WO2007000885A1 - Permanent patterning method - Google Patents

Permanent patterning method Download PDF

Info

Publication number
WO2007000885A1
WO2007000885A1 PCT/JP2006/311503 JP2006311503W WO2007000885A1 WO 2007000885 A1 WO2007000885 A1 WO 2007000885A1 JP 2006311503 W JP2006311503 W JP 2006311503W WO 2007000885 A1 WO2007000885 A1 WO 2007000885A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
pixel part
area
pixel
permanent pattern
Prior art date
Application number
PCT/JP2006/311503
Other languages
French (fr)
Japanese (ja)
Inventor
Masanobu Takashima
Katsuto Sumi
Kazuteru Kowada
Issei Suzuki
Takayuki Uemura
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007000885A1 publication Critical patent/WO2007000885A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks

Definitions

  • the present invention forms an image of light modulated in accordance with image data on a photosensitive layer, exposes the photosensitive layer, and performs high-performance in the printed wiring board field including a package substrate or in the semiconductor field.
  • the present invention relates to a permanent pattern forming method for efficiently forming fine permanent patterns (protective film, interlayer insulating film, and solder resist pattern).
  • An exposure apparatus that passes light modulated by a spatial light modulator or the like through an imaging optical system, forms an image of this light on a predetermined photosensitive layer, and exposes the photosensitive layer is known.
  • the exposure apparatus includes a spatial light modulation element in which a large number of pixel portions that modulate irradiated light according to control signals are arranged in a two-dimensional manner, and a light source that irradiates the spatial light modulation element with light.
  • an imaging optical system that forms an image of the light modulated by the spatial light modulation element on the photosensitive layer, and the exposure head is placed on the exposed surface of the photosensitive layer.
  • Patent Document 2 a plurality of exposure heads each having a DMD in which micromirrors are arranged in a rectangular lattice shape are inclined with respect to the scanning direction, and the triangles on both sides of the DMD are inclined.
  • An exposure apparatus in which each exposure head is attached is described in such a manner that the shape portion complements each other between DMDs adjacent to each other in a direction perpendicular to the scanning direction.
  • Patent Document 3 discloses a direction in which a plurality of exposure heads having a rectangular grid DMD are not tilted with respect to the scanning direction or tilted by a minute angle and are orthogonal to the scanning direction. Each exposure head is attached so that the exposure areas by the DMD adjacent to each other overlap by a predetermined width, and the number of micromirrors to be driven is determined at the position corresponding to the overlap between the exposure areas of each DMD.
  • An exposure apparatus is described in which the exposure area by each DMD is made into a parallelogram shape that is gradually reduced or increased at a constant rate.
  • the exposure head is used so as to coincide with the scanning line force of the light beam from one pixel part to match the scanning line of the light beam of another pixel part force.
  • an exposure apparatus of a multiple exposure type in which each point on an exposed surface of a layer is exposed by overlapping a plurality of times substantially.
  • Patent Document 4 discloses a plurality of micromirrors (drawing) in order to improve the resolution of a two-dimensional pattern formed on an exposed surface and to express a pattern including a smooth diagonal line.
  • An exposure apparatus that uses rectangular DMDs that are two-dimensionally arranged in a two-dimensional manner and is tilted with respect to the scanning direction so that adjacent exposure spots with micromirror forces partially overlap on the exposed surface. It is described.
  • Patent Document 5 uses a rectangular DMD that is inclined with respect to the scanning direction, thereby superimposing exposure spots on the exposed surface to change the total illumination chromaticity.
  • An exposure apparatus capable of suppressing imaging errors caused by factors such as color image expression and microlens partial defects is described.
  • the mounting angle of the exposure head is deviated from an ideal setting inclination angle force, so that at a place on the exposed surface of the photosensitive layer to be exposed, The density and arrangement of the exposure spots will be different from the other parts, resulting in unevenness in the resolution and density of the image formed on the photosensitive layer, and the edge roughness of the pattern formed will increase. There's a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-1244
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-9595
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-195512
  • Patent Document 4 U.S. Patent No. 6493867
  • Patent Document 5 Special Table 2001-500628
  • Non-patent document 1 Akito Ishikawa “Development shortening and mass production application by maskless exposure”, “ELECROTOKUS mounting technology”, Technical Research Committee, Vol.18, No.6, 2002, p.74- 79 Disclosure of the Invention
  • the present invention has been made in view of the current situation, and it is an object of the present invention to solve the conventional problems and achieve the following objects. That is, the present invention relates to deviations in the mounting position and mounting angle of the exposure head, various aberrations of the optical system between the image element and the exposed surface of the photosensitive layer, distortion of the image element itself, and the like. By leveling out the effect of variations in exposure due to pattern distortion caused by the pattern, and reducing variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer, a protective film, an insulating film, Permanent pattern that can form permanent patterns such as solder resists with high definition and efficiency. It is an object of the present invention to provide a method for forming a film.
  • a photosensitive layer After forming a photosensitive layer on the surface of the substrate using a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, Light irradiating means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel elements that receive and emit light from the light irradiating means.
  • An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle ⁇ with respect to a scanning direction of the exposure head.
  • the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head
  • the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and
  • a method of forming a permanent pattern characterized in that the exposure head is moved relative to the scanning direction for exposure and image formation.
  • the exposure head is subjected to N multiple exposures (where N is 2 or more) of the usable pixel parts by the used pixel part specifying means.
  • the pixel part to be used for (natural number) is specified, and the pixel part is assigned by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. Be controlled. Exposure is performed by moving the exposure head relative to the photosensitive layer in the scanning direction, so that the exposure head is formed on the exposed surface of the photosensitive layer due to a mounting position or mounting angle shift. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition permanent pattern.
  • ⁇ 2> The method for forming a permanent pattern according to ⁇ 1>, wherein the formation of the photosensitive layer is performed by applying the photosensitive composition to the surface of the substrate and drying.
  • the photosensitive composition is applied to the surface of the substrate. Dried. As a result, the photosensitive layer is formed on the substrate.
  • a photosensitive layer is formed by applying a photosensitive film having a support and a photosensitive layer obtained by laminating a photosensitive composition on the support under at least one of heating and pressurization.
  • the method for forming a permanent pattern according to ⁇ 1> wherein the method is carried out by laminating on the surface.
  • the photosensitive film having the support and a photosensitive layer obtained by laminating a photosensitive composition on the support is at least one of heating and pressurization. It is laminated on the surface of the base material underneath. As a result, the photosensitive layer is formed by being transferred onto the substrate.
  • ⁇ 4> The method for forming a permanent pattern according to ⁇ 3>, wherein the support contains a synthetic resin and is transparent.
  • ⁇ 5> The method for forming a permanent pattern according to any one of ⁇ 3> to ⁇ 4>, wherein the support is elongated.
  • ⁇ 6> The method for forming a permanent pattern according to any one of ⁇ 3> to ⁇ 5>, wherein the photosensitive film is long and is wound into a roll.
  • ⁇ 8> The method for forming a permanent pattern according to any one of ⁇ 1> to ⁇ 7>, wherein the photosensitive layer has a thickness of 3 to 100111.
  • ⁇ 9> The permanent pattern forming method according to any one of ⁇ 1> to ⁇ 8>, wherein the substrate is a printed wiring board on which wiring is formed.
  • the substrate is a printed wiring board on which wiring is formed.
  • the base material is a printed wiring board on which wiring has been formed, a multilayer wiring board for semiconductors and components can be obtained by using the permanent pattern forming method. High-density mounting on build-up wiring boards is possible.
  • the exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for the exposure of the joint area between the heads, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the permanent pattern forming method according to any one of ⁇ 1> to ⁇ 9>, wherein, among the element parts, the picture element part used for realizing N double exposure in the head-to-head connection region is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel part specifying means is involved in the exposure of the joint area between the heads which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the picture element used for realizing the N-fold exposure in the head-to-head connection region is designated, so that the exposure of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head is performed. Variations in the resolution and uneven density of the pattern formed in the connecting area between the heads on the exposure surface are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition permanent pattern.
  • the exposure is performed by a plurality of exposure heads, and the used picture element designation means is involved in exposures other than the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads.
  • the permanent pattern forming method according to ⁇ 10> wherein the pixel part used to realize N double exposure in an area other than the head-to-head connection area among the picture element parts is designated.
  • the exposure is performed by a plurality of exposure heads, and the used pixel part designating unit overlaps the exposed surface formed by the plurality of exposure heads.
  • ⁇ 13> The method for forming a permanent pattern according to any one of ⁇ 1> to ⁇ 12>, wherein the N force of N exposure is a natural number of 3 or more.
  • the permanent pattern forming method according to 13> According to the law, multiple drawing is performed by using a natural number of N force 3 or more in N double exposure. As a result, due to the effect of offsetting, variations in resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head are more accurately leveled. .
  • a light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface
  • a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure
  • ⁇ 16> Based on at least two light spot positions detected by the light spot position detecting means, the row direction of the light spots on the surface to be exposed and the running direction of the exposure head in a state where the exposure head is tilted
  • the actual inclination angle ⁇ ′ formed by the image element is specified, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle ⁇ ′ and the set inclination angle ⁇ .
  • the permanent pattern forming method according to any one of 15>.
  • the actual inclination angle ⁇ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined.
  • the ⁇ 16> force is selected as the pixel portion to be used as the pixel portion to be used from the first row to the T-th row in the arranged pixel portion.
  • the power of the mth line is specified as the unused pixel part, and the pixel part excluding the unused pixel part is selected as the used pixel part.
  • the permanent pattern forming method according to any one of the above.
  • ⁇ 20> In an area including at least a multiple exposure area on an exposed surface formed by a plurality of pixel part rows,
  • connection area between the heads which is the overlapping exposure area on the exposed surface formed by a plurality of exposure heads
  • the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area.
  • N (N ⁇ 1) column-by-column drawings for N of N double exposures.
  • the N double exposure of the usable pixel parts is designated. For N, reference exposure is performed using only the pixel part constituting the pixel part sequence for each (N-1) column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
  • the above-described drawing element specifying unit includes a slit and a photodetector as a light spot position detection unit, and an arithmetic unit connected to the photodetector as a drawing unit selection unit.
  • V is a method for forming a permanent pattern described in any of the above.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit.
  • V is a method for forming a permanent pattern described in any of the above.
  • 27. A method for forming a permanent pattern according to any one of the above.
  • ⁇ 29> The method for forming a permanent pattern according to any one of ⁇ 1>, ⁇ 28>, wherein the light modulation means is a spatial light modulation element.
  • ⁇ 30> The method for forming a permanent pattern according to 29 above, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • ⁇ 32> The method for forming a permanent pattern according to any one of ⁇ 1> to Kara 31, wherein the light irradiation unit can synthesize and irradiate two or more lights.
  • the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth. .
  • the photosensitive layer is exposed with extremely high definition, and then the photosensitive layer is developed to form a very high definition permanent pattern.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber.
  • the method for forming a permanent pattern according to any one of ⁇ 1> to ⁇ 32>.
  • the laser beams irradiated by the light irradiation means respectively with the plurality of laser forces. Is condensed by the collective optical system and can be coupled to the multimode optical fiber, so that exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive layer is performed with extremely high definition, and then the photosensitive layer is developed to form an extremely fine permanent pattern.
  • ⁇ 34> The method for forming a permanent pattern according to ⁇ 33>, wherein the wavelength of the laser beam is 395 to 415 nm.
  • ⁇ 36> The method for forming a permanent pattern according to ⁇ 35>, wherein the curing process is at least a shift between an overall exposure process and an overall heating process performed at 120 to 200 ° C.
  • the permanent pattern forming method described in ⁇ 36> curing of the resin in the photosensitive composition is accelerated through the entire surface exposure treatment. Further, the film strength of the cured film is increased in the entire surface heat treatment performed under the temperature condition.
  • ⁇ 37> The method for forming a permanent pattern according to any one of ⁇ 1> and ⁇ 36>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
  • the conventional problems can be solved, the displacement of the mounting position and mounting angle of the exposure head, and the optical system between the picture element portion and the exposed surface of the photosensitive layer. Equalizes the effects of variations in exposure due to various aberrations and pattern distortion caused by the distortion of the image area itself, etc., and eliminates variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer.
  • a permanent pattern forming method capable of forming a permanent pattern such as a protective film, an insulating film, and a solder resist with high definition and efficiency.
  • FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
  • FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
  • FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
  • FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
  • FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
  • FIG. 6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
  • FIG. 7A is a perspective view for explaining the operation of the DMD.
  • FIG. 7B is a perspective view for explaining the operation of the DMD.
  • FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
  • FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
  • FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
  • FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
  • FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift between adjacent exposure heads.
  • FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
  • FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
  • FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
  • FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads.
  • FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
  • FIG. 18A is an explanatory view showing an example of magnification distortion.
  • FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
  • FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
  • FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
  • FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
  • FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
  • FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
  • FIG. 23 is an explanatory view showing an example of unevenness generated in the pattern on the exposed surface due to “angle distortion” in which the inclination angle of each pixel column is not uniform in Comparative Example 1.
  • the permanent pattern forming method of the present invention includes at least an exposure step and a development step, preferably includes a curing treatment step, and further includes other steps appropriately selected as necessary.
  • the exposure step is performed on the photosensitive layer.
  • An exposure head provided with a light modulation means capable of controlling a picture element portion, and arranged such that the column direction of the picture element portion forms a predetermined set inclination angle ⁇ with respect to the scanning direction of the exposure head.
  • the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head
  • the pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and The exposure is performed by moving the exposure head relatively in the scanning direction.
  • N-exposure exposure refers to a straight line parallel to the scanning direction of the exposure head on the surface to be exposed in almost all of the exposure region on the surface to be exposed of the photosensitive layer.
  • the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit.
  • the arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms.
  • substantially all areas of the exposure area is described as being parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element rows in the use picture element part that intersect with the straight line is reduced, even if it is used to connect multiple exposure heads when it is applied, errors due to the mounting angle and arrangement of the exposure head, etc. The number of pixel parts in the used pixel part that intersects the straight line parallel to the scanning direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution.
  • N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”.
  • N-fold drawing and N-fold drawing are used as terms corresponding to “N-double exposure” and “multiple exposure” for the embodiment in which the exposure method in the permanent pattern forming method of the present invention is implemented as a drawing method.
  • multiple drawing t is used.
  • N is a natural number of 2 or more
  • N is not particularly limited for the purpose of N-exposure. Forces that can be selected at the same time. Natural numbers of 3 or more are preferred. Natural numbers of 3 or more and 7 or less are preferred.
  • the pattern forming apparatus is a V flat-bed type exposure apparatus, and as shown in FIG. 1, a sheet-shaped photosensitive material 12 (hereinafter referred to as a sheet-shaped photosensitive material 12) formed by laminating the photosensitive layer on the substrate.
  • the plate-shaped moving stage 14 holds the “photosensitive layer 12” (which may be absorbed) on the surface.
  • Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16.
  • the stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable.
  • the pattern forming apparatus 10 is provided with a stage driving device (not shown) that drives the stage 14 along the guide 20.
  • a U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18.
  • a scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side.
  • the scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14.
  • the scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
  • an X axis and a Y axis that are orthogonal to each other are defined in a plane parallel to the surface of the stage 14 as shown in FIG.
  • a " ⁇ " shape that opens in the direction of the X-axis.
  • Ten slits 28 are formed at regular intervals.
  • Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side.
  • the slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of ⁇ 45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis.
  • the position of the slit 28 is substantially coincident with the center of the exposure head 30.
  • each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
  • each slit 28 in the stage 14 a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in a used pixel part specifying process to be described later.
  • a photodetector (not shown) is incorporated.
  • each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
  • the operation form of the pattern forming apparatus at the time of exposure may be a form in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved step by step.
  • the exposure operation may be performed with the exposure head stationary at the destination position.
  • Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle ⁇ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12.
  • the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
  • the individual exposure heads arranged in the mth row and the nth column are indicated, they are represented as an exposure head 30, and the exposure by the individual exposure heads arranged in the mth row and the nth column is indicated.
  • each row arranged in a line is performed so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34.
  • Each of the heads 30 is arranged at a predetermined interval (a natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
  • the part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
  • each of the exposure heads 30 has a light modulation means (spatial light modulated for each pixel portion) that modulates incident light for each pixel portion in accordance with image data.
  • DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a modulation element.
  • the DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part.
  • the data processing unit of the controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
  • a laser in which the emission end portion (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32.
  • a fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36
  • the mirrors 42 to be used are arranged in this order.
  • the lens system 40 is schematically shown.
  • the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38, and a light quantity distribution of the collimated laser light. It is composed of a pair of combination lenses 46 that correct the light so as to be uniform, and a condensing lens 48 that condenses the laser light whose light intensity distribution has been corrected on the DMD 36.
  • a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed.
  • the lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
  • the laser beam emitted from the fiber array light source 38 is substantially five times larger. After being expanded, the light from each micromirror on the DMD 36 is set to be reduced to about 5 ⁇ m by the lens system 50!
  • n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements are provided, and according to the pattern information
  • Any device that can control the picture element portion can be appropriately selected according to the purpose without any particular restriction.
  • a spatial light modulator is preferable.
  • Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and transmission by an electro-optic effect.
  • Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
  • the light modulation means includes pattern signal generation means for generating a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device.
  • the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged.
  • micromirrors 58 that can be driven by a controller connected to DMD36, that is usable are only 1024 columns x 256 rows.
  • the data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases.
  • Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof.
  • the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof Is 13.7 m in both vertical and horizontal directions.
  • the SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
  • each micromirror 58 supported by the column is Inclined to one of ⁇ ⁇ degrees (for example, ⁇ 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center.
  • FIG. 7 (b) shows a state tilted to + ⁇ degrees when the micromirror 58 is in the on state
  • FIG. 7 (b) shows a state tilted to ⁇ degrees when the micromirror 58 is in the off state.
  • FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + ⁇ degrees or ⁇ degrees.
  • the on / off control of each micromirror 58 is performed by the controller connected to the DM D36.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
  • the light irradiating means can be appropriately selected according to the purpose without any particular restriction.
  • (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, a known light source such as an LED or a semiconductor laser, or a means capable of combining and irradiating two or more lights.
  • a means capable of combining and irradiating two or more lights is preferable. .
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred.
  • Laser that combines two or more lights hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used.
  • the ultraviolet force is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ⁇ ! ⁇ 650mn force ⁇ especially preferred!
  • the wavelength of the laser beam is, for example, preferably 200 to 1500 nm force S, more preferably 300 to 800 nm force S, and 330 mm! ⁇ 500mn force more preferred, 400 ⁇ ! ⁇ 450mn power ⁇ especially preferred! /,
  • a means capable of irradiating the combined laser for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • a means having a collective optical system for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber.
  • means (fiber array light source) that can irradiate the combined laser include means described in paragraphs [0109] to [0146] of Japanese Patent Application Laid-Open No. 20 05-258431.
  • the used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced.
  • the set tilt angle ⁇ in the column direction of the image area (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used in an ideal state where there is no mounting angle error of the exposure head 30. From the angle ⁇ , which is exactly double exposure using a 1024 column x 256 row pixel part
  • the ideal also uses a slightly larger angle.
  • This angle ⁇ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
  • the angle ⁇ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle ⁇ is, for example, 0.5 ideal
  • FIG. 8 shows unevenness that occurs in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 that is initially adjusted as described above. It is explanatory drawing which showed the example.
  • the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface the light spot in the m-th row 3 ⁇ 4 ⁇ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
  • FIG. 8 shows a pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
  • FIG. 8 for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
  • the set inclination angle 0 is set to a slightly larger angle than the angle 0 described above.
  • FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform has occurred.
  • the Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
  • the angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure.
  • the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
  • the light spot position detecting means includes the slit 28 and the photodetector.
  • the actual inclination angle ⁇ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle ⁇ ′.
  • a process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle ⁇ , the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
  • FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28.
  • the size of the slit 28 is set to sufficiently cover the width of the exposure area 32.
  • the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle ⁇ ′.
  • the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on.
  • the positions of P (l, 512) and P (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle ⁇ ′.
  • FIG. 10 is a top view illustrating a method for detecting the position of the light spot P (256, 512).
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is
  • the slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b.
  • the value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector.
  • the coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
  • the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle.
  • a natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure.
  • a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
  • the smallest natural number equal to or greater than the value t may be derived.
  • a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
  • a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure It can be selected as a micromirror to be actually used.
  • FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
  • T 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force.
  • the force of the 254th line that has not been selected is also sent to the micromirror on the 256th line by the pixel part control means to send a signal for setting the angle to the off state at all times.
  • Is not involved in exposure As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized.
  • the inclination angle of the light spot sequence on the exposure surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle ⁇ ⁇ measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
  • the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
  • the actual inclination angle ⁇ ′ of the 512th ray array is measured, and the actual inclination angle ⁇ is used to derive the equation (4).
  • the micromirror 58 to be used is selected based on T.
  • the actual inclination angle ⁇ ′ the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used.
  • a plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle ⁇ '.
  • an exposure with a good balance between an overexposed area and an underexposed area can be realized with respect to an ideal N double exposure. Can do. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
  • the minimum value is the actual inclination angle ⁇ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
  • the identification of the actual inclination angle ⁇ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row).
  • the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n) may be specified.
  • one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected.
  • the actual inclination angle ⁇ ′ can be obtained from these positional information.
  • the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line is obtained.
  • the actual inclination angle ⁇ ′ may be specified.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30.
  • Two exposure heads for example, exposure head 30 as an example
  • And 30 due to the deviation of the relative position in the X-axis direction from the ideal state.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle ⁇ of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error or the like of the exposure head 30. 58 and adopt an angle ⁇ that is exactly double exposure.
  • This angle ⁇ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
  • FIG. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, the exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
  • FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
  • FIG. 12 The upper part of FIG. 12 is a micromirror 58 that can be used for the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 with the stage 14 stationary.
  • Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing.
  • every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B.
  • the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
  • the light spot position detection is performed. Using a set of slit 28 and photodetector as means, exposure head 30 and 30 force
  • the position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
  • FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
  • the size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
  • FIG. 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32 as an example.
  • the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream.
  • the slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side.
  • the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0).
  • the value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28.
  • the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector.
  • the coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024).
  • the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG.
  • the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector.
  • the coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
  • Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
  • each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of ⁇ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
  • the micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
  • the detection operation ends.
  • the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
  • the micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
  • the micromirrors that are not used during the main exposure described above are used.
  • the positions of the light spots that make up the rightmost column 1020 are the P (l, 1020) forces in the order P (l, 1020), P (2, 1020) ... and spot P (m, 1020) indicating an X coordinate larger than spot P (256, 2) in exposure area 32
  • the detection operation is terminated.
  • an exposure area 32 Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
  • the X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
  • the micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
  • the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
  • micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
  • exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
  • the total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
  • the light spot P (l, 1020) force in the exposure area 32 immediately increases P (m— 2, 1020) May be specified as a micromirror that is not used during the main exposure.
  • a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads It can be selected as a micromirror to be actually used.
  • the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
  • a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
  • the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
  • the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads reduces image variability and density unevenness, and realizes ideal N double exposure.
  • the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30.
  • the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
  • each exposure head 30 that is, each DMD 36
  • the set tilt angle of each exposure head 30, that is, each DMD 36 can be used as long as there is no mounting angle error or the like of the exposure head 30.
  • the degree shall be adopted.
  • the set inclination angle 0 for example, an angle of about 0.50 degrees may be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle ⁇ within an adjustable range.
  • FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. And relative mounting angle error between each exposure head 30 and 30
  • FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
  • phase of the exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
  • the set inclination angle ⁇ of each exposure head is changed to an angle ⁇ satisfying the above equation (1).
  • Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle ⁇ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
  • an arithmetic unit connected to a photodetector is used as the pixel part selection means.
  • a process of selecting a micromirror to be used for actual exposure is performed.
  • the actual inclination angle ⁇ ′ is specified by the light spot P (l,
  • the arithmetic device connected to the photodetector using the actual inclination angle ⁇ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
  • the (T + 1) line force on the DMD 36 is also identified as a micromirror that is not used for the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure.
  • the total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
  • the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
  • exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
  • the number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
  • micromirror corresponding to the light spot other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17 this is the same as the embodiment (3) described with reference to FIGS.
  • the micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and should not be used during the main exposure! And added as a micromirror. Is done.
  • the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
  • the relative position shifts in the X-axis direction of the plurality of exposure heads and the respective exposure Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
  • a set of the slit 28 and the single cell type photodetector is used as a means for detecting the position of the light spot on the surface to be exposed.
  • the force that was used is not limited to this, V, or any other form can be used.
  • a two-dimensional detector can be used.
  • the actual inclination angle ⁇ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained.
  • a micromirror to be used is selected based on ⁇ ⁇
  • a usable micromirror may be selected without going through the derivation of the actual inclination angle ⁇ ′.
  • all available A mode in which a micromirror used by an operator is manually designated by performing reference exposure using a simple micromirror and confirming the unevenness of resolution and density by visual observation of the reference exposure result is also included in the scope of the present invention. It is.
  • magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36.
  • beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam diameters, the light power from each micromirror 58 on the DMD 36.
  • this light distortion is due to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lenses 52 and 54 in FIG. 5) and the DMD 36 itself. This is caused by unevenness in the amount of light.
  • These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
  • the residual elements of these forms of pattern distortion are As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
  • every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it.
  • the result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle.
  • the analysis of the result of the reference exposure is a visual analysis by the operator.
  • FIG. 19 is an explanatory diagram showing an example of a mode in which reference exposure is performed using only (N-1) -row micromirrors using a single exposure head.
  • reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle.
  • a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done.
  • a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
  • FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
  • Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure. For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
  • the two exposure heads form the surface to be exposed.
  • a state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
  • FIG. 21 illustrates an example of a form in which reference exposure is performed using a single exposure head and using only micromirror groups constituting adjacent rows corresponding to 1ZN rows of the total number of light spots. It is a figure.
  • a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
  • Fig. 22 shows two exposure heads that use a plurality of exposure heads and are adjacent in the X-axis direction ( As an example, exposure heads 30 and 30) are equivalent to 1ZN rows of the total number of light spots.
  • FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
  • the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time.
  • a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
  • micromirror By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
  • the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good.
  • the triple exposure power is set to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
  • the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern.
  • the object of exposure is a photosensitive layer formed on the surface of a substrate using a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent.
  • a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent.
  • it can be appropriately selected according to the purpose for which there is no restriction.
  • the photosensitive composition of the first aspect formed by applying the photosensitive composition to the surface of a substrate and drying, and the support and the photosensitive composition on the support
  • the photosensitive layer of the second aspect is formed by laminating a photosensitive film having a photosensitive layer on which is laminated on the surface of the substrate under at least one of heating and pressing. I can get lost.
  • the base material can be appropriately selected from publicly known materials that are not particularly limited to those having a high surface smoothness and a surface having an uneven surface, and a plate-like base material (substrate) is preferred.
  • Specific examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like.
  • the printed wiring board forming substrate has already been formed in terms of the fact that high-density mounting of semiconductors and the like can be performed on a multilayer wiring substrate that is preferred for the printed wiring board forming substrate. Is particularly preferred.
  • the photosensitive composition includes at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, and if necessary, a coloring pigment, an extender pigment, a thermal polymerization inhibitor, a surfactant. Including other ingredients.
  • the noinder is more preferably soluble in an alkaline aqueous solution, which is preferably swellable in an alkaline aqueous solution.
  • binder exhibiting swellability or solubility with respect to the alkaline aqueous solution for example, those having an acidic group are preferably exemplified.
  • the noinder can be appropriately selected according to the purpose for which there is no particular restriction.
  • JP-A-51-131706, JP-A-52-94388, JP-A-64H5 examples thereof include an epoxy atelar toy compound having an acidic group described in JP-A-2-97513, JP-A-3-289656, JP-A-61-243869, JP-A-2002-296776, and the like.
  • phenol novolac type epoxy acrylate, tarezol novolak epoxy acrylate, bisphenol A type epoxy acrylate, etc. for example, epoxy resin is mixed with polyfunctional epoxy compound (meth) acrylic acid.
  • a carboxylic group-containing monomer such as phthalic acid is reacted, and a dibasic acid anhydride such as phthalic anhydride is further added.
  • the molecular weight of the epoxy vacancy compound is preferably 1,000 to 200,000 force S, more preferably 2,000 to 100,000.
  • the molecular weight is less than 1,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality becomes brittle or the surface hardness deteriorates after curing of the photosensitive layer described later. Yes, if it exceeds 200,000, developability may deteriorate.
  • an acrylic resin having at least one polymerizable group such as an acidic group and a double bond described in JP-A-6-295060 can also be used.
  • at least one polymerizable double bond in the molecule for example, an acrylic group such as a (meth) acrylate group or a (meth) acrylamide group, a carboxylic acid bull ester, a bull ether, a aryl ether.
  • Various polymerizable double bonds such as tellurium can be used.
  • acrylic resin containing a carboxyl group as an acidic group glycidyl ester of unsaturated fatty acid such as glycidyl atylate, glycidyl methacrylate, cinnamic acid, or cyclohexenoxide in the same molecule.
  • examples thereof include a compound obtained by adding an epoxy group-containing polymerizable compound such as a compound having an epoxy group and a (meth) attalyloyl group.
  • compounds obtained by adding a polymerizable compound containing a hydroxyl group such as hydroxyalkyl (meth) acrylate include “Kaneka Resin AX, manufactured by Kaneka Chemical Co., Ltd.”, “CYCLOM ER A-200; manufactured by Daicel Chemical Industries, Ltd.”, “CYCLOMER M” —200; manufactured by Daicel Chemical Industries, Ltd. ”can be used.
  • a reaction product of hydroxyalkyl attalylate or hydroxyalkyl metatalylate described in JP-A-50-59315 with any one of polycarboxylic acid anhydride and epihalohydrin can be used.
  • the molecular weight of the binder such as the acrylic resin, epoxy acrylate having a fluorene skeleton, polyamide (imide), amide group-containing styrene Z acid anhydride copolymer, or polyimide precursor, 3, 000 to 500,000 force S preferred ⁇ , 5, 000 to 100,000 force S preferred.
  • the molecular weight is less than 3,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality may become brittle or the surface hardness may deteriorate after curing of the photosensitive layer described below. If it exceeds 500,000, developability may deteriorate.
  • the solid content in the photosensitive composition solid content of the binder is preferably 5 to 80 mass%, more preferably 10 to 70 mass%. If the solid content is less than 5% by mass, the film strength of the photosensitive layer may be weakened or the tackiness of the surface of the photosensitive layer may be deteriorated. If it exceeds 80% by mass, Exposure sensitivity may decrease.
  • the polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, but has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure.
  • at least one selected from monomers having a (meth) acryl group is preferable.
  • the monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methacrylates such as rate, phenoxychetyl (meth) acrylate, polyethylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, trimethylol propane dialate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanedi
  • polyfunctional acrylates and methacrylates such as epoxide acrylate which is a reaction product of epoxy resin and (meth) acrylic acid.
  • epoxide acrylate which is a reaction product of epoxy resin and (meth) acrylic acid.
  • trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
  • the solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. Yes, not preferred.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates.
  • the photopolymerization initiator may have a wavelength of about 300 to 800 nm and at least about 50. It is preferable to contain at least one component having a molecular extinction coefficient. The wavelength ⁇ to 330-500mn force is particularly preferred!
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxides, hexaryl reels.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.
  • phosphine oxides for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.
  • Examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoximate.
  • photopolymerization initiator examples include compounds described in paragraphs [0290] to [0299] and paragraphs [0305] to [0307] of JP-A-2005-258431. Etc.
  • Examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxy minobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxy iminobutane 2 on, 2 acetoximinopentane 3 on, 2-acetoximino — 1-phenolpropane 1-one, 2-benzoyloximino 1-phenolpropane — 1-one, 3-— (4-toluenesulfo-loxy) iminobutane-2-one, and 2 eth Xylcarboloxymino 1-phenolpropane-1-one.
  • the sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible laser, or the like as a light irradiation means described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
  • substances for example, radical generator, acid generator, etc.
  • energy transfer, electron transfer, etc. for example, energy transfer, electron transfer, etc.
  • the sensitizer can be appropriately selected from known sensitizers that are not particularly limited. For example, in paragraphs [0313] to [0314] of JP-A-2005-258431, Examples of compounds that are described!
  • the content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all the components in the photosensitive composition. ⁇ 10% by weight is particularly preferred.
  • the sensitizer may be precipitated from the photosensitive layer.
  • the photopolymerization initiators may be used singly or in combination of two or more.
  • halogenated carbonization having the phosphine oxides, the ⁇ -aminoalkyl ketones, and the triazine skeleton capable of supporting laser light having a wavelength of 405 nm in the later-described exposure.
  • examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer described later are combined, a hexaarylbiimidazole compound, or titanocene.
  • the content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
  • the thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability, etc.
  • an epoxy resin compound having at least two oxsilane groups in one molecule and an oxetane compound having at least two oxetal groups in one molecule can be used. .
  • the epoxy resin compound examples include bixylenol type or biphenol type epoxy resin ( ⁇ 4000; manufactured by Japan Epoxy Resin Co., Ltd.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; "Nissan Chemical Industry Co., Ltd.”, "Araldite PT810; Ciba 'Specialty' Chemicals Co., Ltd.”), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A Type epoxy resin, glycidinoreamine type epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak Type epoxy resin, tetraf-roll ethane type epoxy resin, glycid Ruphthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin ("ESN
  • Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1, 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers
  • novolac resin poly (p-hydroxystyl)
  • the solid content of the epoxy resin compound or oxetane compound in the solid content of the photosensitive composition is preferably 1 to 50 mass%, more preferably 3 to 30 mass%. If the solid content is less than 1% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to plating, etc. If it exceeds 50% by mass, poor developability may cause a reduction in exposure sensitivity, which is not preferable.
  • the epoxy resin compound or the oxetane compound may be a curing catalyst, or a compound capable of promoting thermal curing other than the above as long as it can promote the reaction of these with a carboxyl group. Use it.
  • the solid content in the solid content of the photosensitive composition of the epoxy resin, the oxetane compound, and a compound capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. Ah.
  • a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is composed of at least two isocyanate groups. It may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing Specifically, a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4 xylylene diisocyanate Bis (4 isocyanate chain) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc .; Polyfunctional alcohols of a bifunctional isocyanate and trimethylolpropane, pentalysitol, glycerin, etc .; an
  • a blocking agent is reacted with the isocyanate group of the polyisocyanate and its derivatives. You can use the compound obtained in this way.
  • isocyanate group blocking agent examples include alcohols such as isopropanol, tert.-butanol; ⁇ — ratatas such as force prolatatum; phenol, cresol, ⁇ -tert.-butinolephenol, p-sec.—butino Phenenoles, p-sec.
  • Phenols such as amino enoenole, p-octylphenol, p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin, 8-hydroxyquinoline; dialkyl Active methylene compounds such as malonate, methyl ethyl ketoxime, acetyl acetone, alkylacetoacetoxime, acetoxime, cyclohexanone oxime; and the like.
  • compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
  • aldehyde condensation products rosin precursors, and the like can be used.
  • methylol compounds instead of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used.
  • Hexamethylated methylol melamine which consists of a formaldehyde condensation product of melamine and urea, or butyl ether of a melamine and formaldehyde condensation product may also be used.
  • the solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. When the solid content is less than 1% by mass, no improvement in the strength of the cured film is observed, and when it exceeds 40% by mass, the developability and the exposure sensitivity may decrease.
  • Agents e.g., conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.
  • the thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound.
  • thermal polymerization inhibitor examples include compounds described in paragraph No. [0 316] of JP-A-2005-258431.
  • the content of the thermal polymerization inhibitor is preferably 0.001 to 5% by mass, more preferably 0.005 to 2% by mass with respect to the polymerizable compound, and 0.01 to 1% by mass. Is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may be reduced, and if it exceeds 5% by mass, the sensitivity to active energy rays may be reduced.
  • the coloring pigment can be appropriately selected according to the purpose without any particular limitation.
  • Bikku! J Pure One Blue BO CI 42595
  • Auramin CI 41000
  • Fat 'Black HB CI 26150
  • Monolight 'Yellow GT CI Pigment' Yellow 1 2
  • Permanent 'Yellow GR CI Pigment' Yellow 17
  • Permanent 'Yellow HR CI Pigment' Yellow 83
  • Permanent 'Carmin FBB CI Pigment' Red 146)
  • Hoster Balm Red ESB CI Pigment 'Violet 19
  • Permanent' Rubi I FBH CI Pigment 'Red 11
  • Huster's' Pink B Supra CI Pigment 'Red 81
  • Monastral' First 'Blue CI Pigment' Blue 15
  • Monolight 'Fast' Black B CI Pigment 'Black 1
  • Carbon CI Pigment' Red 97, CI Pigment 'Red 122, CI Pigment 'Red 149,
  • Pigment 'Blue 15 1, CI Pigment' Blue 15: 4, CI Pigment 'Blue 15: 6, CI Pigment Blue 22, CI Pigment Blue 60, CI Pigment Blue 64, etc. These may be used alone or in combination of two or more. If necessary, a dye appropriately selected from known dyes can be used.
  • the solid content in the solid content of the photosensitive composition of the coloring pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.05-: LO mass% is preferred 0.1-5 mass% Force is more preferred.
  • the photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary.
  • Inorganic pigments and organic fine particles can be added.
  • the inorganic pigment can be appropriately selected from known ones that are not particularly limited.
  • kaolin barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
  • the average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering.
  • the organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ⁇ , an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
  • the amount of the extender is preferably 5 to 60% by mass.
  • the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced.
  • the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, When the film quality becomes fragile and the wiring is formed using permanent patterns, the function of the wiring as a protective film is impaired. Sometimes.
  • a known adhesion promoter may be used for each layer.
  • adhesion promoter examples include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638.
  • the content of the adhesion promoter is preferably 0.001% by mass to 20% by mass with respect to all components in the photosensitive composition, and more preferably 0.01 to 10% by mass. 0.1% by mass to 5% by mass is particularly preferable.
  • Examples of the method for forming the photosensitive layer include a method in which the photosensitive composition is applied to the surface of the base material and dried as the first aspect, and a photosensitive film is used as the second aspect. A method of laminating on the surface of the substrate under at least one of heating and pressurization is mentioned.
  • a photosensitive layer is formed by coating and drying the photosensitive composition on the substrate.
  • the coating and drying method can be appropriately selected according to the purpose without any particular limitation.
  • the photosensitive composition is dissolved, emulsified or dispersed on the surface of the base material in water or a solvent.
  • a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
  • the solvent of the photosensitive composition solution is appropriately selected depending on the purpose without any particular limitation.
  • Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, n-hexanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone Ketones such as: Ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate; aromatics such as toluene, xylene, benzene, and ethylbenzene Group hydrocarbons: Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, black mouth form, 1, 1, 1-t
  • the coating method is not particularly limited and can be appropriately selected depending on the purpose.
  • coating directly to the said base material is mentioned.
  • the drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
  • the thickness of the photosensitive layer is not particularly limited, and can be appropriately selected depending on the purpose. For example, 3 to: LOO 111 or more preferably 5 to 70 m force.
  • a photosensitive film having a support on the surface of the substrate and a photosensitive layer in which a photosensitive composition is laminated on the support is heated and Laminate while performing at least one of pressurization.
  • the said photosensitive film has a protective film mentioned later, it is preferable to peel this protective film and to laminate
  • the photosensitive film comprises at least a support and a photosensitive layer, preferably a protective film, and further comprises a cushion layer, an oxygen barrier layer (PC layer), etc., if necessary. It has other layers.
  • the form of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose.
  • the photosensitive film and the protective film are provided in this order on the support, A form comprising the PC layer, the photosensitive layer, and the protective film in this order on a support, and the cushion layer, the PC layer, the photosensitive layer, and the protective film in this order on the support.
  • the photosensitive layer may be a single layer or a plurality of layers.
  • the support is not particularly limited and may be appropriately selected depending on the purpose. However, it is preferable that the photosensitive layer can be peeled off and the light transmittance is good. Further, the surface is smooth. It is more preferable that the property is good.
  • the support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated bur, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl.
  • a synthetic resin and transparent for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated bur, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, poly
  • plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose film, and nylon film can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
  • the support for example, the supports described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, and the like are used. I can do it.
  • the thickness of the support is not particularly limited, and can be appropriately selected according to the purpose.
  • t is preferably 4 to 300 ⁇ m force, more preferably 5 to 175 ⁇ m force ⁇ . It's better!
  • the shape of the support is not particularly limited, and can be appropriately selected depending on the purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include those having a length of 10 to 20, OOOm.
  • Photosensitive layer in photosensitive film is not particularly limited, and can be appropriately selected depending on the purpose, but is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include those having a length of 10 to 20, OOOm.
  • the photosensitive layer in the photosensitive film is formed of the photosensitive composition.
  • the portion provided in the photosensitive film of the photosensitive layer is not particularly limited and can be appropriately selected according to the purpose, but is usually laminated on the support.
  • the thickness of the photosensitive layer in the photosensitive film is not particularly limited.
  • the force can be appropriately selected according to the purpose. For example, 3 to: LOO / zm force S, preferably 5 to 70 / ⁇ ⁇ . I like it.
  • Formation of the photosensitive layer in the photosensitive film is carried out by the same method as the application of the photosensitive composition solution to the substrate and drying (the method for forming the photosensitive layer of the first aspect).
  • the method for forming the photosensitive layer of the first aspect examples thereof include a method of applying the photosensitive composition solution using a spin coater, a slit spin coater, a mouth coater, a die coater, a curtain coater, or the like.
  • the protective film has a function of preventing and protecting the photosensitive layer from being stained and damaged.
  • the protective film is appropriately selected depending on the purpose. Usually, it is provided on the photosensitive layer.
  • protective film examples include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among them, polyethylene film, polypropylene, and the like. A film is preferred.
  • the thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO / z m force is preferable, and 8 to 30 m is more preferable.
  • the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B.
  • the combination of the support and the protective film include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc.
  • the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer.
  • a primer layer for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • ultraviolet irradiation treatment for example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment,
  • One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
  • the photosensitive film is preferably stored, for example, wound around a cylindrical core and wound into a long roll.
  • the length of the long photosensitive film is not particularly limited, and can be appropriately selected from the range of 10-20, OOOm, for example.
  • slitting may be performed to make it easy for users to use, and a long body in the range of 100 to 1, OOOm may be rolled.
  • the support is wound up so as to be the outermost side.
  • the roll-shaped photosensitive film may be slit into a sheet shape.
  • a separator especially moisture-proof, with desiccant
  • the protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer.
  • an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film.
  • the undercoat layer is formed at 30 to 150 ° C (especially 50 to 120 ° C) after the polymer coating solution is applied to the surface of the protective film. It can be formed by drying for ⁇ 30 minutes.
  • a cushion layer In addition to the photosensitive layer, the support, and the protective film, a cushion layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like may be included.
  • PC layer oxygen blocking layer
  • a release layer In addition to the photosensitive layer, the support, and the protective film, a cushion layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like may be included.
  • PC layer oxygen blocking layer
  • a release layer an adhesive layer, a light absorption layer, a surface protective layer, and the like.
  • the cushion layer is a layer that melts and flows when laminated under vacuum heating conditions that have no tackiness at room temperature.
  • the PC layer is usually a coating of about 0.5 to 5 / ⁇ ⁇ , which is formed mainly of polybulal alcohol.
  • the heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 70 to 130 ° C is preferable, and 80 to 110 ° C is more preferable.
  • the pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular limitation.
  • ⁇ column; t is preferably 0.01 to: L OMPa force, 0.05 to: L OMPa force ⁇ I like it!
  • the apparatus for performing at least one of the heating and the pressurization can be appropriately selected according to the purpose of restriction, for example, a heat press, a heat roll laminator (for example, Taisei Laminate Earthen, VP — 11), vacuum laminator (for example,
  • MVLP500 MVLP500
  • the like are preferable.
  • the photosensitive film comprises a printed wiring board, a color filter, a pillar material, a rib material, and a spacer.
  • the photosensitive film has a uniform thickness, lamination onto the substrate is performed more finely when forming a permanent pattern.
  • the exposure to the laminate having the photosensitive layer formed by the photosensitive layer forming method of the second aspect can be appropriately selected according to the purpose without any particular limitation.
  • the photosensitive layer may be exposed through the support, the cushion layer, and the PC layer. After the support is peeled off, the photosensitive layer may be exposed through the cushion layer and the PC layer. After peeling off the support and cushion layer, the photosensitive layer may be exposed through the PC layer. After peeling off the support, cushion layer and PC layer, the photosensitive layer is exposed. [0175] [Development process]
  • the developing step is a step of exposing the photosensitive layer by the exposing step, curing the exposed region of the photosensitive layer, and then developing by removing the uncured region to form a permanent pattern.
  • the removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
  • the developer may be appropriately selected according to the purpose without any particular limitation.
  • an alkali metal or alkaline earth metal hydroxide or carbonate, bicarbonate, aqueous ammonia Preferred examples include aqueous solutions of quaternary ammonium salts. Among these, an aqueous sodium carbonate solution is particularly preferable.
  • the developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine, etc.) and organic solvents (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination to accelerate development.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or an organic solvent alone.
  • the curing treatment step is a step of performing a curing treatment on the photosensitive layer having a permanent pattern formed after the developing step.
  • Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the permanent pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation, and a UV exposure machine such as an ultrahigh pressure mercury lamp is preferably exemplified.
  • the permanent pattern is shaped after the development step.
  • the method of heating the whole surface on the formed said laminated body is mentioned. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
  • the heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C.
  • the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment.
  • the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
  • the heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the permanent pattern of the present invention may be formed on the printed wiring board, and further soldered as follows. it can.
  • the hardened layer which is the permanent pattern is formed by the developing step, and the metal layer is exposed on the surface of the printed wiring board.
  • Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, semiconductors and parts are mounted on the soldered parts.
  • the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), or a solder resist, and prevents external impact and conduction between adjacent electrodes.
  • the permanent pattern formed by the method for forming a permanent pattern can protect the wiring from external impact and bending force.
  • the interlayer insulating film for example, a multilayer wiring board or a build This is useful for high-density mounting of semiconductors and components on up-wiring boards.
  • the permanent pattern forming method of the present invention can efficiently form a permanent pattern with high definition by suppressing distortion of an image formed on the photosensitive layer. It can be suitably used for the formation of various patterns that require light, and can be particularly suitably used for the formation of high-definition permanent patterns.
  • a photosensitive composition (solution) was prepared based on the following composition.
  • PCR- 1157H (manufactured by Nippon Kayaku Co., Ltd., epoxy Atari rate 61.8 mass 0/0 ethylene glycol monomethyl E chill ether Atari acetate solution) 46.14 parts by weight
  • IRGACURE819 manufactured by Chinoku Specialty Chemicals 7. 84 parts by mass MW30HM (manufactured by Sanwa Chemical Co., hexamethoxymethylated melamine) 8.00 parts by mass Hydroquinone monomethyl ether 0.049 parts by mass Phthalocyanine green 3.98 parts by mass Part
  • the barium sulfate dispersion is composed of 30 parts by weight of barium sulfate (manufactured by KK, B30), 34.29 parts by weight of the above-mentioned PCR-1157H diethylene glycol monomethyl ether acetate 61.2 mass% solution, methyl After mixing 35.71 parts by mass of ethyl ketone with Motor Mill M-200 (manufactured by Eiger), disperse for 3.5 hours at a peripheral speed of 9 mZs using Zirco Your beads with a diameter of 1. Omm. Prepared.
  • the obtained photosensitive composition solution was applied onto a PET (polyethylene terephthalate) film having a thickness of 20 m as the support and dried to form a photosensitive layer having a thickness of 35 / zm.
  • a polypropylene film having a thickness of 12 m is used as the protective film on the photosensitive layer.
  • the film was laminated with a laminate to produce a photosensitive film.
  • the substrate was prepared by subjecting a surface of a copper-clad laminate (no through-hole, copper thickness 1 2 / z m) on which wiring had been formed, to a chemical polishing treatment.
  • a vacuum laminator manufactured by Meiki Seisakusho, MVLP500
  • MVLP500 vacuum laminator
  • the crimping conditions were a crimping temperature of 90 ° C, a crimping pressure of 0.4 MPa, and a laminating speed of lmZ.
  • a pattern in which holes having different diameters are formed from a laser beam having a wavelength of 405 nm can be obtained from the support side using a pattern forming apparatus described below. Were exposed to light, and a part of the photosensitive layer was cured.
  • DMD36 controlled to drive only 1024 x 256 6 rows and the optical for imaging the light shown in FIG. 5A or FIG. 5B on the pattern forming material
  • a pattern forming apparatus 10 having an exposure head 30 having a system was used.
  • each exposure head 30, ie each DMD 36 is slightly larger than the angle ⁇ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
  • This angle 0 is the number of N exposures N, the available micromirrors
  • the DMD 36 in the present embodiment includes a large number of micromirrors 58 with equal vertical and horizontal arrangement intervals arranged in a rectangular lattice shape.
  • inclination angle 0 for example, 0.50 degrees was adopted.
  • the pattern of light spots from the usable micromirror 58 of DMD36 with 12 21 is shown.
  • the exposure formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern as shown in the upper part appearing in the lower part.
  • the pattern status is shown for exposure areas 32 and 32.
  • FIG. 16 for convenience of explanation
  • every other exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on pixel array group A and an exposure pattern based on pixel array group B, but the actual exposure pattern on the exposed surface is These two exposure patterns are superimposed.
  • the light spot position detecting means a set of a slit 28 and a light detector is used, and an exposure head 30 is used.
  • the angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
  • the natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
  • micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
  • micromirrors corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17 the area 82 covered by the oblique lines in FIG.
  • micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors that are not used during the main exposure.
  • a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
  • the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32 are formed by a plurality of the exposure heads in the exposure areas 32 and 32.
  • the laminate strength was also peeled off from the polyethylene terephthalate film (support), and a 1% by weight sodium carbonate aqueous solution was added as an alkaline developer to the entire surface of the photosensitive layer on the copper clad laminate. Used and shower developed for 60 seconds at 30 ° C to dissolve and remove uncured areas. Thereafter, it was washed with water and dried to form a permanent pattern.
  • the entire surface of the laminate on which the permanent pattern was formed was heated at 160 ° C. for 30 minutes to cure the surface of the permanent pattern and increase the film strength. When the permanent pattern was visually observed, no bubbles were observed on the surface of the permanent pattern.
  • the printed wiring board on which the permanent pattern had been formed was subjected to gold plating according to a conventional method and then subjected to a water-soluble flux treatment. Next, it was immersed three times in a solder bath set at 260 ° C. for 5 seconds, and the flux was removed by washing with water. And the flux About the permanent pattern after removal, pencil hardness was measured based on JIS K-5400. As a result, the pencil hardness was 5H or more. As a result of visual observation, peeling of the cured film in the permanent pattern, blistering, and discoloration were observed.
  • a light energy amount from 0. lmj / cm 2 to 200 mj / cm 2 at 2 1/2 times intervals is used. Double exposure was performed by irradiating different light, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the support was peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to a spray pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate.
  • the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured.
  • the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve, the amount of light energy when the thickness of the cured region was 35 ⁇ m, which was the same as that of the photosensitive layer before exposure, was determined as the amount of light energy necessary for curing the photosensitive layer.
  • the amount of light energy necessary for curing the photosensitive layer was 25 miZcm 2 .
  • the surface of the obtained printed circuit board on which the permanent pattern had been formed was observed with an optical microscope, and the minimum hole diameter with no residual film in the hole portion of the cured layer pattern was measured. The smaller the numerical value, the better the resolution.
  • the patterning device was used to irradiate the photosensitive layer so that a horizontal line pattern in a direction perpendicular to the scanning direction of the exposure head was formed, and double exposure was performed to form a permanent pattern.
  • a laser microscope VK-9500, manufactured by Keyence Corporation; objective lens 50 times
  • VK-9500 manufactured by Keyence Corporation
  • the edge roughness is preferable because a smaller value indicates better performance.
  • Example 1 the photosensitive composition was prepared in the same manner as in Example 1 except that the composition of the photosensitive composition was changed to the following composition and kneaded by a roll mill according to a conventional method.
  • a photosensitive composition was prepared based on the following composition.
  • a permanent pattern was formed using the obtained photosensitive film. When the surface of the permanent pattern was visually observed, no bubbles were observed on the surface of the cured film in the permanent pattern. [0208] The obtained permanent pattern was subjected to (a) exposure sensitivity and (b) resolution in the same manner as in Example 1.
  • FIG. 35 An example of the state of exposure of the exposed surface in Comparative Example 1 is shown in FIG. In FIG. 35, a light spot group from the micromirror 58 that can be used by the DMD 36 of one exposure head (for example, 30) projected onto the exposed surface of the photosensitive layer 12 with the stage 14 being stationary.
  • a light spot group from the micromirror 58 that can be used by the DMD 36 of one exposure head (for example, 30) projected onto the exposed surface of the photosensitive layer 12 with the stage 14 being stationary.
  • a single exposure area (eg 32)
  • Said one exposure head e.g. 30
  • the angular distortion that appears in the example of FIG. 35 is a distortion in which the inclination angle with respect to the scanning direction is larger in the left column of the figure and smaller in the right column of the figure. As a result of this angular distortion, an overexposed region appears on the exposed surface shown on the left side of the figure, and an underexposed region appears on the exposed surface shown on the right side of the figure.
  • Permanent patterns in the field of printed wiring boards, including package substrates by leveling out the effects of variations in exposure and reducing variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer (Protective films such as interlayer insulating films, solder resist patterns, etc.) can be formed with high definition and efficiency, so it can be suitably used for forming various patterns that require high-definition exposure. In particular, it can be suitably used for forming a high-definition permanent pattern.

Abstract

A permanent patterning method capable of forming a high resolution permanent pattern efficiently by averaging the impact of variation in amount of exposure due to distortion of pattern thereby suppressing distortion of an image being formed on a photosensitive layer. In the permanent patterning method, after a photosensitive layer is formed on the surface of a substrate by using a photosensitive composition, a writing part being used for N-fold exposure (N is a natural number of 2 or above) is specified for the photosensitive layer by a use writing part specifying section by using an exposure head comprising a light irradiating means and an optical modulation means and arranged such that the array direction of writing portions makes a predetermined set inclination angle θ with respect to the scanning direction, a writing portion control means controls the writing portions such that only a specified writing portion participates in exposure, and then the photosensitive layer is exposed and developed by moving the exposure head relatively to the layer in the scanning direction.

Description

明 細 書  Specification
永久パターン形成方法  Permanent pattern forming method
技術分野  Technical field
[0001] 本発明は、画像データに応じて変調された光を感光層上に結像させて、該感光層 を露光し、パッケージ基板を含むプリント配線基板分野、あるいは、半導体分野にお ける高精細な永久パターン (保護膜、層間絶縁膜、及びソルダーレジストパターン)を 効率よく形成する永久パターン形成方法に関する。  The present invention forms an image of light modulated in accordance with image data on a photosensitive layer, exposes the photosensitive layer, and performs high-performance in the printed wiring board field including a package substrate or in the semiconductor field. The present invention relates to a permanent pattern forming method for efficiently forming fine permanent patterns (protective film, interlayer insulating film, and solder resist pattern).
背景技術  Background art
[0002] 空間光変調素子等で変調された光を結像光学系に通し、この光による像を所定の 感光層上に結像し、該感光層を露光する露光装置が公知となっている。該露光装置 は、照射された光を各々制御信号に応じて変調する多数の描素部が 2次元状に配 列されてなる空間光変調素子と、該空間光変調素子に光を照射する光源と、該空間 光変調素子により変調された光による像を感光層上に結像する結像光学系とを備え た露光ヘッドを備え、該露光ヘッドを前記感光層の被露光面上に対して相対移動さ せながら動作させることにより、所望の 2次元パターンを前記感光層の被露光面上に 形成することができる (非特許文献 1及び特許文献 1参照)。  An exposure apparatus that passes light modulated by a spatial light modulator or the like through an imaging optical system, forms an image of this light on a predetermined photosensitive layer, and exposes the photosensitive layer is known. . The exposure apparatus includes a spatial light modulation element in which a large number of pixel portions that modulate irradiated light according to control signals are arranged in a two-dimensional manner, and a light source that irradiates the spatial light modulation element with light. And an imaging optical system that forms an image of the light modulated by the spatial light modulation element on the photosensitive layer, and the exposure head is placed on the exposed surface of the photosensitive layer. By operating while relatively moving, a desired two-dimensional pattern can be formed on the exposed surface of the photosensitive layer (see Non-Patent Document 1 and Patent Document 1).
[0003] 前記露光装置の前記露光ヘッドにおいて、空間光変調素子として、一般的に入手 可能な大きさのデジタル ·マイクロミラー ·デバイス (DMD)を用いる場合等、光源ァレ ィの構成等によっては、単一の露光ヘッドで十分な大きさの露光面積をカバーするこ とが困難である。そのため、複数の前記露光ヘッドを並列使用し、該露光ヘッドを走 查方向に対して傾斜させて用いる形態の露光装置が提案されて 、る。  [0003] In the exposure head of the exposure apparatus, depending on the configuration of the light source array, etc., when a generally available digital micromirror device (DMD) is used as the spatial light modulation element. It is difficult to cover a sufficiently large exposure area with a single exposure head. Therefore, there has been proposed an exposure apparatus in which a plurality of the exposure heads are used in parallel, and the exposure heads are inclined with respect to the running direction.
[0004] 例えば、特許文献 2には、マイクロミラーが矩形格子状に配された DMDを有する複 数の露光ヘッドが走査方向に対して傾斜させられ、傾斜して 、る DMDの両側部の 三角形状の部分が、走査方向と直行する方向に隣接する DMD間で互 、に補完し 合うような設定で、各露光ヘッドが取り付けられた露光装置が記載されて 、る。  [0004] For example, in Patent Document 2, a plurality of exposure heads each having a DMD in which micromirrors are arranged in a rectangular lattice shape are inclined with respect to the scanning direction, and the triangles on both sides of the DMD are inclined. An exposure apparatus in which each exposure head is attached is described in such a manner that the shape portion complements each other between DMDs adjacent to each other in a direction perpendicular to the scanning direction.
[0005] また、特許文献 3には、矩形格子状の DMDを有する複数の露光ヘッドが走査方向 に対して傾斜させられずに又は微小角だけ傾斜させられ、走査方向と直行する方向 に隣接する DMDによる露光領域が所定幅だけ重なり合うような設定で、各露光へッ ドが取り付けられ、各 DMDの露光領域間の重なり合い部分に相当する個所におい て、駆動すべきマイクロミラーの数を一定の割合で漸減又は漸増させ、各 DMDによ る露光領域を平行四辺形状とした露光装置が記載されている。 [0005] Further, Patent Document 3 discloses a direction in which a plurality of exposure heads having a rectangular grid DMD are not tilted with respect to the scanning direction or tilted by a minute angle and are orthogonal to the scanning direction. Each exposure head is attached so that the exposure areas by the DMD adjacent to each other overlap by a predetermined width, and the number of micromirrors to be driven is determined at the position corresponding to the overlap between the exposure areas of each DMD. An exposure apparatus is described in which the exposure area by each DMD is made into a parallelogram shape that is gradually reduced or increased at a constant rate.
[0006] しかしながら、前記露光ヘッドを複数用いて、走査方向に対して傾斜させて露光を 行う場合、前記露光ヘッド間の相対位置や相対取付角度の微調整は一般に難しぐ 理想の相対位置及び相対取付角度力 わずかにずれるという問題がある。  [0006] However, when exposure is performed using a plurality of exposure heads and tilted with respect to the scanning direction, it is generally difficult to finely adjust the relative position and the relative mounting angle between the exposure heads. There is a problem that the mounting angle force slightly shifts.
[0007] 一方、解像度の向上等のため、前記露光ヘッドを、一の描素部からの光線の走査 線力 別の描素部力 の光線の走査線と一致するようにして用い、前記感光層の被 露光面上の各点を実質的に複数回重ねて露光する多重露光形式の露光装置が提 案されている。  [0007] On the other hand, in order to improve the resolution, the exposure head is used so as to coincide with the scanning line force of the light beam from one pixel part to match the scanning line of the light beam of another pixel part force. There has been proposed an exposure apparatus of a multiple exposure type in which each point on an exposed surface of a layer is exposed by overlapping a plurality of times substantially.
[0008] たとえば、特許文献 4には、被露光面上に形成される 2次元パターンの解像度を向 上させ、滑らかな斜め線を含むパターンの表現を可能にするため、複数のマイクロミ ラー (描素部)が 2次元状に配された矩形の DMDを、走査方向に対して傾斜させて 用い、近接するマイクロミラー力 の露光スポットが被露光面上で一部重なり合うよう になした露光装置が記載されて 、る。  [0008] For example, Patent Document 4 discloses a plurality of micromirrors (drawing) in order to improve the resolution of a two-dimensional pattern formed on an exposed surface and to express a pattern including a smooth diagonal line. An exposure apparatus that uses rectangular DMDs that are two-dimensionally arranged in a two-dimensional manner and is tilted with respect to the scanning direction so that adjacent exposure spots with micromirror forces partially overlap on the exposed surface. It is described.
[0009] また、特許文献 5には、やはり矩形の DMDを走査方向に対して傾斜させて用いる ことによって、被露光面上で露光スポットを重ね合わせて合計の照明色度を変化させ ることによるカラーイメージの表現や、マイクロレンズの一部欠陥等の要因によるィメ 一ジングエラーの抑制を可能とした露光装置が記載されている。  [0009] Further, Patent Document 5 uses a rectangular DMD that is inclined with respect to the scanning direction, thereby superimposing exposure spots on the exposed surface to change the total illumination chromaticity. An exposure apparatus capable of suppressing imaging errors caused by factors such as color image expression and microlens partial defects is described.
[0010] し力しながら、前記多重露光を行う場合においても、前記露光ヘッドの取付角度が 理想の設定傾斜角度力 ずれることにより、露光される前記感光層の被露光面上の 個所においては、露光スポットの密度や配列が、他の部分とは異なったものとなり、前 記感光層上に結像させる像の解像度や濃度にむらが生じ、さらに、形成したパター ンのエッジラフネスが大きくなるという問題がある。  [0010] Even when performing the multiple exposure, the mounting angle of the exposure head is deviated from an ideal setting inclination angle force, so that at a place on the exposed surface of the photosensitive layer to be exposed, The density and arrangement of the exposure spots will be different from the other parts, resulting in unevenness in the resolution and density of the image formed on the photosensitive layer, and the edge roughness of the pattern formed will increase. There's a problem.
[0011] さらに、前記露光ヘッドの取付位置や取付角度のずれのみならず、前記描素部と 前記感光層の被露光面との間の光学系の各種収差や、前記描素部自体の歪み等 によって生じるパターン歪みも、前記感光層の被露光面上に形成される前記パター ンの解像度や濃度にむらを生じさせる原因となる。 [0011] Further, not only the displacement of the mounting position and mounting angle of the exposure head, but also various aberrations of the optical system between the image area and the exposed surface of the photosensitive layer, and distortion of the image area itself. The pattern distortion caused by the pattern is also formed on the exposed surface of the photosensitive layer. Cause unevenness in the resolution and density of the screen.
[0012] これらの問題に対し、前記露光ヘッドの取付位置や取付角度の調整精度、及び光 学系の調整精度等を向上させる方法が考えられるが、精度の向上を追求すると、製 造コストが非常に高くなつてしまうという問題がある。同様の問題は、前記露光装置の みならず、インクジェットプリンタ一等の各種描画装置において生じうるものである。  [0012] For these problems, a method of improving the adjustment accuracy of the mounting position and mounting angle of the exposure head, the adjustment accuracy of the optical system, and the like can be considered. However, if improvement in accuracy is pursued, the manufacturing cost is reduced. There is a problem that it becomes very expensive. Similar problems can occur not only in the exposure apparatus but also in various drawing apparatuses such as an ink jet printer.
[0013] よって、前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記 感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に 起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光 面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減すること〖こ より、保護膜、絶縁膜、及びソルダーレジストなどの永久パターンを高精細に、かつ効 率よく形成可能な永久パターン形成方法は未だ提供されておらず、更なる改良開発 が望まれて 、るのが現状である。 [0013] Therefore, due to a shift in the mounting position and mounting angle of the exposure head, various aberrations of the optical system between the image element portion and the exposed surface of the photosensitive layer, distortion of the image element portion itself, and the like. By leveling out the effect of variations in exposure due to pattern distortion caused by this, and reducing variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer, a protective film, an insulating film, In addition, a permanent pattern forming method capable of forming a permanent pattern such as a solder resist with high definition and efficiency has not yet been provided, and further improvement and development are desired.
[0014] 特許文献 1 :特開 2004— 1244号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2004-1244
特許文献 2:特開 2004— 9595号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-9595
特許文献 3:特開 2003 - 195512号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-195512
特許文献 4:米国特許第 6493867号明細書  Patent Document 4: U.S. Patent No. 6493867
特許文献 5:特表 2001— 500628号公報  Patent Document 5: Special Table 2001-500628
非特許文献 1:石川明人"マスクレス露光による開発短縮と量産適用化"、「エレクロト -クス実装技術」、株式会社技術調査会、 Vol.18, No.6、 2002年、 p.74-79 発明の開示  Non-patent document 1: Akito Ishikawa “Development shortening and mass production application by maskless exposure”, “ELECROTOKUS mounting technology”, Technical Research Committee, Vol.18, No.6, 2002, p.74- 79 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明は、力かる現状に鑑みてなされたものであり、従来における前記諸問題を解 決し、以下の目的を達成することを課題とする。即ち、本発明は、前記露光ヘッドの 取付位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の 光学系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる 露光量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パター ンの解像度のばらつきや濃度のむらを軽減することにより、保護膜、絶縁膜、及びソ ルダーレジストなどの永久パターンを高精細に、かつ効率よく形成可能な永久パター ン形成方法を提供することを目的とする。 [0015] The present invention has been made in view of the current situation, and it is an object of the present invention to solve the conventional problems and achieve the following objects. That is, the present invention relates to deviations in the mounting position and mounting angle of the exposure head, various aberrations of the optical system between the image element and the exposed surface of the photosensitive layer, distortion of the image element itself, and the like. By leveling out the effect of variations in exposure due to pattern distortion caused by the pattern, and reducing variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer, a protective film, an insulating film, Permanent pattern that can form permanent patterns such as solder resists with high definition and efficiency. It is an object of the present invention to provide a method for forming a film.
課題を解決するための手段 Means for solving the problem
前記課題を解決するための手段としては、以下の通りである。即ち、  Means for solving the problems are as follows. That is,
< 1 > バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤と、を少なくとも 含む感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、 光照射手段、及び前記光照射手段からの光を受光し出射する n個 (ただし、 nは 2 以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記 描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査 方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置され た露光ヘッドを用い、  <1> After forming a photosensitive layer on the surface of the substrate using a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, Light irradiating means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel elements that receive and emit light from the light irradiating means. An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to a scanning direction of the exposure head. Using the head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現 像することを特徴とする永久パターン形成方法である。該 < 1 >に記載の永久パター ン形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使 用可能な前記描素部のうち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前 記描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定 された前記描素部のみが露光に関与するように、前記描素部が制御される。前記露 光ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われること により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面 上に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結 果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することに より、高精細な永久パターンが形成される。  With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and A method of forming a permanent pattern, characterized in that the exposure head is moved relative to the scanning direction for exposure and image formation. In the permanent pattern forming method described in <1>, the exposure head is subjected to N multiple exposures (where N is 2 or more) of the usable pixel parts by the used pixel part specifying means. The pixel part to be used for (natural number) is specified, and the pixel part is assigned by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in the exposure. Be controlled. Exposure is performed by moving the exposure head relative to the photosensitive layer in the scanning direction, so that the exposure head is formed on the exposed surface of the photosensitive layer due to a mounting position or mounting angle shift. Variations in resolution and unevenness in density of the pattern are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition permanent pattern.
< 2> 感光層の形成が、感光性組成物を基材の表面に塗布し、乾燥することによ り行われる前記く 1 >に記載の永久パターン形成方法である。該 < 2 >に記載の永 久パターン形成方法にぉ ヽては、前記感光性組成物が前記基材の表面に塗布され 、乾燥される。その結果、前記感光層が前記基材上に形成される。 <2> The method for forming a permanent pattern according to <1>, wherein the formation of the photosensitive layer is performed by applying the photosensitive composition to the surface of the substrate and drying. For the permanent pattern formation method according to <2>, the photosensitive composition is applied to the surface of the substrate. Dried. As a result, the photosensitive layer is formed on the substrate.
< 3 > 感光層の形成が、支持体と該支持体上に感光性組成物が積層されてなる 感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下におい て基材の表面に積層することにより行われる前記 < 1 >に記載の永久パターン形成 方法である。該 < 3 >に記載の永久パターン形成方法においては、前記支持体と該 支持体上に感光性組成物が積層されてなる感光層とを有する前記感光性フィルムが 、加熱及び加圧の少なくともいずれかの下において前記基材の表面に積層される。 その結果、前記感光層が前記基材上に転写されて形成される。  <3> A photosensitive layer is formed by applying a photosensitive film having a support and a photosensitive layer obtained by laminating a photosensitive composition on the support under at least one of heating and pressurization. The method for forming a permanent pattern according to <1>, wherein the method is carried out by laminating on the surface. In the method for forming a permanent pattern according to <3>, the photosensitive film having the support and a photosensitive layer obtained by laminating a photosensitive composition on the support is at least one of heating and pressurization. It is laminated on the surface of the base material underneath. As a result, the photosensitive layer is formed by being transferred onto the substrate.
<4> 支持体が、合成樹脂を含み、かつ透明である前記 < 3 >に記載の永久バタ ーン形成方法である。  <4> The method for forming a permanent pattern according to <3>, wherein the support contains a synthetic resin and is transparent.
< 5 > 支持体が、長尺状である前記 < 3 >から <4>のいずれかに記載の永久パ ターン形成方法である。  <5> The method for forming a permanent pattern according to any one of <3> to <4>, wherein the support is elongated.
< 6 > 感光性フィルムが、長尺状であり、ロール状に巻かれてなる前記 < 3 >から く 5 >の 、ずれかに記載の永久パターン形成方法である。  <6> The method for forming a permanent pattern according to any one of <3> to <5>, wherein the photosensitive film is long and is wound into a roll.
< 7> 感光性フィルムが、感光層上に保護フィルムを有してなる前記 < 3 >からく 6 >の 、ずれかに記載の永久パターン形成方法である。  <7> The method for forming a permanent pattern according to <3> above, wherein the photosensitive film has a protective film on the photosensitive layer.
< 8 > 感光層の厚みが、 3〜100 111でぁる前記< 1 >から< 7 >のぃずれかに 記載の永久パターン形成方法である。  <8> The method for forming a permanent pattern according to any one of <1> to <7>, wherein the photosensitive layer has a thickness of 3 to 100111.
< 9 > 基材が、配線形成済みのプリント配線基板である前記 < 1 >から < 8 >の V、ずれかに記載の永久パターン形成方法である。該 < 9 >に記載の永久パターン形 成方法においては、前記基材が配線形成済みのプリント配線基板であるので、該永 久パターン形成方法を利用することにより、半導体や部品の多層配線基板ゃビルド アップ配線基板などへの高密度実装が可能である。  <9> The permanent pattern forming method according to any one of <1> to <8>, wherein the substrate is a printed wiring board on which wiring is formed. In the method for forming a permanent pattern according to <9>, since the base material is a printed wiring board on which wiring has been formed, a multilayer wiring board for semiconductors and components can be obtained by using the permanent pattern forming method. High-density mounting on build-up wiring boards is possible.
< 10> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を 実現するために使用する前記描素部を指定する前記 < 1 >から < 9 >の 、ずれかに 記載の永久パターン形成方法である。該< 10 >に記載の永久パターン形成方法に おいては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を 実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付 位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形 成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記 感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高 精細な永久パターンが形成される。 <10> The exposure is performed by a plurality of exposure heads, and the drawing element specifying means is used for the exposure of the joint area between the heads, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to any one of <1> to <9>, wherein, among the element parts, the picture element part used for realizing N double exposure in the head-to-head connection region is designated. In the method for forming a permanent pattern according to <10> In this case, the exposure is performed by a plurality of exposure heads, and the used pixel part specifying means is involved in the exposure of the joint area between the heads which is the overlapping exposure area on the exposed surface formed by the plurality of exposure heads. Among the picture elements, the picture element used for realizing the N-fold exposure in the head-to-head connection region is designated, so that the exposure of the photosensitive layer due to a shift in the mounting position or mounting angle of the exposure head is performed. Variations in the resolution and uneven density of the pattern formed in the connecting area between the heads on the exposure surface are leveled. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition permanent pattern.
< 11 > 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の 前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ 領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域にお ける N重露光を実現するために使用する前記描素部を指定する前記 < 10 >に記載 の永久パターン形成方法である。該< 11 >に記載の永久パターン形成方法にぉ ヽ ては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記 露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域 以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外における N重露 光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの 取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域 以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この 結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像すること により、高精細な永久パターンが形成される。  <11> The exposure is performed by a plurality of exposure heads, and the used picture element designation means is involved in exposures other than the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. The permanent pattern forming method according to <10>, wherein the pixel part used to realize N double exposure in an area other than the head-to-head connection area among the picture element parts is designated. In the method for forming a permanent pattern according to <11>, the exposure is performed by a plurality of exposure heads, and the used pixel part designating unit overlaps the exposed surface formed by the plurality of exposure heads. By specifying the pixel part used for realizing N double exposure in areas other than the inter-head connection area among the image element parts related to exposure other than the inter-head connection area that is the exposure area, Variations in the resolution and density unevenness of the pattern formed in areas other than the joint area between the heads on the exposed surface of the photosensitive layer due to a deviation in the mounting position and mounting angle of the exposure head are equalized. As a result, the photosensitive layer is exposed with high definition, and then the photosensitive layer is developed to form a high-definition permanent pattern.
< 12> 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描 素部の列方向の間隔 P、及び露光ヘッドを傾斜させた状態にぉ 、て該露光ヘッドの 走査方向と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin Θ ≥Ν δを満たす Θ に対し、 θ≥ Θ の関係を満たすように設定される前記 < 1 ideal ideal ideal  <12> Setting tilt angle Θ force N N number of double exposures, number s of pixel portions in the row direction, interval P of the pixel portions in the row direction, and exposure with the exposure head tilted For the pitch δ in the column direction of the pixel part along the direction orthogonal to the scanning direction of the head, the above equation is set to satisfy the relationship θ≥ Θ for Θ satisfying the following equation: spsin Θ ≥ δ δ <1 ideal ideal ideal
>からく 11 >のいずれかに記載の永久パターン形成方法である。  > The permanent pattern forming method according to any one of <11>.
< 13 > N重露光の N力 3以上の自然数である前記 < 1 >から < 12>のいずれ かに記載の永久パターン形成方法である。該く 13 >に記載の永久パターン形成方 法においては、 N重露光の N力 3以上の自然数であることにより、多重描画が行わ れる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度 のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばら つきや濃度のむらが、より精密に均される。 <13> The method for forming a permanent pattern according to any one of <1> to <12>, wherein the N force of N exposure is a natural number of 3 or more. The permanent pattern forming method according to 13> According to the law, multiple drawing is performed by using a natural number of N force 3 or more in N double exposure. As a result, due to the effect of offsetting, variations in resolution and density unevenness of the pattern formed on the exposed surface of the photosensitive layer due to deviations in the mounting position and mounting angle of the exposure head are more accurately leveled. .
[0018] < 14> 使用描素部指定手段が、 [0018] <14> Use pixel part designation means
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit that is generated by the picture element unit and constitutes an exposure area on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と  Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure;
を備える前記く 1 >力 く 13 >のいずれかに記載の永久パターン形成方法である。  The method for forming a permanent pattern according to any one of the above items 1> strength 13>.
< 15 > 使用描素部指定手段が、 N重露光を実現するために使用する使用描素 部を、行単位で指定する前記く 1 >からく 14 >のいずれかに記載の永久パターン 形成方法である。  <15> The permanent pattern forming method according to any one of the above <1>, <14>, wherein the used pixel part designation means designates the used pixel part used for realizing N double exposure in units of rows. It is.
[0019] < 16 > 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光 ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走 查方向とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ ' と設定傾斜角度 Θとの誤差を吸収するように使用描素部を選択する前記 < 14>力ら く 15 >のいずれかに記載の永久パターン形成方法である。  <16> Based on at least two light spot positions detected by the light spot position detecting means, the row direction of the light spots on the surface to be exposed and the running direction of the exposure head in a state where the exposure head is tilted The actual inclination angle Θ ′ formed by the image element is specified, and the pixel part selection means selects the pixel part to be used so as to absorb the error between the actual inclination angle Θ ′ and the set inclination angle Θ. The permanent pattern forming method according to any one of 15>.
< 17> 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の 光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、 中央値、最大値、及び最小値のいずれかである前記 < 16 >に記載の永久パターン 形成方法である。  <17> The actual inclination angle Θ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined. The method for forming a permanent pattern according to <16>, wherein the permanent pattern is either a maximum value or a minimum value.
< 18 > 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは Ν重露光数の Νを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における 1行目から前記 T行目の前記 描素部を、使用描素部として選択する前記 < 16 >力ら< 17>のいずれかに記載の 永久パターン形成方法である。  <18> Based on the actual inclination angle θ が, the pixel part selection means derives a natural number T near t that satisfies the relationship ttan 0 '= Ν (where Ν represents Ν of the double exposure number). , M rows (where m represents a natural number greater than or equal to 2) The <16> force is selected as the pixel portion to be used as the pixel portion to be used from the first row to the T-th row in the arranged pixel portion. <17> A method for forming a permanent pattern according to any one of the above.
< 19 > 描素部選択手段が、実傾斜角度 θ Ίこ基づき、 ttan 0 ' =Ν (ただし、 Νは N重露光数の Nを表す)の関係を満たす tに近 、自然数 Tを導出し、 m行 (ただし、 m は 2以上の自然数を表す)配列された描素部における、 (T+ 1)行目力 m行目の前 記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、 使用描素部として選択する前記 < 16 >力 く 17>のいずれかに記載の永久パター ン形成方法である。 <19> The pixel part selection means is based on the actual inclination angle θ 、 and ttan 0 '= Ν (where Ν is (T + 1) rows in the pixel part arranged in m rows (where m represents a natural number of 2 or more) The power of the mth line is specified as the unused pixel part, and the pixel part excluding the unused pixel part is selected as the used pixel part. The permanent pattern forming method according to any one of the above.
< 20> 描素部選択手段が、複数の描素部列により形成される被露光面上の重 複露光領域を少なくとも含む領域において、  <20> In an area including at least a multiple exposure area on an exposed surface formed by a plurality of pixel part rows,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、  (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure.
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、  (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じな 、ように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur with respect to the ideal N double exposure.
のいずれかである前記く 14 >力 く 19 >に記載の永久パターン形成方法である。 The permanent pattern forming method according to any one of the above-mentioned 14> strength 19>.
< 21 > 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重 複露光領域であるヘッド間つなぎ領域において、  <21> In the connection area between the heads, which is the overlapping exposure area on the exposed surface formed by a plurality of exposure heads,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、  (2) In relation to the ideal N double exposure, the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area. A means for identifying an unused pixel part from the pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、 (3) For ideal N double exposure, the area of the overexposed region is minimized, and the pixel part involved in the exposure of the inter-head connecting region is prevented so that an underexposed region does not occur. From the above, a means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、  (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
の!、ずれかである前記 < 14 >から < 20 >の!、ずれかに記載の永久パターン形成 方法である。  of! The method for forming a permanent pattern according to <14> to <20> !, which is a deviation.
< 22> 不使用描素部が、行単位で特定される前記く 21 >に記載の永久パター ン形成方法である。  <22> The permanent pattern forming method according to the above <21>, wherein the unused pixel portion is specified in line units.
[0021] < 23> 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前 記描素部のみを使用して参照露光を行う前記く 13>からく 22>のいずれかに記載 の永久パターン形成方法である。該< 23 >に記載の永久パターン形成方法にお!ヽ ては、使用描素部指定手段において使用描素部を指定するために、使用可能な前 記描素部のうち、 N重露光の Nに対し、(N—1)列毎の描素部列を構成する前記描 素部のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる。 この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  [0021] <23> In order to specify the used pixel part in the used pixel part specifying means, out of the usable picture element parts, N (N−1) column-by-column drawings for N of N double exposures. The permanent pattern forming method according to any one of the above items 13> to 22>, in which the reference exposure is performed using only the drawing element portion constituting the element row. In the permanent pattern forming method according to <23>, in order to specify the used pixel part in the used pixel part specifying means, the N double exposure of the usable pixel parts is designated. For N, reference exposure is performed using only the pixel part constituting the pixel part sequence for each (N-1) column, and a simple pattern of simple single drawing is obtained. As a result, the picture element portion in the head-to-head connection region is easily specified.
< 24> 使用描素部指定手段において使用描素部を指定するために、使用可能 な前記描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部行を構成する前記 描素部のみを使用して参照露光を行う前記く 13>からく 22>のいずれかに記載の 永久パターン形成方法である。該く 24 >に記載の永久パターン形成方法において は、使用描素部指定手段において使用描素部を指定するために、使用可能な前記 描素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部列を構成する前記描素部 のみを使用して参照露光が行われ、略 1重描画の単純なパターンが得られる。この 結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。  <24> In order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, for each N-exposure N, the above-mentioned pixel part row constituting 1ZN line The permanent pattern forming method according to any one of the above items <13> to <22>, wherein reference exposure is performed using only the pixel part. In the permanent pattern forming method described in 24>, in order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, 1N Reference exposure is performed using only the pixel part constituting the pixel part column for each row, and a simple pattern of substantially single drawing is obtained. As a result, the picture element portion in the inter-head connecting region is easily specified.
[0022] < 25> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器 、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記 < 1 >から < 24 >のいずれかに記載の永久パターン形成方法である。 [0022] <25> The above-described drawing element specifying unit includes a slit and a photodetector as a light spot position detection unit, and an arithmetic unit connected to the photodetector as a drawing unit selection unit. <1> to the permanent pattern forming method according to any one of <24>.
< 26 > N重露光の N力 3以上 7以下の自然数である前記 < 1 >から < 25 >の <26> N force of N exposure 3 to 7 natural number from <1> to <25>
V、ずれかに記載の永久パターン形成方法である。 V is a method for forming a permanent pattern described in any of the above.
[0023] < 27> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、光照射手段から照射される光を該パター ン信号生成手段が生成した制御信号に応じて変調させる前記 < 1 >力 く 26 >の <27> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on the pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit. The <1> powerfully 26> modulated according to the generated control signal
V、ずれかに記載の永久パターン形成方法である。 V is a method for forming a permanent pattern described in any of the above.
< 28 > パターン情報が表すパターンの所定部分の寸法が、指定された使用描素 部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する 変換手段を有する前記 < 1 >からく 27 >のいずれかに記載の永久パターン形成方 法である。  <28> The <1> frame having the conversion means for converting the pattern information so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the designated used pixel part. 27. A method for forming a permanent pattern according to any one of the above.
< 29 > 光変調手段が、空間光変調素子である前記く 1 >からく 28 >のいずれ かに記載の永久パターン形成方法である。  <29> The method for forming a permanent pattern according to any one of <1>, <28>, wherein the light modulation means is a spatial light modulation element.
< 30> 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 29 >に記載の永久パターン形成方法である。  <30> The method for forming a permanent pattern according to 29 above, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
< 31 > 描素部が、マイクロミラーである前記く 1 >からく 30>のいずれかに記載 の永久パターン形成方法である。  <31> The permanent pattern forming method according to any one of the above <1> and <30>, wherein the picture element portion is a micromirror.
[0024] < 32> 光照射手段が、 2以上の光を合成して照射可能である前記 < 1 >からく 3 1 >のいずれかに記載の永久パターン形成方法である。該< 32 >に記載の永久パ ターン形成方法にぉ 、ては、前記光照射手段が 2以上の光を合成して照射可能であ ることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への 露光が極めて高精細に行われ、その後、前記感光層を現像することにより、極めて高 精細な永久パターンが形成される。 [0024] <32> The method for forming a permanent pattern according to any one of <1> to Kara 31, wherein the light irradiation unit can synthesize and irradiate two or more lights. In the permanent pattern forming method according to <32>, the light irradiation means can synthesize and irradiate two or more lights, so that exposure is performed with exposure light having a deep focal depth. . As a result, the photosensitive layer is exposed with extremely high definition, and then the photosensitive layer is developed to form a very high definition permanent pattern.
< 33 > 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレ 一ザ力 それぞれ照射されたレーザビームを集光して前記マルチモード光ファイバ に結合させる集合光学系とを有する前記 < 1 >から < 32 >のいずれかに記載の永 久パターン形成方法である。該く 33 >に記載の永久パターン形成方法においては 、前記光照射手段により、前記複数のレーザ力 それぞれ照射されたレーザビーム が前記集合光学系により集光され、前記マルチモード光ファイバに結合可能とするこ とにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露 光が極めて高精細に行われ、その後、前記感光層を現像することにより、極めて高精 細な永久パターンが形成される。 <33> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that condenses the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. The method for forming a permanent pattern according to any one of <1> to <32>. In the method for forming a permanent pattern described in 33>, the laser beams irradiated by the light irradiation means respectively with the plurality of laser forces. Is condensed by the collective optical system and can be coupled to the multimode optical fiber, so that exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive layer is performed with extremely high definition, and then the photosensitive layer is developed to form an extremely fine permanent pattern.
< 34> レーザ光の波長が 395〜415nmである前記く 33 >に記載の永久パタ ーン形成方法である。  <34> The method for forming a permanent pattern according to <33>, wherein the wavelength of the laser beam is 395 to 415 nm.
[0025] < 35 > 現像が行われた後、感光層に対して硬化処理を行う前記 < 1 >からく 34  [0025] <35> After the development, the photosensitive layer is subjected to a curing process. <1> Karaku 34
>の 、ずれかに記載の永久パターン形成方法である。該< 35 >に記載の永久パタ ーン形成方法においては、現像が行われた後、前記感光層に対して前記硬化処理 が行われる。その結果、前記感光層の硬化領域の膜強度が高められる。  Is a method for forming a permanent pattern as described in any of the above. In the method for forming a permanent pattern according to <35>, after the development, the curing treatment is performed on the photosensitive layer. As a result, the film strength of the cured region of the photosensitive layer is increased.
< 36 > 硬化処理が、全面露光処理及び 120〜200°Cで行われる全面加熱処理 の少なくとも 、ずれかである前記く 35 >に記載の永久パターン形成方法である。該 < 36 >に記載の永久パターン形成方法にぉ 、ては、前記全面露光処理にぉ 、て、 前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる 全面加熱処理において、硬化膜の膜強度が高められる。  <36> The method for forming a permanent pattern according to <35>, wherein the curing process is at least a shift between an overall exposure process and an overall heating process performed at 120 to 200 ° C. In the permanent pattern forming method described in <36>, curing of the resin in the photosensitive composition is accelerated through the entire surface exposure treatment. Further, the film strength of the cured film is increased in the entire surface heat treatment performed under the temperature condition.
< 37> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれ かを形成する前記 < 1 >からく 36 >のいずれかに記載の永久パターン形成方法で ある。  <37> The method for forming a permanent pattern according to any one of <1> and <36>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
発明の効果  The invention's effect
[0026] 本発明によると、従来における問題を解決することができ、前記露光ヘッドの取付 位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の光学 系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる露光 量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パターンの 解像度のばらつきや濃度のむらを軽減することにより、保護膜、絶縁膜、及びソルダ 一レジストなどの永久パターンを高精細に、かつ効率よく形成可能な永久パターン形 成方法を提供することができる。  [0026] According to the present invention, the conventional problems can be solved, the displacement of the mounting position and mounting angle of the exposure head, and the optical system between the picture element portion and the exposed surface of the photosensitive layer. Equalizes the effects of variations in exposure due to various aberrations and pattern distortion caused by the distortion of the image area itself, etc., and eliminates variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer. By reducing, it is possible to provide a permanent pattern forming method capable of forming a permanent pattern such as a protective film, an insulating film, and a solder resist with high definition and efficiency.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は、パターン形成装置の一例の外観を示す斜視図である。 [図 2]図 2は、パターン形成装置のスキャナの構成の一例を示す斜視図である。 FIG. 1 is a perspective view showing an appearance of an example of a pattern forming apparatus. FIG. 2 is a perspective view showing an example of the configuration of the scanner of the pattern forming apparatus.
[図 3A]図 3Aは、感光層の被露光面上に形成される露光済み領域を示す平面図で ある。 FIG. 3A is a plan view showing an exposed region formed on the exposed surface of the photosensitive layer.
[図 3B]図 3Bは、各露光ヘッドによる露光エリアの配列を示す平面図である。  FIG. 3B is a plan view showing an arrangement of exposure areas by each exposure head.
[図 4]図 4は、露光ヘッドの概略構成の一例を示す斜視図である。  FIG. 4 is a perspective view showing an example of a schematic configuration of an exposure head.
[図 5A]図 5Aは、露光ヘッドの詳細な構成の一例を示す上面図である。  FIG. 5A is a top view showing an example of a detailed configuration of an exposure head.
[図 5B]図 5Bは、露光ヘッドの詳細な構成の一例を示す側面図である。  FIG. 5B is a side view showing an example of a detailed configuration of the exposure head.
[図 6]図 6は、図 1のパターン形成装置の DMDの一例を示す部分拡大図である。  6 is a partially enlarged view showing an example of a DMD of the pattern forming apparatus in FIG.
[図 7A]図 7Aは、 DMDの動作を説明するための斜視図である。  FIG. 7A is a perspective view for explaining the operation of the DMD.
[図 7B]図 7Bは、 DMDの動作を説明するための斜視図である。  FIG. 7B is a perspective view for explaining the operation of the DMD.
[図 8]図 8は、露光ヘッドの取付角度誤差及びパターン歪みがある際に、被露光面上 のパターンに生じるむらの例を示した説明図である。  FIG. 8 is an explanatory view showing an example of unevenness that occurs in a pattern on an exposed surface when there is an attachment head angle error and pattern distortion.
[図 9]図 9は、 1つの DMDによる露光エリアと、対応するスリットとの位置関係を示した 上面図である。  FIG. 9 is a top view showing a positional relationship between an exposure area by one DMD and a corresponding slit.
[図 10]図 10は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 10 is a top view for explaining a method for measuring the position of a light spot on a surface to be exposed using a slit.
[図 11]図 11は、選択されたマイクロミラーのみが露光に使用された結果、被露光面上 のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 11] FIG. 11 is an explanatory view showing a state in which unevenness generated in a pattern on an exposed surface is improved as a result of using only selected micromirrors for exposure.
[図 12]図 12は、隣接する露光ヘッド間に相対位置のずれがある際に、被露光面上の パターンに生じるむらの例を示した説明図である。 FIG. 12 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift between adjacent exposure heads.
[図 13]図 13は、隣接する 2つの露光ヘッドによる露光エリアと、対応するスリットとの位 置関係を示した上面図である。  FIG. 13 is a top view showing a positional relationship between an exposure area by two adjacent exposure heads and a corresponding slit.
[図 14]図 14は、被露光面上の光点の位置を、スリットを用いて測定する手法を説明 するための上面図である。  FIG. 14 is a top view for explaining a technique for measuring the position of a light spot on an exposed surface using a slit.
[図 15]図 15は、図 12の例において選択された使用画素のみが実動され、被露光面 上のパターンに生じるむらが改善された状態を示す説明図である。  [FIG. 15] FIG. 15 is an explanatory diagram showing a state in which only the used pixels selected in the example of FIG. 12 are actually moved, and unevenness in the pattern on the exposed surface is improved.
[図 16]図 16は、隣接する露光ヘッド間に相対位置のずれ及び取付角度誤差がある 際に、被露光面上のパターンに生じるむらの例を示した説明図である。 [図 17]図 17は、図 16の例において選択された使用描素部のみを用いた露光を示す 説明図である。 FIG. 16 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface when there is a relative position shift and a mounting angle error between adjacent exposure heads. FIG. 17 is an explanatory diagram showing exposure using only the used pixel portion selected in the example of FIG.
[図 18A]図 18Aは、倍率歪みの例を示した説明図である。  FIG. 18A is an explanatory view showing an example of magnification distortion.
[図 18B]図 18Bは、ビーム径歪みの例を示した説明図である。  FIG. 18B is an explanatory diagram showing an example of beam diameter distortion.
[図 19A]図 19Aは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19A is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 19B]図 19Bは、単一露光ヘッドを用いた参照露光の第一の例を示した説明図で ある。  FIG. 19B is an explanatory view showing a first example of reference exposure using a single exposure head.
[図 20]図 20は、複数露光ヘッドを用いた参照露光の第一の例を示した説明図である  FIG. 20 is an explanatory view showing a first example of reference exposure using a plurality of exposure heads.
[図 21A]図 21Aは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。 FIG. 21A is an explanatory view showing a second example of reference exposure using a single exposure head.
[図 21B]図 21Bは、単一露光ヘッドを用いた参照露光の第二の例を示した説明図で ある。  FIG. 21B is an explanatory diagram showing a second example of reference exposure using a single exposure head.
[図 22]図 22は、複数露光ヘッドを用いた参照露光の第二の例を示した説明図である  FIG. 22 is an explanatory view showing a second example of reference exposure using a plurality of exposure heads.
[図 23]図 23は、比較例 1において、各画素列の傾斜角度が均一ではなくなる「角度 歪み」により、被露光面上のパターンに生じたむらの例を示した説明図である。 発明を実施するための最良の形態 FIG. 23 is an explanatory view showing an example of unevenness generated in the pattern on the exposed surface due to “angle distortion” in which the inclination angle of each pixel column is not uniform in Comparative Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
[0028] (永久パターン形成方法) [0028] (Permanent pattern forming method)
本発明の永久パターン形成方法は、露光工程と現像工程とを少なくとも含み、好ま しくは硬化処理工程を含み、更に必要に応じて適宜選択したその他の工程を含む。  The permanent pattern forming method of the present invention includes at least an exposure step and a development step, preferably includes a curing treatment step, and further includes other steps appropriately selected as necessary.
[0029] [露光工程] [0029] [Exposure process]
前記露光工程は、感光層に対し、  The exposure step is performed on the photosensitive layer.
光照射手段、及び前記光照射手段からの光を受光し出射する n個 (ただし、 nは 2 以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記 描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査 方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置され た露光ヘッドを用い、 Light irradiating means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel elements that receive and emit light from the light irradiating means. An exposure head provided with a light modulation means capable of controlling a picture element portion, and arranged such that the column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to the scanning direction of the exposure head. Using the exposure head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う 工程である。  With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and The exposure is performed by moving the exposure head relatively in the scanning direction.
本発明にお 、て「N重露光」とは、前記感光層の被露光面上の露光領域の略すベ ての領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上 に照射された N本の光点列 (画素列)と交わるような設定による露光を指す。ここで、「 光点列 (画素列)」とは、前記描素部により生成された描素単位としての光点 (画素) の並びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すも のとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよぐたとえば 平行四辺形状の配置等であってもよ 、。 ここで、露光領域の「略すベての領域」と 述べたのは、各描素部の両側縁部では、描素部列を傾斜させたことにより、前記露 光ヘッドの走査方向に平行な直線と交わる使用描素部の描素部列の数が減るため、 力かる場合に複数の露光ヘッドをつなぎ合わせるように使用したとしても、該露光へ ッドの取付角度や配置等の誤差により、走査方向に平行な直線と交わる使用描素部 の描素部列の数がわずかに増減することがあるため、また、各使用描素部の描素部 列間のつなぎの、解像度分以下のごくわずかな部分では、取付角度や描素部配置 等の誤差により、走査方向と直交する方向に沿った描素部のピッチが他の部分の描 素部のピッチと厳密に一致せず、走査方向に平行な直線と交わる使用描素部の描 素部列の数が ± 1の範囲で増減することがあるためである。なお、以下の説明では、 Nが 2以上の自然数である N重露光を総称して「多重露光」という。さらに、以下の説 明では、本発明の永久パターン形成方法における露光方法を、描画方法として実施 した形態について、「N重露光」及び「多重露光」に対応する用語として、「N重描画」 及び「多重描画」 t 、う用語を用いるものとする。  In the present invention, “N-exposure exposure” refers to a straight line parallel to the scanning direction of the exposure head on the surface to be exposed in almost all of the exposure region on the surface to be exposed of the photosensitive layer. Refers to exposure with a setting that intersects the N light spot rows (pixel rows) irradiated to the. Here, the “light spot array (pixel array)” is a direction in which the angle formed with the scanning direction of the exposure head is smaller in the array of light spots (pixels) as pixel units generated by the pixel unit. Refers to a sequence of The arrangement of the picture element portions does not necessarily have to be a rectangular lattice, for example, an arrangement of parallelograms. Here, “substantially all areas” of the exposure area is described as being parallel to the scanning direction of the exposure head by tilting the pixel part rows at both side edges of each picture element part. Since the number of picture element rows in the use picture element part that intersect with the straight line is reduced, even if it is used to connect multiple exposure heads when it is applied, errors due to the mounting angle and arrangement of the exposure head, etc. The number of pixel parts in the used pixel part that intersects the straight line parallel to the scanning direction may slightly increase or decrease, and the connection between the pixel parts in each used pixel part is less than the resolution. In a very small part, due to errors such as the mounting angle and pixel part placement, the pixel part pitch along the direction orthogonal to the scanning direction does not exactly match the pixel part pitch of the other parts. Increase or decrease the number of pixel parts in the used part that intersects with a straight line parallel to the scanning direction within a range of ± 1. This is because there is a door. In the following description, N multiple exposures where N is a natural number of 2 or more are collectively referred to as “multiple exposure”. Further, in the following description, “N-fold drawing” and “N-fold drawing” are used as terms corresponding to “N-double exposure” and “multiple exposure” for the embodiment in which the exposure method in the permanent pattern forming method of the present invention is implemented as a drawing method. The term “multiple drawing” t is used.
前記 N重露光の Nとしては、 2以上の自然数であれば、特に制限はなぐ目的に応 じて適宜選択することができる力 3以上の自然数が好ましぐ 3以上 7以下の自然数 力 り好ましい。 If N is a natural number of 2 or more, N is not particularly limited for the purpose of N-exposure. Forces that can be selected at the same time. Natural numbers of 3 or more are preferred. Natural numbers of 3 or more and 7 or less are preferred.
[0031] <パターン形成装置 > [0031] <Pattern forming apparatus>
本発明の永久パターン形成方法に係るパターン形成装置の一例について図面を 参照しながら説明する。  An example of a pattern forming apparatus according to the permanent pattern forming method of the present invention will be described with reference to the drawings.
前記パターン形成装置としては、 Vヽゎゆるフラットベッドタイプの露光装置とされて おり、図 1に示すように、前記感光層が前記基材上に積層されてなるシート状の感光 材料 12 (以下、「感光層 12」 t ヽぅことがある)を表面に吸着して保持する平板状の移 動ステージ 14を備えている。 4本の脚部 16に支持された厚い板状の設置台 18の上 面には、ステージ移動方向に沿って延びた 2本のガイド 20が設置されている。ステー ジ 14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド 20 によって往復移動可能に支持されている。なお、このパターン形成装置 10には、ステ ージ 14をガイド 20に沿って駆動するステージ駆動装置(図示せず)が設けられて ヽ る。  The pattern forming apparatus is a V flat-bed type exposure apparatus, and as shown in FIG. 1, a sheet-shaped photosensitive material 12 (hereinafter referred to as a sheet-shaped photosensitive material 12) formed by laminating the photosensitive layer on the substrate. The plate-shaped moving stage 14 holds the “photosensitive layer 12” (which may be absorbed) on the surface. Two guides 20 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 18 supported by the four legs 16. The stage 14 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 20 so as to be reciprocally movable. The pattern forming apparatus 10 is provided with a stage driving device (not shown) that drives the stage 14 along the guide 20.
[0032] 設置台 18の中央部には、ステージ 14の移動経路を跨ぐようにコの字状のゲート 22 が設けられている。コの字状のゲート 22の端部の各々は、設置台 18の両側面に固 定されている。このゲート 22を挟んで一方の側にはスキャナ 24が設けられ、他方の 側には感光材料 12の先端及び後端を検知する複数 (たとえば 2個)のセンサ 26が設 けられている。スキャナ 24及びセンサ 26はゲート 22に各々取り付けられて、ステージ 14の移動経路の上方に固定配置されている。なお、スキャナ 24及びセンサ 26は、こ れらを制御する図示しな 、コントローラに接続されて 、る。  A U-shaped gate 22 is provided at the center of the installation base 18 so as to straddle the moving path of the stage 14. Each end of the U-shaped gate 22 is fixed to both side surfaces of the installation base 18. A scanner 24 is provided on one side of the gate 22, and a plurality of (for example, two) sensors 26 for detecting the front and rear ends of the photosensitive material 12 are provided on the other side. The scanner 24 and the sensor 26 are respectively attached to the gate 22 and fixedly arranged above the moving path of the stage 14. The scanner 24 and the sensor 26 are connected to a controller (not shown) for controlling them.
[0033] ここで、説明のため、ステージ 14の表面と平行な平面内に、図 1に示すように、互い に直交する X軸及び Y軸を規定する。  [0033] Here, for explanation, an X axis and a Y axis that are orthogonal to each other are defined in a plane parallel to the surface of the stage 14 as shown in FIG.
[0034] ステージ 14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の 端縁部には、 X軸の方向に向カゝつて開く「く」の字型に形成されたスリット 28が、等間 隔で 10本形成されている。各スリット 28は、上流側に位置するスリット 28aと下流側に 位置するスリット 28bと力もなつている。スリット 28aとスリット 28bとは互いに直交すると ともに、 X軸に対してスリット 28aは— 45度、スリット 28bは +45度の角度を有している [0035] スリット 28の位置は、前記露光ヘッド 30の中心と略一致させられている。また、各ス リット 28の大きさは、対応する露光ヘッド 30による露光エリア 32の幅を十分覆う大きさ とされている。また、スリット 28の位置としては、隣接する露光済み領域 34間の重複 部分の中心位置と略一致させてもよい。この場合、各スリット 28の大きさは、露光済み 領域 34間の重複部分の幅を十分覆う大きさとする。 [0034] At the edge of the upstream side of the stage 14 in the scanning direction (hereinafter simply referred to as "upstream side"), a "<" shape that opens in the direction of the X-axis. Ten slits 28 are formed at regular intervals. Each slit 28 also has a force with a slit 28a located on the upstream side and a slit 28b located on the downstream side. The slit 28a and the slit 28b are orthogonal to each other, and the slit 28a has an angle of −45 degrees and the slit 28b has an angle of +45 degrees with respect to the X axis. The position of the slit 28 is substantially coincident with the center of the exposure head 30. In addition, the size of each slit 28 is set to sufficiently cover the width of the exposure area 32 by the corresponding exposure head 30. Further, the position of the slit 28 may be substantially coincident with the center position of the overlapping portion between the adjacent exposed regions 34. In this case, the size of each slit 28 is set to a size that sufficiently covers the width of the overlapping portion between the exposed regions 34.
[0036] ステージ 14内部の各スリット 28の下方の位置には、それぞれ、後述する使用描素 部指定処理において、描素単位としての光点を検出する光点位置検出手段としての 単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述 する使用描素部指定処理にお!、て、前記描素部の選択を行う描素部選択手段とし ての演算装置(図示せず)に接続されている。  [0036] At the position below each slit 28 in the stage 14, a single cell type as a light spot position detecting means for detecting a light spot as a pixel unit in a used pixel part specifying process to be described later. A photodetector (not shown) is incorporated. In addition, each photodetector is connected to an arithmetic unit (not shown) as a pixel part selection means for selecting the pixel part in the used pixel part specifying process described later. .
[0037] 露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に 移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移 動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であ つてもよい。  [0037] The operation form of the pattern forming apparatus at the time of exposure may be a form in which exposure is continuously performed while the exposure head is constantly moved, or each pattern is moved while the exposure head is moved step by step. The exposure operation may be performed with the exposure head stationary at the destination position.
[0038] < <露光ヘッド > >  [0038] <<Exposure head>>
各露光ヘッド 30は、後述する内部のデジタル 'マイクロミラ一'デバイス(DMD) 36 の各描素部 (マイクロミラー)列方向が、走査方向と所定の設定傾斜角度 Θをなすよ うに、スキャナ 24に取り付けられている。このため、各露光ヘッド 30による露光エリア 32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ 14の移動に伴い 、感光層 12には露光ヘッド 30ごとに帯状の露光済み領域 34が形成される。図 2及 び図 3Bに示す例では、 2行 5列の略マトリックス状に配列された 10個の露光ヘッドが 、スキャナ 24に備えられている。  Each exposure head 30 is connected to a scanner 24 so that each pixel portion (micromirror) row direction of an internal digital 'micromirror' device (DMD) 36 described later forms a predetermined set inclination angle Θ with the scanning direction. Is attached. Therefore, the exposure area 32 by each exposure head 30 is a rectangular area inclined with respect to the scanning direction. As the stage 14 moves, a strip-shaped exposed region 34 is formed for each exposure head 30 in the photosensitive layer 12. In the example shown in FIGS. 2 and 3B, the scanner 24 includes ten exposure heads arranged in a matrix of 2 rows and 5 columns.
なお、以下において、 m行目の n列目に配列された個々の露光ヘッドを示す場合は 、露光ヘッド 30 と表記し、 m行目の n列目に配列された個々の露光ヘッドによる露  In the following, when the individual exposure heads arranged in the mth row and the nth column are indicated, they are represented as an exposure head 30, and the exposure by the individual exposure heads arranged in the mth row and the nth column is indicated.
mn  mn
光エリアを示す場合は、露光エリア 32 と表記する。  When the light area is indicated, it is expressed as exposure area 32.
mn  mn
[0039] また、図 3A及び図 3Bに示すように、帯状の露光済み領域 34のそれぞれが、隣接 する露光済み領域 34と部分的に重なるように、ライン状に配列された各行の露光へ ッド 30の各々は、その配列方向に所定間隔 (露光エリアの長辺の自然数倍、本実施 形態では 2倍)ずらして配置されている。このため、 1行目の露光エリア 32 と露光ェ Further, as shown in FIGS. 3A and 3B, the exposure of each row arranged in a line is performed so that each of the strip-shaped exposed regions 34 partially overlaps the adjacent exposed region 34. Each of the heads 30 is arranged at a predetermined interval (a natural number times the long side of the exposure area, twice in this embodiment) in the arrangement direction. Therefore, the exposure area 32 in the first row and the exposure area
11 リア 32 との間の露光できない部分は、 2行目の露光エリア 32 により露光することが 11 The part that cannot be exposed to the rear 32 can be exposed by the exposure area 32 in the second row.
12 21 12 21
できる。  it can.
[0040] 露光ヘッド 30の各々は、図 4及び図 5に示すように、入射された光を画像データに 応じて描素部ごとに変調する光変調手段 (描素部ごとに変調する空間光変調素子) として、 DMD36 (米国テキサス 'インスツルメンッ社製)を備えている。この DMD36 は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコントロー ラに接続されている。このコントローラのデータ処理部では、入力された画像データに 基づいて、露光ヘッド 30ごとに、 DMD36上の使用領域内の各マイクロミラーを駆動 制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処理部で 生成した制御信号に基づいて、露光ヘッド 30ごとに、 DMD36の各マイクロミラーの 反射面の角度を制御する。  As shown in FIGS. 4 and 5, each of the exposure heads 30 has a light modulation means (spatial light modulated for each pixel portion) that modulates incident light for each pixel portion in accordance with image data. DMD36 (manufactured by Texas Instruments Inc., USA) is provided as a modulation element. The DMD 36 is connected to a controller as a pixel part control means having a data processing part and a mirror drive control part. The data processing unit of the controller generates a control signal for driving and controlling each micromirror in the use area on the DMD 36 for each exposure head 30 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 36 for each exposure head 30 based on the control signal generated by the image data processing unit.
[0041] 図 4に示すように、 DMD36の光入射側には、光ファイバの出射端部 (発光点)が露 光エリア 32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を 備えたファイバアレイ光源 38、ファイバアレイ光源 38から出射されたレーザ光を補正 して DMD上に集光させるレンズ系 40、このレンズ系 40を透過したレーザ光を DMD 36に向けて反射するミラー 42がこの順に配置されている。なお図 4では、レンズ系 4 0を概略的に示してある。  As shown in FIG. 4, on the light incident side of the DMD 36, a laser in which the emission end portion (light emission point) of the optical fiber is arranged in a line along the direction that coincides with the long side direction of the exposure area 32. A fiber array light source 38 having an emission part, a lens system 40 for correcting the laser light emitted from the fiber array light source 38 and condensing it on the DMD, and reflecting the laser light transmitted through the lens system 40 toward the DMD 36 The mirrors 42 to be used are arranged in this order. In FIG. 4, the lens system 40 is schematically shown.
[0042] 上記レンズ系 40は、図 5に詳しく示すように、ファイバアレイ光源 38から出射された レーザ光を平行光化する 1対の組合せレンズ 44、平行光化されたレーザ光の光量分 布が均一になるように補正する 1対の組合せレンズ 46、及び光量分布が補正された レーザ光を DMD36上に集光する集光レンズ 48で構成されている。  As shown in detail in FIG. 5, the lens system 40 includes a pair of combination lenses 44 that collimate the laser light emitted from the fiber array light source 38, and a light quantity distribution of the collimated laser light. It is composed of a pair of combination lenses 46 that correct the light so as to be uniform, and a condensing lens 48 that condenses the laser light whose light intensity distribution has been corrected on the DMD 36.
[0043] また、 DMD36の光反射側には、 DMD36で反射されたレーザ光を感光層 12の被 露光面上に結像するレンズ系 50が配置されている。レンズ系 50は、 DMD36と感光 層 12の被露光面とが共役な関係となるように配置された、 2枚のレンズ 52及び 54か らなる。  Further, on the light reflection side of the DMD 36, a lens system 50 that forms an image of the laser light reflected by the DMD 36 on the exposed surface of the photosensitive layer 12 is disposed. The lens system 50 includes two lenses 52 and 54 arranged so that the DMD 36 and the exposed surface of the photosensitive layer 12 have a conjugate relationship.
[0044] 本実施形態では、ファイバアレイ光源 38から出射されたレーザ光は、実質的に 5倍 に拡大された後、 DMD36上の各マイクロミラーからの光線が上記のレンズ系 50によ つて約 5 μ mに絞られるように設定されて!、る。 [0044] In the present embodiment, the laser beam emitted from the fiber array light source 38 is substantially five times larger. After being expanded, the light from each micromirror on the DMD 36 is set to be reduced to about 5 μm by the lens system 50!
[0045] -光変調手段- 前記光変調手段としては、 n個(ただし、 nは 2以上の自然数)の 2次元状に配列さ れた前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なもので あれば、特に制限はなぐ目的に応じて適宜選択することができ、例えば、空間光変 調素子が好ましい。 -Light Modulating Unit- As the light modulating unit, n (where n is a natural number of 2 or more) two-dimensionally arranged picture elements are provided, and according to the pattern information Any device that can control the picture element portion can be appropriately selected according to the purpose without any particular restriction. For example, a spatial light modulator is preferable.
[0046] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Space Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。  [0046] Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (SLM), and transmission by an electro-optic effect. Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
[0047] また、前記光変調手段は、形成するパターン情報に基づ 、て制御信号を生成する パターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。  [0047] Preferably, the light modulation means includes pattern signal generation means for generating a control signal based on pattern information to be formed. In this case, the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  The control signal can be appropriately selected according to the purpose for which there is no particular limitation. For example, a digital signal is preferably used.
[0048] 以下、前記光変調手段の一例について図面を参照しながら説明する。  Hereinafter, an example of the light modulation unit will be described with reference to the drawings.
DMD36は図 6に示すように、 SRAMセル (メモリセル) 56上〖こ、各々描素(ピクセ ル)を構成する描素部として、多数のマイクロミラー 58が格子状に配列されてなるミラ 一デバイスである。本実施形態では、 1024列 X 768行のマイクロミラー 58が配され てなる DMD36を使用する力 このうち DMD36に接続されたコントローラにより駆動 可能すなわち使用可能なマイクロミラー 58は、 1024列 X 256行のみであるとする。 DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して 1 ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用 することにより 1ライン当りの変調速度が速くなる。各マイクロミラー 58は支柱に支えら れており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお 、本実施形態では、各マイクロミラー 58の反射率は 90%以上であり、その配列ピッチ は縦方向、横方向ともに 13. 7 mである。 SRAMセル 56は、ヒンジ及びヨークを含 む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートの CMO Sのものであり、全体はモノリシック(一体型)に構成されている。 As shown in FIG. 6, the DMD 36 has a mirror structure in which a large number of micromirrors 58 are arranged in a lattice pattern as a pixel portion constituting each pixel (pixel). It is a device. In this embodiment, the power to use DMD36 in which micromirrors 58 of 1024 columns x 768 rows are arranged. Of these, micromirrors 58 that can be driven by a controller connected to DMD36, that is usable, are only 1024 columns x 256 rows. Suppose that The data processing speed of DMD36 is limited, and the modulation speed per line is determined in proportion to the number of micromirrors used. Thus, by using only some of the micromirrors in this way, Modulation speed increases. Each micromirror 58 is supported by a support column, and a material having high reflectivity such as aluminum is deposited on the surface thereof. In this embodiment, the reflectance of each micromirror 58 is 90% or more, and the arrangement pitch thereof Is 13.7 m in both vertical and horizontal directions. The SRAM cell 56 is a silicon gate CMOS manufactured on an ordinary semiconductor memory manufacturing line via a support including a hinge and a yoke, and is configured monolithically (integrated) as a whole.
[0049] DMD36の SRAMセル (メモリセル) 56〖こ、所望の 2次元パターンを構成する各点 の濃度を 2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー 58が、対角線を中心として DMD36が配置された基板側に対して ± α度 (たとえば ± 10度)のいずれかに傾く。図 7Αは、マイクロミラー 58がオン状態である + α度に 傾いた状態を示し、図 7Βは、マイクロミラー 58がオフ状態である α度に傾いた状 態を示す。このように、画像信号に応じて、 DMD36の各ピクセルにおけるマイクロミ ラー 58の傾きを、図 6に示すように制御することによって、 DMD36に入射したレーザ 光 Βはそれぞれのマイクロミラー 58の傾き方向へ反射される。  [0049] 56D SRAM cells (memory cells) of DMD36. When an image signal representing the density of each point constituting the desired two-dimensional pattern is written in binary, each micromirror 58 supported by the column is Inclined to one of ± α degrees (for example, ± 10 degrees) with respect to the substrate side on which the DMD 36 is disposed with the diagonal line as the center. FIG. 7 (b) shows a state tilted to + α degrees when the micromirror 58 is in the on state, and FIG. 7 (b) shows a state tilted to α degrees when the micromirror 58 is in the off state. In this way, by controlling the inclination of the micromirror 58 in each pixel of the DMD 36 according to the image signal as shown in FIG. 6, the laser beam incident on the DMD 36 is moved in the inclination direction of each micromirror 58. Reflected.
[0050] 図 6には、 DMD36の一部を拡大し、各マイクロミラー 58が + α度又は α度に制御 されている状態の一例を示す。それぞれのマイクロミラー 58のオンオフ制御は、 DM D36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミ ラー 58で反射したレーザ光 Bが進行する方向には、光吸収体(図示せず)が配置さ れている。  FIG. 6 shows an example of a state in which a part of the DMD 36 is enlarged and each micromirror 58 is controlled to + α degrees or α degrees. The on / off control of each micromirror 58 is performed by the controller connected to the DM D36. In addition, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the off-state micromirror 58 travels.
[0051] -光照射手段- 前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザ等の公知光源、又は 2以上の光を合成して照 射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段が 好ましい。  [0051] -Light irradiating means- The light irradiating means can be appropriately selected according to the purpose without any particular restriction. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copying machine For example, a fluorescent tube, a known light source such as an LED or a semiconductor laser, or a means capable of combining and irradiating two or more lights. Among these, a means capable of combining and irradiating two or more lights is preferable. .
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ (以下、「合波レーザ」と称する ことがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同様の 光を用いることができる。 [0052] 前記紫外力も可視光線の波長としては、例えば、 300〜1500nmが好ましぐ 320 〜800mn力より好ましく、 330ηπ!〜 650mn力 ^特に好まし!/、。 The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beams, X-rays, laser light, etc. are mentioned, and among these, laser light is preferred. Laser that combines two or more lights (hereinafter sometimes referred to as “combined laser”) ) Is more preferable. Even when the support is peeled off and the light is irradiated with light, the same light can be used. [0052] As the wavelength of the visible light, the ultraviolet force is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ηπ! ~ 650mn force ^ especially preferred!
前記レーザ光の波長としては、例えば、 200〜1500nm力 S好ましく、 300〜800nm 力 Sより好ましく、 330ΠΠ!〜 500mn力更に好ましく、 400ηπ!〜 450mn力 ^特に好まし!/、  The wavelength of the laser beam is, for example, preferably 200 to 1500 nm force S, more preferably 300 to 800 nm force S, and 330 mm! ~ 500mn force more preferred, 400ηπ! ~ 450mn power ^ especially preferred! /,
[0053] 前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモー ド光ファイバと、該複数のレーザ力 それぞれ照射したレーザビームを集光して前記 マルチモード光ファイバに結合させる集合光学系とを有する手段が好ま 、。 [0053] As means capable of irradiating the combined laser, for example, a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces are condensed and coupled to the multimode optical fiber. Preferred is a means having a collective optical system.
[0054] 前記合波レーザを照射可能な手段 (ファイバアレイ光源)としては、例えば、特開 20 05 - 258431号公報の段落番号〔0109〕〜〔0146〕に記載の手段が挙げられる。  Examples of means (fiber array light source) that can irradiate the combined laser include means described in paragraphs [0109] to [0146] of Japanese Patent Application Laid-Open No. 20 05-258431.
[0055] < <使用描素部指定手段 > >  [0055] <<Graphic part specification method used>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上に お!、て検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基 づき、 N重露光を実現するために使用する描素部を選択する描素部選択手段とを少 なくとも備えることが好まし 、。  The used pixel part specifying means includes a light spot position detecting means for detecting the position of a light spot as a pixel unit on the exposed surface, and a detection result by the light spot position detecting means. It is preferable to have at least a pixel part selection means for selecting a pixel part to be used for realizing N double exposure.
以下、前記使用描素部指定手段による、 N重露光に使用する描素部の指定方法 の例について説明する。  Hereinafter, an example of a method for designating a pixel part to be used for N double exposure by the used pixel part designation unit will be described.
[0056] (1)単一露光ヘッド内における使用描素部の指定方法  [0056] (1) Specification method of used pixel portion in single exposure head
本実施形態(1)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、各露光ヘッド 30の取付角度誤差に起因する解像度のばらつき と濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素部の指定方法 を説明する。  In the present embodiment (1), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and the variation in resolution and density unevenness due to the mounting angle error of each exposure head 30 are reduced. We will explain how to specify the pixel parts to be used to achieve ideal double exposure.
[0057] 露光ヘッド 30の走査方向に対する描素部(マイクロミラー 58)の列方向の設定傾斜 角度 Θとしては、露光ヘッド 30の取付角度誤差等がない理想的な状態であれば、使 用可能な 1024列 X 256行の描素部を使用してちょうど 2重露光となる角度 Θ より  [0057] The set tilt angle Θ in the column direction of the image area (micromirror 58) with respect to the scanning direction of the exposure head 30 can be used in an ideal state where there is no mounting angle error of the exposure head 30. From the angle Θ, which is exactly double exposure using a 1024 column x 256 row pixel part
ideal も、若干大きい角度を採用するものとする。  The ideal also uses a slightly larger angle.
この角度 Θ は、 N重露光の数 N、使用可能なマイクロミラー 58の列方向の個数 s  This angle Θ is the number of N exposures N, the number of usable micromirrors 58 in the row direction s
ideal  ideal
、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光ヘッド 30を傾斜させた状 態においてマイクロミラーによって形成される走査線のピッチ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1) , Column spacing p of usable micromirrors 58, and tilted exposure head 30 For the pitch δ of the scanning line formed by the micromirror in the state, the following equation 1, spsin θ ≥ Ν δ (Equation 1)
iaeal  iaeal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間 隔が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、 pcos θ = δ (式 2)  Given by. As described above, the DMD 36 in the present embodiment is configured by arranging a large number of micromirrors 58 having equal vertical and horizontal arrangement intervals in a rectangular lattice shape, so that pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
ideal  ideal
となる。本実施形態(1)では、上記のとおり s = 256、 N = 2であるので、前記式 3より、 角度 Θ は約 0. 45度である。したがって、設定傾斜角度 Θとしては、たとえば 0. 5 ideal  It becomes. In the present embodiment (1), since s = 256 and N = 2 as described above, the angle Θ is about 0.45 degrees according to the equation 3. Therefore, the set tilt angle Θ is, for example, 0.5 ideal
0度程度の角度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、 各露光ヘッド 30すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度 となるように、初期調整されているものとする。  An angle of about 0 degrees should be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle Θ within an adjustable range.
[0058] 図 8は、上記のように初期調整されたパターン形成装置 10において、 1つの露光へ ッド 30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに 生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部 (マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位として の光点にっ 、て、第 m行目の光点 ¾τ (m)、第 n列目の光点を c (n)、第 m行第 n列の 光点を P (m, n)とそれぞれ表記するものとする。  [0058] FIG. 8 shows unevenness that occurs in the pattern on the exposed surface due to the effect of the mounting angle error of one exposure head 30 and the pattern distortion in the pattern forming apparatus 10 that is initially adjusted as described above. It is explanatory drawing which showed the example. In the following drawings and description, the light spot as the pixel unit generated by each pixel part (micromirror) and constituting the exposure region on the exposed surface, the light spot in the m-th row ¾τ (m), the light spot in the nth column is denoted as c (n), and the light spot in the mth row and the nth column is denoted as P (m, n).
[0059] 図 8の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、使用可能なマイクロミラー 58からの光点群のパターンを示し、下段部分 は、上段部分に示したような光点群のパターンが現れて 、る状態でステージ 14を移 動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示 したものである。  [0059] The upper part of FIG. 8 shows a pattern of light spots from the usable micromirror 58 projected onto the exposed surface of the photosensitive material 12 with the stage 14 being stationary, and the lower part is The pattern of the light spot group as shown in the upper part appears, and the state of the exposure pattern formed on the exposed surface is shown when the stage 14 is moved in this state and continuous exposure is performed. Is.
なお、図 8では、説明の便宜のため、使用可能なマイクロミラー 58の奇数列による 露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  In FIG. 8, for convenience of explanation, the exposure pattern by the odd-numbered columns of the micromirrors 58 that can be used and the exposure pattern by the even-numbered columns are shown separately. However, the actual exposure patterns on the exposed surface are shown in FIG. It is a superposition of two exposure patterns.
[0060] 図 8の例では、設定傾斜角度 0を上記の角度 0 よりも若干大きい角度を採用し [0060] In the example of Fig. 8, the set inclination angle 0 is set to a slightly larger angle than the angle 0 described above.
ideal  ideal
た結果として、また露光ヘッド 30の取付角度の微調整が困難であるために、実際の 取付角度と上記の設定傾斜角度 Θとが誤差を有する結果として、被露光面上のいず れの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーに よる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の 描素部列により形成された、被露光面上の重複露光領域において、理想的な 2重露 光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。 As a result, it is difficult to finely adjust the mounting angle of the exposure head 30. As a result of the error between the mounting angle and the set inclination angle Θ, density unevenness occurs in any region on the exposed surface. Specifically, in an overlapped exposure area on the exposed surface formed by a plurality of pixel part rows in both an exposure pattern by an odd-numbered micromirror and an exposure pattern by an even-numbered micromirror. In other words, overexposure occurs with double exposure, resulting in redundant drawing areas and uneven density.
[0061] さらに、図 8の例では、被露光面上に現れるパターン歪みの一例であって、被露光 面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じてい る。このような角度歪みが生じる原因としては、 DMD36と被露光面間の光学系の各 種収差やアラインメントずれ、及び DMD36自体の歪みやマイクロミラーの配置誤差 等が挙げられる。 Further, the example of FIG. 8 is an example of pattern distortion appearing on the surface to be exposed, and “angular distortion” in which the inclination angle of each pixel column projected on the surface to be exposed is not uniform has occurred. The Causes of this angular distortion include various aberrations and alignment deviations of the optical system between the DMD 36 and the exposed surface, distortion of the DMD 36 itself, and micromirror placement errors.
図 8の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列 ほど小さく、図の右方の列ほど大きくなつている形態の歪みである。この角度歪みの 結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく 、図の右方に示した被露光面上ほど大きくなつている。  The angular distortion appearing in the example of FIG. 8 is a distortion in which the tilt angle with respect to the scanning direction is smaller in the left column of the figure and larger in the right column of the figure. As a result of this angular distortion, the overexposed area is smaller on the exposed surface shown on the left side of the figure and larger on the exposed surface shown on the right side of the figure.
[0062] 上記したような、複数の描素部列により形成された、被露光面上の重複露光領域に おける濃度むらを軽減するために、前記光点位置検出手段としてスリット 28及び光 検出器の組を用い、露光ヘッド 30ごとに実傾斜角度 Θ 'を特定し、該実傾斜角度 Θ ' に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を 用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 実傾斜角度 θ Ίま、光点位置検出手段が検出した少なくとも 2つの光点位置に基づ き、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光へ ッドの走査方向とがなす角度により特定される。 [0062] In order to reduce the density unevenness in the overlapping exposure region on the exposed surface formed by a plurality of pixel part rows as described above, the light spot position detecting means includes the slit 28 and the photodetector. The actual inclination angle Θ ′ is specified for each exposure head 30, and the arithmetic unit connected to the photodetector is used as the pixel part selection unit based on the actual inclination angle Θ ′. A process of selecting a micromirror to be used for actual exposure is performed. Based on at least two light spot positions detected by the light spot position detecting means until the actual tilt angle θ, the light spot column direction on the surface to be exposed and the exposure head when the exposure head is tilted. It is specified by the angle formed by the scanning direction.
以下、図 9及び 10を用いて、前記実傾斜角度 Θ 'の特定、及び使用画素選択処理 について説明する。  Hereinafter, the specification of the actual inclination angle Θ ′ and the used pixel selection process will be described with reference to FIGS.
[0063] 一実傾斜角度 の特定 [0063] Specifying the actual inclination angle
図 9は、 1つの DMD36による露光エリア 32と、対応するスリット 28との位置関係を 示した上面図である。スリット 28の大きさは、露光エリア 32の幅を十分覆う大きさとさ れている。 本実施形態(1)の例では、露光エリア 32の略中心に位置する第 512列目の光点 列と露光ヘッド 30の走査方向とがなす角度を、上記の実傾斜角度 Θ 'として測定す る。具体的には、 DMD36上の第 1行目第 512列目のマイクロミラー 58、及び第 256 行目第 512列目のマイクロミラー 58をオン状態とし、それぞれに対応する被露光面 上の光点 P (l, 512)及び P (256, 512)の位置を検出し、それらを結ぶ直線と露光 ヘッドの走査方向とがなす角度を実傾斜角度 Θ 'として特定する。 FIG. 9 is a top view showing the positional relationship between the exposure area 32 by one DMD 36 and the corresponding slit 28. The size of the slit 28 is set to sufficiently cover the width of the exposure area 32. In the example of the present embodiment (1), the angle formed by the 512-th light spot array positioned substantially at the center of the exposure area 32 and the scanning direction of the exposure head 30 is measured as the actual inclination angle Θ ′. The Specifically, the micromirror 58 in the first row and the 512th column on the DMD 36 and the micromirror 58 in the 256th row and the 512th column are turned on, and the light spots on the exposure surface corresponding to each of them are turned on. The positions of P (l, 512) and P (256, 512) are detected, and the angle formed by the straight line connecting them and the scanning direction of the exposure head is specified as the actual tilt angle Θ ′.
[0064] 図 10は、光点 P (256, 512)の位置の検出手法を説明した上面図である。 FIG. 10 is a top view illustrating a method for detecting the position of the light spot P (256, 512).
まず、第 256行目第 512列目のマイクロミラー 58を点灯させた状態で、ステージ 14 をゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 512 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, YO)と する。この座標 (XO, YO)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror 58 in the 256th row and the 512th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 512) is The slit 28 is positioned at an arbitrary position between the upstream slit 28a and the downstream slit 28b. Let the coordinates of the intersection of the slit 28a and the slit 28b at this time be (XO, YO). The value of this coordinate (XO, YO) is determined and recorded by the movement distance of the stage 14 to the position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0065] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 10における右方に相対 移動させる。そして、図 10において二点鎖線で示すように、光点 P (256, 512)の光 が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止さ せる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256, 512)の位置として記録する。  Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0066] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 10におけ る左方に相対移動させる。そして、図 10において二点鎖線で示すように、光点 P (25 6, 512)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を 光点 P (256, 512)の位置として記録する。  [0066] Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 10, the stage 14 is stopped when the light at the light spot P (256, 512) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 512).
[0067] 以上の測定結果から、光点 P (256, 512)の被露光面上における位置を示す座標  [0067] From the above measurement results, coordinates indicating the position of the light spot P (256, 512) on the exposed surface
(X, Y)を、 Χ=ΧΟ+ (Υ1— Y2)Z2、 Y= (Y1 +Y2)Z2の計算により決定する。同 様の測定により、 P (l, 512)の位置を示す座標も決定し、それぞれの座標を結ぶ直 線と、露光ヘッド 30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度 Θ と して特定する。 (X, Y) is determined by calculating Χ = ΧΟ + (Υ1—Y2) Z2 and Y = (Y1 + Y2) Z2. By the same measurement, the coordinates indicating the position of P (l, 512) are also determined, and the inclination angle formed by the straight line connecting the coordinates and the scanning direction of the exposure head 30 is derived, and this is the actual inclination angle. Θ and To identify.
[0068] -使用描素部の選択- このようにして特定された実傾斜角度 Θ 'を用い、前記光検出器に接続された前記 演算装置は、下記式 4  [0068] -Selection of used pixel part- Using the actual inclination angle Θ 'specified in this way, the arithmetic unit connected to the photodetector is represented by the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近!ヽ自然数 Tを導出し、 DMD36上の 1行目から T行目の マイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行 う。これにより、第 512列目付近の露光領域において、理想的な 2重露光に対して、 露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロ ミラーを、実際に使用するマイクロミラーとして選択することができる。  A natural number T is derived that is closest to the value t satisfying the above relationship, and the micromirrors in the 1st to Tth rows on the DMD 36 are selected as the micromirrors that are actually used during the main exposure. As a result, in the exposure area near the 512th column, a micromirror that minimizes the total area of the overexposed area and the underexposed area for the ideal double exposure is actually realized. It can be selected as a micromirror to be used for.
[0069] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、第 512列目付近の露光領域において、 理想的な 2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不 足となる領域が生じな 、ようなマイクロミラーを、実際に使用するマイクロミラーとして 選択することができる。  [0069] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, in the exposure area in the vicinity of the 512th column, a micromirror that minimizes the area of the overexposed area and produces an insufficient exposure area for ideal double exposure. Can be selected as the actual micromirror to be used.
また、値 t以下の最大の自然数を導出することとしてもよい。その場合、第 512列目 付近の露光領域において、理想的な 2重露光に対して、露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  It is also possible to derive the maximum natural number less than the value t. In that case, in the exposure area near the 512th column, a micromirror that minimizes the area of the underexposed area and does not produce an overexposed area with respect to the ideal double exposure. It can be selected as a micromirror to be actually used.
[0070] 図 11は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミ ラーが生成した光点のみを用いて行った露光において、図 8に示した被露光面上の むらがどのように改善されるかを示した説明図である。  FIG. 11 shows the unevenness on the exposed surface shown in FIG. 8 in the exposure performed using only the light spot generated by the micromirror selected as the micromirror actually used as described above. It is explanatory drawing which showed how it is improved.
この例では、上記の自然数 Tとして T= 253が導出され、第 1行目力も第 253行目 のマイクロミラーが選択されたものとする。選択されな力つた第 254行目力も第 256行 目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に 設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図 1 1に示すとおり、第 512列目付近の露光領域では、露光過多及び露光不足は、ほぼ 完全に解消され、理想的な 2重露光に極めて近い均一な露光が実現される。 [0071] 一方、図 11の左方の領域(図中の c (l)付近)では、前記角度歪みにより、被露光 面上における光点列の傾斜角度が中央付近(図中の c (512)付近)の領域における 光線列の傾斜角度よりも小さくなつている。したがって、 c (512)を基準として測定さ れた実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーのみによる露光では、偶数 列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的 な 2重露光に対して露光不足となる領域がわずかに生じてしまう。 In this example, it is assumed that T = 253 is derived as the natural number T and the micromirror on the 253rd line is selected as the first line force. The force of the 254th line that has not been selected is also sent to the micromirror on the 256th line by the pixel part control means to send a signal for setting the angle to the off state at all times. Is not involved in exposure. As shown in Fig. 11, overexposure and underexposure are almost completely eliminated in the exposure area near the 512th column, and uniform exposure very close to ideal double exposure is realized. On the other hand, in the left region of FIG. 11 (near c (l) in the figure), the inclination angle of the light spot sequence on the exposure surface is near the center (c (512 in the figure)) due to the angular distortion. It is smaller than the angle of inclination of the ray train in the area of). Therefore, the exposure using only the micromirrors selected based on the actual inclination angle θ Ί measured with c (512) as a reference, is ideal for each of the even-numbered exposure pattern and the odd-numbered exposure pattern. A slight under-exposure area is generated for the double exposure.
し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補 完され、前記角度歪みによる露光むらを、 2重露光による埋め合わせの効果で最小と することができる。  However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns are overlapped, the areas where the exposure amount is insufficient are compensated for each other, and the uneven exposure due to the angular distortion is performed. Can be minimized by the effect of offset by double exposure.
[0072] また、図 11の右方の領域(図中の c (1024)付近)では、前記角度歪みにより、被露 光面上における光線列の傾斜角度が、中央付近(図中の c (512)付近)の領域にお ける光線列の傾斜角度よりも大きくなつている。したがって、 c (512)を基準として測 定された実傾斜角度 θ Ίこ基づいて選択されたマイクロミラーによる露光では、図に 示すように、理想的な 2重露光に対して露光過多となる領域がわずかに生じてしまう。 し力しながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重 ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完 され、前記角度歪による濃度むらを、 2重露光による埋め合わせの効果で最小とする ことができる。  [0072] In addition, in the region on the right side of FIG. 11 (near c (1024) in the figure), due to the angular distortion, the inclination angle of the light beam on the exposed light surface is near the center (c ( It is larger than the angle of inclination of the ray train in the area near 512). Therefore, in the exposure with the micromirror selected based on the actual tilt angle θ measured with c (512) as the reference, as shown in the figure, the region is overexposed for the ideal double exposure. Will occur slightly. However, in the actual exposure pattern in which the exposure pattern of the odd-numbered columns and the exposure pattern of the even-numbered columns overlap each other, the overexposed areas are complemented with each other, and the density unevenness due to the angular distortion is It can be minimized by the effect of offset by double exposure.
[0073] 本実施形態(1)では、上述のとおり、第 512列目の光線列の実傾斜角度 Θ 'が測 定され、該実傾斜角度 Θ を用い、前記式 (4)により導出された Tに基づいて使用す るマイクロミラー 58を選択したが、前記実傾斜角度 Θ 'の特定方法としては、複数の 描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角 度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを 実傾斜角度 Θ 'として特定し、前記式 4等によって実際の露光時に実際に使用する マイクロミラーを選択する形態としてもょ 、。  In the present embodiment (1), as described above, the actual inclination angle Θ ′ of the 512th ray array is measured, and the actual inclination angle Θ is used to derive the equation (4). The micromirror 58 to be used is selected based on T. As a method for specifying the actual inclination angle Θ ′, the column direction (light spot column) of a plurality of pixel portions and the scanning direction of the exposure head are used. A plurality of actual tilt angles are respectively measured, and any one of the average value, median value, maximum value, and minimum value is specified as an actual tilt angle Θ '. As a form to select the micro mirror to be used.
前記平均値又は前記中央値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対し て露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現すること ができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最 小に抑えられ、かつ、露光過多となる領域の描素単位数 (光点数)と、露光不足とな る領域の描素単位数 (光点数)とが等しくなるような露光を実現することが可能である また、前記最大値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光過 多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足 となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を 実現することが可能である。 If the average value or the median value is set to the actual inclination angle Θ ′, an exposure with a good balance between an overexposed area and an underexposed area can be realized with respect to an ideal N double exposure. Can do. For example, the total area of overexposed areas and underexposed areas is minimized, and the number of pixel units (number of light spots) in overexposed areas and underexposed areas It is possible to achieve an exposure that makes the number of pixel units (number of light spots) equal to the maximum number of pixels. It is possible to achieve exposure that places more importance on eliminating excessive regions, for example, to achieve exposure that minimizes the area of underexposed regions and prevents overexposed regions. Is possible.
さらに、前記最小値を実傾斜角度 Θ 'とすれば、理想的な N重露光に対して露光不 足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多 となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を 実現することが可能である。  Furthermore, if the minimum value is the actual inclination angle Θ ′, it is possible to realize exposure that places more emphasis on the exclusion of areas that are insufficient for the ideal N double exposure. Thus, it is possible to realize an exposure that minimizes the area of the region and prevents an underexposed region from occurring.
[0074] 一方、前記実傾斜角度 Θ の特定は、同一の描素部の列(光点列)中の少なくとも 2 つの光点の位置に基づく方法に限定されない。例えば、同一描素部列 c (n)中の 1 つ又は複数の光点の位置と、該 c (n)近傍の列中の 1つ又は複数の光点の位置とか ら求めた角度を、実傾斜角度 Θ 'として特定してもよい。  On the other hand, the identification of the actual inclination angle Θ is not limited to the method based on the positions of at least two light spots in the same pixel part row (light spot row). For example, the angle obtained from the position of one or more light spots in the same pixel part sequence c (n) and the position of one or more light spots in a row in the vicinity of c (n), The actual inclination angle Θ ′ may be specified.
具体的には、 c (n)中の 1つの光点位置と、露光ヘッドの走査方向に沿って直線上 かつ近傍の光点列に含まれる 1つ又は複数の光点位置とを検出し、これらの位置情 報から、実傾斜角度 Θ 'を求めることができる。さらに、 c (n)列近傍の光点列中の少 なくとも 2つの光点(たとえば、 c (n)を跨ぐように配置された 2つの光点)の位置に基 づいて求めた角度を、実傾斜角度 Θ 'として特定してもよい。  Specifically, one light spot position in c (n) and one or a plurality of light spot positions included in a light spot row on the straight line and in the vicinity along the scanning direction of the exposure head are detected. The actual inclination angle Θ ′ can be obtained from these positional information. Furthermore, the angle obtained based on the position of at least two light spots in the light spot array in the vicinity of the c (n) line (for example, two light spots arranged so as to straddle c (n)) is obtained. The actual inclination angle Θ ′ may be specified.
[0075] 以上のように、パターン形成装置 10を用いた本実施形態(1)の使用描素部の指定 方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度の ばらつきや濃度のむらを軽減し、理想的な N重露光を実現することができる。  [0075] As described above, according to the method for designating the used picture element portion of the present embodiment (1) using the pattern forming apparatus 10, the variation in resolution due to the effect of the mounting angle error of each exposure head and the pattern distortion, Reduces density unevenness and achieves ideal N double exposure.
[0076] (2)複数露光ヘッド間における使用描素部の指定方法 < 1 >  [0076] (2) Specification method of used pixel part between multiple exposure heads <1>
本実施形態(2)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な状態からのずれに起因する解In this embodiment (2), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads 30. Two exposure heads (for example, exposure head 30 as an example) And 30) due to the deviation of the relative position in the X-axis direction from the ideal state.
12 21 12 21
像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Describes how to specify the pixel part to be used in order to reduce the variation in image density and uneven density, and to realize ideal double exposure.
[0077] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度 Θとしては、露光ヘッド 30の 取付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描 素部マイクロミラー 58を使用してちょうど 2重露光となる角度 Θ を採用するものとす [0077] The set tilt angle Θ of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error or the like of the exposure head 30. 58 and adopt an angle Θ that is exactly double exposure.
ideal  ideal
る。  The
この角度 Θ は、上記の実施形態(1)と同様にして前記式 1〜3から求められる。  This angle Θ is obtained from the above equations 1 to 3 in the same manner as in the above embodiment (1).
ideal  ideal
本実施形態(2)において、パターン形成装置 10は、各露光ヘッド 30すなわち各 DM D36の取付角度がこの角度 Θ となるように、初期調整されているものとする。  In the present embodiment (2), it is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DM D 36, becomes this angle Θ.
ideal  ideal
[0078] 図 12は、上記のように初期調整されたパターン形成装置 10において、 2つの露光 ヘッド(一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の、理想的な  FIG. 12 shows an ideal relationship between the relative positions of the two exposure heads (for example, the exposure heads 30 and 30) in the X-axis direction in the pattern forming apparatus 10 initially adjusted as described above.
12 21  12 21
状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示し た説明図である。各露光ヘッドの X軸方向に関する相対位置のずれは、露光ヘッド 間の相対位置の微調整が困難であるために生じ得るものである。  FIG. 6 is an explanatory view showing an example of density unevenness generated in a pattern on an exposed surface due to the influence of deviation from the state. Deviations in the relative position of each exposure head in the X-axis direction can occur because it is difficult to fine-tune the relative position between exposure heads.
[0079] 図 12の上段部分は、ステージ 14を静止させた状態で感光材料 12の被露光面上に 投影される、露光ヘッド 30 と 30 が有する DMD36の使用可能なマイクロミラー 58 [0079] The upper part of FIG. 12 is a micromirror 58 that can be used for the DMD 36 of the exposure heads 30 and 30 that is projected onto the exposed surface of the photosensitive material 12 with the stage 14 stationary.
12 21  12 21
力もの光点群のパターンを示した図である。図 12の下段部分は、上段部分に示した ような光点群のパターンが現れている状態でステージ 14を移動させて連続露光を行 つた際に、被露光面上に形成される露光パターンの状態を、露光エリア 32 と 32  It is the figure which showed the pattern of the light spot group of force. The lower part of Fig. 12 shows the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing. The state of exposure areas 32 and 32
12 21 につ 、て示したものである。  12 21 is shown here.
なお、図 12では、説明の便宜のため、使用可能なマイクロミラー 58の 1列おきの露 光パターンを、画素列群 Aによる露光パターンと画素列群 Bによる露光パターンとに 分けて示してあるが、実際の被露光面上における露光パターンは、これら 2つの露光 パターンを重ね合わせたものである。  In FIG. 12, for convenience of explanation, every other column exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on the pixel column group A and an exposure pattern based on the pixel column group B. However, the actual exposure pattern on the exposed surface is a superposition of these two exposure patterns.
[0080] 図 12の例では、上記した X軸方向に関する露光ヘッド 30 と 30 との間の相対位 [0080] In the example of FIG. 12, the relative position between the exposure heads 30 and 30 in the X-axis direction described above.
12 21  12 21
置の、理想的な状態からのずれの結果として、画素列群 Aによる露光パターンと画素 列群 Bによる露光パターンとの双方で、露光エリア 32 と 32 の前記ヘッド間つなぎ 領域にお 、て、理想的な 2重露光の状態よりも露光量過多な部分が生じてしまって いる。 As a result of the deviation from the ideal state, the connection between the heads of the exposure areas 32 and 32 in both the exposure pattern by the pixel array group A and the exposure pattern by the pixel array group B is performed. In the area, there is an overexposed part than the ideal double exposure state.
[0081] 上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド 間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点 位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30 と 30 力  In order to reduce the density unevenness appearing in the connection area between the heads formed on the exposed surface by the plurality of exposure heads as described above, in this embodiment (2), the light spot position detection is performed. Using a set of slit 28 and photodetector as means, exposure head 30 and 30 force
12 21 の光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点 のいくつかについて、その位置 (座標)を検出する。該位置 (座標)に基づいて、前記 描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光 に使用するマイクロミラーを選択する処理を行うものとする。  The position (coordinates) of some of the light spots that constitute the inter-head connecting area formed on the exposed surface is detected from among the 12 21 light spot groups. Based on the position (coordinates), processing for selecting a micromirror to be used in actual exposure is performed using an arithmetic unit connected to the photodetector as the pixel part selection means.
[0082] 一位置 (座標)の検出 [0082] Detection of one position (coordinate)
図 13は、図 12と同様の露光エリア 32 及び 32 と、対応するスリット 28との位置関  FIG. 13 shows the positional relationship between the exposure areas 32 and 32 similar to those in FIG.
12 21  12 21
係を示した上面図である。スリット 28の大きさは、露光ヘッド 30 と 30 による露光済  It is the top view which showed engagement. The size of the slit 28 is already exposed by the exposure heads 30 and 30.
12 21  12 21
み領域 34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド 30 と 30 に  Large enough to cover the width of the overlap between areas 34, i.e. exposure heads 30 and 30
12 21 より被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。  The size from 12 21 is sufficiently large to cover the connecting area between the heads formed on the exposed surface.
[0083] 図 14は、一例として露光エリア 32 の光点 P (256, 1024)の位置を検出する際の FIG. 14 shows an example of detecting the position of the light spot P (256, 1024) in the exposure area 32 as an example.
21  twenty one
検出手法を説明した上面図である。  It is a top view explaining the detection method.
まず、第 256行目第 1024列目のマイクロミラーを点灯させた状態で、ステージ 14を ゆっくり移動させてスリット 28を Y軸方向に沿って相対移動させ、光点 P (256, 1024 )が上流側のスリット 28aと下流側のスリット 28bの間に来るような任意の位置に、スリツ ト 28を位置させる。このときのスリット 28aとスリット 28bとの交点の座標を (XO, Y0)と する。この座標 (XO, Y0)の値は、ステージ 14に与えられた駆動信号が示す上記の 位置までのステージ 14の移動距離、及び、既知であるスリット 28の X方向位置力も決 定され、記録される。  First, with the micromirror in the 256th row and the 1024th column turned on, the stage 14 is slowly moved to relatively move the slit 28 along the Y-axis direction, and the light spot P (256, 1024) is upstream. The slit 28 is positioned at an arbitrary position between the slit 28a on the side and the slit 28b on the downstream side. At this time, the coordinates of the intersection of the slit 28a and the slit 28b are (XO, Y0). The value of this coordinate (XO, Y0) is determined and recorded by the movement distance of the stage 14 to the above position indicated by the drive signal given to the stage 14 and the known X-direction position force of the slit 28. The
[0084] 次に、ステージ 14を移動させ、スリット 28を Y軸に沿って図 14における右方に相対 移動させる。そして、図 14において二点鎖線で示すように、光点 P (256, 1024)の 光が左側のスリット 28bを通過して光検出器で検出されたところでステージ 14を停止 させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y1)を、光点 P (256 , 1024)の位置として記録する。 [0085] 次いで、ステージ 14を反対方向に移動させ、スリット 28を Y軸に沿って図 14におけ る左方に相対移動させる。そして、図 14において二点鎖線で示すように、光点 P (25 6, 1024)の光が右側のスリット 28aを通過して光検出器で検出されたところでステー ジ 14を停止させる。このときのスリット 28aとスリット 28bとの交点の座標(XO, Y2)を、 光点 P (256, 1024)として記録する。 Next, the stage 14 is moved, and the slit 28 is relatively moved along the Y axis to the right in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the left slit 28b and is detected by the photodetector. The coordinates (XO, Y1) of the intersection of the slit 28a and the slit 28b at this time are recorded as the position of the light spot P (256, 1024). Next, the stage 14 is moved in the opposite direction, and the slit 28 is relatively moved along the Y axis to the left in FIG. Then, as indicated by a two-dot chain line in FIG. 14, the stage 14 is stopped when the light at the light spot P (256, 1024) passes through the right slit 28a and is detected by the photodetector. The coordinates (XO, Y2) of the intersection of the slit 28a and the slit 28b at this time are recorded as the light spot P (256, 1024).
[0086] 以上の測定結果から、光点 P (256, 1024)の被露光面における位置を示す座標 ( X, Y)を、 X=XO+ (Y1—Y2)Z2、 Υ= (Υ1 +Υ2)Ζ2の計算により決定する。  [0086] From the above measurement results, the coordinates (X, Y) indicating the position of the light spot P (256, 1024) on the surface to be exposed are: X = XO + (Y1-Y2) Z2, Υ = (Υ1 + Υ2) Determined by calculation of Ζ2.
[0087] 不使用描素部の特定  [0087] Identification of unused pixel parts
図 12の例では、まず、露光エリア 32 の光点 Ρ (256, 1)の位置を、上記の光点位  In the example of Fig. 12, first, the position of light spot Ρ (256, 1) in exposure area 32 is
12  12
置検出手段としてスリット 28と光検出器の組により検出する。続いて、露光エリア 32  Detection is performed by a combination of a slit 28 and a photodetector as a position detection means. Next, exposure area 32
21 の第 256行目の光点行 r (256)上の各光点の位置を、 Ρ (256, 1024) , P (256, 10 23) · · ·と順番に検出していき、露光エリア 32 の光点 P (256, 1)よりも大きい X座標  The position of each light spot on the light spot line r (256) of the 256th line of 21 is detected in order of Ρ (256, 1024), P (256, 10 23) ... X coordinate greater than 32 light spots P (256, 1)
12  12
を示す露光エリア 32 の光点 P (256, n)が検出されたところで、検出動作を終了す  When the light spot P (256, n) in the exposure area 32 indicating is detected, the detection operation ends.
21  twenty one
る。そして、露光エリア 32 の光点列 c (n+ l)から c (1024)を構成する光点に対応  The And it corresponds to the light spots that compose c (1024) from light spot sequence c (n + l) in exposure area 32
21  twenty one
するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特 定する。  The micromirror to be used is identified as a micromirror (unused pixel part) that is not used during the main exposure.
例えば、図 12において、露光エリア 32 の光点 P (256, 1020)力 露光エリア 32  For example, in FIG. 12, the light spot P (256, 1020) force in the exposure area 32 Exposure area 32
21 1 の光点 P (256, 1)よりも大きい X座標を示し、その露光エリア 32 の光点 P (256, 1 21 Shows an X coordinate larger than light spot P (256, 1) of 1 and light spot P (256, 1) of exposure area 32
2 21 2 21
020)が検出されたところで検出動作が終了したとすると、図 15において斜線で覆わ れた部分 70に相当する露光エリア 32 の第 1021行力も第 1024行を構成する光点  020) is detected, the detection operation ends.In FIG. 15, the 1021 row power in the exposure area 32 corresponding to the portion 70 covered by the diagonal line is also the light spot that forms the 1024th row.
21  twenty one
に対応するマイクロミラー力 本露光時に使用しないマイクロミラーとして特定される。  The micromirror force corresponding to is specified as a micromirror that is not used during the main exposure.
[0088] 次に、 N重露光の数 Nに対して、露光エリア 32 の光点 P (256, N)の位置が検出 [0088] Next, the position of the light spot P (256, N) in the exposure area 32 is detected with respect to the number N of N double exposures.
12  12
される。本実施形態(2)では、 N = 2であるので、光点 P (256, 2)の位置が検出され る。  Is done. In this embodiment (2), since N = 2, the position of the light spot P (256, 2) is detected.
続いて、露光エリア 32 の光点列のうち、上記で本露光時に使用しないマイクロミラ  Next, among the light spot sequences in the exposure area 32, the micromirrors that are not used during the main exposure described above are used.
21  twenty one
一に対応する光点列として特定されたものを除き、最も右側の第 1020列を構成する 光点の位置を、 P (l, 1020)力も順番に P (l, 1020)、 P (2, 1020) · · ·と検出して いき、露光エリア 32 の光点 P (256, 2)よりも大きい X座標を示す光点 P (m, 1020) が検出されたところで、検出動作を終了する。 Except for the one identified as the light spot sequence corresponding to one, the positions of the light spots that make up the rightmost column 1020 are the P (l, 1020) forces in the order P (l, 1020), P (2, 1020) ... and spot P (m, 1020) indicating an X coordinate larger than spot P (256, 2) in exposure area 32 When is detected, the detection operation is terminated.
その後、前記光検出器に接続された演算装置において、露光エリア 32  Thereafter, in an arithmetic unit connected to the photodetector, an exposure area 32
12の光点 P ( 12 light spots P (
256, 2)の X座標と、露光エリア 32 の光点 P (m, 1020)及び P (m—1, 1020)の X 256, 2) and the X of the light spots P (m, 1020) and P (m-1, 1020) in the exposure area 32
21  twenty one
座標とが比較され、露光エリア 32 の光点 P (m, 1020)の X座標の方が露光エリア 3  The X coordinate of the light spot P (m, 1020) in the exposure area 32 is the exposure area 3
21  twenty one
2 の光点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020) If the X coordinate of light spot P (256, 2) of 2 is close, light spot P (l, 1020) of exposure area 32
12 21 12 21
力も P (m— 1, 1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラ 一として特定される。  The micromirror corresponding to the force P (m-1, 1020) is also identified as the micromirror that is not used during the main exposure.
また、露光エリア 32 の光点 P (m—1, 1020)の X座標の方が露光エリア 32 の光  In addition, the X coordinate of the light spot P (m–1, 1020) in the exposure area 32 is the light in the exposure area 32.
21 12 点 P (256, 2)の X座標に近い場合は、露光エリア 32 の光点 P (l, 1020)力も P (m  21 When close to the X coordinate of 12 point P (256, 2), the light spot P (l, 1020) force of exposure area 32 is also P (m
21  twenty one
- 2, 1020)に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特 定される。  -Micromirror force corresponding to 2, 1020) Specified as a micromirror not used in this exposure.
さらに、露光エリア 32 の光点 P (256, N— 1)すなわち光点 P (256, 1)の位置と、  Furthermore, the position of the light spot P (256, N-1) in the exposure area 32, that is, the light spot P (256, 1),
12  12
露光エリア 32 の次列である第 1019列を構成する各光点の位置についても、同様  The same applies to the position of each light spot that constitutes column 1019, which is the next column of exposure area 32.
21  twenty one
の検出処理及び使用しないマイクロミラーの特定が行われる。  Detection processing and micromirrors that are not used are identified.
[0089] その結果、たとえば、図 15において網掛けで覆われた領域 72を構成する光点に対 応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。 これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設 定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。  As a result, for example, micromirrors corresponding to the light spots that form the shaded area 72 in FIG. 15 are added as micromirrors that are not used during actual exposure. These micromirrors are always signaled to set their micromirror angle to the off-state angle, and these micromirrors are essentially not used for exposure.
[0090] このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイク 口ミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択すること により、露光エリア 32 と 32 の前記ヘッド間つなぎ領域において、理想的な 2重露  As described above, by identifying micromirrors that are not used during actual exposure and selecting those that are not used as microphone mirrors during actual exposure, exposure areas 32 and 32 are selected. Ideal double dew in the area between the heads
12 21  12 21
光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とする ことができ、図 15の下段に示すように、理想的な 2重露光に極めて近い均一な露光 を実現することができる。  The total area of areas that are overexposed and underexposed to light can be minimized, and uniform exposure very close to ideal double exposure is achieved, as shown in the lower part of Fig. 15. can do.
[0091] なお、上記の例においては、図 15において網掛けで覆われた領域 72を構成する 光点の特定に際し、露光エリア 32 の光点 P (256, 2)の X座標と、露光エリア 32 の [0091] In the above example, when specifying the light spot constituting the area 72 shaded in FIG. 15, the X coordinate of the light spot P (256, 2) of the exposure area 32 and the exposure area 32 of
12 21 光点 P (m, 1020)及び P (m— 1, 1020)の X座標との比較を行わずに、ただちに、 露光エリア 32 の光点 P (l, 1020)力ら P (m— 2, 1020)に対応するマイクロミラー を、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド 間つなぎ領域にぉ 、て、理想的な 2重露光に対して露光過多となる領域の面積が最 小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用す るマイクロミラーとして選択することができる。 12 21 Without comparing with the X coordinate of light spots P (m, 1020) and P (m— 1, 1020), the light spot P (l, 1020) force in the exposure area 32 immediately increases P (m— 2, 1020) May be specified as a micromirror that is not used during the main exposure. In that case, a micromirror that minimizes the area of the overexposed region with respect to the ideal double exposure and does not generate an underexposed region in the connecting region between the heads. It can be selected as a micromirror to be actually used.
また、露光エリア 32 の光点 P (l, 1020)力ら P (m— 1, 1020)に対応するマイクロ  In addition, the light spot P (l, 1020) force in the exposure area 32 corresponds to P (m— 1, 1020).
21  twenty one
ミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記へ ッド間つなぎ領域において、理想的な 2重露光に対して露光不足となる領域の面積 が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使 用するマイクロミラーとして選択することができる。  You may identify a mirror as a micromirror which is not used for this exposure. In that case, in the connecting area between the heads, a micromirror that minimizes the area of the area that is underexposed with respect to the ideal double exposure and that does not cause an overexposed area is actually used. It can be selected as the micromirror to be used.
さらに、前記ヘッド間つなぎ領域において、理想的な 2重描画に対して露光過多と なる領域の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)と が等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。  Further, in the connecting area between the heads, the number of pixel units (the number of light spots) in an area that is overexposed with respect to an ideal double drawing and the number of pixel units (the number of light spots) in an area that is underexposed are: It is good also as selecting the micromirror actually used so that it may become equal.
[0092] 以上のように、パターン形成装置 10を用いた本実施形態(2)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれに起因する解 像度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。 As described above, according to the method for designating the used picture element portion of the present embodiment (2) using the pattern forming apparatus 10, the solution caused by the relative position shift in the X-axis direction of the plurality of exposure heads. It reduces image variability and density unevenness, and realizes ideal N double exposure.
[0093] (3)複数露光ヘッド間における使用描素部の指定方法 < 2 > [0093] (3) Specification method of used pixel part between multiple exposure heads <2>
本実施形態(3)では、パターン形成装置 10により、感光材料 12に対して 2重露光 を行う場合であって、複数の露光ヘッド 30により形成された被露光面上の重複露光 領域であるヘッド間つなぎ領域にぉ 、て、 2つの露光ヘッド (一例として露光ヘッド 30 と 30 )の X軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光 In this embodiment (3), the pattern forming apparatus 10 performs double exposure on the photosensitive material 12, and is a head that is an overlapped exposure region on the exposed surface formed by a plurality of exposure heads 30. In the connection area, the relative position of the two exposure heads (for example, exposure heads 30 and 30) in the X-axis direction deviates from the ideal state, as well as each exposure.
12 21 12 21
ヘッドの取付角度誤差、及び 2つの露光ヘッド間の相対取付角度誤差に起因する解 像度のばらつきと濃度むらとを軽減し、理想的な 2重露光を実現するための使用描素 部の指定方法を説明する。  Designation of the pixel part to be used to realize ideal double exposure by reducing the variation in resolution and density unevenness caused by the head mounting angle error and the relative mounting angle error between the two exposure heads A method will be described.
[0094] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、露光ヘッド 30の取 付角度誤差等がない理想的な状態であれば、使用可能な 1024列 X 256行の描素 部(マイクロミラー 58)を使用してちょうど 2重露光となる角度 Θ よりも若干大きい角 [0094] The set tilt angle of each exposure head 30, that is, each DMD 36, can be used as long as there is no mounting angle error or the like of the exposure head 30. Angle slightly larger than angle Θ, which is exactly double exposure using mirror 58)
ideal  ideal
度を採用するものとする。  The degree shall be adopted.
この角度 Θ は、前記式 1〜3を用いて上記(1)の実施形態と同様にして求められ る値であり、本実施形態では、上記のとおり s = 256、 N= 2であるので、角度 Θ は This angle Θ is obtained in the same manner as in the above embodiment (1) using the above equations 1-3. In this embodiment, since s = 256 and N = 2 as described above, the angle Θ is
ideal 約 0. 45度である。したがって、設定傾斜角度 0としては、たとえば 0. 50度程度の角 度を採用するとよい。パターン形成装置 10は、調整可能な範囲内で、各露光ヘッド 3 0すなわち各 DMD36の取付角度がこの設定傾斜角度 Θに近い角度となるように、 初期調整されて ヽるものとする。  ideal About 0.45 degrees. Therefore, as the set inclination angle 0, for example, an angle of about 0.50 degrees may be adopted. It is assumed that the pattern forming apparatus 10 is initially adjusted so that the mounting angle of each exposure head 30, that is, each DMD 36 is close to the set inclination angle Θ within an adjustable range.
[0095] 図 16は、上記のように各露光ヘッド 30すなわち各 DMD36の取付角度が初期調 整されたパターン形成装置 10において、 2つの露光ヘッド(一例として露光ヘッド 30 と 30 )の取付角度誤差、並びに各露光ヘッド 30 と 30 間の相対取付角度誤差[0095] FIG. 16 shows a mounting angle error between two exposure heads (for example, exposure heads 30 and 30) in the pattern forming apparatus 10 in which the mounting angles of each exposure head 30, that is, each DMD 36 are initially adjusted as described above. And relative mounting angle error between each exposure head 30 and 30
2 21 12 21 2 21 12 21
及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示し た説明図である。  FIG. 6 is an explanatory diagram showing an example of unevenness that occurs in a pattern on an exposed surface due to the influence of a shift in relative position.
[0096] 図 16の例では、図 12の例と同様の、 X軸方向に関する露光ヘッド 30 と 30 の相  In the example of FIG. 16, the phase of the exposure heads 30 and 30 in the X-axis direction is the same as the example of FIG.
12 21 対位置のずれの結果として、一列おきの光点群 (画素列群 A及び B)による露光パタ ーンの双方で、露光エリア 32 と 32 の被露光面上の前記露光ヘッドの走査方向と  12 21 As a result of the misalignment of the position, the scanning direction of the exposure head on the exposed surface in the exposure areas 32 and 32 in both exposure patterns with every other light spot group (pixel array group A and B). When
12 21  12 21
直交する座標軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露 光量過多な領域 74が生じ、これが濃度むらを引き起こしている。  In the overlapping exposure areas on the orthogonal coordinate axes, there is an area 74 where the amount of exposure is excessive compared to the ideal double exposure state, which causes uneven density.
さらに、図 16の例では、各露光ヘッドの設定傾斜角度 Θを前記式(1)を満たす角 度 Θ  Further, in the example of FIG. 16, the set inclination angle Θ of each exposure head is changed to an angle Θ satisfying the above equation (1).
idealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整 が困難であるために、実際の取付角度が上記の設定傾斜角度 Θからずれてしまった ことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で 重複する露光領域以外の領域でも、一列おきの光点群 (画素列群 A及び B)による露 光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領 域である描素部列間つなぎ領域において、理想的な 2重露光の状態よりも露光過多 となる領域 76が生じ、これがさらなる濃度むらを引き起こしている。  As a result of being slightly larger than ideal, and because it is difficult to finely adjust the mounting angle of each exposure head, the actual mounting angle has deviated from the set inclination angle Θ. Even in an area other than the exposure area overlapping on the coordinate axis orthogonal to the scanning direction of the exposure head on the surface, a plurality of pixels are displayed both in the exposure pattern by every other light spot group (pixel array group A and B). In the joint area between the pixel part arrays, which is the overlapping exposure area on the exposed surface, formed by the sub-arrays, a region 76 that is overexposed compared to the ideal double exposure state is generated, and this causes further uneven density. Is causing.
[0097] 本実施形態(3)では、まず、各露光ヘッド 30 と 30 の取付角度誤差及び相対取 In this embodiment (3), first, the mounting angle error and relative adjustment of the exposure heads 30 and 30 are compared.
12 21  12 21
付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。 具体的には、前記光点位置検出手段としてスリット 28及び光検出器の組を用い、 露光ヘッド 30 と 30 のそれぞれについて、実傾斜角度 Θ 'を特定し、該実傾斜角  Use pixel selection processing is performed to reduce density unevenness due to the influence of the angle difference. Specifically, a set of the slit 28 and the photodetector is used as the light spot position detecting means, and the actual inclination angle Θ ′ is specified for each of the exposure heads 30 and 30, and the actual inclination angle is determined.
12 21  12 21
度 θ Ίこ基づき、前記描素部選択手段として光検出器に接続された演算装置を用い て、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。 Based on the angle θ, an arithmetic unit connected to a photodetector is used as the pixel part selection means. Thus, a process of selecting a micromirror to be used for actual exposure is performed.
[0098] 一実傾斜角度 の特定  [0098] Identification of actual inclination angle
実傾斜角度 Θ 'の特定は、露光ヘッド 30 ついては露光エリア 32 内の光点 P (l,  The actual inclination angle Θ ′ is specified by the light spot P (l,
12 12  12 12
1)と Ρ (256, 1)の位置を、露光ヘッド 30 については露光エリア 32 内の光点 P (l  The positions of 1) and Ρ (256, 1) and the light spot P (l
21 21  21 21
, 1024)と Ρ (256, 1024)の位置を、それぞれ上述した実施形態(2)で用いたスリツ ト 28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走 查方向とがなす角度を測定することにより行われる。  , 1024) and Ρ (256, 1024) are detected by the combination of the slit 28 and the photodetector used in the above-described embodiment (2), respectively, and the inclination angle of the straight line connecting them and the exposure head This is done by measuring the angle between the running direction.
[0099] 不使用描素部の特定 [0099] Identification of unused pixel parts
そのようにして特定された実傾斜角度 Θ 'を用いて、光検出器に接続された演算装 置は、上述した実施形態(1)における演算装置と同様、下記式 4  The arithmetic device connected to the photodetector using the actual inclination angle Θ ′ thus specified is similar to the arithmetic device in the above-described embodiment (1), as shown in the following equation 4
ttan 0 (式 4)  ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Τを、露光ヘッド 30 と 30 のそれぞれについ  The natural number 近 い that is closest to the value t that satisfies the relationship
12 21  12 21
て導出し、 DMD36上の第 (T+ 1)行目力も第 256行目のマイクロミラーを、本露光 に使用しないマイクロミラーとして特定する処理を行う。  The (T + 1) line force on the DMD 36 is also identified as a micromirror that is not used for the main exposure.
例えば、露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 255  For example, T = 254 for exposure head 30 and Τ = 255 for exposure head 30
12 21  12 21
が導出されたとすると、図 17において斜線で覆われた部分 78及び 80を構成する光 点に対応するマイクロミラー力 本露光に使用しないマイクロミラーとして特定される。 これにより、露光エリア 32 と 32 のうちヘッド間つなぎ領域以外の各領域において  Is derived, the micromirror force corresponding to the light spots constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 is specified as a micromirror that is not used in the main exposure. As a result, in each of the exposure areas 32 and 32 other than the connection area between the heads.
12 21  12 21
、理想的な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計 面積を最小とすることができる。  The total area of the overexposed and underexposed areas with respect to the ideal double exposure can be minimized.
[0100] ここで、上記の値 tに最も近い自然数を導出することに代えて、値 t以上の最小の自 然数を導出することとしてもよい。その場合、露光エリア 32 と 32 の、複数の露光へ [0100] Here, instead of deriving the natural number closest to the above value t, the smallest natural number equal to or greater than the value t may be derived. In that case, to multiple exposures in exposure areas 32 and 32
12 21  12 21
ッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の 各領域において、理想的な 2重露光に対して露光量過多となる面積が最小になり、 かつ露光量不足となる面積が生じな 、ようになすことができる。  In each area other than the head-to-head connection area, which is the overlapping exposure area on the exposed surface formed by the head, the area where the overexposure is excessive for the ideal double exposure is minimized, and the exposure is insufficient This can be done without creating an area.
あるいは、値 t以下の最大の自然数を導出することとしてもよい。その場合、露光ェ リア 32 と 32 の、複数の露光ヘッドにより形成された被露光面上の重複露光領域 Or it is good also as deriving the maximum natural number below value t. In that case, exposure areas 32 and 32 overlapped exposure areas on the exposed surface formed by multiple exposure heads.
12 21 12 21
であるヘッド間つなぎ領域以外の各領域にぉ 、て、理想的な 2重露光に対して露光 不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになす ことができる。 In each area other than the connecting area between the heads, exposure is performed for ideal double exposure. It is possible to minimize the area of the insufficient region and prevent the region from being overexposed.
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つ なぎ領域以外の各領域において、理想的な 2重露光に対して、露光過多となる領域 の描素単位数 (光点数)と、露光不足となる領域の描素単位数 (光点数)とが等しくな るように、本露光時に使用しな 、マイクロミラーを特定することとしてもよ!/、。  The number of pixel units in the overexposed area for the ideal double exposure in each area other than the joint area between the heads, which is the overlapping exposure area on the exposed surface formed by multiple exposure heads ( It is also possible to specify a micromirror that is not used during the main exposure so that the number of pixel units (number of light spots) in the underexposed area is equal to the number of light spots!
[0101] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、図 12から 15を用いて説明した本実施形態(3) と同様の処理がなされ、図 17において斜線で覆われた領域 82及び網掛けで覆われ た領域 84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用し な!、マイクロミラーとして追加される。 [0101] Thereafter, regarding the micromirror corresponding to the light spot other than the light spots constituting the regions 78 and 80 covered by the oblique lines in FIG. 17, this is the same as the embodiment (3) described with reference to FIGS. The micromirrors corresponding to the light spots constituting the shaded area 82 and the shaded area 84 in FIG. 17 were identified and should not be used during the main exposure! And added as a micromirror. Is done.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しない。  With respect to the micromirrors identified as not being used at the time of exposure, the pixel unit control means sends a signal for setting the angle of the always-off state, and these microphone mirrors substantially Not involved in exposure.
[0102] 以上のように、パターン形成装置 10を用いた本実施形態(3)の使用描素部の指定 方法によれば、複数の露光ヘッドの X軸方向に関する相対位置のずれ、並びに各露 光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像 度のばらつきと濃度むらとを軽減し、理想的な N重露光を実現することができる。  [0102] As described above, according to the method for designating the used picture element portion of the present embodiment (3) using the pattern forming apparatus 10, the relative position shifts in the X-axis direction of the plurality of exposure heads and the respective exposure Variations in resolution and density unevenness due to the mounting angle error of the optical head and the relative mounting angle error between the exposure heads can be reduced, and ideal N-fold exposure can be realized.
[0103] 以上、パターン形成装置 10による使用描素部指定方法ついて詳細に説明したが、 上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の 変更が可能である。  [0103] The method for designating the used pixel part by the pattern forming apparatus 10 has been described in detail above. However, the embodiments (1) to (3) are merely examples, and various methods can be used without departing from the scope of the present invention. It can be changed.
[0104] また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するため の手段として、スリット 28と単一セル型の光検出器の組を用いた力 これに限られず V、かなる形態のものを用いてもよぐたとえば 2次元検出器等を用いてもょ 、。  [0104] In the above embodiments (1) to (3), as a means for detecting the position of the light spot on the surface to be exposed, a set of the slit 28 and the single cell type photodetector is used. The force that was used is not limited to this, V, or any other form can be used. For example, a two-dimensional detector can be used.
[0105] さらに、上記の実施形態(1)〜(3)では、スリット 28と光検出器の組による被露光面 上の光点の位置検出結果から実傾斜角度 Θ 'を求め、その実傾斜角度 θ Ίこ基づい て使用するマイクロミラーを選択したが、実傾斜角度 Θ 'の導出を介さずに使用可能 なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能 なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃 度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も 、本発明の範囲に含まれるものである。 Furthermore, in the above embodiments (1) to (3), the actual inclination angle Θ ′ is obtained from the position detection result of the light spot on the exposed surface by the combination of the slit 28 and the photodetector, and the actual inclination angle is obtained. Although a micromirror to be used is selected based on θ Ί, a usable micromirror may be selected without going through the derivation of the actual inclination angle Θ ′. Furthermore, for example all available A mode in which a micromirror used by an operator is manually designated by performing reference exposure using a simple micromirror and confirming the unevenness of resolution and density by visual observation of the reference exposure result is also included in the scope of the present invention. It is.
[0106] なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの 他にも、種々の形態が存在する。  It should be noted that there are various forms of pattern distortion that can occur on the exposed surface, in addition to the angular distortion described in the above example.
一例としては、図 18Aに示すように、 DMD36上の各マイクロミラー 58からの光線 力 異なる倍率で露光面上の露光エリア 32に到達してしまう倍率歪みの形態がある また、別の例として、図 18Bに示すように、 DMD36上の各マイクロミラー 58からの 光線力、異なるビーム径で被露光面上の露光エリア 32に到達してしまうビーム径歪 みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、 DMD36と被露 光面間の光学系の各種収差やアラインメントずれに起因して生じる。  As an example, as shown in FIG. 18A, there is a form of magnification distortion that reaches the exposure area 32 on the exposure surface at different magnifications from the light power from each micromirror 58 on the DMD 36. As shown in FIG. 18B, there is a form of beam diameter distortion that reaches the exposure area 32 on the exposed surface with different beam diameters, the light power from each micromirror 58 on the DMD 36. These magnification distortion and beam diameter distortion are mainly caused by various aberrations and alignment deviation of the optical system between the DMD 36 and the exposed light surface.
さらに別の例として、 DMD36上の各マイクロミラー 58からの光線力 異なる光量で 被露光面上の露光エリア 32に到達してしまう光量歪みの形態もある。この光量歪み は、各種収差やアラインメントずれのほか、 DMD36と被露光面間の光学要素(たと えば 1枚レンズである図 5のレンズ 52及び 54)の透過率の位置依存性や、 DMD36 自体による光量むらに起因して生じる。これらの形態のパターン歪みも、被露光面上 に形成されるパターンに解像度や濃度のむらを生じさせる。  As another example, there is a form of light amount distortion that reaches the exposure area 32 on the surface to be exposed with a different light amount from each micromirror 58 on the DMD 36. In addition to various aberrations and misalignment, this light distortion is due to the positional dependence of the transmittance of the optical element between the DMD 36 and the exposed surface (for example, the single lenses 52 and 54 in FIG. 5) and the DMD 36 itself. This is caused by unevenness in the amount of light. These forms of pattern distortion also cause unevenness in resolution and density in the pattern formed on the exposed surface.
[0107] 上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選 択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要 素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむ らを、各露光ヘッドの露光領域全体にわたって軽減することができる。 [0107] According to the above embodiments (1) to (3), after selecting the micromirrors actually used for the main exposure, the residual elements of these forms of pattern distortion are As with the residual elements, it can be leveled by the effect of multiple exposure, and the unevenness in resolution and density can be reduced over the entire exposure area of each exposure head.
[0108] < <参照露光 > > [0108] <<Reference exposure>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N— 1)列おきのマイクロミラー列、又は全光点行のうち 1ZN行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行 、、均一な露光を実現できる ように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマ イク口ミラーを特定することとしてもよ 、。 前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露 光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するな どの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であって ちょい。 As a modified example of the above embodiments (1) to (3), among available micromirrors, every (N-1) micromirror columns or adjacent to 1ZN rows of all light spot rows The reference exposure is performed using only the group of micromirrors that make up the row, and the microphone mirror that is not used during actual exposure is identified among the micromirrors used for the reference exposure so that uniform exposure can be achieved. You can do it. The result of the reference exposure by the reference exposure means is output as a sample, and the output reference exposure result is subjected to analysis such as confirmation of resolution variation and density unevenness and estimation of the actual inclination angle. The analysis of the result of the reference exposure is a visual analysis by the operator.
[0109] 図 19は、単一露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して参 照露光を行う形態の一例を示した説明図である。  FIG. 19 is an explanatory diagram showing an example of a mode in which reference exposure is performed using only (N-1) -row micromirrors using a single exposure head.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 19 Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照 露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光 結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定し たりすることで、本露光時において使用するマイクロミラーを指定することができる。 例えば、図 19Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイク 口ミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使 用されるものとして指定される。偶数列の光点列については、別途同様に参照露光 を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列 に対するパターンと同一のパターンを適用してもよい。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only the micromirrors corresponding to the odd-numbered light spot arrays indicated by solid lines in FIG. 19A, and the reference exposure results are output as samples. Based on the reference exposure result output from the sample, it is possible to specify a micromirror to be used in the main exposure by confirming variations in resolution and uneven density, or estimating the actual tilt angle. For example, a microphone aperture mirror other than the micromirror corresponding to the light spot array shown by hatching in FIG. 19B is designated as actually used in the main exposure among the micromirrors constituting the odd light spot array. Is done. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner to specify a micromirror to be used during the main exposure, or the same pattern as that for odd-numbered light spot arrays may be applied. Good.
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び 偶数列双方のマイクロミラーを使用した本露光においては、理想的な 2重露光に近い 状態が実現できる。  By specifying the micromirrors used during the main exposure in this way, a state close to an ideal double exposure can be realized in the main exposure using both the odd-numbered and even-numbered micromirrors.
[0110] 図 20は、複数の露光ヘッドを用い、(N—1)列おきのマイクロミラーのみを使用して 参照露光を行う形態の一例を示した説明図である。  FIG. 20 is an explanatory diagram showing an example of a form in which reference exposure is performed using only a plurality of (N-1) -row micromirrors using a plurality of exposure heads.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 20に実線で示した、 X軸方向に関して隣接する 2つの露光ヘッド(一例として露光へ ッド 30 と 30 )の奇数列の光点列に対応するマイクロミラーのみを使用して、参照 In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference is made by using only micromirrors corresponding to odd-numbered light spot rows of two exposure heads adjacent to each other in the X-axis direction (for example, exposure heads 30 and 30) shown by a solid line in FIG.
12 21 12 21
露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に 基づき、 2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の 領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したり することで、本露光時にお!、て使用するマイクロミラーを指定することができる。 例えば、図 20に斜線で覆って示す領域 86及び網掛けで示す領域 88内の光点列 に対応するマイクロミラー以外のマイクロミラー力 奇数列の光点を構成するマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点 列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを 指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用して ちょい。 Exposure is performed, and a reference exposure result is output as a sample. Based on the output result of the reference exposure, the two exposure heads check resolution variations and density unevenness in areas other than the head-to-head connection area formed on the exposed surface, and estimate the actual inclination angle. Therefore, it is possible to specify the micromirror to be used during the main exposure. For example, the micromirror force other than the micromirror corresponding to the light spot array in the area 86 shown by hatching in FIG. Designated as actually used. For even-numbered light spot arrays, a separate reference exposure may be performed in the same manner, and the micromirror used for the main exposure may be designated, or the same pattern as that for the odd-numbered pixel lines may be applied. .
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数 列及び偶数列双方のマイクロミラーを使用した本露光においては、 2つの露光ヘッド により被露光面上に形成される前記ヘッド間つなぎ領域以外の領域にぉ 、て、理想 的な 2重露光に近い状態が実現できる。  In this way, by specifying the micromirrors that are actually used during the main exposure, in the main exposure using both the odd-numbered and even-numbered micromirrors, the two exposure heads form the surface to be exposed. A state close to ideal double exposure can be achieved in areas other than the head-to-head connection area.
[0111] 図 21は、単一露光ヘッドを用い、全光点行数の 1ZN行に相当する隣接する行を 構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図 である。 [0111] FIG. 21 illustrates an example of a form in which reference exposure is performed using a single exposure head and using only micromirror groups constituting adjacent rows corresponding to 1ZN rows of the total number of light spots. It is a figure.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 21 Aに実線で示した 1行目から 128 ( = 256/2)行目の光点に対応するマイクロミラ 一のみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプ ル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを 旨定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, reference exposure is performed using only a micromirror corresponding to the light spot in the first to 128 (= 256/2) rows shown by the solid line in FIG. 21A, and the reference exposure result is output as a sample. Based on the reference exposure result outputted from the sample, the micromirror to be used in the main exposure can be specified.
例えば、図 21 Bに斜線で覆つて示す光点群に対応するマイクロミラー以外のマイク 口ミラーが、第 1行目から第 128行目のマイクロミラー中、本露光時にお 、て実際に使 用されるものとして指定され得る。第 129行目から第 256行目のマイクロミラーについ ては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定して もよいし、第 1行目から第 128行目のマイクロミラーに対するパターンと同一のパター ンを適用してもよ 、。  For example, a microphone mouth mirror other than the micromirror corresponding to the light spot group indicated by hatching in FIG. 21B is actually used during the main exposure in the micromirrors in the first to 128th rows. Can be specified as For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner, and the micromirror to be used during the main exposure may be designated, or the first to 128th lines may be designated. You can apply the same pattern as for the micromirror.
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイ クロミラーを使用した本露光においては、理想的な 2重露光に近い状態が実現できる  By specifying the micromirror to be used during the main exposure in this way, it is possible to achieve a state close to an ideal double exposure in the main exposure using the entire micromirror.
[0112] 図 22は、複数の露光ヘッドを用い、 X軸方向に関して隣接する 2つの露光ヘッド( 一例として露光ヘッド 30 と 30 )について、それぞれ全光点行数の 1ZN行に相当 [0112] Fig. 22 shows two exposure heads that use a plurality of exposure heads and are adjacent in the X-axis direction ( As an example, exposure heads 30 and 30) are equivalent to 1ZN rows of the total number of light spots.
12 21  12 21
する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一 例を示した説明図である。  FIG. 10 is an explanatory diagram showing an example of a form in which reference exposure is performed using only micromirror groups constituting adjacent rows.
この例では、本露光時は 2重露光とするものとし、したがって N = 2である。まず、図 22に実線で示した第 1行目力も第 128 ( = 256Z2)行目の光点に対応するマイクロ ミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記 サンプル出力された参照露光結果に基づき、 2つの露光ヘッドにより被露光面上に 形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむら を最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミ ラーを指定することができる。  In this example, the main exposure is assumed to be double exposure, and therefore N = 2. First, the first line force indicated by the solid line in FIG. 22 is also subjected to reference exposure using only the micromirror corresponding to the light spot of the 128th (= 256Z2) line, and the reference exposure result is output as a sample. Based on the reference exposure result output from the sample, the main exposure can be realized with minimal variation in resolution and density unevenness in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. In addition, it is possible to specify a micromirror to be used during the main exposure.
例えば、図 22に斜線で覆って示す領域 90及び網掛けで示す領域 92内の光点列 に対応するマイクロミラー以外のマイクロミラー力 第 1行目から第 128行目のマイクロ ミラー中、本露光時において実際に使用されるものとして指定される。第 129行目か ら第 256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に 使用するマイクロミラーを指定してもよ 、し、第 1行目から第 128行目のマイクロミラー に対するパターンと同一のパターンを適用してもよい。  For example, the micro-mirror force other than the micro-mirror corresponding to the light spot array in the area 90 shown shaded in FIG. 22 and the area 92 shown by shading is the main exposure in the micro-mirrors in the first to 128th rows. Designated as actually used at the time. For the micromirrors in the 129th to 256th lines, a separate reference exposure may be performed in the same manner to specify the micromirror to be used for the main exposure, and the first to 128th lines are designated. The same pattern as that of the micromirror may be applied.
このようにして本露光時に使用するマイクロミラーを指定することにより、 2つの露光 ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において 理想的な 2重露光に近い状態が実現できる。  By specifying the micromirror to be used during the main exposure in this way, a state close to ideal double exposure is realized in areas other than the joint area between the heads formed on the exposed surface by the two exposure heads. it can.
[0113] 以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を 2重露光と する場合について説明した力 これに限定されず、 2重露光以上のいかなる多重露 光としてもよい。特に 3重露光力 7重露光程度とすることにより、高解像度を確保し、 解像度のばらつき及び濃度むらが軽減された露光を実現することができる。 [0113] In the above embodiments (1) to (3) and the modified examples, the power described in the case where the main exposure is double exposure is not limited to this, and any multiple exposure over double exposure is possible. It is good. In particular, by setting the triple exposure power to approximately seven exposures, it is possible to achieve exposure with high resolution and reduced resolution variation and density unevenness.
[0114] また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表 す 2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応 部分の寸法と一致するように、画像データを変換する機構が設けられて ヽることが好 ましい。そのように画像データを変換することによって、所望の 2次元パターンどおり の高精細なパターンを被露光面上に形成することができる。 [0115] 〔積層体〕 [0114] In addition, in the exposure apparatus according to the above-described embodiment and modification example, the size of the predetermined portion of the two-dimensional pattern represented by the image data matches the size of the corresponding portion that can be realized by the selected use pixel. It is preferable that a mechanism for converting image data is provided. By converting the image data in this way, it is possible to form a high-definition pattern on the exposed surface according to the desired two-dimensional pattern. [0115] [Laminate]
前記露光の対象としては、バインダーと、重合性化合物と、光重合開始剤と、熱架 橋剤とを少なくとも含む感光性組成物を用いて基材の表面に形成された感光層であ る限り、特に制限はなぐ目的に応じて適宜選択することができる。  As long as the object of exposure is a photosensitive layer formed on the surface of a substrate using a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent. In particular, it can be appropriately selected according to the purpose for which there is no restriction.
前記感光層としては、前記感光性組成物を基材の表面に塗布し、乾燥することによ り形成される第 1の態様の感光層、及び支持体と該支持体上に感光性組成物が積層 されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくとも!/ヽずれか の下において基材の表面に積層することにより形成される第 2の態様の感光層が挙 げられる。  As the photosensitive layer, the photosensitive composition of the first aspect formed by applying the photosensitive composition to the surface of a substrate and drying, and the support and the photosensitive composition on the support The photosensitive layer of the second aspect is formed by laminating a photosensitive film having a photosensitive layer on which is laminated on the surface of the substrate under at least one of heating and pressing. I can get lost.
[0116] 〔基材〕 [0116] [Base material]
前記基材としては、特に制限はなぐ公知の材料の中から表面平滑性の高いもの 力も凸凹のある表面を有するものまで適宜選択することができ、板状の基材 (基板)が 好ましぐ具体的には、公知のプリント配線板形成用基板 (例えば、銅張積層板)、ガ ラス板 (例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げ られるが、これらの中でも、プリント配線板形成用基板が好ましぐ多層配線基板ゃビ ルドアップ配線基板などへの半導体等の高密度実装化が可能となる点で、該プリント 配線板形成用基板が配線形成済みであるのが特に好ましい。  The base material can be appropriately selected from publicly known materials that are not particularly limited to those having a high surface smoothness and a surface having an uneven surface, and a plate-like base material (substrate) is preferred. Specific examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like. Among these, the printed wiring board forming substrate has already been formed in terms of the fact that high-density mounting of semiconductors and the like can be performed on a multilayer wiring substrate that is preferred for the printed wiring board forming substrate. Is particularly preferred.
[0117] 〔感光性組成物〕 [0117] [Photosensitive composition]
前記感光性組成物としては、バインダーと、重合性化合物と、光重合開始剤と、熱 架橋剤とを少なくとも含み、更に必要に応じて、着色顔料、体質顔料、熱重合禁止剤 、界面活性剤などのその他の成分を含む。  The photosensitive composition includes at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent, and if necessary, a coloring pigment, an extender pigment, a thermal polymerization inhibitor, a surfactant. Including other ingredients.
[0118] くバインダー > [0118] Ku Binder>
前記ノインダ一としては、例えば、アルカリ性水溶液に対して膨潤性であるのが好 ましぐアルカリ性水溶液に対して可溶性であるのがより好ましい。  For example, the noinder is more preferably soluble in an alkaline aqueous solution, which is preferably swellable in an alkaline aqueous solution.
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、 酸性基を有するものが好適に挙げられる。  As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified.
[0119] 前記ノインダ一としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、特開昭 51— 131706号、特開昭 52— 94388号、特開昭 64H 5号、 特開平 2— 97513号、特開平 3— 289656号、特開平 61— 243869号、特開 2002 — 296776号などの各公報に記載の酸性基を有するエポキシアタリレートイ匕合物が 挙げられる。具体的には、フエノールノボラック型エポキシアタリレート、あるいは、タレ ゾールノボラックエポキシアタリレート、ビスフエノール A型エポキシアタリレート等であ つて、例えばエポキシ榭脂ゃ多官能エポキシィ匕合物に (メタ)アクリル酸等のカルボキ シル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させ たものである。 [0119] The noinder can be appropriately selected according to the purpose for which there is no particular restriction. For example, JP-A-51-131706, JP-A-52-94388, JP-A-64H5, Examples thereof include an epoxy atelar toy compound having an acidic group described in JP-A-2-97513, JP-A-3-289656, JP-A-61-243869, JP-A-2002-296776, and the like. Specifically, phenol novolac type epoxy acrylate, tarezol novolak epoxy acrylate, bisphenol A type epoxy acrylate, etc., for example, epoxy resin is mixed with polyfunctional epoxy compound (meth) acrylic acid. A carboxylic group-containing monomer such as phthalic acid is reacted, and a dibasic acid anhydride such as phthalic anhydride is further added.
前記エポキシァクジレー卜ィ匕合物の分子量は、 1, 000〜200, 000力 S好まし <、 2, 0 00-100, 000がより好ましい。該分子量が 1, 000未満であると、感光層表面のタツ ク性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、ある いは、表面硬度が劣化することがあり、 200, 000を超えると、現像性が劣化すること がある。  The molecular weight of the epoxy vacancy compound is preferably 1,000 to 200,000 force S, more preferably 2,000 to 100,000. When the molecular weight is less than 1,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality becomes brittle or the surface hardness deteriorates after curing of the photosensitive layer described later. Yes, if it exceeds 200,000, developability may deteriorate.
また、特開平 6— 295060号公報記載の酸性基及び二重結合等の重合可能な基 を少なくとも 1つ有するアクリル榭脂も用いることができる。具体的には、分子内に少 なくとも 1つの重合可能な二重結合、例えば、(メタ)アタリレート基又は (メタ)アクリル アミド基等のアクリル基、カルボン酸のビュルエステル、ビュルエーテル、ァリルエー テル等の各種重合性二重結合を用いることができる。より具体的には、酸性基として カルボキシル基を含有するアクリル榭脂に、グリシジルアタリレート、グリシジルメタタリ レート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロへキ センォキシド等のエポキシ基と (メタ)アタリロイル基を有する化合物等のエポキシ基 含有の重合性ィ匕合物を付加させて得られる化合物などが挙げられる。また、酸性基 及び水酸基を含有するアクリル榭脂に、イソシアナートェチル (メタ)アタリレート等の イソシァネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含 有するアクリル榭脂に、ヒドロキシアルキル (メタ)アタリレート等の水酸基を含有する 重合性ィ匕合物を付加させて得られる化合物なども挙げられる。これらの市販品として は、例えば、「カネカレジン AXE ;鐘淵化学工業 (株)製」、「サイクロマー(CYCLOM ER) A— 200 ;ダイセル化学工業 (株)製」、「サイクロマー(CYCLOMER) M— 2 00;ダイセル化学工業 (株)製」などを用いることができる。 更に、特開昭 50— 59315号公報記載のヒドロキシアルキルアタリレート又はヒドロキ シアルキルメタタリレートとポリカルボン酸無水物及びェピハロヒドリンのいずれ力との 反応物などを用いることができる。 In addition, an acrylic resin having at least one polymerizable group such as an acidic group and a double bond described in JP-A-6-295060 can also be used. Specifically, at least one polymerizable double bond in the molecule, for example, an acrylic group such as a (meth) acrylate group or a (meth) acrylamide group, a carboxylic acid bull ester, a bull ether, a aryl ether. Various polymerizable double bonds such as tellurium can be used. More specifically, acrylic resin containing a carboxyl group as an acidic group, glycidyl ester of unsaturated fatty acid such as glycidyl atylate, glycidyl methacrylate, cinnamic acid, or cyclohexenoxide in the same molecule. Examples thereof include a compound obtained by adding an epoxy group-containing polymerizable compound such as a compound having an epoxy group and a (meth) attalyloyl group. In addition, a compound obtained by adding an isocyanate group-containing polymerizable compound such as isocyanatoethyl (meth) acrylate to an acrylic resin containing an acid group and a hydroxyl group, and an acrylic resin containing an anhydride group. And compounds obtained by adding a polymerizable compound containing a hydroxyl group such as hydroxyalkyl (meth) acrylate. Examples of these commercially available products include “Kaneka Resin AX, manufactured by Kaneka Chemical Co., Ltd.”, “CYCLOM ER A-200; manufactured by Daicel Chemical Industries, Ltd.”, “CYCLOMER M” —200; manufactured by Daicel Chemical Industries, Ltd. ”can be used. Further, a reaction product of hydroxyalkyl attalylate or hydroxyalkyl metatalylate described in JP-A-50-59315 with any one of polycarboxylic acid anhydride and epihalohydrin can be used.
[0121] また、特開平 5— 70528号公報記載のフルオレン骨格を有するエポキシアタリレー トに酸無水物を付加させて得られる化合物、特開平 11— 288087号公報記載のポリ アミド (イミド)榭脂、特開平 2— 097502号公報ゃ特開 2003— 20310号公報記載の アミド基を含有するスチレン又はスチレン誘導体と酸無水物共重合体、特開平 11 282155号公報記載のポリイミド前駆体などを用いることができる。これらは 1種単独 で使用してもよいし、 2種以上を混合して使用してもよい。  [0121] Further, a compound obtained by adding an acid anhydride to an epoxy atrelate having a fluorene skeleton described in JP-A-5-70528, and a polyamide (imide) resin described in JP-A-11-288087 Styrene or a styrene derivative and an acid anhydride copolymer containing an amide group described in JP-A-2-097502 or JP-A-2003-20310, a polyimide precursor described in JP-A-11 282155, or the like. Can do. These may be used alone or in combination of two or more.
[0122] 前記アクリル榭脂、フルオレン骨格を有するエポキシアタリレート、ポリアミド (イミド) 、アミド基含有スチレン Z酸無水物共重合体、あるいは、ポリイミド前駆体などのバイ ンダ一の分子量 ίま、 3, 000〜500, 000力 S好まし <、 5, 000〜100, 000力 Sより好ま しい。該分子量が 3, 000未満であると、感光層表面のタック性が強くなることがあり、 後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化す ることがあり、 500, 000を超えると、現像性が劣化することがある。  [0122] The molecular weight of the binder such as the acrylic resin, epoxy acrylate having a fluorene skeleton, polyamide (imide), amide group-containing styrene Z acid anhydride copolymer, or polyimide precursor, 3, 000 to 500,000 force S preferred <, 5, 000 to 100,000 force S preferred. When the molecular weight is less than 3,000, the tackiness of the surface of the photosensitive layer may become strong, and the film quality may become brittle or the surface hardness may deteriorate after curing of the photosensitive layer described below. If it exceeds 500,000, developability may deteriorate.
[0123] 前記バインダーの前記感光性組成物固形分中の固形分含有量は、 5〜80質量% が好ましぐ 10〜70質量%がより好ましい。該固形分含有量が、 5質量%未満である と、感光層の膜強度が弱くなりやすぐ該感光層の表面のタック性が悪ィ匕することがあ り、 80質量%を超えると、露光感度が低下することがある。  [0123] The solid content in the photosensitive composition solid content of the binder is preferably 5 to 80 mass%, more preferably 10 to 70 mass%. If the solid content is less than 5% by mass, the film strength of the photosensitive layer may be weakened or the tackiness of the surface of the photosensitive layer may be deteriorated. If it exceeds 80% by mass, Exposure sensitivity may decrease.
[0124] <重合性化合物 >  [0124] <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで きるが、分子中に少なくとも 1個の付加重合可能な基を有し、沸点が常圧で 100°C以 上である化合物が好ましぐ例えば、(メタ)アクリル基を有するモノマーから選択され る少なくとも 1種が好適に挙げられる。  The polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, but has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure. For example, at least one selected from monomers having a (meth) acryl group is preferable.
[0125] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ (メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル (メタ)アタリレート等の単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)アタリレート、ペンタ エリトリトールトリ(メタ)アタリレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジ ペンタエリトリトールペンタ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、 トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイルォ キシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリン トリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノール等の多官能 アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で (メタ) アタリレートイ匕したもの、特公昭 48— 41708号、特公昭 50— 6034号、特開昭 51— 37193号等の各公報に記載されているウレタンアタリレート類;特開昭 48— 64183 号、特公昭 49 43191号、特公昭 52— 30490号等の各公報に記載されているポリ エステルアタリレート類;エポキシ榭脂と (メタ)アクリル酸の反応生成物であるェポキ シアタリレート類等の多官能アタリレートやメタタリレートなどが挙げられる。これらの中 でも、トリメチロールプロパントリ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)ァク リレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジペンタエリトリトールペンタ (メタ)アタリレートが特に好ましい。 [0125] The monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methacrylates such as rate, phenoxychetyl (meth) acrylate, polyethylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate, trimethylol propane dialate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, Pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (atalylooxypropyl) ) Ether, tri (atallyloyloxychetyl) isocyanurate, tri (atariloyloxychetil) cyanurate, glycerin tri (meth) atarylate, trimethylolpropane, Poly (functional) alcohols such as glycerin and bisphenol, which are subjected to addition reaction of ethylene oxide and propylene oxide and then subjected to (meth) talate toy, JP-B 48-41708, JP-B 50-6034, JP-A 51 — Urethane acrylates described in publications such as 37193; Polyester acrylates described in publications such as JP-A-48-64183, JP-B-49 43191, JP-B-52-30490, etc. And polyfunctional acrylates and methacrylates such as epoxide acrylate which is a reaction product of epoxy resin and (meth) acrylic acid. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
[0126] 前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、 5〜50質 量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満で あると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、 50質量%を 超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。  [0126] The solid content of the polymerizable compound in the solid content of the photosensitive composition is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. Yes, not preferred.
[0127] <光重合開始剤 >  [0127] <Photoinitiator>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができるが、例 えば、紫外線領域力 可視の光線に対して感光性を有するものが好ましぐ光励起さ れた増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐ モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。 また、前記光重合開始剤は、波長約 300〜800nmの範囲内に少なくとも約 50の 分子吸光係数を有する成分を少なくとも 1種含有して 、ることが好ま 、。前記波長 ίま 330〜500mn力特に好まし!/、。 The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate the polymerization of the polymerizable compound. Those that have photosensitivity to visible light may have some effect with photo-excited sensitizers, and may be active agents that generate active radicals. Cationic polymerization is performed depending on the type of monomer. It may be an initiator that initiates. The photopolymerization initiator may have a wavelength of about 300 to 800 nm and at least about 50. It is preferable to contain at least one component having a molecular extinction coefficient. The wavelength ί to 330-500mn force is particularly preferred!
[0128] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの、ォキサジァゾール骨格を 有するもの等)、ホスフィンオキサイド、へキサァリールビイミダゾール、ォキシム誘導 体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム塩、ケトォキシムェ 一テルなどが挙げられる。  [0128] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxides, hexaryl reels. Examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoximate.
前記光重合開始剤としては、具体的には、例えば、特開 2005— 258431号公報 の段落番号〔0290〕〜〔0299〕及び段落番号〔0305〕〜〔0307〕に記載されて!ヽる 化合物などが挙げられる。  Specific examples of the photopolymerization initiator include compounds described in paragraphs [0290] to [0299] and paragraphs [0305] to [0307] of JP-A-2005-258431. Etc.
[0129] 本発明で好適に用いられるォキシム誘導体としては、例えば、 3 べンゾイロキシィ ミノブタン 2 オン、 3 ァセトキシィミノブタン 2 オン、 3 プロピオニルォキシ イミノブタン 2 オン、 2 ァセトキシィミノペンタン 3 オン、 2 ァセトキシィミノ —1—フエ-ルプロパン一 1—オン、 2—ベンゾイロキシィミノ一 1—フエ-ルプロパン — 1—オン、 3— (4—トルエンスルホ -ルォキシ)イミノブタン一 2—オン、及び 2 エト キシカルボ-ルォキシィミノ一 1—フエ-ルプロパン一 1—オンなどが挙げられる。  [0129] Examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxy minobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxy iminobutane 2 on, 2 acetoximinopentane 3 on, 2-acetoximino — 1-phenolpropane 1-one, 2-benzoyloximino 1-phenolpropane — 1-one, 3-— (4-toluenesulfo-loxy) iminobutane-2-one, and 2 eth Xylcarboloxymino 1-phenolpropane-1-one.
[0130] また、後述する感光層への露光における露光感度や感光波長を調整する目的で、 前記光重合開始剤に加えて、増感剤を添加することが可能である。  [0130] In addition to the photopolymerization initiator, it is possible to add a sensitizer for the purpose of adjusting exposure sensitivity and photosensitive wavelength in exposure to the photosensitive layer described later.
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ及び可視 光レーザなどにより適宜選択することができる。  The sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible laser, or the like as a light irradiation means described later.
前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)するこ とにより、ラジカルや酸等の有用基を発生することが可能である。  The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
[0131] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが できるが、例えば、特開 2005— 258431号公報の段落番号〔0313〕〜〔0314〕に記 載されて!ヽる化合物などが挙げられる。  [0131] The sensitizer can be appropriately selected from known sensitizers that are not particularly limited. For example, in paragraphs [0313] to [0314] of JP-A-2005-258431, Examples of compounds that are described!
[0132] 前記増感剤の含有量は、前記感光性組成物中の全成分に対し、 0. 05〜30質量 %が好ましぐ 0. 1〜20質量%がより好ましぐ 0. 2〜10質量%が特に好ましい。該 含有量が、 0. 05質量%未満であると、活性エネルギー線への感度が低下し、露光 プロセスに時間がかかり、生産性が低下することがあり、 30質量%を超えると、保存 時に前記感光層から前記増感剤が析出することがある。 [0132] The content of the sensitizer is preferably 0.05 to 30% by mass, more preferably 0.1 to 20% by mass, based on all the components in the photosensitive composition. ˜10% by weight is particularly preferred. The If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take a long time, and the productivity may be reduced. The sensitizer may be precipitated from the photosensitive layer.
[0133] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  [0133] The photopolymerization initiators may be used singly or in combination of two or more.
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α—アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物と後述する 増感剤としてのアミンィ匕合物とを組合せた複合光開始剤、へキサァリールビイミダゾ ール化合物、あるいは、チタノセンなどが挙げられる。  As a particularly preferred example of the photopolymerization initiator, halogenated carbonization having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton capable of supporting laser light having a wavelength of 405 nm in the later-described exposure. Examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer described later are combined, a hexaarylbiimidazole compound, or titanocene.
[0134] 前記光重合開始剤の前記感光性組成物における含有量は、 0. 1〜30質量%が 好ましく、 0. 5〜20質量%がより好ましぐ 0. 5〜15質量%が特に好ましい。  [0134] The content of the photopolymerization initiator in the photosensitive composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 0.5 to 15% by mass. preferable.
[0135] <熱架橋剤 >  [0135] <Thermal crosslinking agent>
前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、 前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために 、現像性等などに悪影響を与えない範囲で、例えば、 1分子内に少なくとも 2つのォ キシラン基を有するエポキシ榭脂化合物、 1分子内に少なくとも 2つのォキセタ-ル基 を有するォキセタンィ匕合物を用いることができる。  The thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability, etc. For example, an epoxy resin compound having at least two oxsilane groups in one molecule and an oxetane compound having at least two oxetal groups in one molecule can be used. .
前記エポキシ榭脂化合物としては、例えば、ビキシレノール型もしくはビフエノール 型エポキシ榭脂 ( ΓΥΧ4000;ジャパンエポキシレジン社製」等)又はこれらの混合物 、イソシァヌレート骨格等を有する複素環式エポキシ榭脂(「TEPIC ;日産化学工業 社製」、「ァラルダイト PT810 ;チバ'スペシャルティ'ケミカルズ社製」等)、ビスフエノ ール A型エポキシ榭脂、ノボラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂 、水添ビスフエノール A型エポキシ榭脂、グリシジノレアミン型エポキシ榭脂、ヒダントイ ン型エポキシ榭脂、脂環式エポキシ榭脂、トリヒドロキシフエニルメタン型エポキシ榭 脂、ビスフエノール S型エポキシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、テ トラフエ-ロールエタン型エポキシ榭脂、グリシジルフタレート榭脂、テトラグリシジル キシレノィルエタン榭脂、ナフタレン基含有エポキシ榭脂(「ESN— 190, ESN— 36 0 ;新曰鉄ィ匕学ネ土製」、「HP— 4032, EXA-4750,: EXA— 4700 ;大日本インキイ匕 学工業社製」等)、ジシクロペンタジェン骨格を有するエポキシ榭脂(「HP— 7200, HP- 7200H;大日本インキ化学工業社製」等)、グリシジルメタアタリレート共重合 系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製」等)、シクロへキシルマレ イミドとグリシジルメタアタリレートとの共重合エポキシ榭脂などが挙げられる力、これら に限られるものではない。これらのエポキシ榭脂は、 1種単独で使用してもよいし、 2 種以上を併用してもよい。 Examples of the epoxy resin compound include bixylenol type or biphenol type epoxy resin (ΓΥΧ4000; manufactured by Japan Epoxy Resin Co., Ltd.) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; "Nissan Chemical Industry Co., Ltd.", "Araldite PT810; Ciba 'Specialty' Chemicals Co., Ltd."), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A Type epoxy resin, glycidinoreamine type epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolak Type epoxy resin, tetraf-roll ethane type epoxy resin, glycid Ruphthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin ("ESN-190, ESN- 36 0; Shin-Iron Iron &Steel","HP-4032, EXA-4750, : EXA— 4700; Dainippon Ink Coffee "Gaku Kogyo Co., Ltd."), epoxy resin having a dicyclopentagen skeleton ("HP-7200, HP-7200H; manufactured by Dainippon Ink and Chemicals", etc.), glycidyl meta acrylate copolymer epoxy resin ( “CP-50S, CP-50M; manufactured by Nippon Oil & Fats”, etc.), and the ability to include a copolymerized epoxy resin of cyclohexylmaleimide and glycidyl methacrylate. However, the present invention is not limited to these. These epoxy resins may be used alone or in combination of two or more.
[0136] 前記ォキセタンィ匕合物としては、例えば、ビス [ (3—メチルー 3—ォキセタニルメトキ シ)メチル]エーテル、ビス [ ( 3—ェチル— 3—ォキセタ -ルメトキシ)メチル]エーテル 、 1, 4 ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ ( 3 -ェチル 3—ォキセタ -ルメトキシ)メチル]ベンゼン、( 3 -メチル 3—ォキセ タ -ル)メチルアタリレート、(3ーェチルー 3ーォキセタ -ル)メチルアタリレート、 (3- メチル 3—ォキセタ -ル)メチルメタタリレート、 ( 3 ェチル 3—ォキセタ -ル)メチ ルメタタリレート又はこれらのオリゴマーあるいは共重合体等の多官能ォキセタン類の 他、ォキセタン基と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、カルド型ビスフエノ 一ノレ類、カリックスァレーン類、カリックスレゾノレシンアレーン類、シノレセスキォキサン 等の水酸基を有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタン 環を有する不飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げられ る。 [0136] Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxeta-lmethoxy) methyl] ether, 1, 4-bis [(3-methyl-3-oxeta-lmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxeta-lmethoxy) methyl] benzene, (3-methyl-3-oxeta-l) methyl acrylate , (3 Echiru 3 Okiseta -) methyl Atari rate, (3-methyl 3-Okiseta -) methyl meth Tari rate, (3 Echiru 3 Okiseta - Le) methylate Rume Tatari rate or oligomers thereof or copolymers In addition to the polyfunctional oxetanes, oxetane groups, novolac resin, poly (p-hydroxystyrene), cardo-type bisphenol mononoles, calixarenes, calixrezonole And ethers of hydroxyl groups such as N-arenes and cinolesesquioxane, etc., as well as copolymers of unsaturated monomers having an oxetane ring and alkyl (meth) acrylate. Also mentioned.
[0137] 前記エポキシ榭脂化合物又はォキセタンィ匕合物の前記感光性組成物固形分中の 固形分含有量は、 1〜50質量%が好ましぐ 3〜30質量%がより好ましい。該固形分 含有量が 1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を生ずる 、あるいは、半田耐熱性ゃ耐無電解メツキ性等などが低下することがあり、 50質量% を超えると、現像性の悪ィ匕ゃ露光感度の低下が生ずることがあり、好ましくない。  [0137] The solid content of the epoxy resin compound or oxetane compound in the solid content of the photosensitive composition is preferably 1 to 50 mass%, more preferably 3 to 30 mass%. If the solid content is less than 1% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to plating, etc. If it exceeds 50% by mass, poor developability may cause a reduction in exposure sensitivity, which is not preferable.
[0138] また、前記エポキシ榭脂化合物や前記ォキセタンィ匕合物の熱硬化を促進するため 、例えば、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジメチルァミノ) N, N— ジメチルベンジルァミン、 4ーメトキシ N, N ジメチルベンジルァミン、 4ーメチルー N, N ジメチルベンジルァミン等のアミン化合物;トリェチルベンジルアンモ-ゥムク ロリド等の 4級アンモ-ゥム塩化合物;ジメチルァミン等のブロックイソシァネートイ匕合 物;イミダゾール、 2—メチルイミダゾール、 2 ェチルイミダゾール、 2 ェチルー 4 メチルイミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1—シァノ ェチルー 2 フエ-ルイミダゾール、 1一(2 シァノエチル) 2 ェチルー 4ーメチ ルイミダゾール等のイミダゾール誘導体二環式アミジンィ匕合物及びその塩;トリフエ- ルホスフィン等のリン化合物;メラミン、グアナミン、ァセトグアナミン、ベンゾグアナミン 等のグアナミン化合物; 2, 4 ジァミノ 6 メタクリロイルォキシェチル S トリアジ ン、 2 ビュル一 2, 4 ジァミノ一 S トリアジン、 2 ビュル一 4, 6 ジァミノ一 S ト リアジン'イソシァヌル酸付カ卩物、 2, 4 ジアミノー 6—メタクリロイルォキシェチルー S -トリァジン'イソシァヌル酸付加物等の S -トリァジン誘導体;などを用いることができ る。これらは 1種単独で使用してもよぐ 2種以上を併用してもよい。なお、前記ェポキ シ榭脂化合物や前記ォキセタン化合物の硬化触媒、あるいは、これらとカルボキシル 基の反応を促進することができるものであれば、特に制限はなぐ上記以外の熱硬化 を促進可能な化合物を用いてもょ 、。 [0138] In order to accelerate the thermal curing of the epoxy resin compound or the oxetane compound, for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy N , N Dimethylbenzylamine, 4-methyl-N, N Dimethylbenzylamine and other amine compounds; Triethylbenzyl ammonium chloride and other quaternary ammonium salt compounds; Dimethylamine and other block isocyanate compounds Products: Imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenolimidazole, 1-cyanethyl-2-phenolimidazole, 1 (2-cyanethyl) 2 ethyl Imidazole derivative bicyclic amidine compounds such as 4-methylimidazole and salts thereof; phosphorus compounds such as triphenylphosphine; guanamine compounds such as melamine, guanamine, acetateguanamine, and benzoguanamine; 2, 4 diamino 6 methacryloyloxychetyl S Triazine, 2 Bull 1, 2, 4 Diamino 1 S Triazine, 2 Bull 1, 4, 6 Diamino S Triazine 'Carbonate with isocyanuric acid, 2, 4 Diamino-6-methacryloyloxychetyl S-Triazine' Isocyanur S-triazine derivatives such as acid adducts; Ru can be used. These may be used alone or in combination of two or more. The epoxy resin compound or the oxetane compound may be a curing catalyst, or a compound capable of promoting thermal curing other than the above as long as it can promote the reaction of these with a carboxyl group. Use it.
前記エポキシ榭脂、前記ォキセタンィ匕合物、及びこれらとカルボン酸との熱硬化を 促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常 0. 01〜 15質量%でぁる。  The solid content in the solid content of the photosensitive composition of the epoxy resin, the oxetane compound, and a compound capable of accelerating the thermal curing of these with a carboxylic acid is usually 0.01 to 15% by mass. Ah.
また、前記熱架橋剤としては、特開平 5— 9407号公報記載のポリイソシァネートイ匕 合物を用いることができ、該ポリイソシァネートイ匕合物は、少なくとも 2つのイソシァネ 一ト基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されて いてもよい。具体的には、 1, 3 フエ-レンジイソシァネートと 1, 4 フエ-レンジイソ シァネートとの混合物、 2, 4 及び 2, 6 トルエンジイソシァネート、 1, 3 及び 1, 4 キシリレンジイソシァネート、ビス(4 イソシァネート フエ-ル)メタン、ビス(4 イソシァネートシクロへキシル)メタン、イソフォロンジイソシァネート、へキサメチレンジ イソシァネート、トリメチルへキサメチレンジイソシァネート等の 2官能イソシァネート; 該 2官能イソシァネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等と の多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記 2 官能イソシァネートとの付加体;へキサメチレンジイソシァネート、へキサメチレン 1 , 6 ジイソシァネート及びその誘導体等の環式三量体;などが挙げられる。 [0140] 更に、本発明の感光性組成物、あるいは、本発明の感光性フィルムの保存性を向 上させることを目的として、前記ポリイソシァネート及びその誘導体のイソシァネート基 にブロック剤を反応させて得られる化合物を用いてもょ 、。 Further, as the thermal crosslinking agent, a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is composed of at least two isocyanate groups. It may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing Specifically, a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4 xylylene diisocyanate Bis (4 isocyanate chain) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc .; Polyfunctional alcohols of a bifunctional isocyanate and trimethylolpropane, pentalysitol, glycerin, etc .; an alkylene oxide adduct of the polyfunctional alcohol and an adduct of the bifunctional isocyanate; hexamethylene diisocyanate, Cyclic trimers such as xamethylene 1,6 diisocyanate and its derivatives; It is. [0140] Further, for the purpose of improving the storage stability of the photosensitive composition of the present invention or the photosensitive film of the present invention, a blocking agent is reacted with the isocyanate group of the polyisocyanate and its derivatives. You can use the compound obtained in this way.
前記イソシァネート基ブロック剤としては、イソプロパノール、 tert. —ブタノール等 のアルコール類; ε —力プロラタタム等のラタタム類;フエノール、クレゾール、 ρ— tert . —ブチノレフエノーノレ、 p— sec. —ブチノレフエノーノレ、 p— sec. —アミノレフエノーノレ、 p -ォクチルフエノール、 p -ノ-ルフエノール等のフエノール類; 3 -ヒドロキシピリジ ン、 8—ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メ チルェチルケトキシム、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセト ォキシム、シクロへキサノンォキシム等の活性メチレンィ匕合物;などが挙げられる。こ れらの他、特開平 6 - 295060号公報記載の分子内に少なくとも 1つの重合可能な 二重結合及び少なくとも 1つのブロックイソシァネート基のいずれかを有する化合物 などを用いることができる。 Examples of the isocyanate group blocking agent include alcohols such as isopropanol, tert.-butanol; ε— ratatas such as force prolatatum; phenol, cresol, ρ-tert.-butinolephenol, p-sec.—butino Phenenoles, p-sec. —Phenols such as amino enoenole, p-octylphenol, p-norphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridin, 8-hydroxyquinoline; dialkyl Active methylene compounds such as malonate, methyl ethyl ketoxime, acetyl acetone, alkylacetoacetoxime, acetoxime, cyclohexanone oxime; and the like. In addition to these, compounds having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
[0141] また、アルデヒド縮合生成物、榭脂前駆体などを用いることができる。具体的には、 N, N,—ジメチロール尿素、 N, N,—ジメチロールマロンアミド、 N, N,—ジメチロー ルスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、へキサメチロールメ ラミン、 1, 3— N, N,一ジメチロールテレフタルアミド、 2, 4, 6—トリメチロールフエノ ール、 2, 6—ジメチロール— 4—メチロア-ノール、 1, 3—ジメチロール— 4, 6—ジィ ソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、 対応するェチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステル を使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるへ キサメチル化メチロールメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルェ 一テルなどを使用してもょ 、。  [0141] Further, aldehyde condensation products, rosin precursors, and the like can be used. Specifically, N, N, -dimethylolurea, N, N, -dimethylolmalonamide, N, N, -dimethylolsuccinimide, trimethylolmelamine, tetramethylolmelamine, hexamethylolmelamine, 1, 3— N, N, monodimethylol terephthalamide, 2, 4, 6-trimethylol phenol, 2, 6-dimethylol— 4-methyloanol, 1, 3-dimethylol— 4, 6-disopropylbenzene, etc. Is mentioned. Instead of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used. Hexamethylated methylol melamine, which consists of a formaldehyde condensation product of melamine and urea, or butyl ether of a melamine and formaldehyde condensation product may also be used.
[0142] 前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、 1〜40質量% が好ましぐ 3〜20質量%がより好ましい。該固形分含有量が 1質量%未満であると、 硬化膜の膜強度の向上が認められず、 40質量%を超えると、現像性の低下や露光 感度の低下を生ずることがある。  [0142] The solid content of the thermal crosslinking agent in the solid content of the photosensitive composition is preferably 1 to 40% by mass, more preferably 3 to 20% by mass. When the solid content is less than 1% by mass, no improvement in the strength of the cured film is observed, and when it exceeds 40% by mass, the developability and the exposure sensitivity may decrease.
[0143] <その他の成分 > 前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤 (着色顔料あ るいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその 他の助剤類 (例えば、導電性粒子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促 進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。こ れらの成分を適宜含有させることにより、目的とする感光性組成物あるいは後述する 感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。 [0143] <Other ingredients> Examples of the other components include thermal polymerization inhibitors, plasticizers, colorants (colored pigments or dyes), extender pigments, and the like, and further adhesion promoters to the substrate surface and other assistants. Agents (e.g., conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.) may be used in combination. Good. By appropriately containing these components, properties such as stability, photographic properties, and film physical properties of the target photosensitive composition or the photosensitive film described later can be adjusted.
[0144] < <熱重合禁止剤 > >  [0144] <<Thermal polymerization inhibitor>>
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止 するために添カ卩してもよい。  The thermal polymerization inhibitor may be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound.
前記熱重合禁止剤としては、例えば、特開 2005— 258431号公報の段落番号〔0 316〕に記載されている化合物などが挙げられる。  Examples of the thermal polymerization inhibitor include compounds described in paragraph No. [0 316] of JP-A-2005-258431.
[0145] 前記熱重合禁止剤の含有量は、前記重合性化合物に対して 0. 001〜5質量%が 好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に好ましい。該含 有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあり、 5質量 %を超えると、活性エネルギー線に対する感度が低下することがある。  [0145] The content of the thermal polymerization inhibitor is preferably 0.001 to 5% by mass, more preferably 0.005 to 2% by mass with respect to the polymerizable compound, and 0.01 to 1% by mass. Is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may be reduced, and if it exceeds 5% by mass, the sensitivity to active energy rays may be reduced.
[0146] < <着色顔料 > >  [0146] <<Coloring pigment>>
前記着色顔料としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、ビク卜! J ピュア一ブルー BO (C. I. 42595)、オーラミン(C. I. 41000)、 フアット'ブラック HB (C. I. 26150)、モノライト'エロー GT(C. I.ビグメント 'エロー 1 2)、パーマネント 'エロー GR(C. I.ピグメント 'エロー 17)、パーマネント 'エロー HR( C. I.ビグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146 )、ホスターバームレッド ESB (C. I.ピグメント 'バイオレット 19)、パーマネント 'ルビ 一 FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ(C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ピグメント 'ブルー 15)、モノライト'ファー スト'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ビグメント 'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメント 'レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント.グリーン 36、 C . I.ビグメント 'ブルー 15 : 1、 C. I.ビグメント 'ブルー 15 :4、 C. I.ビグメント 'ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I.ピグメント.ブ ルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用しても よい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用すること ができる。 The coloring pigment can be appropriately selected according to the purpose without any particular limitation. For example, Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11) Huster's' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolight 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, CI Pigment 'Red 122, CI Pigment 'Red 149, CI Pigment' Red 168, CI Pigment 'Red 177, CI Pigment' Red 180, CI Pigment 'Red 192, CI Pigment.Red 215, CI Pigment.Green 7, CI Pigment.Green 36, C I. Pigment 'Blue 15: 1, CI Pigment' Blue 15: 4, CI Pigment 'Blue 15: 6, CI Pigment Blue 22, CI Pigment Blue 60, CI Pigment Blue 64, etc. These may be used alone or in combination of two or more. If necessary, a dye appropriately selected from known dyes can be used.
[0147] 前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形 成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔 料の種類により異なる力 一般的には 0. 05〜: LO質量%が好ましぐ 0. 1〜5質量% 力 り好ましい。  [0147] The solid content in the solid content of the photosensitive composition of the coloring pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer during the formation of a permanent pattern. Different forces depending on the type of facial material Generally 0.05-: LO mass% is preferred 0.1-5 mass% Force is more preferred.
[0148] < <体質顔料 > > [0148] <<External pigment>>
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるい は線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く 抑えることを目的として、無機顔料や有機微粒子を添加することができる。  The photosensitive composition is used for the purpose of improving the surface hardness of the permanent pattern or keeping the coefficient of linear expansion low, or keeping the dielectric constant or dielectric loss tangent of the cured film low, if necessary. Inorganic pigments and organic fine particles can be added.
前記無機顔料としては、特に制限はなぐ公知のものの中から適宜選択することが でき、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸化 ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、 クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、 マイ力などが挙げられる。  The inorganic pigment can be appropriately selected from known ones that are not particularly limited. For example, kaolin, barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, vapor phase method silica, none Examples include regular silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and my strength.
前記無機顔料の平均粒径は、 10 m未満が好ましぐ 3 m以下がより好ましい。 該平均粒径が 10 m以上であると、光錯乱により解像度が劣化することがある。 前記有機微粒子としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、メラミン榭脂、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられ る。また、平均粒径 1〜5 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂から なる球状多孔質微粒子などを用いることができる。 The average particle diameter of the inorganic pigment is preferably less than 10 m, more preferably 3 m or less. If the average particle size is 10 m or more, the resolution may deteriorate due to light scattering. The organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 1 to 5 / ζπι, an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
[0149] 前記体質顔料の添加量は、 5〜60質量%が好ましい。該添加量が 5質量%未満で あると、十分に線膨張係数を低下させることができないことがあり、 60質量%を超える と、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久バタ ーンを用いて配線を形成する場合にお!、て、配線の保護膜としての機能が損なわれ ることがある。 [0149] The amount of the extender is preferably 5 to 60% by mass. When the addition amount is less than 5% by mass, the linear expansion coefficient may not be sufficiently reduced. When the addition amount exceeds 60% by mass, when the cured film is formed on the surface of the photosensitive layer, When the film quality becomes fragile and the wiring is formed using permanent patterns, the function of the wiring as a protective film is impaired. Sometimes.
[0150] < <密着促進剤 > >  [0150] <<Adhesion promoter>>
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知 の 、わゆる密着促進剤を用いることができる。  In order to improve the adhesion between each layer or the adhesion between the photosensitive layer and the substrate, a known adhesion promoter may be used for each layer.
[0151] 前記密着促進剤としては、例えば、特開平 5— 11439号公報、特開平 5— 34153 2号公報、及び特開平 6—43638号公報などに記載の密着促進剤が好適挙げられ る。具体的には、ベンズイミダゾール、ベンズォキサゾール、ベンズチアゾール、 2— メルカプトべンズイミダゾール、 2—メルカプトべンズォキサゾール、 2—メルカプトベン ズチアゾール、 3 モルホリノメチルー 1 フエ二ルートリアゾールー 2 チオン、 3— モルホリノメチル 5 フエニル ォキサジァゾール 2 チオン、 5 アミノー 3 モ ルホリノメチル チアジアゾール - 2-チオン、及び 2 メルカプト 5—メチルチオ ーチアジアゾール、トリァゾール、テトラゾール、ベンゾトリァゾール、カルボキシベン ゾトリァゾール、アミノ基含有べンゾトリァゾール、シランカップリング剤などが挙げられ る。  [0151] Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, and JP-A-6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3 morpholinomethyl-1 phenyroot triazole-2 thione, 3 — Morpholinomethyl 5 phenyl oxadiazole 2 thione, 5 amino-3 morpholinomethyl thiadiazole-2-thione, and 2 mercapto 5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole, amino group-containing benzotriazole, silane coupling Agents.
[0152] 前記密着促進剤の含有量は、前記感光性組成物中の全成分に対して 0. 001質 量%〜20質量%が好ましぐ 0. 01〜10質量%がより好ましぐ 0. 1質量%〜5質量 %が特に好ましい。  [0152] The content of the adhesion promoter is preferably 0.001% by mass to 20% by mass with respect to all components in the photosensitive composition, and more preferably 0.01 to 10% by mass. 0.1% by mass to 5% by mass is particularly preferable.
[0153] 前記感光層の形成方法としては、第 1の態様として、前記感光性組成物を前記基 材の表面に塗布し、乾燥する方法が挙げられ、第 2の態様として、感光性フィルムを 加熱及び加圧の少なくともいずれかの下において基材の表面に積層する方法が挙 げられる。  [0153] Examples of the method for forming the photosensitive layer include a method in which the photosensitive composition is applied to the surface of the base material and dried as the first aspect, and a photosensitive film is used as the second aspect. A method of laminating on the surface of the substrate under at least one of heating and pressurization is mentioned.
[0154] 前記第 1の態様の感光層の形成方法は、前記基材上に、前記感光性組成物を塗 布及び乾燥して感光層を形成する。  [0154] In the method for forming a photosensitive layer according to the first aspect, a photosensitive layer is formed by coating and drying the photosensitive composition on the substrate.
前記塗布及び乾燥の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、 乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させる ことにより積層する方法が挙げられる。  The coating and drying method can be appropriately selected according to the purpose without any particular limitation. For example, the photosensitive composition is dissolved, emulsified or dispersed on the surface of the base material in water or a solvent. And a method of laminating by preparing a photosensitive composition solution, applying the solution directly, and drying the solution.
[0155] 前記感光性組成物溶液の溶剤としては、特に制限はなぐ目的に応じて適宜選択 することができ、例えば、メタノール、エタノール、 n—プロパノール、イソプロパノール 、 n—ブタノール、 sec ブタノール、 n—へキサノール等のアルコール類;アセトン、メ チルェチルケトン、メチルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなど のケトン類;酢酸ェチル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸 ェチル、フタル酸ジメチル、安息香酸ェチル、及びメトキシプロピルアセテートなどの エステル類;トルエン、キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類 ;四塩化炭素、トリクロロエチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチ レン、モノクロ口ベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジェチル エーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノエチノレエ 一テル、 1ーメトキシー 2—プロパノールなどのエーテル類;ジメチルホルムアミド、ジメ チルァセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよぐ 2種以上を併用してもよい。また、公知の界面活性剤を添 カロしてちょい。 [0155] The solvent of the photosensitive composition solution is appropriately selected depending on the purpose without any particular limitation. Alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, n-hexanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone Ketones such as: Ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, and methoxypropyl acetate; aromatics such as toluene, xylene, benzene, and ethylbenzene Group hydrocarbons: Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, black mouth form, 1, 1, 1-trichloroethane, methyl chloride, monochloro mouth benzene; Tetrahydrofuran, jetyl etherol, ethylene glyco Norre mono-methylol Honoré ether Honoré, ethylene glycol Honoré mono ethyl Honoré et one ether, 1 ethers such Metokishi 2-propanol; dimethylformamide, dimethyl Chiruasetoamido, dimethyl sulfoxide, and sulfolane. These may be used alone or in combination of two or more. Also, add a known surfactant.
[0156] 前記塗布の方法としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイ =1一ター、力 一テンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。  [0156] The coating method is not particularly limited and can be appropriately selected depending on the purpose. For example, a spin coater, a slit spin coater, a roll coater, a die = 1 ter, a force tenser coater, or the like is used. The method of apply | coating directly to the said base material is mentioned.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、 通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。  The drying conditions vary depending on each component, the type of solvent, the ratio of use, etc., but are usually 60 to 110 ° C. for 30 seconds to 15 minutes.
[0157] 前記感光層の厚みは、特に制限はなぐ 目的に応じて適宜選択することができるが 、例えば、 3〜: LOO 111カ 子ましく、 5〜70 m力より好ましい。  [0157] The thickness of the photosensitive layer is not particularly limited, and can be appropriately selected depending on the purpose. For example, 3 to: LOO 111 or more preferably 5 to 70 m force.
[0158] 前記第 2の態様の感光層の形成方法は、前記基材の表面に支持体と該支持体上 に感光性組成物が積層されてなる感光層とを有する感光性フィルムを加熱及び加圧 の少なくともいずれかを行いながら積層する。なお、前記感光性フィルムが後述する 保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層 が重なるようにして積層するのが好ま 、。  [0158] In the method for forming a photosensitive layer of the second aspect, a photosensitive film having a support on the surface of the substrate and a photosensitive layer in which a photosensitive composition is laminated on the support is heated and Laminate while performing at least one of pressurization. In addition, when the said photosensitive film has a protective film mentioned later, it is preferable to peel this protective film and to laminate | stack so that the said photosensitive layer may overlap with the said base material.
[0159] 〔感光性フィルム〕  [Photosensitive film]
前記感光性フィルムは、少なくとも支持体と、感光層とを有してなり、好ましくは保護 フィルムを有してなり、更に必要に応じて、クッション層、酸素遮断層(PC層)などのそ の他の層を有してなる。 The photosensitive film comprises at least a support and a photosensitive layer, preferably a protective film, and further comprises a cushion layer, an oxygen barrier layer (PC layer), etc., if necessary. It has other layers.
前記感光性フィルムの形態としては、特に制限はなぐ 目的に応じて適宜選択する ことができ、例えば、前記支持体上に、前記感光層、前記保護膜フィルムをこの順に 有してなる形態、前記支持体上に、前記 PC層、前記感光層、前記保護フィルムをこ の順に有してなる形態、前記支持体上に、前記クッション層、前記 PC層、前記感光 層、前記保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光 層は、単層であってもよいし、複数層であってもよい。  The form of the photosensitive film is not particularly limited and can be appropriately selected according to the purpose. For example, the photosensitive film and the protective film are provided in this order on the support, A form comprising the PC layer, the photosensitive layer, and the protective film in this order on a support, and the cushion layer, the PC layer, the photosensitive layer, and the protective film in this order on the support. The form which has is mentioned. The photosensitive layer may be a single layer or a plurality of layers.
[0160] <支持体 >  [0160] <Support>
前記支持体としては、特に制限はなぐ 目的に応じて適宜選択することができるが、 前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましぐ更に表 面の平滑性が良好であるのがより好ましい。  The support is not particularly limited and may be appropriately selected depending on the purpose. However, it is preferable that the photosensitive layer can be peeled off and the light transmittance is good. Further, the surface is smooth. It is more preferable that the property is good.
[0161] 前記支持体は、合成樹脂製で、かつ透明であるものが好ましぐ例えば、ポリエチレ ンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セ ルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アタリ ル酸エステル共重合体、ポリ塩化ビュル、ポリビュルアルコール、ポリカーボネート、 ポリスチレン、セロファン、ポリ塩ィ匕ビユリデン共重合体、ポリアミド、ポリイミド、塩ィ匕ビ -ル.酢酸ビュル共重合体、ポリテトラフルォロエチレン、ポリトリフルォロエチレン、セ ルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、こ れらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、 1種単独で使用 してもよく、 2種以上を併用してもよい。 [0161] The support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated bur, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl. Various plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose film, and nylon film can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
なお、前記支持体としては、例えば、特開平 4- 208940号公報、特開平 5— 8050 3号公報、特開平 5— 173320号公報、特開平 5— 72724号公報などに記載の支持 体を用いることちできる。  As the support, for example, the supports described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, and the like are used. I can do it.
[0162] 前記支持体の厚みは、特に制限はなぐ 目的に応じて適宜選択することができるが ゝ ί列; tは、、 4〜300 μ m力好ましく、 5〜175 μ m力 ^より好まし!/ヽ。  [0162] The thickness of the support is not particularly limited, and can be appropriately selected according to the purpose. However, t is preferably 4 to 300 μm force, more preferably 5 to 175 μm force ^. It's better!
[0163] 前記支持体の形状は、特に制限はなぐ 目的に応じて適宜選択することができるが 、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなぐ例えば 、 10〜20, OOOmの長さのものが挙げられる。 [0164] 感光性フィルムにおける感光層 [0163] The shape of the support is not particularly limited, and can be appropriately selected depending on the purpose, but is preferably long. The length of the long support is not particularly limited, and examples thereof include those having a length of 10 to 20, OOOm. [0164] Photosensitive layer in photosensitive film
前記感光性フィルムにおける感光層は、前記感光性組成物により形成される。 前記感光層の前記感光性フィルムにおいて設けられる箇所としては、特に制限は なぐ 目的に応じて適宜選択することができるが、通常、前記支持体上に積層される  The photosensitive layer in the photosensitive film is formed of the photosensitive composition. The portion provided in the photosensitive film of the photosensitive layer is not particularly limited and can be appropriately selected according to the purpose, but is usually laminated on the support.
[0165] 前記感光性フィルムにおける感光層の厚みは、特に制限はなぐ 目的に応じて適 宜選択することができる力 例えば、 3〜: LOO /z m力 S好ましく、 5〜70 /ζ πιがより好まし い。 [0165] The thickness of the photosensitive layer in the photosensitive film is not particularly limited. The force can be appropriately selected according to the purpose. For example, 3 to: LOO / zm force S, preferably 5 to 70 / ζ πι. I like it.
[0166] 前記感光性フィルムにおける感光層の形成は、前記基材への前記感光性組成物 溶液の塗布及び乾燥 (前記第 1の態様の感光層の形成方法)と同様な方法で行うこ とができ、例えば、該感光性組成物溶液をスピンコーター、スリットスピンコーター、口 一ルコーター、ダイコ一ター、カーテンコーターなどを用いて塗布する方法が挙げら れる。  [0166] Formation of the photosensitive layer in the photosensitive film is carried out by the same method as the application of the photosensitive composition solution to the substrate and drying (the method for forming the photosensitive layer of the first aspect). Examples thereof include a method of applying the photosensitive composition solution using a spin coater, a slit spin coater, a mouth coater, a die coater, a curtain coater, or the like.
[0167] く保護フィルム >  [0167] Special protective film>
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する 前記保護フィルムの前記感光性フィルムにお 、て設けられる箇所としては、特に制 限はなく、 目的に応じて適宜選択することができるが、通常、前記感光層上に設けら れる。  The protective film has a function of preventing and protecting the photosensitive layer from being stained and damaged. There are no particular restrictions on the location of the protective film provided on the photosensitive film, and the protective film is appropriately selected depending on the purpose. Usually, it is provided on the photosensitive layer.
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、 ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフイン又はポリテトラフルォ ルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピ レンフィルムが好ましい。  Examples of the protective film include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among them, polyethylene film, polypropylene, and the like. A film is preferred.
前記保護フィルムの厚みは、特に制限はなぐ 目的に応じて適宜選択することがで きるが、例えば、 5〜: LOO /z m力好ましく、 8〜30 mがより好ましい。  The thickness of the protective film is not particularly limited and can be appropriately selected according to the purpose. For example, 5 to: LOO / z m force is preferable, and 8 to 30 m is more preferable.
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力 Aと、前記 感光層及び保護フィルムの接着力 Bとが、接着力 A>接着力 Bの関係であることが好 ましい。 前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート zポリプロピレン、ポリエチレンテレフタレート zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施 されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理 、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、レーザ光線照射 処理などを挙げることができる。 When the protective film is used, it is preferable that the adhesive force A of the photosensitive layer and the support and the adhesive force B of the photosensitive layer and the protective film satisfy the relationship of adhesive force A> adhesive force B. Examples of the combination of the support and the protective film (support Z protective film) include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc. In addition, the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glossy treatment, One discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like can be mentioned.
[0168] また、前記支持体と前記保護フィルムとの静摩擦係数は、 0. 3〜1. 4が好ましぐ 0 . 5〜1. 2力より好まし!/ヽ。  [0168] The coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4, more preferably 0.5 to 1.2 force! / !.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。  If the coefficient of static friction is less than 0.3, slipping may occur excessively, so that a deviation may occur when the roll is formed, and if it exceeds 1.4, it is difficult to wind in a good roll. Sometimes.
[0169] 前記感光性フィルムは、例えば、円筒状の卷芯に巻き取って、長尺状でロール状 に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さは、特に 制限はなぐ例えば、 10-20, OOOmの範囲から適宜選択することができる。また、 ユーザーが使いやすいようにスリット加工し、 100〜1, OOOmの範囲の長尺体をロー ル状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取 られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしても よい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセ パレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましぐまた梱 包も透湿性の低 、素材を用いるのが好まし 、。  [0169] The photosensitive film is preferably stored, for example, wound around a cylindrical core and wound into a long roll. The length of the long photosensitive film is not particularly limited, and can be appropriately selected from the range of 10-20, OOOm, for example. In addition, slitting may be performed to make it easy for users to use, and a long body in the range of 100 to 1, OOOm may be rolled. In this case, it is preferable that the support is wound up so as to be the outermost side. The roll-shaped photosensitive film may be slit into a sheet shape. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof, with desiccant) on the end face, and the package is also low in moisture permeability. I prefer to use the material.
[0170] 前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために 表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオ ルガノシロキサン、弗素化ポリオレフイン、ポリフルォロエチレン、ポリビュルアルコー ル等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗 布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1 〜30分間乾燥させることにより形成させることができる。 [0170] The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polybutyl alcohol is formed on the surface of the protective film. The undercoat layer is formed at 30 to 150 ° C (especially 50 to 120 ° C) after the polymer coating solution is applied to the surface of the protective film. It can be formed by drying for ~ 30 minutes.
また、前記感光層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断 層 (PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。  In addition to the photosensitive layer, the support, and the protective film, a cushion layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, a surface protective layer, and the like may be included. .
前記クッション層は、常温ではタック性が無ぐ真空'加熱条件で積層した場合に溶 融し、流動する層である。  The cushion layer is a layer that melts and flows when laminated under vacuum heating conditions that have no tackiness at room temperature.
前記 PC層は、通常ポリビュルアルコールを主成分として形成された 0. 5〜5 /ζ πι程 度の被膜である。  The PC layer is usually a coating of about 0.5 to 5 / ζ πι, which is formed mainly of polybulal alcohol.
[0171] 前記加熱温度は、特に制限はなぐ目的に応じて適宜選択することができるが、例 えば、 70〜130°Cが好ましぐ 80〜110°Cがより好ましい。  [0171] The heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 70 to 130 ° C is preferable, and 80 to 110 ° C is more preferable.
前記加圧の圧力は、特に制限はなぐ目的に応じて適宜選択することができるが、 ί列; tは、、 0. 01〜: L OMPa力好ましく、 0. 05〜: L OMPa力 ^より好まし!/ヽ。  The pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular limitation. However, ί column; t is preferably 0.01 to: L OMPa force, 0.05 to: L OMPa force ^ I like it!
[0172] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ目 的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター( 例えば、大成ラミネータネ土製、 VP— 11)、真空ラミネーター (例えば、名機製作所製、[0172] The apparatus for performing at least one of the heating and the pressurization can be appropriately selected according to the purpose of restriction, for example, a heat press, a heat roll laminator (for example, Taisei Laminate Earthen, VP — 11), vacuum laminator (for example,
MVLP500)などが好適に挙げられる。 MVLP500) and the like are preferable.
[0173] 前記感光性フィルムは、プリント配線板、カラーフィルタや柱材、リブ材、スぺーサー[0173] The photosensitive film comprises a printed wiring board, a color filter, a pillar material, a rib material, and a spacer.
、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パ ターン形成用として広く用いることができ、本発明の永久パターン形成方法に好適に 用!/、ることができる。 It can be widely used for forming permanent patterns such as display members such as barrier ribs, holograms, micromachines, and proofs, and can be suitably used for the permanent pattern forming method of the present invention.
特に、前記感光性フィルムは、該フィルムの厚みが均一であるため、永久パターン の形成に際し、前記基材への積層がより精細に行われる。  In particular, since the photosensitive film has a uniform thickness, lamination onto the substrate is performed more finely when forming a permanent pattern.
[0174] なお、前記第 2の態様の感光層の形成方法により形成された感光層を有する積層 体への露光としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、前記支持体、クッション層及び PC層を介して前記感光層を露光してもよぐ前記 支持体を剥離した後、前記クッション層及び PC層を介して前記感光層を露光しても よぐ前記支持体及びクッション層を剥離した後、前記 PC層を介して前記感光層を 露光してもよぐ前記支持体、クッション層及び PC層を剥離した後、前記感光層を露 光してちょい。 [0175] 〔現像工程〕 [0174] The exposure to the laminate having the photosensitive layer formed by the photosensitive layer forming method of the second aspect can be appropriately selected according to the purpose without any particular limitation. For example, The photosensitive layer may be exposed through the support, the cushion layer, and the PC layer. After the support is peeled off, the photosensitive layer may be exposed through the cushion layer and the PC layer. After peeling off the support and cushion layer, the photosensitive layer may be exposed through the PC layer. After peeling off the support, cushion layer and PC layer, the photosensitive layer is exposed. [0175] [Development process]
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した 領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成 する工程である。  The developing step is a step of exposing the photosensitive layer by the exposing step, curing the exposed region of the photosensitive layer, and then developing by removing the uncured region to form a permanent pattern.
[0176] 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  [0176] The removal method of the uncured region can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
[0177] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができるが、 例えば、アルカリ金属又はアルカリ土類金属の水酸ィ匕物若しくは炭酸塩、炭酸水素 塩、アンモニア水、 4級アンモニゥム塩の水溶液などが好適に挙げられる。これらの中 でも、炭酸ナトリウム水溶液が特に好ましい。  [0177] The developer may be appropriately selected according to the purpose without any particular limitation. For example, an alkali metal or alkaline earth metal hydroxide or carbonate, bicarbonate, aqueous ammonia Preferred examples include aqueous solutions of quaternary ammonium salts. Among these, an aqueous sodium carbonate solution is particularly preferable.
[0178] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、ベンジルァミン、ェチレ ンジァミン、エタノールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレント リアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進さ せるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミ ド類、ラタトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶 液と有機溶剤を混合した水系現像液であってもよぐ有機溶剤単独であってもよい。  [0178] The developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine, etc.) and organic solvents (for example, alcohols, ketones, esters, ethers, amides, latatones, etc.) may be used in combination to accelerate development. The developer may be an aqueous developer obtained by mixing water or an alkaline aqueous solution and an organic solvent, or an organic solvent alone.
[0179] 〔硬化処理工程〕  [Curing process]
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターン〖こ おける感光層に対して硬化処理を行う工程である。  The curing treatment step is a step of performing a curing treatment on the photosensitive layer having a permanent pattern formed after the developing step.
[0180] 前記硬化処理としては、特に制限はなぐ目的に応じて適宜選択することができる 力 例えば、全面露光処理、全面加熱処理などが好適に挙げられる。  [0180] As the curing treatment, a force that can be appropriately selected depending on the purpose for which there is no particular limitation, for example, a whole surface exposure treatment, a whole surface heat treatment, and the like are preferable.
[0181] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久バタ ーンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光 により、前記感光層を形成する感光性組成物中の榭脂の硬化が促進され、前記永久 パターンの表面が硬化される。  [0181] Examples of the overall exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the permanent pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができるが、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation, and a UV exposure machine such as an ultrahigh pressure mercury lamp is preferably exemplified.
[0182] 前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形 成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前 記永久パターンの表面の膜強度が高められる。 [0182] As the method of the entire surface heat treatment, the permanent pattern is shaped after the development step. The method of heating the whole surface on the formed said laminated body is mentioned. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
前記全面加熱における加熱温度としては、 120〜250でカ 子ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記感光性組成物中の樹脂の分解が生じ 、膜質が弱く脆くなることがある。  The heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C. When the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. When the heating temperature exceeds 250 ° C, the resin in the photosensitive composition is decomposed and the film quality is weak. May become brittle.
前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。  The heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0183] なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント 配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うこと ができる。  [0183] When the base material is a printed wiring board such as a multilayer wiring board, the permanent pattern of the present invention may be formed on the printed wiring board, and further soldered as follows. it can.
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリ ント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属 層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った 部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが 、保護膜、絶縁膜 (層間絶縁膜)、あるいはソルダーレジストとしての機能を発揮し、 外部からの衝撃や隣同士の電極の導通が防止される。  That is, the hardened layer which is the permanent pattern is formed by the developing step, and the metal layer is exposed on the surface of the printed wiring board. Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, semiconductors and parts are mounted on the soldered parts. At this time, the permanent pattern by the hardened layer functions as a protective film, an insulating film (interlayer insulating film), or a solder resist, and prevents external impact and conduction between adjacent electrodes.
[0184] 本発明の永久パターン形成方法においては、保護膜、層間絶縁膜、及びソルダー レジストの少なくとも 、ずれかを形成するのが好まし!/、。 [0184] In the method for forming a permanent pattern of the present invention, it is preferable to form at least one of a protective film, an interlayer insulating film, and a solder resist!
前記永久パターン形成方法により形成された前記永久パターンは、配線を外部か らの衝撃や曲げ力も保護することができ、特に、前記層間絶縁膜である場合には、例 えば、多層配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装 に有用である。  The permanent pattern formed by the method for forming a permanent pattern can protect the wiring from external impact and bending force. In particular, in the case of the interlayer insulating film, for example, a multilayer wiring board or a build This is useful for high-density mounting of semiconductors and components on up-wiring boards.
[0185] 本発明の永久パターン形成方法は、感光層上に結像させる像の歪みを抑制するこ とにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露 光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細 な永久パターンの形成に好適に使用することができる。 [0185] The permanent pattern forming method of the present invention can efficiently form a permanent pattern with high definition by suppressing distortion of an image formed on the photosensitive layer. It can be suitably used for the formation of various patterns that require light, and can be particularly suitably used for the formation of high-definition permanent patterns.
実施例  Example
[0186] 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定さ れるものではない。  [0186] Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0187] (実施例 1) [0187] (Example 1)
感光性組成物の調製  Preparation of photosensitive composition
下記組成に基づ 、て、感光性組成物 (溶液)を調製した。  A photosensitive composition (solution) was prepared based on the following composition.
[感光性組成物]  [Photosensitive composition]
硫酸バリウム (堺ィ匕学工業社製、 B30)分散液 104. 74質量部 Barium sulfate (manufactured by Zhigaku Kogyo Co., Ltd., B30) dispersion 104.74 parts by mass
PCR— 1157H (日本化薬社製、エポキシアタリレート 61. 8質量0 /0 エチレン グリコールモノェチルエーテルアタリレート溶液) 46. 14質量部 PCR- 1157H (manufactured by Nippon Kayaku Co., Ltd., epoxy Atari rate 61.8 mass 0/0 ethylene glycol monomethyl E chill ether Atari acetate solution) 46.14 parts by weight
R712 (日本ィ匕薬社製、 2官能アクリルモノマー) 9. 79質量部 ジペンタエジ卜!;卜一ノレへキサァクジレー卜 19. 33^S¾ R712 (Nippon Yakuyaku Co., Ltd., bifunctional acrylic monomer) 9. 79 parts by weight Dipentaethylene !;
IRGACURE819 (チノく'スペシャルティ一 ·ケミカルズ製) 7. 84質量部 MW30HM (三和ケミカル社製、へキサメトキシメチル化メラミン) 8. 00質量部 ハイドロキノンモノメチルエーテル 0. 049質量部 フタロシアニングリーン 3. 98質量部 IRGACURE819 (manufactured by Chinoku Specialty Chemicals) 7. 84 parts by mass MW30HM (manufactured by Sanwa Chemical Co., hexamethoxymethylated melamine) 8.00 parts by mass Hydroquinone monomethyl ether 0.049 parts by mass Phthalocyanine green 3.98 parts by mass Part
メチルェチルケ卜ン 60. 00質量部  Methyl ether chain 60.00 parts by mass
なお、上記硫酸バリウム分散液は、硫酸バリウム (堺ィ匕学社製、 B30) 30質量部と、 上記 PCR— 1157Hのジエチレングリコールモノメチルエーテルアセテート 61. 2質 量%溶液 34. 29質量部と、メチルェチルケトン 35. 71質量部と、を予め混合した後 、モーターミル M— 200 (アイガー社製)で、直径 1. Ommのジルコユアビーズを用い 、周速 9mZsにて 3. 5時間分散して調製した。  The barium sulfate dispersion is composed of 30 parts by weight of barium sulfate (manufactured by KK, B30), 34.29 parts by weight of the above-mentioned PCR-1157H diethylene glycol monomethyl ether acetate 61.2 mass% solution, methyl After mixing 35.71 parts by mass of ethyl ketone with Motor Mill M-200 (manufactured by Eiger), disperse for 3.5 hours at a peripheral speed of 9 mZs using Zirco Your beads with a diameter of 1. Omm. Prepared.
[0188] 感光性フィルムの製造 [0188] Production of photosensitive film
得られた感光性組成物溶液を、前記支持体としての厚み 20 mの PET (ポリェチ レンテレフタレート)フィルム上に、塗布し、乾燥させて、膜厚 35 /z mの感光層を形成 した。次いで、該感光層の上に、前記保護フィルムとして 12 m厚のポリプロピレンフ イルムをラミネートで積層し、感光性フィルムを製造した。 The obtained photosensitive composition solution was applied onto a PET (polyethylene terephthalate) film having a thickness of 20 m as the support and dried to form a photosensitive layer having a thickness of 35 / zm. Next, a polypropylene film having a thickness of 12 m is used as the protective film on the photosensitive layer. The film was laminated with a laminate to produce a photosensitive film.
[0189] 永久パターンの形成  [0189] Formation of permanent pattern
積層体の調製  Preparation of laminate
次に、前記基材として、配線形成済みの銅張積層板 (スルーホールなし、銅厚み 1 2 /z m)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性 フィルムの感光層が前記銅張積層板に接するようにして前記感光性フィルムにおけ る保護フィルムを剥がしながら、真空ラミネーター (名機製作所製、 MVLP500)を用 いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフ イルム (支持体)とがこの順に積層された積層体を調製した。  Next, the substrate was prepared by subjecting a surface of a copper-clad laminate (no through-hole, copper thickness 1 2 / z m) on which wiring had been formed, to a chemical polishing treatment. A vacuum laminator (manufactured by Meiki Seisakusho, MVLP500) was peeled off on the copper clad laminate while peeling off the protective film on the photosensitive film so that the photosensitive layer of the photosensitive film was in contact with the copper clad laminate. Thus, a laminate in which the copper-clad laminate, the photosensitive layer, and the polyethylene terephthalate film (support) were laminated in this order was prepared.
圧着条件は、圧着温度 90°C、圧着圧力 0. 4MPa、ラミネート速度 lmZ分とした。  The crimping conditions were a crimping temperature of 90 ° C, a crimping pressure of 0.4 MPa, and a laminating speed of lmZ.
[0190] 露光工程 [0190] Exposure process
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明する パターン形成装置を用いて、波長が 405nmのレーザ光を、直径の異なる穴部が形 成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化 させた。  With respect to the photosensitive layer in the prepared laminate, a pattern in which holes having different diameters are formed from a laser beam having a wavelength of 405 nm can be obtained from the support side using a pattern forming apparatus described below. Were exposed to light, and a part of the photosensitive layer was cured.
[0191] < <パターン形成装置 > >  [0191] <<Pattern forming device>>
前記光照射手段として特開 2005— 258431号公報に記載の合波レーザ光源と、 前記光変調手段として図 6に概略図を示した主走査方向にマイクロミラー 58が 1024 個配列されたマイクロミラー列が、副走査方向に 768組配列された内、 1024個 X 25 6列のみを駆動するように制御した DMD36と、図 5A又は図 5Bに示した光を前記パ ターン形成材料に結像する光学系とを有する露光ヘッド 30を備えたパターン形成装 置 10を用いた。  A combined laser light source described in JP-A-2005-258431 as the light irradiating means, and a micromirror array in which 1024 micromirrors 58 are arranged in the main scanning direction schematically shown in FIG. 6 as the light modulating means. However, among the 768 pairs arranged in the sub-scanning direction, DMD36 controlled to drive only 1024 x 256 6 rows and the optical for imaging the light shown in FIG. 5A or FIG. 5B on the pattern forming material A pattern forming apparatus 10 having an exposure head 30 having a system was used.
[0192] 各露光ヘッド 30すなわち各 DMD36の設定傾斜角度としては、使用可能な 1024 列 X 256行のマイクロミラー 58を使用してちょうど 2重露光となる角度 Θ よりも若干  [0192] The tilt angle of each exposure head 30, ie each DMD 36, is slightly larger than the angle Θ that is exactly double exposure using the available 1024 rows x 256 rows micromirror 58
ideal  ideal
大き 、角度を採用した。この角度 0 は、 N重露光の数 N、使用可能なマイクロミラ  Adopted the size and angle. This angle 0 is the number of N exposures N, the available micromirrors
ideal  ideal
一 58の列方向の個数 s、使用可能なマイクロミラー 58の列方向の間隔 p、及び露光 ヘッド 30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッ チ δに対し、下記式 1、 spsin θ ≥Ν δ (式 1) (1) The number s in the column direction of 58, the interval p in the column direction of the usable micromirrors 58, and the pitch δ of the scanning line formed by the micromirrors when the exposure head 30 is tilted, , spsin θ ≥Ν δ (Equation 1)
ideal  ideal
により与えられる。本実施形態における DMD36は、上記のとおり、縦横の配置間隔 が等しい多数のマイクロミラー 58が矩形格子状に配されたものであるので、  Given by. As described above, the DMD 36 in the present embodiment includes a large number of micromirrors 58 with equal vertical and horizontal arrangement intervals arranged in a rectangular lattice shape.
pcos θ = δ (式 2)  pcos θ = δ (Equation 2)
ideal  ideal
であり、上記式 1は、  And the above equation 1 is
stan Q =N (式 3)  stan Q = N (Formula 3)
iaeal  iaeal
であり、 s = 256, N= 2であるので、角度 Θ は約 0. 45度である。したがって、設定  Since s = 256 and N = 2, the angle Θ is about 0.45 degrees. Therefore, setting
ideal  ideal
傾斜角度 0としては、例えば 0. 50度を採用した。  As the inclination angle 0, for example, 0.50 degrees was adopted.
[0193] まず、 2重露光における解像度のばらつきと露光むらを補正するため、被露光面の 露光パターンの状態を調べた。結果を図 16に示した。図 16においては、ステージ 14 を静止させた状態で積層体 12の被露光面上に投影される、露光ヘッド 30 と 30 が  [0193] First, the state of the exposure pattern on the surface to be exposed was examined in order to correct the variation in resolution and uneven exposure in double exposure. The results are shown in FIG. In FIG. 16, the exposure heads 30 and 30 projected onto the exposure surface of the laminate 12 with the stage 14 stationary are shown.
12 21 有する DMD36の使用可能なマイクロミラー 58からの光点群のパターンを示した。ま た、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステ ージ 14を移動させて連続露光を行った際に、被露光面上に形成される露光パター ンの状態を、露光エリア 32 と 32 について示した。なお、図 16では、説明の便宜の  The pattern of light spots from the usable micromirror 58 of DMD36 with 12 21 is shown. In addition, the exposure formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern as shown in the upper part appearing in the lower part. The pattern status is shown for exposure areas 32 and 32. In FIG. 16, for convenience of explanation
12 21  12 21
ため、使用可能なマイクロミラー 58の 1列おきの露光パターンを、画素列群 Aによる 露光パターンと画素列群 Bによる露光パターンとに分けて示したが、実際の被露光面 上における露光パターンは、これら 2つの露光パターンを重ね合わせたものである。  Therefore, every other exposure pattern of the micromirrors 58 that can be used is divided into an exposure pattern based on pixel array group A and an exposure pattern based on pixel array group B, but the actual exposure pattern on the exposed surface is These two exposure patterns are superimposed.
[0194] 図 16に示したとおり、露光ヘッド 30 と 30 の間の相対位置の、理想的な状態から  [0194] From the ideal state of the relative position between exposure heads 30 and 30, as shown in FIG.
12 21  12 21
のずれの結果として、画素列群 Aによる露光パターンと画素列群 Bによる露光パター ンとの双方で、露光エリア 32 と 32 の前記露光ヘッドの走査方向と直交する座標  As a result of the shift, the coordinates orthogonal to the scanning direction of the exposure head in the exposure areas 32 and 32 in both the exposure pattern by the pixel column group A and the exposure pattern by the pixel column group B.
12 21  12 21
軸上で重複する露光領域にお!、て、理想的な 2重露光の状態よりも露光過多な領域 が生じていることが判る。  It can be seen that there are overexposed areas in the overlapping exposure areas on the axis than in the ideal double exposure state.
[0195] 前記光点位置検出手段としてスリット 28及び光検出器の組を用い、露光ヘッド 30  [0195] As the light spot position detecting means, a set of a slit 28 and a light detector is used, and an exposure head 30 is used.
12 ついては露光エリア 32 内の光点 P (l, 1)と P (256, 1)の位置を、露光ヘッド 30  12, the positions of the light spots P (l, 1) and P (256, 1) in the exposure area 32
12 21 については露光エリア 32 内の光点 P (l, 1024)と P (256, 1024)の位置を検出し  For 12 21, the positions of light spots P (l, 1024) and P (256, 1024) within the exposure area 32 are detected.
21  twenty one
、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。  The angle formed by the inclination angle of the straight line connecting them and the scanning direction of the exposure head was measured.
[0196] 実傾斜角度 Θ 'を用いて、下記式 4 ttan 0 (式 4) [0196] Using the actual inclination angle Θ ', the following equation 4 ttan 0 (Equation 4)
の関係を満たす値 tに最も近い自然数 Tを、露光ヘッド 30 と 30 のそれぞれについ  The natural number T that is closest to the value t that satisfies this relationship is assigned to each of the exposure heads 30 and 30.
12 21  12 21
て導出した。露光ヘッド 30 については T= 254、露光ヘッド 30 については Τ= 25  Derived. T = 254 for exposure head 30, 、 = 25 for exposure head 30
12 21  12 21
5がそれぞれ導出された。その結果、図 17において斜線で覆われた部分 78及び 80 を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。  5 were derived respectively. As a result, the micromirrors constituting the portions 78 and 80 covered with diagonal lines in FIG. 17 were identified as micromirrors that are not used during the main exposure.
[0197] その後、図 17において斜線で覆われた領域 78及び 80を構成する光点以外の光 点に対応するマイクロミラーに関して、同様にして図 17にお 、て斜線で覆われた領 域 82及び網掛けで覆われた領域 84を構成する光点に対応するマイクロミラーが特 定され、本露光時に使用しないマイクロミラーとして追加された。 [0197] Thereafter, with respect to the micromirror corresponding to the light spots other than the light spots constituting the areas 78 and 80 covered by the oblique lines in FIG. 17, the area 82 covered by the oblique lines in FIG. Also, micromirrors corresponding to the light spots constituting the shaded area 84 were identified and added as micromirrors that are not used during the main exposure.
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描 素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマ イク口ミラーは、実質的に露光に関与しな 、ように制御した。  For the micromirrors identified as not used at the time of exposure, a signal for setting the angle of the always-off state is sent by the pixel unit control means, and these microphone mirrors are substantially It was controlled so that it was not involved in exposure.
これにより、露光エリア 32 と 32 のうち、複数の前記露光ヘッドで形成された被露  As a result, the exposure areas formed by a plurality of the exposure heads in the exposure areas 32 and 32.
12 21  12 21
光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域にお!、て、理想的 な 2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最 小とすることができる。  Minimize the total area of overexposed and underexposed areas for ideal double exposure in each area other than the head-to-head connection area, which is the overlapping exposure area on the optical surface. It can be.
[0198] 現像工程 [0198] Development process
室温にて 10分間静置した後、前記積層体力もポリエチレンテレフタレートフィルム( 支持体)を剥がし取り、銅張積層板上の感光層の全面に、アルカリ現像液として、 1質 量%炭酸ソーダ水溶液を用い、 30°Cにて 60秒間シャワー現像し、未硬化の領域を 溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。  After standing at room temperature for 10 minutes, the laminate strength was also peeled off from the polyethylene terephthalate film (support), and a 1% by weight sodium carbonate aqueous solution was added as an alkaline developer to the entire surface of the photosensitive layer on the copper clad laminate. Used and shower developed for 60 seconds at 30 ° C to dissolve and remove uncured areas. Thereafter, it was washed with water and dried to form a permanent pattern.
[0199] 硬化処理工程 [0199] Curing process
前記永久パターンが形成された積層体の全面に対して、 160°Cで 30分間、加熱処 理を施し、永久パターンの表面を硬化し、膜強度を高めた。該永久パターンを目視 で観察したところ、永久パターンの表面に気泡は認められな力つた。  The entire surface of the laminate on which the permanent pattern was formed was heated at 160 ° C. for 30 minutes to cure the surface of the permanent pattern and increase the film strength. When the permanent pattern was visually observed, no bubbles were observed on the surface of the permanent pattern.
また、前記永久パターン形成済みのプリント配線基板に対して、常法に従い金メッ キを行った後、水溶性フラックス処理を行った。次いで、 260°Cに設定された半田槽 に 5秒間にわたって、 3回浸漬し、フラックスを水洗で除去した。そして、該フラックス 除去後の永久パターンについて、 JIS K— 5400に基づいて、鉛筆硬度を測定した その結果、鉛筆硬度は 5H以上であった。目視観察を行ったところ、前記永久バタ ーンにおける硬化膜の剥がれ、ふくれ、変色は認められな力つた。 Further, the printed wiring board on which the permanent pattern had been formed was subjected to gold plating according to a conventional method and then subjected to a water-soluble flux treatment. Next, it was immersed three times in a solder bath set at 260 ° C. for 5 seconds, and the flux was removed by washing with water. And the flux About the permanent pattern after removal, pencil hardness was measured based on JIS K-5400. As a result, the pencil hardness was 5H or more. As a result of visual observation, peeling of the cured film in the permanent pattern, blistering, and discoloration were observed.
[0200] 前記形成した永久パターンについて、(a)露光感度、(b)解像度、(c)エッジラフネ スの評価を行った。結果を表 1に示す。 [0200] The formed permanent pattern was evaluated for (a) exposure sensitivity, (b) resolution, and (c) edge roughness. The results are shown in Table 1.
[0201] < (a)露光感度 > [0201] <(a) Exposure sensitivity>
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明する パターン形成装置を用いて、 0. lmj/cm2から 21/2倍間隔で 200mj/cm2までの 光エネルギー量の異なる光を照射して 2重露光し、前記感光層の一部の領域を硬化 させた。室温にて 10分間静置した後、前記積層体から前記支持体を剥がし取り、銅 張積層板上の感光層の全面に、 30°Cの 1質量%炭酸ナトリウム水溶液をスプレー圧 0. 15MPaにて前記(1)で求めた最短現像時間の 2倍の時間スプレーし、未硬化の 領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、 硬化層の厚みとの関係をプロットして感度曲線を得た。該感度曲線から、硬化領域の 厚みが露光前の感光層と同じ 35 μ mとなった時の光エネルギー量を、感光層を硬化 させるために必要な光エネルギー量とした。 With respect to the photosensitive layer in the prepared laminate, from the support side, using a pattern forming apparatus described below, a light energy amount from 0. lmj / cm 2 to 200 mj / cm 2 at 2 1/2 times intervals is used. Double exposure was performed by irradiating different light, and a part of the photosensitive layer was cured. After standing at room temperature for 10 minutes, the support was peeled off from the laminate, and a 1 mass% sodium carbonate aqueous solution at 30 ° C was sprayed to a spray pressure of 0.15 MPa over the entire surface of the photosensitive layer on the copper clad laminate. Then, spraying was performed for twice the shortest development time determined in (1) above, and the uncured area was dissolved and removed, and the thickness of the remaining cured area was measured. Subsequently, the relationship between the light irradiation amount and the thickness of the cured layer was plotted to obtain a sensitivity curve. From the sensitivity curve, the amount of light energy when the thickness of the cured region was 35 μm, which was the same as that of the photosensitive layer before exposure, was determined as the amount of light energy necessary for curing the photosensitive layer.
この結果、前記感光層を硬化させるために必要な光エネルギー量は、 25miZcm2 であった。 As a result, the amount of light energy necessary for curing the photosensitive layer was 25 miZcm 2 .
[0202] < (b)解像度 > [0202] <(b) Resolution>
得られた前記永久パターン形成済みのプリント配線基板の表面を光学顕微鏡で観 察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とし た。該解像度は数値が小さ 、ほど良好である。  The surface of the obtained printed circuit board on which the permanent pattern had been formed was observed with an optical microscope, and the minimum hole diameter with no residual film in the hole portion of the cured layer pattern was measured. The smaller the numerical value, the better the resolution.
[0203] < (c)エッジラフネス > [0203] <(c) Edge roughness>
前記感光層に、前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直 交する方向の横線パターンが形成されるように照射して 2重露光し、永久パターンを 形成した。得られた永久パターンのうち、ライン幅 40 mのラインの任意の 5箇所に ついて、レーザ顕微鏡 (VK— 9500、キーエンス(株)製;対物レンズ 50倍)を用いて 観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇 所 (谷底部)との差を絶対値として求め、観察した 5箇所の平均値を算出し、これをェ ッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ま しい。 The patterning device was used to irradiate the photosensitive layer so that a horizontal line pattern in a direction perpendicular to the scanning direction of the exposure head was formed, and double exposure was performed to form a permanent pattern. Of the obtained permanent pattern, a laser microscope (VK-9500, manufactured by Keyence Corporation; objective lens 50 times) was used for any five points on a line with a line width of 40 m. Observe and calculate the absolute value of the difference between the most swollen point (top) and the narrowest point (valley) at the edge position in the field of view. This was called edge roughness. The edge roughness is preferable because a smaller value indicates better performance.
[0204] (実施例 2) [0204] (Example 2)
実施例 1において、感光性組成物の組成を、下記組成に代え、常法に従い、ロー ルミルで混練を行った以外は、実施例 1と同様な方法により、感光性組成物を調製し た。  In Example 1, the photosensitive composition was prepared in the same manner as in Example 1 except that the composition of the photosensitive composition was changed to the following composition and kneaded by a roll mill according to a conventional method.
[0205] 感光性組成物の調製  [0205] Preparation of photosensitive composition
下記組成に基づいて、感光性組成物を調製した。  A photosensitive composition was prepared based on the following composition.
[感光性組成物]  [Photosensitive composition]
硫酸バリウム (堺ィ匕学工業社製、 B30) 50. 00質量部 Barium sulfate (manufactured by Zhiyogaku Kogyo Co., B30) 50.00 parts by mass
PCR— 1157H (日本化薬社製、エポキシアタリレート 61. 8質量0 /0 エチレン グリコールモノェチルエーテルアタリレート溶液) 81. 70質量部 ジペンタエリトリトールへキサアタリレート 13. 16質量部PCR- 1157H (manufactured by Nippon Kayaku Co., Ltd., epoxy Atari rate 61.8 mass 0/0 ethylene glycol monomethyl E chill ether Atari acetate solution) 81. hexa Atari rate 13.16 parts by the 70 parts by weight of dipentaerythritol
IRGACURE819 (チノく'スペシャルティ一 ·ケミカルズ製) 6. 82質量部 YX4000 (ジャパンエポキシレジン社製、エポキシ榭脂) 20. 00質量部 RE306 (日本化薬社製、エポキシ榭脂) 5. 00質量部 ジシアンジアミド 0. 13質量言 IRGACURE819 (Chinoku Specialty Chemicals) 6. 82 parts by mass YX4000 (Japan Epoxy Resin, epoxy resin) 20.00 parts RE306 (Nippon Kayaku, epoxy resin) 5.00 parts by mass Dicyandiamide 0.13 Mass
ハイドロキノンモノメチルエーテル 0. 024質量部 フタロシアニングリーン 0. 42質量部  Hydroquinone monomethyl ether 0.024 parts by mass Phthalocyanine green 0.42 parts by mass
[0206] 感光性フィルムの製造  [0206] Production of photosensitive film
得られた感光性組成物を用いて、実施例 1と同様にして、感光性フィルムを製造し た。  Using the obtained photosensitive composition, a photosensitive film was produced in the same manner as in Example 1.
[0207] 永久パターンの形成  [0207] Formation of permanent pattern
得られた感光性フィルムを用いて、永久パターンを形成した。該永久パターンの表 面を目視で観察したところ、永久パターンにおける硬化膜の表面に気泡は認められ なかった。 [0208] 得られた永久パターンについて、実施例 1と同様にして、(a)露光感度、(b)解像度A permanent pattern was formed using the obtained photosensitive film. When the surface of the permanent pattern was visually observed, no bubbles were observed on the surface of the cured film in the permanent pattern. [0208] The obtained permanent pattern was subjected to (a) exposure sensitivity and (b) resolution in the same manner as in Example 1.
、(c)エッジラフネスの評価を行った。結果を表 1に示す。 (C) Edge roughness was evaluated. The results are shown in Table 1.
[0209] (比較例 1) [0209] (Comparative Example 1)
実施例 1のパターン形成装置において、前記式 3に基づき N= 1として設定傾斜角 度 Θを算出し、前記式 4に基づき ttan 0 ' = 1の関係を満たす値 tに最も近い自然数 Tを導出し、 N重露光 (N= l)を行ったこと以外は、実施例 1と同様にして (a)露光感 度、(b)解像度、(c)エッジラフネスの評価を行った。結果を表 1に示す。  In the pattern forming apparatus of the first embodiment, the set inclination angle Θ is calculated with N = 1 based on Equation 3 above, and the natural number T closest to the value t satisfying the relationship of ttan 0 ′ = 1 is derived based on Equation 4 above. Then, except for performing N double exposure (N = 1), (a) exposure sensitivity, (b) resolution, and (c) edge roughness were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0210] 比較例 1における被露光面の露光の状態の例を、図 35に示した。図 35においては 、ステージ 14を静止させた状態で感光層 12の被露光面上に投影される、一の露光 ヘッド(例えば、 30 )が有する DMD36の使用可能なマイクロミラー 58からの光点群 [0210] An example of the state of exposure of the exposed surface in Comparative Example 1 is shown in FIG. In FIG. 35, a light spot group from the micromirror 58 that can be used by the DMD 36 of one exposure head (for example, 30) projected onto the exposed surface of the photosensitive layer 12 with the stage 14 being stationary.
12  12
のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターン が現れている状態でステージ 14を移動させて連続露光を行った際に、被露光面上 に形成される露光パターンの状態を、一の露光エリア(例えば、 32 )  Showed the pattern. In addition, the state of the exposure pattern formed on the exposed surface when the stage 14 is moved and continuous exposure is performed with the light spot group pattern shown in the upper part appearing in the lower part. A single exposure area (eg 32)
12 について示し た。  12 is shown.
前記一の露光ヘッド (例えば、 30  Said one exposure head (e.g. 30
12 )の理想的な状態からのずれの結果として、被 露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素 列の傾斜角度が均一ではなくなる「角度歪み」が生じて 、る。図 35の例に現れて 、る 角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど大きぐ図の右方の 列ほど小さくなつている形態の歪みである。この角度歪みの結果として、図の左方に 示した被露光面上に露光過多となる領域が生じ、図の右方に示した被露光面上に露 光不足となる領域が生じる。  12) is an example of pattern distortion that appears on the exposed surface as a result of deviation from the ideal state, and the angle of inclination of each pixel column projected on the exposed surface is not uniform. Occurs. The angular distortion that appears in the example of FIG. 35 is a distortion in which the inclination angle with respect to the scanning direction is larger in the left column of the figure and smaller in the right column of the figure. As a result of this angular distortion, an overexposed region appears on the exposed surface shown on the left side of the figure, and an underexposed region appears on the exposed surface shown on the right side of the figure.
[0211] [表 1] [0211] [Table 1]
Figure imgf000066_0001
Figure imgf000066_0001
[0212] 表 1の結果から、比較例 1の配線パターンと比較して、 2重露光における解像度の ばらつきと露光むらを補正した実施例 1及び 2の永久パターンは高精細であり、エツ ジラフネスも小さ 、ことがわかった。 [0212] From the results in Table 1, compared with the wiring pattern of Comparative Example 1, the resolution of double exposure It was found that the permanent patterns of Examples 1 and 2 in which variations and exposure unevenness were corrected had high definition and low edge roughness.
産業上の利用可能性 Industrial applicability
前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記感光層 の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起因する パターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面上に形 成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより、パッ ケージ基板を含むプリント配線基板分野における永久パターン (層間絶縁膜、ソルダ 一レジストパターン等の保護膜)を高精細に、かつ、効率よく形成可能であるため、高 精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特 に高精細な永久パターンの形成に好適に使用することができる。  Due to deviations in the mounting position and mounting angle of the exposure head, various aberrations of the optical system between the image area and the exposed surface of the photosensitive layer, and distortion of the pattern due to the distortion of the image area itself. Permanent patterns in the field of printed wiring boards, including package substrates, by leveling out the effects of variations in exposure and reducing variations in resolution and density of the pattern formed on the exposed surface of the photosensitive layer (Protective films such as interlayer insulating films, solder resist patterns, etc.) can be formed with high definition and efficiency, so it can be suitably used for forming various patterns that require high-definition exposure. In particular, it can be suitably used for forming a high-definition permanent pattern.

Claims

請求の範囲 The scope of the claims
[1] バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤と、を少なくとも含む感 光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、  [1] A photosensitive layer is formed on the surface of a substrate using a photosensitive composition containing at least a binder, a polymerizable compound, a photopolymerization initiator, and a thermal crosslinking agent. ,
光照射手段、及び前記光照射手段からの光を受光し出射する n個 (ただし、 nは 2 以上の自然数)の 2次元状に配列された描素部を有し、パターン情報に応じて前記 描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査 方向に対し、前記描素部の列方向が所定の設定傾斜角度 Θをなすように配置され た露光ヘッドを用い、  Light irradiating means, and n (where n is a natural number of 2 or more) two-dimensionally arranged pixel elements that receive and emit light from the light irradiating means. An exposure head provided with a light modulation means capable of controlling a picture element portion, wherein the exposure element is arranged such that a column direction of the picture element portion forms a predetermined set inclination angle Θ with respect to a scanning direction of the exposure head. Using the head
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部の うち、 N重露光 (ただし、 Nは 2以上の自然数)に使用する前記描素部を指定し、 前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段によ り指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、 前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現 像することを特徴とする永久パターン形成方法。  With respect to the exposure head, the used pixel part specifying means designates the pixel part to be used for N double exposure (where N is a natural number of 2 or more) out of the usable pixel parts, and the exposure head The pixel part is controlled by the pixel part control unit so that only the pixel part specified by the used pixel part specifying unit is involved in exposure, and A permanent pattern forming method, wherein exposure is performed by moving the exposure head relative to a scanning direction to form an image.
[2] 感光層の形成が、感光性組成物を基材の表面に塗布し、乾燥することにより行わ れる請求項 1に記載の永久パターン形成方法。 [2] The method for forming a permanent pattern according to [1], wherein the formation of the photosensitive layer is performed by applying the photosensitive composition to the surface of the substrate and drying.
[3] 感光層の形成が、支持体と該支持体上に感光性組成物が積層されてなる感光層と を有する感光性フィルムを、加熱及び加圧の少なくとも!/ヽずれかの下にお!/、て基材 の表面に積層することにより行われる請求項 1に記載の永久パターン形成方法。 [3] The photosensitive layer is formed by heating or pressurizing a photosensitive film having a support and a photosensitive layer in which a photosensitive composition is laminated on the support! 2. The method for forming a permanent pattern according to claim 1, wherein the permanent pattern is formed by laminating on the surface of the base material.
[4] 支持体が、合成樹脂を含み、かつ透明である請求項 3に記載の永久パターン形成 方法。 [4] The method for forming a permanent pattern according to [3], wherein the support contains a synthetic resin and is transparent.
[5] 支持体が、長尺状である請求項 3から 4のいずれかに記載の永久パターン形成方 法。  [5] The method for forming a permanent pattern according to any one of [3] to [4], wherein the support has an elongated shape.
[6] 感光性フィルム力 長尺状であり、ロール状に巻かれてなる請求項 3から 5のいずれ かに記載の永久パターン形成方法。  [6] The method for forming a permanent pattern according to any one of [3] to [5], wherein the photosensitive film force is long and wound in a roll.
[7] 感光性フィルム力 感光層上に保護フィルムを有してなる請求項 3から 6のいずれか に記載の永久パターン形成方法。 [7] Photosensitive film force The permanent pattern forming method according to any one of [3] to [6], wherein a protective film is provided on the photosensitive layer.
[8] 感光層の厚みが、 3- 100 μ mである請求項 1から 7のいずれかに記載の永久パタ ーン形成方法。 8. The permanent pattern according to any one of claims 1 to 7, wherein the photosensitive layer has a thickness of 3 to 100 μm. Forming method.
[9] 基材が、配線形成済みのプリント配線基板である請求項 1から 8のいずれか〖こ記載 の永久パターン形成方法。  [9] The permanent pattern forming method according to any one of [1] to [8], wherein the base material is a printed wiring board on which wiring has been formed.
[10] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露 光に関与する描素部のうち、前記ヘッド間つなぎ領域における N重露光を実現する ために使用する前記描素部を指定する請求項 1から 9のいずれかに記載の永久バタ ーン形成方法。  [10] The exposure is performed by a plurality of exposure heads, and the used pixel part designation means is involved in the exposure of the head-to-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. 10. The permanent pattern forming method according to claim 1, wherein among the picture element parts, the picture element part used for realizing N double exposure in the head-to-head connection region is designated.
[11] 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光 ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外 の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域における N重 露光を実現するために使用する前記描素部を指定する請求項 10に記載の永久バタ ーン形成方法。  [11] The exposure is performed by a plurality of exposure heads, and the used picture element specifying means is involved in the exposure other than the inter-head connection area, which is an overlapping exposure area on the exposed surface formed by the plurality of exposure heads. 11. The permanent pattern forming method according to claim 10, wherein the pixel part to be used for realizing N-fold exposure in an area other than the inter-head connecting area among the picture element parts is designated.
[12] 設定傾斜角度 Θ力 N重露光数の N、描素部の列方向の個数 s、前記描素部の列 方向の間隔 p、及び露光ヘッドを傾斜させた状態にお!、て該露光ヘッドの走査方向 と直交する方向に沿った描素部の列方向のピッチ δに対し、次式、 spsin θ ≥Ν δ  [12] Set tilt angle Θ force N N number of double exposures, number s of pixel portions in the row direction, interval p of the pixel portions in the row direction, and the exposure head in a tilted state! For the pitch δ in the column direction of the pixel portion along the direction orthogonal to the scanning direction of the exposure head, the following equation is given: spsin θ ≥Ν δ
ideal を満たす 0  Satisfy ideal 0
iaealに対し、 の  against iaeal
meal 関係を満たすように設定される請求項 1から 11の ヽずれかに記載の永久パターン形成方法。  The method for forming a permanent pattern according to any one of claims 1 to 11, which is set to satisfy a meal relationship.
[13] 使用描素部指定手段が、  [13] Use pixel part designation means
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点 位置を、被露光面上において検出する光点位置検出手段と、  A light spot position detecting means for detecting a light spot position as a pixel unit generated by the picture element unit and constituting an exposure area on the exposed surface on the exposed surface;
前記光点位置検出手段による検出結果に基づき、 N重露光を実現するために使用 する描素部を選択する描素部選択手段と  Based on the detection result by the light spot position detecting means, a pixel part selecting means for selecting a picture element part to be used for realizing N double exposure;
を備える請求項 1から 12のいずれかに記載の永久パターン形成方法。  A permanent pattern forming method according to any one of claims 1 to 12.
[14] 使用描素部指定手段が、 N重露光を実現するために使用する使用描素部を、行単 位で指定する請求項 1から 13のいずれかに記載の永久パターン形成方法。 [14] The permanent pattern forming method according to any one of [1] to [13], wherein the used pixel part specifying means specifies the used pixel part to be used for realizing the N double exposure in a row unit.
[15] 光点位置検出手段が、検出した少なくとも 2つの光点位置に基づき、露光ヘッドを 傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向 とがなす実傾斜角度 Θ 'を特定し、描素部選択手段が、前記実傾斜角度 Θ 'と設定 傾斜角度 Θとの誤差を吸収するように使用描素部を選択する請求項 13から 14のい ずれかに記載の永久パターン形成方法。 [15] Based on at least two light spot positions detected by the light spot position detection means, the light spot column direction on the surface to be exposed and the scanning direction of the exposure head when the exposure head is tilted 15. The actual inclination angle Θ ′ formed by the two is specified, and the picture element selection means selects the pixel part to be used so as to absorb an error between the actual inclination angle Θ ′ and the set inclination angle Θ. The permanent pattern forming method according to any one of the above.
[16] 実傾斜角度 Θ 'が、露光ヘッドを傾斜させた状態における被露光面上の光点の列 方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最 大値、及び最小値の 、ずれかである請求項 15に記載の永久パターン形成方法。  [16] The actual inclination angle Θ ′ is an average value, a median value, and a plurality of actual inclination angles formed by the row direction of the light spots on the surface to be exposed and the scanning direction of the exposure head when the exposure head is inclined. 16. The method for forming a permanent pattern according to claim 15, wherein the maximum value and the minimum value are different from each other.
[17] 描素部選択手段が、実傾斜角度 Θ 'に基づき、 ttan Θ ' =N (ただし、 Nは N重露光 数の Nを表す)の関係を満たす tに近い自然数 Tを導出し、 m行 (ただし、 mは 2以上 の自然数を表す)配列された描素部における 1行目から前記 T行目の前記描素部を 、使用描素部として選択する請求項 15から 16のいずれかに記載の永久パターン形 成方法。  [17] The pixel part selection means derives a natural number T close to t that satisfies the relationship of ttan Θ '= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ' 17. The pixel part from the 1st line to the T-th line in the arrayed picture element part arranged in m rows (where m represents a natural number of 2 or more) is selected as the use picture element part. The method for forming a permanent pattern according to crab.
[18] 描素部選択手段が、実傾斜角度 Θ 'に基づき、 ttan Θ ' =N (ただし、 Nは N重露光 数の Nを表す)の関係を満たす tに近い自然数 Tを導出し、 m行 (ただし、 mは 2以上 の自然数を表す)配列された描素部における、 (T+ 1)行目から m行目の前記描素 部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描 素部として選択する請求項 15から 16のいずれかに記載の永久パターン形成方法。  [18] The pixel part selection means derives a natural number T close to t that satisfies the relationship ttan Θ '= N (where N represents N of N double exposure numbers) based on the actual tilt angle Θ' In the pixel part arranged in m rows (where m represents a natural number of 2 or more), the pixel parts in the (T + 1) line to the m-th line are identified as unused pixel parts, The permanent pattern forming method according to claim 15, wherein the pixel part excluding the used pixel part is selected as the used pixel part.
[19] 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領 域を少なくとも含む領域にぉ ヽて、  [19] The pixel part selection means is directed to an area including at least an overlapped exposure area on the exposed surface formed by a plurality of pixel part rows,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、使用描素部を選択する手段、  (1) Means for selecting a pixel part to be used so that the total area of an overexposed area and an underexposed area is minimized with respect to an ideal N double exposure.
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、使用描素部を選択する手段、  (2) Means for selecting a pixel part to be used so that the number of pixel units in an overexposed area is equal to the number of pixel units in an underexposed area for an ideal N double exposure,
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、使用描素部を選択する手段、及び  (3) Means for selecting a pixel part to be used so that the area of an overexposed area is minimized and an underexposed area does not occur for an ideal N-fold exposure, and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じな 、ように、使用描素部を選択する手段  (4) Means for selecting the pixel part to be used so that the area of the underexposed area is minimized and the overexposed area does not occur with respect to the ideal N double exposure.
のいずれかである請求項 13から 18に記載の永久パターン形成方法。  The method for forming a permanent pattern according to any one of claims 13 to 18.
[20] 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領 域であるヘッド間つなぎ領域にぉ ヽて、 [20] The pixel part selection means has an overlapping exposure area on the exposed surface formed by a plurality of exposure heads. Go to the connecting area between the heads,
(1)理想的な N重露光に対し、露光過多となる領域、及び露光不足となる領域の合 計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、 不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として 選択する手段、  (1) For the ideal N double exposure, from the pixel part involved in the exposure of the inter-head connecting area, the total area of the overexposed and underexposed areas is minimized. Means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(2)理想的な N重露光に対し、露光過多となる領域の描素単位数と、露光不足となる 領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する 描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用 描素部として選択する手段、  (2) In relation to the ideal N double exposure, the number of pixel units in the overexposed area is equal to the number of pixel units in the underexposed area. A means for identifying an unused pixel part from the pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
(3)理想的な N重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光 不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、及び、  (3) For the ideal N-double exposure, the area of the overexposed area is minimized, and the pixel part involved in the exposure of the connecting area between the heads is used so that the underexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part; and
(4)理想的な N重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光 過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部 から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部 として選択する手段、  (4) For the ideal N-fold exposure, the area of the underexposed area is minimized, and the pixel part involved in the exposure of the connection area between the heads is used so that the overexposed area does not occur. A means for identifying an unused pixel part and selecting the pixel part excluding the unused pixel part as a used pixel part;
のいずれかである請求項 13から 19のいずれかに記載の永久パターン形成方法。  The permanent pattern forming method according to claim 13, wherein the permanent pattern forming method is any one of the above.
[21] 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描 素部のうち、 N重露光の Nに対し、(N— 1)列毎の描素部列を構成する前記描素部 のみを使用して参照露光を行う請求項 13から 20のいずれかに記載の永久パターン 形成方法。 [21] In order to specify the used pixel part in the used pixel part specifying means, among the pixel parts that can be used, N (N-1) pixel part columns for every N exposures 21. The method for forming a permanent pattern according to claim 13, wherein reference exposure is performed using only the picture element portion constituting.
[22] 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描 素部のうち、 N重露光の Nに対し、 1ZN行毎の描素部行を構成する前記描素部の みを使用して参照露光を行う請求項 13から 20のいずれかに記載の永久パターン形 成方法。  [22] In order to specify the used pixel part in the used pixel part specifying means, among the usable pixel parts, for the N-exposure N, the pixel part row constituting each 1ZN line is configured. 21. The method for forming a permanent pattern according to claim 13, wherein the reference exposure is performed using only the pixel part.
[23] 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに 描素部選択手段として前記光検出器と接続された演算装置を有する請求項 1から 22 の!、ずれかに記載の永久パターン形成方法。 23. The used pixel part specifying means has a slit and a photodetector as light spot position detecting means, and an arithmetic unit connected to the photodetector as a pixel part selecting means. The permanent pattern forming method described in any of the above.
[24] N重露光の N力 3以上 7以下の自然数である請求項 1から 23の!、ずれかに記載 の永久パターン形成方法。 [24] The method for forming a permanent pattern according to any one of [1] to [23] above, wherein the N force of N double exposure is a natural number of 3 or more and 7 or less.
[25] 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信 号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成 手段が生成した制御信号に応じて変調させる請求項 1から 24のいずれかに記載の 永久パターン形成方法。 [25] The light modulation means further includes pattern signal generation means for generating a control signal based on the pattern information to be formed, and the control generated by the pattern signal generation means is generated by the light irradiation means. The method for forming a permanent pattern according to any one of claims 1 to 24, wherein modulation is performed according to a signal.
[26] パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により 実現できる対応部分の寸法と一致するように前記パターン情報を変換する変換手段 を有する請求項 1から 25のいずれかに記載の永久パターン形成方法。 [26] The conversion means for converting the pattern information so that the dimension of the predetermined part of the pattern represented by the pattern information matches the dimension of the corresponding part that can be realized by the designated pixel part to be used. The permanent pattern formation method in any one.
[27] 光変調手段が、空間光変調素子である請求項 1から 26のいずれかに記載の永久 パターン形成方法。 27. The permanent pattern forming method according to claim 1, wherein the light modulation means is a spatial light modulation element.
[28] 空間光変調素子が、デジタル ·マイクロミラー ·デバイス (DMD)である請求項 27に 記載の永久パターン形成方法。  28. The permanent pattern forming method according to claim 27, wherein the spatial light modulation element is a digital micromirror device (DMD).
[29] 描素部が、マイクロミラーである請求項 1から 28のいずれかに記載の永久パターン 形成方法。 [29] The permanent pattern forming method according to any one of [1] to [28], wherein the picture element portion is a micromirror.
[30] 光照射手段が、 2以上の光を合成して照射可能である請求項 1から 29のいずれか に記載の永久パターン形成方法。  30. The permanent pattern forming method according to claim 1, wherein the light irradiation means can synthesize and irradiate two or more lights.
[31] 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザから それぞれ照射されたレーザビーム^^光して前記マルチモード光ファイバに結合さ せる集合光学系とを有する請求項 1から 30のいずれかに記載の永久パターン形成 方法。 [31] The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that couples the laser beams emitted from the plurality of lasers to the multimode optical fiber. The permanent pattern formation method according to claim 1.
[32] レーザ光の波長が 395〜415nmである請求項 31に記載の永久パターン形成方法  32. The permanent pattern forming method according to claim 31, wherein the wavelength of the laser beam is 395 to 415 nm.
[33] 現像が行われた後、感光層に対して硬化処理を行う請求項 1から 32のいずれかに 記載の永久パターン形成方法。 [33] The permanent pattern forming method according to any one of [1] to [32], wherein after the development, the photosensitive layer is cured.
[34] 硬化処理が、全面露光処理及び 120〜200°Cで行われる全面加熱処理の少なくと もいずれかである請求項 33に記載の永久パターン形成方法。 [35] 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくとも ヽずれかを形成 する請求項 1から 34のいずれかに記載の永久パターン形成方法。 34. The permanent pattern forming method according to claim 33, wherein the curing process is at least one of an entire surface exposure process and an entire surface heating process performed at 120 to 200 ° C. [35] The permanent pattern forming method according to any one of [1] to [34], wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
PCT/JP2006/311503 2005-06-28 2006-06-08 Permanent patterning method WO2007000885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005188722A JP2007010785A (en) 2005-06-28 2005-06-28 Method for forming permanent pattern
JP2005-188722 2005-06-28

Publications (1)

Publication Number Publication Date
WO2007000885A1 true WO2007000885A1 (en) 2007-01-04

Family

ID=37595139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311503 WO2007000885A1 (en) 2005-06-28 2006-06-08 Permanent patterning method

Country Status (5)

Country Link
JP (1) JP2007010785A (en)
KR (1) KR20080020591A (en)
CN (1) CN101189557A (en)
TW (1) TW200707100A (en)
WO (1) WO2007000885A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321586A1 (en) * 2010-02-27 2012-12-20 Pieter Van Der Bijl Surfactant composition
US9513551B2 (en) 2009-01-29 2016-12-06 Digiflex Ltd. Process for producing a photomask on a photopolymeric surface

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903479B2 (en) 2006-04-18 2012-03-28 富士フイルム株式会社 Metal pattern forming method, metal pattern, and printed wiring board
JP5182913B2 (en) * 2006-09-13 2013-04-17 大日本スクリーン製造株式会社 Pattern drawing apparatus and pattern drawing method
CN101963756B (en) * 2009-06-26 2014-12-17 罗门哈斯电子材料有限公司 Methods of forming electronic devices
DE102009046809B4 (en) * 2009-11-18 2019-11-21 Kleo Ag exposure system
JP5707779B2 (en) * 2010-08-24 2015-04-30 日立化成株式会社 Photosensitive resin composition, photosensitive film, rib pattern forming method, hollow structure forming method, and electronic component
IN2015DN01909A (en) * 2012-08-28 2015-08-07 Nikon Corp
CN102890426B (en) * 2012-09-18 2014-05-14 天津芯硕精密机械有限公司 Oblique scan display method in direct writing photoetching system
CN105068384B (en) * 2015-08-12 2017-08-15 杭州思看科技有限公司 A kind of laser projector time for exposure control method of hand-held laser 3 d scanner
WO2018113917A1 (en) * 2016-12-20 2018-06-28 Ev Group E. Thallner Gmbh Device and method for exposing a light-sensitive layer
TWI725468B (en) * 2019-07-05 2021-04-21 新代科技股份有限公司 Light-heating curing apparatus

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261388A (en) * 1994-03-25 1995-10-13 Hitachi Chem Co Ltd Production of photosensitive resin composition, photosensitive element using the same and plating resist
JPH086246A (en) * 1994-06-15 1996-01-12 Tokyo Ohka Kogyo Co Ltd Heat resistant photosensitive resin composition
JPH09152660A (en) * 1995-09-27 1997-06-10 Fuji Photo Film Co Ltd Image printer
JP2000159857A (en) * 1998-11-25 2000-06-13 Nippon Kayaku Co Ltd Radiation-sensitive polyester resin and negative resist composition using same
JP2001040174A (en) * 1999-07-29 2001-02-13 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and hardened products therefrom
JP2002303974A (en) * 1997-11-28 2002-10-18 Hitachi Chem Co Ltd Photo-curable resin composition and photosensitive element using the same
JP2003295326A (en) * 2002-04-02 2003-10-15 Noritsu Koki Co Ltd Printer and print adjusting method
JP2003332221A (en) * 2002-05-16 2003-11-21 Dainippon Screen Mfg Co Ltd Exposure system
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004009595A (en) * 2002-06-07 2004-01-15 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004181723A (en) * 2002-12-02 2004-07-02 Fuji Photo Film Co Ltd Drawing head, drawing system, and drawing method
JP2004326076A (en) * 2003-04-10 2004-11-18 Dainippon Screen Mfg Co Ltd Pattern drawing apparatus
JP2005003762A (en) * 2003-06-10 2005-01-06 Fuji Photo Film Co Ltd Method for identifying pixel location, method for correcting image deviation, and image forming apparatus
JP2005022250A (en) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd Image recording method and image recording apparatus
JP2005055881A (en) * 2003-07-22 2005-03-03 Fuji Photo Film Co Ltd Drawing method and drawing apparatus
JP2005062847A (en) * 2003-07-31 2005-03-10 Fuji Photo Film Co Ltd Exposure head
JP2006030966A (en) * 2004-06-17 2006-02-02 Fuji Photo Film Co Ltd Image drawing method and apparatus
JP2006030986A (en) * 2004-06-17 2006-02-02 Fuji Photo Film Co Ltd Image drawing apparatus and image drawing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006436A (en) * 1988-09-20 1991-04-09 Atochem North America, Inc. UV curable compositions for making tentable solder mask coating
DE69729659T2 (en) * 1996-02-28 2005-06-23 Johnson, Kenneth C., Santa Clara MIKROLINSEN RASTER DEVICE FOR MICROLITHOGRAPHY AND FOR CONFOCUS MICROSCOPY WITH LARGE RECORDING FIELD
US6493867B1 (en) * 2000-08-08 2002-12-10 Ball Semiconductor, Inc. Digital photolithography system for making smooth diagonal components
JP4114184B2 (en) * 2001-12-28 2008-07-09 株式会社オーク製作所 Multiple exposure drawing apparatus and multiple exposure drawing method
JP2003223007A (en) * 2002-01-30 2003-08-08 Fuji Photo Film Co Ltd Method for making lithographic printing plate
JP2004061584A (en) * 2002-07-25 2004-02-26 Fuji Photo Film Co Ltd Method for making planographic printing plate
JP4150261B2 (en) * 2003-01-14 2008-09-17 富士フイルム株式会社 Plate making method of lithographic printing plate precursor

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261388A (en) * 1994-03-25 1995-10-13 Hitachi Chem Co Ltd Production of photosensitive resin composition, photosensitive element using the same and plating resist
JPH086246A (en) * 1994-06-15 1996-01-12 Tokyo Ohka Kogyo Co Ltd Heat resistant photosensitive resin composition
JPH09152660A (en) * 1995-09-27 1997-06-10 Fuji Photo Film Co Ltd Image printer
JP2002303974A (en) * 1997-11-28 2002-10-18 Hitachi Chem Co Ltd Photo-curable resin composition and photosensitive element using the same
JP2000159857A (en) * 1998-11-25 2000-06-13 Nippon Kayaku Co Ltd Radiation-sensitive polyester resin and negative resist composition using same
JP2001040174A (en) * 1999-07-29 2001-02-13 Nippon Kayaku Co Ltd Resin composition, solder resist resin composition and hardened products therefrom
JP2003295326A (en) * 2002-04-02 2003-10-15 Noritsu Koki Co Ltd Printer and print adjusting method
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2003332221A (en) * 2002-05-16 2003-11-21 Dainippon Screen Mfg Co Ltd Exposure system
JP2004009595A (en) * 2002-06-07 2004-01-15 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004181723A (en) * 2002-12-02 2004-07-02 Fuji Photo Film Co Ltd Drawing head, drawing system, and drawing method
JP2004326076A (en) * 2003-04-10 2004-11-18 Dainippon Screen Mfg Co Ltd Pattern drawing apparatus
JP2005003762A (en) * 2003-06-10 2005-01-06 Fuji Photo Film Co Ltd Method for identifying pixel location, method for correcting image deviation, and image forming apparatus
JP2005022250A (en) * 2003-07-02 2005-01-27 Fuji Photo Film Co Ltd Image recording method and image recording apparatus
JP2005055881A (en) * 2003-07-22 2005-03-03 Fuji Photo Film Co Ltd Drawing method and drawing apparatus
JP2005062847A (en) * 2003-07-31 2005-03-10 Fuji Photo Film Co Ltd Exposure head
JP2006030966A (en) * 2004-06-17 2006-02-02 Fuji Photo Film Co Ltd Image drawing method and apparatus
JP2006030986A (en) * 2004-06-17 2006-02-02 Fuji Photo Film Co Ltd Image drawing apparatus and image drawing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513551B2 (en) 2009-01-29 2016-12-06 Digiflex Ltd. Process for producing a photomask on a photopolymeric surface
US20120321586A1 (en) * 2010-02-27 2012-12-20 Pieter Van Der Bijl Surfactant composition
US10124015B2 (en) * 2010-02-27 2018-11-13 Stellenbosch University Surfactant composition

Also Published As

Publication number Publication date
JP2007010785A (en) 2007-01-18
KR20080020591A (en) 2008-03-05
TW200707100A (en) 2007-02-16
CN101189557A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
WO2007000885A1 (en) Permanent patterning method
JP2007178500A (en) Photosensitive film, permanent pattern and method for forming the same
WO2007108171A1 (en) Photosensitive composition, photosensitive film, photosensitive layered product, method of forming permanent pattern, and printed wiring board
WO2007102289A1 (en) Photosensitive composition, photosensitive film, method for permanent pattern formation using said photosensitive composition, and printed board
JP2007199532A (en) Pattern forming method
JP2007093801A (en) Photosensitive film, permanent pattern forming method and pattern
JP2007139878A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and pattern
JP2007248925A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and printed circuit board
JP4603496B2 (en) Photosensitive composition, photosensitive film, and method for forming permanent pattern and permanent pattern
JP2006243543A (en) Method for forming permanent pattern
JP2007025275A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming same
JP2007226115A (en) Photosensitive composition, photosensitive film and permanent pattern forming method
JP2008251918A (en) Permanent pattern forming method and printed circuit board
JP2007310060A (en) Photosensitive resin composition and photosensitive film, permanent pattern forming method, and printed wiring board
JP4657955B2 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP2007232789A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and permanent pattern
JP4583916B2 (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method
JP4546368B2 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2005311305A (en) Permanent pattern forming method
JP2007171246A (en) Photosensitive composition, pattern forming material, pattern forming apparatus and pattern forming method
JP2008015364A (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed circuit board
JP2006048031A (en) Photosensitive film, process for producing the same and process for forming permanent pattern
WO2007102261A1 (en) Photosensitive composition, photosensitive film, photosensitive laminate, method of forming permanent pattern and printed board
WO2007091402A1 (en) Photosensitive composition, photosensitive film, permanent pattern forming method, and printed board
JP4546349B2 (en) Pattern forming material, pattern forming method and pattern

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019820.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077019405

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766479

Country of ref document: EP

Kind code of ref document: A1