルォキシ基、アルキル スノレホキシ基、ァリーノレスノレホキシ基、ホスホノ才キシ基、ホスホナト才キシ基などが 好ましい。  Examples of such oxy groups include, for example, alkoxy groups, aryloxy groups, acyloxy groups, rubamoyloxy groups, N-alkyl rubamoyloxy groups, N-aryl carbamoyloxy groups, N, N-dialkyl rubamoyloxy groups, N, N dialyl rubamoyloxy groups, N alkyl N aryl group ruberamoyloxy group, alkyl sulreoxy group, arenores noreoxy group, phosphono oxy group, phosphonato xy group and the like are preferable.
これらにおけるアルキル基及びァリール基としては、前述のアルキル基、置換アル キル基、ァリール基、及び置換ァリール基として示したものを挙げることができる。また 、ァシルォキシ基におけるァシル基 (RQ7CO )としては、 RQ7が、先の例として挙げた アルキル基、置換アルキル基、ァリール基ならびに置換ァリール基のものを挙げるこ とができる。これらの置換基の中では、アルコキシ基、ァリーロキシ基、ァシルォキシ 基、ァリールスルホキシ基がより好ましい。 Examples of the alkyl group and aryl group in these include the alkyl groups, substituted alkyl groups, aryl groups, and substituted aryl groups described above. Further, examples of the acyl group (R Q7 CO 2) in the acyloxy group include those in which R Q7 is an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group exemplified in the above examples. Of these substituents, an alkoxy group, an aryloxy group, an acyloxy group, and an arylsulfoxy group are more preferable.
好ましいォキシ基の具体例としては、メトキシ基、エトキシ基、プロピルォキシ基、ィ ソプロピルォキシ基、ブチルォキシ基、ペンチルォキシ基、へキシルォキシ基、ドデシ ルォキシ基、ベンジルォキシ基、ァリルォキシ基、フエネチルォキシ基、カルボキシェ チルォキシ基、メトキシカルボ-ルェチルォキシ基、エトキシカルボ-ルェチルォキシ 基、メトキシェトキシ基、フエノキシエトキシ基、メトキシェトキシェトキシ基、エトキシェ トキシェトキシ基、モルホリノエトキシ基、モルホリノプロピルォキシ基、ァリロキシエト キシエトキシ基、フエノキシ基、トリルォキシ基、キシリルォキシ基、メシチルォキシ基、 メシチルォキシ基、タメ-ルォキシ基、メトキシフエ-ルォキシ基、エトキシフエ-ルォ キシ基、クロ口フエ-ルォキシ基、ブロモフエ-ルォキシ基、ァセチルォキシ基、ベン ゾィルォキシ基、ナフチルォキシ基、フエ-ルスルホ-ルォキシ基、ホスホノォキシ基 、ホスホナトォキシ基などが挙げられる。 Specific examples of preferred oxy groups include methoxy, ethoxy, propyloxy, Sopropyloxy, butyloxy, pentyloxy, hexyloxy, dodecyloxy, benzyloxy, allyloxy, phenethyloxy, carboxyethyloxy, methoxycarboxyloxyloxy, ethoxycarboxyloxyloxy, methoxyethyloxy, phenoxy Ethoxy group, methoxyethoxy group, ethoxyethoxy group, morpholinoethoxy group, morpholinopropyloxy group, aralkyloxyethoxy group, phenoxy group, triloxy group, xylyloxy group, mesityloxy group, mesityloxy group, tamoxy group, methoxyphenyl group Group, ethoxyphenyl group, chlorophenol group, bromophenyl group, acetyloxy group, benzoyloxy group, naphthyloxy group Hue - Rusuruho - Ruokishi group, Hosuhonookishi group, etc. Hosuhonatokishi group.
アミド基を含んでもよ!、ァミノ基 (R°8NH―、 (R09) (R01°) N-)としては、例えば、 R° 8、 R 9、及び RG1が水素原子を除く一価の非金属原子団カもなる基のものが挙げら れる。なお、 R°9と とは結合して環を形成してもよい。 An amido group may also be included! An amino group (R ° 8 NH—, (R 09 ) (R 01 °) N-) includes, for example, R ° 8 , R 9 , and R G1 , except for a hydrogen atom. Examples of the group that can also be a non-metallic atomic group. In addition, R 9 may be bonded to form a ring.
前記アミノ基としては、例えば、 N—アルキルアミノ基、 N, N ジアルキルアミノ基、 N ァリールアミノ基、 N, N ジァリールアミノ基、 N—アルキル— N ァリールァミノ 基、ァシルァミノ基、 N—アルキルァシルァミノ基、 N ァリールァシルァミノ基、ゥレイ ド基、 N' アルキルウレイド基、 Ν,, N,ージアルキルウレイド基、 N'—ァリールウレ イド基、 Ν,, N,ージァリールウレイド基、 N' アルキル—N'—ァリールウレイド基、 N アルキルウレイド基、 N ァリールウレイド基、 N,一アルキル N アルキルウレ イド基、 N'—アルキル— N ァリールウレイド基、 N,, N'—ジアルキル— N アルキ ルゥレイド基、 N,一アルキル N,ーァリールウレイド基、 Ν,, N,ージアルキル—N アルキルウレイド基、 Ν,, N,ージアルキル N,ーァリールウレイド基、 N,ーァリー ルー N—アルキルウレイド基、 N,ーァリール—N ァリールウレイド基、 N,, N,ージ ァリール—N—アルキルウレイド基、 N,, N,ージァリール—N ァリールウレイド基、 N,—アルキル N,—ァリール— N アルキルウレイド基、 N,—アルキル N,—ァ リール—N ァリールウレイド基、アルコキシカルボ-ルァミノ基、ァリーロキシカルボ -ルァミノ基、 N アルキル— N アルコキシカルボ-ルァミノ基、 N アルキル— N ーァリーロキシカルボ-ルァミノ基、 N ァリール N アルコキシカルボ-ルァミノ 基、 N ァリール N ァリーロキシカルボ-ルァミノ基などが挙げられる。これらに おけるアルキル基及びァリール基としては、前述のアルキル基、置換アルキル基、ァ リール基、及び置換ァリール基として示したものが挙げられる。また、ァシルァミノ基、 N アルキルァシルァミノ基、 N ァリールァシルァミノ基おけるァシル基 (R 7CO— )の 7は前述の通りである。これらのうち、 N アルキルアミノ基、 N, N ジアルキル アミノ基、 N ァリールアミノ基、ァシルァミノ基がより好ましい。 Examples of the amino group include an N-alkylamino group, an N, N dialkylamino group, an N allylamino group, an N, N dialylamino group, an N-alkyl-N allylamino group, an acylamine group, and an N-alkylacylamino group. , N allylamylamino group, ureido group, N 'alkylureido group, Ν ,, N, dialkylureido group, N'- allyleureido group, Ν ,, N, diarylureido group, N 'Alkyl-N'—aryl ureido group, N alkyl ureido group, N allyleureido group, N, monoalkyl N alkyl ureido group, N'—alkyl—N allyleureido group, N ,, N′—dialkyl— N alkyl ureido group, N, monoalkyl N, aryl ureido group, Ν, N, dialkyl-N alkyl ureido group, ,, N, dialkyl N, aryl reel Id group, N, aryl roe N—alkylureido group, N, aryle-N aryleureido group, N ,, N, diaryl-N—alkylureido group, N ,, N, diaryl-N arylureido group , N, —alkyl N, —aryl-N alkylureido group, N, —alkylN, —aryl-N arylureido group, alkoxycarbolumino group, aryloxycarbolamamine group, Nalkyl—N alkoxy Carbo-lumino group, N alkyl-N-aryoxy carbo-amino group, N-aryl N-alkoxy carbo-amino Group, N aryl N aryloxycarbolumino group and the like. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Further, Ashiruamino group, N-alkyl § sill § amino group, N § reel § sill § amino group definitive Ashiru group (R 7 CO-) of 7 are as defined above. Among these, an N alkylamino group, an N, N dialkylamino group, an N arylamino group, and an acylamino group are more preferable.
好ましいァミノ基の具体例としては、メチルァミノ基、ェチルァミノ基、ジェチルァミノ 基、モルホリノ基、ピペリジノ基、ピロリジノ基、フエ-ルァミノ基、ベンゾィルァミノ基、 ァセチルァミノ基などが挙げられる。  Specific examples of preferred amino groups include methylamino group, ethylamino group, jetylamino group, morpholino group, piperidino group, pyrrolidino group, phenolamino group, benzoylamino group, acetylamino group and the like.
[0041] 前記スルホ -ル基 ( SO -)としては、例えば、 11がー価の非金属原子団 [0041] Examples of the sulfo group (SO-) include, for example, a 11 -valent non-metallic atomic group.
2  2
力 なる基のものが挙げられる。  The power group is mentioned.
このようなスルホ-ル基としては、例えば、アルキルスルホ-ル基、ァリールスルホ- ル基などが好ましい。これらにおけるアルキル基及びァリール基としては、前述のァ ルキル基、置換アルキル基、ァリール基、及び置換ァリール基として示したものが挙 げられる。  As such a sulfo group, for example, an alkyl sulfo group, an aryl sulfo group and the like are preferable. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
前記スルホ-ル基の具体例としては、ブチルスルホ -ル基、フエ-ルスルホ -ル基 、クロ口フエ-ルスルホ-ル基などが挙げられる。  Specific examples of the sulfo group include a butyl sulfo group, a phenol sulfo group, and a closed-end phenol sulfo group.
[0042] 前記スルホナト基(一 SO—)は、前述のとおり、スルホ基(一 SO H)の共役塩基陰  [0042] As described above, the sulfonate group (one SO-) is a conjugate base group of the sulfo group (one SO H).
3 3  3 3
イオン基を意味し、通常は対陽イオンとともに使用されるのが好ましい。  It means an ionic group and is usually preferably used together with a counter cation.
このような対陽イオンとしては、一般に知られるものを適宜選択して用いることができ 、例えば、ォ-ゥム類 (例えば、アンモ-ゥム類、スルホ -ゥム類、ホスホ-ゥム類、ョ 一ドニゥム類、アジ-ゥム類等)、金属イオン類 (例えば、 Na+、 K+、 Ca2+、 Zn2+等) が挙げられる。 As such counter cations, generally known ones can be appropriately selected and used. For example, oniums (for example, ammoniums, sulfomes, phosphomes) And sodium ions, azimuths, etc.) and metal ions (for example, Na +, K +, Ca 2+ , Zn 2+, etc.).
[0043] 前記カルボ-ル基 (R 13— CO )としては、例えば、 13がー価の非金属原子団 力 なる基のものが挙げられる。 Examples of the carbo group (R 13 —CO 2) include those in which 13 is a group having a nonvalent nonmetallic atomic group.
このようなカルボ-ル基としては、例えば、ホルミル基、ァシル基、カルボキシル基、 アルコキシカルボ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N アルキル 力ルバモイル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基、 N, N ジァリール力ルバモイル基、 N—アルキル N,ーァリール力ルバモイル基な どが挙げられる。これらにおけるアルキル基及びァリール基としては、前述のアルキ ル基、置換アルキル基、ァリール基、及び置換ァリール基として示したものが挙げら れる。 Examples of such carbol groups include formyl, acyl, carboxyl, alkoxycarbol, aryloxycarbol, strong rubamoyl, N alkyl, rubamoyl, N, N dialkyl. Rubamoyl group, N-aryl force Rubamoyl group, N, N dialyl force rubermoyl group, N-alkyl N, arylyl force rubermoyl group. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group.
前記カルボ-ル基としては、ホルミル基、ァシル基、カルボキシル基、アルコキシ力 ルポ-ル基、ァリーロキシカルボ-ル基、力ルバモイル基、 N—アルキル力ルバモイ ル基、 N, N ジアルキル力ルバモイル基、 N ァリール力ルバモイル基が好ましく、 ホルミル基、ァシル基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル基がより好 ましい。  Examples of the carbonyl group include formyl group, acyl group, carboxyl group, alkoxy group, aryloxycarbo group, rubamoyl group, N-alkyl group rubamoyl group, N, N dialkyl group rubamoyl. Group, N-aryl rubamoyl group is preferable, and formyl group, acyl group, alkoxycarbol group, and aryloxycarbol group are more preferable.
前記カルボ-ル基の具体例としては、ホルミル基、ァセチル基、ベンゾィル基、カル ボキシル基、メトキシカルボ-ル基、エトキシカルボ-ル基、ァリルォキシカルボ-ル 基、ジメチルァミノフエ-ルェテュルカルボ-ル基、メトキシカルボ-ルメトキシカルボ -ル基、 N—メチルカルバモイル基、 N フエ-ルカルバモイル基、 N, N ジェチル 力ルバモイル基、モルホリノカルボ-ル基などが好適に挙げられる。  Specific examples of the carbonyl group include a formyl group, a acetyl group, a benzoyl group, a carboxy group, a methoxy carbo ol group, an ethoxy carbo yl group, an ar aroxy carboxy group, a dimethylamino pheno group. Preferred examples include a ruthel carbol group, a methoxy carbo methoxy carbo ol group, an N-methyl carbamoyl group, an N phen carbamoyl group, an N, N decyl rubamoyl group, a morpholino carbo ol group and the like.
[0044] 前記スルフィエル基 (R 14— SO )としては、 "がー価の非金属原子団からなる 基のものが挙げられる。 Examples of the sulfiel group (R 14 —SO 2) include those having a group consisting of a non-valent nonmetallic atomic group.
このようなスルフィエル基としては、例えば、アルキルスルフィエル基、ァリールスル フィエル基、スルフイナモイル基、 N—アルキルスルフイナモイル基、 N, N ジアルキ ルスルフイナモイル基、 N ァリールスルフイナモイル基、 N, N ジァリールスルフィ ナモイル基、 N アルキル N ァリールスルフイナモイル基などが挙げられる。これ らにおけるアルキル基及びァリール基としては、前述のアルキル基、置換アルキル基 、ァリール基、及び置換ァリール基として示したものが挙げられる。これらの中でも、ァ ルキルスルフィ-ル基、ァリールスルフィエル基が好まし 、。  Examples of such sulfier groups include alkyl sulfier groups, aryl sulfier groups, sulfinamoyl groups, N-alkyl sulfinamoyl groups, N, N dialsulfyl amoyl groups, N aryl sulfinamoyl groups, N, N And diarylsulfinamoyl group, N alkyl N arylsulfinamoyl group and the like. Examples of the alkyl group and aryl group in these include those described above as the alkyl group, substituted alkyl group, aryl group, and substituted aryl group. Of these, the alkylsulfur group and the arylsulfier group are preferred.
前記置換スルフィエル基の具体例としては、へキシルスルフィエル基、ベンジルス ルフィ-ル基、トリルスルフィ-ル基などが好適に挙げられる。  Specific examples of the substituted sulfiel group include a hexyl sulfiel group, a benzyl sulfyl group, and a tolyl sulfyl group.
[0045] 前記ホスホノ基とは、ホスホノ基上の水酸基の一つ乃至二つが他の有機ォキソ基に よって置換されたものを意味し、例えば、前述のジアルキルホスホノ基、ジァリールホ スホノ基、アルキルァリールホスホノ基、モノアルキルホスホノ基、モノアリールホスホノ 基などが好ましい。これらの中では、ジアルキルホスホノ基、ジァリールホスホノ基がよ り 1好 2匕ましい。 [0045] The phosphono group means one in which one or two hydroxyl groups on the phosphono group are substituted with another organic oxo group. For example, the above-mentioned dialkylphosphono group, diarylphosphono group, alkyl group. Reel phosphono group, monoalkyl phosphono group, monoaryl phosphono group Groups and the like are preferred. Of these, dialkylphosphono groups and diarylphosphono groups are more preferred.
前記ホスホノ基のより好ましい具体例としては、ジェチルホスホノ基、ジブチルホス ホノ基、ジフエ-ルホスホノ基などが挙げられる。  More preferable specific examples of the phosphono group include a jetyl phosphono group, a dibutyl phosphono group, and a diphenyl phosphono group.
[0046] 前記ホスホナト基( PO H 一、 -PO H—)とは、前述のとおり、ホスホノ基( PO  [0046] The phosphonato group (PO H-, -PO H-) is, as described above, a phosphono group (PO
3 2 3  3 2 3
H )の、酸第一解離、又は酸第二解離に由来する共役塩基陰イオン基を意味する H) means a conjugated base anion group derived from acid first dissociation or acid second dissociation
3 2 3 2
。通常は対陽イオンと共に使用されるのが好ましい。このような対陽イオンとしては、 一般に知られるものを適宜選択することができ、例えば、種々のォ-ゥム類 (アンモ- ゥム類、スルホ -ゥム類、ホスホ-ゥム類、ョードニゥム類、アジ-ゥム類等)、金属ィ オン類 (Na+、 K+、 Ca2+、 Zn2+等)が挙げられる。 . Usually, it is preferable to use it with a counter cation. As such counter cations, generally known ones can be appropriately selected. For example, various kinds of atoms (ammonium, sulfo-ums, phospho-umms, ododoniums) ), Metal ions (Na +, K +, Ca 2+ , Zn 2+ etc.).
[0047] 前記ホスホナト基は、ホスホノ基の内、水酸基を一つ有機ォキソ基に置換したもの の共役塩基陰イオン基であってもよぐこのような具体例としては、前述のモノアルキ ルホスホノ基(一 PO H (alkyl) )、モノアリールホスホノ基( PO H (aryl) )の共役塩 [0047] The phosphonato group may be a conjugated basic anion group obtained by substituting one of the phosphono groups with an organic oxo group. 1 PO H (alkyl)), a conjugated salt of a monoarylphosphono group (PO H (aryl))
3 3  3 3
基が挙げられる。  Groups.
[0048] 前記芳香族基は、芳香族基を含有するラジカル重合性化合物 1種以上と、必要に 応じて共重合成分として他のラジカル重合性ィ匕合物 1種以上とを通常のラジカル重 合法によって製造することできる。  [0048] The aromatic group comprises one or more radically polymerizable compounds containing an aromatic group and, if necessary, one or more other radically polymerizable compounds as a copolymerization component. It can be manufactured legally.
前記ラジカル重合法としては、例えば、一般的に懸濁重合法あるいは溶液重合法 などが挙げられる。  Examples of the radical polymerization method generally include a suspension polymerization method and a solution polymerization method.
[0049] 前記芳香族基を含有するラジカル重合性化合物としては、例えば、下記構造式 (A )で表される化合物、下記構造式 (B)で表される化合物が好ま 、。  [0049] As the radically polymerizable compound containing an aromatic group, for example, a compound represented by the following structural formula (A) and a compound represented by the following structural formula (B) are preferable.
構造式(A) Structural formula (A)
— O— L— Ar ただし、前記構造式 (A)中、 R 、 R、及び Rは水素原子又は 1価の有機基を表す  — O— L— Ar In the structural formula (A), R, R, and R represent a hydrogen atom or a monovalent organic group.
1 2 3  one two Three
。 Lは有機基を表し、なくてもよい。 Arはへテロ環を含んでもよい芳香族基を表す。  . L represents an organic group and may be omitted. Ar represents an aromatic group that may contain a heterocycle.
[化 4] 構造式 (B) [Chemical 4] Structural formula (B)
R2 Ar R 2 Ar
ただし、前記構造式 (B)中、 R、 R、及び R 並びに、 Arは前記構造式 (A)と同じ  However, in the structural formula (B), R, R, and R and Ar are the same as the structural formula (A).
1 2 3、  one two Three,
意を表す。  I express my will.
[0050] 前記 Lの有機基としては、例えば、非金属原子力 なる多価の有機基であり、 1から 60個までの炭素原子、 0個から 10個までの窒素原子、 0個から 50個までの酸素原子 、 1個から 100個までの水素原子、及び 0個から 20個までの硫黄原子力 成り立つも のが挙げられる。 NN OO&  [0050] The organic group of L is, for example, a polyvalent organic group of non-metallic nuclear power, including 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, and 0 to 50 atoms. Of oxygen atoms, 1 to 100 hydrogen atoms, and 0 to 20 sulfur nuclear powers. NN OO &
より具体的には、前記 Lの有機基としては、下記の構造単位が組み合わさって構成 されるもの、多価ナフタレン、多価アントラセンなどを挙げることができる。  More specifically, examples of the organic group of L include those formed by combining the following structural units, polyvalent naphthalene, polyvalent anthracene and the like.
[0051] [ 5]
Figure imgf000028_0001
o O
[0051] [5]
Figure imgf000028_0001
o O
II II  II II
0- - C- - C-  0--C--C-
Figure imgf000028_0002
Figure imgf000028_0002
[0052] 前記 Lの連結基は置換基を有してもよぐ前記置換基としては、前述のハロゲン原 子、ヒドロキシル基、カルボキシル基、スルホナト基、ニトロ基、シァノ基、アミド基、アミ ノ基、アルキル基、ァルケ-ル基、アルキ-ル基、ァリール基、置換ォキシ基、置換ス ルホ-ル基、置換カルボ-ル基、置換スルフィエル基、スルホ基、ホスホノ基、ホスホ ナト基、シリル基、ヘテロ環基が挙げられる。  [0052] The linking group of L may have a substituent. Examples of the substituent include the aforementioned halogen atom, hydroxyl group, carboxyl group, sulfonate group, nitro group, cyan group, amide group, amino group. Group, alkyl group, alkyl group, alkyl group, aryl group, substituted oxy group, substituted sulfo group, substituted carbole group, substituted sulfiel group, sulfo group, phosphono group, phosphonate group, silyl group Group and heterocyclic group.
[0053] 前記構造式 (A)で表される化合物、及び構造式 (B)で表される化合物にぉ 、ては 、構造式 (A)の方が感度の点で好ましい。また、前記構造式 (A)のうち、連結基を有 しているものが安定性の点で好ましぐ前記 Lの有機基としては、炭素数 1〜4のアル キレン基が非画像部の除去性 (現像性)の点で好まし 、。 [0053] In addition to the compound represented by the structural formula (A) and the compound represented by the structural formula (B), Structural formula (A) is preferred in terms of sensitivity. Among the structural formulas (A), those having a linking group that are preferred from the viewpoint of stability are L 1-4 organic groups, which are C 1-4 alkylene groups in the non-image area. Preferred in terms of removability (developability).
前記構造式 (A)で表される化合物は、下記構造式 (I)の構造単位を含む化合物と なる。また、前記構造式 (B)で表される化合物は、下記構造式 (II)の構造単位を含む 化合物となる。この内、構造式 (I)の構造単位の方が、保存安定性の点で好ましい。  The compound represented by the structural formula (A) is a compound containing a structural unit of the following structural formula (I). Further, the compound represented by the structural formula (B) is a compound containing a structural unit of the following structural formula (II). Of these, the structural unit of the structural formula (I) is preferred from the viewpoint of storage stability.
[0054] [化 6] [0054] [Chemical 6]
構造式( I )
Figure imgf000029_0001
Structural formula (I)
Figure imgf000029_0001
[化 7] 構造式(π) [Chemical formula 7] Structural formula (π)
Figure imgf000029_0002
Figure imgf000029_0002
ただし、前記構造式 (I)及び (II)中、 R、 R、及び R、並びに、 Arは前記構造式 (A  However, in the structural formulas (I) and (II), R, R, and R, and Ar are the structural formulas (A
1 2 3  one two Three
)及び (B)と同じ意を表す。  ) And (B).
前記構造式 (I)及び (II)において、 R及び Rは水素原子、 Rはメチル基である事  In the structural formulas (I) and (II), R and R are hydrogen atoms, and R is a methyl group.
1 2 3  one two Three
力 非画像部の除去性 (現像性)の点で好まし!/、。  Power Preferable in terms of non-image area removability (developability)!
また、前記構造式 (I)の Lは、炭素数 1〜4のアルキレン基が非画像部の除去性 (現 像性)の点で好ましい。  In addition, as the L in the structural formula (I), an alkylene group having 1 to 4 carbon atoms is preferable in terms of removability (imageability) of a non-image area.
[0055] 前記構造式 (A)で表される化合物又は構造式 (B)で表される化合物としては、特 に制限はないが、例えば、以下の例示化合物(1)〜(30)が挙げられる。  [0055] The compound represented by the structural formula (A) or the compound represented by the structural formula (B) is not particularly limited, and examples thereof include the following exemplified compounds (1) to (30). It is done.
[0056] [化 8]
Figure imgf000030_0001
[0056] [Chemical 8]
Figure imgf000030_0001
-a 3 3
Figure imgf000030_0002
-a 3 3
Figure imgf000030_0002
(24)
Figure imgf000031_0001
(twenty four)
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0002
Figure imgf000031_0003
- 'て CH3
Figure imgf000031_0003
-'Te CH 3
Figure imgf000031_0004
Figure imgf000031_0004
[0058] 前記例示化合物(1)〜(30)の中でも、 (5)、 (6)、 (11)、(14)、及び(28)が好ま しぐこれらの中でも、(5)及び (6)が保存安定性及び現像性の点でより好ましい。  [0058] Among the exemplified compounds (1) to (30), among these, (5), (6), (11), (14), and (28) are preferred, and (5) and (6 ) Is more preferable in terms of storage stability and developability.
[0059] 前記へテロ環を含んでもよい芳香族基の前記バインダーにおける含有量は、特に 制限はないが、高分子化合物の全構造単位を 100mol%とした場合に、前記構造式 (I)で表される構造単位を 20mol%以上含有することが好ましぐ 30〜45mol%含 有することがより好ましい。前記含有量が 20mol未満であると、保存安定性が低くな ることがあり、 45mol%を超えると現像性が低下することがある。 [0059] The content of the aromatic group that may contain a hetero ring in the binder is not particularly limited, but when the total structural unit of the polymer compound is 100 mol%, the structural formula (I) It is preferred to contain 20 mol% or more of the structural unit represented. It is more preferred to contain 30 to 45 mol%. When the content is less than 20 mol, the storage stability is low. If it exceeds 45 mol%, the developability may decrease.
[0060] エチレン性不飽和結合  [0060] Ethylenically unsaturated bond
前記エチレン性不飽和結合としては、特に制限はなぐ 目的に応じて適宜選択する ことができるが、例えば、下記構造式 (III)〜(v)で表されるものが好ましい。  The ethylenically unsaturated bond is not particularly limited and may be appropriately selected according to the purpose. For example, those represented by the following structural formulas (III) to (v) are preferable.
[0061] [化 10]  [0061] [Chemical 10]
o  o
— X- C R3 — X- CR 3
)=< 構造式(m )  ) = <Structural formula (m)
Ri f¾  Ri f¾
R4 Re R4 Re
- Y- C-C = C 構造式(IV)  -Y- C-C = C Structural formula (IV)
R5 ¾ R7 R11 R 5 ¾ R 7 R11
_ z"i= P 構造式(V ) ただし、前記構造式 (III)〜 (V)中、 R〜R及び R〜R は、それぞれ独立して 1価 _ z "i = P Structural formula (V) In the structural formulas (III) to (V), R to R and R to R are each independently monovalent.
1 3 5 11  1 3 5 11
の有機基を表す。 X及び Yは、それぞれ独立して、酸素原子、硫黄原子、又は— N— Rを表す。 Zは、酸素原子、硫黄原子、 -N-R、又はフエ-レン基を表す。 Rは、 Represents an organic group. X and Y each independently represent an oxygen atom, a sulfur atom, or —N—R. Z represents an oxygen atom, a sulfur atom, -N-R, or a phenylene group. R is
4 4 4 水素原子、又は 1価の有機基を表す。 4 4 4 Represents a hydrogen atom or a monovalent organic group.
[0062] 前記構造式 (III)において、 Rとしては、それぞれ独立して、例えば、水素原子、置 換基を有してもよいアルキル基などが好ましぐ水素原子、メチル基がラジカル反応 性が高いことからより好ましい。 [0062] In the structural formula (III), each R independently represents, for example, a hydrogen atom, a hydrogen atom that may have a substituent or an alkyl group, and a methyl group that are radically reactive. Is more preferable because it is high.
前記 R及び Rとしては、それぞれ独立して、例えば、水素原子、ハロゲン原子、ァ R and R are each independently, for example, a hydrogen atom, a halogen atom,
2 3 twenty three
ミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、ニトロ基、シァノ基、置 換基を有してもよいアルキル基、置換基を有してもよいァリール基、置換基を有しても よいアルコキシ基、置換基を有してもよいァリールォキシ基、置換基を有してもよいァ ルキルアミノ基、置換基を有してもよいァリールアミノ基、置換基を有してもよいアルキ ルスルホニル基、置換基を有してもよいァリールスルホ-ル基などが挙げられ、水素 原子、カルボキシル基、アルコキシカルボ-ル基、置換基を有してもよいアルキル基 、置換基を有してもよいァリール基力 ラジカル反応性が高いことからより好ましい。 前記 Rとしては、例えば、置換基を有してもよいアルキル基などが好ましぐ水素原 子、メチル基、ェチル基、イソプロピル基力ラジカル反応性が高いことからより好まし い。 It has a mino group, a carboxyl group, an alkoxycarbo group, a sulfo group, a nitro group, a cyano group, an alkyl group which may have a substituent, an aryl group which may have a substituent, and a substituent. Alkyl group which may have a substituent, an alkyloxy group which may have a substituent, an alkylamino group which may have a substituent, an arylamino group which may have a substituent, an alkylsulfonyl which may have a substituent Group, an arylaryl group which may have a substituent, and the like. Examples include a hydrogen atom, a carboxyl group, an alkoxycarbonyl group, an alkyl group which may have a substituent, and a substituent. Aryl basic force More preferable because of high radical reactivity. Examples of R include a hydrogen atom that is preferably an alkyl group which may have a substituent. It is more preferable because of its high radical reactivity with a thiol group, a methyl group, an ethyl group, and an isopropyl group.
ここで、導入しうる前記置換基としては、例えば、アルキル基、ァルケ-ル基、アル キニル基、ァリール基、アルコキシ基、ァリーロキシ基、ハロゲン原子、アミノ基、アル キルアミノ基、ァリールアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基 、ニトロ基、シァノ基、アミド基、アルキルスルホ-ル基、ァリールスルホ-ル基などが 挙げられる。  Here, examples of the substituent that can be introduced include an alkyl group, an alkyl group, an alkynyl group, an aryl group, an alkoxy group, an aryloxy group, a halogen atom, an amino group, an alkylamino group, an arylamino group, and a carboxyl group. And alkoxycarbonyl group, sulfo group, nitro group, cyano group, amide group, alkylsulfol group, arylol group and the like.
[0063] 前記構造式 (IV)において、 R〜Rとしては、例えば、水素原子、ハロゲン原子、了  [0063] In the structural formula (IV), R to R include, for example, a hydrogen atom, a halogen atom, and R
4 8  4 8
ミノ基、ジアルキルアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、二 トロ基、シァノ基、置換基を有してもよいアルキル基、置換基を有してもよいァリール 基、置換基を有してもよいアルコキシ基、置換基を有してもよいァリールォキシ基、置 換基を有してもよいアルキルアミノ基、置換基を有してもよいァリールアミノ基、置換 基を有してもょ 、アルキルスルホ-ル基、置換基を有してもょ 、ァリールスルホ-ル 基などが好ましぐ水素原子、カルボキシル基、アルコキシカルボ-ル基、置換基を 有してもょ 、アルキル基、置換基を有してもょ 、ァリール基がより好まし!/、。  Mino group, dialkylamino group, carboxyl group, alkoxycarbo group, sulfo group, nitrogen group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituent Having an alkoxy group that may have a substituent, an allyloxy group that may have a substituent, an alkylamino group that may have a substituent, an arylamino group that may have a substituent, and a substituent. It may have an alkyl sulfonyl group or a substituent, but an aryl group may preferably have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent, an alkyl group. Even if it has a substituent, the aryl group is more preferred! /.
導入しうる前記置換基としては、前記構造式 (III)において挙げたものが例示される [0064] 前記構造式 (V)にお 、て、 Rとしては、例えば、水素原子、置換基を有してもょ 、  Examples of the substituent that can be introduced include those listed in the structural formula (III). [0064] In the structural formula (V), R includes, for example, a hydrogen atom and a substituent. But
9  9
アルキル基などが好ましぐ水素原子、メチル基力 sラジカル反応性が高いことからより 好ましい。  Alkyl groups and the like are more preferred because of high hydrogen atom and methyl group s radical reactivity.
前記 R 、 R としては、それぞれ独立して、例えば、水素原子、ハロゲン原子、アミ R 1 and R 2 are each independently, for example, hydrogen atom, halogen atom, amino
10 11 10 11
ノ基、ジアルキルアミノ基、カルボキシル基、アルコキシカルボ-ル基、スルホ基、 -ト 口基、シァノ基、置換基を有してもよいアルキル基、置換基を有してもよいァリール基 、置換基を有してもよいアルコキシ基、置換基を有してもよいァリールォキシ基、置換 基を有してもよいアルキルアミノ基、置換基を有してもよいァリールアミノ基、置換基を 有してもょ 、アルキルスルホ-ル基、置換基を有してもょ 、ァリールスルホ-ル基な どが好ましぐ水素原子、カルボキシル基、アルコキシカルボ-ル基、置換基を有して もよ!/、アルキル基、置換基を有してもよ!、ァリール基力ラジカル反応性が高 、ことから より好まし 、。 Group, dialkylamino group, carboxyl group, alkoxycarbonyl group, sulfo group, -toco group, cyano group, alkyl group which may have a substituent, aryl group which may have a substituent, substituted An alkoxy group which may have a group, an aryloxy group which may have a substituent, an alkylamino group which may have a substituent, an arylamino group which may have a substituent, and a substituent It may have an alkyl sulfonyl group or a substituent, but an aryl sulfonyl group or the like may have a hydrogen atom, a carboxyl group, an alkoxy carbo yl group or a substituent which is preferable! /, May have an alkyl group or a substituent! Because of high aryl reactivity radical reactivity More preferred ,.
ここで、導入しうる前記置換基としては、構造式 (III)において挙げたものが例示され る。  Here, examples of the substituent that can be introduced include those listed in the structural formula (III).
前記 Zとしては、酸素原子、硫黄原子、 -NR ―、又は置換基を有してもよいフエ  Z represents an oxygen atom, a sulfur atom, -NR-, or a phenyl group optionally having a substituent.
13  13
二レン基を表す。 R は、置換基を有してもよいアルキル基などを表し、水素原子、メ  Represents a dilene group. R represents an alkyl group which may have a substituent, a hydrogen atom,
13  13
チル基、ェチル基、イソプロピル基力 sラジカル反応性が高いことから好ましい。  A til group, an ethyl group, and an isopropyl group are preferable because they have high radical reactivity.
[0065] 前記構造式 (ΠΙ)〜 (V)で表される側鎖エチレン性不飽和結合の中でも、構造式 (III) のものが、重合反応性が高く感度が高くなり、より好ましい。  [0065] Among the side chain ethylenically unsaturated bonds represented by the structural formulas (() to (V), those having the structural formula (III) are more preferable because of high polymerization reactivity and high sensitivity.
前記エチレン性不飽和結合の前記高分子化合物における含有量は、特に制限は な ヽ力 0. 5〜3. Omeq/g力好ましく、 1. 0〜3. Omeq/g力 ^より好ましく、 1. 5〜2 . 8meqZgが特に好ましい。前記含有量が 0. 5meqZg未満であると、硬化反応量 が少ないため低感度となることがあり、 3. OmeqZgを超えると、保存安定性が劣化 することがある。  The content of the ethylenically unsaturated bond in the polymer compound is not particularly limited. Repulsive force 0.5 to 3. Omeq / g force is preferable, 1.0 to 3. Omeq / g force ^ is more preferable, 1. 5-2.8 meqZg is particularly preferred. If the content is less than 0.5 meqZg, the sensitivity may be low because the amount of curing reaction is small. 3. If it exceeds OmeqZg, the storage stability may deteriorate.
ここで、前記含有量 (meqZg)は、例えば、ヨウ素価滴定により測定することができ る。  Here, the content (meqZg) can be measured, for example, by iodine value titration.
[0066] 前記構造式 (III)で表されエチレン性不飽和結合を側鎖に導入する方法としては、 特に制限はないが、例えば、側鎖にカルボキシル基を含有する高分子化合物とェチ レン性不飽和結合及びエポキシ基を有する化合物を付加反応させることで得ること ができる。  [0066] The method of introducing an ethylenically unsaturated bond represented by the structural formula (III) into the side chain is not particularly limited, and examples thereof include a polymer compound and a ethylene containing a carboxyl group in the side chain. It can be obtained by addition reaction of a compound having an unsaturated bond and an epoxy group.
前記側鎖にカルボキシル基を含有する高分子化合物は、例えば、カルボキシル基 を含有するラジカル重合性化合物 1種以上と、必要に応じて共重合成分として他のラ ジカル重合性ィ匕合物 1種以上とを通常のラジカル重合法によって製造することでき、 前記ラジカル重合法としては、例えば、懸濁重合法、溶液重合法などが挙げられる。  The polymer compound containing a carboxyl group in the side chain is, for example, one or more radically polymerizable compounds containing a carboxyl group and, if necessary, one other radically polymerizable compound as a copolymerization component. The above can be produced by a normal radical polymerization method, and examples of the radical polymerization method include suspension polymerization method and solution polymerization method.
[0067] 前記エチレン性不飽和結合及びエポキシ基を有する化合物としては、これらを有す れば特に制限はないが、例えば、下記構造式 (VI)で表される化合物及び (VII)で表 される化合物が好ましぐ特に、構造式 (VI)で表される化合物を使用する方が、高感 度化の点で好ましい。  [0067] The compound having an ethylenically unsaturated bond and an epoxy group is not particularly limited as long as it has these. For example, the compound represented by the following structural formula (VI) and (VII) In particular, the use of the compound represented by the structural formula (VI) is preferable from the viewpoint of increasing sensitivity.
[化 11] CH2 構造式(VI)[Chemical 11] CH 2 structural formula (VI)
Figure imgf000035_0001
Figure imgf000035_0001
ただし、前記構造式 (VI)中、 は水素原子又はメチル基を表す。 は有機基を表 す。  However, in said structural formula (VI), represents a hydrogen atom or a methyl group. Represents an organic group.
[化 12]
Figure imgf000035_0002
[Chemical 12]
Figure imgf000035_0002
ただし、前記構造式 (VII)中、 Rは水素原子又はメチル基を表す。 Lは有機基を表  However, in said structural formula (VII), R represents a hydrogen atom or a methyl group. L represents an organic group
2 2  twenty two
す。 Wは 4〜7員環の脂肪族炭化水素基を表す。 The W represents a 4- to 7-membered aliphatic hydrocarbon group.
前記構造式 (VI)で表される化合物及び構造式 (VII)で表される化合物の中でも、 構造式 (VI)で表される化合物が好ましぐ前記構造式 (VI)においても、 Lが炭素数 1〜4のアルキレン基のものがより好まし 、。  Among the compounds represented by the structural formula (VI) and the structural formula (VII), in the structural formula (VI) in which the compound represented by the structural formula (VI) is preferred, L is More preferred is an alkylene group having 1 to 4 carbon atoms.
前記構造式 (VI)で表される化合物又は構造式 (VII)で表される化合物としては、特 に制限はないが、例えば、以下の例示化合物(31)〜 (40)が挙げられる。  The compound represented by the structural formula (VI) or the compound represented by the structural formula (VII) is not particularly limited, and examples thereof include the following exemplified compounds (31) to (40).
[化 13] [Chemical 13]
Figure imgf000036_0001
Figure imgf000036_0001
Figure imgf000036_0002
Figure imgf000036_0002
Figure imgf000036_0003
Figure imgf000036_0003
Figure imgf000036_0004
Figure imgf000036_0005
Figure imgf000036_0004
Figure imgf000036_0005
[0069] 前記カルボキシル基を含有するラジカル重合性ィ匕合物しては、例えば、アクリル酸 、メタクリル酸、ィタコン酸、クロトン酸、インク口トン酸、マレイン酸、 p—カルボキシルス チレンなどがあり、特に好ましいものは、アクリル酸、メタクリル酸などが挙げられる。  [0069] Examples of the radical polymerizable compound containing a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, ink-mouthed tonic acid, maleic acid, and p-carboxyl styrene. Particularly preferred are acrylic acid and methacrylic acid.
[0070] 前記側鎖への導入反応としては、例えば、トリェチルァミン、ベンジルメチルァミン 等の 3級ァミン、ドデシルトリメチルアンモ -ゥムクロライド、テトラメチルアンモ-ゥムク 口ライド、テトラエチルアンモ -ゥムクロライド等の 4級アンモ-ゥム塩、ピリジン、トリフ ェニルフォスフィンなどを触媒として有機溶剤中、反応温度 50〜 150°Cで数時間〜 数十時間反応させることにより行うことができる。  [0070] Examples of the introduction reaction to the side chain include tertiary amines such as triethylamine and benzylmethylamine, quaternary ammonia such as dodecyltrimethylammonium chloride, tetramethylammonium chloride, and tetraethylammonium chloride. The reaction can be carried out by reacting in an organic solvent at a reaction temperature of 50 to 150 ° C. for several hours to several tens of hours using a -um salt, pyridine, triphenylphosphine or the like as a catalyst.
[0071] 前記側鎖にエチレン性不飽和結合を有する構造単位としては、特に制限はないが 、例えば、下記構造式 (i)で表される構造、構造式 (ii)で表される構造、及びこれらの 混合により表されるものが好ま 、。 [0071] The structural unit having an ethylenically unsaturated bond in the side chain is not particularly limited. For example, a structure represented by the following structural formula (i), a structure represented by the structural formula (ii), And those represented by a mixture of these are preferred.
[化 14] 構造式( i )[Chemical 14] Structural formula (i)
Figure imgf000037_0001
Figure imgf000037_0001
構情造式ぃ( i Iiり )Constitutional formula (i Ii)
Figure imgf000037_0002
Figure imgf000037_0002
ただし、前記構造式 (i)及び (ii)中、 Ra〜Rcは水素原子又は 1価の有機基を表す。 1^は水素原子又はメチル基を表す。 は連結基を有してもよ ヽ有機基を表す。  However, in the structural formulas (i) and (ii), Ra to Rc represent a hydrogen atom or a monovalent organic group. 1 ^ represents a hydrogen atom or a methyl group. Represents an organic group which may have a linking group.
[0072] 前記構造式 (i)で表される構造乃至構造式 (ii)で表される構造の高分子化合物に おける含有量は、 20mol%以上が好ましぐ 20〜50mol%がより好ましぐ 25-45 mol%が特に好ましい。前記含有量が 20mol%未満では、硬化反応量が少ないた め低感度となることがあり、 50mol%を超えると、保存安定性が劣化することがある。 [0072] The content in the polymer compound having the structure represented by the structural formula (i) to the structure represented by the structural formula (ii) is preferably 20 mol% or more, more preferably 20 to 50 mol%. 25-45 mol% is particularly preferred. When the content is less than 20 mol%, the curing reaction amount is small, so that the sensitivity may be low. When the content exceeds 50 mol%, the storage stability may be deteriorated.
[0073] 一力ノレボキシノレ基— [0073] Noreboxinole group—
本発明の高分子化合物においては、非画像部除去性などの諸性能を向上させる ために、カルボキシル基を有していてもよい。  The polymer compound of the present invention may have a carboxyl group in order to improve various performances such as non-image area removability.
前記カルボキシル基は、酸基を有するラジカル重合性化合物を共重合させることに より、前記高分子化合物に付与することができる。  The carboxyl group can be imparted to the polymer compound by copolymerizing a radical polymerizable compound having an acid group.
このようなラジカル重合性が有する酸基としては、例えば、カルボン酸、スルホン酸 、リン酸基などが挙げられ、カルボン酸が特に好ましい。  Examples of the acid group having such radical polymerizability include carboxylic acid, sulfonic acid, and phosphoric acid group, and carboxylic acid is particularly preferable.
前記カルボキシル基を有するラジカル重合性ィ匕合物としては、特に制限はなぐ 目 的に応じて適宜選択することができ、例えば、アクリル酸、メタクリル酸、ィタコン酸、ク 口トン酸、インク口トン酸、マレイン酸、 ρ—カルボキシルスチレンなどが挙げられ、これ らの中でも、アクリル酸、メタクリル酸、 p—カルボキシルスチレンが好ましい。これらは 、 1種単独で用いてもよいし、 2種以上を併用してもよい。  The radically polymerizable compound having a carboxyl group can be appropriately selected depending on the purpose, and examples thereof include acrylic acid, methacrylic acid, itaconic acid, cucumber tonic acid, and ink fountain. Examples include acid, maleic acid, and ρ-carboxyl styrene. Among these, acrylic acid, methacrylic acid, and p-carboxyl styrene are preferable. These may be used alone or in combination of two or more.
[0074] 前記カルボキシル基のバインダーにおける含有量は、 1. 0〜4. OmeqZgであり、 1. 5〜3. Omeq/gが好ましい。前記含有量が、 1. Omeq/g未満では現像性が不 十分となることがあり、 4. OmeqZgを超えるとアルカリ水現像による画像強度ダメー ジを受けやすくなることがある。 ここで、前記含有量 (meqZg)は、例えば、水酸ィ匕ナトリウムを用いた滴定により測 定することができる。 [0074] The content of the carboxyl group in the binder is 1.0 to 4. OmeqZg, preferably 1.5 to 3. Omeq / g. When the content is less than 1. Omeq / g, developability may be insufficient, and when it exceeds OmeqZg, image strength damage due to alkali water development may be easily caused. Here, the content (meqZg) can be measured, for example, by titration using sodium hydroxide.
[0075] 本発明の高分子化合物は、画像強度などの諸性能を向上する目的で、前述のラジ カル重合性ィ匕合物の他に、更に他のラジカル重合性化合物を共重合させることが好 ましい。  [0075] The polymer compound of the present invention may be copolymerized with another radical polymerizable compound in addition to the above-mentioned radical polymerizable compound for the purpose of improving various performances such as image strength. It is preferable.
前記他のラジカル重合性ィ匕合物としては、例えば、アクリル酸エステル類、メタタリ ル酸エステル類、スチレン類など力 選ばれるラジカル重合性ィ匕合物などが挙げられ る。  Examples of the other radical polymerizable compound include radically polymerizable compounds such as acrylic acid esters, methacrylate esters, and styrenes.
[0076] 具体的には、アルキルアタリレート等のアクリル酸エステル類、ァリールアタリレート、 アルキルメタタリレート等のメタクリル酸エステル類、ァリールメタタリレート、スチレン、 アルキルスチレン等のスチレン類、アルコキシスチレン、ハロゲンスチレンなどが挙げ られる。  [0076] Specifically, acrylic acid esters such as alkyl acrylate, methacrylate esters such as aryl acrylate, alkyl methacrylate, styrene such as aryl methacrylate, styrene, alkyl styrene, alkoxy Examples include styrene and halogen styrene.
前記アクリル酸エステル類としては、アルキル基の炭素原子数は 1〜20のものが好 ましぐ例えば、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル、アクリル酸 ブチル、アクリル酸ァミル、アクリル酸ェチルへキシル、アクリル酸ォクチル、アクリル 酸 tーォクチル、クロルェチルアタリレート、 2, 2—ジメチルヒドロキシプロピルアタリ レート、 5—ヒドロキシペンチノレアタリレート、トリメチロールプロパンモノアタリレート、ぺ ンタエリスリトールモノアタリレート、グリシジルアタリレート、ベンジルアタリレート、メト キシベンジルアタリレート、フルフリルアタリレート、テトラヒドロフルフリルアタリレートな どが挙げられる。  As the acrylates, those having 1 to 20 carbon atoms in the alkyl group are preferable. For example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, and ethyl acrylate. Xylyl, octyl acrylate, t-octyl acrylate, chlorethyl acrylate, 2,2-dimethylhydroxypropyl acrylate, 5-hydroxypentinorea acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, glycidyl Examples include atarylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate.
前記ァリールアタリレートとしては、例えば、フエ-ルアタリレートなどが挙げられる。  Examples of the aryl acrylate include a file acrylate.
[0077] 前記メタクリル酸エステル類としては、アルキル基の炭素原子は 1〜20のものが好 ましぐ例えば、メチノレメタタリレート、ェチノレメタタリレート、プロピノレメタタリレート、イソ プロピルメタタリレート、ァミルメタタリレート、へキシルメタタリレート、シクロへキシノレメ タクリレート、ベンジルメタタリレート、クロルべンジルメタタリレート、ォクチルメタクリレ 一卜、 4ーヒドロキシブチノレメタタリレート、 5 ヒドロキシペンチノレメタタリレート、 2, 2 ジメチルー 3—ヒドロキシプロピルメタタリレート、トリメチロールプロパンモノメタタリ レート、ペンタエリスリトールモノメタタリレート、グリシジルメタタリレート、フルフリルメタ タリレート、テトラヒドロフルフリルメタタリレートなどが挙げられる。 [0077] As the methacrylic acid esters, those having 1 to 20 carbon atoms in the alkyl group are preferred. For example, methinoremetatalylate, ethinoremetatalylate, propinoremetatalylate, isopropylmetataliate. Rate, amyl methacrylate, hexyl methacrylate, cyclohexenomethacrylate, benzyl methacrylate, chlorbendyl methacrylate, octyl methacrylate, ginseng, 4-hydroxybutynole methacrylate, 5 hydroxy Pentinolemetatalylate, 2, 2 Dimethyl-3-hydroxypropyl metatalylate, Trimethylolpropane monometatalate, Pentaerythritol monometatalylate, Glycidyl metatalylate, Furfuryl meta Examples include tallylate and tetrahydrofurfuryl metatalylate.
前記ァリールメタタリレートとしては、例えば、フエニルメタタリレート、クレジノレメタタリ レート、ナフチルメタタリレートなどが挙げられる。  Examples of the aryl methacrylate include phenyl methacrylate, credinole methacrylate, naphthyl methacrylate, and the like.
[0078] 前記スチレン類としては、例えば、メチルスチレン、ジメチルスチレン、トリメチルスチ レン、ェチルスチレン、ジェチルスチレン、イソプロピルスチレン、ブチルスチレン、へ キシルスチレン、シクロへキシルスチレン、デシルスチレン、ベンジルスチレン、クロル メチルスチレン、トリフルオルメチルスチレン、エトキシメチルスチレン、ァセトキシメチ ルスチレンなどが挙げられる。  [0078] Examples of the styrenes include methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, jetyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl styrene, chloromethyl. Examples include styrene, trifluoromethyl styrene, ethoxymethyl styrene, and acetomethyl styrene.
前記アルコキシスチレンとしては、例えば、メトキシスチレン、 4—メトキシ一 3—メチ ルスチレン、ジメトキシスチレンなどが挙げられる。  Examples of the alkoxystyrene include methoxystyrene, 4-methoxy-13-methylstyrene, dimethoxystyrene, and the like.
前記ハロゲンスチレンとしては、例えばクロノレスチレン、ジクロノレスチレン、トリクロノレ スチレン、テトラクロルスチレン、ペンタク口ルスチレン、ブロムスチレン、ジブロムスチ レン、ョードスチレン、フルオルスチレン、トリフルオルスチレン、 2 ブロム一 4 トリフ ルオルメチルスチレン、 4 フルオル 3—トリフルオルメチルスチレンなどが挙げら れる。  Examples of the halogen styrene include chloro styrene, dichloro styrene, trichloro styrene, tetrachloro styrene, pentachloro styrene, bromo styrene, dibromo styrene, odo styrene, fluor styrene, trifluoro styrene, 2-bromo trifluoromethyl styrene. 4 Fluoro 3-trifluoromethylstyrene and the like.
これらのラジカル重合性化合物は、 1種単独で使用してもよいし、 2種以上を併用し てもよい。  These radically polymerizable compounds may be used alone or in combination of two or more.
[0079] 本発明の高分子化合物を合成する際に用いられる溶媒としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、エチレンジクロリド、シクロへキサノン 、メチルェチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、 エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 2 ーメトキシェチルアセテート、 1ーメトキシ 2—プロパノール、 1ーメトキシ 2—プロ ピルアセテート、 N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、ジメチル スルホキシド、トルエン、酢酸ェチル、乳酸メチル、乳酸ェチルなどが挙げられる。こ れらは、 1種単独で用いてもよいし、 2種以上を混合して用いてもよい。  [0079] The solvent used in the synthesis of the polymer compound of the present invention is not particularly limited and can be appropriately selected according to the purpose. For example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, acetone , Methanol, Ethanol, Propanol, Butanol, Ethylene Glycolanol Monomethine Reethenore, Ethylene Glycol Nole Mono Ethenore Ethenore, 2-Methoxy Ethyl Acetate, 1-Methoxy 2-propanol, 1-Methoxy 2-Propyl Acetate, N , N dimethylformamide, N, N dimethylacetamide, dimethyl sulfoxide, toluene, ethyl acetate, methyl lactate, ethyl lactate and the like. These may be used alone or in combination of two or more.
[0080] 本発明の高分子化合物の分子量は、質量平均分子量で、 10, 000以上 100, 000 未満が好ましぐ 10, 000-50, 000力 sより好ましい。前記質量平均分子量が 10, 0 00を下回ると硬化膜強度が不足することがあり、 100, 000を超えると現像性が低下 する傾向にある。 [0080] The molecular weight of the polymer compound of the present invention is preferably 10,000 to less than 100,000, more preferably 10,000 to 50,000 force s in terms of mass average molecular weight. If the mass average molecular weight is less than 1,000, the cured film strength may be insufficient, and if it exceeds 100,000, the developability is reduced. Tend to.
また、本発明の高分子化合物中には、未反応の単量体を含んでいてもよい。この 場合、前記単量体の前記高分子化合物における含有量は、 15質量%以下が好まし い。  Further, the polymer compound of the present invention may contain an unreacted monomer. In this case, the content of the monomer in the polymer compound is preferably 15% by mass or less.
[0081] 本発明に係る高分子化合物は、 1種単独で用いてもよいし、 2種以上を混合して用 いてもよい。また、他の高分子化合物を混合して用いてもよい。  [0081] The polymer compound according to the present invention may be used singly or in combination of two or more. Moreover, you may mix and use another high molecular compound.
前記他の高分子化合物の例としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、特開昭 51— 131706号、特開昭 52— 94388号、特開昭 64 Examples of the other polymer compounds can be appropriately selected according to the purpose without any particular limitation. For example, JP-A-51-131706, JP-A-52-94388, JP-A-64
— 62375号、特開平 2— 97513号、特開平 3— 289656号、特開平 61— 243869 号、特開 2002— 296776号などの各公報に記載の酸性基を有するエポキシアタリレ 一トイ匕合物が挙げられる。 — Epoxy Atalile One-Toy Compound having an acidic group described in JP-A-62375, JP-A-2-97513, JP-A-3-289656, JP-A-61-243869, JP-A-2002-296776, etc. Is mentioned.
ここで、エポキシアタリレートイ匕合物とは、エポキシィ匕合物由来の骨格を有し、かつ 分子中にエチレン性不飽和二重結合とカルボキシル基を含有する化合物である。こ のような化合物は、例えば、多官能エポキシ化合物とカルボキシル基含有モノマーと を反応させ、更に多塩基酸無水物を付加させる方法などで得られる。  Here, the epoxy atalate toy compound is a compound having a skeleton derived from an epoxy compound and containing an ethylenically unsaturated double bond and a carboxyl group in the molecule. Such a compound can be obtained, for example, by a method of reacting a polyfunctional epoxy compound with a carboxyl group-containing monomer and further adding a polybasic acid anhydride.
また、前記他の高分子化合物の例としては、本発明以外の、側鎖に (メタ)アタリロイ ル基、及び酸性基を有するビニル共重合体なども挙げられる。  In addition, examples of the other polymer compound include vinyl copolymers having a (meth) atarylyl group and an acidic group in the side chain other than the present invention.
この場合、前記他の高分子化合物の前記本発明の高分子化合物における含有量 は、 50質量%以下が好ましぐ 30質量%以下がより好ましい。  In this case, the content of the other polymer compound in the polymer compound of the present invention is preferably 50% by mass or less, more preferably 30% by mass or less.
[0082] 前記バインダーの前記感光性組成物中の固形分含有量は、 5〜80質量%が好ま しぐ 10〜70質量%がより好ましい。該固形分含有量が、 5質量%未満であると、感 光層の膜強度が弱くなりやすぐ該感光層の表面のタック性が悪ィ匕することがあり、 8[0082] The solid content of the binder in the photosensitive composition is preferably 5 to 80% by mass, more preferably 10 to 70% by mass. When the solid content is less than 5% by mass, the film strength of the photosensitive layer may be weakened and the tackiness of the surface of the photosensitive layer may be deteriorated immediately.
0質量%を超えると、露光感度が低下することがある。 If it exceeds 0% by mass, the exposure sensitivity may decrease.
[0083] 〔重合性化合物〕 [0083] [Polymerizable compound]
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、エチレン性不飽和結合を 1つ以上有する化合物が好ましい。  The polymerizable compound is not particularly limited and may be appropriately selected depending on the purpose. For example, a compound having one or more ethylenically unsaturated bonds is preferable.
[0084] 前記エチレン性不飽和結合としては、例えば、(メタ)アタリロイル基、(メタ)アクリル アミド基、スチリル基、ビュルエステルやビュルエーテル等のビュル基、ァリルエーテ ルゃァリルエステル等のァリル基、などが挙げられる。 [0084] Examples of the ethylenically unsaturated bond include a (meth) atalyloyl group, a (meth) acrylamido group, a styryl group, a butyl group such as a butyl ester and a butyl ether, and a aryl ether. And aryl groups such as ryalyl esters.
[0085] 前記エチレン性不飽和結合を 1つ以上有する化合物としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 例えば、(メタ)アクリル基を有するモノマー カゝら選択される少なくとも 1種が好適に挙げられる。  [0085] The compound having one or more ethylenically unsaturated bonds is not particularly limited, and can be appropriately selected depending on the purpose. For example, a monomer having a (meth) acryl group is selected. At least one is preferably mentioned.
[0086] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ (メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル (メタ)アタリレート等の単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)アタリレート、ペンタ エリトリトールトリ(メタ)アタリレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジ ペンタエリトリトールペンタ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、 トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイルォ キシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリン トリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノール等の多官能 アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で (メタ) アタリレートイ匕したもの、特公昭 48— 41708号、特公昭 50— 6034号、特開昭 51— 37193号等の各公報に記載されているウレタンアタリレート類;特開昭 48— 64183 号、特公昭 49 43191号、特公昭 52— 30490号等の各公報に記載されているポリ エステルアタリレート類;エポキシ榭脂と (メタ)アクリル酸の反応生成物であるェポキ シアタリレート類等の多官能アタリレートやメタタリレートなどが挙げられる。これらの中 でも、トリメチロールプロパントリ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)ァク リレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジペンタエリトリトールペンタ (メタ)アタリレートが特に好ましい。  [0086] The monomer having a (meth) acryl group is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methallylates such as rate and phenoxychetyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate Rate, trimethylolpropane ditalylate, neopentylglycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol hexane (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (atalylooxypropyl) ether, tri (atalylooxychetyl) isocyanurate, tri (atalyloyl) Oxetyl) cyanurate, glycerin tri (meth) atarylate, polyfunctional alcohols such as trimethylolpropane, glycerin, bisphenol, etc., after addition reaction of ethylene oxide or propylene oxide with (meth) aterol toy Urethane acrylates described in JP-B 48-41708, JP-B 50-6034, JP-A 51-37193, etc .; JP-A 48-64183, JP-B 49 43191, Polyesters described in JP-B 52-30490 and other publications Atalylates; polyfunctional acrylates and metatalates such as epoxide acrylates which are reaction products of epoxy resin and (meth) acrylic acid. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
[0087] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、 5〜50質 量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満で あると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量%を 超えると、感光層の粘着性が強くなりすぎることがある。 [0087] The solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as poor developability and reduced exposure sensitivity may occur. If it exceeds, the adhesiveness of the photosensitive layer may become too strong.
[0088] 〔光重合開始剤〕  [Photopolymerization initiator]
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、約 300〜800nm (より好ましくは 330〜500nm)の範 囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有して ヽるこ とが好ましい。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates. The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).
[0089] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの等)、へキサァリールビイミ ダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォニ ゥム塩、メタ口セン類などが挙げられる。これらの中でも、感光層の感度、保存性、及 び感光層とプリント配線板形成用基板との密着性等の観点から、トリァジン骨格を有 するハロゲンィ匕炭化水素、ォキシム誘導体、ケトンィ匕合物、へキサァリールビイミダゾ ール系化合物が好ましい。  [0089] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (eg, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), hexarylbiimidazole, oxime derivatives, organic peroxides. Products, thio compounds, ketone compounds, aromatic onium salts, meta-octenes, and the like. Among these, from the viewpoints of the sensitivity and storage stability of the photosensitive layer and the adhesion between the photosensitive layer and the printed wiring board forming substrate, a halogenated hydrocarbon having a triazine skeleton, an oxime derivative, a ketone compound, Hexaarylbiimidazole compounds are preferred.
[0090] 前記へキサァリールビイミダゾールとしては、例えば、 2, 2' ビス(2 クロ口フエ- ル) 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビス(o フロロフエ-ル )—4, 4,, 5, 5,—テトラフエ-ルビイミダゾール、 2, 2,—ビス(2 ブロモフエ-ル) —4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビス(2, 4 ジクロロフエ- ル) 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビス(2 クロ口フエ-ル) —4, 4,, 5, 5,一テトラ(3—メトキシフエ-ル)ビイミダゾール、 2, 2,一ビス(2 クロ 口フエ-ル)一 4, 4,, 5, 5,一テトラ(4—メトキシフエ-ル)ビイミダゾール、 2, 2,一ビ ス(4—メトキシフエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビ ス(2, 4 ジクロロフエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一 ビス(2 -トロフエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビ ス(2—メチルフエ-ル)一 4, 4,, 5, 5,一テトラフエ-ルビイミダゾール、 2, 2,一ビス (2—トリフルォロメチルフエ-ル)— 4, 4' , 5, 5,—テトラフエ-ルビイミダゾール、 W 000/52529号公報に記載の化合物などが挙げられる。 Examples of the hexarylbiimidazole include 2, 2 ′ bis (2-clonal ring) 4, 4, 5, 5, 5, monotetraphenyl biimidazole, 2, 2, 1 bis ( o Fluorophore) —4, 4 ,, 5, 5, — Tetraphenol biimidazole, 2, 2, — Bis (2 bromophenol) — 4, 4, 4, 5, 5, monotetraphenol biimidazole, 2 , 2, 1 bis (2, 4 dichlorophenol) 4, 4 ,, 5, 5, 1 tetraphenyl biimidazole, 2, 2, 1 bis (2 x 2 mouthpiece) —4, 4, 5, 5, 1-tetra (3-methoxyphenol) biimidazole, 2, 2, 1-bis (2-cyclophenol) 1, 4, 4, 5, 5, 5, 1-tetra (4-methoxyphenyl) biimidazole, 2, 2, 1 bis (4-methoxyphenyl) 1, 4, 4, 5, 5, 1, tetraphenyl biimidazole 2, 2, 1, bis (2, 4 dichlorophenol) 1, 4, 4, , 5, 5, one tetra Erbiimidazole, 2, 2, 1 Bis (2-Trophenyl) 1, 4, 4, 5, 5, 5, 1 Tetraphenol Biimidazole, 2, 2, 1 Bis (2-Methylphenol) 1 4 , 4 ,, 5, 5, monotetraphenol biimidazole, 2, 2, monobis (2-Trifluoromethylphenol) —4,4 ′, 5,5, -tetraphenylbiimidazole, compounds described in W 000/52529, and the like.
[0091] 前記ビイミダゾール類は、例えば、 Bull. Chem. Soc. Japan, 33, 565 (1960)、 及び J. Org. Chem, 36 (16) 2262 (1971)に開示されている方法により容易に合 成することができる。 [0091] The biimidazoles can be easily prepared by the method disclosed in Bull. Chem. Soc. Japan, 33, 565 (1960), and J. Org. Chem, 36 (16) 2262 (1971), for example. Can be synthesized.
[0092] トリァジン骨格を有するハロゲンィ匕炭化水素化合物としては、例えば、若林ら著、 B ull. Chem. Soc. Japan, 42、 2924 (1969)記載のィ匕合物、英国特許 1388492号 明細書記載の化合物、特開昭 53— 133428号公報記載の化合物、独国特許 3337 024号明細書記載の化合物、 F. C. Schaefer等による J. Org. Chem. ; 29、 1527 (1964)記載の化合物、特開昭 62— 58241号公報記載の化合物、特開平 5— 281 728号公報記載の化合物、特開平 5— 34920号公報記載化合物、米国特許第 421 2976号明細書に記載されている化合物等が挙げられる。  [0092] Examples of halogenated hydrocarbon compounds having a triazine skeleton include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), described in British Patent 1388492 A compound described in JP-A-53-133428, a compound described in DE 3337 024, a compound described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. Examples include compounds described in JP-A 62-58241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, compounds described in US Pat. No. 421 2976, and the like. .
[0093] 前記若林ら著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載の化合物とし ては、例えば、 2—フエ-ル— 4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2 — (4—クロルフエ-ル)— 4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2— ( 4—トリル)— 4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2— (4—メトキシフ ェ-ル)—4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2- (2, 4—ジクロル フエ-ル)— 4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2, 4, 6—トリス(トリ クロルメチル)—1, 3, 5—トリアジン、 2—メチル—4, 6—ビス(トリクロルメチル)—1, [0093] Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include 2-phenol-4,6-bis (trichloromethyl) -1,3. , 5-triazine, 2 — (4-chlorophenol) — 4, 6-bis (trichloromethyl) —1, 3, 5-triazine, 2— (4-tolyl) — 4, 6-bis (trichloromethyl) —1, 3, 5—Triazine, 2— (4-Methoxyphenyl) —4, 6-bis (trichloromethyl) —1, 3, 5—Triazine, 2- (2, 4-Dichlorophenol) — 4, 6-bis (trichloromethyl) -1,3,5-triazine, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichlor) Methyl) -1,
3, 5—トリアジン、 2— n—ノ-ル—4, 6—ビス(トリクロルメチル)—1 , 3, 5—トリアジ ン、及び 2— , α , β—トリクロルェチル) -4, 6—ビス(トリクロルメチル)—1, 3, 5—トリァジンなどが挙げられる。 3,5-triazine, 2-n-nor-4,6-bis (trichloromethyl) -1,3,5-triazine, and 2-, α, β-trichloroethyl) -4, 6— Bis (trichloromethyl) -1, 3, 5-triazine and the like can be mentioned.
[0094] 前記英国特許 1388492号明細書記載の化合物としては、例えば、 2—スチリルー [0094] Examples of the compound described in the British Patent 1388492 include 2-styryl
4, 6—ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2— (4—メチルスチリル)— 4, 6 —ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2— (4—メトキシスチリル)— 4, 6 - ビス(トリクロルメチル)—1, 3, 5—トリアジン、 2— (4—メトキシスチリル)— 4—ァミノ — 6—トリクロルメチル—1, 3, 5—トリァジンなどが挙げられる。 4, 6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4— Methoxystyryl) — 4, 6-bis (trichloromethyl) -1, 3, 5-triazine, 2- (4-methoxystyryl) — 4-amino- 6-trichloromethyl-1, 3, 5-triazine It is done.
[0095] 前記特開昭 53— 133428号公報記載の化合物としては、例えば、 2— (4—メトキシ —ナフト— 1—ィル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (4- エトキシ—ナフ卜— 1—ィル)—4, 6 ビス(卜リクロルメチル)—1, 3, 5 卜リアジン、 2 -〔4— (2—エトキシェチル)—ナフトー 1—ィル〕—4, 6 ビス(トリクロルメチル) 1 , 3, 5 トリァジン、 2- (4, 7 ジメトキシ一ナフトー 1—ィル) 4, 6 ビス(トリクロ ルメチル)— 1, 3, 5 卜リアジン、及び 2— (ァセナフ卜— 5—ィル)—4, 6 ビス(トリ クロルメチル)—1, 3, 5 トリァジンなどが挙げられる。 [0095] Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy). —Naphth—1-yl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4-Ethoxy-naphtho-1-yl) —4, 6 Bis (卜 Lichloromethyl) — 1, 3, 5 卜 riadin, 2- [4- (2-ethoxyethyl) -naphtho-1-yl] -4,6 bis (trichloromethyl) 1, 3, 5 triazine, 2- (4, 7 dimethoxy mononaphtho 1—yl) 4, 6 Bis (trichloromethyl) — 1, 3, 5 卜 lyazine, and 2— (acenaphthol— 5—yl) —4, 6 Bis (trichloromethyl) —1, 3, 5 triazine Etc.
[0096] 前記独国特許 3337024号明細書記載の化合物としては、例えば、 2—(4ースチリ ノレフエ二ノレ) 4、 6 ビス(トリクロロメチノレ)一 1, 3, 5 トリァジン、 2- (4— (4—メト キシスチリル)フエ-ル)—4、 6 ビス(トリクロロメチル)—1, 3, 5 トリァジン、 2- (1 —ナフチルビ-レンフエ-ル)一 4、 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン、 2 クロロスチリルフエ-ル一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4 チォフェン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5— トリアジン、 2— (4 チォフェン一 3 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチ ル)一 1 , 3, 5 トリアジン、 2— (4 フラン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリ クロロメチル) 1, 3, 5 トリァジン、及び 2— (4 ベンゾフラン一 2 ビ-レンフエ- ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが挙げられる。  [0096] Examples of the compounds described in the specification of German Patent 3337024 include, for example, 2- (4-styrene norfeninole) 4,6 bis (trichloromethinole) -1,3,5 triazine, 2- (4— (4-methoxystyryl) phenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (1-naphthyl vinylenephenol) 1,4 bis (trichloromethyl) 1,3 , 5 Triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene) 1,6 bis (trichloromethyl) 1, 3,5 triazine, and 2— (4 benzofuran - Le) 4, 6-bis (trichloromethyl) 1, 3, and 5 Toriajin the like.
[0097] 前記 F. C. Schaefer等による J. Org. Chem. ; 29、 1527 (1964)記載のィ匕合物 としては、例えば、 2—メチルー 4, 6 ビス(トリブロモメチル)一1, 3, 5 トリァジン、 2, 4, 6 トリス(トリブロモメチル)一1, 3, 5 トリアジン、 2, 4, 6 トリス(ジブロモメ チル) 1, 3, 5 トリアジン、 2 ァミノ— 4—メチル—6 トリ(ブロモメチル)— 1, 3, 5 トリァジン、及び 2—メトキシ一 4—メチル 6 トリクロロメチル一 1, 3, 5 トリア ジンなどが挙げられる。  [0097] Examples of the compounds described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer et al. Include 2-methyl-4,6 bis (tribromomethyl) -1,1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) 1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) 1, 3, 5 Triazine, 2 Amamino-4-methyl-6 Tri (Bromomethyl) — 1, 3, 5 triazine and 2-methoxy-4-methyl 6-trichloromethyl 1, 3, 5 triazine.
[0098] 前記特開昭 62— 58241号公報記載の化合物としては、例えば、 2— (4—フエニル ェチ -ルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2— (4— ナフチルー 1ーェチュルフエ-ルー 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジ ン、 2— (4— (4 トリルェチュル)フエ-ル)— 4, 6 ビス(トリクロロメチル)—1 , 3, 5 —トリァジン、 2- (4— (4—メトキシフエ-ル)ェチュルフエ-ル) 4, 6—ビス(トリク 口ロメチル) 1, 3, 5 トリァジン、 2— (4— (4—イソプロピルフエ-ルェチュル)フエ -ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4— (4 ェチルフ ェ -ルェチュル)フエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなど が挙げられる。 [0098] Examples of the compounds described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2— (4— Naphthyl 1-Ethurhue-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Tril-Ethyl) phenol) — 4, 6 Bis (trichloromethyl) —1 , 3, 5 — Triazine, 2- (4— (4-Methoxyphenyl) ether furol) 4, 6—Bis (Trimethylromethyl) 1, 3, 5 Triazine, 2— (4— (4-Isopropylphenol) -Ruechul) Hue 4,6 bis (trichloromethyl) 1,3,5 triazine, 2— (4— (4 ethylfe-lechetur) fehl) 1,4,6 bis (trichloromethyl) 1,3,5 triazine, etc. Is mentioned.
[0099] 前記特開平 5— 281728号公報記載の化合物としては、例えば、 2—(4 トリフル ォロメチルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2, 6 —ジフルオロフェ-ル)—4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジクロロフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジブロモフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが 挙げられる。  [0099] Examples of the compound described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1,6,6 bis (trichloromethyl) 1, 3, 5 triazine and the like.
[0100] 前記特開平 5— 34920号公報記載化合物としては、例えば、 2, 4 ビス(トリクロ口 メチル)— 6— [4— (N, N—ジエトキシカルボ-ルメチルァミノ)—3—ブロモフエ-ル ]— 1, 3, 5 トリァジン、米国特許第 4239850号明細書に記載されているトリハロメ チル— s トリァジン化合物、更に 2, 4, 6 トリス(トリクロロメチル)—s トリァジン、 2 - (4—クロ口フエ-ル) 4, 6—ビス(トリブロモメチル) s トリァジンなどが挙げら れる。  [0100] Examples of the compounds described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromophenol. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
[0101] 前記米国特許第 4212976号明細書に記載されている化合物としては、例えば、ォ キサジァゾール骨格を有する化合物(例えば、 2 トリクロロメチル— 5 フエ二ルー 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4 クロ口フエ二ル)一 1, 3, 4 —ォキサジァゾール、 2 トリクロロメチル一 5— (1—ナフチル) 1, 3, 4—ォキサジ ァゾール、 2 トリクロロメチル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール、 2 トリブ口モメチルー 5—フエ二ルー 1, 3, 4 ォキサジァゾール、 2 トリブ口モメチ ル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール; 2 トリクロロメチル— 5—ス チリル— 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (4 クロルスチリル) —1, 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4—メトキシスチリル)一 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (1—ナフチル)—1, 3, 4—ォ キサジァゾール、 2 トリクロロメチル— 5— (4— n—ブトキシスチリル)— 1, 3, 4—ォ キサジァゾール、 2 トリプロモメチルー 5—スチリルー 1, 3, 4 ォキサジァゾール等 )などが挙げられる。 [0102] 本発明で好適に用いられるォキシム誘導体としては、例えば、下記構造式(1)〜(3[0101] Examples of the compounds described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl). 1-5— (4 Phenyl Phenyl) 1 1, 3, 4 — Oxadiazole, 2 Trichloromethyl 1 5— (1—Naphtyl) 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (2 Naphthyl) —1, 3, 4—Oxadiazole, 2 trimethyl oral methyl-5-phenyl 2, 3, 4 oxadiazole, 2 trimethyl oral — 5— (2 naphthyl) —1, 3, 4-oxadiazole; 2 Trichloromethyl— 5—Styryl— 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (4 Chlorstyryl) —1, 3, 4-Oxadiazole, 2 Trichloromethyl mono 5-— (4-Methoxystyryl) 1,3,4-Oxadiazole, 2 Trichloromethyl-5- (1-Naphtyl) -1,3,4-Oxadiazole, 2Trichloromethyl-5- (4-n-Butoxystyryl) — 1, 3, 4— Oxaziazole, 2-tripromomethyl-5-styryl-1,3,4 oxaziazole, etc.). [0102] Examples of oxime derivatives suitably used in the present invention include structural formulas (1) to (3) below.
4)で表される化合物が挙げられる。 4).
[0103] [化 15] [0103] [Chemical 15]
Figure imgf000047_0001
Figure imgf000047_0002
Figure imgf000047_0003
Figure imgf000047_0001
Figure imgf000047_0002
Figure imgf000047_0003
構造式 (5) 構造式(6)
Figure imgf000047_0004
Structural formula (5) Structural formula (6)
Figure imgf000047_0004
構造式 (7) 構造式(8)
Figure imgf000047_0005
Structural formula (7) Structural formula (8)
Figure imgf000047_0005
構造式 (9) 構造式(10)
Figure imgf000047_0006
Structural formula (9) Structural formula (10)
Figure imgf000047_0006
構造式(11)  Structural formula (11)
化 16] 16]
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0003
Figure imgf000048_0001
Figure imgf000048_0002
Figure imgf000048_0003
[0105] [化 17] [0105] [Chemical 17]
Figure imgf000049_0001
Figure imgf000049_0001
[0106] [化 18] [0106] [Chemical 18]
Figure imgf000050_0001
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0002
構造式 (30) n-C8H17 Structural formula (30) nC 8 H 17
構造式 (31 ) カンファー  Structural formula (31) camphor
構造式(32) p-CH3C6H4 Structural formula (32) p-CH 3 C 6 H 4
Figure imgf000050_0003
Figure imgf000050_0003
R  R
構造式 (33) n-C3H7 Structural formula (33) nC 3 H 7
構造式 (34) p-CH3C6H4 前記ケトン化合物としては、例えば、ベンゾフエノン、 2 メチルベンゾフエノン、 3 メチルベンゾフエノン、 4 メチルベンゾフエノン、 4ーメトキシベンゾフエノン、 2 クロ 口べンゾフエノン、 4 クロ口べンゾフエノン、 4 ブロモベンゾフエノン、 2—カノレボキ シベンゾフエノン、 2—エトキシカルボニルベンゾルフェノン、ベンゾフエノンテトラカル ボン酸又はそのテトラメチルエステル、 4, 4, 一ビス(ジアルキルァミノ)ベンゾフエノン 類(例えば、 4, 4, 一ビス(ジメチルァミノ)ベンゾフエノン、 4, 4, 一ビスジシクロへキシ ルァミノ)ベンゾフエノン、 4, 4, 一ビス(ジェチルァミノ)ベンゾフエノン、 4, 4, 一ビス( ジヒドロキシェチルァミノ)ベンゾフエノン、 4—メトキシ一 4 '—ジメチルァミノべンゾフエ ノン、 4, 4 '—ジメトキシベンゾフエノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチ ルアミノアセトフエノン、ベンジル、アントラキノン、 2—t—ブチルアントラキノン、 2—メ チノレアントラキノン、フエナントラキノン、キサントン、チォキサントン、 2—クロノレーチォ キサントン、 2, 4 ジェチルチオキサントン、フルォレノン、 2 べンジルージメチルァ ミノー 1一 (4一モルホリノフエ-ル)一 1ーブタノン、 2—メチルー 1一 〔4一(メチルチオ )フエ-ル〕 2 モルホリノ一 1—プロパノン、 2 ヒドロキシー 2—メチルー〔4— ( 1— メチルビ-ル)フエ-ル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類 (例えば、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインプロピ ノレエーテノレ、ベンゾインイソプロピノレエーテノレ、ベンゾインフエ-ノレエーテノレ、ベンジ ルジメチルケタール)、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチル アタリドン、 N ブチル一クロロアタリドンなどが挙げられる。 Structural formula (34) p-CH 3 C 6 H 4 Examples of the ketone compound include benzophenone, 2 methylbenzophenone, 3 methylbenzophenone, 4 methylbenzophenone, 4-methoxybenzophenone, 2 Mouth Benzophenone, 4 Black Mouth Benzophenone, 4 Bromobenzophenone, 2-Kanoreboki Cibenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenone tetracarboxylic acid or its tetramethyl ester, 4, 4, monobis (dialkylamino) benzophenones (eg, 4, 4, monobis (dimethylamino) benzophenone, 4, 4, 1-bisdicyclohexylamino) benzophenone, 4, 4, 1-bis (jetylamino) benzophenone, 4, 4, 1-bis (dihydroxyethylamino) benzophenone, 4-methoxy-1-4′-dimethylaminobenzophenone, 4, 4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methinoanthraquinone, phenanthraquinone, xanthone, Thioxanthone, 2-Chrono 1-butanone, 2-methyl-1 1 [4 (methylthio) phenol] 2 morpholino 1-butanone 2-methyl-1 1- (4- (methylthio) phenol) 2 morpholino 1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenol] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ether, benzoin propyleneate, benzoin isopropylene Noreethenore, benzoinphenol-Noreetenore, benzyl dimethyl ketal), attaridone, chloroataridon, N-methylattaridone, N-butyl attaridone, N-butyl monochloro attaridone and the like.
[0108] 前記メタ口セン類としては、例えば、ビス( 7? 5—2, 4 シクロペンタジェン一 1—ィル )—ビス(2, 6 ジフロロ一 3— ( 1H ピロール一 1—ィル) フエニル)チタニウム、 η 5—シクロペンタジェ -ル一 6—タメ-ル一アイアン(1 + )—へキサフロロホスフエ ート(1 )、特開昭 53— 133428号公報、特公昭 57— 1819号公報、同 57— 6096 号公報、及び米国特許第 3615455号明細書に記載された化合物などが挙げられる The [0108] The meta-port mosses, such as bis (7 5 -2, 4 cyclopentadiene one 1-I le?) - bis (2, 6-difluoro one 3- (IH-pyrrol-one 1-I le) Phenyl) titanium, η 5 —cyclopentagel- 6 —thamale iron (1 +) -hexafluorophosphate (1), JP-A-53-133428, JP-B-57-1819 No. 57-6096, US Pat. No. 3,615,455, and the like.
[0109] また、上記以外の光重合開始剤として、アタリジン誘導体 (例えば、 9 フエ-ルァク リジン、 1 , 7 ビス(9、 9,—アタリジ-ル)ヘプタン等)、 Ν フエ-ルグリシン等、ポリ ハロゲン化合物(例えば、四臭化炭素、フエ-ルトリブ口モメチルスルホン、フエ-ルト リクロロメチルケトン等)、クマリン類(例えば、 3— (2—ベンゾフロイル)—7—ジェチ ルァミノクマリン、 3— (2 ベンゾフロイル) - 7 - ( 1—ピロリジ -ル)クマリン、 3 ベン ゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチルアミ ノクマリン、 3—(4ージメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3,3,一 カルボ-ルビス(5, 7—ジ—n—プロポキシクマリン)、 3, 3,—カルボ-ルビス(7—ジ ェチルァミノクマリン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7 ージェチルァミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルアミ ノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7 —ジプロポキシクマリン、 7 ベンゾトリアゾール 2—イルクマリン、また、特開平 5-1 9475号、特開平 7 - 271028号、特開 2002 - 363206号、特開 2002 - 363207号、 特開 2002- 363208号、特開 2002- 363209号公報等に記載のクマリン化合物など )、アミン類 (例えば、 4ージメチルァミノ安息香酸ェチル、 4ージメチルァミノ安息香酸 n—ブチル、 4ージメチルァミノ安息香酸フエネチル、 4ージメチルァミノ安息香酸 2— フタルイミドエチル、 4ージメチルァミノ安息香酸 2—メタクリロイルォキシェチル、ペン タメチレンビス(4 ジメチルァミノべンゾエート)、 3 ジメチルァミノ安息香酸のフエネ チル、ペンタメチレンエステル、 4 ジメチルァミノべンズアルデヒド、 2 クロル一 4— ジメチルァミノべンズアルデヒド、 4—ジメチルァミノべンジルアルコール、ェチル(4— ジメチルァミノべンゾィル)アセテート、 4—ピベリジノアセトフエノン、 4—ジメチルアミ ノベンゾイン、 N, N—ジメチルー 4—トルイジン、 N, N ジェチルー 3—フエネチジ ン、トリベンジルァミン、ジベンジルフエ-ルァミン、 N—メチル N—フエ-ルペンジ ルァミン、 4—ブロム一 Ν,Ν—ジメチルァニリン、トリドデシルァミン、ァミノフルオラン 類(ODB, ODBII等)、クリスタルバイオレツトラクトン、ロイコクリスタルバイオレット等) 、ァシルホスフィンォキシド類(例えば、ビス(2, 4, 6 トリメチルベンゾィル)—フエ二 ルホスフィンォキシド、ビス(2, 6 ジメトキシベンゾィル)一2, 4, 4 トリメチル一ぺ ンチルフエ-ルホスフィンォキシド、 LucirinTPOなど)などが挙げられる。 [0109] Further, as photopolymerization initiators other than those mentioned above, atalidine derivatives (for example, 9-phenol lysine, 1,7 bis (9, 9,-attalyzyl) heptane, etc.), Ν-phenol glycine, etc., poly Halogen compounds (eg, carbon tetrabromide, felt rib mouth methylsulfone, felt trichloromethyl ketone, etc.), coumarins (eg, 3- (2-benzofuroyl) -7-jetylaminocoumarin, 3- (2 Benzofuroyl)-7-(1-Pyrrolidyl) coumarin, 3 Benzoyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylami Nocoumarin, 3- (4-Dimethylaminobenzol) 7-Jetylaminocoumarin, 3,3,1 carborubis (5,7-di-n-propoxycoumarin), 3, 3, -carborubis (7- Dimethylaminocoumarin), 3-benzoyl 7-methoxycoumarin, 3- (2-furoyl) 7-jetylaminocoumarin, 3- (4-jetylaminocinnamoyl) 7-jetylaminocoumarin, 7- Methoxy-1- (3-pyridylcarbo) coumarin, 3-benzoyl 5, 7-dipropoxycoumarin, 7 benzotriazol 2-ylcoumarin, and JP-A-5-9475, JP-A-7-271028 JP 2002-363206, JP 2002-363207, JP 2002-363208, JP 2002-363209, etc.), amines (for example, 4-dimethylaminobenzoate, 4-dimethylaminobenzoate, etc.) Acid n-butyl, 4-dimethylaminobenzoic acid phenethyl, 4-dimethylaminobenzoic acid 2-phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxychetyl, pentamethylenebis (4 dimethylaminobenzoate), 3 dimethylaminobenzoic acid phenethyl Methylene ester, 4-dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-pivelidinoacetophenone, 4-dimethylamino Benzoin, N, N-dimethyl-4-toluidine, N, N jetyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl N-phenylpentamine, 4-bromo-1,4-dimethyl Aniline, tridodecylamine, aminofluoranes (ODB, ODBII, etc.), crystal bioretactone, leucocrystal violet, etc., isylphosphinoxides (eg, bis (2, 4, 6 trimethylbenzoyl) -phenol Diphosphinoxide, bis (2,6 dimethoxybenzoyl) -1,2,4,4 trimethyl monopentylphenol phosphine oxide, LucirinTPO, etc.).
更に、米国特許第 2367660号明細書に記載されているビシナルポリケタルド-ル 化合物、米国特許第 2448828号明細書に記載されて 、るァシロインエーテルィ匕合 物、米国特許第 2722512号明細書に記載されている oc—炭化水素で置換された芳 香族ァシロインィ匕合物、米国特許第 3046127号明細書及び同第 2951758号明細 書に記載の多核キノンィ匕合物、特開 2002— 229194号公報に記載の有機ホウ素化 合物、ラジカル発生剤、トリアリールスルホ-ゥム塩 (例えば、へキサフロロアンチモン やへキサフロロホスフェートとの塩)、ホスホ-ゥム塩化合物(例えば、(フエ-ルチオ フエ-ル)ジフエ-ルスルホ-ゥム塩等)(カチオン重合開始剤として有効)、 WO01/ 71428号公報記載のォ-ゥム塩ィ匕合物などが挙げられる。 Further, the vicinal polyketaldol compound described in US Pat. No. 2,367,660, the acyloin etheric compound described in US Pat. No. 2,488,828, US Pat. No. 2,722,512 Oc-hydrocarbon substituted aromatic acyloyne compounds described in the specification, polynuclear quinone compounds described in U.S. Pat. Nos. 3046127 and 2951758, JP-A-2002- Organoboron compounds, radical generators, and triarylsulfo salts described in Japanese Patent No. 229194 (for example, hexafluoroantimony Salt with hexafluorophosphate), phosphorous salt compounds (for example, (phenolthiophenol) diphenylsulfosulfate) (effective as a cationic polymerization initiator), WO01 / 71428 Examples of the above-mentioned form salt compounds.
[0111] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。 2種 以上の組合せとしては、例えば、米国特許第 3549367号明細書に記載のへキサァ リールビイミダゾールと 4 アミノケトン類との組合せ、特公昭 51—48516号公報に 記載のベンゾチアゾール化合物とトリハロメチルー s—トリァジン化合物の組合せ、ま た、芳香族ケトン化合物 (例えば、チォキサントン等)と水素供与体 (例えば、ジアルキ ルァミノ含有ィ匕合物、フエノール化合物等)の組合せ、へキサァリールビイミダゾール とチタノセンとの組合せ、クマリン類とチタノセンとフエ-ルグリシン類との組合せなど が挙げられる。 [0111] The photopolymerization initiators may be used singly or in combination of two or more. Examples of combinations of two or more include, for example, a combination of hexarylbiimidazole and 4 aminoketones described in US Pat. No. 3,549,367, a benzothiazole compound described in Japanese Patent Publication No. 51-48516 and trihalomethyl-s— A combination of a triazine compound, a combination of an aromatic ketone compound (for example, thixanthone) and a hydrogen donor (for example, a dialkamino-containing compound, a phenol compound, etc.), a hexarylbiimidazole and a titanocene. Combinations, and combinations of coumarins, titanocene, and ferroglycines.
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物と後述する 増感剤としてのアミンィ匕合物とを組合せた複合光開始剤、へキサァリールビイミダゾ ール化合物、チタノセンなどが挙げられる。  Particularly preferable examples of the photopolymerization initiator include halogenated hydrocarbons having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton, which are compatible with laser light having a wavelength of 405 nm in the later-described exposure. Examples thereof include a composite photoinitiator obtained by combining a compound and an amine compound as a sensitizer described later, a hexaarylbiimidazole compound, and titanocene.
また、 a—アミノアルキルケトン類とチォキサントン等の芳香族ケトン化合物とを増感 剤として組み合わせたものも好ま 、。  Also preferred is a combination of a-aminoalkyl ketones and an aromatic ketone compound such as thixanthone as a sensitizer.
[0112] 前記光重合開始剤の前記感光性組成物における含有量は、 0. 1〜30質量%が 好ましく、 0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。 [0112] The content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
[0113] 〔アルカリ不溶性の熱架橋剤〕 [0113] [Alkali-insoluble thermal crosslinking agent]
前記アルカリ不溶性の熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択 することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を 改良するために、現像性等に悪影響を与えない範囲で、例えば、エポキシ化合物を 含む化合物を用いることができる。  The alkali-insoluble thermal crosslinking agent is not particularly limited and can be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, For example, a compound containing an epoxy compound can be used as long as it does not adversely affect developability.
前記エポキシィ匕合物としては、例えば、ビキシレノール型もしくはビフエノール型ェ ポキシ榭脂 (「YX4000ジャパンエポキシレジン社製」等)又はこれらの混合物、イソ シァヌレート骨格等を有する複素環式エポキシ榭脂(「TEPIC;日産化学工業社製」 、「ァラルダイト PT810 ;チノく'スペシャルティ'ケミカルズ社製」等)、ビスフエノール A 型エポキシ榭脂、ノボラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、水添 ビスフエノール A型エポキシ榭脂、ビスフエノール S型エポキシ榭脂、フエノールノボラ ック型エポキシ榭脂、クレゾ ルノボラック型エポキシ榭脂、ハロゲンィ匕エポキシ榭脂 (例えば、低臭素化エポキシ榭脂、高ハロゲン化エポキシ榭脂、臭素化フエノールノ ポラック型エポキシ榭脂など)、ァリル基含有ビスフエノール A型エポキシ榭脂、トリス フエノールメタン型エポキシ榭脂、ジフエ-ルジメタノール型エポキシ榭脂、フエノー ルビフエ-レン型エポキシ榭脂、ジシクロペンタジェン型エポキシ榭脂 (「HP— 7200 , HP - 7200H;大日本インキ化学工業社製」等)、グリシジルァミン型エポキシ榭脂 (ジアミノジフエ-ルメタン型エポキシ榭脂、ジグリシジルァ二リン、トリグリシジルァミノ フエノール等)、グリジジルエステル型エポキシ榭脂(フタル酸ジグリシジルエステル、 アジピン酸ジグリシジルエステル、へキサヒドロフタル酸ジグリシジルエステル、ダイマ 一酸ジグリシジルエステル等)ヒダントイン型エポキシ榭脂、脂環式エポキシ榭脂 (3, 4 エポキシシクロへキシノレメチノレー 3'、 4' エポキシシクロへキサンカノレボキシレ ート、ビス(3, 4—エポキシシクロへキシノレメチノレ)アジペート、ジシクロペンタジェンジ エポキシド、「GT— 300、 GT— 400、 ZEHPE3150 ;ダイセル化学工業製」等、)、ィ ミド型脂環式エポキシ榭脂、トリヒドロキシフエ-ルメタン型エポキシ榭脂、ビスフエノー ル Aノボラック型エポキシ榭脂、テトラフエ-ロールエタン型エポキシ榭脂、グリシジル フタレート榭脂、テトラグリシジルキシレノィルエタン榭脂、ナフタレン基含有エポキシ 榭脂(ナフトールァラルキル型エポキシ榭脂、ナフトールノボラック型エポキシ榭脂、 4 官能ナフタレン型エポキシ榭脂、市販品としては「ESN— 190, ESN— 360 ;新日鉄 ィ匕学ネ土製」、「: HP— 4032, EXA-4750,: EXA— 4700 ;大日本インキイ匕学工業ネ土 製」等)、フエノール化合物とジビュルベンゼンゃジシクロペンタジェン等のジォレフィ ン化合物との付加反応によって得られるポリフエノールイ匕合物と、ェピクロルヒドリンと の反応物、 4ービニルシクロへキセン 1 オキサイドの開環重合物を過酢酸等でェ ポキシ化したもの、線状含リン構造を有するエポキシ榭脂、環状含リン構造を有する エポキシ榭脂、 α—メチルスチルベン型液晶エポキシ榭脂、ジベンゾィルォキシベン ゼン型液晶エポキシ榭脂、ァゾフエニル型液晶エポキシ榭脂、ァゾメチンフエニル型 液晶エポキシ榭脂、ビナフチル型液晶エポキシ榭脂、アジン型エポキシ榭脂、グリシ ジルメタアタリレート共重合系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製 」等)、シクロへキシルマレイミドとグリシジルメタアタリレートとの共重合エポキシ榭脂、 ビス(グリシジルォキシフエ-ル)フルオレン型エポキシ榭脂、ビス(グリシジルォキシ フエニル)ァダマンタン型エポキシ榭脂などが挙げられる力 これらに限られるもので はない。これらのエポキシ榭脂は、 1種単独で使用してもよいし、 2種以上を併用して ちょい。 Examples of the epoxy compound include bixylenol type or biphenol type epoxy resin (“YX4000 Japan Epoxy Resin” etc.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“ TEPIC; manufactured by Nissan Chemical Industries, Ltd. , "Araldite PT810; manufactured by Chinoku 'Specialty'Chemicals", etc.), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, bis Phenolic S type epoxy resin, Phenolic novolac type epoxy resin, Cresol novolac type epoxy resin, Halogenated epoxy resin (for example, low brominated epoxy resin, high halogenated epoxy resin, brominated phenolic resin) Type epoxy resin), aryl group-containing bisphenol A type epoxy resin, trisphenol methane type epoxy resin, diphenol dimethanol type epoxy resin, phenol biphenol type epoxy resin, dicyclopentagen type epoxy Oil (“HP-7200, HP-7200H; manufactured by Dainippon Ink and Chemicals” etc.), Lysidylamine type epoxy resin (diaminodiphenylmethane type epoxy resin, diglycidyl dilin, triglycidyl amino phenol, etc.), glycidyl ester type epoxy resin (phthalic acid diglycidyl ester, adipic acid diglycidyl ester, hexahydrophthalate) Acid diglycidyl ester, dimer diglycidyl ester, etc.) Hydantoin type epoxy resin, cycloaliphatic epoxy resin (3, 4 epoxycyclohexenoremethinole 3 ', 4' epoxycyclohexane canololeoxy Bis (3,4-epoxycyclohexenoremethinole) adipate, dicyclopentadiene epoxide, “GT-300, GT-400, ZEHPE3150; manufactured by Daicel Chemical Industries”, etc.), imido-type alicyclic epoxy cages Oil, trihydroxyphenol methane type epoxy resin, bisphenol A Novolac-type epoxy resin, tetra-phenol-ethane epoxy resin, glycidyl phthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin (naphthol aralkyl epoxy resin, naphthol novolac epoxy) Resin, tetrafunctional naphthalene-type epoxy resin, commercially available products are “ESN-190, ESN-360; manufactured by Nippon Steel Corporation”, “: HP-4032, EXA-4750 ,: EXA-4700; Dainippon Ink A product of polyphenolic compounds obtained by addition reaction of phenolic compounds with diolefin compounds such as dibutenebenzene dicyclopentagen and epichlorohydrin. 4-epoxy ring-opened polymer of 4-vinylcyclohexene 1 oxide with peracetic acid, epoxy resin having linear phosphorus-containing structure, Epoxy resin having cyclic phosphorus-containing structure, α-methylstilbene type liquid crystal epoxy resin, dibenzoyloxybenzene type liquid crystal epoxy resin, azophenyl type liquid crystal epoxy resin, azomethine phenyl type Liquid crystal epoxy resin, binaphthyl type liquid crystal epoxy resin, azine type epoxy resin, glycidyl meta acrylate copolymer epoxy resin (“CP-50S, CP-50M; manufactured by NOF Corporation”, etc.), cyclohexyl Copolymerized epoxy resin of maleimide and glycidyl meta acrylate, bis (glycidyloxyphenyl) fluorene type epoxy resin, bis (glycidyloxyphenyl) adamantane type epoxy resin, etc. It is not a thing. These epoxy resins can be used alone or in combination of two or more.
[0114] また、 |8位にアルキル基を有するエポキシ基を少なくとも 1分子中に 2つ含むェポキ シ化合物を用いることができ、 β位がアルキル基で置換されたエポキシ基 (より具体 的には、 j8—アルキル置換グリシジル基など)を含む化合物が特に好ましい。  [0114] Further, an epoxy compound containing at least two epoxy groups having an alkyl group at the 8-position in a molecule can be used, and an epoxy group in which the β-position is substituted with an alkyl group (more specifically, , J8-alkyl substituted glycidyl groups, etc.) are particularly preferred.
前記 j8位にアルキル基を有するエポキシ基を少なくとも含むエポキシィ匕合物は、 1 分子中に含まれる 2個以上のエポキシ基のすべてが 13 アルキル置換グリシジル基 であってもよぐ少なくとも 1個のエポキシ基が j8—アルキル置換グリシジル基であつ てもよい。  The epoxy compound containing at least the epoxy group having an alkyl group at the j8 position is composed of at least one epoxy group in which all of two or more epoxy groups contained in one molecule may be 13 alkyl-substituted glycidyl groups. The group may be a j8-alkyl substituted glycidyl group.
[0115] 前記 /3 アルキル置換グリシジル基としては、特に制限は無ぐ 目的に応じて適宜 選択することができ、例えば、 j8—メチルダリシジル基、 13ーェチルダリシジル基、 13 プロピルグリシジル基、 13ーブチルダリシジル基、などが挙げられ、これらの中でも 、前記感光性榭脂組成物の保存安定性を向上させる観点、及び合成の容易性の観 点力ら、 j8—メチルダリシジル基が好ましい。  [0115] The / 3 alkyl-substituted glycidyl group is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include a j8-methyldaricidyl group, a 13-ethyldaricidyl group, and a 13 propylglycidyl group. 13-butyldaricidyl group, etc. Among these, from the viewpoint of improving the storage stability of the photosensitive resin composition and the viewpoint of ease of synthesis, j8-methyldaricidyl group Is preferred.
[0116] 前記 /3位にアルキル基を有するエポキシ基を含むエポキシィ匕合物としては、例え ば、多価フエノール化合物と j8—アルキルェピハロヒドリンとから誘導されたエポキシ 化合物が好ましい。  [0116] As the epoxy compound containing an epoxy group having an alkyl group at the / 3-position, for example, an epoxy compound derived from a polyvalent phenol compound and a j8-alkylepihalohydrin is preferable.
[0117] 前記 /3—アルキルェピノ、ロヒドリンとしては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、 j8—メチルェピクロロヒドリン、 13 メチルェピブロモヒドリ ン、 13ーメチルェピフロロヒドリン等の j8—メチルェピハロヒドリン; 13ーェチルェピクロ ロヒドリン、 j8—ェチルェピブ口モヒドリン、 —ェチルェピフロロヒドリン等の —ェチ ルェピハロヒドリン; β—プロピルェピクロロヒドリン、 β—プロピルェピブ口モヒドリン、 β プロピノレエピフロロヒドリン等の /3 プロピノレエピハロヒドリン; 13ーブチノレエピク ロロヒドリン、 j8—ブチルェピブ口モヒドリン、 j8—ブチルェピフロロヒドリン等の j8—ブ チルェピハロヒドリン;などが挙げられる。これらの中でも、前記多価フエノールとの反 応性及び流動性の観点から、 β—メチルェピノ、ロヒドリンが好ましい。 [0117] The / 3-alkylepino and rhohydrin are not particularly limited and can be appropriately selected according to the purpose. For example, j8-methylepichlorohydrin, 13 methylepibromohydrin, 13- J8-methylepihalohydrin, such as methylepifluorohydrin; 13-ethylepichlorohydrin, j8-ethylepibu mouth mohydrin, —ethylepifluorohydrin, etc. —ethylepihalohydrin; β-propyle / 3-propinoreepihalohydrin such as picrohydrin, β-propylepive mouth mohydrin, βpropinoreepifluorohydrin; 13-butinorepic Lorhydrin, j8-butylepiporophylline mohydrin, j8-butylepihalohydrin such as j8-butylepifluorohydrin; and the like. Among these, β-methylepino and rhohydrin are preferable from the viewpoints of reactivity with the polyhydric phenol and fluidity.
[0118] 前記多価フ ノールイ匕合物としては、 1分子中に 2以上の芳香族性水酸基を含有 する化合物であれば、特に制限は無ぐ 目的に応じて適宜選択することができ、例え ば、ビスフエノール Α、ビスフエノール F、ビスフエノール S等のビスフエノール化合物、 ビフエノール、テトラメチルビフエノール等のビフエノール化合物、ジヒドロキシナフタレ ン、ビナフトール等のナフトール化合物、フエノールーホルムアルデヒド重縮合物等 のフエノールノボラック榭脂、クレゾ一ルーホルムアルデヒド重縮合物等の炭素数 1〜 10のモノアルキル置換フエノールーホルムアルデヒド重縮合物、キシレノールーホル ムアルデヒド重縮合物等の炭素数 1〜10のジアルキル置換フエノールーホルムアル デヒド重縮合物、ビスフエノール A ホルムアルデヒド重縮合物等のビスフエノール化 合物 ホルムアルデヒド重縮合物、フエノールと炭素数 1〜10のモノアルキル置換フ ェノールとホルムアルデヒドとの共重縮合物、フエノール化合物とジビュルベンゼンの 重付加物などが挙げられる。これらの中でも、例えば、流動性及び保存安定性を向 上させる目的で選択する場合には、前記ビスフエノールイ匕合物が好ましい。  [0118] The polyhydric phenolic compound is not particularly limited as long as it is a compound containing two or more aromatic hydroxyl groups in one molecule, and can be appropriately selected according to the purpose. For example, bisphenol compounds such as bisphenol Α, bisphenol F, and bisphenol S, biphenol compounds such as biphenol and tetramethylbiphenol, naphthol compounds such as dihydroxynaphthalene and binaphthol, and phenol-formaldehyde polycondensates C1-C10 monoalkyl substituted phenol-formaldehyde polycondensate such as phenol novolac resin, creso-one formaldehyde polycondensate, etc. C1-C10 dialkyl substituted phenol such as xylenol-formaldehyde polycondensate Ruholmaldehyde polycondensate, bisphenol A formaldehyde Bisphenol compounds such as polycondensates Formaldehyde polycondensates, copolycondensates of phenol and monoalkyl-substituted phenols with 1 to 10 carbon atoms and formaldehyde, polyadducts of phenolic compounds and dibutenebenzene It is done. Among these, for example, when selecting for the purpose of improving fluidity and storage stability, the above-mentioned bisphenol compound is preferable.
[0119] 前記 /3位にアルキル基を有するエポキシ基を含むエポキシィ匕合物としては、例え ば、ビスフエノール Aのジ一 13—アルキルグリシジルエーテル、ビスフエノール Fのジ β アルキルグリシジルエーテル、ビスフエノール Sのジー 13 アルキルグリシジ ルエーテル等のビスフエノール化合物のジー /3 アルキルグリシジルエーテル;ビフ ェノールのジー 13 アルキルグリシジルエーテル、テトラメチルビフエノールのジー 13 アルキルグリシジルエーテル等のビフエノール化合物のジー 13 アルキルグリシジ ルエーテル;ジヒドロキシナフタレンのジー /3 アルキルグリシジルエーテル、ビナフ トールのジー 13 アルキルグリシジルエーテル等のナフトール化合物の 13 アルキ ルグリシジルエーテル;フエノールーホルムアルデヒド重縮合物のポリ 13 アルキ ルグリシジルエーテル;クレゾ一ルーホルムアルデヒド重縮合物のポリ 13 アルキ ルグリシジルエーテル等の炭素数 1〜10のモノアルキル置換フエノールーホルムァ ルデヒド重縮合物のポリ β アルキルグリシジルエーテル;キシレノールーホルム アルデヒド重縮合物のポリ β アルキルグリシジルエーテル等の炭素数 1〜10の ジアルキル置換フエノールーホルムアルデヒド重縮合物のポリ 13 アルキルグリシ ジルエーテル;ビスフエノール Α—ホルムアルデヒド重縮合物のポリ 13 アルキル グリシジルエーテル等のビスフエノール化合物 ホルムアルデヒド重縮合物のポリ β アルキルグリシジルエーテル;フエノール化合物とジビュルベンゼンの重付カロ物 のポリ 13 アルキルグリシジルエーテル;などが挙げられる。 [0119] Examples of the epoxy compound containing an epoxy group having an alkyl group at the / 3-position include di-13-alkyl glycidyl ether of bisphenol A, di-β-alkyl glycidyl ether of bisphenol F, and bisphenol. G of S 13 Bisphenol compounds such as alkyl glycidyl ethers / 3 Alkyl glycidyl ethers; Biphenols of G 13 Alkyl glycidyl ethers, tetramethyl biphenols of G 13 Alkyl glycidyl ethers of G of 13 phenols Ether: dihydroxynaphthalene diol / 3 alkyl glycidyl ether, binaphthol diol 13 alkyl glycidyl ether 13 alk glycidyl ether; phenol-formaldehyde polycondensate polycondensate 13 alkyl glycidyl ethers; poly 13 alkyl glycidyl ethers such as poly 13 alkyl glycidyl ethers, such as poly 13 alkyl glycidyl ethers, polyalkyl alkyl glycidyl ethers; 1-13 carbon dialkyl substituted phenol-formaldehyde polycondensate poly 13 alkyl glycidyl ether such as poly β alkyl glycidyl ether of aldehyde polycondensate; bisphenol ポ リ poly 13 alkyl glycidyl ether of formaldehyde polycondensate, etc. Polyβ alkyl glycidyl ether of formaldehyde polycondensate; poly 13 alkyl glycidyl ether of heavy compound of phenol compound and dibutenebenzene; and the like.
これらの中でも、下記構造式 (i)で表されるビスフ ノールイ匕合物、及びこれとェピク ロロヒドリンなど力 得られる重合体力 誘導される β—アルキルグリシジルエーテル 、及び下記構造式 (ii)で表されるフ ノールイ匕合物 ホルムアルデヒド重縮合物のポ リー j8—アルキルグリシジルエーテルが好ましい。  Among these, the bisphenol compound represented by the following structural formula (i), and the resulting polymer force such as epichlorohydrin, induced β-alkylglycidyl ether, and the following structural formula (ii) Polyol of formaldehyde polycondensate j8-alkyl glycidyl ether is preferred.
[化 19] [Chemical 19]
Figure imgf000057_0001
Figure imgf000057_0001
[化 20]  [Chemical 20]
0  0
Π 〇 〇 〇
R" 構造式(ii ) R "structural formula (ii)
Figure imgf000057_0002
」 n
Figure imgf000057_0002
N
ただし、前記構造式 (i)中、 Rは水素原子及び炭素数 1〜6のアルキル基のいずれ かを表し、 nは 0〜20の整数を表す。  However, in the structural formula (i), R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 20.
ただし、前記構造式 (ii)中、 Rは水素原子及び炭素数 1〜6のアルキル基のいずれ かを表し、 R"は水素原子、及び CHのいずれかを表し、 nは 0〜20の整数を表す。  In the structural formula (ii), R represents either a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R "represents either a hydrogen atom or CH, and n is an integer of 0 to 20 Represents.
3  Three
これら 13位にアルキル基を有するエポキシ基を含むエポキシィ匕合物は、 1種単独で 使用してもよいし、 2種以上を併用してもよい。また 1分子中に少なくとも 2つのォキシ ラン環を有するエポキシィ匕合物、及び j8位にアルキル基を有するエポキシ基を含む エポキシィ匕合物を併用することも可能である。  These epoxy compounds containing an epoxy group having an alkyl group at the 13-position may be used alone or in combination of two or more. An epoxy compound having at least two oxirane rings in one molecule and an epoxy compound containing an epoxy group having an alkyl group at the j8 position can be used in combination.
また、前記アルカリ不溶性の熱架橋剤としては、ォキセタンィ匕合物を用いることがで きる。該ォキセタンィ匕合物としては、例えば、ビス [ (3—メチル 3—ォキセタ-ルメト キシ)メチル]エーテル、ビス [ ( 3—ェチル 3—ォキセタ -ルメトキシ)メチル]エーテ ル、 1, 4 ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビ ス [ ( 3—ェチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 ( 3 -メチル 3—ォキ セタ -ル)メチルアタリレート、 (3ーェチルー 3ーォキセタ -ル)メチルアタリレート、 (3 メチル 3—ォキセタ -ル)メチルメタタリレート、 ( 3—ェチル 3—ォキセタ -ル)メ チルメタタリレート又はこれらのオリゴマーあるいは共重合体等の多官能ォキセタン類 の他、ォキセタン基を有する化合物と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、 力ルド型ビスフエノール類、カリックスァレーン類、力リックスレゾルシンアレーン類、シ ルセスキォキサン等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、こ の他、ォキセタン環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合 体なども挙げられる。 As the alkali-insoluble thermal crosslinking agent, an oxetane compound can be used. wear. Examples of the oxetane compound include bis [(3-methyl-3-oxeta-l-methoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1,4 bis [( 3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate, ( 3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methyltransferase meth Tari rate or the like of these oligomers or copolymers In addition to polyfunctional oxetanes, compounds with oxetane groups, novolac resin, poly (p-hydroxystyrene), force-type bisphenols, calixarenes, force Rix resole Examples include ether compounds such as synarenes and sesame resins having a hydroxyl group such as silsesquioxane, and also copolymers of unsaturated monomers having an oxetane ring and alkyl (meth) acrylate. It is done.
[0121] また、前記アルカリ不溶性の熱架橋剤としては、特開平 5— 9407号公報記載のポ リイソシァネートイ匕合物を用いることもできる。該ポリイソシァネートイ匕合物は、少なくと も 2つのイソシァネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合 物から誘導されていてもよい。具体的には、 2官能イソシァネート(例えば、 1, 3 フ ェ-レンジイソシァネートと 1, 4 フエ-レンジイソシァネートとの混合物、 2, 4—及び 2, 6 トルエンジイソシァネート、 1, 3 及び 1, 4 キシリレンジイソシァネート、ビス (4—イソシァネート一フエ-ル)メタン、ビス(4—イソシァネートシクロへキシル)メタン 、イソフォロンジイソシァネート、へキサメチレンジイソシァネート、トリメチノレへキサメチ レンジイソシァネート等)、該 2官能イソシァネートと、トリメチロールプロパン、ペンタリ スルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンォ キサイド付加体と、前記 2官能イソシァネートとの付加体;へキサメチレンジイソシァネ ート、へキサメチレン 1, 6 ジイソシァネート及びその誘導体等の環式三量体;な どが挙げられる。  [0121] As the alkali-insoluble thermal crosslinking agent, a polyisocyanate compound described in JP-A-5-9407 can also be used. The polyisocyanate compound may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing at least two isocyanate groups. Specifically, bifunctional isocyanates (eg, mixtures of 1,3 and 1,4-phenolic diisocyanates, 2,4- and 2,6 toluene diisocyanates, 1 , 3 and 1, 4 xylylene diisocyanate, bis (4-isocyanate monophenyl) methane, bis (4-isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate Polyfunctional alcohols such as trimethylolpropane, pentalysitol, glycerin, etc .; alkylene oxide adducts of the polyfunctional alcohols and the bifunctional isocyanates. Adducts: rings such as hexamethylene diisocyanate, hexamethylene 1,6 diisocyanate and its derivatives Trimer;, etc., and the like.
[0122] 更に、本発明の感光性フィルムの保存性を向上させることを目的として、前記ポリィ ソシァネート及びその誘導体のイソシァネート基にブロック剤を反応させて得られる化 合物を用いてもよい。 前記イソシァネート基ブロック剤としては、アルコール類 (例えば、イソプロパノール 、tert ブタノール等)、ラタタム類 (例えば、 ε一力プロラタタム等)、フエノール類( 例えば、フエノーノレ、クレゾ一ノレ、 p— tert ブチノレフエノーノレ、 p— sec ブチノレフエ ノーノレ、 p— sec ァミルフエノール、 p—ォクチルフエノール、 p ノ-ルフエノール等 )、複素環式ヒドロキシルイ匕合物(例えば、 3—ヒドロキシピリジン、 8—ヒドロキシキノリ ン等)、活性メチレン化合物(例えば、ジアルキルマロネート、メチルェチルケトキシム 、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセトォキシム、シクロへキ サノンォキシム等)などが挙げられる。これらの他、特開平 6— 295060号公報記載の 分子内に少なくとも 1つの重合可能な二重結合及び少なくとも 1つのブロックイソシァ ネート基の 、ずれかを有する化合物などを用いることができる。 [0122] Furthermore, for the purpose of improving the storage stability of the photosensitive film of the present invention, a compound obtained by reacting a blocking agent with the isocyanate group of the polyisocyanate or its derivative may be used. Examples of the isocyanate blocker include alcohols (for example, isopropanol, tert-butanol, etc.), ratatas (for example, ε-strength prolatatum, etc.), phenols (for example, phenol, crezo-monore, p-tert-butinolephenol) Nore, p-sec butinolevenore, p-sec amylphenol, p-octylphenol, p-norphenol, etc.), heterocyclic hydroxyl compounds (eg, 3-hydroxypyridine, 8-hydroxyquinoline) And the like, and active methylene compounds (for example, dialkyl malonate, methyl ethyl ketoxime, acetyl acetone, alkyl acetoacetonitrile, acetooxime, cyclohexanone oxime, etc.). In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
[0123] また、前記アルカリ不溶性の熱架橋剤として、メラミン誘導体を用いることもできる。  [0123] A melamine derivative can also be used as the alkali-insoluble thermal crosslinking agent.
該メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラミン (メチロール基を、メチル、ェチル、ブチルなどでエーテルィ匕したィ匕合物)などが挙げ られる。これらは 1種単独で使用してもよいし、 2種以上を併用してもよい。これらの中 でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向 上に有効である点で、アルキル化メチロールメラミンが好ましぐへキサメチル化メチ ロールメラミンが特に好ま U、。  Examples of the melamine derivative include methylol melamine, alkylated methylol melamine (a compound obtained by etherifying a methylol group with methyl, ethyl, butyl, etc.). These may be used alone or in combination of two or more. Of these, hexamethylated methylol melamine is particularly preferred as alkylated methylol melamine because it has good storage stability and is effective in improving the surface hardness of the photosensitive layer or the film strength itself of the cured film. Prefer U ,.
[0124] また、前記アルカリ不溶性の熱架橋剤の熱硬化を促進するため、例えば、アミンィ匕 合物(例えば、ジシアンジアミド、ベンジルジメチルァミン、 4 (ジメチルァミノ) -N, N ジメチルベンジルァミン、 4—メトキシ一 N, N ジメチルベンジルァミン、 4—メチ ル— N, N ジメチルベンジルァミン等)、 4級アンモ-ゥム塩化合物(例えば、トリエ チルベンジルアンモ -ゥムクロリド等)、ブロックイソシァネートイ匕合物(例えば、ジメチ ルァミン等)、イミダゾール誘導体二環式アミジンィ匕合物及びその塩 (例えば、イミダ ゾール、 2—メチルイミダゾール、 2 ェチルイミダゾール、 2 ェチルー 4ーメチルイ ミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1ーシァノエチルー 2 フエ-ルイミダゾール、 1— (2 シァノエチル)—2 ェチル—4—メチルイミダゾ ール等)、リンィ匕合物(例えば、トリフエ-ルホスフィン等)、グアナミンィ匕合物(例えば、 メラミン、グアナミン、ァセトグアナミン、ベンゾグアナミン等)、 S トリァジン誘導体 (例 えば、 2, 4 ジァミノ一 6—メタクリロイルォキシェチル一 S トリァジン、 2 ビニル一 2, 4 ジァミノ一 S トリァジン、 2 ビニル 4, 6 ジァミノ一 S トリァジン 'イソシァ ヌル酸付カ卩物、 2, 4 ジァミノ一 6—メタクリロイルォキシェチル一 S トリアジン'イソ シァヌル酸付加物等)などを用いることができる。これらは 1種単独で使用してもよぐ 2種以上を併用してもよい。なお、前記アルカリ不溶性の熱架橋剤の硬化触媒、ある いは、これらとカルボキシル基の反応を促進することができるものであれば、特に制 限はなぐ上記以外の熱硬化を促進可能な化合物を用いてもよい。 [0124] In order to accelerate the thermal curing of the alkali-insoluble thermal crosslinking agent, for example, an amine compound (for example, dicyandiamide, benzyldimethylamine, 4 (dimethylamino) -N, N dimethylbenzylamine, 4 -Methoxy-1-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine, etc.), quaternary ammonium salt compounds (eg, triethylbenzylammo-umchloride), block isocyanate Compound (for example, dimethylamine), imidazole derivative bicyclic amidine compound and its salt (for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl) Imidazole, 4-Phenolimidazole, 1-Cyanoethyl-2-Phenolimidazole, 1— (2 Cyanethyl) —2 ethyl-4-methylimidazole, etc.), phosphorus compounds (eg, triphenylphosphine), guanamine compounds (eg, melamine, guanamine, acetateguanamine, benzoguanamine), S-triazine derivatives (eg, For example, 2,4 diamino 1-methacryloyloxychetyl 1 S triazine, 2 vinyl 1,2,4 diamino 1 S triazine, 2 vinyl 4,6 diamino 1 S triazine 'carried with isocyanuric acid, 2, 4 Diamino-1-6-methacryloyloxychetyl S triazine'isocyanuric acid adduct, etc.) can be used. These may be used alone or in combination of two or more. The alkali-insoluble thermal crosslinking agent curing catalyst or a compound capable of promoting thermal curing other than the above is not particularly limited as long as it can promote the reaction of these with a carboxyl group. It may be used.
前記アルカリ不溶性の熱架橋剤、及びこれらとカルボン酸との熱硬化を促進可能な 化合物の前記感光性組成物中の固形分含有量は、 0. 01〜15質量%が好ましい。  The solid content in the photosensitive composition of the alkali-insoluble thermal crosslinking agent and the compound capable of accelerating thermal curing between these and a carboxylic acid is preferably 0.01 to 15% by mass.
[0125] 前記アルカリ不溶性の熱架橋剤の前記感光性組成物中の固形分含有量は、 1〜5 0質量%が好ましぐ 3〜30質量%がより好ましい。該固形分含有量が 1質量%未満 であると、硬化膜の膜強度の向上が認められず、 50質量%を超えると、現像性の低 下や露光感度の低下を生ずることがある。  [0125] The solid content of the alkali-insoluble thermal crosslinking agent in the photosensitive composition is preferably 1 to 50% by mass, more preferably 3 to 30% by mass. When the solid content is less than 1% by mass, improvement in the film strength of the cured film is not observed, and when it exceeds 50% by mass, the developability and the exposure sensitivity may be lowered.
[0126] 〔その他の成分〕  [0126] [Other ingredients]
前記その他の成分としては、例えば、増感剤、熱重合禁止剤、可塑剤、着色剤 (着 色顔料あるいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤 及びその他の助剤類 (例えば、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤 、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用しても よい。  Examples of the other components include sensitizers, thermal polymerization inhibitors, plasticizers, colorants (coloring pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and others. (For example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, perfumes, surface tension modifiers, chain transfer agents, etc.) Also good.
これらの成分を適宜含有させることにより、目的とする感光性組成物の安定性、写 真性、膜物性などの性質を調整することができる。  By appropriately containing these components, it is possible to adjust properties such as stability, photosensitivity, and film physical properties of the intended photosensitive composition.
[0127] 増感剤ー [0127] Sensitizer
前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが できるが、例えば、公知の多核芳香族類 (例えば、ピレン、ペリレン、トリフエ二レン)、 キサンテン類(例えば、フルォレセイン、ェォシン、エリス口シン、ローダミン B、ローズ ベンガル)、シァニン類(例えば、インドカルボシァニン、チアカルボシァニン、ォキサ カルボシァニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チア ジン類(例えば、チォニン、メチレンブルー、トルイジンブルー)、アタリジン類(例えば 、アタリジンオレンジ、クロロフラビン、ァクリフラビン、 9 フエ二ルァクリジン、 1, 7— ビス(9, 9,一アタリジニル)ヘプタン)、アントラキノン類 (例えば、アントラキノン)、スク ァリウム類 (例えば、スクァリウム)、アタリドン類 (例えば、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N—ブチルークロロアタリドン、 2—クロ口 10 ブチルアタリドン等)、クマリン類(例えば、 3—(2 べンゾフロイル) 7 ジ ェチルァミノクマリン、 3— (2 ベンゾフロイル) 7— (1—ピロリジ -ル)クマリン、 3— ベンゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチ ルァミノクマリン、 3- (4—ジメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3, 3,一カルボ-ルビス(5, 7—ジ一 n—プロポキシクマリン)、 3, 3'—カルボ二ルビス( 7 ジェチルァミノクマリン)、 3 ベンゾィル 7—メトキシクマリン、 3— (2 フロイル )一 7—ジェチルァミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチ ルァミノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7—ジプロポキシクマリン等)、及びチォキサントンィ匕合物(チォキサントン、イソプ ロピルチオキサントン、 2, 4 ジェチルチオキサントン、 1 クロロー 4 プロピルォキ シチォキサントン、 QuantacureQTX等)などがあげられ、他に特開平 5- 19475号、 特開平 7 - 271028号、特開 2002 - 363206号、特開 2002 - 363207号、特開 2002 -363208号、特開 2002-363209号等の各公報に記載のクマリン化合物など)が挙 げられ、これらの中でも、芳香族環ゃ複素環が縮環した化合物 (縮環系化合物)が好 ましぐヘテロ縮環系ケトンィ匕合物、及びアタリジン類がより好ましい。前記へテロ縮環 系ケトンィ匕合物の中でも、アタリドンィ匕合物及びチォキサントンィ匕合物が特に好まし い。 The sensitizer can be appropriately selected from known sensitizers without particular limitation. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes ( For example, fluorescein, eosin, erythrin, rhodamine B, rose bengal), cyanines (for example, indocarboyanine, thiacarboyanine, oxacarboyanine), merocyanines (for example, merocyanine, carbomerocyanine), thiazines (For example, thionine, methylene blue, toluidine blue), atalidines (for example, , Ataridin orange, chloroflavin, acriflavine, 9 phenyllacridin, 1,7-bis (9,9, monoataridinyl) heptane), anthraquinones (eg, anthraquinone), squaliums (eg, squalium), attaridones (For example, attaridone, chloroataridon, N-methyl attaridone, N-butyl attalidone, N-butyl-chloro attalidone, 2-chloro 10-butyl attaridone, etc.), coumarins (for example, 3- ) 7-Jetylaminocoumarin, 3- (2 Benzofuroyl) 7- (1-Pyrrolidyl) coumarin, 3-Benzyl 7 Jetylaminocoumarin, 3 -— (2-Methoxybenzoyl) 7 Jetylaminocoumarin, 3- (4-Dimethylaminobenzol) 7-Jetylaminocoumarin, 3, 3, 1-Carbobis (5, 7-Di-n Propoxycoumarin), 3, 3'-Carbonylbis (7 Jetylaminocoumarin), 3 Benzyl 7-Methoxycoumarin, 3- (2 furoyl) one 7-Jetylaminocoumarin, 3- (4-Jetyl) Aminocinnamoyl) 7-jetylaminocoumarin, 7-methoxy-1- (3-pyridylcarbol) coumarin, 3-benzoyl 5,7-dipropoxycoumarin), and thixanthone compounds (thixanthone, isopropyl) Thioxanthone, 2, 4 jetyl thioxanthone, 1 chloro-4 propyloxyxanthone, QuantacureQTX, etc.), and others are disclosed in JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363. No. 363207, JP-A 2002-363208, JP-A 2002-363209, and the like, and the like. Among these, aromatic rings are complex. There compounds condensed (fused ring compound) is good Mashigu hetero condensed ring systems Ketoni 匕合 thereof, and Atarijin acids are more preferable. Among the hetero-fused ketone ketone compounds, attaridone compounds and thixanthone compounds are particularly preferable.
[0128] 前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開 2001 - 3057 34号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増感色素、 (2) 電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容 型開始剤 (三元開始系)]などの組合せが挙げられる。  [0128] Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron donor initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
[0129] 前記増感剤の含有量は、感光性組成物の全成分に対し、 0. 01〜4質量%が好ま しぐ 0. 02〜2質量%がより好ましぐ 0. 05〜1質量%が特に好ましい。  [0129] The content of the sensitizer is preferably 0.01 to 4% by mass, more preferably 0.02 to 2% by mass, based on all components of the photosensitive composition. Mass% is particularly preferred.
前記含有量が、 0. 01質量%未満となると、感度が低下することがあり、 4質量%を 超えると、パターンの形状が悪ィ匕することがある。 When the content is less than 0.01% by mass, the sensitivity may be reduced. If it exceeds, the shape of the pattern may worsen.
[0130] 熱重合禁止剤  [0130] Thermal polymerization inhibitor
前記熱重合禁止剤は、前記感光層における前記重合性化合物の熱的な重合又は 経時的な重合を防止するために添加してもよ 、。  The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound in the photosensitive layer.
前記熱重合禁止剤としては、例えば、 4—メトキシフエノール、ハイドロキノン、アル キルまたはァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2—ヒド ロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅、フエ ノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、ピリジン 、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブルー、銅と 有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソィ匕合物、 -ト ロソ化合物と A1とのキレート、などが挙げられる。  Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl substituted nanoquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, Cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2,6 di-t-butyl-4 cresol, 2,2, -methylenebis (4-methyl-6-t-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4 Toluidine, methylene blue, copper and organic chelating agent reactants, methyl salicylate, and phenothiazine, nitroso compounds, and chelates of troso compounds with A1.
[0131] 前記熱重合禁止剤の含有量は、前記感光層の前記重合性化合物に対して 0. 00 1〜5質量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に 好ましい。  [0131] The content of the thermal polymerization inhibitor is preferably from 0.001 to 5 mass%, more preferably from 0.005 to 2 mass%, based on the polymerizable compound of the photosensitive layer. 01 to 1% by mass is particularly preferred.
前記含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあ り、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。  When the content is less than 0.001% by mass, stability during storage may be reduced, and when it exceeds 5% by mass, sensitivity to active energy rays may be reduced.
[0132] 可塑剤 [0132] Plasticizer
前記可塑剤は、前記感光層の膜物性 (可撓性)をコントロールするために添加して ちょい。  The plasticizer should be added to control the film physical properties (flexibility) of the photosensitive layer.
前記可塑剤としては、例えば、ジメチルフタレート、ジブチルフタレート、ジイソプチ ルフタレート、ジヘプチルフタレート、ジォクチルフタレート、ジシクロへキシルフタレ ート、ジトリデシルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジ フエ-ルフタレート、ジァリルフタレート、ォクチルカプリールフタレート等のフタル酸ェ ステル類;トリエチレングリコールジアセテート、テトラエチレングリコールジアセテート 、ジメチルダリコースフタレート、ェチノレフタリーノレエチノレグリコレート、メチルフタリー ルェチルダリコレート、ブチノレフタリーノレブチノレグリコレート、トリエチレングリコールジ カブリル酸エステル等のグリコールエステル類;トリクレジルホスフェート、トリフエ-ル ホスフェート等のリン酸エステル類; 4 トルエンスルホンアミド、ベンゼンスルホンアミ ド、 N—n—ブチルベンゼンスルホンアミド、 N—n—ブチルァセトアミド等のアミド類; ジイソブチルアジペート、ジォクチルアジペート、ジメチルセバケート、ジブチルセパ ケート、ジォクチルセパケート、ジォクチルァゼレート、ジブチルマレート等の脂肪族 二塩基酸エステル類;タエン酸トリエチル、タエン酸トリブチル、グリセリントリァセチル エステル、ラウリン酸ブチル、 4, 5 ジエポキシシクロへキサン 1, 2 ジカルボン酸 ジォクチル等、ポリエチレングリコール、ポリプロピレングリコール等のダリコール類が 挙げられる。 Examples of the plasticizer include dimethyl phthalate, dibutyl phthalate, diisobutyl phthalate, diheptyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, ditridecyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diphenyl phthalate, diphenyl phthalate. Phthalic acid esters such as ril phthalate and octyl capryl phthalate; triethylene glycol diacetate, tetraethylene glycol diacetate, dimethyl dallicose phthalate, ethino retino eno ethino reglycolate, methyl phthal yl acetyl dalicolate, buty Glycol esters such as noreftalino lebutinoglycolate and triethylene glycol dicabrylate; tricresyl phosphate, triphenyl Phosphate esters such as phosphate; 4 Amides such as toluenesulfonamide, benzenesulfonamide, Nn-butylbenzenesulfonamide, Nn-butylacetamide; diisobutyl adipate, dioctyl adipate, dimethyl seba Aliphatic dibasic acid esters such as keto, dibutyl sebacate, dioctyl sepacate, dioctyl azelate, dibutyl malate; triethyl taenoate, tributyl taenoate, glycerin triacetyl ester, butyl laurate, 4, 5 Diepoxycyclohexane 1,2 Dicarboxylic acid dioctyl, etc., and polyethylene glycol, polypropylene glycol and other Daricols.
[0133] 前記可塑剤の含有量は、前記感光層の全成分に対して 0. 1〜50質量%が好まし ぐ 0. 5〜40質量%がより好ましぐ 1〜30質量%が特に好ましい。  [0133] The content of the plasticizer is preferably 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, and particularly preferably 1 to 30% by mass with respect to all components of the photosensitive layer. preferable.
[0134] 一着色顔料  [0134] Monochromatic pigment
前記着色顔料としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、ビク卜! J ピュア一ブルー BO (C. I. 42595)、オーラミン(C. I. 41000)、 フアット'ブラック HB (C. I. 26150)、モノライト'エロー GT(C. I.ビグメント 'エロー 1 2)、パーマネント 'エロー GR(C. I.ピグメント 'エロー 17)、パーマネント 'エロー HR( C. I.ビグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146 )、ホスターバームレッド ESB (C. I.ピグメント 'バイオレット 19)、パーマネント 'ルビ 一 FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ(C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ピグメント 'ブルー 15)、モノライト'ファー スト'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ビグメント 'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメント 'レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント.グリーン 36、 C . I.ビグメント 'ブルー 15 : 1、 C. I.ビグメント 'ブルー 15 :4、 C. I.ビグメント 'ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I.ピグメント.ブ ルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用しても よい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用すること ができる。 [0135] 前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形 成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔 料の種類により異なる力 一般的には 0. 01〜10質量%が好ましぐ 0. 05〜5質量 %がより好ましい。 The coloring pigment is not particularly limited and can be appropriately selected according to the purpose. For example, Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11) Huster's' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolight 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, CI Pigment 'Red 122, C CI Pigment 'Red 149, CI Pigment' Red 168, CI Pigment 'Red 177, CI Pigment' Red 180, CI Pigment 'Red 192, CI Pigment.Red 215, CI Pigment.Green 7, CI Pigment.Green 36, C. I. Pigment 'Blue 15: 1, CI Pigment' Blue 15: 4, CI Pigment 'Blue 15: 6, CI Pigment. Blue 22, CI Pigment. Blue 60, CI Pigment. Blue 64, etc. These may be used alone or in combination of two or more. If necessary, a dye appropriately selected from known dyes can be used. [0135] The solid content in the solid content of the photosensitive composition of the color pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.01 to 10% by mass is preferable, and 0.05 to 5% by mass is more preferable.
[0136] 一体質顔料 [0136] Solid pigment
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるい は線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く 抑えることを目的として、無機顔料や有機微粒子を添加することができる。  The photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary. Inorganic pigments and organic fine particles can be added.
前記無機顔料としては、特に制限はなぐ公知のものの中から適宜選択することが でき、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸化 ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、 クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、 マイ力などが挙げられる。  The inorganic pigment can be appropriately selected from known ones that are not particularly limited. For example, kaolin, barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
前記無機顔料の平均粒径は、 10 m未満が好ましぐ 3 m以下がより好ましい。 該平均粒径が 10 m以上であると、光錯乱により解像度が劣化することがある。 前記有機微粒子としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、メラミン榭脂、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられ る。また、平均粒径 1〜5 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂から なる球状多孔質微粒子などを用いることができる。 The average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering. The organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ζπι, an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
[0137] 前記体質顔料の添加量は、 5〜60質量%が好ましい。該添加量が 5質量%未満で あると、十分に線膨張係数を低下させることができないことがあり、 60質量%を超える と、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久バタ ーンを用いて配線を形成する場合にお!、て、配線の保護膜としての機能が損なわれ ることがある。 [0137] The amount of the extender pigment added is preferably 5 to 60% by mass. When the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced. When the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, The film quality becomes fragile, and when a wiring is formed using a permanent pattern, the function of the wiring as a protective film may be impaired.
[0138] 密着促進剤 [0138] Adhesion promoter
本発明の感光性組成物を用いて形成される感光層を含む感光性フィルムの、各層 間の密着性、又は前記感光性フィルムと基体との密着性を向上させるために、各層 に公知の 、わゆる密着促進剤を用いることができる。 [0139] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報等に記載の密着促進剤が好適挙げられる 。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2—メ ルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトベン ズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3— モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モ ルホリノメチル チアジアゾール - 2-チオン、及び 2 メルカプト 5—メチルチオ ーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシベン ゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げられ る。 In order to improve the adhesion between each layer of the photosensitive film including the photosensitive layer formed using the photosensitive composition of the present invention, or the adhesion between the photosensitive film and the substrate, known for each layer, A loose adhesion promoter can be used. [0139] Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyroot triazole-2 thione, 3-morpholinomethyl 5 phenyl oxadiazole 2 thione, 5 amino 3 morpholinomethyl thiadiazole-2-thione, and 2 mercapto 5-methylthiothiadiazole, triazole, tetrazole, benzotriazole, carboxybenzazotriazole, amino group-containing benzotriazole, silane cup Examples include ring agents.
[0140] 前記密着促進剤の含有量は、前記感光層の全成分に対して 0. 001〜20質量% が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1〜5質量%が特に好ましい。  [0140] The content of the adhesion promoter is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass, and 0.1 to 5% by mass with respect to all the components of the photosensitive layer. % Is particularly preferred.
[0141] 本発明の感光性組成物は、感度、解像度、無電解金メッキ耐性、及び保存安定性 に優れ、高精細な永久パターンを効率よく形成可能である。このため、プリント配線板 、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディスプレイ用部材、ホログ ラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ 、本発明の永久パターン及びその形成方法に好適に用いることができる。  [0141] The photosensitive composition of the present invention is excellent in sensitivity, resolution, electroless gold plating resistance, and storage stability, and can efficiently form a high-definition permanent pattern. For this reason, it can be widely used for the formation of permanent patterns such as printed wiring boards, color filters, columns, ribs, spacers, partition members, display members, holograms, micromachines, proofs, etc. It can be suitably used for a permanent pattern and a method for forming the permanent pattern.
特に、本発明の感光性フィルムは、該フィルムの厚みが均一であるため、永久パタ ーンの形成に際し、永久パターン (保護膜、層間絶縁膜、ソルダーレジストなど)を薄 層化しても、高加速度試験 (HAST)においてイオンマイグレーションの発生がなぐ 耐熱性、耐湿性に優れた高精細な永久パターンが得られるため、基材への積層がよ り精細に行われる。  In particular, since the photosensitive film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned in the formation of the permanent pattern, the photosensitive film of the present invention is high. Ion migration does not occur in the acceleration test (HAST) High-definition permanent patterns with excellent heat resistance and moisture resistance can be obtained, so that lamination to the substrate is performed more precisely.
[0142] (感光性フィルム)  [0142] (Photosensitive film)
本発明の感光性フィルムは、支持体と、該支持体上に本発明の前記感光性組成物 力もなる感光層を少なくとも有し、 目的に応じて、熱可塑性榭脂層等の適宜選択され るその他の層を積層してなる。  The photosensitive film of the present invention has at least a support and a photosensitive layer having the above-mentioned photosensitive composition power of the present invention on the support, and a thermoplastic resin layer or the like is appropriately selected depending on the purpose. Other layers are laminated.
[0143] <感光層>  [0143] <Photosensitive layer>
前記感光層は、本発明の感光性組成物を用いて形成される。 また、前記感光層を露光し現像する場合において、該感光層の露光する部分の厚 みを該露光及び現像後にお 、て変化させな 、前記露光に用いる光の最小エネルギ 一は、 0. l〜200mi/cm2であることが好ましぐ 0. 2〜100mj/cm2であることがよ り好ましく、 0. 5〜50mjZcm2であることが更に好ましぐ l〜30miZcm2であること が特に好ましい。 The photosensitive layer is formed using the photosensitive composition of the present invention. Further, in the case where the photosensitive layer is exposed and developed, the minimum energy of light used for the exposure is 0.1 l without changing the thickness of the exposed portion of the photosensitive layer after the exposure and development. it is Ri preferably good it is preferred instrument 0. 2~100mj / cm 2 it is ~200mi / cm 2, that it is 0. 5~50mjZcm 2 is more preferably tool L~30miZcm 2 Particularly preferred.
前記最小エネルギー力 0. lmjZcm2未満であると、処理工程にてカプリが発生 することがあり、 200mjZcm2を超えると、露光に必要な時間が長くなり、処理スピー ド、が遅くなることがある。 If the minimum energy force is less than 0.1 lmjZcm 2 , capri may occur in the processing step, and if it exceeds 200 mjZcm 2 , the time required for exposure may become longer and the processing speed may become slower. .
[0144] ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させ ない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば 、前記感光層を露光したときの前記露光に用いた光のエネルギー量 (露光量)と、前 記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ (感度曲線)から求めることができる。  [0144] Here, "the minimum energy of light used for the exposure that does not change the thickness of the exposed portion of the photosensitive layer after the exposure and development" is so-called development sensitivity. It can be determined from a graph (sensitivity curve) showing the relationship between the amount of light energy (exposure amount) used for the exposure when exposed and the thickness of the cured layer generated by the development process following the exposure. .
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露 光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化 層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値であ る。  The thickness of the cured layer increases as the exposure amount increases, and then becomes substantially the same and substantially constant as the thickness of the photosensitive layer before the exposure. The development sensitivity is a value obtained by reading the minimum exposure when the thickness of the cured layer becomes substantially constant.
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとが ± 1 m以内で あるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。  Here, when the thickness of the cured layer and the thickness of the photosensitive layer before exposure are within ± 1 m, it is considered that the thickness of the cured layer is not changed by exposure and development.
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限 はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機 (例えば、サーフコム 1400D (東京精密社製) )などを用いて測定する方法が挙げら れる。  A method for measuring the thickness of the cured layer and the photosensitive layer before exposure is not particularly limited and may be appropriately selected depending on the intended purpose. However, a film thickness measuring device, a surface roughness measuring device (for example, Surfcom) 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)) and the like.
[0145] 前記感光層の厚みは、特に制限はなぐ目的に応じて適宜選択することができるが 、 ί列免ば、、 1〜: L00 μ m力 S好ましく、 2〜50 μ m力 Sより好ましく、 4〜30 μ m力 S特に好ま しい。  [0145] The thickness of the photosensitive layer can be appropriately selected according to the purpose for which there is no particular limitation. However, if it is omitted, 1 to: L00 μm force S, preferably 2 to 50 μm force S 4-30 μm force S is particularly preferable.
[0146] く支持体及び保護フィルム >  [0146] Supports and protective films>
前記支持体としては、特に制限はなぐ目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるものが好ましぐ更に表 面の平滑性が良好であることがより好まし 、。前記支持体及び保護フィルムとしては、 具体的に ίま、 f列え ίま、、特開 2005— 258431号公報の〔0342〕及び〔0344〕〜〔034 8〕に記載されている。 The support can be appropriately selected according to the purpose without particular limitation, It is preferable that the photosensitive layer is peelable and has good light transmittance, and more preferable that the surface is smooth. Specific examples of the support and the protective film are described in Japanese Patent Application Laid-Open No. 2005-258431, [0342] and [0344] to [034 8].
[0147] <その他の層 >  [0147] <Other layers>
前記感光性フィルムにおけるその他の層としては、特に制限はなぐ 目的に応じて 適宜選択することができ、例えば、クッション層、酸素遮断層(PC層)、剥離層、接着 層、光吸収層、表面保護層などの層を有してもよい。これらの層を 1種単独で有して いてもよぐ 2種以上を有していてもよい。また、前記感光層上に保護フィルムを有し ていてもよい。  Other layers in the photosensitive film are not particularly limited and can be appropriately selected according to the purpose. For example, a cushion layer, an oxygen barrier layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface You may have layers, such as a protective layer. These layers may be used alone or in combination of two or more. Further, a protective film may be provided on the photosensitive layer.
[0148] クッション層  [0148] Cushion layer
前記クッション層としては、特に制限はなぐ 目的に応じて適宜選択することができ、 アルカリ性液に対して膨潤性乃至可溶性であってもよぐ不溶性であってもよ 、。  The cushion layer is not particularly limited and may be appropriately selected depending on the purpose, and may be swellable or soluble or insoluble in an alkaline liquid.
[0149] 前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には、前記 熱可塑性榭脂としては、例えば、エチレンとアクリル酸エステル共重合体のケンィ匕物 、スチレンと (メタ)アクリル酸エステル共重合体のケン化物、ビュルトルエンと (メタ)ァ クリル酸エステル共重合体のケンィ匕物、ポリ (メタ)アクリル酸エステル、(メタ)アクリル 酸ブチルと酢酸ビニル等の (メタ)アクリル酸エステル共重合体等のケンィ匕物、(メタ) アクリル酸エステルと (メタ)アクリル酸との共重合体、スチレンと (メタ)アクリル酸エス テルと (メタ)アクリル酸との共重合体などが挙げられる。  [0149] In the case where the cushion layer is swellable or soluble in an alkaline liquid, examples of the thermoplastic resin include, for example, an ethylene / acrylate copolymer copolymer, styrene, and (meth) (Meth) such as saponified acrylate copolymer, kento of butyltoluene and (meth) acrylic ester copolymer, poly (meth) acrylate, butyl (meth) acrylate and vinyl acetate Acrylic ester copolymers, etc., (meth) acrylic acid ester and (meth) acrylic acid copolymer, styrene, (meth) acrylic acid ester and (meth) acrylic acid copolymer Etc.
[0150] この場合の熱可塑性榭脂の軟ィ匕点 (Vicat)は、特に制限はなぐ 目的に応じて適 宜選択することができる力 例えば、 80°C以下が好ましい。  [0150] The softness point (Vicat) of the thermoplastic resin in this case is a force that can be appropriately selected according to the purpose without any particular limitation. For example, 80 ° C or less is preferable.
前記軟ィ匕点が 80°C以下の熱可塑性榭脂としては、上述した熱可塑性榭脂の他、「 プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連 合会編著、工業調査会発行、 1968年 10月 25日発行)による軟ィ匕点が約 80°C以下 の有機高分子の内、アルカリ性液に可溶なものが挙げられる。また、軟ィ匕点が 80°C 以上の有機高分子物質においても、該有機高分子物質中に該有機高分子物質と相 溶性のある各種の可塑剤を添加して実質的な軟ィ匕点を 80°C以下に下げることも可 能である。 In addition to the above-mentioned thermoplastic resin, the above-mentioned thermoplastic resin has a softness point of 80 ° C or less, as well as “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, All Japan Plastics Molding Industry Association, Issued on October 25, 1968). Among the organic polymers whose soft spot is about 80 ° C or less, those that are soluble in alkaline liquids are listed. In addition, even in an organic polymer material having a soft softening point of 80 ° C or higher, various plasticizers compatible with the organic polymer material are added to the organic polymer material so that a substantial softness can be obtained. It is also possible to lower the point below 80 ° C Noh.
[0151] また、前記クッション層がアルカリ性液に対して膨潤性乃至可溶性である場合には 、前記感光性フィルムの層間接着力としては、特に制限はなぐ 目的に応じて適宜選 択することができるが、例えば、各層の層間接着力の中で、前記支持体と前記クッシ ヨン層との間の層間接着力が、最も小さいことが好ましい。このような層間接着力とす ることにより、前記感光性フィルムから前記支持体のみを剥離し、前記クッション層を 介して前記感光層を露光した後、アルカリ性の現像液を用いて該感光層を現像する ことができる。また、前記支持体を残したまま、前記感光層を露光した後、前記感光 性フィルム力 前記支持体のみを剥離し、アルカリ性の現像液を用いて該感光層を 現像することちでさる。  [0151] When the cushion layer is swellable or soluble in an alkaline liquid, the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose. However, for example, it is preferable that the interlayer adhesion between the support and the cushion layer is the smallest among the interlayer adhesion of each layer. With such an interlayer adhesive strength, only the support is peeled off from the photosensitive film, the photosensitive layer is exposed through the cushion layer, and then the photosensitive layer is removed using an alkaline developer. Can be developed. Further, after exposing the photosensitive layer while leaving the support, the photosensitive film force is peeled off, and the photosensitive layer is developed using an alkaline developer.
[0152] 前記層間接着力の調整方法としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に公知のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法が挙げられる。  [0152] The method for adjusting the interlayer adhesive force is not particularly limited and may be appropriately selected according to the purpose. For example, a known polymer, supercooling substance, or adhesion improver in the thermoplastic resin is used. , A method of adding a surfactant, a release agent and the like.
[0153] 前記可塑剤としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 例えば、ポリプロピレングリコール、ポリエチレングリコール、ジォクチルフタレート、ジ へプチノレフタレート、ジブチノレフタレート、トリクレジルフォスフェート、クレジノレジフエ -ルフォスフェート、ビフエ-ルジフエ-ルフォスフェート等のアルコール類やエステ ル類;トルエンスルホンアミド等のアミド類、などが挙げられる。  [0153] The plasticizer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include polypropylene glycol, polyethylene glycol, dioctyl phthalate, diheptino phthalate, dibutino phthalate, and tricres. Alcohols and esters such as zircphosphate, crezinoresiphosphate and biphenyldiphosphate, amides such as toluenesulfonamide, and the like.
[0154] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記熱可塑性榭 脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げ られる。  [0154] When the cushion layer is insoluble in an alkaline liquid, examples of the thermoplastic resin include a copolymer whose main component is an essential copolymer component of ethylene.
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなぐ 目的 に応じて適宜選択することができる力 例えば、エチレン 酢酸ビニル共重合体 (EV A)、エチレン—ェチルアタリレート共重合体 (EEA)などが挙げられる。  The copolymer having ethylene as an essential copolymer component is not particularly limited and can be appropriately selected according to the purpose. For example, ethylene vinyl acetate copolymer (EV A), ethylene-ethyl acrylate. Copolymer (EEA) and the like.
[0155] 前記クッション層がアルカリ性液に対して不溶性である場合には、前記感光性フィ ルムの層間接着力としては、特に制限はなぐ 目的に応じて適宜選択することができ るが、例えば、各層の層間接着力の中で、前記感光層と前記クッション層との接着力 1S 最も小さいことが好ましい。このような層間接着力とすることにより、前記感光性フ イルムカゝら前記支持体及びクッション層を剥離し、前記感光層を露光した後、アルカリ 性の現像液を用いて該感光層を現像することができる。また、前記支持体を残したま ま、前記感光層を露光した後、前記感光性フィルムから前記支持体と前記クッション 層を剥離し、アルカリ性の現像液を用いて該感光層を現像することもできる。 [0155] When the cushion layer is insoluble in an alkaline liquid, the interlayer adhesive force of the photosensitive film is not particularly limited and can be appropriately selected depending on the purpose. Of the interlayer adhesive strength of each layer, the adhesive strength 1S between the photosensitive layer and the cushion layer is preferably the smallest. By using such an interlayer adhesive strength, the photosensitive film can be used. After the support and cushion layer are peeled off, and the photosensitive layer is exposed, the photosensitive layer can be developed using an alkaline developer. Further, after exposing the photosensitive layer while leaving the support, the support and the cushion layer can be peeled off from the photosensitive film, and the photosensitive layer can be developed using an alkaline developer. .
[0156] 前記層間接着力の調整方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、前記熱可塑性榭脂中に各種のポリマー、過冷却物質、密着改 良剤、界面活性剤、離型剤などを添加する方法、以下に説明するエチレン共重合比 を調整する方法などが挙げられる。  [0156] The method for adjusting the interlayer adhesion can be appropriately selected depending on the purpose without any particular limitation. For example, various polymers, supercooling substances, adhesion improvers in the thermoplastic resin can be selected. , A method of adding a surfactant, a release agent, and the like, and a method of adjusting the ethylene copolymerization ratio described below.
[0157] 前記エチレンを必須の共重合成分とする共重合体におけるエチレン共重合比は、 特に制限はなぐ目的に応じて適宜選択することができるが、例えば、 60〜90質量 %が好ましぐ 60〜80質量%がより好ましぐ 65〜80質量%が特に好ましい。  [0157] The ethylene copolymerization ratio in the copolymer containing ethylene as an essential copolymerization component can be appropriately selected according to the purpose without any particular limitation, but is preferably 60 to 90% by mass, for example. 60-80% by mass is more preferred. 65-80% by mass is particularly preferred.
前記エチレンの共重合比が、 60質量%未満になると、前記クッション層と前記感光 層との層間接着力が高くなり、該クッション層と該感光層との界面で剥離することが困 難となることがあり、 90質量%を超えると、前記クッション層と前記感光層との層間接 着力が小さくなりすぎるため、該クッション層と該感光層との間で非常に剥離しやすく 、前記クッション層を含む感光性フィルムの製造が困難となることがある。  When the ethylene copolymerization ratio is less than 60% by mass, the interlayer adhesive force between the cushion layer and the photosensitive layer increases, and it becomes difficult to peel off at the interface between the cushion layer and the photosensitive layer. If the amount exceeds 90% by mass, the indirect adhesion between the cushion layer and the photosensitive layer becomes too small, and the cushion layer and the photosensitive layer are very easily peeled off. It may be difficult to produce the photosensitive film.
[0158] 前記クッション層の厚みは、特に制限はなぐ目的に応じて適宜選択することができ る力 f列; tは、、 5〜50 111カ女子ましく、 10〜50 111カ0り女子ましく、 15〜40 111カ に好ましい。  [0158] The thickness of the cushion layer can be selected as appropriate according to the purpose for which there is no particular restriction. F column; t is 5-50 111 girls, 10-50 111 girls Preferably, 15-40111.
前記厚みが、 5 m未満になると、基体の表面における凹凸や、気泡等への凹凸 追従性が低下し、高精細な永久パターンを形成できないことがあり、 50 mを超える と、製造上の乾燥負荷増大等の不具合が生じることがある。  If the thickness is less than 5 m, unevenness on the surface of the substrate and unevenness followability to bubbles and the like may be reduced, and a high-definition permanent pattern may not be formed. Problems such as increased load may occur.
[0159] 酸素遮断層(PC層) [0159] Oxygen barrier layer (PC layer)
前記酸素遮断層は、通常ポリビュルアルコールを主成分として形成されることが好 ましぐ厚みが 0. 5〜5 μ m程度の被膜であることが好ましい。  The oxygen barrier layer is preferably a film having a thickness of preferably about 0.5 to 5 μm, and is preferably formed mainly of polybulal alcohol.
[0160] 一保護フィルム [0160] One protective film
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する 前記保護フィルムの前記感光性フィルムにお 、て設けられる箇所としては、特に制 限はなく、目的に応じて適宜選択することができ、通常、前記感光層上に設けられる 前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、 ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフイン又はポリテトラフルォ ルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピ レンフィルムが好ましい。 The protective film has a function of preventing and protecting the photosensitive layer from being stained and damaged. The location of the protective film provided on the photosensitive film is not particularly limited and may be appropriately selected according to the purpose. The protective film provided on the photosensitive layer is usually as follows. Examples thereof include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among these, polyethylene film and polypropylene film are preferable.
前記保護フィルムの厚みは、特に制限はなぐ目的に応じて適宜選択することがで さ、 ί列; tは、、 5〜: LOO μ m力好ましく、 8〜30 μ m力 ^より好まし!/ヽ。  The thickness of the protective film can be appropriately selected according to the purpose for which there is no particular restriction. Ί column; t is preferably 5 to: LOO μm force, more preferably 8 to 30 μm force! / ヽ.
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力 Aと、前記 感光層及び保護フィルムの接着力 Bとが、接着力 A>接着力 Bの関係であることが好 ましい。  When the protective film is used, it is preferable that the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート zポリプロピレン、ポリエチレンテレフタレート zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施 されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理 、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、レーザ光線照射 処理などを挙げることができる。  Examples of the combination of the support and the protective film (support Z protective film) include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc. In addition, the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment, One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
[0161] また、前記支持体と前記保護フィルムとの静摩擦係数は、 0. 3〜1. 4が好ましぐ 0 . 5〜1. 2力より好まし!/ヽ。  [0161] The static friction coefficient between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / 1.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。  If the coefficient of static friction is less than 0.3, slipping may occur excessively, so that a deviation may occur when the roll is formed, and if it exceeds 1.4, it is difficult to wind in a good roll. Sometimes.
[0162] 前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために 表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオ ルガノシロキサン、弗素化ポリオレフイン、ポリフルォロエチレン、ポリビュルアルコー ル等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗 布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1 〜30分間乾燥させることにより形成させることができる。 [0162] The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. The surface treatment is performed, for example, by polio on the surface of the protective film. An undercoat layer made of a polymer such as luganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed. The undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (particularly 50 to 120 ° C) for 1 to 30 minutes. Can do.
[0163] 〔感光性フィルムの製造方法〕  [0163] [Method for producing photosensitive film]
前記感光性フィルムは、例えば、次のようにして製造することができる。  The said photosensitive film can be manufactured as follows, for example.
まず、前記感光性組成物に含まれる材料を、水又は溶剤に溶解、乳化又は分散さ せて、感光性フィルム用の感光性榭脂組成物溶液を調製する。  First, the material contained in the photosensitive composition is dissolved, emulsified or dispersed in water or a solvent to prepare a photosensitive resin composition solution for a photosensitive film.
[0164] 前記溶媒としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 sec ーブタノール、 n—へキサノール等のアルコール類;アセトン、メチルェチルケトン、メ チルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなどのケトン類;酢酸ェチ ル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸ェチル、フタル酸ジメ チル、安息香酸ェチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、 キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;四塩ィ匕炭素、トリクロ 口エチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチレン、モノクロ口べンゼ ンなどのハロゲンィ匕炭化水素類;テトラヒドロフラン、ジェチルエーテル、エチレンダリ コーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 1ーメトキシー 2 プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルァセトアミド、ジメチ ルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよ ぐ 2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。  [0164] The solvent is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol. Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl acetate propionate, dimethyl phthalate , Esters such as ethyl benzoate, and methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; tetrasalt carbon, trichloroethylene, chloroform, 1, 1, 1-trichloro Halogenated carbonization of ethane, methylene chloride, monochrome benzene, etc. Elements; Tetrahydrofurans, Jetyl ethers, Ethylene Dalconol Monomethinoreethenore, Ethylene Glycoleno Monoethylenoleetenole, Ethers such as 1-methoxy-2-propanol; Dimethylformamide, Dimethylacetamide, Dimethylsulfoxide, Examples include sulfolane. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.
[0165] 次に、前記支持体上に前記感光性榭脂組成物溶液を塗布し、乾燥させて感光層 を形成し、感光性フィルムを製造することができる。  [0165] Next, the photosensitive resin composition solution is coated on the support and dried to form a photosensitive layer, whereby a photosensitive film can be produced.
[0166] 前記感光性組成物溶液の塗布方法としては、特に制限はなぐ 目的に応じて適宜 選択することができる力 例えば、スプレー法、ロールコート法、回転塗布法、スリット コート法、エタストルージョンコート法、カーテンコート法、ダイコート法、グラビアコート 法、ワイヤーバーコート法、ナイフコート法等の各種の塗布方法が挙げられる。  [0166] The method for applying the photosensitive composition solution is not particularly limited and can be appropriately selected according to the purpose. For example, a spray method, a roll coating method, a spin coating method, a slit coating method, an etching method. Examples of the coating method include a coating method, a curtain coating method, a die coating method, a gravure coating method, a wire bar coating method, and a knife coating method.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。 The drying conditions vary depending on each component, the type of solvent, the use ratio, etc. Usually, it is about 30 to 15 minutes at a temperature of 60 to 110 ° C.
[0167] 前記感光性フィルムは、例えば、円筒状の卷芯に巻き取って、長尺状でロール状 に巻かれて保管されるのが好ま 、。 [0167] The photosensitive film is preferably stored, for example, by winding it around a cylindrical core and winding it into a long roll.
前記長尺状の感光性フィルムの長さは、特に制限はなぐ例えば、 10-20, OOOm の範囲力も適宜選択することができる。また、ユーザーが使いやすいようにスリットカロ ェし、 100〜1, 000mの範囲の長尺体をロール状にしてもよい。なお、この場合には 、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール 状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフ ユージョンを防止する観点から、端面にはセパレーター (特に防湿性のもの、乾燥剤 入りのもの)を設置するのが好ましぐまた梱包も透湿性の低い素材を用いるのが好ま しい。  The length of the long photosensitive film is not particularly limited. For example, a range force of 10-20, OOOm can be appropriately selected. In addition, it is possible to carry out slitting for easy use by the user and to form a long body in the range of 100 to 1,000 m into a roll shape. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped photosensitive film may be slit into a sheet shape. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof and desiccant-containing) on the end face. It is preferable to use it.
[0168] (感光性積層体)  [0168] (Photosensitive laminate)
前記感光性積層体は、基体上に、前記感光層を少なくとも有し、目的に応じて適宜 選択されるその他の層を積層してなる。  The photosensitive laminate is formed by laminating at least the photosensitive layer on a substrate and other layers appropriately selected according to the purpose.
[0169] <基体> [0169] <Substrate>
前記基体は、感光層が形成される被処理基体、又は本発明の感光性フィルムの少 なくとも感光層が転写される被転写体となるもので、特に制限はなぐ目的に応じて適 宜選択することができ、例えば、表面平滑性の高いものから凸凹のある表面を持つも のまで任意に選択できる。板状の基体が好ましぐいわゆる基板が使用される。具体 的には、公知のプリント配線板製造用の基板 (プリント基板)、ガラス板 (ソーダガラス 板など)、合成樹脂性のフィルム、紙、金属板などが挙げられる。  The substrate is a substrate to be processed on which a photosensitive layer is formed, or a transfer target to which at least the photosensitive layer of the photosensitive film of the present invention is transferred, and is appropriately selected depending on the purpose without particular limitation. For example, it can be arbitrarily selected from those having a high surface smoothness to those having a rough surface. A so-called substrate in which a plate-like substrate is preferred is used. Specific examples include known printed wiring board manufacturing substrates (printed substrates), glass plates (soda glass plates, etc.), synthetic resin films, paper, metal plates, and the like.
[0170] 〔感光性積層体の製造方法〕 [Method for producing photosensitive laminate]
前記感光性積層体の製造方法として、第 1の態様として、前記感光性組成物を前 記基体の表面に塗布し乾燥する方法が挙げられ、第 2の態様として、本発明の感光 性フィルムにおける少なくとも感光層を加熱及び加圧の少なくとも ヽずれかを行 、な 力 転写して積層する方法が挙げられる。  Examples of the method for producing the photosensitive laminate include, as the first aspect, a method of applying the photosensitive composition to the surface of the substrate and drying, and as the second aspect, in the photosensitive film of the present invention. A method of laminating by transferring at least one of heating and pressurizing at least one of the photosensitive layer and transferring force is mentioned.
[0171] 前記第 1の態様の感光性積層体の製造方法は、前記基体上に、前記感光性組成 物を塗布及び乾燥して感光層を形成する。 前記塗布及び乾燥の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記基体の表面に、前記感光性組成物を、水又は溶剤に溶解、 乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させる ことにより積層する方法が挙げられる。 [0171] In the method for producing a photosensitive laminate of the first aspect, the photosensitive composition is applied and dried on the substrate to form a photosensitive layer. The coating and drying method can be appropriately selected according to the purpose without any particular limitation. For example, the photosensitive composition is dissolved, emulsified or dispersed on the surface of the substrate in water or a solvent. And a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
[0172] 前記感光性組成物溶液の溶剤としては、特に制限はなぐ目的に応じて適宜選択 することができ、前記感光性フィルムに用いたものと同じ溶剤が挙げられる。これらは 、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を 添カロしてちょい。  [0172] The solvent of the photosensitive composition solution can be appropriately selected according to the purpose without any particular limitation, and examples thereof include the same solvents as those used for the photosensitive film. These may be used alone or in combination of two or more. Also, add a known surfactant.
[0173] 前記塗布方法及び乾燥条件としては、特に制限はなぐ目的に応じて適宜選択す ることができ、前記感光性フィルムに用いたものと同じ方法及び条件で行う。  [0173] The coating method and drying conditions can be appropriately selected according to the purpose without particular limitation, and the same methods and conditions as those used for the photosensitive film are used.
[0174] 前記第 2の態様の感光性積層体の製造方法は、前記基体の表面に本発明の感光 性フィルムを加熱及び加圧の少なくともいずれかを行いながら積層する。なお、前記 感光性フィルムが前記保護フィルムを有する場合には、該保護フィルムを剥離し、前 記基体に前記感光層が重なるようにして積層するのが好ま 、。  [0174] In the method for producing a photosensitive laminate of the second aspect, the photosensitive film of the present invention is laminated on the surface of the substrate while performing at least one of heating and pressing. In the case where the photosensitive film has the protective film, it is preferable that the protective film is peeled off and laminated so that the photosensitive layer overlaps the substrate.
前記加熱温度は、特に制限はなぐ目的に応じて適宜選択することができ、例えば 、 15〜180°Cが好ましぐ 60〜140°Cがより好ましい。  The heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 15 to 180 ° C is preferable, and 60 to 140 ° C is more preferable.
前記加圧の圧力は、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、、 0. 1〜1. OMPa力好ましく、 0. 2〜0. 8MPa力 ^より好まし!/ヽ。  The pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular restriction. For example, 0.1 to 1. OMPa force is preferable, 0.2 to 0.8 MPa force is more preferable! /ヽ.
[0175] 前記加熱の少なくともいずれかを行う装置としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、ラミネーター (例えば、大成ラミネータネ土製 VP— I I、 -チゴ一モートン (株)製 VP130)などが好適に挙げられる。  [0175] The apparatus for performing at least one of the heating can be appropriately selected according to the purpose without any particular restriction. Preferable examples include VP130).
[0176] 本発明の感光性フィルム及び前記感光性積層体は、所定の高分子化合物を含む ことにより、感度、解像度、無電解金メッキ耐性、及び保存安定性に優れ、高精細な 永久パターンを効率よく形成可能であるため、保護膜、層間絶縁膜、及びソルダーレ ジストパターン等の永久パターン、などの各種パターン形成用、カラーフィルタ、柱材 、リブ材、スぺーサ一、隔壁などの液晶構造部材の製造用、ホログラム、マイクロマシ ン、プルーフなどのパターン形成用などに好適に用いることができ、特に本発明のパ ターン形成装置及び永久パターン形成方法、並びにプリント基板の永久パターン形 成用に好適に用いることができる。 [0176] The photosensitive film and the photosensitive laminate of the present invention contain a predetermined polymer compound, so that they are excellent in sensitivity, resolution, electroless gold plating resistance, and storage stability, and efficiently produce a high-definition permanent pattern. Since it can be formed well, it can be used to form various patterns such as protective films, interlayer insulation films, and permanent patterns such as solder resist patterns, and liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, and partition walls. The pattern forming apparatus and the permanent pattern forming method of the present invention, and the permanent pattern shape of the printed circuit board can be suitably used for the manufacture of patterns, holograms, micromachines, proofs and the like. It can use suitably for composition.
[0177] (パターン形成装置及び永久パターン形成方法) [0177] (Pattern forming apparatus and permanent pattern forming method)
本発明のパターン形成装置は、前記感光層を備えており、光照射手段と光変調手 段とを少なくとも有する。  The pattern forming apparatus of the present invention includes the photosensitive layer and includes at least a light irradiation unit and a light modulation unit.
[0178] 本発明の永久パターン形成方法は、露光工程を少なくとも含み、適宜選択した現 像工程等のその他の工程を含む。 [0178] The permanent pattern forming method of the present invention includes at least an exposure step, and includes other steps such as a suitably selected imaging step.
なお、本発明の前記パターン形成装置は、本発明の前記永久パターン形成方法の 説明を通じて明らかにする。  In addition, the said pattern formation apparatus of this invention is clarified through description of the said permanent pattern formation method of this invention.
[0179] 〔露光工程〕 [0179] [Exposure process]
前記露光工程は、本発明の感光性フィルムにおける感光層に対し、露光を行うェ 程である。本発明の前記感光性フィルム、及び基材の材料については上述の通りで ある。  In the exposure step, the photosensitive layer in the photosensitive film of the present invention is exposed. The photosensitive film and the base material of the present invention are as described above.
[0180] 前記露光の対象としては、前記感光性フィルムにおける感光層である限り、特に制 限はなく、 目的に応じて適宜選択することができ、例えば、上述のように、基材上に感 光性フィルムを加熱及び加圧の少なくとも ヽずれかを行!ヽながら積層して形成した積 層体に対して行われることが好ま 、。  [0180] The subject of exposure is not particularly limited as long as it is the photosensitive layer in the photosensitive film, and can be appropriately selected according to the purpose. It is preferable that this is performed on a laminated body formed by laminating the optical film while performing at least one of heating and pressing.
[0181] 前記露光としては、特に制限はなぐ 目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光等が挙げられる力 これらの中でもデジタル露光が好ましい。  [0181] The exposure is not particularly limited and can be appropriately selected according to the purpose. Digital exposure, analog exposure, and the like are listed. Of these, digital exposure is preferable.
[0182] 前記デジタル露光としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号 に応じて変調させた光を用いて行うことが好ましぐ例えば、前記感光層に対し、光照 射手段、及び前記光照射手段からの光を受光し出射する n個(ただし、 nは 2以上の 自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記描素部 を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に 対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置された露光 ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前 記描素部のうち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を 指定し、前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手 段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を 行い、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて行う方 法が好ましい。 [0182] The digital exposure is not particularly limited and can be appropriately selected according to the purpose. For example, a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal. For example, it is preferable to use light. For example, n light (where n is a natural number of 2 or more) two-dimensional light receiving means and receiving light from the light irradiating means. An exposure head having light modulation means capable of controlling the drawing unit according to pattern information, the drawing unit being arranged in a scanning direction of the exposure head. The exposure head is arranged so that the column direction of the predetermined inclination angle Θ is set, and, for the exposure head, N-exposure (N double exposure) of the usable pixel parts by the used pixel part designating means. Where N is a natural number of 2 or more) Specifies Motobu, for the exposure head, the pixel part controlling unit is used pixel parts designated hand A method of controlling the image area so that only the image area specified by the stage is involved in exposure, and moving the exposure head relative to the photosensitive layer in the scanning direction. preferable.
[0183] 本発明において「N重露光」とは、前記感光層の被露光面上の露光領域の略すベ ての領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上 に照射された N本の光点列 (画素列)と交わるような設定による露光を指す。ここで、「 光点列 (画素列)」とは、前記描素部により生成された描素単位としての光点 (画素) の並びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すも のとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよぐたとえば 平行四辺形状の配置等であってもよ 、。  In the present invention, “N double exposure” refers to a straight line parallel to the scanning direction of the exposure head on the exposed surface in almost all of the exposed region on the exposed surface of the photosensitive layer. Refers to exposure with a setting that intersects the N light spot rows (pixel rows) irradiated to the. Here, the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit. Refers to a sequence of The arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
ここで、露光領域の「略すベての領域」と述べたのは、各描素部の両側縁部では、 描素部列を傾斜させたことにより、前記露光ヘッドの走査方向に平行な直線と交わる 使用描素部の描素部列の数が減るため、かかる場合に複数の露光ヘッドをつなぎ合 わせるように使用したとしても、該露光ヘッドの取付角度や配置等の誤差により、走査 方向に平行な直線と交わる使用描素部の描素部列の数がわずかに増減することが あるため、また、各使用描素部の描素部列間のつなぎの、解像度分以下のごくわず かな部分では、取付角度や描素部配置等の誤差により、走査方向と直交する方向に 沿った描素部のピッチが他の部分の描素部のピッチと厳密に一致せず、走査方向に 平行な直線と交わる使用描素部の描素部列の数が ± 1の範囲で増減することがある ためである。なお、以下の説明では、 Nが 2以上の自然数である N重露光を総称して 「多重露光」という。さらに、以下の説明では、本発明の露光装置又は露光方法を、 描画装置又は描画方法として実施した形態について、「N重露光」及び「多重露光」 に対応する用語として、「N重描画」及び「多重描画」という用語を用いるものとする。 前記 N重露光の Nとしては、 2以上の自然数であれば、特に制限はなぐ目的に応 じて適宜選択することができる力 3以上の自然数が好ましぐ 3以上 7以下の自然数 力 り好ましい。  Here, the “substantially all areas” of the exposure area is described as a straight line parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element parts in the used picture element part decreases, even if it is used to connect multiple exposure heads in such a case, scanning will occur due to errors in the mounting angle and arrangement of the exposure heads. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution. In the small part, due to errors such as the mounting angle and pixel part placement, the pixel part pitch along the direction perpendicular to the scanning direction does not exactly match the pixel part pitch of the other part, and scanning is not possible. The number of pixel parts in the used pixel part that intersects a straight line parallel to the direction increases or decreases within the range of ± 1. Because there is. In the following description, N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”. Furthermore, in the following description, “N double exposure” and “multiple exposure” are used as terms corresponding to “N double exposure” and “multiple exposure” with respect to an embodiment in which the exposure apparatus or exposure method of the present invention is implemented as a drawing apparatus or drawing method. The term “multiple drawing” shall be used. N in the N-exposure is a natural number of 2 or more, a force that can be appropriately selected according to the purpose for which there is no particular limitation, a natural number of 3 or more is preferable, and a natural number of 3 or more and 7 or less is more preferable. .
[0184] 本発明の永久パターン形成方法に係るパターン形成装置の一例について図面を 参照しながら説明する。 前記パターン形成装置としては、 Vヽゎゆるフラットベッドタイプの露光装置とされて おり、図 1に示すように、前記感光性フィルムにおける少なくとも前記感光層が積層さ れてなるシート状の感光材料 12 (以下、「感光層 12」ということがある)を表面に吸着 して保持する平板状の移動ステージ 14を備えている。 4本の脚部 16に支持された厚 い板状の設置台 18の上面には、ステージ移動方向に沿って延びた 2本のガイド 20 が設置されている。ステージ 14は、その長手方向がステージ移動方向を向くように配 置されると共に、ガイド 20によって往復移動可能に支持されている。なお、このパタ ーン形成装置 10には、ステージ 14をガイド 20に沿って駆動するステージ駆動装置( 図示せず)が設けられている。 An example of a pattern forming apparatus according to the permanent pattern forming method of the present invention will be described with reference to the drawings. The pattern forming apparatus is a V-type flatbed type exposure apparatus, and as shown in FIG. 1, a sheet-like photosensitive material 12 in which at least the photosensitive layer in the photosensitive film is laminated. A plate-like moving stage 14 is provided that adsorbs and holds the surface (hereinafter also referred to as “photosensitive layer 12”). Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The pattern forming device 10 is provided with a stage driving device (not shown) for driving the stage 14 along the guide 20.
[0185] 設置台 18の中央部には、ステージ 14の移動経路を跨ぐようにコの字状のゲート 22 が設けられている。コの字状のゲート 22の端部の各々は、設置台 18の両側面に固 定されている。このゲート 22を挟んで一方の側にはスキャナ 24が設けられ、他方の 側には感光材料 12の先端及び後端を検知する複数 (たとえば 2個)のセンサ 26が設 けられている。スキャナ 24及びセンサ 26はゲート 22に各々取り付けられて、ステージ 14の移動経路の上方に固定配置されている。なお、スキャナ 24及びセンサ 26は、こ れらを制御する図示しな 、コントローラに接続されて 、る。  [0185] A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the movement path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side. The scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
[0186] ここで、説明のため、ステージ 14の表面と平行な平面内に、図 1に示すように、互い に直交する X軸及び Y軸を規定する。  [0186] Here, for explanation, in the plane parallel to the surface of the stage 14, as shown in FIG. 1, the X axis and the Y axis orthogonal to each other are defined.
[0187] ステージ 14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の 端縁部には、 X軸の方向に向カゝつて開く「く」の字型に形成されたスリット 28が、等間 隔で 10本形成されている。各スリット 28は、上流側に位置するスリット 28aと下流側に 位置するスリット 28bと力もなつている。スリット 28aとスリット 28bとは互いに直交すると ともに、 X軸に対してスリット 28aは— 45度、スリット 28bは +45度の角度を有している  [0187] At the upstream edge along the scanning direction of the stage 14 (hereinafter, sometimes simply referred to as "upstream"), a "<" shape that opens in the direction of the X-axis Ten slits 28 are formed at regular intervals. Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
[0188] スリット 28の位置は、前記露光ヘッド 30の中心と略一致させられている。また、各ス リット 28の大きさは、対応する露光ヘッド 30による露光エリア 32の幅を十分覆う大きさ とされている。また、スリット 28の位置としては、隣接する露光済み領域 34間の重複 部分の中心位置と略一致させてもよい。この場合、各スリット 28の大きさは、露光済み 領域 34間の重複部分の幅を十分覆う大きさとする。 [0188] The position of the slit 28 is substantially coincident with the center of the exposure head 30. In addition, the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is already exposed. It should be large enough to cover the width of the overlap between regions 34.
[0189] ステージ 14内部の各スリット 28の下方の位置には、それぞれ、後述する使用描素 部指定処理において、描素単位としての光点を検出する光点位置検出手段としての 単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述 する使用描素部指定処理にお!、て、前記描素部の選択を行う描素部選択手段とし ての演算装置(図示せず)に接続されている。  [0189] At the position below each slit 28 in the stage 14 is a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in the used pixel part specifying process described later. A photodetector (not shown) is incorporated. In addition, each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
[0190] 露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に 移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移 動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であ つてもよい。  [0190] As an operation mode of the pattern forming apparatus at the time of exposure, it may be a mode in which exposure is continuously performed while constantly moving the exposure head, or each step while moving the exposure head step by step. The exposure operation may be performed with the exposure head stationary at the destination position.
[0191] < <露光ヘッド > >  [0191] <<Exposure head>>
各露光ヘッド 30は、後述する内部のデジタル 'マイクロミラ一'デバイス(DMD) 36 の各描素部 (マイクロミラー)列方向が、走査方向と所定の設定傾斜角度 Θをなすよ うに、スキャナ 24に取り付けられている。このため、各露光ヘッド 30による露光エリア 32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ 14の移動に伴い 、感光層 12には露光ヘッド 30ごとに帯状の露光済み領域 34が形成される。図 2及 び図 3Bに示す例では、 2行 5列の略マトリックス状に配列された 10個の露光ヘッドが 、スキャナ 24に備えられている。  Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle Θ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in FIGS. 2 and 3B, the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
なお、以下において、 m行目の n列目に配列された個々の露光ヘッドを示す場合は 、露光ヘッド 30 と表記し、 m行目の n列目に配列された個々の露光ヘッドによる露 mn  In the following, when the individual exposure heads arranged in the m-th column and the n-th column are indicated, they are represented as exposure heads 30, and the exposure by the individual exposure heads arranged in the m-th row and the n-th column mn
光エリアを示す場合は、露光エリア 32 と表記する。  When the light area is indicated, it is expressed as exposure area 32.
mn  mn
[0192] また、図 3A及び図 3Bに示すように、帯状の露光済み領域 34のそれぞれが、隣接 する露光済み領域 34と部分的に重なるように、ライン状に配列された各行の露光へ ッド 30の各々は、その配列方向に所定間隔 (露光エリアの長辺の自然数倍、本実施 形態では 2倍)ずらして配置されている。このため、 1行目の露光エリア 32 と露光ェ  In addition, as shown in FIGS. 3A and 3B, the exposure exposure of each row arranged in a line so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34 is performed. Each of the nodes 30 is arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
11 リア 32 との間の露光できない部分は、 2行目の露光エリア 32 により露光することが 11 The part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
12 21 12 21
できる。  it can.
[0193] 露光ヘッド 30の各々は、図 4、図 5A及び図 5Bに示すように、入射された光を画像 データに応じて描素部ごとに変調する光変調手段 (描素部ごとに変調する空間光変 調素子)として、 DMD36 (米国テキサス 'インスツルメンッ社製)を備えている。この D MD36は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコン トローラに接続されている。このコントローラのデータ処理部では、入力された画像デ ータに基づいて、露光ヘッド 30ごとに、 DMD36上の使用領域内の各マイクロミラー を駆動制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処 理部で生成した制御信号に基づいて、露光ヘッド 30ごとに、 DMD36の各マイクロミ ラーの反射面の角度を制御する。 Each of the exposure heads 30 converts the incident light into an image as shown in FIGS. 4, 5A and 5B. DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a light modulation means (spatial light modulation element that modulates each pixel part) according to data. This DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part. The data processing unit of this controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
[0194] 図 4に示すように、 DMD36の光入射側には、光ファイバの出射端部 (発光点)が露 光エリア 32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を 備えたファイバアレイ光源 38、ファイバアレイ光源 38から出射されたレーザ光を補正 して DMD上に集光させるレンズ系 40、このレンズ系 40を透過したレーザ光を DMD 36に向けて反射するミラー 42がこの順に配置されている。なお図 4では、レンズ系 4 0を概略的に示してある。  [0194] As shown in FIG. 4, on the light incident side of the DMD 36, a laser in which the emission end (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. A fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36 The mirrors 42 to be used are arranged in this order. In FIG. 4, the lens system 40 is schematically shown.
[0195] 上記レンズ系 40は、図 5A及び図 5Bに詳しく示すように、ファイバアレイ光源 38か ら出射されたレーザ光を平行光化する 1対の組合せレンズ 44、平行光化されたレー ザ光の光量分布が均一になるように補正する 1対の組合せレンズ 46、及び光量分布 が補正されたレーザ光を DMD36上に集光する集光レンズ 48で構成されている。  As shown in detail in FIGS. 5A and 5B, the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38 and a collimated laser. It is composed of a pair of combination lenses 46 that correct the light amount distribution of light so that it is uniform, and a condensing lens 48 that condenses the laser light whose light amount distribution has been corrected on the DMD 36.
[0196] また、 DMD36の光反射側には、 DMD36で反射されたレーザ光を感光層 12の被 露光面上に結像するレンズ系 50が配置されている。レンズ系 50は、 DMD36と感光 層 12の被露光面とが共役な関係となるように配置された、 2枚のレンズ 52及び 54か らなる。  Further, on the light reflection side of the DMD 36, a lens system 50 is formed that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12. The lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
[0197] 本実施形態では、ファイバアレイ光源 38から出射されたレーザ光は、実質的に 5倍 に拡大された後、 DMD36上の各マイクロミラーからの光線が上記のレンズ系 50によ つて約 5 μ mに絞られるように設定されて!、る。  In the present embodiment, the laser light emitted from the fiber array light source 38 is substantially magnified 5 times, and then the light from each micromirror on the DMD 36 is reduced by the lens system 50 described above. It is set to be reduced to 5 μm!
[0198] 一光変調手段  [0198] One-light modulation means
前記光変調手段としては、 n個(ただし、 nは 2以上の自然数)の 2次元状に配列さ れた前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なもので あれば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、空間光変 調素子が好ましい。 The light modulating means has n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements, and the picture elements can be controlled according to the pattern information With things If there is, it can be appropriately selected according to the purpose for which there is no restriction. For example, a spatial light modulation element is preferable.
[0199] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Spatial Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。  [0199] Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and transmission by an electro-optic effect. Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
[0200] また、前記光変調手段は、形成するパターン情報に基づ!、て制御信号を生成する パターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。  [0200] Further, it is preferable that the light modulation means has pattern signal generation means for generating a control signal based on pattern information to be formed. In this case, the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  The control signal can be appropriately selected according to the purpose for which there is no particular limitation. For example, a digital signal is preferably used.
[0201] 以下、前記光変調手段の一例について図面を参照しながら説明する。  [0201] Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD36は図 6に示すように、 SRAMセル (メモリセル) 56上〖こ、各々描素(ピクセ ル)を構成する描素部として、多数のマイクロミラー 58が格子状に配列されてなるミラ 一デバイスである。本実施形態では、 1024列 X 768行のマイクロミラー 58が配され てなる DMD36を使用する力 このうち DMD36に接続されたコントローラにより駆動 可能すなわち使用可能なマイクロミラー 58は、 1024列 X 256行のみであるとする。 DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して 1 ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用 することにより 1ライン当りの変調速度が速くなる。各マイクロミラー 58は支柱に支えら れており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお 、本実施形態では、各マイクロミラー 58の反射率は 90%以上であり、その配列ピッチ は縦方向、横方向ともに 13. 7 mである。 SRAMセル 56は、ヒンジ及びヨークを含 む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CMO Sのものであり、全体はモノリシック(一体型)に構成されている。  As shown in FIG. 6, the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device. In this embodiment, the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, micromirrors 58 that can be driven by a controller connected to DMD36, that is usable, are only 1024 columns x 256 rows. Suppose that The data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In the present embodiment, the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof is 13.7 m in both the vertical direction and the horizontal direction. The SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
[0202] DMD36の SRAMセル (メモリセル) 56〖こ、所望の 2次元パターンを構成する各点 の濃度を 2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー 58が、対角線を中心として DMD36が配置された基板側に対して ± a度 (たとえば ± 10度)のいずれかに傾く。図 7Aは、マイクロミラー 58がオン状態である + α度に 傾いた状態を示し、図 7Bは、マイクロミラー 58がオフ状態である a度に傾いた状 態を示す。このように、画像信号に応じて、 DMD36の各ピクセルにおけるマイクロミ ラー 58の傾きを、図 6に示すように制御することによって、 DMD36に入射したレーザ 光 Bはそれぞれのマイクロミラー 58の傾き方向へ反射される。 [0202] DMD36 SRAM cell (memory cell) 56 mm. When an image signal representing the density of each point constituting the desired two-dimensional pattern is written in binary, each micromirror supported by the column 58 tilts to ± a degree (for example, ± 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center. FIG. 7A shows a state tilted to + α degrees when the micromirror 58 is on, and FIG. 7B shows a state tilted to a degrees when the micromirror 58 is off. In this way, by controlling the inclination of the micromirror 58 in each pixel of the DMD 36 as shown in FIG. 6 according to the image signal, the laser light B incident on the DMD 36 moves in the inclination direction of each micromirror 58. Reflected.
[0203] 図 6には、 DMD36の一部を拡大し、各マイクロミラー 58が + α度又は α度に制御 されている状態の一例を示す。それぞれのマイクロミラー 58のオンオフ制御は、 DM D36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミ ラー 58で反射したレーザ光 Bが進行する方向には、光吸収体(図示せず)が配置さ れている。  [0203] FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + α degrees or α degrees. The on / off control of each micromirror 58 is performed by the controller connected to the DM D36. In addition, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
[0204] 一光照射手段  [0204] Single light irradiation means
前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。  The light irradiation means can be appropriately selected according to the purpose without any particular limitation. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, etc. fluorescent tube, LED, A known light source such as a semiconductor laser or means capable of combining and irradiating two or more lights can be mentioned. Among these, means capable of combining and irradiating two or more lights are preferable.
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。  The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
[0205] 前記紫外から可視光線の波長は、例えば、 300-1, 500nmが好ましぐ 320-8 OOrnn力より好ましく、 330〜650mn力特に好まし!/、。  [0205] The wavelength of ultraviolet to visible light is preferably 300-1, 500 nm, more preferably 320-8 OOrnn force, particularly preferably 330-650 mn force! / ,.
前記レーザ光の波長は、例えば、 200〜1, 500nm力好ましく、 300〜800nm力よ り好ましく、 330〜500mn力更に好ましく、 400〜450mn力 ^特に好まし!/、。  The wavelength of the laser light is, for example, 200 to 1,500 nm force, more preferably 300 to 800 nm force, more preferably 330 to 500 mn force, and 400 to 450 mn force.
[0206] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザビームを集光して前記 マルチモード光ファイバに結合させる集合光学系とを有する手段が好まし 、。 [0206] Examples of means capable of irradiating the combined laser include a plurality of lasers and a multimode laser. And a collective optical system that collects and couples the laser beams irradiated with the plurality of laser forces to the multimode optical fiber.
[0207] 前記合波レーザを照射可能な手段 (ファイバアレイ光源)としては、例えば、特開 20As means (fiber array light source) capable of irradiating the combined laser, for example, JP-A-20
05 258431号公報〔0109〕〜〔0146〕に記載の手段が挙げられる。 No. 05 258431 gazette [0109] to [0146].
[0208] < <使用描素部指定手段 > > [0208] <<Used pixel part specification method>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上に お!、て検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基 づき、 N重露光を実現するために使用する描素部を選択する描素部選択手段とを少 なくとも備えることが好まし 、。  The used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
以下、前記使用描素部指定手段による、 N重露光に使用する描素部の指定方法 の例について説明する。  Hereinafter, an example of a method for designating a pixel part to be used for N double exposure by the used pixel part designation unit will be described.
[0209] (1)単一露光ヘッド内における使用描素部の指定方法 [0209] (1) How to specify the pixel part to be used in a single exposure head
本実施形態(1)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、各露光ヘッド 30の取付角度誤差に起因する解像度のばらつき と濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指定方法 を説明する。  In the present embodiment (1), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced. We will explain how to specify the pixel parts to be used to achieve ideal double exposure.
[0210] 露光ヘッド 30の走査方向に対する描素部(マイクロミラー 58)の列方向の設定傾斜 角度 Θとしては、露光ヘッド 30の取付角度誤差等がない理想的な状態であれば、使 用可能な 1024列 X 256行の描素部を使用してちょうど 2重露光となる角度 Θ より  [0210] Setting tilt angle Θ in the column direction of the image area (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used if there is no ideal mounting angle error of the exposure head 30 From the angle Θ, which is exactly double exposure using a 1024 column x 256 row pixel part
ideal も、若干大きい角度を採用するものとする。  The ideal also uses a slightly larger angle.
この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラー 58の列方向の個数 s  This angle Θ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
ideal  ideal
、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光ヘッド 30を傾斜させた状 態においてマイクロミラーによって形成される走査線のピッチ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1)  The following formula 1, spsin θ ≥ Ν δ (formula), with respect to the column spacing p of the usable micromirrors 58 and the pitch δ of the scanning lines formed by the micromirrors with the exposure head 30 inclined. 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、 stan Q =N (式 3) And the above equation 1 is stan Q = N (Formula 3)
ideal  ideal
となる。本実施形態(1)では、上記のとおり s = 256、 N = 2であるので、前記式 3より、 角度 Θ は約 0. 45度である。したがって、設定傾斜角度 Θは、たとえば 0. 50度程 ideal  It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle Θ is about 0.45 degrees according to the equation 3. Therefore, the set inclination angle Θ is ideal, for example, about 0.50 degrees.
度の角度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光 ヘッド 30すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となる ように、初期調整されているものとする。  An angle of degrees should be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted within an adjustable range so that the mounting angle of each exposure head 30, that is, each DMD 36 is an angle close to the set inclination angle Θ.
[0211] 図 8は、上記のように初期調整されたパターン形成装置 10において、 1つの露光へ ッド 30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに 生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部 (マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位として の光点にっ 、て、第 m行目の光点 ¾τ (m)、第 n列目の光点を c (n)、第 m行第 n列の 光点を P (m, n)とそれぞれ表記するものとする。  [0211] FIG. 8 shows unevenness generated in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 initially adjusted as described above. It is explanatory drawing which showed the example. In the following drawings and description, the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface, the light spot in the m-th row ¾τ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
[0212] 図 8の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、使用可能なマイクロミラー 58からの光点群のパターンを示し、下段部分 は、上段部分に示したような光点群のパターンが現れて 、る状態でステージ 14を移 動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示 したものである。  [0212] The upper part of FIG. 8 shows the pattern of the light spot group from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
なお、図 8では、説明の便宜のため、使用可能なマイクロミラー 58の奇数列による 露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  In FIG. 8, for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
[0213] 図 8の例では、設定傾斜角度 0を上記の角度 0 よりも若干大きい角度を採用し [0213] In the example of Fig. 8, the set inclination angle 0 is set to a slightly larger angle than the above angle 0.
ideal  ideal
た結果として、また露光ヘッド 30の取付角度の微調整が困難であるために、実際の 取付角度と上記の設定傾斜角度 Θとが誤差を有する結果として、被露光面上のいず れの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーに よる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の 描素部列により形成された、被露光面上の重複露光領域において、理想的な 2重露 光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。  As a result of this, and because it is difficult to finely adjust the mounting angle of the exposure head 30, there is an error between the actual mounting angle and the set inclination angle Θ. Also in FIG. Specifically, in an overlapped exposure area on the exposed surface formed by a plurality of pixel part rows in both an exposure pattern by an odd-numbered micromirror and an exposure pattern by an even-numbered micromirror. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
[0214] さらに、図 8の例では、被露光面上に現れるパターン歪みの一例であって、被露光 面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じてい る。このような角度歪みが生じる原因としては、 DMD36と被露光面間の光学系の各 種収差やアラインメントずれ、及び DMD36自体の歪みやマイクロミラーの配置誤差 等が挙げられる。 [0214] Further, the example of FIG. 8 is an example of pattern distortion appearing on the surface to be exposed. There is an “angle distortion” in which the inclination angle of each pixel row projected on the surface is not uniform. Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
図 8の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列 ほど小さく、図の右方の列ほど大きくなつている形態の歪みである。この角度歪みの 結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく 、図の右方に示した被露光面上ほど大きくなつている。  The angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
[0215] 上記したような、複数の描素部列により形成された、被露光面上の重複露光領域に おける濃度むらを軽減するために、前記光点位置検出手段としてスリット 28及び光 検出器の組を用い、露光ヘッド 30ごとに実傾斜角度 Θ 'を特定し、該実傾斜角度 Θ ' に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を 用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 実傾斜角度 θ Ίま、光点位置検出手段が検出した少なくとも 2つの光点位置に基づ き、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光へ ッドの走査方向とがなす角度により特定される。 [0215] In order to reduce density unevenness in the overlapped exposure region on the exposed surface formed by a plurality of pixel part rows as described above, the slit 28 and the photodetector are used as the light spot position detecting means. The actual inclination angle Θ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle Θ ′. A process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle θ, the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
以下、図 9及び図 10を用いて、前記実傾斜角度 Θ 'の特定、及び使用画素選択処 理について説明する。  Hereinafter, the actual inclination angle Θ ′ and the used pixel selection process will be described with reference to FIGS.
[0216] 一実傾斜角度 の特定 [0216] Specifying the actual inclination angle
図 9は、 1つの DMD36による露光エリア 32と、対応するスリット 28との位置関係を 示した上面図である。スリット 28の大きさは、露光エリア 32の幅を十分覆う大きさとさ れている。  FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
本実施形態(1)の例では、露光エリア 32の略中心に位置する第 512列目の光点 列と露光ヘッド 30の走査方向とがなす角度を、上記の実傾斜角度 Θ 'として測定す る。具体的には、 DMD36上の第 1行目第 512列目のマイクロミラー 58、及び第 256 行目第 512列目のマイクロミラー 58をオン状態とし、それぞれに対応する被露光面 上の光点 P (l, 512)及び Ρ (256, 512)の位置を検出し、それらを結ぶ直線と露光 ヘッドの走査方向とがなす角度を実傾斜角度 Θ 'として特定する。 [0217] 図 10は、光点 P (256, 512)の位置の検出手法を説明した上面図である。 In the example of the present embodiment (1), the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle Θ ′. The Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and Ρ (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle Θ ′. FIG. 10 is a top view illustrating the method for detecting the position of the light spot P (256, 512).
まず、第 256行目第 512列目のマイクロミラー 58を点灯させた状態で、ステージ 14 をゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 512 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, YO)と する。この座標 (XO, YO)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror 58 in the 256th row and the 512th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is The slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b. Let the coordinates of the intersection of the slit 28a and the slit 28b at this time be (XO, YO). The value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0218] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 10における右方に相対 移動させる。そして、図 10において二点鎖線で示すように、光点 P (256, 512)の光 が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止さ せる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256, 512)の位置として記録する。  [0218] Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0219] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 10におけ る左方に相対移動させる。そして、図 10において二点鎖線で示すように、光点 P (25 6, 512)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を 光点 P (256, 512)の位置として記録する。  [0219] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0220] 以上の測定結果から、光点 P (256, 512)の被露光面上における位置を示す座標  [0220] From the above measurement results, coordinates indicating the position of the light spot P (256, 512) on the exposed surface
(X, Y)を、 Χ=ΧΟ+ (Υ1— Y2)Z2、 Y= (Y1 +Y2)Z2の計算により決定する。同 様の測定により、 P (l, 512)の位置を示す座標も決定し、それぞれの座標を結ぶ直 線と、露光ヘッド 30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度 Θ と して特定する。  (X, Y) is determined by calculating Χ = ΧΟ + (Υ1—Y2) Z2 and Y = (Y1 + Y2) Z2. By the same measurement, the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. It is specified as Θ.
[0221] 使用描素部の選択  [0221] Selection of used pixel part
このようにして特定された実傾斜角度 Θ 'を用い、前記光検出器に接続された前記 演算装置は、下記式 4  Using the actual inclination angle Θ ′ specified in this way, the arithmetic unit connected to the photodetector is expressed by the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近!ヽ自然数 Tを導出し、 DMD36上の 1行目から T行目の マイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行 う。これにより、第 512列目付近の露光領域において、理想的な 2重露光に対して、 露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロ ミラーを、実際に使用するマイクロミラーとして選択することができる。 The closest value to the value t that satisfies the relation of ヽ! A process of selecting a micromirror as a micromirror to be actually used during the main exposure is performed. As a result, in the exposure area near the 512th column, a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
[0222] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、第 512列目付近の露光領域において、 理想的な 2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不 足となる領域が生じな 、ようなマイクロミラーを、実際に使用するマイクロミラーとして 選択することができる。  [0222] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, in the exposure area in the vicinity of the 512th column, a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
また、値 t以下の最大の自然数を導出することとしてもよい。その場合、第 512列目 付近の露光領域において、理想的な 2重露光に対して、露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  It is also possible to derive the maximum natural number less than the value t. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure. It can be selected as a micromirror to be actually used.
[0223] 図 11は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミ ラーが生成した光点のみを用いて行った露光において、図 8に示した被露光面上の むらがどのように改善されるかを示した説明図である。  FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
この例では、上記の自然数 Tとして T= 253が導出され、第 1行目力も第 253行目 のマイクロミラーが選択されたものとする。選択されな力つた第 254行目力も第 256行 目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に 設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図 1 1に示すとおり、第 512列目付近の露光領域では、露光過多及び露光不足は、ほぼ 完全に解消され、理想的な 2重露光に極めて近い均一な露光が実現される。  In this example, it is assumed that T = 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force. The force of the 254th line that has not been selected is also sent to the micromirror on the 256th line by the pixel part control means to send a signal for setting the angle to the off state at all times. It does not participate in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
[0224] 一方、図 11の左方の領域(図中の c (l)付近)では、前記角度歪みにより、被露光 面上における光点列の傾斜角度が中央付近(図中の c (512)付近)の領域における 光線列の傾斜角度よりも小さくなつている。したがって、 c (512)を基準として測定さ れた実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーのみによる露光では、偶数 列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的 な 2重露光に対して露光不足となる領域がわずかに生じてしまう。 し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補 完され、前記角度歪みによる露光むらを、 2重露光による埋め合わせの効果で最小と することができる。 On the other hand, in the left region of FIG. 11 (near c (l) in the figure), the angle distortion of the light spot sequence on the exposed surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle θ Ί measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the areas where the exposure amount is insufficient are compensated for each other, and the uneven exposure due to the angular distortion is performed. Can be minimized by the effect of offset by double exposure.
[0225] また、図 11の右方の領域(図中の c (1024)付近)では、前記角度歪みにより、被露 光面上における光線列の傾斜角度が、中央付近(図中の c (512)付近)の領域にお ける光線列の傾斜角度よりも大きくなつている。したがって、 c (512)を基準として測 定された実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーによる露光では、図に 示すように、理想的な 2重露光に対して露光過多となる領域がわずかに生じてしまう。 し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完 され、前記角度歪による濃度むらを、 2重露光による埋め合わせの効果で最小とする ことができる。  [0225] Also, in the region on the right side of Fig. 11 (near c (1024) in the figure), the angle of inclination of the light beam on the exposed light surface is near the center (c ( It is larger than the angle of inclination of the ray train in the area near 512). Therefore, in the exposure with the micromirror selected based on the actual tilt angle θ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns overlap each other, the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
[0226] 本実施形態(1)では、上述のとおり、第 512列目の光線列の実傾斜角度 Θ 'が測 定され、該実傾斜角度 Θ を用い、前記式 (4)により導出された Tに基づいて使用す るマイクロミラー 58を選択したが、前記実傾斜角度 Θ 'の特定方法としては、複数の 描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角 度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを 実傾斜角度 Θ 'として特定し、前記式 4等によって実際の露光時に実際に使用する マイクロミラーを選択する形態としてもょ 、。  In the present embodiment (1), as described above, the actual inclination angle Θ ′ of the 512th ray array is measured, and the actual inclination angle Θ is used to derive the equation (4). The micromirror 58 to be used is selected based on T. As a method for specifying the actual inclination angle Θ ′, the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used. A plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle Θ '. As a form to select the micro mirror to be used.
前記平均値又は前記中央値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対し て露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現すること ができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最 小に抑えられ、かつ、露光過多となる領域の描素単位数 (光点数)と、露光不足とな る領域の描素単位数 (光点数)とが等しくなるような露光を実現することが可能である また、前記最大値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光過 多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足 となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を 実現することが可能である。 When the average value or the median value is set to the actual inclination angle Θ ′, it is possible to realize exposure with a good balance between an overexposed area and an underexposed area with respect to an ideal N-fold exposure. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating large areas, for example, underexposure Therefore, it is possible to achieve exposure that minimizes the area of the region to be exposed and does not generate an overexposed region.
さらに、前記最小値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光不 足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多 となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を 実現することが可能である。  Furthermore, if the minimum value is the actual inclination angle Θ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
[0227] 一方、前記実傾斜角度 Θ の特定は、同一の描素部の列(光点列)中の少なくとも 2 つの光点の位置に基づく方法に限定されない。例えば、同一描素部列 c (n)中の 1 つ又は複数の光点の位置と、該 c (n)近傍の列中の 1つ又は複数の光点の位置とか ら求めた角度を、実傾斜角度 Θ 'として特定してもよい。  On the other hand, the identification of the actual inclination angle Θ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n), The actual inclination angle Θ ′ may be specified.
具体的には、 c (n)中の 1つの光点位置と、露光ヘッドの走査方向に沿って直線上 かつ近傍の光点列に含まれる 1つ又は複数の光点位置とを検出し、これらの位置情 報から、実傾斜角度 Θ 'を求めることができる。さらに、 c (n)列近傍の光点列中の少 なくとも 2つの光点(たとえば、 c (n)を跨ぐように配置された 2つの光点)の位置に基 づいて求めた角度を、実傾斜角度 Θ 'として特定してもよい。  Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected. The actual inclination angle Θ ′ can be obtained from these positional information. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. The actual inclination angle Θ ′ may be specified.
[0228] 以上のように、パターン形成装置 10を用いた本実施形態(1)の使用描素部の指定 方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度の ばらつきや濃度のむらを軽減し、理想的な N重露光を実現することができる。  [0228] As described above, according to the specification method of the used pixel portion of the present embodiment (1) using the pattern forming apparatus 10, the variation in resolution due to the effect of the mounting angle error of each exposure head or the pattern distortion, Reduces density unevenness and achieves ideal N-layer exposure.
[0229] (2)複数露光ヘッド間における使用描素部の指定方法 < 1 >  [0229] (2) Specification method of used pixel part between multiple exposure heads <1>
本実施形態(2)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な状態からのずれに起因する解 In this embodiment (2), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30. In the connection area, the solution caused by the deviation of the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction from the ideal state.
12 21 12 21
像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Describes how to specify the pixel part to be used in order to reduce the variation in image density and uneven density, and to realize ideal double exposure.
[0230] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度 0としては、露光ヘッド 30の 取付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描 素部マイクロミラー 58を使用してちょうど 2重露光となる角度 Θ を採用するものとす る。 [0230] The set tilt angle 0 of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30 and can be used. 58 and adopt an angle Θ that is exactly double exposure. The
この角度 Θ は、上記の実施形態(1)と同様にして前記式 1〜3から求められる。  This angle Θ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
ideal  ideal
本実施形態(2)において、パターン形成装置 10は、各露光ヘッド 30すなわち各 DM D36の取付角度がこの角度 Θ となるように、初期調整されているものとする。  In the present embodiment (2), it is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DM D 36, becomes this angle Θ.
ideal  ideal
[0231] 図 12は、上記のように初期調整されたパターン形成装置 10において、 2つの露光 ヘッド(一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な  [0231] FIG. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
12 21  12 21
状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示し た説明図である。各露光ヘッドの X軸方向に関する相対位置のずれは、露光ヘッド 間の相対位置の微調整が困難であるために生じ得るものである。  FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
[0232] 図 12の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58 [0232] The upper part of FIG. 12 is a micromirror 58 that can be used by the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 while the stage 14 is stationary.
12 21  12 21
力もの光点群のパターンを示した図である。図 12の下段部分は、上段部分に示した ような光点群のパターンが現れている状態でステージ 14を移動させて連続露光を行 つた際に、被露光面上に形成される露光パターンの状態を、露光エリア 32  It is the figure which showed the pattern of the light spot group of force. The lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing. Status, exposure area 32
12と 32  12 and 32
21 につ 、て示したものである。  This is shown in Fig. 21.
なお、図 12では、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露 光パターンを、画素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに 分けて示してあるが、実際の被露光面上における露光パターンは、これら 2つの露光 パターンを重ね合わせたものである。  In FIG. 12, for convenience of explanation, every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B. However, the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
[0233] 図 12の例では、上記した X軸方向に関する露光ヘッド 30 と 30 との間の相対位 [0233] In the example of FIG. 12, the relative position between the exposure heads 30 and 30 in the X-axis direction described above.
12 21  12 21
置の、理想的な状態からのずれの結果として、画素列群 Aによる露光パターンと画素 列群 Bによる露光パターンとの双方で、露光エリア 32 と 32 の前記ヘッド間つなぎ  As a result of the deviation from the ideal state, the connection between the heads of the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B is performed.
12 21  12 21
領域にお 、て、理想的な 2重露光の状態よりも露光量過多な部分が生じてしまって いる。  In the area, there is an overexposed part than the ideal double exposure state.
[0234] 上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド 間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点 位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 と 30 力  [0234] In order to reduce the density unevenness appearing in the connection region between the heads formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), the light spot position detection is performed. Using a combination of slit 28 and photodetector as means, exposure head 30 and 30 force
12 21 の光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点 のいくつかについて、その位置 (座標)を検出する。該位置 (座標)に基づいて、前記 描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光 に使用するマイクロミラーを選択する処理を行うものとする。 Among the 21 21 light spot groups, the light spots constituting the head-to-head connecting region formed on the exposed surface The position (coordinates) of some of them is detected. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
[0235] 一位置 (座標)の検出  [0235] Detection of one position (coordinate)
図 13は、図 12と同様の露光エリア 32 及び 32 と、対応するスリット 28との位置関  FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
12 21  12 21
係を示した上面図である。スリット 28の大きさは、露光ヘッド 30 と 30 による露光済  It is the top view which showed engagement. The size of the slit 28 is already exposed by the exposure heads 30 and 30.
12 21  12 21
み領域 34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド 30 と 30 に  Large enough to cover the width of the overlap between areas 34, i.e. exposure heads 30 and 30
12 21 より被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。  The size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
[0236] 図 14は、一例として露光エリア 32 の光点 P (256, 1024)の位置を検出する際の [0236] Figure 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32.
21  twenty one
検出手法を説明した上面図である。  It is a top view explaining the detection method.
まず、第 256行目第 1024列目のマイクロミラーを点灯させた状態で、ステージ 14を ゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 1024 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, Y0)と する。この座標 (XO, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror in the 256th row and the 1024th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side. At this time, the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0). The value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0237] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 14における右方に相対 移動させる。そして、図 14において二点鎖線で示すように、光点 P (256, 1024)の 光が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止 させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256 , 1024)の位置として記録する。  [0237] Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
[0238] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 14におけ る左方に相対移動させる。そして、図 14において二点鎖線で示すように、光点 P (25 6, 1024)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を、 光点 P (256, 1024)として記録する。  [0238] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
[0239] 以上の測定結果から、光点 P (256, 1024)の被露光面における位置を示す座標 ( X, Y)を、 Χ=Χ0+ (Υ1—Υ2)Ζ2、 Υ= (Υ1 +Υ2)Ζ2の計算により決定する。 [0239] From the above measurement results, coordinates indicating the position of the light spot P (256, 1024) on the exposed surface ( X, Y) is determined by calculating Χ = Χ0 + (Υ1—Υ2) Ζ2, Υ = (Υ1 + Υ2) Ζ2.
[0240] 不使用描素部の特定 [0240] Identification of unused pixel parts
図 12の例では、まず、露光エリア 32 の光点 Ρ (256, 1)の位置を、上記の光点位  In the example of Fig. 12, first, the position of light spot Ρ (256, 1) in exposure area 32 is
12  12
置検出手段としてスリット 28と光検出器の組により検出する。続いて、露光エリア 32  Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
21 の第 256行目の光点行 r (256)上の各光点の位置を、 Ρ (256, 1024) , P (256, 10 23) · · ·と順番に検出していき、露光エリア 32 の光点 P (256, 1)よりも大きい X座標  The position of each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of Ρ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
12  12
を示す露光エリア 32 の光点 P (256, n)が検出されたところで、検出動作を終了す  When the light spot P (256, n) in the exposure area 32 indicating is detected, the detection operation ends.
21  twenty one
る。そして、露光エリア 32 の光点列 c (n+ l)から c (1024)を構成する光点に対応  The And it corresponds to the light spots that compose c (1024) from light spot sequence c (n + l) in exposure area 32
21  twenty one
するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特 定する。  The micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
例えば、図 12において、露光エリア 32 の光点 P (256, 1020)力 露光エリア 32  For example, in FIG. 12, the light spot P (256, 1020) force in the exposure area 32 Exposure area 32
21 1 の光点 P (256, 1)よりも大きい X座標を示し、その露光エリア 32 の光点 P (256, 1 21 Shows an X coordinate larger than light spot P (256, 1) of 1 and light spot P (256, 1) of exposure area 32
2 21 2 21
020)が検出されたところで検出動作が終了したとすると、図 15において斜線で覆わ れた部分 70に相当する露光エリア 32 の第 1021行力も第 1024行を構成する光点  020) is detected, the detection operation ends.In FIG. 15, the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
21  twenty one
に対応するマイクロミラー力 本露光時に使用しないマイクロミラーとして特定される。  The micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
[0241] 次に、 N重露光の数 Nに対して、露光エリア 32 の光点 P (256, N)の位置が検出 [0241] Next, the position of the light spot P (256, N) in the exposure area 32 is detected with respect to the number N of N exposures.
12  12
される。本実施形態(2)では、 N = 2であるので、光点 P (256, 2)の位置が検出され る。  Is done. In this embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
続いて、露光エリア 32  Next, exposure area 32
21の光点列のうち、上記で本露光時に使用しないマイクロミラ 一に対応する光点列として特定されたものを除き、最も右側の第 1020列を構成する 光点の位置を、 P (l, 1020)力も順番に P (l, 1020)、 P (2, 1020) · · ·と検出して いき、露光エリア 32 の光点 P (256, 2)よりも大きい X座標を示す光点 P (m, 1020)  Except for the 21 light spot sequences identified above as the light spot train corresponding to the micromirror that is not used during the main exposure, the positions of the light spots that make up the rightmost 1020th column are represented by P (l , 1020) The force is also detected in order as P (l, 1020), P (2, 1020) ..., and light spot P indicating an X coordinate larger than light spot P (256, 2) in exposure area 32 (m, 1020)
12  12
が検出されたところで、検出動作を終了する。  When is detected, the detection operation is terminated.
その後、前記光検出器に接続された演算装置において、露光エリア 32  Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
12の光点 P ( 12 light spots P (
256, 2)の X座標と、露光エリア 32 の光点 P (m, 1020)及び P (m— 1, 1020)の X 256, 2) and X of the light spots P (m, 1020) and P (m—1, 1020) in the exposure area 32
21  twenty one
座標とが比較され、露光エリア 32 の光点 P (m, 1020)の X座標の方が露光エリア 3  The X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
21  twenty one
2 の光点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020) If the X coordinate of light spot P (256, 2) of 2 is close, light spot P (l, 1020) of exposure area 32
12 21 12 21
力も P (m— 1, 1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラ 一として特定される。 Micromirrors with a force corresponding to P (m— 1, 1020) are not used during the main exposure. Identified as one.
また、露光エリア 32 の光点 P (m—1, 1020)の X座標の方が露光エリア 32 の光  In addition, the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
21 12 点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020)力も P (m  21 When close to the X coordinate of 12 point P (256, 2), the light spot P (l, 1020) force of exposure area 32 is also P (m
21  twenty one
- 2, 1020)に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特 定される。  -Micromirror force corresponding to 2, 1020) Specified as a micromirror not used in this exposure.
さらに、露光エリア 32 の光点 P (256, N— 1)すなわち光点 P (256, 1)の位置と、  Furthermore, the position of the light spot P (256, N-1) in the exposure area 32, that is, the light spot P (256, 1),
12  12
露光エリア 32 の次列である第 1019列を構成する各光点の位置についても、同様  The same applies to the position of each light spot that constitutes column 1019, which is the next column of exposure area 32.
21  twenty one
の検出処理及び使用しないマイクロミラーの特定が行われる。  Detection processing and micromirrors that are not used are identified.
[0242] その結果、たとえば、図 15において網掛けで覆われた領域 72を構成する光点に対 応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。 これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設 定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。  As a result, for example, micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
[0243] このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイク 口ミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択すること により、露光エリア 32 と 32 の前記ヘッド間つなぎ領域において、理想的な 2重露  [0243] Thus, by identifying micromirrors that are not used during actual exposure and selecting those that are not used as microphone mirrors during actual exposure, exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
12 21  12 21
光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とする ことができ、図 15の下段に示すように、理想的な 2重露光に極めて近い均一な露光 を実現することができる。  The total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
[0244] なお、上記の例においては、図 15において網掛けで覆われた領域 72を構成する 光点の特定に際し、露光エリア 32 の光点 P (256, 2)の X座標と、露光エリア 32 の [0244] In the above example, when specifying the light spot that constitutes the shaded area 72 in Fig. 15, the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area 32 of
12 21 光点 P (m, 1020)及び P (m— 1, 1020)の X座標との比較を行わずに、ただちに、 露光エリア 32 の光点 P (l, 1020)力ら P (m— 2, 1020)に対応するマイクロミラー  12 21 Without comparing P (m, 1020) and P (m—1, 1020) with the X-coordinates, the light spot P (l, 1020) force in the exposure area 32 immediately increases P (m— 2, 1020)
21  twenty one
を、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド 間つなぎ領域にぉ 、て、理想的な 2重露光に対して露光過多となる領域の面積が最 小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用す るマイクロミラーとして選択することができる。  May be specified as a micromirror that is not used during the main exposure. In that case, a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
また、露光エリア 32 の光点 P (l, 1020)力ら P (m— 1, 1020)に対応するマイクロ  In addition, the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
21  twenty one
ミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記へ ッド間つなぎ領域において、理想的な 2重露光に対して露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。 You may identify a mirror as a micromirror which is not used for this exposure. In that case, go to the above A micromirror that actually uses a micromirror that minimizes the area of the underexposed area with respect to the ideal double exposure and does not produce an overexposed area in the connecting area between the heads. Can be selected.
さらに、前記ヘッド間つなぎ領域において、理想的な 2重描画に対して露光過多と なる領域の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)と が等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。  Further, in the connecting area between the heads, the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
[0245] 以上のように、パターン形成装置 10を用いた本実施形態(2)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれに起因する解 像度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。 [0245] As described above, according to the specification method of the used pixel part of the present embodiment (2) using the pattern forming apparatus 10, the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads. It reduces image variability and density unevenness, and realizes ideal N double exposure.
[0246] (3)複数露光ヘッド間における使用描素部の指定方法 < 2 > [0246] (3) Specification method of used pixel part between multiple exposure heads <2>
本実施形態(3)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光 In this embodiment (3), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. In the connection area, the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
12 21 12 21
ヘッドの取付角度誤差、及び 2つの露光ヘッド間の相対取付角度誤差に起因する解 像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Designation of the pixel part to be used to realize ideal double exposure by reducing the variation in resolution and density unevenness caused by the head mounting angle error and the relative mounting angle error between the two exposure heads A method will be described.
[0247] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、露光ヘッド 30の取 付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描素 部(マイクロミラー 58)を使用してちょうど 2重露光となる角度 Θ よりも若干大きい角 [0247] The set tilt angle of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error of the exposure head 30, and the usable 1024 columns x 256 rows pixel part (micro Angle slightly larger than angle Θ, which is exactly double exposure using mirror 58)
ideal  ideal
度を採用するものとする。  The degree shall be adopted.
この角度 Θ は、前記式 1〜3を用いて上記(1)の実施形態と同様にして求められ  This angle Θ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3.
ideal  ideal
る値であり、本実施形態では、上記のとおり s = 256、 N= 2であるので、角度 Θ は  In this embodiment, since s = 256 and N = 2 as described above, the angle Θ is
ideal 約 0. 45度である。したがって、設定傾斜角度 0は、たとえば 0. 50度程度の角度を 採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光ヘッド 30す なわち各 DMD36の取付角度がこの設定傾斜角度 0に近い角度となるように、初期 調整されているものとする。  ideal About 0.45 degrees. Therefore, for the set inclination angle 0, for example, an angle of about 0.50 degrees may be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle 0 within the adjustable range.
[0248] 図 16は、上記のように各露光ヘッド 30すなわち各 DMD36の取付角度が初期調 整されたパターン形成装置 10において、 2つの露光ヘッド(一例として露光ヘッド と 30 )の取付角度誤差、並びに各露光ヘッド 30 と 30 間の相対取付角度誤差[0248] FIG. 16 shows the initial adjustment of the mounting angle of each exposure head 30, that is, each DMD 36 as described above. In the arranged pattern forming apparatus 10, the mounting angle error between the two exposure heads (for example, the exposure head and 30) and the relative mounting angle error between the exposure heads 30 and 30.
2 21 12 21 2 21 12 21
及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示し た説明図である。  FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
[0249] 図 16の例では、図 12の例と同様の、 X軸方向に関する露光ヘッド 30 と 30 の相  In the example of FIG. 16, the phases of the exposure heads 30 and 30 in the X-axis direction are the same as the example of FIG.
12 21 対位置のずれの結果として、一列おきの光点群 (画素列群 A及び B)による露光パタ ーンの双方で、露光エリア 32 と 32 の被露光面上の前記露光ヘッドの走査方向と  12 21 As a result of the misalignment of the position, the scanning direction of the exposure head on the exposed surface in the exposure areas 32 and 32 in both exposure patterns with every other light spot group (pixel array group A and B). When
12 21  12 21
直交する座標軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露 光量過多な領域 74が生じ、これが濃度むらを引き起こしている。  In the overlapping exposure areas on the orthogonal coordinate axes, there is an area 74 where the amount of exposure is excessive compared to the ideal double exposure state, which causes uneven density.
さらに、図 16の例では、各露光ヘッドの設定傾斜角度 Θを前記式(1)を満たす角 度 Θ よりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整 ideal  Further, in the example of FIG. 16, the result of setting the tilt angle Θ of each exposure head slightly larger than the angle Θ satisfying the above equation (1) and fine adjustment of the mounting angle of each exposure head ideal
が困難であるために、実際の取付角度が上記の設定傾斜角度 0からずれてしまった ことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で 重複する露光領域以外の領域でも、一列おきの光点群 (画素列群 A及び B)による露 光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領 域である描素部列間つなぎ領域において、理想的な 2重露光の状態よりも露光過多 となる領域 76が生じ、これがさらなる濃度むらを引き起こしている。  As a result of the fact that the actual mounting angle has deviated from the above-mentioned set inclination angle 0 because of the difficulty of the exposure, the exposure area other than the overlapping exposure area on the coordinate axis perpendicular to the scanning direction of the exposure head on the exposed surface In this area, both of the exposure patterns of every other light spot group (pixel array groups A and B) and the pixel that is an overlapped exposure region on the exposed surface formed by a plurality of pixel part rows. In the connecting region between sub-rows, a region 76 is formed which is overexposed than the ideal double exposure state, and this causes further density unevenness.
[0250] 本実施形態(3)では、まず、各露光ヘッド 30 と 30 の取付角度誤差及び相対取 [0250] In this embodiment (3), first, the mounting angle error of each of the exposure heads 30 and 30 and the relative position are adjusted.
12 21  12 21
付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。 具体的には、前記光点位置検出手段としてスリット 28及び光検出器の組を用い、 露光ヘッド 30 と 30 のそれぞれについて、実傾斜角度 Θ 'を特定し、該実傾斜角  Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle Θ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
12 21  12 21
度 θ Ίこ基づき、前記描素部選択手段として光検出器に接続された演算装置を用い て、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。  Based on the angle θ, processing for selecting a micromirror used for actual exposure is performed using an arithmetic unit connected to a photodetector as the pixel portion selection means.
[0251] 一実傾斜角度 の特定 [0251] Specifying the actual inclination angle
実傾斜角度 Θ 'の特定は、露光ヘッド 30 ついては露光エリア 32 内の光点 P (l,  The actual inclination angle Θ ′ is specified by the light spot P (l,
12 12  12 12
1)と Ρ (256, 1)の位置を、露光ヘッド 30 については露光エリア 32 内の光点 P (l  The positions of 1) and Ρ (256, 1) and the light spot P (l
21 21  21 21
, 1024)と Ρ (256, 1024)の位置を、それぞれ上述した実施形態(2)で用いたスリツ ト 28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走 查方向とがなす角度を測定することにより行われる。 , 1024) and Ρ (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), respectively, and the inclination angle of the straight line connecting them and the exposure head Run This is done by measuring the angle between the heel direction.
[0252] 不使用描素部の特定  [0252] Identification of unused pixel parts
そのようにして特定された実傾斜角度 Θ 'を用いて、光検出器に接続された演算装 置は、上述した実施形態(1)における演算装置と同様、下記式 4  The arithmetic device connected to the photodetector using the actual inclination angle Θ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出し、 DMD36上の第 (T+ 1)行目力も第 256行目のマイクロミラーを、本露光 に使用しないマイクロミラーとして特定する処理を行う。  The (T + 1) line force on the DMD 36 is also identified as the micromirror that is not used for the main exposure.
例えば、露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 255  For example, T = 254 for exposure head 30 and Τ = 255 for exposure head 30
12 21  12 21
が導出されたとすると、図 17において斜線で覆われた部分 78及び 80を構成する光 点に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特定される。 これにより、露光エリア 32 と 32 のうちヘッド間つなぎ領域以外の各領域において  Is derived, the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
12 21  12 21
、理想的な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計 面積を最小とすることができる。  The total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
[0253] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、露光エリア 32 と 32 の、複数の露光へ [0253] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
12 21  12 21
ッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の 各領域において、理想的な 2重露光に対して露光量過多となる面積が最小になり、 かつ露光量不足となる面積が生じな 、ようになすことができる。  In each area other than the head-to-head connection area, which is the overlapping exposure area on the exposed surface formed by the head, the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient This can be done without creating an area.
あるいは、値 t以下の最大の自然数を導出することとしてもよい。その場合、露光ェ リア 32 と 32 の、複数の露光ヘッドにより形成された被露光面上の重複露光領域 Or it is good also as deriving the maximum natural number below value t. In that case, the exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
12 21 12 21
であるヘッド間つなぎ領域以外の各領域にぉ 、て、理想的な 2重露光に対して露光 不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになす ことができる。  In each region other than the head-to-head connecting region, the area of the underexposed region is minimized with respect to the ideal double exposure, and an overexposed region is not generated. it can.
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つ なぎ領域以外の各領域において、理想的な 2重露光に対して、露光過多となる領域 の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)とが等しくな るように、本露光時に使用しな 、マイクロミラーを特定することとしてもよ!/、。 [0254] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、図 12から図 15を用いて説明した本実施形態( 3)と同様の処理がなされ、図 17において斜線で覆われた領域 82及び網掛けで覆わ れた領域 84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用 しな 、マイクロミラーとして追加される。 The number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads ( It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots! Thereafter, regarding the micromirror corresponding to the light spot other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17, this embodiment (3) described with reference to FIGS. The same processing was performed, and micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and added as micromirrors that are not used during the main exposure. Is done.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しない。  With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
[0255] 以上のように、パターン形成装置 10を用いた本実施形態(3)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれ、並びに各露 光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像 度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0255] As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the pattern forming apparatus 10, the relative position shifts in the X-axis direction of the plurality of exposure heads, and Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
[0256] 以上、パターン形成装置 10による使用描素部指定方法ついて詳細に説明したが、 上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の 変更が可能である。  [0256] The method for specifying the used pixel part by the pattern forming apparatus 10 has been described above in detail. However, the embodiments (1) to (3) are merely examples, and various methods can be used without departing from the scope of the present invention. It can be changed.
[0257] また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するため の手段として、スリット 28と単一セル型の光検出器の組を用いた力 これに限られず V、かなる形態のものを用いてもよぐたとえば 2次元検出器等を用いてもょ 、。  [0257] In the above embodiments (1) to (3), as a means for detecting the position of the light spot on the surface to be exposed, a set of the slit 28 and the single cell type photodetector is used. The force that was used is not limited to this, V, or any other form can be used. For example, a two-dimensional detector can be used.
[0258] さらに、上記の実施形態(1)〜(3)では、スリット 28と光検出器の組による被露光面 上の光点の位置検出結果から実傾斜角度 Θ 'を求め、その実傾斜角度 θ Ίこ基づい て使用するマイクロミラーを選択したが、実傾斜角度 Θ 'の導出を介さずに使用可能 なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能 なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃 度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も 、本発明の範囲に含まれるものである。  Furthermore, in the above embodiments (1) to (3), the actual inclination angle Θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained. Although the micromirrors to be used are selected based on θ Ί, a usable micromirror may be selected without involving the derivation of the actual tilt angle Θ ′. In addition, for example, the reference exposure using all available micromirrors is performed, and the micromirror used by the operator is manually specified by checking the resolution and density unevenness by visual observation of the reference exposure result. It is included in the scope of the present invention.
[0259] なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの 他にも、種々の形態が存在する。  [0259] Note that there are various forms of pattern distortion that can occur on the exposed surface, in addition to the angular distortion described in the above example.
一例としては、図 18Aに示すように、 DMD36上の各マイクロミラー 58からの光線 力 異なる倍率で露光面上の露光エリア 32に到達してしまう倍率歪みの形態がある また、別の例として、図 18Bに示すように、 DMD36上の各マイクロミラー 58からの 光線力、異なるビーム径で被露光面上の露光エリア 32に到達してしまうビーム径歪 みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、 DMD36と被露 光面間の光学系の各種収差やアラインメントずれに起因して生じる。 As an example, the rays from each micromirror 58 on the DMD 36 are shown in FIG. Force There is a form of magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications. As another example, as shown in FIG. 18B, the light power from each micromirror 58 on the DMD 36, different beams There is also a form of beam diameter distortion that reaches the exposure area 32 on the exposed surface by the diameter. These magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposed light surface.
さらに別の例として、 DMD36上の各マイクロミラー 58からの光線力 異なる光量で 被露光面上の露光エリア 32に到達してしまう光量歪みの形態もある。この光量歪み は、各種収差やアラインメントずれのほか、 DMD36と被露光面間の光学要素(例え ば、 1枚レンズである図 5A及び図 5Bのレンズ 52及び 54)の透過率の位置依存性や 、 DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、 被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。  As another example, there is a form of light amount distortion that reaches the exposure area 32 on the surface to be exposed with a different light amount from each micromirror 58 on the DMD 36. In addition to various aberrations and misalignment, this light distortion can be attributed to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the lenses 52 and 54 in FIGS. 5A and 5B, which are single lenses). This is caused by unevenness in the amount of light caused by DMD36 itself. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
[0260] 上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選 択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要 素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむ らを、各露光ヘッドの露光領域全体にわたって軽減することができる。 [0260] According to the above-described embodiments (1) to (3), after selecting the micromirrors actually used for the main exposure, the residual elements of the pattern distortion in these forms are also the above-described angular distortion. As with the residual elements, it can be leveled out by the effect of offset by multiple exposure, and variations in resolution and density can be reduced over the entire exposure area of each exposure head.
[0261] < <参照露光 > > [0261] <<Reference exposure>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N— 1)列おきのマイクロミラー列、又は全光点行のうち 1ZN行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行 、、均一な露光を実現できる ように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマ イク口ミラーを特定することとしてもよ 、。  As a modified example of the above embodiments (1) to (3), among available micromirrors, every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露 光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するな どの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であって ちょい。  The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle. The analysis of the result of the reference exposure is a visual analysis by the operator.
[0262] 図 19A及び図 19Bは、単一露光ヘッドを用い、(N—1)列おきのマイクロミラーの みを使用して参照露光を行う形態の一例を示した説明図である。 この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 19 Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照 露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光 結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定し たりすることで、本露光時において使用するマイクロミラーを指定することができる。 例えば、図 19Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイク 口ミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使 用されるものとして指定される。偶数列の光点列については、別途同様に参照露光 を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列 に対するパターンと同一のパターンを適用してもよい。 FIG. 19A and FIG. 19B are explanatory views showing an example of a form in which reference exposure is performed using only (N-1) rows of micromirrors using a single exposure head. In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle. For example, a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び 偶数列双方のマイクロミラーを使用した本露光においては、理想的な 2重露光に近い 状態が実現できる。  By specifying the micromirrors used during the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using both the odd-numbered and even-numbered micromirrors.
図 20は、複数の露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して 参照露光を行う形態の一例を示した説明図である。  FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 20に実線で示した、 X軸方向に関して隣接する 2つの露光ヘッド(一例として露光へ ッド 30 と 30 )の奇数列の光点列に対応するマイクロミラーのみを使用して、参照 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference is made by using only micromirrors corresponding to odd-numbered light spot rows of two exposure heads adjacent to each other in the X-axis direction (for example, exposure heads 30 and 30) shown by a solid line in FIG.
12 21 12 21
露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に 基づき、 2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の 領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したり することで、本露光時にお!、て使用するマイクロミラーを指定することができる。 Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure.
例えば、図 20に斜線で覆って示す領域 86及び網掛けで示す領域 88内の光点列 に対応するマイクロミラー以外のマイクロミラー力 奇数列の光点を構成するマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点 列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを 指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用して ちょい。 このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数 列及び偶数列双方のマイクロミラーを使用した本露光においては、 2つの露光ヘッド により被露光面上に形成される前記ヘッド間つなぎ領域以外の領域にぉ 、て、理想 的な 2重露光に近い状態が実現できる。 For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. . In this way, by specifying the micromirrors that are actually used during the main exposure, in the main exposure using both the odd-numbered and even-numbered micromirrors, the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
[0264] 図 21A及び図 21Bは、単一露光ヘッドを用い、全光点行数の IZN行に相当する 隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を 示した説明図である。 FIGS. 21A and 21B show an example of a mode in which a single exposure head is used and reference exposure is performed using only micromirror groups constituting adjacent rows corresponding to IZN rows of the total number of light spot rows. It is explanatory drawing shown.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 21 Aに実線で示した 1行目から 128 ( = 256/2)行目の光点に対応するマイクロミラ 一のみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプ ル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを 旨定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only a micromirror corresponding to the light spot in the first to 128 (= 256/2) rows shown by the solid line in FIG. 21A, and the reference exposure result is output as a sample. Based on the reference exposure result outputted from the sample, the micromirror to be used in the main exposure can be specified.
例えば、図 21 Bに斜線で覆つて示す光点群に対応するマイクロミラー以外のマイク 口ミラーが、第 1行目から第 128行目のマイクロミラー中、本露光時にお 、て実際に使 用されるものとして指定され得る。第 129行目から第 256行目のマイクロミラーについ ては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定して もよいし、第 1行目から第 128行目のマイクロミラーに対するパターンと同一のパター ンを適用してもよ 、。  For example, a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows. Can be specified as For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner, and the micromirror to be used during the main exposure may be designated, or the first to 128th lines may be designated. You can apply the same pattern as for the micromirror.
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイ クロミラーを使用した本露光においては、理想的な 2重露光に近い状態が実現できる  By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
[0265] 図 22は、複数の露光ヘッドを用い、 X軸方向に関して隣接する 2つの露光ヘッド( 一例として露光ヘッド 30 と 30 )について、それぞれ全光点行数の 1ZN行に相当 [0265] Fig. 22 shows the use of multiple exposure heads, and the two adjacent exposure heads in the X-axis direction (for example, exposure heads 30 and 30) correspond to 1ZN rows of the total number of light spots.
12 21  12 21
する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一 例を示した説明図である。  FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 22に実線で示した第 1行目力も第 128 ( = 256Z2)行目の光点に対応するマイクロ ミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記 サンプル出力された参照露光結果に基づき、 2つの露光ヘッドにより被露光面上に 形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむら を最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミ ラーを指定することができる。 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, the first line force indicated by the solid line in FIG. 22 is also subjected to reference exposure using only the micromirror corresponding to the light spot of the 128th (= 256Z2) line, and the reference exposure result is output as a sample. Above Based on the reference exposure result output as a sample, the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. It is possible to specify the micromirror to be used during the main exposure.
例えば、図 22に斜線で覆って示す領域 90及び網掛けで示す領域 92内の光点列 に対応するマイクロミラー以外のマイクロミラー力 第 1行目から第 128行目のマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。第 129行目か ら第 256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に 使用するマイクロミラーを指定してもよ 、し、第 1行目から第 128行目のマイクロミラー に対するパターンと同一のパターンを適用してもよい。  For example, the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time. For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、 2つの露光 ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において 理想的な 2重露光に近い状態が実現できる。  By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
[0266] 以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を 2重露光と する場合について説明した力 これに限定されず、 2重露光以上のいかなる多重露 光としてもよい。特に 3重露光力 7重露光程度とすることにより、高解像度を確保し、 解像度のばらつき及び濃度むらが軽減された露光を実現することができる。  [0266] In the above embodiments (1) to (3) and the modified examples, the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good. In particular, by setting the triple exposure power to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
[0267] また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表 す 2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応 部分の寸法と一致するように、画像データを変換する機構が設けられて ヽることが好 ましい。そのように画像データを変換することによって、所望の 2次元パターンどおり の高精細なパターンを被露光面上に形成することができる。  [0267] Further, in the exposure apparatus according to the embodiment and the modification example described above, the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
[0268] 〔現像工程〕  [Development process]
前記現像としては、前記感光層の未露光部分を除去することにより行われる。 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  The development is performed by removing an unexposed portion of the photosensitive layer. The removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
[0269] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも 、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例え ば、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム、炭酸リチウム、炭酸ナトリウム 、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナト リウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる [0269] The developer can be appropriately selected according to the purpose without any particular limitation, and examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, and the like. A weak alkaline aqueous solution is preferred. Examples of the base component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and phosphoric acid. Sodium, potassium phosphate, sodium pyrophosphate, potassium pyrophosphate, borax, etc.
[0270] 前記弱アルカリ性の水溶液の pHは、例えば、約 8〜12が好ましぐ約 9〜: L 1がより 好ましい。前記弱アルカリ性の水溶液としては、例えば、 0. 1〜5質量%の炭酸ナトリ ゥム水溶液又は炭酸カリウム水溶液などが挙げられる。 [0270] The pH of the weakly alkaline aqueous solution is more preferably, for example, about 9 to about 8 to 12: L1. Examples of the weak alkaline aqueous solution include 0.1 to 5% by mass of sodium carbonate aqueous solution or potassium carbonate aqueous solution.
前記現像液の温度は、前記感光層の現像性に合わせて適宜選択することができる 力 例えば、約 25〜40°Cが好ましい。  The temperature of the developer is a force that can be appropriately selected according to the developability of the photosensitive layer. For example, about 25 to 40 ° C. is preferable.
[0271] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、エチレンジァミン、ェタノ ールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレントリァミン、トリェチ レンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶 剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラタトン類 等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を 混合した水系現像液であってもよぐ有機溶剤単独であってもよ 、。  [0271] The developer is a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) In order to accelerate development, an organic solvent (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or may be an organic solvent alone.
[0272] 〔硬化処理工程〕  [Curing treatment process]
前記硬化処理工程は、前記現像工程が行われた後、形成されたパターンにおける 感光層に対して硬化処理を行う工程である。  The curing treatment step is a step of performing a curing treatment on the photosensitive layer in the formed pattern after the development step is performed.
前記硬化処理工程としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。  The curing treatment step is not particularly limited and can be appropriately selected depending on the purpose. For example, a full exposure process, a full heat treatment, and the like are preferable.
[0273] 前記全面露光処理の方法としては、例えば、前記現像後に、前記永久パターンが 形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、 前記感光層を形成する感光性組成物中の榭脂の硬化が促進され、前記永久パター ンの表面が硬化される。  [0273] Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the development. By this overall exposure, curing of the resin in the photosensitive composition forming the photosensitive layer is accelerated, and the surface of the permanent pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ 目的に応じて適宜選択するこ とができるが、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation. For example, a UV exposure machine such as an ultra-high pressure mercury lamp is preferably used.
[0274] 前記全面加熱処理の方法としては、前記現像の後に、前記永久パターンが形成さ れた前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永 久パターンの表面の膜強度が高められる。 [0274] As the method of the entire surface heat treatment, the permanent pattern is formed after the development. The method of heating the whole surface on the said laminated body is mentioned. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
前記全面加熱における加熱温度は、 120〜250°Cが好ましぐ 120〜200°Cがより 好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が得ら れないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ、膜 質が弱く脆くなることがある。  The heating temperature in the entire surface heating is preferably 120 to 250 ° C, more preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, the resin in the photosensitive composition may be decomposed, resulting in film quality. May be weak and brittle.
前記全面加熱における加熱時間は、 10〜120分が好ましぐ 15〜60分がより好ま しい。  The heating time in the whole surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0275] 一保護膜、層間絶縁膜、ソルダーレジストパターン形成方法  [0275] Method for forming one protective film, interlayer insulating film, solder resist pattern
前記パターンの形成方法が、保護膜、層間絶縁膜、及びソルダーレジストパターン の少なくとも ヽずれかを形成する永久パターン形成方法である場合には、プリント配 線板上に前記永久パターン形成方法により、永久パターンを形成し、更に、以下のよ うに半田付けを行うことができる。  When the pattern forming method is a permanent pattern forming method for forming at least one of a protective film, an interlayer insulating film, and a solder resist pattern, the pattern is permanently formed on the printed wiring board by the permanent pattern forming method. A pattern can be formed and soldering can be performed as follows.
即ち、前記現像により、前記永久パターンである硬化層が形成され、前記プリント配 線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部 位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、 半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜 あるいは絶縁膜 (層間絶縁膜)、ソルダーレジストとしての機能を発揮し、外部からの 衝撃や隣同士の電極の導通が防止される。  That is, by the development, a hardened layer that is the permanent pattern is formed, and the metal layer is exposed on the surface of the printed wiring board. The metal layer exposed on the surface of the printed wiring board is plated with gold and then soldered. Then, semiconductors and parts are mounted on the soldered parts. At this time, the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), and a solder resist, and prevents external impact and conduction between adjacent electrodes.
[0276] 前記パターン形成装置及び永久パターン形成方法においては、前記永久パター ン形成方法により形成される永久パターンが、前記保護膜又は前記層間絶縁膜であ ると、配線を外部力もの衝撃や曲げ力も保護することができ、特に、前記層間絶縁膜 である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や 部品の高密度実装に有用である。  [0276] In the pattern forming apparatus and the permanent pattern forming method, if the permanent pattern formed by the permanent pattern forming method is the protective film or the interlayer insulating film, the wiring may be subjected to impact or bending by an external force. In particular, the interlayer insulating film is useful for high-density mounting of semiconductors and components on, for example, a multilayer wiring board and a build-up wiring board.
[0277] 本発明の前記永久パターン形成方法は、本発明の前記感光性フィルムを用いるた め、保護膜、層間絶縁膜、及びソルダーレジストパターン等の永久パターン、などの 各種パターン形成用、カラーフィルタ、柱材、リブ材、スぺーサ一、隔壁等の液晶構 造部材の製造、ホログラム、マイクロマシン、プルーフなどの製造に好適に使用するこ とができ、特にプリント基板における高精細な永久パターンの形成に好適に使用する ことができる。 [0277] The method for forming a permanent pattern of the present invention uses the photosensitive film of the present invention. For the formation of various patterns such as protective films, interlayer insulating films, and permanent patterns such as solder resist patterns, manufacturing of liquid crystal structural members such as color filters, pillar materials, rib materials, spacers, partition walls, holograms, etc. It can be suitably used for the manufacture of micromachines, proofs, etc., and can be particularly suitably used for forming a high-definition permanent pattern on a printed circuit board.
実施例  Example
[0278] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0278] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0279] (合成例 1) [0279] (Synthesis Example 1)
1, OOOmL三口フラスコに 1-メトキシ— 2—プロパノール 159gを入れ、窒素気流下 、 85。Cまで加熱した。これに、ベンジルメタタリレート 63. 4g、メタクリル酸 72. 3g、 V — 601 (和光純薬製) 4. 15gの 1—メトキシ— 2—プロパノール 159g溶液を、 2時間 かけて滴下した。滴下終了後、更に 5時間加熱して反応させた。次いで、加熱を止め 、ベンジルメタタリレート Zメタクリル酸(30Z70mol%比)の共重合体を得た。  1, 159g of 1-methoxy-2-propanol was put into a three-neck flask of OOOmL, and under a nitrogen stream, 85. Heated to C. To this, 63.4 g of benzyl metatalylate, 72.3 g of methacrylic acid, V-601 (manufactured by Wako Pure Chemical Industries) 4.15 g of a 1-methoxy-2-propanol 159 g solution was added dropwise over 2 hours. After completion of the dropwise addition, the reaction was further continued by heating for 5 hours. Next, the heating was stopped, and a copolymer of benzyl metatalylate Z methacrylic acid (30Z70 mol% ratio) was obtained.
次に、前記共重合体溶液の内、 120. Ogを 300mL三口フラスコに移し、グリシジル メタタリレート 16. 6g、p—メトキシフエノール 0. 16gをカ卩え、撹拌し溶解させた。溶解 後、テトラエチルアンモ -ゥムクロリド 2.4gをカロえ、 100°Cに加熱し、付加反応を行つ た。グリシジルメタタリレートが消失したことを、ガスクロマトグラフィーで確認し、加熱を 止めた。 1ーメトキシー 2—プロパノールをカ卩え、固形分 30質量%の下記表 1に示す 高分子化合物 1の溶液を調製した。  Next, 120. Og of the copolymer solution was transferred to a 300 mL three-necked flask, and 16.6 g of glycidyl metatalylate and 0.16 g of p-methoxyphenol were added and stirred to dissolve. After dissolution, 2.4 g of tetraethylammonium chloride was prepared and heated to 100 ° C to carry out an addition reaction. The disappearance of glycidyl metatalylate was confirmed by gas chromatography, and heating was stopped. 1-Methoxy-2-propanol was prepared and a solution of polymer compound 1 shown in Table 1 below having a solid content of 30% by mass was prepared.
得られた高分子化合物の質量平均分子量 (Mw)をポリスチレンを標準物質とした ゲルパーミエーシヨンクロマトグラフィー法 (GPC)により測定した結果、 15, 000であ つた o  The mass average molecular weight (Mw) of the obtained polymer compound was measured by gel permeation chromatography (GPC) using polystyrene as a standard material.
また、水酸ィ匕ナトリウムを用いた滴定から、固形分あたりの酸価 (カルボキシル基の 含有量)は、 2. 2meqZgであった。  From the titration using sodium hydroxide sodium salt, the acid value (carboxyl group content) per solid content was 2.2 meqZg.
更に、ヨウ素価滴定により求めた固形分あたりのエチレン性不飽和結合の含有量( C = C価)は、 2. lmeq/gであった。  Furthermore, the content of ethylenically unsaturated bonds per solid (C = C value) determined by iodine value titration was 2. lmeq / g.
[0280] (合成例 2〜27) 目的とする高分子化合物を得るために、合成例 1におけるベンジルメタタリレート、メ タクリル酸、及びグリシジルメタタリレートを、任意のモノマーに適宜変更した以外は、 合成例 1と同様にして、表 1〜表 5に示す高分子化合物 2〜27をそれぞれ調製した。 [0280] (Synthesis Examples 2 to 27) In order to obtain the target polymer compound, the same procedure as in Synthesis Example 1 was performed except that benzyl metatalylate, metacrylic acid, and glycidyl metatalylate in Synthesis Example 1 were appropriately changed to arbitrary monomers. 1 to High polymer compounds 2 to 27 shown in Table 5 were prepared.
[表 1] [table 1]
Figure imgf000104_0001
2]
Figure imgf000105_0001
3]
Figure imgf000106_0001
4]
Figure imgf000107_0001
5]
Figure imgf000108_0001
Figure imgf000104_0001
2]
Figure imgf000105_0001
3]
Figure imgf000106_0001
Four]
Figure imgf000107_0001
Five]
Figure imgf000108_0001
表 1〜表 5中、 * 1は下記構造式 (a)で表される構造及び (b)で表される構造の混 合 (混合比は不明)、 * 2は下記構造式 (c)で表される構造及び (d)の混合 (混合比 は不明)を表す。  In Tables 1 to 5, * 1 is a mixture of the structure represented by the following structural formula (a) and the structure represented by (b) (mixing ratio is unknown), * 2 is the structural formula (c) below. It represents the structure represented and the mixture of (d) (mixing ratio is unknown).
[化 21] 構造式(a )[Chemical formula 21] Structural formula (a)
Figure imgf000108_0002
Figure imgf000108_0002
構造式(b)Structural formula (b)
Figure imgf000108_0003
Figure imgf000108_0003
[化 22] [Chemical 22]
Figure imgf000109_0001
Figure imgf000109_0001
Figure imgf000109_0002
Figure imgf000109_0002
(実施例 1) (Example 1)
感光性組成物の調製  Preparation of photosensitive composition
各成分を下記の量で配合して、感光性組成物溶液を調製した。  Each component was mix | blended in the following quantity and the photosensitive composition solution was prepared.
〔感光性組成物溶液の各成分量〕 [Each component amount of photosensitive composition solution]
•前記高分子化合物 1 (前記 1—メトキシ— 2 プロパノール溶液中に固形分質量 30 質量%) · · ·406質量部  • Polymer compound 1 (solid content in the 1-methoxy-2-propanol solution is 30% by mass) ···· 406 parts by mass
•下記式 Μ— 1で表される重合性化合物 · · -48. 5質量部  • The polymerizable compound represented by the following formula Μ— 1 ··· 48. 5 parts by mass
•下記式 I 1で表される光重合開始剤 · · · 25. 6質量部  • Photopolymerization initiator represented by the following formula I 1 ··· 25. 6 parts by mass
•下記式 S— 1で表される増感剤 · · · 1. 4質量部  • Sensitizer represented by the following formula S— 1.
•下記式 Η— 1で表されるアルカリ不溶性の熱架橋剤 · · · 60. 0質量部  • Alkali insoluble thermal crosslinking agent represented by the following formula Η— 1 ··· 60.0 parts by mass
'熱硬化剤(ジシアンジアミド) · · · 2. 4質量部  'Thermosetting agent (dicyandiamide) · · · 2.4 parts by mass
•フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
%2 ブタノン溶液) · · -0. 85質量部 % 2 butanone solution) · · -0.88 parts by mass
•重合禁止剤(ρ—メトキシフエノール) · · ·〇. 18質量部  • Polymerization inhibitor (ρ-methoxyphenol)
'フタロシアニングリーン · · ·〇. 8質量部  'Phthalocyanine green ···. 8 parts by mass
•硫酸バリウム分散液 (堺化学工業社製、 Β-30) · · ·400質量部  • Barium sulfate dispersion (堺 -30, manufactured by Sakai Chemical Industry Co., Ltd.) ··· 400 parts by mass
•メチルェチルケトン. · · 122質量部 • Methyl ethyl ketone. 122 parts by mass
なお、前記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学社製、 Β30) 30質量部と、 下記 1で表されるエポキシアタリレートイ匕合物のジエチレングリコールモノメチル エーテルアセテート 61. 2質量0 /0溶液 34. 29質量部と、メチルェチルケトン 35. 71 質量部と、を予め混合した後、モーターミル Μ— 200 (アイガー社製)で、直径 1. Om Incidentally, the barium sulfate dispersion, barium sulfate (Sakaii匕学Co., Beta30) and 30 parts by mass, diethylene glycol monomethyl ether acetate epoxy Atari rate Lee匕合compounds represented by the following 1 61.2 mass 0 / 0 Solution 34. 29 parts by mass and methyl ethyl ketone 35.71 parts by mass were mixed in advance, and then the motor mill O-200 (manufactured by Eiger) was used to obtain a diameter of 1. Om.
Figure imgf000110_0001
Figure imgf000110_0002
Figure imgf000110_0003
Figure imgf000110_0001
Figure imgf000110_0002
Figure imgf000110_0003
Figure imgf000110_0004
Figure imgf000110_0004
感光性フィルムの製造  Production of photosensitive film
得られた感光性組成物溶液を、前記支持体としての厚み 16 m、幅 300mm、長 さ 200mの PET (ポリエチレンテレフタレート)フィルム上に、バーコ一ターで塗布し、 80°C熱風循環式乾燥機中で乾燥して、厚み 30 mの感光層を形成した。次いで、 該感光層の上に、保護フィルムとして、膜厚 20 m、幅 310mm、長さ 210mのポリプ ロピレンフィルムをラミネーシヨンにより積層し、前記感光性フィルムを製造した。 The obtained photosensitive composition solution was applied on a PET (polyethylene terephthalate) film having a thickness of 16 m, a width of 300 mm, and a length of 200 m as the support with a bar coater, and an 80 ° C hot air circulating dryer. The film was dried to form a photosensitive layer having a thickness of 30 m. Then On the photosensitive layer, a polypropylene film having a thickness of 20 m, a width of 310 mm and a length of 210 m was laminated as a protective film by lamination to produce the photosensitive film.
[0290] 永久パターンの形成 [0290] Formation of permanent pattern
感光性積層体の調製  Preparation of photosensitive laminate
次に、前記基材として、プリント基板としての配線形成済みの銅張積層板 (スルーホ ールなし、銅厚み 12 m)の表面に化学研磨処理を施して調製した。該銅張積層板 上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして前記感光 性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(二チゴーモートン Next, as the base material, a surface of a copper-clad laminate (no through-hole, copper thickness 12 m) on which a wiring was formed as a printed board was prepared by chemical polishing treatment. On the copper-clad laminate, a vacuum laminator (Nichigo Morton) was used while peeling the protective film from the photosensitive film so that the photosensitive layer of the photosensitive film was in contact with the copper-clad laminate.
(株)社製、 VP130)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリ エチレンテレフタレートフィルム(支持体)とがこの順に積層された感光性積層体を調 製した。 (VP Co., Ltd., VP130) was used to prepare a photosensitive laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) were laminated in this order. .
圧着条件は、真空引きの時間 40秒、圧着温度 70°C、圧着圧力 0. 2MPa、加圧時 間 10秒とした。  The crimping conditions were as follows: vacuuming time 40 seconds, crimping temperature 70 ° C, crimping pressure 0.2 MPa, pressurization time 10 seconds.
[0291] 前記感光性積層体につ!ヽて、最短現像時間、感度、解像度、保存安定性、及びェ ッジラフネスの評価を行った。結果を表 6に示す。  [0291] For the photosensitive laminate! Then, the shortest development time, sensitivity, resolution, storage stability, and edge roughness were evaluated. The results are shown in Table 6.
[0292] <解像度の評価 >  [0292] <Resolution evaluation>
(1)最短現像時間の評価方法  (1) Evaluation method for the shortest development time
前記感光性積層体力 ポリエチレンテレフタレートフィルム (支持体)を剥がし取り、 銅張積層板上の前記感光層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液を 0. 15 MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始力 銅張積層板 上の感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とし た。  The photosensitive laminate strength polyethylene terephthalate film (support) is peeled off, and a 1 mass% sodium carbonate aqueous solution at 30 ° C is sprayed at a pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate. Spray start force of sodium carbonate aqueous solution The time required for the photosensitive layer on the copper clad laminate to be dissolved and removed was measured, and this was taken as the shortest development time.
[0293] (2)感度の評価方法  [0293] (2) Sensitivity evaluation method
前記調製した感光性積層体における感光性フィルムの感光層に対し、前記支持体 側から、以下に説明するパターン形成装置を用いて、 0. ImiZcm2力も 21/2倍間隔 で lOOmiZcm2までの光エネルギー量の異なる光を照射して 2重露光し、前記感光 層の一部の領域を硬化させた。室温にて 10分間静置した後、前記感光性積層体か ら前記支持体を剥がし取り、銅張積層板上の感光層の全面に、 30°Cの 1質量%炭 酸ナトリウム水溶液をスプレー圧 0. 15MPaにて前記(1)で求めた最短現像時間の 2 倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定 した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得た。 該感度曲線から、硬化領域の厚みが露光前の感光層と同じ 30 mとなった時の光 エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。 With respect to the photosensitive layer of the photosensitive film in the prepared photosensitive laminate, from the support side, using a pattern forming apparatus described below, 0. ImiZcm 2 force is 21/2 times up to lOOmiZcm 2 Double exposure was performed by irradiating light with different amounts of light energy, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the support was peeled off from the photosensitive laminate, and a 1 mass% carbon at 30 ° C was applied to the entire surface of the photosensitive layer on the copper clad laminate. A sodium acid aqueous solution was sprayed at a spray pressure of 0.15 MPa for twice the shortest development time determined in (1) above, and the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Subsequently, the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve, the amount of light energy when the thickness of the cured region was the same 30 m as that of the photosensitive layer before exposure was determined as the amount of light energy necessary for curing the photosensitive layer.
[0294] < <パターン形成装置 > > [0294] <<Pattern forming device>>
前記光照射手段として特開 2005— 258431号公報に記載の合波レーザ光源と、 前記光変調手段として図 6に概略図を示した主走査方向にマイクロミラー 58が 1024 個配列されたマイクロミラー列が、副走査方向に 768組配列された内、 1024個 X 25 6列のみを駆動するように制御した DMD36と、図 5A及び図 5Bに示した光を前記感 光性フィルムに結像する光学系とを有する露光ヘッド 30を備えたパターン形成装置 10を用いた。  A combined laser light source described in JP-A-2005-258431 as the light irradiating means, and a micromirror array in which 1024 micromirrors 58 are arranged in the main scanning direction schematically shown in FIG. 6 as the light modulating means. However, among the 768 pairs arranged in the sub-scanning direction, DMD 36 controlled to drive only 1024 × 256 6 rows, and optical for imaging the light shown in FIGS. 5A and 5B on the photosensitive film A pattern forming apparatus 10 having an exposure head 30 having a system was used.
[0295] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、使用可能な 1024 列 X 256行のマイクロミラー 58を使用してちょうど 2重露光となる角度 Θ よりも若干  [0295] The tilt angle of each exposure head 30, ie each DMD 36, is slightly larger than the angle Θ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
ideal  ideal
大き 、角度を採用した。この角度 0  Adopted the size and angle. This angle 0
idealは、 N重露光の数 N、使用可能なマイクロミラ 一 58の列方向の個数 s、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光 ヘッド 30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッ チ δに対し、下記式 1、  Ideally, N is the number of double exposures N, the number of micromirrors that can be used 58 s in the row direction, the spacing p of the micromirrors 58 that can be used in the row direction p, and the micromirrors with the exposure head 30 tilted. For the pitch δ of the scanning line to be formed, the following formula 1,
spsin θ ≥Ν δ (式 1)  spsin θ ≥Ν δ (Equation 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
であり、 s = 256, N = 2であるので、角度 0 は約 0. 45度である。したがって、設  Since s = 256, N = 2, the angle 0 is about 0.45 degrees. Therefore, the setting
ideal  ideal
定傾斜角度 0としては、たとえば 0. 50度を採用した。  As the constant inclination angle 0, for example, 0.50 degrees was adopted.
[0296] まず、 2重露光における解像度のばらつきと露光むらを補正するため、被露光面の 露光パターンの状態を調べた。結果を図 16に示した。図 16においては、ステージ 14 を静止させた状態で感光性フィルム 12の被露光面上に投影される、露光ヘッド 30 [0296] First, the state of the exposure pattern on the exposed surface was examined in order to correct the variation in resolution and uneven exposure in double exposure. The results are shown in FIG. In Figure 16, stage 14 The exposure head 30 is projected onto the exposed surface of the photosensitive film 12 in a stationary state.
12 と 30 が有する DMD36の使用可能なマイクロミラー 58からの光点群のパターンを The pattern of light spots from the micromirror 58 that DMD36 has 12 and 30
21 twenty one
示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている 状態でステージ 14を移動させて連続露光を行った際に、被露光面上に形成される 露光パターンの状態を、露光エリア 32 と 32 について示した。なお、図 16では、説  Indicated. The state of the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part. Are shown for exposure areas 32 and 32. In Figure 16, the theory
12 21  12 21
明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露光パターンを、画素列 群 Aによる露光パターンと画素列群 Bによる露光パターンとに分けて示した力 実際 の被露光面上における露光パターンは、これら 2つの露光パターンを重ね合わせた ものである。  For the sake of clarity, the power shown for every other column of micromirrors 58 that can be used is divided into the exposure pattern by pixel column group A and the exposure pattern by pixel column group B. The exposure pattern is a superposition of these two exposure patterns.
[0297] 図 16に示したとおり、露光ヘッド 30 と 30 の間の相対位置の、理想的な状態から  [0297] From the ideal state of the relative position between exposure heads 30 and 30, as shown in FIG.
12 21  12 21
のずれの結果として、画素列群 Aによる露光パターンと画素列群 Bによる露光パター ンとの双方で、露光エリア 32 と 32 の前記露光ヘッドの走査方向と直交する座標  As a result of the shift, the coordinates orthogonal to the scanning direction of the exposure head in the exposure areas 32 and 32 in both the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B.
12 21  12 21
軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露光過多な領域 が生じていることが判る。  It can be seen that there are overexposed areas in the overlapping exposure areas on the axis than in the ideal double exposure state.
[0298] 前記光点位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 [0298] A set of a slit 28 and a photodetector is used as the light spot position detecting means, and an exposure head 30 is used.
12 ついては露光エリア 32 内の光点 P (l, 1)と P (256, 1)の位置を、露光ヘッド 30  12, the positions of the light spots P (l, 1) and P (256, 1) in the exposure area 32
12 21 については露光エリア 32 内の光点 P (l, 1024)と P (256, 1024)の位置を検出し  For 12 21, the positions of light spots P (l, 1024) and P (256, 1024) within the exposure area 32 are detected.
21  twenty one
、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。  The angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
[0299] 実傾斜角度 Θ 'を用いて、下記式 4 [0299] Using the actual inclination angle Θ ', the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出した。露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 25  Derived. T = 254 for exposure head 30, 、 = 25 for exposure head 30
12 21  12 21
5がそれぞれ導出された。その結果、図 17において斜線で覆われた部分 78及び 80 を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。  5 were derived respectively. As a result, the micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
[0300] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、同様にして図 17にお 、て斜線で覆われた領 域 82及び網掛けで覆われた領域 84を構成する光点に対応するマイクロミラーが特 定され、本露光時に使用しないマイクロミラーとして追加された。 これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しな 、ように制御した。 [0300] Thereafter, with respect to the micromirror corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17, the area 82 covered by the oblique lines in FIG. Also, micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors that are not used during the main exposure. With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially It was controlled so that it was not involved in exposure.
これにより、露光エリア 32 と 32 のうち、複数の前記露光ヘッドで形成された被露  As a result, the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32.
12 21  12 21
光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域にお!、て、理想的 な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最 小とすることができる。  Minimize the total area of overexposed and underexposed areas for ideal double exposure in each area other than the head-to-head connection area, which is the overlapping exposure area on the optical surface. It can be.
[0301] (3)解像度の評価方法  [0301] (3) Resolution evaluation method
前記(1)の最短現像時間の評価方法と同じ方法及び条件で前記感光性積層体を 作製し、室温(23°C、 55%RH)にて 10分間静置した。得られた積層体のポリェチレ ンテレフタレートフィルム(支持体)上から、前記パターン形成装置を用いて、ラインズ スペース = lZlでライン幅 10〜100 μ mまで 1 μ m刻みで各線幅の露光を行う。こ の際の露光量は、前記(2)で測定した前記感光性フィルムの感光層を硬化させるた めに必要な光エネルギー量である。室温にて 10分間静置した後、前記感光性積層 体力 ポリエチレンテレフタレートフィルム(支持体)を剥がし取る。銅張積層板上の 感光層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて 前記(1)で求めた最短現像時間の 2倍の時間スプレーし、未硬化領域を溶解除去す る。この様にして得られた硬化榭脂パターン付き銅張積層板の表面を光学顕微鏡で 観察し、硬化榭脂パターンのラインにッマリ、ョレ等の異常が無ぐかつスペース形成 可能な最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど 良好である。結果を表 1に示す。  The photosensitive laminate was produced under the same method and conditions as the method for evaluating the shortest development time in (1) and allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes. From the obtained polyethylene terephthalate film (support) of the laminate, exposure is performed for each line width in increments of 1 μm from 10 to 100 μm with a line space of lZl using the pattern forming apparatus. The exposure amount at this time is the amount of light energy required to cure the photosensitive layer of the photosensitive film measured in (2). After standing at room temperature for 10 minutes, the photosensitive laminate strength polyethylene terephthalate film (support) is peeled off. Spray the entire surface of the photosensitive layer on the copper clad laminate with a 1% by weight sodium carbonate aqueous solution at 30 ° C at a spray pressure of 0.15 MPa for twice the shortest development time obtained in (1) above. Is dissolved and removed. The surface of the copper clad laminate with a cured resin pattern obtained in this way is observed with an optical microscope. The width was measured and used as the resolution. The resolution is better as the value is smaller. The results are shown in Table 1.
[0302] <保存安定性の評価 >  [0302] <Evaluation of storage stability>
前記感光性フィルムをワインダ一で巻き取り、感光性フィルム原反ロールを製造した 得られた前記感光性フィルム原反ロールを同軸スリツターにてスリットして、長さ 300 mm、内径 76mmの ABS榭脂製円筒状巻き芯に、 250mm幅で 150m巻き取り、感 光性フィルムロールを作製した。  The photosensitive film was wound up with a winder to produce a photosensitive film raw roll. The obtained photosensitive film raw roll was slit with a coaxial slitter, and was 300 mm in length and 76 mm in inner diameter. A cylindrical roll core was wound up to 150 m in a width of 250 mm to produce a photosensitive film roll.
こうして得られた前記感光性フィルムロールを、黒色ポリエチレン製の筒状袋 (膜厚 : 80 m、水蒸気透過率: 25gZm2' 24hr以下)に包み、ポリプロピレン製ブッシュを 巻き芯の両端に押し込んだ。 The photosensitive film roll obtained in this way was made into a cylindrical bag made of black polyethylene (film thickness : 80 m, water vapor transmission rate: 25 gZm 2 '24hr or less), and a polypropylene bush was pushed into both ends of the core.
前記ブッシュで両端を塞いだロール状のサンプルを 25°C、 55%RHで 21日間保 存後、端面融着の有無を観察し、下記基準で保存安定性の評価を行なった。  The roll-shaped sample with both ends closed with the bush was stored at 25 ° C and 55% RH for 21 days, and then observed for end face fusion, and the storage stability was evaluated according to the following criteria.
〔評価基準〕  〔Evaluation criteria〕
〇:端面融着が確認されず、積層体が良好に使用できる状態。  A: End face fusion is not confirmed, and the laminate can be used satisfactorily.
△:端面の一部に光沢があり、若干量の端面融着が起きて 、る状態 (使用限界)。 X:端面全面に光沢があり、端面融着が多量に発生している状態。  Δ: A part of the end face is glossy, and a slight amount of end face fusion occurs (use limit). X: State where the entire end face is glossy and a large amount of end face fusion occurs.
[0303] <エッジラフネスの評価 > [0303] <Evaluation of edge roughness>
前記感光性積層体に、前記パターン形成装置を用いて、前記露光ヘッドの走査方 向と直交する方向の横線パターンが形成されるように照射して 2重露光し、前記感光 層の一部の領域を前記解像度の測定における(3)と同様にしてパターンを形成した 。得られたパターンのうち、ライン幅 50 mのラインの任意の 5箇所について、レーザ 顕微鏡 (VK— 9500、キーエンス (株)製;対物レンズ 50倍)を用いて観察し、視野内 のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所 (谷底部)との 差を絶対値として求め、観察した 5箇所の平均値を算出し、これをエッジラフネスとし た。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。結果を表 1 に示す。  Using the pattern forming apparatus, the photosensitive laminate is irradiated with double exposure so that a horizontal line pattern in a direction orthogonal to the scanning direction of the exposure head is formed, and a part of the photosensitive layer is exposed. A pattern was formed on the area in the same manner as (3) in the resolution measurement. Among the obtained patterns, any five points of a line with a line width of 50 m were observed using a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 ×), and the edge position in the field of view was observed. Of these, the difference between the most swollen part (mountain peak) and the most constricted part (valley bottom) was obtained as an absolute value, and the average value of the five observed points was calculated, and this was used as edge roughness. The edge roughness is preferably as the value is small because it exhibits good performance. The results are shown in Table 1.
[0304] (実施例 2〜実施例 7及び比較例 1〜3)  [0304] (Example 2 to Example 7 and Comparative Examples 1 to 3)
実施例 1において、前記高分子化合物を下記表 6に示す高分子化合物にそれぞ れ代えたこと以外は、実施例 1と同様にして感光性フィルム及び感光性積層体を製 し 7こ。  In Example 1, a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that the polymer compound was replaced with the polymer compound shown in Table 6 below.
また、前記感光性フィルム及び感光性積層体について、実施例 1と同様に、感度、 解像度、保存安定性、及びエッジラフネスの評価を行った。結果を表 6に示す。 なお、下記表 6中、それぞれ、比較例 1〜3で用いられている高分子化合物 B— 1〜 B— 3は、それぞれ下記式で表される。  In addition, the photosensitive film and the photosensitive laminate were evaluated in the same manner as in Example 1 for sensitivity, resolution, storage stability, and edge roughness. The results are shown in Table 6. In Table 6 below, polymer compounds B-1 to B-3 used in Comparative Examples 1 to 3, respectively, are represented by the following formulae.
[0305] [化 24]
Figure imgf000116_0001
[0305] [Chemical 24]
Figure imgf000116_0001
Mw 20, 000  Mw 20, 000
酸価 2. Omeqノ g  Acid number 2. Omeq g
C=C価 2.1 meq/g  C = C value 2.1 meq / g
Figure imgf000116_0002
Figure imgf000116_0002
Mw 23, 000  Mw 23, 000
酸 ΐ西 2. Omeq/g  Acid Sosai 2. Omeq / g
C=C価 2. 3meqノ g  C = C value 2.3 meq g
Figure imgf000116_0003
Figure imgf000116_0003
Mw 30, 000  Mw 30, 000
酸価 2. Omeqノ g  Acid number 2. Omeq g
C = C価 Omeq/g  C = C value Omeq / g
[0306] [表 6]  [0306] [Table 6]
Figure imgf000116_0004
Figure imgf000116_0004
[0307] (実施例 8)  [Example 8]
各成分を下記の量で配合して、感光性組成物溶液を調製したこと以外は、実施例 1と同様にして感光性フィルム及び感光性積層体を製造した。  A photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that each component was blended in the following amounts to prepare a photosensitive composition solution.
〔感光性組成物溶液の各成分量〕  [Each component amount of photosensitive composition solution]
•前記高分子化合物 1 (前記 1—メトキシ— 2—プロパノール溶液中に固形分質量 30 質量%)···541質量部  • Polymer compound 1 (solid content 30% by mass in the 1-methoxy-2-propanol solution) 541 parts by mass
'前記式 Μ— 1で表される重合性化合物 · · -48.5質量部 •光重合開始剤 I 2* · · · 20質量部 'Polymerizable compound represented by the above formula Μ-1 -48.5 parts by mass • Photopolymerization initiator I 2 * · · · 20 parts by mass
•増感剤 (ジェチルチオキサントン) · · · 3質量部  • Sensitizer (Jetylthioxanthone) 3 parts by mass
•前記式 Η— 1で表されるアルカリ不溶性の熱架橋剤… 62. 0質量部  • Alkali-insoluble thermal crosslinking agent represented by the formula Η—1 ... 62.0 parts by mass
'熱硬化剤(ジシアンジアミド) · · · 2. 4質量部  'Thermosetting agent (dicyandiamide) · · · 2.4 parts by mass
•フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
%2 ブタノン溶液) · · -0. 85質量部 % 2 butanone solution) · · -0.88 parts by mass
•重合禁止剤(ρ—メトキシフエノール) · · ·〇. 18質量部  • Polymerization inhibitor (ρ-methoxyphenol)
'フタロシアニングリーン · · ·〇. 8質量部  'Phthalocyanine green ···. 8 parts by mass
•硫酸バリウム分散液 (堺化学工業社製、 Β-30) · · · 200質量部  • Barium sulfate dispersion (manufactured by Sakai Chemical Industry Co., Ltd., Β-30) ··· 200 parts by mass
•メチルェチルケトン. · · 122質量部  • Methyl ethyl ketone. 122 parts by mass
*:光重合開始剤 1— 2は、 Irgacure907と Irgacure369と(それぞれチノく'スぺシ ヤノレティ ·ケミカルズ社製)の 1: 1混合物である。  *: Photoinitiator 1-2 is a 1: 1 mixture of Irgacure907 and Irgacure369 (manufactured by Chinoku Special Chemicals).
なお、前記硫酸バリウム分散液は、実施例 1と同様にして調製した。  The barium sulfate dispersion was prepared in the same manner as in Example 1.
[0308] また、前記感光性フィルム及び感光性積層体について、実施例 1と同様に、感度、 解像度、及び保存安定性の評価を行った。また、以下の方法により無電解金めつき 耐性の評価も行なった。これらの結果を表 7に示す。 [0308] In addition, the sensitivity, resolution, and storage stability of the photosensitive film and the photosensitive laminate were evaluated in the same manner as in Example 1. In addition, the electroless gold plating resistance was also evaluated by the following method. These results are shown in Table 7.
[0309] <無電解金めつき耐性の評価 > [0309] <Evaluation of resistance to electroless gold plating>
後述する工程に従って前記試験基板に無電解金めつきを行ない、その試験基板に っ 、て外観の変化及びセロハン粘着テープを用いたピーリング試験を行な 、、レジ スト皮膜の剥離状態を以下の基準で評価した。  The test substrate is subjected to electroless gold plating according to the process described below, the appearance of the test substrate is changed, and a peeling test using a cellophane adhesive tape is performed. It was evaluated with.
評価基準  Evaluation criteria
〇:外観変化もなぐレジスト皮膜の剥離も全くない。  ◯: There is no peeling of the resist film with no change in appearance.
△:外観の変化はな 、が、レジスト皮膜にわずかに剥れがある。  Δ: No change in appearance, but the resist film is slightly peeled off.
X:レジスト皮膜の浮きが見られ、めっき潜りが認められ、ピーリング試験でレジスト 皮膜の剥れが大きい。  X: The resist film is lifted, plating latencies are observed, and peeling of the resist film is large in the peeling test.
-—無電解金めつき工程— - ソルダーレジストパターン (永久パターン)を形成した試験基板を、 30°Cの酸性脱脂 液(日本マクダーミット社製、 Metex L— 5Bの 20質量%水溶液)に 3分間浸漬した 後、流水中に 3分間浸漬して水洗した。 -—Electroless gold plating process—-The test substrate on which the solder resist pattern (permanent pattern) is formed is placed in a 30 ° C acidic degreasing solution (Mexdermit Japan, 20% by weight aqueous solution of Metex L-5B) for 3 minutes. Soaked Then, it was immersed in running water for 3 minutes and washed with water.
次いで、 14. 3質量%過硫酸アンチモン水溶液に室温で 3分間浸漬した後、流水 中に 3分間浸漬して水洗し、更に、 10質量%硫酸水溶液に室温で試験基板を 1分間 浸漬した後、流水中に 30秒〜 1分間浸漬して水洗した。  Next, after immersing in 14.3% by mass antimony persulfate aqueous solution for 3 minutes at room temperature, after immersing in running water for 3 minutes and rinsing, and further immersing the test substrate in 10% by mass sulfuric acid aqueous solution at room temperature for 1 minute. It was immersed in running water for 30 seconds to 1 minute and washed with water.
次に、この基板を 30°Cの触媒液 (メルテックス社製、メタルプレートァクチべ一ター 3 50の 10質量%水溶液)に 7分間浸漬後、流水中に 3分間浸漬して水洗し、次いで 8 5°Cのニッケルめっき液 (メルテックス社製、メルプレート Ni—865M、 20容量0 /0水溶 液、 pH4. 6)に 20分間浸漬し、無電解ニッケルめっきを行った後、 10質量%硫酸水 溶液に室温で 1分間浸漬後、流水中に 30秒〜 1分間浸漬して水洗した。 Next, this substrate was immersed in a 30 ° C catalyst solution (Meltex, 10 mass% aqueous solution of Metal Plate Actuator 350) for 7 minutes, then immersed in running water for 3 minutes, washed with water, then 8 5 ° nickel plating solution of C (Meltex Co., Melplate Ni-865M, 20 volume 0/0 aqueous solution, pH 4. 6) was immersed for 20 minutes, after the electroless nickel plating, 10 wt After being immersed in a 1% sulfuric acid solution at room temperature for 1 minute, it was immersed in running water for 30 seconds to 1 minute and washed with water.
次いで、試験基板を 75°Cの金めつき液 (奥野製薬工業社製、 OPCムデンゴールド 、 pH12〜13、厚付け金めつき 0. 3 /z m)に 4分間浸漬し、無電解金めつきを行った 後、流水中に 3分間浸漬して水洗し後、更に、 60°Cの温水で 3分間浸漬して十分に 水洗後、乾燥し、無電解金めつきした試験基板を得た。  Next, immerse the test substrate in a 75 ° C gold plating solution (Okuno Pharmaceutical Co., Ltd., OPC Muden Gold, pH 12-13, thick gold plating 0.3 / zm) for 4 minutes, and electroless gold plating After immersing, immersed in running water for 3 minutes, washed with water, further immersed in warm water of 60 ° C for 3 minutes, sufficiently washed with water, dried, and an electroless gold-plated test substrate was obtained. .
[0310] (実施例 9〜13) [0310] (Examples 9 to 13)
実施例 8において、前記高分子化合物を下記表 7に示す高分子化合物にそれぞ れ代えたこと以外は、実施例 8と同様にして感光性フィルム及び感光性積層体を製 し 7こ。  In Example 8, a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 8, except that the polymer compound was replaced with the polymer compound shown in Table 7 below.
また、前記感光性フィルム及び感光性積層体について、実施例 8と同様に、感度、 解像度、無電解金めつき耐性、及び保存安定性の評価を行った。結果を表 7に示す  The photosensitive film and photosensitive laminate were evaluated in the same manner as in Example 8 for sensitivity, resolution, electroless gold adhesion resistance, and storage stability. The results are shown in Table 7.
[0311] (比較例 4) [0311] (Comparative Example 4)
特開平 7-199457を参考に下記の方法で感光性組成物溶液を調製したこと以外 は、実施例 8と同様にして感光性フィルム及び積層体を製造した。  A photosensitive film and a laminate were produced in the same manner as in Example 8 except that a photosensitive composition solution was prepared by the following method with reference to JP-A-7-199457.
—バインダー(C)の合成—  —Synthesis of binder (C) —
メチルメタタリレート 80質量部、アクリル酸 50質量部、ベンジルメタタリレート 80質量 部、エチレングリコールモノメチルエーテルアセテート 240質量部からなる配合成分 を、ァゾビスイソプチ口-トリル 2質量部を触媒として 75°Cで 4時間重合反応を行 、、 その後熱重合禁止剤としてメチルヒドロキノン 2質量部を溶解させたグリシジルメタタリ レート 45質量部を添加し、更に 2時間反応させて、質量平均分子量 40, 000、酸価 8 4のバインダーポリマー(C)を得た。 80 parts by weight of methyl metatalylate, 50 parts by weight of acrylic acid, 80 parts by weight of benzyl metatalylate, 240 parts by weight of ethylene glycol monomethyl ether acetate, and 75 parts by weight of 2 parts by weight of azobisisopetite-tolyl as a catalyst Glycidylmetatali in which 2 parts by mass of methylhydroquinone was dissolved as a thermal polymerization inhibitor after 4 hours of polymerization reaction. 45 parts by mass of the rate was added, and the mixture was further reacted for 2 hours to obtain a binder polymer (C) having a mass average molecular weight of 40,000 and an acid value of 84.
[0312] 不飽和二重結合含有エポキシ榭脂 (D)の合成 [0312] Synthesis of unsaturated double bond-containing epoxy resin (D)
フエノールノボラック型エポキシ榭脂 (東都化成社製:「YDPN— 638」) 110質量部 をプロピレングリコールモノメチルエーテルアセテート 150質量部に加熱しながら溶 解し、次いでアクリル酸 34質量部、ベンジルジメチルァミン 0. 8質量部を加え 100〜 120°Cで 8時間反応を続けた後、テトラヒドロ無水フタル酸 35質量部を加え 100°Cで 8時間反応させて、酸価 70、エポキシ当量 5, 000の不飽和二重結合含有エポキシ 樹脂 (D)を得た。  Phenolic novolac-type epoxy resin (manufactured by Toto Kasei Co., Ltd .: “YDPN-638”) 110 parts by mass was dissolved in 150 parts by mass of propylene glycol monomethyl ether acetate, and then 34 parts by mass of acrylic acid and benzyldimethylamine 0 After adding 8 parts by mass and continuing the reaction at 100 to 120 ° C for 8 hours, add 35 parts by mass of tetrahydrophthalic anhydride and reacting at 100 ° C for 8 hours to give an acid value of 70 and an epoxy equivalent of 5,000. A saturated double bond-containing epoxy resin (D) was obtained.
[0313] 次 、で、各成分を下記の量で配合して、感光性組成物溶液を調製し、実施例 8と同 様にして感光性フィルム及び感光性積層体を製造した。  Next, each component was blended in the following amounts to prepare a photosensitive composition solution, and a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 8.
〔感光性組成物溶液の各成分量〕  [Each component amount of photosensitive composition solution]
•前記バインダー (C) · · · 50質量部  • 50 parts by weight of the binder (C)
•前記不飽和二重結合含有エポキシ榭脂 (D) · · · 50質量部  • Unsaturated double bond-containing epoxy resin (D) · · · 50 parts by mass
•前記式 Μ— 1で表される重合性化合物 · · · 12質量部  • Polymerizable compound represented by the above formula Μ— 1 ··· 12 parts by mass
•ジェチルチオキサントン. · ·4質量部  • Jetylthioxanthone. · 4 parts by mass
•Irgacure907- · · 8質量部  • Irgacure907- 8 parts by mass
'フタロシアニングリーン. · · 2質量部  'Phthalocyanine green. · 2 parts by mass
•硫酸バリウム (堺化学工業社製、 Β-30) · · ·40質量部  Barium sulfate (Made by Chemical Industry Co., Ltd., Β-30) · · · 40 parts by mass
•フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 • Fluorosurfactant (Megafac F—176, manufactured by Dainippon Ink and Chemicals, 30 mass
%2 ブタノン溶液) · · -0. 85質量部 % 2 butanone solution) · · -0.88 parts by mass
'プロピレングリコールモノメチルエーテル' · · 40質量部  'Propylene glycol monomethyl ether' · · 40 parts by mass
また、前記感光性フィルム及び感光性積層体について、実施例 8と同様に、感度、 解像度、無電解金めつき耐性、及び保存安定性の評価を行った。結果を表 7に示す なお、上記感光性組成物溶液は、 3本ロールミルにて混練りした後、実施例 8と同 様に長尺状に塗布、乾燥、及び卷取りを実施したが、塗布厚ムラが ± 5 mあり、卷 き形状も端面が揃わず不良であった。また、スリット加工時に、感光層由来の切りくず が発生し、不良であった。 The photosensitive film and photosensitive laminate were evaluated in the same manner as in Example 8 for sensitivity, resolution, electroless gold adhesion resistance, and storage stability. The results are shown in Table 7. The photosensitive composition solution was kneaded with a three-roll mill and then coated, dried and scraped in the same manner as in Example 8. The thickness unevenness was ± 5 m, and the edge shape was not uniform because of the uneven shape. In addition, chips from the photosensitive layer during slitting Occurred and was defective.
[表 7] [Table 7]
Figure imgf000120_0001
Figure imgf000120_0001
(実施例 14)  (Example 14)
各成分を下記の量で配合して、感光性組成物溶液を調製したこと以外は、実施例 1と同様にして感光性フィルム及び感光性積層体を製造した。  A photosensitive film and a photosensitive laminate were produced in the same manner as in Example 1 except that each component was blended in the following amounts to prepare a photosensitive composition solution.
〔感光性組成物溶液の各成分量〕 [Each component amount of photosensitive composition solution]
•前記高分子化合物 1 (前記 1—メトキシ— 2 プロパノール溶液中に固形分質量 30 質量%) · · ·420質量部  • Polymer compound 1 (solid content in the 1-methoxy-2-propanol solution is 30% by mass) ··· 420 parts by mass
•下記式 Μ— 2で表される重合性化合物 · · · 50質量部  • Polymerizable compound represented by the following formula 式 — 2 ··· 50 parts by mass
•前記式 I 1で表される光重合開始剤 · · · 30質量部  • Photopolymerization initiator represented by the formula I 1 ··· 30 parts by mass
•前記式 S— 1で表される増感剤 · · · 1. 8質量部  • Sensitizer represented by the formula S-1 1.
•下記式 Η— 2で表されるアルカリ不溶性の熱架橋剤… 65. 0質量部  • Alkali-insoluble thermal cross-linking agent represented by the following formula… — 25.0 parts by mass
'熱硬化剤(ジシアンジアミド) · · · 2. 4質量部  'Thermosetting agent (dicyandiamide) · · · 2.4 parts by mass
'フッ素系界面活性剤 (メガファック F— 176,大日本インキ化学工業 (株)製、 30質量 'Fluorosurfactant (Megafac F-176, manufactured by Dainippon Ink & Chemicals, Inc., 30 mass)
%2 ブタノン溶液) · · - 0. 85質量部 % 2 butanone solution) · ·-0.85 parts by mass
•重合禁止剤(ρ—メトキシフエノール) · · ·〇. 18質量部  • Polymerization inhibitor (ρ-methoxyphenol)
'フタロシアニングリーン · · ·〇. 8質量部  'Phthalocyanine green ···. 8 parts by mass
'硫酸バリウム分散液 (堺化学工業社製、 Β-30) · · · 105質量部  'Barium sulfate dispersion (Tsubaki Chemical Industry Co., Ltd., Β-30) 105 parts by mass
•メチルェチルケトン. · · 122質量部 • Methyl ethyl ketone. 122 parts by mass
なお、前記硫酸バリウム分散液は、実施例 1と同様にして調製した。 また、前記感光性フィルム及び感光性積層体について、実施例 1と同様に、感度、 解像度、及び保存安定性の評価を行うと共に、実施例 8と同様に、保存安定性の評 価を行なった。結果を表 8に示す。 The barium sulfate dispersion was prepared in the same manner as in Example 1. For the photosensitive film and the photosensitive laminate, the sensitivity, resolution, and storage stability were evaluated in the same manner as in Example 1, and the storage stability was evaluated in the same manner as in Example 8. . The results are shown in Table 8.
[化 25]  [Chemical 25]
Figure imgf000121_0001
Figure imgf000121_0001
-2  -2
[0317] (実施例 15 19並びに比較例 5及び比較例 6)  [0317] (Example 15 19 and Comparative Examples 5 and 6)
実施例 14において、前記高分子化合物を下記表 8に示す高分子化合物にそれぞ れ代えたこと以外は、実施例 14と同様にして感光性フィルム及び感光性積層体を製 し 7こ。  In Example 14, a photosensitive film and a photosensitive laminate were prepared in the same manner as in Example 14, except that the polymer compound was replaced with the polymer compound shown in Table 8 below.
また、前記感光性フィルム及び感光性積層体について、実施例 14と同様に、感度 、解像度、及び保存安定性の評価を行なった。結果を表 8に示す。  In addition, the sensitivity, resolution, and storage stability of the photosensitive film and photosensitive laminate were evaluated in the same manner as in Example 14. The results are shown in Table 8.
[0318] [表 8] [0318] [Table 8]
Figure imgf000121_0002
Figure imgf000121_0002
[0319] (実施例 20)  [0319] (Example 20)
実施例 8にお ヽて、光重合開始剤 I— 2 20質量部と増感剤(ジェチルチオキサント ン) 3質量部とを、下記式 1— 3で表される光重合開始剤(チバ 'スペシャルティ 'ケミカ ルズ社製、 Irgacure907) 10質量部に変更した以外は、実施例 8と同様にして感光 性フィルム及び感光性積層体を製造した。この感光性積層体に対して、実施例 1と同 様なパターンを有するガラス製ネガマスクを別途作製し、このネガマスクを積層体上 に接触させて超高圧水銀灯で 150mjZcm2の露光量で露光した。その後、実施例 1 と同様な方法で現像し、解像度評価を行うと共に、実施例 1と同様に前記感光性フィ ルムにつ 、て保存安定性の評価を行った。結果を表 9に示す。 In Example 8, 20 parts by mass of photopolymerization initiator I-2 and 3 parts by mass of sensitizer (jetylthioxanthone) were combined with a photopolymerization initiator represented by the following formula 1-3 ( A photosensitive film and a photosensitive laminate were produced in the same manner as in Example 8 except that the amount was changed to 10 parts by mass, manufactured by Ciba “Specialty” Chemicals, Inc., Irgacure907). For this photosensitive laminate, the same as in Example 1. A glass negative mask having such a pattern was separately prepared, and this negative mask was brought into contact with the laminated body and exposed with an ultrahigh pressure mercury lamp at an exposure amount of 150 mjZcm 2 . Thereafter, development was carried out in the same manner as in Example 1, and the resolution was evaluated. Similarly to Example 1, the photosensitive film was evaluated for storage stability. The results are shown in Table 9.
[化 26]
Figure imgf000122_0001
[Chemical 26]
Figure imgf000122_0001
[0320] (実施例 21〜23及び比較例 7) [0320] (Examples 21 to 23 and Comparative Example 7)
実施例 20にお 、て、前記光重合開始剤の種類及び量を表 9に示すように代えたこ と以外は、実施例 20と同様にして感光性フィルム及び感光性積層体を製造した。 前記感光性フィルム及び感光性積層体について、実施例 20と同様に、解像度及 び保存安定性の評価を行なった。結果を表 9に示す。  In Example 20, a photosensitive film and a photosensitive laminate were produced in the same manner as in Example 20, except that the type and amount of the photopolymerization initiator were changed as shown in Table 9. For the photosensitive film and photosensitive laminate, the resolution and storage stability were evaluated in the same manner as in Example 20. The results are shown in Table 9.
[0321] (実施例 24) [0321] (Example 24)
実施例 20にお 、て、前記高分子化合物及び前記光重合開始剤の種類及び量を 表 9に示すように代え、更に前記式 H—1で表されるアルカリ不溶性の熱架橋剤 62. 0質量部を式 H— 3で表されるアルカリ不溶性の熱架橋剤 62. 0質量部に変更したこ と以外は、実施例 20と同様にして感光性フィルム及び感光性積層体を製造した。 前記感光性フィルム及び感光性積層体について、実施例 20と同様に、解像度及 び保存安定性の評価を行なった。結果を表 9に示す。  In Example 20, the types and amounts of the polymer compound and the photopolymerization initiator were changed as shown in Table 9, and the alkali-insoluble thermal crosslinking agent represented by the formula H-1 62.0 A photosensitive film and a photosensitive laminate were produced in the same manner as in Example 20, except that the mass part was changed to 62.0 parts by mass of the alkali-insoluble thermal crosslinking agent represented by the formula H-3. For the photosensitive film and photosensitive laminate, the resolution and storage stability were evaluated in the same manner as in Example 20. The results are shown in Table 9.
[化 27]
Figure imgf000122_0002
[Chemical 27]
Figure imgf000122_0002
[0322] [表 9] 古 [0322] [Table 9] Old
问刀卞 光重合開始剤 解像度 保存  问 刀 卞 Photopolymerization initiator Resolution Storage
化合物 ( U n) 安定性  Compound (U n) Stability
種類 量(質量部)  Type Amount (parts by mass)
実施例 20 21 [-3 10 35 〇  Example 20 21 [-3 10 35 ○
実施例 21 21 [-4 11.2 35 〇  Example 21 21 [-4 11.2 35 ○
実施例 22 21 [-5 11.2 35 〇  Example 22 21 [-5 11.2 35 ○
実施例 23 23 [-5 15 40 o  Example 23 23 [-5 15 40 o
実施例 24 25 [-5 15 40 〇  Example 24 25 [-5 15 40 ○
比較例 7 B-1 [-5 11.2 55 X  Comparative Example 7 B-1 [-5 11.2 55 X
表 9中、 I 4及び I 5は、それぞれ下記式で表される c In Table 9, I 4 and I 5 are each represented by the following formulas c
[0323] [化 28] [0323] [Chemical 28]
Figure imgf000123_0001
Figure imgf000123_0001
Figure imgf000123_0002
Figure imgf000123_0002
1-5  1-5
[0324] 表 6〜9の結果から、本発明の高分子化合物を含む実施例 1〜24の感光性フィル ムでは、前記高分子化合物が、エチレン性不飽和結合を有することにより、前記ェチ レン性不飽和基を有さない高分子化合物のみを含む比較例 3の感光性フィルムに比 して感度及び解像度が極めて向上することが判った。また、前記実施例 1〜24の感 光性フィルムは、芳香族基を有することにより、前記芳香族基を有さない高分子化合 物のみを含む比較例 1〜 7の感光性フィルムに比して保存安定性が極めて向上する ことが判った。また、実施例 8〜13より、上記性能に加え、アルカリ不溶性の熱架橋 剤を共存させることで、無電解金めつき耐性を付与できることが判った。  [0324] From the results of Tables 6 to 9, in the photosensitive films of Examples 1 to 24 containing the polymer compound of the present invention, the polymer compound has an ethylenically unsaturated bond, and thus It was found that the sensitivity and resolution were significantly improved as compared with the photosensitive film of Comparative Example 3 containing only the polymer compound having no renically unsaturated group. In addition, the photosensitive films of Examples 1 to 24 have an aromatic group, so that the photosensitive films of Comparative Examples 1 to 7 including only the polymer compound having no aromatic group are included. It was found that the storage stability was greatly improved. Further, from Examples 8 to 13, it was found that in addition to the above performance, the presence of an alkali-insoluble thermal crosslinking agent can impart resistance to electroless gold plating.
産業上の利用可能性 本発明の感光性組成物及び感光性フィルムは、所定の高分子化合物を含むことに より、感度、解像度、無電解金メッキ耐性、及び保存安定性に優れ、高精細なパター ンを効率よく形成可能であるため、保護膜、層間絶縁膜、及びソルダーレジストパタ ーン等の永久パターン、などの各種パターン形成、カラーフィルタ、柱材、リブ材、ス ぺーサ一、隔壁などの液晶構造部材の製造、ホログラム、マイクロマシン、プルーフ の製造などに好適に用いることができ、特にプリント基板の永久パターン形成用に好 適に用いることができる。 Industrial applicability The photosensitive composition and photosensitive film of the present invention contain a predetermined polymer compound, so that the sensitivity, resolution, electroless gold plating resistance, and storage stability are excellent, and a high-definition pattern can be efficiently formed. Therefore, various pattern formation such as protective film, interlayer insulation film, permanent pattern such as solder resist pattern, etc., manufacture of liquid crystal structural members such as color filter, pillar material, rib material, spacer, partition wall, etc. It can be suitably used for the production of holograms, micromachines, proofs, etc., and can be particularly suitably used for forming a permanent pattern on a printed circuit board.
本発明の永久パターン形成方法は、本発明の前記感光性フィルムを用いるため、 保護膜、層間絶縁膜、及びソルダーレジストパターン等の永久パターン、などの各種 ノ ターン形成用、カラーフィルタ、柱材、リブ材、スぺーサ一、隔壁などの液晶構造部 材の製造、ホログラム、マイクロマシン、プルーフの製造などに好適に用いることがで き、特にプリント基板の永久パターン形成に好適に用いることができる。  Since the method for forming a permanent pattern of the present invention uses the photosensitive film of the present invention, it is used for forming various patterns such as a protective film, an interlayer insulating film, and a permanent pattern such as a solder resist pattern, a color filter, a column material, It can be suitably used for the production of liquid crystal structural members such as ribs, spacers, and partition walls, as well as for the production of holograms, micromachines, and proofs, and particularly for the formation of permanent patterns on printed boards.

Claims

請求の範囲 The scope of the claims
[1] バインダー、重合性化合物、光重合開始剤、及びアルカリ不溶性の熱架橋剤を含 み、前記バインダーが、側鎖に、ヘテロ環を含んでもよい芳香族基及びエチレン性不 飽和結合を有する高分子化合物を含むことを特徴とする感光性組成物。  [1] A binder, a polymerizable compound, a photopolymerization initiator, and an alkali-insoluble thermal crosslinking agent are included, and the binder has an aromatic group that may include a heterocycle and an ethylenically unsaturated bond in the side chain. A photosensitive composition comprising a polymer compound.
[2] 高分子化合物が、エチレン性不飽和結合を 0. 5〜3. OmeqZg含有する請求項 1 に記載の感光性組成物。  [2] The photosensitive composition according to claim 1, wherein the polymer compound contains 0.5 to 3. OmeqZg of an ethylenically unsaturated bond.
[3] 高分子化合物が、側鎖にカルボキシル基を有し、前記カルボキシル基の前記高分 子化合物における含有量が、 1. 0〜4. OmeqZgである請求項 1から 2のいずれか に記載の感光性組成物。 [3] The polymer compound according to any one of claims 1 to 2, wherein the polymer compound has a carboxyl group in a side chain, and the content of the carboxyl group in the polymer compound is 1.0 to 4. OmeqZg. Photosensitive composition.
[4] 高分子化合物の質量平均分子量が、 10, 000以上 100, 000未満である請求項 1 力 3のいずれかに記載の感光性組成物。 [4] The photosensitive composition according to any one of [1] to [3], wherein the polymer compound has a mass average molecular weight of 10,000 or more and less than 100,000.
[5] 高分子化合物が、下記構造式 (I)で表される構造単位を 20mol%以上含有する請 求項 1から 4の 、ずれかに記載の感光性組成物。 [5] The photosensitive composition according to any one of claims 1 to 4, wherein the polymer compound contains 20 mol% or more of a structural unit represented by the following structural formula (I).
[化 1]  [Chemical 1]
構造式(I )
Figure imgf000125_0001
Structural formula (I)
Figure imgf000125_0001
ただし、前記構造式 (I)中、 R、  However, in the structural formula (I), R,
1 R2、及び R 3は水素原子又は 1価の有機基を表す。 1 R2 and R3 represent a hydrogen atom or a monovalent organic group.
Lは有機基を表し、なくてもよい。 Arはへテロ環を含んでもよい芳香族基を表す。 L represents an organic group and may be omitted. Ar represents an aromatic group that may contain a heterocycle.
[6] 重合性化合物が、エチレン性不飽和結合を 1つ以上有する化合物を含む請求項 1 力 5のいずれかに記載の感光性組成物。 6. The photosensitive composition according to any one of claims 1 to 5, wherein the polymerizable compound contains a compound having one or more ethylenically unsaturated bonds.
[7] アルカリ不溶性の熱架橋剤が、エポキシィ匕合物を含む請求項 1から 6のいずれかに 記載の感光性組成物。 7. The photosensitive composition according to any one of claims 1 to 6, wherein the alkali-insoluble thermal crosslinking agent contains an epoxy compound.
[8] 支持体と、該支持体上に請求項 1から 7のいずれかに記載の感光性組成物力 な る感光層とを有することを特徴とする感光性フィルム。  [8] A photosensitive film comprising a support and a photosensitive layer serving as a photosensitive composition according to any one of claims 1 to 7 on the support.
[9] 感光性フィルム力 長尺状であり、ロール状に巻かれてなる請求項 8に記載の感光 性フィルム。 [9] The photosensitive film strength according to claim 8, which is long and wound in a roll shape. Sex film.
[10] 請求項 8から 9のいずれかに記載の感光性フィルムにおける感光層に対して露光を 行うことを含むことを特徴とする永久パターン形成方法。  [10] A method for forming a permanent pattern, comprising exposing the photosensitive layer in the photosensitive film according to any one of [8] to [9].
[11] 請求項 10に記載の永久パターン形成方法により永久パターンが形成されたことを 特徴とするプリント基板。 [11] A printed circuit board, wherein a permanent pattern is formed by the method for forming a permanent pattern according to claim 10.
PCT/JP2007/050428 2006-02-06 2007-01-15 Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board WO2007091402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780009807XA CN101405657B (en) 2006-02-06 2007-01-15 Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006028324A JP4620600B2 (en) 2006-02-06 2006-02-06 Photosensitive composition, photosensitive film, and permanent pattern forming method
JP2006-028324 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091402A1 true WO2007091402A1 (en) 2007-08-16

Family

ID=38345009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050428 WO2007091402A1 (en) 2006-02-06 2007-01-15 Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board

Country Status (4)

Country Link
JP (1) JP4620600B2 (en)
KR (1) KR20080092433A (en)
CN (1) CN101405657B (en)
WO (1) WO2007091402A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009217040A (en) * 2008-03-11 2009-09-24 Fujifilm Corp Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method and printed circuit board
JP5749886B2 (en) * 2009-12-28 2015-07-15 株式会社タムラ製作所 Curable resin composition and printed wiring board using the same
JP6986830B2 (en) * 2016-06-29 2021-12-22 Jsr株式会社 Radiation-sensitive resin composition, pattern, pattern forming method and display element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205650A (en) * 1987-02-20 1988-08-25 Unitika Ltd Alkaline development type photosensitive resin composition
JPH01303431A (en) * 1988-05-31 1989-12-07 Unitika Ltd Photosensitive resin composition
JPH09160239A (en) * 1995-12-05 1997-06-20 Asahi Chem Res Lab Ltd Soldering resist resin composition
JP2003029402A (en) * 2001-07-19 2003-01-29 Goo Chemical Co Ltd Ultraviolet ray-curable resin composition and dry film
JP2006011178A (en) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd Photosensitive composition, photosensitive film, permanent pattern and method for forming same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200302402A (en) * 2002-01-30 2003-08-01 Sumitomo Chemical Co Photosensitive resin composition and pattern forming method by using same, color filter and liquid display device
TWI313397B (en) * 2003-03-28 2009-08-11 Sumitomo Chemical Co Colored photosensitive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205650A (en) * 1987-02-20 1988-08-25 Unitika Ltd Alkaline development type photosensitive resin composition
JPH01303431A (en) * 1988-05-31 1989-12-07 Unitika Ltd Photosensitive resin composition
JPH09160239A (en) * 1995-12-05 1997-06-20 Asahi Chem Res Lab Ltd Soldering resist resin composition
JP2003029402A (en) * 2001-07-19 2003-01-29 Goo Chemical Co Ltd Ultraviolet ray-curable resin composition and dry film
JP2006011178A (en) * 2004-06-28 2006-01-12 Fuji Photo Film Co Ltd Photosensitive composition, photosensitive film, permanent pattern and method for forming same

Also Published As

Publication number Publication date
CN101405657A (en) 2009-04-08
KR20080092433A (en) 2008-10-15
JP2007206609A (en) 2007-08-16
JP4620600B2 (en) 2011-01-26
CN101405657B (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5144495B2 (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
WO2007102289A1 (en) Photosensitive composition, photosensitive film, method for permanent pattern formation using said photosensitive composition, and printed board
KR101381187B1 (en) Photosensitive composition, photosensitive film, and printed circuit board
JP4708238B2 (en) Photosensitive film, permanent pattern forming method, and printed circuit board
JP4783678B2 (en) PHOTOSENSITIVE COMPOSITION AND METHOD FOR PRODUCING THE SAME, PHOTOSENSITIVE FILM, PHOTOSENSITIVE LAMINATE, PERMANENT PATTERN FORMING METHOD, AND PRINTED BOARD
WO2007000885A1 (en) Permanent patterning method
JP2009217040A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method and printed circuit board
JP2009186510A (en) Photosensitive composition, photosensitive film, photosensitive laminate, method for forming permanent pattern, and printed wiring board
JP2007197390A (en) Oxime derivative, photosensitive composition, pattern-forming material, photosensitive laminate, pattern-forming device and method for forming pattern
JP2007310027A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007310025A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP4790460B2 (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007248497A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
JP2010072340A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
WO2007111003A1 (en) Photosensitive composition, photosensitive film, method of forming permanent pattern, and printed wiring board
JP4651524B2 (en) Pattern forming material, pattern forming apparatus and pattern forming method
WO2007091402A1 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board
JP2008076852A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
WO2007102261A1 (en) Photosensitive composition, photosensitive film, photosensitive laminate, method of forming permanent pattern and printed board
JP2007248846A (en) Photosensitive composition, film, and laminate, and permanent pattern forming method, permanent pattern, and printed circuit board
JP2007248843A (en) Photosensitive composition, photosensitive film, photosensitive laminate, permanent pattern forming method, and printed circuit board
JP2007286487A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
JP2009237494A (en) Photosensitive film and method for forming permanent pattern
JP2007279703A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
WO2007108172A1 (en) Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087019434

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780009807.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07706762

Country of ref document: EP

Kind code of ref document: A1