JP2006048031A - Photosensitive film, process for producing the same and process for forming permanent pattern - Google Patents

Photosensitive film, process for producing the same and process for forming permanent pattern Download PDF

Info

Publication number
JP2006048031A
JP2006048031A JP2005198079A JP2005198079A JP2006048031A JP 2006048031 A JP2006048031 A JP 2006048031A JP 2005198079 A JP2005198079 A JP 2005198079A JP 2005198079 A JP2005198079 A JP 2005198079A JP 2006048031 A JP2006048031 A JP 2006048031A
Authority
JP
Japan
Prior art keywords
light
photosensitive
layer
exposure
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198079A
Other languages
Japanese (ja)
Inventor
Masayuki Iwasaki
政幸 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005198079A priority Critical patent/JP2006048031A/en
Publication of JP2006048031A publication Critical patent/JP2006048031A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photosensitive film that exhibits higher thermal resistance, higher surface hardness and a lower coefficient of thermal expansion, represents superior conformability to irregularities of substrate surface and less possibility of inferior adhesion of solder resist, is nearly free of lowering of exposure sensitivity, excels in storage stability, and has so satisfactory sensitivity to LDI that it can be suitably used, and to provide a process for producing the photosensitive film and a process for forming a permanent pattern. <P>SOLUTION: The photosensitive film used for forming a permanent pattern comprises a support, a cushion layer, a barrier layer capable of suppressing transfer of substances, and a photosensitive layer, in this order, wherein the photosensitive layer is formed of a photosensitive composition which comprises (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator and (D) a filler. It is preferable that interlayer adhesive force between the cushion layer and the barrier layer is smallest among interlayer adhesive forces between layers. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリント配線板等を覆う絶縁膜や保護膜としてのソルダーレジストを形成する感光性フィルム及びその製造方法、並びに該感光性フィルムを用いた永久パターンの形成方法に関する。   The present invention relates to a photosensitive film for forming an insulating film covering a printed wiring board or the like and a solder resist as a protective film, a method for producing the same, and a method for forming a permanent pattern using the photosensitive film.

一般に、半導体、コンデンサ、抵抗などの電子部品が半田付けされるプリント配線板等は、該電子部品が半田付される場所以外の部分が、絶縁膜や保護膜を形成するソルダーレジストで覆われて、隣同士の電極が導通しないように構成されている。前記ソルダーレジストは、感光性樹脂層を、フォトリソグラフィー法により、露光及び現像することにより、所定のパターンにパターンニングされてなる。
前記感光性樹脂層を露光及び現像して得られたソルダーレジストには、高耐熱性、高表面硬度、及び低熱膨張係数が要求される。
In general, printed wiring boards to which electronic components such as semiconductors, capacitors, and resistors are soldered are covered with a solder resist that forms an insulating film and a protective film, except for the places where the electronic components are soldered. The adjacent electrodes do not conduct. The solder resist is patterned into a predetermined pattern by exposing and developing the photosensitive resin layer by photolithography.
The solder resist obtained by exposing and developing the photosensitive resin layer is required to have high heat resistance, high surface hardness, and low thermal expansion coefficient.

また、近年、携帯電話やデジタルカメラ等の携帯電子機器などでは、ビルドアップ配線板等の高密度プリント配線板が用いられるようになっており、前記ソルダーレジストの微細化が進められている。
従来から、前記感光性樹脂層としては、感光性樹脂材料を有機溶媒等に溶解させた樹脂溶液の形態で供給され、該樹脂溶液をプリント配線板等の表面に塗布することにより形成されていた(例えば、特許文献1参照)。
しかしながら、この場合、ロールコーター機やスピナー機などの特殊な塗工装置が必要であり、また、感光性樹脂層の厚みの均一化が困難であり、更に、有機系の溶剤による環境汚染対応や廃液処理が困難であるという問題がある。
In recent years, high density printed wiring boards such as build-up wiring boards have been used in portable electronic devices such as mobile phones and digital cameras, and the solder resist has been miniaturized.
Conventionally, the photosensitive resin layer is supplied in the form of a resin solution in which a photosensitive resin material is dissolved in an organic solvent or the like, and is formed by applying the resin solution to the surface of a printed wiring board or the like. (For example, refer to Patent Document 1).
However, in this case, a special coating device such as a roll coater or a spinner is required, and it is difficult to make the thickness of the photosensitive resin layer uniform. There is a problem that waste liquid treatment is difficult.

従来より、これらの問題を解決すべく、支持体上に感光性樹脂材料を含む感光層や各種の機能を有するその他の層が積層され、ドライフィルム化されてなる感光性フィルムが知られている(特許文献2及び3参照)。
前記ソルダーレジストは、前記感光性フィルムを、加熱及び加圧の少なくともいずれかにより、所定の配線パターンが形成された基材の表面に積層し、その後、支持体のみ引き剥がし、前記感光層を、露光及び現像することにより得られる。
しかしながら、この場合、前記感光性フィルムを用いて形成されたソルダーレジストが、耐熱性、表面硬度、及び熱膨張係数に関して所望の性能を得られないという問題がある。また、前記感光性フィルムを、所定の配線パターンが形成された基材表面に積層する場合に、該基材表面の凹凸に十分追従できずに、気泡が発生し、ソルダーレジストの基材への密着不良を引き起こすという問題があった。
また、前記感光層に含まれる重合性化合物等の物質が、隣接するその他の層に移動する場合があり、その結果、露光感度が低下するという問題があった。
Conventionally, in order to solve these problems, a photosensitive film in which a photosensitive layer containing a photosensitive resin material and other layers having various functions are laminated on a support to form a dry film is known. (See Patent Documents 2 and 3).
The solder resist is formed by laminating the photosensitive film on the surface of a substrate on which a predetermined wiring pattern is formed by at least one of heating and pressurization, and then peeling off only the support. Obtained by exposure and development.
However, in this case, there is a problem that a solder resist formed using the photosensitive film cannot obtain desired performance with respect to heat resistance, surface hardness, and thermal expansion coefficient. Further, when the photosensitive film is laminated on the surface of the base material on which a predetermined wiring pattern is formed, air bubbles are generated without sufficiently following the unevenness of the surface of the base material, and the solder resist is applied to the base material. There was a problem of causing poor adhesion.
In addition, a substance such as a polymerizable compound contained in the photosensitive layer may move to other adjacent layers, resulting in a problem that exposure sensitivity is lowered.

一方、従来から、前記フォトリソグラフィー法を行う露光装置として、フォトマスクを用いた露光装置が知られているが、前記ソルダーレジストの微細化に伴って、前記フォトリソグラフィープロセス中での基板の伸縮や、フォトマスクフィルムの温・湿度変化に基づく伸縮に起因する微細パターンやスルーホールランドパターンの位置ずれの問題が顕在化している。前記位置ずれの問題に対しては、変形の少ない基板を使用したり、高価なガラスマスクが使用されていた。   On the other hand, conventionally, an exposure apparatus using a photomask is known as an exposure apparatus for performing the photolithography method. However, along with the miniaturization of the solder resist, the expansion and contraction of the substrate during the photolithography process is known. The problem of positional deviation of fine patterns and through-hole land patterns due to expansion / contraction based on temperature / humidity changes of photomask films has become apparent. In order to solve the problem of displacement, a substrate with less deformation or an expensive glass mask has been used.

近年、これらの位置ずれの問題を解決するために、フォトマスクを用いることなく、前記位置ずれ情報に対応して、配線パターン等のデジタルデータを補正することにより形成された露光パターンに基づいて、半導体レーザ、ガスレーザ等のレーザ光を感光性組成物上に直接スキャンして、パターニングを行うレーザダイレクトイメージングシステム(以下、「LDI」と称することもある)による露光装置が研究されている。
しかしながら、前記従来のソルダーレジストには、前記LDIに用いられる395nmから415nmのレーザ光に対して、十分な感度が無いという問題がある。
In recent years, in order to solve these misregistration problems, based on an exposure pattern formed by correcting digital data such as a wiring pattern corresponding to the misregistration information without using a photomask, An exposure apparatus using a laser direct imaging system (hereinafter also referred to as “LDI”) that performs patterning by directly scanning laser light such as a semiconductor laser or a gas laser onto a photosensitive composition has been studied.
However, the conventional solder resist has a problem that it does not have sufficient sensitivity to the laser light of 395 nm to 415 nm used for the LDI.

従って、耐熱性、表面硬度が良好で、低熱膨張係数であり、保存安定性に優れ、基材への密着性が良好であり、ソルダーレジスト形成時の作業性が良好であり、LDIに十分な感度を有して好適に使用可能である感光性フィルム及び該感光性フィルムの製造方法、並びに該感光性フィルムを用いた永久パターンの形成方法は、未だ十分満足し得るものが提供されていないのが現状である。   Therefore, it has good heat resistance, surface hardness, low thermal expansion coefficient, excellent storage stability, good adhesion to the base material, good workability during solder resist formation, and is sufficient for LDI. A photosensitive film that has sensitivity and can be suitably used, a method for producing the photosensitive film, and a method for forming a permanent pattern using the photosensitive film have not yet been sufficiently satisfactory. Is the current situation.

特開昭61−243869号公報JP-A 61-243869 特開2003−162055号公報JP 2003-162055 A 特開平9−188745号公報JP-A-9-188745

本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高耐熱性、高表面硬度、及び低熱膨張係数であり、保存安定性に優れ、基材表面の凹凸への追従性が良好でソルダーレジストの密着不良を引き起こすことがなく、露光感度の低下が生じ難く、LDIに十分な感度を有して好適に使用可能である永久パターン形成に用いられる感光性フィルム、及びその製造方法、及び該感光性フィルムを用いた永久パターンの形成方法を提供することを目的とする。   This invention is made | formed in view of this present condition, and makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention has high heat resistance, high surface hardness, and low thermal expansion coefficient, excellent storage stability, good followability to the unevenness of the substrate surface, without causing poor adhesion of the solder resist, A photosensitive film used for forming a permanent pattern that is less susceptible to a decrease in exposure sensitivity and can be suitably used with sufficient sensitivity to LDI, a method for manufacturing the same, and formation of a permanent pattern using the photosensitive film It aims to provide a method.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体と、クッション層と、物質の移動を抑制可能なバリア層と、(A)バインダー、(B)重合性化合物、(C)光重合開始剤及び(D)体質顔料を含有する感光性組成物からなる感光層とをこの順に備えてなり、永久パターンの形成に用いられることを特徴とする感光性フィルムである。
<2> 体質顔料(D)の含有量が10〜60質量%である前記<1>に記載の感光性フィルムである。
<3> 各層間の層間接着力の中で、クッション層とバリア層との層間接着力が最も小さい前記<1>から<2>のいずれかに記載の感光性フィルムである。
<4> 感光層の厚みが、10〜100μmであり、クッション層の厚みが、5〜100μmである前記<1>から<3>のいずれかに記載の感光性フィルムである。
<5> クッション層が、熱可塑性樹脂を含有する前記<1>から<4>のいずれかに記載の感光性フィルムである。
<6> 熱可塑性樹脂のガラス転移温度(Tg)及び軟化点のいずれかが、80℃以下である前記<5>に記載の感光性フィルムである。
<7> バリア層が、ビニル重合体、及びビニル共重合体の少なくともいずれかを含む前記<1>から<6>のいずれかに記載の感光性フィルムである。
<8> バインダー(A)が、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる共重合体を含む前記<1>から<7>のいずれかに記載の感光性フィルムである。
<9> 重合性化合物(B)が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む前記<1>から<8>のいずれかに記載の感光性フィルムである。
<10> 光重合開始剤(C)が、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む前記<1>から<9>のいずれかに記載の感光性フィルムである。
<11> 支持体上に熱可塑性樹脂を含む水分散エマルジョンを塗布し、乾燥させてクッション層を形成するクッション層形成工程と、
該クッション層上に、バリア層に含まれる組成物が溶解、乳化又は分散されたバリア層塗布液を塗布し、乾燥させてバリア層を形成するバリア層形成工程と、
該バリア層上に、(A)バインダー、(B)重合性化合物、(C)光重合開始剤及び(D)体質顔料を含有する感光性組成物の溶液を塗布し、乾燥させて感光層を形成する感光層形成工程とを含むことを特徴とする感光性フィルムの製造方法である。
<12> 前記<1>から<10>のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する積層工程と、
前記積層された感光層を、光照射手段から照射される光により露光する露光工程と、
前記露光工程により露光された感光層を現像する現像工程と、を含むことを特徴とする永久パターン形成方法である。
<13> 露光工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、感光層を現像工程により現像する前記<12>に記載の永久パターン形成方法である。
<14> 積層工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、感光層を露光工程により露光する前記<12>に記載の永久パターン形成方法である。
<15> 保護膜及び層間絶縁膜の少なくともいずれかを形成する前記<12>から<14>のいずれかに記載の永久パターン形成方法である。
<16> 露光工程が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって、前記感光層を、露光する前記<12>から<15>のいずれかに記載の永久パターン形成方法である。
<17> 非球面が、トーリック面である前記<16>に記載の永久パターン形成方法である。
<18> 光変調手段が、n個の描素部の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能である前記<16>から<17>のいずれかに記載の永久パターン形成方法である。
<19> 光変調手段が、空間光変調素子である前記<16>から<18>のいずれかに記載の永久パターン形成方法である。
<20> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<19>に記載の永久パターン形成方法である。
<21> 露光が、アパーチャアレイを通して行われる前記<12>から<20>のいずれかに記載の永久パターン形成方法である。
<22> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<12>から<21>のいずれかに記載の永久パターン形成方法である。
<23> 光照射手段が、2以上の光を合成して照射可能である前記<12>から<22>のいずれかに記載の永久パターン形成方法である。
<24> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを備える前記<12>から<23>のいずれかに記載の永久パターン形成方法である。
<25> レーザ光の波長が395〜415nmである前記<24>に記載の永久パターン形成方法である。
<26> 現像工程後に、感光層に対して硬化処理を行う前記<12>から<25>のいずれかに記載の永久パターン形成方法である。
<27> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<26>に記載の永久パターン形成方法である。
Means for solving the problems are as follows. That is,
<1> A support, a cushion layer, a barrier layer capable of suppressing the movement of a substance, (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) an extender pigment. A photosensitive film comprising a photosensitive layer made of a photosensitive composition in this order and used for forming a permanent pattern.
<2> The photosensitive film according to <1>, wherein the content of the extender pigment (D) is 10 to 60% by mass.
<3> The photosensitive film according to any one of <1> to <2>, wherein the interlayer adhesive strength between the cushion layer and the barrier layer is the smallest among the interlayer adhesive strengths between the respective layers.
<4> The photosensitive film according to any one of <1> to <3>, wherein the photosensitive layer has a thickness of 10 to 100 μm, and the cushion layer has a thickness of 5 to 100 μm.
<5> The photosensitive film according to any one of <1> to <4>, wherein the cushion layer contains a thermoplastic resin.
<6> The photosensitive film according to <5>, wherein either the glass transition temperature (Tg) or the softening point of the thermoplastic resin is 80 ° C. or lower.
<7> The photosensitive film according to any one of <1> to <6>, wherein the barrier layer includes at least one of a vinyl polymer and a vinyl copolymer.
<8> The glass transition of the binder (A) is (a) maleic anhydride, (b) an aromatic vinyl monomer, and (c) a vinyl monomer, the homopolymer of the vinyl monomer. A copolymer obtained by reacting 0.1 to 1.0 equivalent of a primary amine compound with an anhydride group of a copolymer comprising a vinyl monomer having a temperature (Tg) of less than 80 ° C. It is a photosensitive film in any one of said <1> to <7> containing.
<9> The photosensitive film according to any one of <1> to <8>, wherein the polymerizable compound (B) includes at least one selected from monomers having a (meth) acryl group.
<10> The photopolymerization initiator (C) is selected from halogenated hydrocarbon derivatives, phosphine oxides, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoxime ethers. The photosensitive film according to any one of <1> to <9>, including at least one selected from the above.
<11> A cushion layer forming step of applying a water-dispersed emulsion containing a thermoplastic resin on a support and drying to form a cushion layer;
On the cushion layer, a barrier layer forming step in which a barrier layer coating solution in which the composition contained in the barrier layer is dissolved, emulsified or dispersed is applied and dried to form a barrier layer;
On the barrier layer, a solution of a photosensitive composition containing (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator and (D) an extender pigment is applied and dried to form a photosensitive layer. And a photosensitive layer forming step of forming a photosensitive film.
<12> A laminating step of laminating the photosensitive film according to any one of <1> to <10> so that the photosensitive layer is on the surface side of the substrate by at least one of heating and pressurization;
An exposure step of exposing the laminated photosensitive layer with light irradiated from a light irradiation means;
And a development step of developing the photosensitive layer exposed in the exposure step.
<13> After the exposure step, the method includes a peeling step of peeling the support and the cushion layer from the barrier layer at the same time between the cushion layer and the barrier layer, and then developing the photosensitive layer by the developing step <12> The method for forming a permanent pattern according to the above.
<14> The above-described <12>, which includes a peeling step of peeling the support and the cushion layer from the barrier layer simultaneously between the cushion layer and the barrier layer after the lamination step, and then exposing the photosensitive layer by the exposure step. The method for forming a permanent pattern according to the above.
<15> The method for forming a permanent pattern according to any one of <12> to <14>, wherein at least one of a protective film and an interlayer insulating film is formed.
<16> After the exposure step modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, the emission surface in the picture element portion The permanent light exposure according to any one of <12> to <15>, wherein the photosensitive layer is exposed with light that has passed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the lens are arranged. This is a pattern forming method.
<17> The method for forming a permanent pattern according to <16>, wherein the aspherical surface is a toric surface.
<18> The <16> to <17, wherein the light modulation unit can control any less than n pixel elements arranged continuously from n pixel elements in accordance with pattern information. The permanent pattern forming method according to any one of the above.
<19> The method for forming a permanent pattern according to any one of <16> to <18>, wherein the light modulator is a spatial light modulator.
<20> The method for forming a permanent pattern according to <19>, wherein the spatial light modulation element is a digital micromirror device (DMD).
<21> The method for forming a permanent pattern according to any one of <12> to <20>, wherein the exposure is performed through an aperture array.
<22> The method for forming a permanent pattern according to any one of <12> to <21>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive layer.
<23> The method for forming a permanent pattern according to any one of <12> to <22>, wherein the light irradiation unit can synthesize and irradiate two or more lights.
<24> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects and couples the laser beams emitted from the plurality of lasers to the multimode optical fiber, respectively. The permanent pattern forming method according to any one of <12> to <23>.
<25> The method for forming a permanent pattern according to <24>, wherein the laser beam has a wavelength of 395 to 415 nm.
<26> The method for forming a permanent pattern according to any one of <12> to <25>, wherein the photosensitive layer is cured after the development step.
<27> The method for forming a permanent pattern according to <26>, wherein the curing treatment is at least one of a whole surface exposure treatment and a whole surface heat treatment performed at 120 to 200 ° C.

本発明によると、従来における問題を解決することができ、高耐熱性、高表面硬度、及び低熱膨張係数であり、保存安定性に優れ、基材表面の凹凸への追従性が良好でソルダーレジストの密着不良を引き起こすことがなく、露光感度の低下が生じ難く、LDIに十分な感度を有して好適に使用可能である感光性フィルム及び該感光性フィルムの製造方法、並びに該感光性フィルムを用いた永久パターンの形成方法を提供することができる。   According to the present invention, it is possible to solve conventional problems, high heat resistance, high surface hardness, and low thermal expansion coefficient, excellent storage stability, good followability to unevenness on the substrate surface, and a solder resist. A photosensitive film that does not cause poor adhesion of the film, is unlikely to cause a decrease in exposure sensitivity, has sufficient sensitivity to LDI, and can be suitably used, a method for producing the photosensitive film, and the photosensitive film. A method for forming the permanent pattern used can be provided.

(感光性フィルム)
本発明の感光性フィルムは、支持体と、クッション層と、バリア層と、感光層とをこの順に有してなり、更に必要に応じてその他の層を有してなる。
(Photosensitive film)
The photosensitive film of the present invention comprises a support, a cushion layer, a barrier layer, and a photosensitive layer in this order, and further comprises other layers as necessary.

前記各層の層間接着力としては、特に制限はなく、目的に応じて適宜選択することができるが、各層の層間接着力の中で、クッション層とバリア層との間の層間接着力(以下、「層間接着力A」と称することもある)が最も小さいことが好ましい。
また、前記支持体と前記クッション層との層間接着力(以下、「層間接着力B」と称することもある)、及び前記バリア層と前記感光層との層間接着力(以下、「層間接着力C」と称することもある)は、互いに同一であってもよく、異なっていてもよいが、前記層間接着力Cが前記層間接着力Bよりも大きく、かつ、層間接着力Aよりも大きい場合に、剥離工程数が少なくなるため、好ましい。
また、前記層間接着力Aが、前記層間接着力Bよりも小さいことにより、前記支持体の剥離時に、前記クッション層が前記支持体とともに剥離するので、前記クッション層のみを剥離する工程が省略されるため、好ましい。前記層間接着力Aが、前記層間接着力Bよりも大きいと、前記支持体の剥離後に、前記クッション層を粘着テープなどを用いて前記感光層上から剥離する必要が生じる。
The interlayer adhesive force of each layer is not particularly limited and may be appropriately selected depending on the purpose. Among the interlayer adhesive forces of each layer, the interlayer adhesive force between the cushion layer and the barrier layer (hereinafter, It is preferable that the “interlayer adhesion force A”) is sometimes the smallest.
Further, an interlayer adhesive force between the support and the cushion layer (hereinafter also referred to as “interlayer adhesive force B”) and an interlayer adhesive force between the barrier layer and the photosensitive layer (hereinafter referred to as “interlayer adhesive force”). May be the same as or different from each other, but the interlayer adhesive force C is greater than the interlayer adhesive force B and greater than the interlayer adhesive force A. Moreover, since the number of peeling steps is reduced, it is preferable.
Further, since the interlayer adhesive force A is smaller than the interlayer adhesive force B, the cushion layer peels off together with the support when the support is peeled off, so that the step of peeling only the cushion layer is omitted. Therefore, it is preferable. When the interlayer adhesive force A is greater than the interlayer adhesive force B, it is necessary to peel the cushion layer from the photosensitive layer using an adhesive tape or the like after the support is peeled off.

前記層間接着力Aを最も小さくする方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記クッション層に離形剤を含有させることにより該層間接着力Aを減少させる方法、前記層間接着力B及びCを増加させる方法などが挙げられる。これらの方法は1種単独で使用してもよく、2種以上を併用してもよい。   The method for minimizing the interlayer adhesive force A is not particularly limited and can be appropriately selected according to the purpose. For example, the interlayer adhesive force A can be reduced by adding a release agent to the cushion layer. And a method of increasing the interlayer adhesive strengths B and C. These methods may be used alone or in combination of two or more.

前記離形剤としては、特に制限はなく、公知の離形剤の中から適宜選択することができ、例えば、シリコーン化合物、フッ素化アルキル基を有する化合物などが挙げられる。   There is no restriction | limiting in particular as said mold release agent, It can select suitably from well-known mold release agents, For example, a silicone compound, the compound which has a fluorinated alkyl group, etc. are mentioned.

前記シリコーン化合物としては、例えば、ダイセルUCB社製、エベクリル1360、同350、東芝シリコーン社製ジメチルシリコーンオイルTSF400、メチルフェニルシリコーンオイルTSF4300、シリコーンポリエーテル共重合体TSF4445、TSF4446、TSF4460、TSF4452等が挙げられる。   Examples of the silicone compound include Daicel UCB, Ebeacryl 1360, 350, Toshiba Silicone dimethyl silicone oil TSF400, methylphenylsilicone oil TSF4300, silicone polyether copolymers TSF4445, TSF4446, TSF4460, TSF4452, and the like. It is done.

前記フッ化アルキル基を有する化合物としては、例えば、フッ素系界面活性剤(例えば、大日本インキ化学工業社製パーフルオロアルキル基・親水性基含有オリゴマーF−171、パーフルオロアルキル基・親油性基含有オリゴマーF−173、パーフルオロアルキル基・親水性基・親油性基含有オリゴマーF−177、パーフルオロアルキル基・親油性基含有ウレタンF−183、F−184、フッ素系グラフトポリマー等)、フッ素系グラフトポリマー(例えば、東亜合成化学社製、アロンGF−300、GF−150等)が挙げられる。   Examples of the compound having a fluorinated alkyl group include a fluorine-based surfactant (for example, perfluoroalkyl group / hydrophilic group-containing oligomer F-171, perfluoroalkyl group / lipophilic group manufactured by Dainippon Ink & Chemicals, Inc. -Containing oligomer F-173, perfluoroalkyl group / hydrophilic group / lipophilic group-containing oligomer F-177, perfluoroalkyl group / lipophilic group-containing urethane F-183, F-184, fluorine-based graft polymer, etc.), fluorine System graft polymers (for example, Aron GF-300, GF-150, etc., manufactured by Toagosei Co., Ltd.).

前記層間接着力Bを増加させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)前記支持体層と前記クッション層との接着面を表面処理する方法、(2)前記支持体及び前記クッション層の少なくともいずれかに含まれる成分の中から選択される少なくとも1種の含有量を調整する方法、(3)接着力を向上させる成分を含有乃至塗布する方法、(4)架橋剤及びシランカップリング剤の少なくともいずれかを含有させる方法などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The method for increasing the interlayer adhesive force B is not particularly limited and may be appropriately selected depending on the intended purpose. For example, (1) surface treatment is performed on the adhesive surface between the support layer and the cushion layer. A method, (2) a method of adjusting the content of at least one selected from the components contained in at least one of the support and the cushion layer, and (3) containing or applying a component that improves adhesive strength. And (4) a method of containing at least one of a crosslinking agent and a silane coupling agent. These may be used alone or in combination of two or more.

前記層間接着力Cを増加させる方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(5)前記バリア層と前記感光層との接着面を表面処理する方法、(6)前記バリア層及び前記感光層の少なくともいずれかに含まれる成分の中から選択される少なくとも1種の含有量を調整する方法の他、前記(3)及び(4)に記載の方法などが挙げられる。これらの方法は、1種単独で使用してもよく、2種以上を併用してもよい。   The method for increasing the interlayer adhesion C is not particularly limited and may be appropriately selected depending on the intended purpose. For example, (5) a method for surface-treating the adhesive surface between the barrier layer and the photosensitive layer (6) The method according to (3) and (4) above, in addition to the method of adjusting the content of at least one selected from components contained in at least one of the barrier layer and the photosensitive layer Etc. These methods may be used alone or in combination of two or more.

前記表面処理としては、例えば、プラズマ処理、電子線処理、グロー放電処理、コロナ放電処理、紫外線照射処理などが挙げられる。   Examples of the surface treatment include plasma treatment, electron beam treatment, glow discharge treatment, corona discharge treatment, and ultraviolet irradiation treatment.

前記含有量を調整する方法としては、例えば、前記クッション層が前記エチレンを必須とする共重合体を含む場合には、前記共重合体におけるエチレン共重合比を60質量%未満とする方法が挙げられる。
前記60質量%を超えると、前記層間接着力C及び前記層間接着力Bが、前記層間接着力Aよりも小さくなることがある。
As a method for adjusting the content, for example, when the cushion layer contains a copolymer essential for the ethylene, a method for setting the ethylene copolymerization ratio in the copolymer to less than 60% by mass is mentioned. It is done.
When it exceeds 60 mass%, the interlayer adhesive force C and the interlayer adhesive force B may be smaller than the interlayer adhesive force A.

前記接着力を向上させる成分としては、例えば、フェノール性物質(例えば、クレゾールノボラック樹脂、フェノールレジン等)、ポリ塩化ビニリデン樹脂、スチレンブタジエンゴム、ゼラチン、ポリビニルアルコール、セルロース類などが挙げられる。   Examples of the component for improving the adhesive strength include phenolic substances (for example, cresol novolac resin, phenol resin, etc.), polyvinylidene chloride resin, styrene butadiene rubber, gelatin, polyvinyl alcohol, and celluloses.

前記架橋剤としては、例えば、硼砂、硼酸、硼酸塩(例えば、オルト硼酸塩、InBO、ScBO、YBO、LaBO、Mg(BO、Co(BO、二硼酸塩(例えば、Mg、Co)、メタ硼酸塩(例えば、LiBO、Ca(BO、NaBO、KBO)、四硼酸塩(例えば、Na・10HO)、五硼酸塩(例えば、KB・4HO、Ca11・7HO、CsB)等のホウ素化合物が挙げられる。これらの中でも、速やかに架橋反応を起こすことができる点で、硼砂、硼酸、硼酸塩が好ましく、硼酸がより好ましい。また、ホルムアルデヒド、グリオキザール、グルタールアルデヒド等のアルデヒド系化合物;ジアセチル、シクロペンタンジオン等のケトン系化合物;ビス(2−クロロエチル尿素)−2−ヒドロキシ−4,6−ジクロロ−1,3,5−トリアジン、2,4−ジクロロ−6−S−トリアジン・ナトリウム塩等の活性ハロゲン化合物;ジビニルスルホン酸、1,3−ビニルスルホニル−2−プロパノール、N,N’−エチレンビス(ビニルスルホニルアセタミド)、1,3,5−トリアクリロイル−ヘキサヒドロ−S−トリアジン等の活性ビニル化合物;ジメチロ−ル尿素、メチロールジメチルヒダントイン等のN−メチロール化合物;メラミン樹脂(例えば、メチロールメラミン、アルキル化メチロールメラミン);エポキシ樹脂;1,6−ヘキサメチレンジイソシアネート等のイソシアネート系化合物;米国特許第3017280号明細書、米国特許第2983611号明細書に記載のアジリジン系化合物;米国特許第3100704号明細書に記載のカルボキシイミド系化合物;グリセロールトリグリシジルエーテル等のエポキシ系化合物;1,6−ヘキサメチレン−N,N’−ビスエチレン尿素等のエチレンイミノ系化合物;ムコクロル酸、ムコフェノキシクロル酸等のハロゲン化カルボキシアルデヒド系化合物;2,3−ジヒドロキシジオキサン、2,3−ジヒドロキシ−1,4−ジオキサン等のジオキサン系化合物;乳酸チタン、硫酸アルミニウム、クロム明ばん、カリ明ばん、酢酸ジルコニル、酢酸クロム等の金属含有化合物、テトラエチレンペンタミン等のポリアミン化合物、アジピン酸ジヒドラジド等のヒドラジド化合物、オキサゾリン基を2個以上含有する低分子又はポリマー、などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the crosslinking agent include borax, boric acid, borates (for example, orthoborate, InBO 3 , ScBO 3 , YBO 3 , LaBO 3 , Mg 3 (BO 3 ) 2 , Co 3 (BO 3 ) 2 , two Borate (eg, Mg 2 B 2 O 5 , Co 2 B 2 O 5 ), metaborate (eg, LiBO 2 , Ca (BO 2 ) 2 , NaBO 2 , KBO 2 ), tetraborate (eg, Na 2 B 4 O 7 · 10H 2 O) and boron compounds such as pentaborate (for example, KB 5 O 8 · 4H 2 O, Ca 2 B 6 O 11 · 7H 2 O, CsB 5 O 5 ). Among these, borax, boric acid, and borate are preferable, and boric acid is more preferable in that a crosslinking reaction can be rapidly caused, and aldehydes such as formaldehyde, glyoxal, and glutaraldehyde are also preferable. Compounds; ketone compounds such as diacetyl and cyclopentanedione; bis (2-chloroethylurea) -2-hydroxy-4,6-dichloro-1,3,5-triazine, 2,4-dichloro-6-S— Active halogen compounds such as triazine sodium salt; divinylsulfonic acid, 1,3-vinylsulfonyl-2-propanol, N, N′-ethylenebis (vinylsulfonylacetamide), 1,3,5-triacryloyl-hexahydro -Active vinyl compounds such as S-triazine; N-methylol compounds such as dimethylolurea and methyloldimethylhydantoin; melamine resins (for example, methylolmelamine, alkylated methylolmelamine); epoxy resins; 1,6-hexamethylene diisocyanate, etc. Isocyanate compounds; U.S. Pat. No. 301 Aziridine compounds described in US Pat. No. 280, US Pat. No. 2,983,611; Carboximide compounds described in US Pat. No. 3,100,704; Epoxy compounds such as glycerol triglycidyl ether; 1,6-hexamethylene -Ethyleneimino compounds such as -N, N'-bisethyleneurea; halogenated carboxaldehyde compounds such as mucochloric acid and mucophenoxycyclolic acid; 2,3-dihydroxydioxane, 2,3-dihydroxy-1,4-dioxane Dioxane compounds such as: Titanium lactate, aluminum sulfate, chromium alum, potash alum, metal-containing compounds such as zirconyl acetate and chromium acetate, polyamine compounds such as tetraethylenepentamine, hydrazide compounds such as adipic acid dihydrazide, oxazoline groups 2 or more Small molecule or polymer containing, and the like. These may be used alone or in combination of two or more.

前記シランカップリング剤としては、例えば、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトシキシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランなどが挙げられる。また、信越化学工業株式会社製のシランカップリング剤も好適に使用することができる。   Examples of the silane coupling agent include N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, and N-2 (aminoethyl) 3-amino. Propyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrime Toxylsilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane and the like can be mentioned. Moreover, the silane coupling agent by Shin-Etsu Chemical Co., Ltd. can also be used conveniently.

前記架橋剤及びシランカップリング剤の少なくともいずれかを含有させる層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記クッション層及び前記バリア層が好ましく、前記クッション層単独がより好ましい。   The layer containing at least one of the crosslinking agent and the silane coupling agent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the cushion layer and the barrier layer are preferable, and the cushion A layer alone is more preferred.

[支持体]
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、支持体とクッション層との間の接着力が、クッション層とバリア層との間の接着力よりも大きく、かつ光の透過性が良好であるのが好ましく、更に、表面の平滑性が良好であるのがより好ましい。
[Support]
The support is not particularly limited and may be appropriately selected depending on the intended purpose. However, the adhesive force between the support and the cushion layer is larger than the adhesive force between the cushion layer and the barrier layer. In addition, it is preferable that light transmittance is good, and it is more preferable that surface smoothness is good.

前記支持体は、合成樹脂製であり、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
The support is preferably made of synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic acid alkyl ester, poly (Meth) acrylic acid ester copolymer, polyvinyl chloride, polyvinyl alcohol, polycarbonate, polystyrene, cellophane, polyvinylidene chloride copolymer, polyamide, polyimide, vinyl chloride / vinyl acetate copolymer, polytetrafluoroethylene, polytri Various plastic films such as fluoroethylene, cellulose-based film, nylon film and the like can be mentioned, and among these, polyethylene terephthalate is particularly preferable. These may be used alone or in combination of two or more.
As the support, for example, the support described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, or the like is used. You can also.

前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、4〜300μmが好ましく、5〜175μmがより好ましい。   There is no restriction | limiting in particular as thickness of the said support body, Although it can select suitably according to the objective, For example, 4-300 micrometers is preferable and 5-175 micrometers is more preferable.

前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。   There is no restriction | limiting in particular as a shape of the said support body, Although it can select suitably according to the objective, A long shape is preferable. There is no restriction | limiting in particular as the length of the said elongate support body, For example, the thing of length 10m-20000m is mentioned.

[クッション層]
前記クッション層の材料、物性、厚み、構造等としては、特に制限はなく、目的に応じて適宜選択することができるが、熱可塑性樹脂を含む層であることが好ましく、該熱可塑性樹脂の軟化点が80℃以下がより好ましく、60℃以下が更に好ましく、50℃以下でが特に好ましい。
前記熱可塑性樹脂の軟化点が80℃以上のクッション層を用いると、基材表面の凹凸に対する十分な追従性を得るために、感光性フィルムの基材表面への転写温度を高温とする必要があり、特に、フィルム状の基材に対しては、該基材の寸法安定性を害することがあり、また、加熱・冷却に要する作業時間や加熱に要する電力等の点で不利となることがある。
尚、前記熱可塑性樹脂の軟化点の測定方法としては、ASTMD−1235(ヴィカーVicat法)に準拠した測定法が挙げられる。
また、前記クッション層は、アルカリ性液に対して可溶性であってもよく、不溶性であってもよい。更に、アルカリ性液に対して膨潤性であってもよい。
[Cushion layer]
The material, physical properties, thickness, structure, etc. of the cushion layer are not particularly limited and may be appropriately selected depending on the intended purpose. However, a layer containing a thermoplastic resin is preferred, and the thermoplastic resin is softened. The point is more preferably 80 ° C. or less, still more preferably 60 ° C. or less, and particularly preferably 50 ° C. or less.
When a cushion layer having a softening point of the thermoplastic resin of 80 ° C. or higher is used, the transfer temperature of the photosensitive film to the substrate surface needs to be high in order to obtain sufficient followability to the unevenness of the substrate surface. In particular, for a film-like base material, it may impair the dimensional stability of the base material, and may be disadvantageous in terms of working time required for heating / cooling, electric power required for heating, etc. is there.
In addition, as a measuring method of the softening point of the said thermoplastic resin, the measuring method based on ASTMD-1235 (Vicker Vicat method) is mentioned.
Further, the cushion layer may be soluble or insoluble in an alkaline liquid. Further, it may be swellable with respect to an alkaline liquid.

前記熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン共重合体等のポリオレフィン系樹脂、エチレン酢酸/ビニル共重合体、エチレンエチルアクリレート共重合体、エチレンアクリル酸エステル共重合体、それらのケン化物等のエチレン共重合体系樹脂、ポリ塩化ビニル、塩化ビニル共重合体、それらのケン化物等の塩化ビニル共重合体系樹脂、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル共重合体、それらのケン化物等のスチレン共重合体系樹脂、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル共重合体、それらのケン化物等のビニルトルエン共重合体系樹脂、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニルとの共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシジメシル化ナイロン、N−ジメチルアミノ化ナイロン等のポリアミド樹脂、これらのアイオノマー樹脂などが挙げられる。
これらの中でも、クッション層とバリア層との層間接着力(層間接着力A)が最も小さくなる層間接着力性、保存中における感光層中の重合成分の熱可塑性樹脂への移行防止性等の観点から、エチレン酢酸ビニル共重合体、ポリオレフィンアイオノマー等が好適に挙げられる。
前記エチレン酢酸ビニル共重合体の具体例としては、例えば、ケミパールVタイプ(三井化学(株)製)などが挙げられる。
前記ポリオレフィンアイオノマーの具体例としては、例えば、ケミパールSタイプ(三井化学(株)製)などが挙げられる。
前記熱可塑性樹脂としては、これら一種の単独、又は2種以上の併用で用いることも可能である。
前記熱可塑性樹脂としては、「プラスチック性能便覧」(日本プラスチック工業連盟、全日本プラスチック成形工業連合会編著、工業調査会発行、1968年10月25日発行)による軟化点が約80℃以下の有機高分子を使用することも可能である。
更に、軟化点が80℃以上の熱可塑性樹脂に対して、各種の可塑剤を添加して、実質的な軟化点を80℃以下とすることも可能である。前記可塑剤としては、実質的な軟化点が80℃以下となるものであれば、特に制限はなく、目的に応じて適宜選択することができる。
前記熱可塑性樹脂としては、感光層を構成する組成物の溶解特性に一致するものを選ぶこともでき、また、感光層を構成する組成物が全く溶解しない溶剤に可溶な溶解特性を有するものを選ぶことも可能である。
前記クッション層としては、前記熱可塑性樹脂の軟化点が80℃を超えない範囲で、更に、各種のポリマー、過冷却物質、密着改良剤、界面活性剤、離型剤等を添加することも可能である。
Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, and polyolefin copolymers, ethylene acetate / vinyl copolymers, ethylene ethyl acrylate copolymers, ethylene acrylate copolymers, and saponified products thereof. Ethylene copolymer resins such as polyvinyl chloride, vinyl chloride copolymers, vinyl chloride copolymer resins such as saponified products thereof, polyvinylidene chloride, vinylidene chloride copolymers, polystyrene, styrene and (meth) acrylic acid Ester copolymers, styrene copolymer resins such as saponified products thereof, polyvinyltoluene, vinyltoluene and (meth) acrylic acid ester copolymers, vinyltoluene copolymer resins such as saponified products thereof, poly (meth) Acrylic acid ester, butyl (meth) acrylate Copolymers of vinyl acetate, vinyl copolymer nylon acetate, copolymer nylon, N- alkoxy-di mesylation nylon, N- dimethylamino nylon or the like of the polyamide resin, etc. These ionomer resins.
Among these, viewpoints such as interlayer adhesive strength at which the interlayer adhesive strength (interlayer adhesive strength A) between the cushion layer and the barrier layer is minimized, and prevention of migration of the polymerization component in the photosensitive layer to the thermoplastic resin during storage, etc. And ethylene vinyl acetate copolymer, polyolefin ionomer, and the like.
Specific examples of the ethylene vinyl acetate copolymer include Chemipearl V type (manufactured by Mitsui Chemicals, Inc.).
Specific examples of the polyolefin ionomer include Chemipearl S type (manufactured by Mitsui Chemicals).
The thermoplastic resin can be used alone or in combination of two or more.
As the thermoplastic resin, an organic high softening point of about 80 ° C. or less according to “Plastic Performance Handbook” (edited by the Japan Plastics Industry Federation, edited by the All Japan Plastics Molding Industry Association, published by the Industrial Research Council, issued on October 25, 1968). It is also possible to use molecules.
Furthermore, it is also possible to add various plasticizers to the thermoplastic resin having a softening point of 80 ° C. or higher so that the substantial softening point is 80 ° C. or lower. The plasticizer is not particularly limited as long as it has a substantial softening point of 80 ° C. or lower, and can be appropriately selected according to the purpose.
As the thermoplastic resin, one that matches the solubility characteristics of the composition constituting the photosensitive layer can be selected, and the thermoplastic resin has solubility characteristics that are soluble in a solvent in which the composition constituting the photosensitive layer does not dissolve at all. It is also possible to choose.
As the cushion layer, various polymers, supercooling substances, adhesion improvers, surfactants, release agents, etc. can be added as long as the softening point of the thermoplastic resin does not exceed 80 ° C. It is.

前記クッション層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、10〜50μmがより好ましく、15〜40μmが特に好ましい。
前記厚みが、5μm未満になると、基体の表面における凹凸や、気泡等への凹凸追従性が低下し、高精細な永久パターンを形成できないことがあり、100μmを超えると、製造上の乾燥負荷増大等の不具合が生じることがある。
前記クッション層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記熱可塑性樹脂等を含むクッション層組成物を溶融成膜する方法、溶融キャスト法により成膜する方法、前記熱可塑成樹脂等を含むクッション層組成物の水分散エマルジョンをキャスト法により成膜する方法、などが挙げられるが、これらの中でも、熱可塑性樹脂を含む水分散エマルジョンをキャスト法により支持体上に塗布して成膜する方法が、環境負荷対策や、防爆管理の観点から好適に挙げられる。
There is no restriction | limiting in particular as thickness of the said cushion layer, Although it can select suitably according to the objective, For example, 5-100 micrometers is preferable, 10-50 micrometers is more preferable, and 15-40 micrometers is especially preferable.
When the thickness is less than 5 μm, unevenness on the surface of the substrate and unevenness followability to bubbles and the like may be deteriorated, and a high-definition permanent pattern may not be formed. Such a problem may occur.
The method for forming the cushion layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the cushion layer composition may be formed by a method of melt-forming a cushion layer composition containing the thermoplastic resin or the like, or a melt casting method. Examples include a method of forming a film, a method of forming a film of an aqueous dispersion emulsion of a cushion layer composition containing the thermoplastic resin and the like by a casting method, and among these, a method of casting an aqueous dispersion emulsion containing a thermoplastic resin. From the viewpoint of environmental load countermeasures and explosion-proof management, a method of applying a film on the support by the above method is preferable.

[バリア層]
前記バリア層としては、物質の移動を抑制可能である限り、特に制限はなく、目的に応じて適宜選択することができ、水溶性、水分散性、アルカリ性液に対して可溶性、アルカリ性液に対して不溶性であってもよい。
前記物質の移動を抑制可能とは、前記バリア層を有しない場合と比較して、前記バリア層と隣接する層における目的物質の含有量の増加又は減少が、抑制されていることを意味する。
[Barrier layer]
The barrier layer is not particularly limited as long as the movement of a substance can be suppressed, and can be appropriately selected according to the purpose. Water-soluble, water-dispersible, soluble in an alkaline liquid, And may be insoluble.
That the movement of the substance can be suppressed means that the increase or decrease in the content of the target substance in the layer adjacent to the barrier layer is suppressed as compared with the case where the barrier layer is not provided.

前記物質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、酸素、水、前記感光層及びクッション層の少なくともいずれかに含まれる物質が挙げられる。   There is no restriction | limiting in particular as said substance, Although it can select suitably according to the objective, For example, the substance contained in at least any one of oxygen, water, the said photosensitive layer, and a cushion layer is mentioned.

前記バリア層が、水溶性である場合には、水溶性の樹脂を含むことが好ましく、水分散性である場合には、水分散性の樹脂を含むことが好ましく、アルカリ性液に対して可溶性である場合には、アルカリ性液に対して可溶性の樹脂を含むことが好ましく、アルカリ性液に対して不溶性である場合には、アルカリ性液に対して不溶性の樹脂を含むことが好ましい。
なお、前記水溶性の程度としては、例えば、25℃の水に対し、0.1質量%以上溶解するものが好ましく、1質量%以上溶解するものがより好ましい。
When the barrier layer is water-soluble, it preferably contains a water-soluble resin. When the barrier layer is water-dispersible, it preferably contains a water-dispersible resin and is soluble in an alkaline liquid. In some cases, it is preferable to include a resin that is soluble in an alkaline liquid. In cases where the resin is insoluble in an alkaline liquid, it is preferable to include a resin that is insoluble in an alkaline liquid.
In addition, as said water solubility degree, what melt | dissolves 0.1 mass% or more with respect to 25 degreeC water, for example, and what melt | dissolves 1 mass% or more is more preferable.

前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、各種のアルコール可溶性樹脂、水溶性樹脂、アルコール分散性樹脂、水分散性樹脂、乳化性樹脂、アルカリ性液に対して可溶性の樹脂などが挙げられ、具体的には、ビニル重合体(例えば、ポリビニルアルコール(変性ポリビニルアルコール類も含む)、ポリビニルピロリドン等)、上述のビニル共重合体、水溶性ポリアミド、ゼラチン、セルロース、これらの誘導体などが挙げられる。また、特許2794242号に記載の熱可塑性樹脂や中間層に使用されている化合物、前記バインダーなどを使用することもできる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。   The resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include various alcohol-soluble resins, water-soluble resins, alcohol-dispersible resins, water-dispersible resins, emulsifiable resins, and alkaline liquids. Examples include vinyl polymers (for example, polyvinyl alcohol (including modified polyvinyl alcohols), polyvinylpyrrolidone, etc.), the above-mentioned vinyl copolymers, water-soluble polyamides, and gelatins. , Cellulose, and derivatives thereof. In addition, the thermoplastic resin described in Japanese Patent No. 2794242, the compound used in the intermediate layer, the binder, and the like can also be used. These may be used alone or in combination of two or more.

前記アルカリ性液に対して不溶性の樹脂としては、例えば、主成分がエチレンを必須の共重合成分とする共重合体が挙げられる。
前記エチレンを必須の共重合成分とする共重合体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、エチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体(EEA)などが挙げられる。
Examples of the resin insoluble in the alkaline liquid include a copolymer whose main component is ethylene as an essential copolymer component.
The copolymer having ethylene as an essential copolymer component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene-vinyl acetate copolymer (EVA) and ethylene-ethyl acrylate. A copolymer (EEA) etc. are mentioned.

前記バリア層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、10μm未満が好ましく、0.1〜6μmがより好ましく、1〜5μmが特に好ましい。
前記厚みが、10μm以上となると、露光の際、前記バリア層で光散乱が生じ、解像度及び密着性の少なくともいずれかが悪化することがある。
There is no restriction | limiting in particular as thickness of the said barrier layer, Although it can select suitably according to the objective, For example, less than 10 micrometers is preferable, 0.1-6 micrometers is more preferable, and 1-5 micrometers is especially preferable.
When the thickness is 10 μm or more, light scattering occurs in the barrier layer during exposure, and at least one of resolution and adhesion may be deteriorated.

本発明の感光性フィルムは、クッション層と感光層との間にバリア層を有するために、感光層に含まれる重合性化合物等の物質が、クッション層に移動することが防止され、露光時における感光層の感度低下を防止できる。   Since the photosensitive film of the present invention has a barrier layer between the cushion layer and the photosensitive layer, substances such as a polymerizable compound contained in the photosensitive layer are prevented from moving to the cushion layer, and at the time of exposure. Sensitivity deterioration of the photosensitive layer can be prevented.

[感光層]
前記感光層としては、少なくとも(A)バインダー、(B)重合性化合物、(C)光重合開始剤、及び(D)体質顔料を含み、更に必要に応じて適宜選択されるその他の成分を含む感光性組成物からなる。
[Photosensitive layer]
The photosensitive layer includes at least (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) an extender pigment, and further includes other components appropriately selected as necessary. It consists of a photosensitive composition.

<バインダー>
前記(A)バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水マレイン酸共重合体の無水物基に対して1級アミン化合物を1種以上反応させて得られる共重合体、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物が挙げられる。
<Binder>
There is no restriction | limiting in particular as said (A) binder, According to the objective, it can select suitably, For example, 1 or more types of primary amine compounds are made to react with the anhydride group of a maleic anhydride copolymer. Copolymers obtained, JP-A-51-131706, JP-A-52-94388, JP-A-64-62375, JP-A-2-97513, JP-A-3-289656, JP-A-61-243869 And an epoxy acrylate compound having an acidic group described in JP-A No. 2002-296776.

前記バインダーとしては、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられ、無水マレイン酸共重合体の無水物基に対して、0.1〜1.2当量の1級アミン化合物を1種以上反応させて得られる共重合体が特に好適に挙げられる。
The binder is preferably swellable in an alkaline aqueous solution, and more preferably soluble in an alkaline aqueous solution.
As the binder exhibiting swellability or solubility with respect to the alkaline aqueous solution, for example, those having an acidic group are preferably exemplified, and 0.1 to 1.2 with respect to the anhydride group of the maleic anhydride copolymer. Particularly preferred is a copolymer obtained by reacting at least one equivalent of a primary amine compound.

前記酸性基を有するエポキシアクリレート化合物としては、例えば、フェノールノボラック型エポキシアクリレート、あるいは、クレゾールノボラックエポキシアクリレート、ビスフェノールA型エポキシアクリレート等であって、例えばエポキシ樹脂や多官能エポキシ化合物に(メタ)アクリル酸等のカルボキシル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させたものが挙げられる。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
Examples of the epoxy acrylate compound having an acidic group include phenol novolac type epoxy acrylate, cresol novolac epoxy acrylate, bisphenol A type epoxy acrylate, and the like, for example, (meth) acrylic acid for epoxy resins and polyfunctional epoxy compounds. And those obtained by reacting a carboxyl group-containing monomer such as phthalic anhydride and further adding a dibasic acid anhydride such as phthalic anhydride.
The molecular weight of the epoxy acrylate compound is preferably 1,000 to 200,000, and more preferably 2,000 to 100,000. When the molecular weight is less than 1,000, the tackiness of the surface of the photosensitive layer may become strong, and after curing of the photosensitive layer described later, the film quality may become brittle or the surface hardness may deteriorate. If it exceeds 1,000, developability may deteriorate.

また、特開平6−295060号公報記載の酸性基及び二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、て得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。   An acrylic resin having at least one polymerizable group such as an acidic group and a double bond described in JP-A-6-295060 can also be used. Specifically, at least one polymerizable double bond in the molecule, for example, an acrylic group such as (meth) acrylate group or (meth) acrylamide group, various polymerizations such as carboxylic acid vinyl ester, vinyl ether, allyl ether, etc. Sex double bonds can be used. More specifically, an acrylic resin containing a carboxyl group as an acidic group, glycidyl acrylate, a compound obtained by glycidyl methacrylate, an acrylic resin containing an anhydride group contains a hydroxyl group such as hydroxyalkyl (meth) acrylate And compounds obtained by adding a polymerizable compound to be added. As these commercially available products, for example, “Kaneka Resin AX; manufactured by Kaneka Chemical Industry Co., Ltd.”, “Cyclomer (CYCLOMER) A-200; manufactured by Daicel Chemical Industries, Ltd.”, “Cyclomer (CYCLOMER) M-” 200; Daicel = 112 ° C.) and the like, which may be preferably used alone or in combination of two or more.

前記1級アミン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
The primary amine compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include benzylamine, phenethylamine, 3-phenyl-1-propylamine, 4-phenyl-1-butylamine, 5- Phenyl-1-pentylamine, 6-phenyl-1-hexylamine, α-methylbenzylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-methylbenzylamine, 2- (p-tolyl) ethylamine, β -Methylphenethylamine, 1-methyl-3-phenylpropylamine, 2-chlorobenzylamine, 3-chlorobenzylamine, 4-chlorobenzylamine, 2-fluorobenzylamine, 3-fluorobenzylamine, 4-fluorobenzylamine, 4 -Bromophenethylamine, 2- (2-chloropheny L) ethylamine, 2- (3-chlorophenyl) ethylamine, 2- (4-chlorophenyl) ethylamine, 2- (2-fluorophenyl) ethylamine, 2- (3-fluorophenyl) ethylamine, 2- (4-fluorophenyl) Ethylamine, 4-fluoro-α, α-dimethylphenethylamine, 2-methoxybenzylamine, 3-methoxybenzylamine, 4-methoxybenzylamine, 2-ethoxybenzylamine, 2-methoxyphenethylamine, 3-methoxyphenethylamine, 4-methoxy Phenethylamine, methylamine, ethylamine, propylamine, 1-propylamine, butylamine, t-butylamine, sec-butylamine, pentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine , Laurylamine, aniline, octylaniline, anisidine, 4-chloroaniline, 1-naphthylamine, methoxymethylamine, 2-methoxyethylamine, 2-ethoxyethylamine, 3-methoxypropylamine, 2-butoxyethylamine, 2-cyclohexyloxyethylamine , 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine and the like. Among these, benzylamine and phenethylamine are particularly preferable.
The said primary amine compound may be used individually by 1 type, and may use 2 or more types together.

前記1級アミン化合物の反応量としては、前記無水物基に対して0.1〜1.2当量であることが必要であり、0.1〜1.0当量が好ましい。該反応量が1.2当量を超えると、前記1級アミン化合物を1種以上反応させた場合に、溶解性が著しく悪化することがある。   The reaction amount of the primary amine compound needs to be 0.1 to 1.2 equivalents relative to the anhydride group, and preferably 0.1 to 1.0 equivalents. When the reaction amount exceeds 1.2 equivalents, the solubility may be significantly deteriorated when one or more primary amine compounds are reacted.

前記バインダー(A)としては、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる共重合体を含むものが好ましい。   The binder (A) includes (a) maleic anhydride, (b) an aromatic vinyl monomer, and (c) a vinyl monomer, the glass transition temperature of the homopolymer of the vinyl monomer. A copolymer obtained by reacting 0.1 to 1.0 equivalent of a primary amine compound with an anhydride group of a copolymer comprising a vinyl monomer having a (Tg) of less than 80 ° C. The inclusion is preferred.

前記(c)ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
The vinyl monomer (c) needs to have a glass transition temperature (Tg) of the homopolymer of the vinyl monomer of less than 80 ° C., preferably 40 ° C. or less, and more preferably 0 ° C. or less.
Examples of the vinyl monomer include n-propyl acrylate (homopolymer Tg = −37 ° C.), n-butyl acrylate (homopolymer Tg = −54 ° C.), pentyl acrylate, or hexyl acrylate (homopolymer acrylate). Tg = −57 ° C.), n-butyl methacrylate (Tg of homopolymer = −24 ° C.), n-hexyl methacrylate (Tg of homopolymer = −5 ° C.) and the like. These may be used individually by 1 type and may use 2 or more types together.

前記(a)無水マレイン酸の前記バインダーにおける含有量は、15〜50mol%が好ましく、20〜45mol%がより好ましく、20〜40mol%が特に好ましい。該含有量が15mol%未満であると、アルカリ現像性の付与ができず、50mol%を超えると、耐アルカリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形成を行うことができないことがある。また、この場合における、前記(b)芳香族ビニル単量体、及び(c)ホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体の前記バインダーにおける含有量は、それぞれ20〜60mol%、15〜40mol%が好ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両立を図ることができる。   The content of the (a) maleic anhydride in the binder is preferably 15 to 50 mol%, more preferably 20 to 45 mol%, particularly preferably 20 to 40 mol%. When the content is less than 15 mol%, alkali developability cannot be imparted, and when it exceeds 50 mol%, alkali resistance deteriorates and synthesis of the copolymer becomes difficult, resulting in a normal permanent pattern. Formation may not be possible. In this case, the content of (b) the aromatic vinyl monomer and (c) the vinyl monomer having a glass transition temperature (Tg) of the homopolymer of less than 80 ° C. in the binder is 20 respectively. -60 mol% and 15-40 mol% are preferable. When the content satisfies the numerical range, both surface hardness and laminating properties can be achieved.

前記バインダーの分子量は、1,000〜1,000,000が好ましく、8,000〜150,000がより好ましい。該分子量が1,000未満であると、後述する感光層の硬化後において、膜質が脆くなり、表面硬度が劣化することがあり、1,000,000を超えると、前記感光性組成物の加熱積層時の流動性が低くなり、適切なラミネート性の確保が困難になることがあり、また、現像性が悪化することがある。   The molecular weight of the binder is preferably 1,000 to 1,000,000, and more preferably 8,000 to 150,000. When the molecular weight is less than 1,000, the film quality becomes brittle and the surface hardness may deteriorate after curing of the photosensitive layer described later. When the molecular weight exceeds 1,000,000, the photosensitive composition is heated. The fluidity at the time of lamination may be low, and it may be difficult to ensure proper laminating properties, and developability may be deteriorated.

前記バインダーの前記感光性組成物固形分中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましい。該固形分含有量が、5質量%未満であると、後述する感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、80質量%を超えると、露光感度が低下することがある。   5-80 mass% is preferable and, as for solid content in the said photosensitive composition solid content of the said binder, 10-70 mass% is more preferable. When the solid content is less than 5% by mass, the film strength of the photosensitive layer described later tends to be weak, and the tackiness of the surface of the photosensitive layer may be deteriorated. Sensitivity may decrease.

<重合性化合物>
前記(B)重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
<Polymerizable compound>
The (B) polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose. The compound which is the above is preferable, for example, at least 1 sort (s) selected from the monomer which has a (meth) acryl group is mentioned suitably.

前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。   There is no restriction | limiting in particular as a monomer which has the said (meth) acryl group, According to the objective, it can select suitably, For example, polyethyleneglycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, phenoxyethyl (meth) ) Monofunctional acrylates and monofunctional methacrylates such as acrylates; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolethane triacrylate, trimethylolpropane triacrylate, trimethylolpropane diacrylate, neopentylglycol di (Meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate, tri (acryloyloxyethyl) cyanurate, glycerin Poly (functional) alcohols such as tri (meth) acrylate, trimethylolpropane, glycerin, bisphenol, etc., which are subjected to addition reaction with ethylene oxide and propylene oxide, and converted to (meth) acrylate, Japanese Patent Publication No. 48-41708, Japanese Patent Publication No. 50- Urethane acrylates described in JP-A-6034, JP-A-51-37193, etc .; JP-A-48-64183, JP-B-49-43191, JP-B-52-30 Polyester acrylates described in each publication of such 90 No.; and epoxy resin and (meth) polyfunctional acrylates or methacrylates such as epoxy acrylates which are reaction products of acrylic acid. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.

前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、2〜50質量%が好ましく、4〜40質量%がより好ましく、5〜30質量%が特に好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。   2-50 mass% is preferable, as for solid content in the said photosensitive composition solid content of the said polymeric compound, 4-40 mass% is more preferable, and 5-30 mass% is especially preferable. If the solid content is less than 5% by mass, problems such as deterioration of developability and reduction in exposure sensitivity may occur, and if it exceeds 50% by mass, the adhesiveness of the photosensitive layer may become too strong. Yes, not preferred.

<光重合開始剤>
前記(C)光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。こららの中でも、紫外線領域から可視の光線に対して感光性を有するものが好ましく、波長395〜415nmのレーザ光による露光に対して高い感度をもつものがより好ましく、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含むことが特に好ましい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
<Photopolymerization initiator>
The (C) photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound, and can be appropriately selected from known photopolymerization initiators. It may be an activator that produces some action with a sensitizer and generates active radicals, or an initiator that initiates cationic polymerization depending on the type of monomer. Among these, those having photosensitivity to visible light from the ultraviolet region are preferable, those having high sensitivity to exposure with laser light having a wavelength of 395 to 415 nm are more preferable, halogenated hydrocarbon derivatives, phosphine It is particularly preferable to include at least one selected from oxides, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts and ketoxime ethers.
The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 800 nm (more preferably 330 to 500 nm).

前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが好適に挙げられる。   Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton), phosphine oxide, hexaarylbiimidazole, oxime derivatives, organic peroxides, Preferred examples include thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers and the like.

前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42,2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29,1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。   Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent No. 1388492, a compound described in JP-A-53-133428, a compound described in German Patent No. 3333724, F.I. C. J. Schaefer et al. Org. Chem. 29,1527 (1964), a compound described in JP-A-62-258241, a compound described in JP-A-5-281728, a compound described in JP-A-5-34920, US Pat. No. 4,221,976 And compounds described in the book.

前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。   Wakabayashi et al., Bull. Chem. Soc. As a compound described in Japan, 42, 2924 (1969), for example, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-chlorophenyl) -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- (4-tolyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,4-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2, 4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-n-nonyl-4,6- Bis (trichloromethyl) 1,3,5-triazine, and 2-(alpha, alpha, beta-trichloroethyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
Examples of the compound described in the British Patent 1388492 include 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methylstyryl) -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxystyryl)- 4-amino-6-trichloromethyl-1,3,5-triazine and the like can be mentioned.
Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2 -(4-Ethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [4- (2-ethoxyethyl) -naphth-1-yl]- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4,7-dimethoxy-naphth-1-yl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine and 2- (acenaphtho-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in the specification of German Patent 3333724 include 2- (4-styrylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4 -Methoxystyryl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (1-naphthylvinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2-chlorostyrylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-thiophen-2-vinylenephenyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-thiophene-3-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-furan-2 Vinylenephenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, and 2- (4-benzofuran-2-vinylenephenyl) -4,6-bis (trichloromethyl) -1,3 5-triazine etc. are mentioned.

前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。   F. above. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964) include, for example, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-tris (tribromomethyl); -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1,3,5-triazine, 2-amino-4-methyl-6-tri (bromomethyl) -1,3,5- Examples include triazine and 2-methoxy-4-methyl-6-trichloromethyl-1,3,5-triazine.

前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compounds described in JP-A-62-258241 include 2- (4-phenylethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- Naphthyl-1-ethynylphenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-tolylethynyl) phenyl) -4,6-bis (trichloromethyl) -1 , 3,5-triazine, 2- (4- (4-methoxyphenyl) ethynylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-isopropylphenyl) Ethynyl) phenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4- (4-ethylphenylethynyl) phenyl) -4,6-bis (trichloromethyl) Le) -1,3,5-triazine.

前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-281728 include 2- (4-trifluoromethylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2, 6-difluorophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (2,6-dichlorophenyl) -4,6-bis (trichloromethyl) -1,3,5- Examples include triazine, 2- (2,6-dibromophenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine.

前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。   Examples of the compound described in JP-A-5-34920 include 2,4-bis (trichloromethyl) -6- [4- (N, N-diethoxycarbonylmethylamino) -3-bromophenyl] -1, 3,5-triazine, trihalomethyl-s-triazine compounds described in US Pat. No. 4,239,850, 2,4,6-tris (trichloromethyl) -s-triazine, 2- (4-chlorophenyl) Examples include -4,6-bis (tribromomethyl) -s-triazine.

前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。   Examples of the compound described in US Pat. No. 4,221,976 include compounds having an oxadiazole skeleton (for example, 2-trichloromethyl-5-phenyl-1,3,4-oxadiazole, 2- Trichloromethyl-5- (4-chlorophenyl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1,3,4-oxadiazole, 2-trichloromethyl-5 -(2-naphthyl) -1,3,4-oxadiazole, 2-tribromomethyl-5-phenyl-1,3,4-oxadiazole, 2-tribromomethyl-5- (2-naphthyl) -1,3,4-oxadiazole; 2-trichloromethyl-5-styryl-1,3,4-oxadiazole, 2-trichloromethyl-5- (4-chlorostyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (4-methoxystyryl) -1,3,4-oxadiazole, 2-trichloromethyl-5- (1-naphthyl) -1, 3,4-oxadiazole, 2-trichloromethyl-5- (4-n-butoxystyryl) -1,3,4-oxadiazole, 2-tribromomethyl-5-styryl-1,3,4 Oxadiazole and the like).

前記オキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。   Examples of the oxime derivative include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutan-2-one, and 2-acetoxyiminopentane-3-one. 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one, and 2-ethoxy And carbonyloxyimino-1-phenylpropan-1-one.

また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。   Further, as photopolymerization initiators other than the above, acridine derivatives (for example, 9-phenylacridine, 1,7-bis (9,9′-acridinyl) heptane, etc.), N-phenylglycine, and the like, polyhalogen compounds (for example, Carbon tetrabromide, phenyltribromomethylsulfone, phenyltrichloromethylketone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl) -7- (1-pyrrolidinyl) ) Coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3′-carbonylbis (5 , 7-di-n-propoxycoumarin), 3,3′-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7-diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin, 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, 7-benzotriazol-2-ylcoumarin, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206 No., JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-363209, etc.), amines (for example, ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoate) N-butyl acid, 4-dimethylaminobenzoic acid phenethyl, 4-dimethyl 2-phthalimidoethyl tilaminobenzoate, 2-methacryloyloxyethyl 4-dimethylaminobenzoate, pentamethylenebis (4-dimethylaminobenzoate), phenethyl of 3-dimethylaminobenzoic acid, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2-chloro-4-dimethylaminobenzaldehyde, 4-dimethylaminobenzyl alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piperidinoacetophenone, 4-dimethylaminobenzoin, N, N-dimethyl-4-toluidine, N, N-diethyl-3-phenetidine, tribenzylamine, dibenzylphenylamine, N-methyl-N-phenylbenzylamine, 4-bromo-N, N-dimethylaniline, tridodecylamine, amino Nofluoranes (ODB, ODBII, etc.), crystal violet lactone, leuco crystal violet, etc., acylphosphine oxides (for example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) ) -2,4,4-trimethyl-pentylphenylphosphine oxide, Lucirin TPO, etc.), metallocenes (for example, bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3-) (1H-pyrrol-1-yl) -phenyl) titanium, η5-cyclopentadienyl-η6-cumenyl-iron (1 +)-hexafluorophosphate (1-), etc.), JP-A-53-133428, Kosho 57-1819, 57-609 JP, and include compounds described in U.S. Patent No. 3,615,455.

前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。   Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-chlorobenzophenone, 4-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or tetramethyl ester thereof, 4,4′-bis (dialkylamino) benzophenone (for example, 4,4′-bis (dimethylamino) benzophenone, 4,4′- Bisdicyclohexylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-bis (dihydroxyethylamino) benzophenone, 4-methoxy-4′-dimethylamino Nzophenone, 4,4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methylanthraquinone, phenanthraquinone, xanthone, thioxanthone, 2-chloro -Thioxanthone, 2,4-diethylthioxanthone, fluorenone, 2-benzyl-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, In propyl ether, benzoin isopropyl ether, benzoin phenyl ether, benzyl dimethyl ketal), acridone, chloro acridone, N- methyl acridone, N- butyl acridone, N- butyl - such as chloro acrylic pyrrolidone.

前記ヘキサアリールビイミダゾール化合物としては、例えば、2,2’−ビス(o−クロロフェニル)−4,5,4’,5’−テトラフェニル−1,2’−ビスイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5.5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−メトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−エトキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラキス(4−フェノキシカルボニルフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’─テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−シアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリシアノフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−エチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリエチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−フェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4,6−トリフェニルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、などが挙げられる。   Examples of the hexaarylbiimidazole compound include 2,2′-bis (o-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′-bisimidazole and 2,2′-bis. (2-Chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′- Bis (2,4-dichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2, , 6-trichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-cyanophenyl) -4,4 ′, 5.5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-cyanophenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-methylphenyl) -4,4 ', 5,5'-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2'-bis (2-methylphenyl) -4,4', 5,5'-tetrakis 4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-methylphenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis ( 2-ethylphenyl) -4,4 ′, 5,5′-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′- Tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′-tetrakis (4-phenoxycarbonylphenyl) biimidazole, 2,2′- Bis (2-phenylphenyl) -4,4 ′, 5,5′-tetrakis (4-methoxycarbonylphenyl) biimidazole, 2,2′-bis (2-phenyl) Enylphenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) biimidazole, 2,2′-bis (2-phenylphenyl) -4,4 ′, 5,5′-tetrakis ( 4-phenoxycarbonylphenyl) biimidazole, 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-dichlorophenyl)- 4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2 '-Bis (2-bromophenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4 ', 5,5'- Tetrapheni Biimidazole, 2,2′-bis (2,4,6-tribromophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-cyanophenyl) -4 , 4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-dicyanophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-tricyanophenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2-methylphenyl) -4,4 ′, 5,5′- Tetraphenylbiimidazole, 2,2′-bis (2,4-dimethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-trimethylphenyl) ) -4,4 ', 5,5'-tetraphenyl Imidazole, 2,2′-bis (2-ethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4-diethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2,4,6-triethylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, 2,2′-bis (2 -Phenylphenyl) -4,4 ', 5,5'-tetraphenylbiimidazole, 2,2'-bis (2,4-diphenylphenyl) -4,4', 5,5'-tetraphenylbiimidazole, 2,2′-bis (2,4,6-triphenylphenyl) -4,4 ′, 5,5′-tetraphenylbiimidazole, and the like.

前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
The said photoinitiator may be used individually by 1 type, and may use 2 or more types together.
Particularly preferred examples of the photopolymerization initiator include halogenated carbonization having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton capable of supporting laser light having a wavelength of 405 nm in the exposure described later. Examples include a composite photoinitiator, a hexaarylbiimidazole compound, or titanocene, which is a combination of a hydrogen compound and an amine compound as a sensitizer described later.

前記光重合開始剤の前記感光性組成物における含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。   As content in the said photosensitive composition of the said photoinitiator, 0.1-30 mass% is preferable, 0.5-20 mass% is more preferable, 0.5-15 mass% is especially preferable.

また、前記感光層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光・可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
In addition to the photopolymerization initiator, a sensitizer can be added for the purpose of adjusting the exposure sensitivity and the photosensitive wavelength in the exposure of the photosensitive layer.
The sensitizer can be appropriately selected by visible light, ultraviolet light, visible light laser, or the like as a light irradiation means described later.
The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby generating radicals, acids, etc. It is possible to generate a useful group of

前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号等の各公報に記載のクマリン化合物など)が挙げられる。   The sensitizer is not particularly limited and may be appropriately selected from known sensitizers. For example, known polynuclear aromatics (for example, pyrene, perylene, triphenylene), xanthenes (for example, , Fluorescein, eosin, erythrosine, rhodamine B, rose bengal), cyanines (eg, indocarbocyanine, thiacarbocyanine, oxacarbocyanine), merocyanines (eg, merocyanine, carbomerocyanine), thiazines (eg, thionine, Methylene blue, toluidine blue), acridines (eg, acridine orange, chloroflavin, acriflavine), anthraquinones (eg, anthraquinone), squariums (eg, squalium), acridones (eg, acridone, chloroacrine) Don, N-methylacridone, N-butylacridone, N-butyl-chloroacridone, etc.), coumarins (for example, 3- (2-benzofuroyl) -7-diethylaminocoumarin, 3- (2-benzofuroyl)- 7- (1-pyrrolidinyl) coumarin, 3-benzoyl-7-diethylaminocoumarin, 3- (2-methoxybenzoyl) -7-diethylaminocoumarin, 3- (4-dimethylaminobenzoyl) -7-diethylaminocoumarin, 3,3 '-Carbonylbis (5,7-di-n-propoxycoumarin), 3,3'-carbonylbis (7-diethylaminocoumarin), 3-benzoyl-7-methoxycoumarin, 3- (2-furoyl) -7- Diethylaminocoumarin, 3- (4-diethylaminocinnamoyl) -7-diethylaminocoumarin Examples thereof include 7-methoxy-3- (3-pyridylcarbonyl) coumarin, 3-benzoyl-5,7-dipropoxycoumarin, and others, and JP-A-5-19475, JP-A-7-271028, JP-A-2002-. No. 363206, JP-A No. 2002-363207, JP-A No. 2002-363208, JP-A No. 2002-363209, and the like.

前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。   Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer start system described in JP-A-2001-305734 [(1) an electron donating initiator and a sensitizing dye, (2) A combination of an electron-accepting initiator and a sensitizing dye, (3) an electron-donating initiator, a sensitizing dye and an electron-accepting initiator (ternary initiation system), and the like.

前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。   As content of the said sensitizer, 0.05-30 mass% is preferable with respect to all the components in the said photosensitive composition, 0.1-20 mass% is more preferable, 0.2-10 mass% Is particularly preferred. When the content is less than 0.05% by mass, the sensitivity to active energy rays is reduced, the exposure process takes time, and productivity may be reduced. The sensitizer may be precipitated from the photosensitive layer.

<体質顔料>
前記(D)体質顔料としては、特に制限はなく、目的に応じて適宜選択することができるが、形成された永久パターンの表面硬度の向上、低熱膨張係数化、硬化膜自体の誘電率及び誘電正接の低減効果の点から、無機顔料や有機微粒子が好適に挙げられる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
<External pigment>
The (D) extender pigment is not particularly limited and may be appropriately selected depending on the intended purpose. However, the surface hardness of the formed permanent pattern is improved, the coefficient of thermal expansion is reduced, the dielectric constant and dielectric constant of the cured film itself. In view of the effect of reducing the tangent, inorganic pigments and organic fine particles are preferably used.
The inorganic pigment is not particularly limited and may be appropriately selected from known ones. For example, kaolin, barium sulfate, barium titanate, silicon oxide powder, finely divided silicon oxide, gas phase method silica, amorphous Examples thereof include silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and mica.
The average particle diameter of the inorganic pigment is preferably less than 10 μm, and more preferably 3 μm or less. When the average particle size is 10 μm or more, resolution may be deteriorated due to light scattering.
There is no restriction | limiting in particular as said organic fine particle, According to the objective, it can select suitably, For example, a melamine resin, a benzoguanamine resin, a crosslinked polystyrene resin etc. are mentioned. Further, silica having an average particle diameter of 1 to 5 μm and an oil absorption of about 100 to 200 m 2 / g, spherical porous fine particles made of a crosslinked resin, and the like can be used.

前記体質顔料の前記感光性組成物における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10〜60質量%であることが好ましい。前記添加量が10質量%未満であると、表面硬度の向上、熱膨張係数の低下が十分ではないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。   There is no restriction | limiting in particular as content in the said photosensitive composition of the said extender, Although it can select suitably according to the objective, It is preferable that it is 10-60 mass%. When the addition amount is less than 10% by mass, the surface hardness may not be improved and the thermal expansion coefficient may not be sufficiently reduced. When the addition amount exceeds 60% by mass, when a cured film is formed on the surface of the photosensitive layer, The film quality of the cured film becomes brittle, and when a wiring is formed using a permanent pattern, the function as a protective film for the wiring may be impaired.

<その他の成分>
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、熱架橋剤、熱重合禁止剤、可塑剤、着色剤(着色顔料あるいは染料)が挙げられ、更に、これらのその他の成分に、基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、前記感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。
<Other ingredients>
The other components are not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include a thermal crosslinking agent, a thermal polymerization inhibitor, a plasticizer, and a colorant (color pigment or dye). In addition to these other components, adhesion promoters and other auxiliaries to the substrate surface (for example, conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, peeling accelerators, antioxidants, Perfumes, surface tension modifiers, chain transfer agents, etc.) may be used in combination. By appropriately containing these components, properties such as stability, photographic properties, and film physical properties of the photosensitive film can be adjusted.

−熱架橋剤−
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記エポキシ樹脂化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
-Thermal crosslinking agent-
The thermal crosslinking agent is not particularly limited and may be appropriately selected depending on the purpose. In order to improve the film strength after curing of the photosensitive layer formed using the photosensitive composition, developability For example, an epoxy resin compound having at least two oxirane groups in one molecule and an oxetane compound having at least two oxetanyl groups in one molecule can be used within a range that does not adversely affect the like.
Examples of the epoxy resin compound include a bixylenol type or biphenol type epoxy resin (“YX4000; manufactured by Japan Epoxy Resin Co., Ltd.”) or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; Nissan”). Chemical Industries, "Araldite PT810; Ciba Specialty Chemicals, etc.), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy Resin, hydantoin type epoxy resin, alicyclic epoxy resin, trihydroxyphenylmethane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenylolethane type Poxy resin, glycidyl phthalate resin, tetraglycidyl xylenoylethane resin, naphthalene group-containing epoxy resin (“ESN-190, ESN-360; manufactured by Nippon Steel Chemical Co., Ltd.”, “HP-4032, EXA-4750, EXA-4700; large Nippon Ink Chemical Co., Ltd. ”), epoxy resins having a dicyclopentadiene skeleton (“ HP-7200, HP-7200H; manufactured by Dainippon Ink & Chemicals ”etc.), glycidyl methacrylate copolymer epoxy resin (“ CP -50S, CP-50M; manufactured by NOF Corporation, etc.), a copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacrylate, and the like, but is not limited thereto. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.

前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。   Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate or oligomers or copolymers thereof, oxetane groups and novolak resins , Poly (p-hydroxystyrene), cardo-type bisphe And ether compounds with hydroxyl groups, such as siloles, calixarenes, calixresorcinarenes, silsesquioxanes, and the like, as well as unsaturated monomers having an oxetane ring and alkyl (meth) acrylates. And a copolymer thereof.

前記エポキシ樹脂化合物又はオキセタン化合物の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を生ずる、あるいは、半田耐熱性や耐無電解メッキ性等などが低下することがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。   1-50 mass% is preferable and, as for solid content in the said photosensitive composition solid content of the said epoxy resin compound or oxetane compound, 3-30 mass% is more preferable. When the solid content is less than 1% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless plating resistance, and the like may be reduced. If it exceeds 50% by mass, the developability may deteriorate and the exposure sensitivity may decrease, which is not preferable.

また、前記エポキシ樹脂化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等のブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ樹脂、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
Moreover, in order to accelerate the thermosetting of the epoxy resin compound or the oxetane compound, for example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethyl Amine compounds such as benzylamine and 4-methyl-N, N-dimethylbenzylamine; quaternary ammonium salt compounds such as triethylbenzylammonium chloride; blocked isocyanate compounds such as dimethylamine; imidazole, 2-methylimidazole and 2-ethylimidazole , 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, etc. Bicyclic amidine compounds and salts thereof; phosphorus compounds such as triphenylphosphine; guanamine compounds such as melamine, guanamine, acetoguanamine, benzoguanamine; 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2 -Vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino-S-triazine isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-S-triazine isocyanuric acid S-triazine derivatives such as adducts can be used. These may be used alone or in combination of two or more. The epoxy resin compound or the oxetane compound is a curing catalyst, or any compound that can accelerate the reaction between the epoxy resin compound and the oxetane compound and a carboxyl group. May be.
Solid content in the said photosensitive composition solid content of the said epoxy resin, the said oxetane compound, and the compound which can accelerate | stimulate thermosetting with these and carboxylic acid is 0.01-15 mass% normally.

また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。   Further, as the thermal crosslinking agent, a polyisocyanate compound described in JP-A-5-9407 can be used, and the polyisocyanate compound is aliphatic, cycloaliphatic or aromatic containing at least two isocyanate groups. It may be derived from a group-substituted aliphatic compound. Specifically, a mixture of 1,3-phenylene diisocyanate and 1,4-phenylene diisocyanate, 2,4- and 2,6-toluene diisocyanate, 1,3- and 1,4-xylylene diisocyanate, bis (4 -Isocyanate-phenyl) methane, bis (4-isocyanatocyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, etc .; bifunctional isocyanates, trimethylolpropane, pentalysitol, glycerin, etc. An alkylene oxide adduct of the polyfunctional alcohol and an adduct of the bifunctional isocyanate; hexamethylene diisocyanate, hexamethylene-1,6-diisocyanate Cyclic trimers, such as preparative and derivatives thereof; and the like.

更に、前記感光性フィルムの保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類、フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
Furthermore, for the purpose of improving the storage stability of the photosensitive film, a compound obtained by reacting a blocking agent with the isocyanate group of the polyisocyanate and its derivative may be used.
Examples of the isocyanate group blocking agent include isopropanol, tert. Alcohols such as butanol; lactams such as ε-caprolactam, phenol, cresol, p-tert. -Butylphenol, p-sec. -Butylphenol, p-sec. -Phenols such as amylphenol, p-octylphenol, p-nonylphenol; heterocyclic hydroxyl compounds such as 3-hydroxypyridine and 8-hydroxyquinoline; dialkylmalonate, methylethylketoxime, acetylacetone, alkylacetoacetate oxime, acetoxime, Active methylene compounds such as cyclohexanone oxime; and the like. In addition to these, compounds having at least one polymerizable double bond and at least one blocked isocyanate group in the molecule described in JP-A-6-295060 can be used.

また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメトキシメチルメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。   Moreover, an aldehyde condensation product, a resin precursor, etc. can be used. Specifically, N, N′-dimethylolurea, N, N′-dimethylolmalonamide, N, N′-dimethylolsuccinimide, trimethylolmelamine, tetramethylolmelamine, hexamethylolmelamine, 1,3-N, N'-dimethylol terephthalamide, 2,4,6-trimethylolphenol, 2,6-dimethylol-4-methyliloanisole, 1,3-dimethylol-4,6-diisopropylbenzene and the like can be mentioned. In place of these methylol compounds, the corresponding ethyl or butyl ether, or acetic acid or propionic acid ester may be used. Moreover, you may use the hexamethoxymethyl melamine which consists of a formaldehyde condensation product of a melamine and urea, the butyl ether of a melamine and a formaldehyde condensation product, etc.

前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、1〜40質量%が好ましく、3〜20質量%がより好ましく、5〜25質量%が特に好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、40質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。   1-40 mass% is preferable, as for solid content in the said photosensitive composition solid content of the said thermal crosslinking agent, 3-20 mass% is more preferable, and 5-25 mass% is especially preferable. When the solid content is less than 1% by mass, improvement in the film strength of the cured film is not recognized, and when it exceeds 40% by mass, the developability and the exposure sensitivity may be lowered.

−熱重合禁止剤−
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加することが可能である。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
-Thermal polymerization inhibitor-
The thermal polymerization inhibitor can be added to prevent thermal polymerization or temporal polymerization of the polymerizable compound.
Examples of the thermal polymerization inhibitor include 4-methoxyphenol, hydroquinone, alkyl or aryl-substituted hydroquinone, t-butylcatechol, pyrogallol, 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, cuprous chloride, phenothiazine. , Chloranil, naphthylamine, β-naphthol, 2,6-di-tert-butyl-4-cresol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid 4-toluidine, methylene blue, copper and organic chelating agent reactant, methyl salicylate, and phenothiazine, nitroso compound, chelate of nitroso compound and Al, and the like.

前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。   As content of the said thermal-polymerization inhibitor, 0.001-5 mass% is preferable with respect to the said polymeric compound, 0.005-2 mass% is more preferable, 0.01-1 mass% is especially preferable. When the content is less than 0.001% by mass, stability during storage may be lowered, and when it exceeds 5% by mass, sensitivity to active energy rays may be lowered.

−着色顔料−
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用することができる。
-Color pigment-
There is no restriction | limiting in particular as said coloring pigment, According to the objective, it can select suitably, For example, Victoria pure blue BO (CI. 42595), auramine (CI. 41000), fat black HB (CI. 26150), Monolite Yellow GT (CI Pigment Yellow 12), Permanent Yellow GR (CI Pigment Yellow 17), Permanent Yellow HR (CI Pigment Yellow HR). Yellow 83), Permanent Carmine FBB (CI Pigment Red 146), Hoster Balm Red ESB (CI Pigment Violet 19), Permanent Ruby FBH (CI Pigment Red 11) Fastel Pink B Supra (CI Pigment Red 81) Monastral Fa Strike Blue (C.I. Pigment Blue 15), mono Light Fast Black B (C.I. Pigment Black 1), carbon, C. I. Pigment red 97, C.I. I. Pigment red 122, C.I. I. Pigment red 149, C.I. I. Pigment red 168, C.I. I. Pigment red 177, C.I. I. Pigment red 180, C.I. I. Pigment red 192, C.I. I. Pigment red 215, C.I. I. Pigment green 7, C.I. I. Pigment green 36, C.I. I. Pigment blue 15: 1, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment blue 22, C.I. I. Pigment blue 60, C.I. I. Pigment blue 64 and the like. These may be used alone or in combination of two or more. Moreover, the dye suitably selected from well-known dye can be used as needed.

前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には、0.05〜10質量%が好ましく、0.075〜8質量%がより好ましく、0.1〜5質量%が特に好ましい。   The solid content in the photosensitive composition solid content of the color pigment can be determined in consideration of the exposure sensitivity, resolution, etc. of the photosensitive layer at the time of permanent pattern formation, depending on the type of the color pigment. Generally, 0.05 to 10% by mass is preferable, 0.075 to 8% by mass is more preferable, and 0.1 to 5% by mass is particularly preferable.

−密着促進剤−
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることが可能である。
-Adhesion promoter-
In order to improve the adhesion between the layers or the adhesion between the photosensitive layer and the substrate, a known so-called adhesion promoter can be used for each layer.

前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報などに記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。   Preferred examples of the adhesion promoter include adhesion promoters described in JP-A-5-11439, JP-A-5-341532, JP-A-6-43638, and the like. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, and 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole Amino group-containing benzotriazole, silane coupling agents, and the like.

前記密着促進剤の含有量としては、前記感光性組成物中の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
前記感光性組成物が、前記密着促進剤を含有することにより、各層間の密着性、又は感光層と基材との密着性を向上されることが可能となる。
As content of the said adhesion promoter, 0.001 mass%-20 mass% are preferable with respect to all the components in the said photosensitive composition, 0.01-10 mass% is more preferable, 0.1 mass% ˜5% by weight is particularly preferred.
When the photosensitive composition contains the adhesion promoter, the adhesion between each layer or the adhesion between the photosensitive layer and the substrate can be improved.

前記感光性フィルムにおける前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3〜100μmが好ましく、10〜70μmがより好ましい。   There is no restriction | limiting in particular as thickness of the said photosensitive layer in the said photosensitive film, Although it can select suitably according to the objective, For example, 3-100 micrometers is preferable and 10-70 micrometers is more preferable.

[その他の層]
前記その他の層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、剥離層、光吸収層、表面保護層などが挙げられる。
前記その他の層の前記感光性フィルムにおける配置、厚み等は、特に制限はなく、目的に応じて適宜選択することができる。
[Other layers]
There is no restriction | limiting in particular as said other layer, According to the objective, it can select suitably, For example, a peeling layer, a light absorption layer, a surface protective layer, etc. are mentioned.
There is no restriction | limiting in particular in arrangement | positioning, thickness, etc. in the said photosensitive film of the said other layer, According to the objective, it can select suitably.

(感光性フィルムの製造方法)
本発明の感光性フィルムは、以下の感光性フィルムの製造方法により製造される。
即ち、まず、前記支持体上に、熱可塑性樹脂を含む水分散エマルジョンを塗布し、乾燥させて前記クッション層を形成し、次いで、該クッション層の表面に、バリア層に含まれる組成物が溶解、乳化又は分散されたバリア層組成物塗布液を塗布し、乾燥させてバリア層を形成し、次いで、前記感光性組成物の溶液を塗布し、乾燥させて感光層を形成することで感光性フィルムが得られる。
前記クッション層は、主成分としての水に熱可塑性樹脂を分散したエマルジョンを塗布し、乾燥させることにより得られる。
また、前記エマルジョンの分散安定性を損なうことがない範囲で有機溶媒を添加することも可能である。
前記熱可塑性樹脂を含む水分散エマルジョンには、分散性を向上されせるために、乳化剤を添加することが好ましい。
前記乳化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ドデシルベンゼンスルフォン酸ナトリウム、ドデシル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ドデシル硫酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ナフタレンスルフォン酸のホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテルサルフェートアンモニウム塩等のアニオン乳化剤、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールモノステアレート、ソルビタンモノステアレートなどのノニオン系乳化剤などが挙げられる。
前記クッション層が、熱可塑性樹脂を含む水分散エマルジョンにより得られるので、感光層形成時の有機溶剤排ガス濃度の管理が容易となり、環境負荷対策や、防爆管理が容易となる。
前記バリア層は、クッション層形成後に、該クッション層の表面に、前記バリア層組成物塗布液を塗布し、乾燥させて得られる。
また、前記感光層は、前記バリア層形成後に、該バリア層の表面に、前記感光性組成物の溶液を塗布し、乾燥させて得られる。
前記バリア層、又はクッション層の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
(Method for producing photosensitive film)
The photosensitive film of the present invention is produced by the following method for producing a photosensitive film.
That is, first, an aqueous dispersion emulsion containing a thermoplastic resin is applied onto the support and dried to form the cushion layer, and then the composition contained in the barrier layer is dissolved on the surface of the cushion layer. It is photosensitive by applying an emulsion or dispersed barrier layer composition coating solution and drying to form a barrier layer, and then applying a solution of the photosensitive composition and drying to form a photosensitive layer. A film is obtained.
The cushion layer is obtained by applying and drying an emulsion in which a thermoplastic resin is dispersed in water as a main component.
It is also possible to add an organic solvent within a range that does not impair the dispersion stability of the emulsion.
In order to improve dispersibility, it is preferable to add an emulsifier to the water-dispersed emulsion containing the thermoplastic resin.
The emulsifier is not particularly limited and may be appropriately selected depending on the intended purpose. And anionic emulsifiers such as polyoxyethylene alkylphenyl ether sulfate ammonium salt, and nonionic emulsifiers such as polyoxyethylene nonylphenyl ether, polyethylene glycol monostearate and sorbitan monostearate.
Since the cushion layer is obtained from a water-dispersed emulsion containing a thermoplastic resin, management of the organic solvent exhaust gas concentration during formation of the photosensitive layer is facilitated, and environmental load countermeasures and explosion-proof management are facilitated.
The barrier layer is obtained by applying the barrier layer composition coating liquid on the surface of the cushion layer and drying it after the cushion layer is formed.
The photosensitive layer can be obtained by applying a solution of the photosensitive composition to the surface of the barrier layer after the formation of the barrier layer and drying it.
There is no restriction | limiting in particular as a solvent of the said barrier layer or a cushion layer, According to the objective, it can select suitably, For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, n- Alcohols such as hexanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisobutyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl propionate, dimethyl phthalate, ethyl benzoate, And esters such as methoxypropyl acetate; aromatic hydrocarbons such as toluene, xylene, benzene, ethylbenzene; carbon tetrachloride, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, monochloro Halogenated hydrocarbons such as benzene; ethers such as tetrahydrofuran, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, etc. Is mentioned. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.

前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
The coating method is not particularly limited and can be appropriately selected depending on the purpose. For example, using a spin coater, a slit spin coater, a roll coater, a die coater, a curtain coater, etc. The method of apply | coating is mentioned.
The drying conditions vary depending on each component, the type of solvent, the use ratio, and the like, but are usually about 60 to 110 ° C. for about 30 seconds to 15 minutes.

前記感光性フィルムは、基板への積層前には、例えば、前記感光層が保護フィルムで被覆されていることが好ましい。前記保護フィルムは、輸送時などは、前記感光層側に貼り付けられて、前記感光層の汚れ、損傷を防止して保護するとともに、前記感光性フィルムを基板上に積層するときには剥離される。
前記保護フィルムとしては、例えば、前記支持体と同様のもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Xと、前記感光層及び保護フィルムの接着力Yとが、接着力X>接着力Yの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
The photosensitive film is preferably coated with a protective film before the lamination on the substrate, for example. The protective film is attached to the photosensitive layer side during transportation or the like to prevent and protect the photosensitive layer from being stained and damaged, and is peeled off when the photosensitive film is laminated on the substrate.
Examples of the protective film include those similar to the support, silicone paper, polyethylene, polypropylene laminated paper, polyolefin or polytetrafluoroethylene sheet, and among these, polyethylene film, polypropylene A film is preferred.
There is no restriction | limiting in particular as thickness of the said protective film, Although it can select suitably according to the objective, For example, 5-100 micrometers is preferable and 8-30 micrometers is more preferable.
When the protective film is used, it is preferable that the adhesive force X between the photosensitive layer and the support and the adhesive force Y between the photosensitive layer and the protective film satisfy the relationship of adhesive force X> adhesive force Y.
Examples of the combination of the support and the protective film (support / protective film) include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyvinyl chloride / cellophane, polyimide / polypropylene, polyethylene terephthalate / polyethylene terephthalate, and the like. . Moreover, the relationship of the above adhesive forces can be satisfy | filled by surface-treating at least any one of a support body and a protective film. The surface treatment of the support may be performed in order to increase the adhesive force with the photosensitive layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation treatment, glow treatment Examples thereof include a discharge irradiation process, an active plasma irradiation process, and a laser beam irradiation process.

また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
Moreover, as a static friction coefficient of the said support body and the said protective film, 0.3-1.4 are preferable and 0.5-1.2 are more preferable.
When the coefficient of static friction is less than 0.3, slipping is excessive, so that winding deviation may occur when the roll is formed, and when it exceeds 1.4, it is difficult to wind into a good roll. Sometimes.

前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。   The protective film may be surface-treated in order to adjust the adhesion between the protective film and the photosensitive layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer can be formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C. (especially 50 to 120 ° C.) for 1 to 30 minutes.

前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。   The photosensitive film is preferably stored, for example, wound around a cylindrical core, wound in a long roll shape. There is no restriction | limiting in particular as the length of the said elongate photosensitive film, For example, it can select suitably from the range of 10m-20,000m. Further, slitting may be performed so that the user can easily use, and a long body in the range of 100 m to 1,000 m may be formed into a roll. In this case, it is preferable that the support is wound up so as to be the outermost side. Moreover, you may slit the said roll-shaped photosensitive film in a sheet form. When storing, from the viewpoint of protecting the end face and preventing edge fusion, it is preferable to install a separator (particularly moisture-proof and containing a desiccant) on the end face, and use a low moisture-permeable material for packaging. Is preferred.

本発明の感光性フィルムは、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に優れ、現像後に優れた耐薬品性、表面硬度、耐熱性等を発現する感光性組成物が積層された前記感光層を有してなる。このため、柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の永久永久パターン形成方法に好適に用いることができる。
特に、本発明の感光性フィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、基材への積層がより精細に行われる。
The photosensitive film of the present invention has a small surface tackiness, good laminating and handling properties, excellent storage stability, and excellent chemical resistance, surface hardness, heat resistance and the like after development. It has the photosensitive layer on which the product is laminated. For this reason, it can be widely used for forming permanent patterns such as column members, rib members, spacers, partition members, display members, holograms, micromachines, proofs, etc., and can be suitably used for the permanent permanent pattern forming method of the present invention. it can.
In particular, since the photosensitive film of the present invention has a uniform thickness, the film is more precisely laminated on the substrate when forming a permanent pattern.

本発明の感光性フィルムで形成される永久パターンとしては、保護膜、絶縁膜(層間絶縁膜)であることが好ましい。前記永久パターンは、配線を外部からの衝撃や曲げから保護することができ、また、多層配線基板、ビルドアップ配線基板などの絶縁膜として好適である。   The permanent pattern formed by the photosensitive film of the present invention is preferably a protective film or an insulating film (interlayer insulating film). The permanent pattern can protect the wiring from external impact and bending, and is suitable as an insulating film for a multilayer wiring board, a build-up wiring board, and the like.

(永久パターン形成方法)
本発明の永久パターン形成方法としては、少なくとも、積層工程と、露光工程と、現像工程とを含み、更に、適宜選択されたその他の工程を含む。
本発明の永久パターン形成方法としては、具体的には、前記感光性フィルムを、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する積層工程と、前記積層工程で積層された感光層を露光する露光工程と、該露光工程により露光された感光層を現像する現像工程とを有し、前記感光層を基板上に所定のパターンで残して、該基板上に所定の永久パターン、即ち、ソルダレジストを形成する方法が挙げられる。
第1の態様の永久パターン形成方法としては、前記各工程に加えて、前記その他の工程として、前記露光工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、前記感光層を前記現像工程により現像する方法が好適に挙げられる。
第1の態様の永久パターン形成方法によれば、露光時は、支持体及びクッション層により、感光層への酸素の透過を遮断して、例えば、高感度な感光性組成物として、光ラジカル重合系の感光性組成物を使用しても、露光時の酸素の影響により、前記感光性組成物の重合反応が阻害されることがなく、感光層の感度が低下することが防止される。
第2の態様の永久パターン形成方法としては、前記各工程に加えて、前記その他の工程として、前記積層工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、感光層を露光工程により露光する方法が好適に挙げられる。
第2の態様の永久パターン形成方法によれば、前記支持体及び前記クッション層による光の散乱や屈折等の影響を受けることが無く、感光層上に結像させる像にボケ像が生じることが防止され、高解像度が得られる。
(Permanent pattern forming method)
The permanent pattern forming method of the present invention includes at least a lamination process, an exposure process, and a development process, and further includes other processes that are appropriately selected.
As the permanent pattern forming method of the present invention, specifically, the photosensitive film is laminated so that the photosensitive layer is on the surface side of the substrate by at least one of heating and pressurization, and the lamination An exposure step of exposing the photosensitive layer laminated in the step, and a development step of developing the photosensitive layer exposed in the exposure step, leaving the photosensitive layer in a predetermined pattern on the substrate, And a method of forming a predetermined permanent pattern, that is, a solder resist.
As the permanent pattern forming method of the first aspect, in addition to the above steps, as the other steps, after the exposure step, the support and the cushion layer are simultaneously placed on the barrier layer between the cushion layer and the barrier layer. Preferred examples include a peeling step of peeling off the photosensitive layer, and then developing the photosensitive layer by the developing step.
According to the permanent pattern forming method of the first aspect, at the time of exposure, permeation of oxygen to the photosensitive layer is blocked by the support and the cushion layer, for example, photoradical polymerization as a highly sensitive photosensitive composition. Even when the photosensitive composition of the system is used, the polymerization reaction of the photosensitive composition is not inhibited by the influence of oxygen during exposure, and the sensitivity of the photosensitive layer is prevented from being lowered.
As the permanent pattern forming method of the second aspect, in addition to the above steps, as the other steps, after the lamination step, the support and the cushion layer are simultaneously placed on the barrier layer between the cushion layer and the barrier layer. Preferably, there is a method in which the photosensitive layer is exposed by an exposure step.
According to the permanent pattern forming method of the second aspect, a blurred image is generated in an image formed on the photosensitive layer without being affected by light scattering or refraction by the support and the cushion layer. And high resolution is obtained.

本発明の永久パターン形成方法としては、前記感光性フィルムによって形成される保護膜、層間絶縁膜が永久パターンとなる。   In the permanent pattern forming method of the present invention, the protective film and the interlayer insulating film formed by the photosensitive film become a permanent pattern.

[積層工程]
前記積層工程は、前記感光性フィルムを、加圧及び加熱の少なくともいずれかにより感光層が基材の表面側となるように積層する工程である。
[Lamination process]
The laminating step is a step of laminating the photosensitive film such that the photosensitive layer is on the surface side of the substrate by at least one of pressurization and heating.

前記積層工程において、前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜130℃が好ましく、80〜110℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
In the lamination step, the heating temperature is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 70 to 130 ° C, more preferably 80 to 110 ° C.
There is no restriction | limiting in particular as a pressure of the said pressurization, Although it can select suitably according to the objective, For example, 0.01-1.0 MPa is preferable and 0.05-1.0 MPa is more preferable.

前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。   There is no restriction | limiting in particular as an apparatus which performs at least any one of the said heating and pressurization, According to the objective, it can select suitably, For example, heat press, a heat roll laminator (For example, Taisei Laminator company make, VP-II) ), A vacuum laminator (for example, MVLP500, manufactured by Meiki Seisakusho) and the like are preferable.

<基材>
前記積層工程で用いられる前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができるが、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられる。
<Base material>
The substrate used in the laminating step is not particularly limited, and can be appropriately selected from known materials having high surface smoothness to those having an uneven surface. A material (substrate) is preferable. Specifically, a known printed wiring board forming substrate (for example, copper-clad laminate), a glass plate (for example, soda glass plate), a synthetic resin film, paper, a metal plate Etc.

[露光工程]
前記露光工程としては、特に制限はなく、目的に応じて適宜選択することができ、アナログ露光工程、デジタル露光工程等が挙げられる。
前記アナログ露光工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、フォトマスクを介して光照射手段からの光を感光層上に照射し、該感光層の面に前記フォトマスクの像を結ばせて、露光する工程が挙げられる。
前記デジタル露光工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて、光変調手段により変調させた光を感光層上に照射し、露光する工程が挙げられ、具体的には、少なくとも、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって、前記感光層形成工程により形成された感光層を、露光する工程が好適に挙げられる。
[Exposure process]
There is no restriction | limiting in particular as said exposure process, According to the objective, it can select suitably, An analog exposure process, a digital exposure process, etc. are mentioned.
The analog exposure step is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the surface of the photosensitive layer is irradiated with light from a light irradiation means via a photomask. And a step of forming an image of the photomask and exposing.
The digital exposure process is not particularly limited and may be appropriately selected depending on the purpose. For example, a control signal is generated based on pattern information to be formed, and light modulation means is used in accordance with the control signal. The step of irradiating and exposing the modulated light onto the photosensitive layer is exemplified, and specifically, the light modulating means having at least n pixel parts for receiving and emitting the light from the light irradiating means. After the light from the light irradiating means is modulated, the photosensitive layer is subjected to light that has passed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface in the picture element portion are arranged. A step of exposing the photosensitive layer formed by the forming step is preferably exemplified.

前記露光工程において、前記光照射手段から照射される光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、光重合開始剤や増感剤を活性化する電磁波、紫外から可視光、電子線、X線、レーザ光などが挙げられ、これらの中でも、光のオンオフ制御が短時間で行え、光の干渉制御が容易なレーザ光が好適に挙げられる。
前記紫外から可視光の光の波長としては、特に制限はなく、目的に応じて適宜選択することができるが、感光性組成物の露光時間の短縮を図る目的から、330〜650nmが好ましく、395〜415nmがより好ましく、405nmであることが特に好ましい。
前記光照射手段による光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用冷陰極管、LED、半導体レーザなどの公知の光源によって照射する方法が挙げられる。また、これらの光源からの光を2以上合成して照射することが好適であり、2以上の光を合成したレーザ光(以下、「合波レーザ光」と称することがある)を照射することが特に好適に挙げられる。
前記合波レーザ光の照射方法としては、特に制限はなく、目的に応じて適宜選択することができるが、複数のレーザ光源と、マルチモード光ファイバと、該複数のレーザ光源から照射されるレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とにより合波レーザ光を構成して照射する方法が挙げられる。
In the exposure step, the light emitted from the light irradiation means is not particularly limited and can be appropriately selected according to the purpose. For example, an electromagnetic wave that activates a photopolymerization initiator and a sensitizer, Examples include ultraviolet to visible light, electron beams, X-rays, and laser beams. Among these, laser beams that can perform on / off control of light in a short time and easily control light interference are preferable.
There is no restriction | limiting in particular as a wavelength of the light of the said ultraviolet to visible light, Although it can select suitably according to the objective, 330-650 nm is preferable and the objective of shortening the exposure time of a photosensitive composition is 395. ˜415 nm is more preferable, and 405 nm is particularly preferable.
The light irradiation method by the light irradiation means is not particularly limited and can be appropriately selected according to the purpose. For example, a high pressure mercury lamp, a xenon lamp, a carbon arc lamp, a halogen lamp, a cold cathode tube for a copying machine, The method of irradiating with well-known light sources, such as LED and a semiconductor laser, is mentioned. In addition, it is preferable to synthesize and irradiate two or more light beams from these light sources, and to irradiate a laser beam (hereinafter sometimes referred to as “combined laser beam”) composed of two or more light beams. Is particularly preferred.
There is no restriction | limiting in particular as the irradiation method of the said combined laser beam, Although it can select suitably according to the objective, A laser irradiated from a several laser light source, a multimode optical fiber, and this several laser light source There is a method of forming and irradiating a combined laser beam with a collective optical system that collects light and couples it to the multimode optical fiber.

前記露光工程において、光を変調する方法としては、前記光照射手段からの光を受光し出射する描素部をn個有する光変調手段により変調する方法であれば、特に制限はなく、目的に応じて適宜選択することができるが、n個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御する方法が好適に挙げられる。
前記描素部の数(n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調手段における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2次元的に配列されることが好ましく、格子状に配列されることがより好ましい。
また、前記光の変調方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記光変調手段が、空間光変調素子による方法が好適に挙げられる。
前記空間光変調素子としては、特に制限はなく、目的に応じて適宜選択することができるが、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが好適に挙げられ、これらの中でもDMDが特に好適に挙げられる。
In the exposure step, the method for modulating light is not particularly limited as long as it is a method for modulating light by means of light modulation means having n number of pixel parts for receiving and emitting light from the light irradiation means. Although it can select suitably according to this, The method of controlling the arbitrary less than n image-element parts arrange | positioned continuously from n image element parts according to pattern information is mentioned suitably.
There is no restriction | limiting in particular as the number (n) of said picture element parts, According to the objective, it can select suitably.
The arrangement of the picture element portions in the light modulation means is not particularly limited and may be appropriately selected according to the purpose. For example, it is preferably arranged two-dimensionally and arranged in a lattice pattern. Is more preferable.
The light modulation method is not particularly limited and may be appropriately selected depending on the intended purpose. A preferable example is a method using a spatial light modulation element as the light modulation means.
The spatial light modulation element is not particularly limited and may be appropriately selected depending on the intended purpose. However, a digital micromirror device (DMD) or a MEMS (Micro Electro Mechanical Systems) type spatial light modulation element (SLM) may be used. A Special Light Modulator), an optical element that modulates transmitted light by an electro-optic effect (PLZT element), a liquid crystal light shutter (FLC), and the like. Among these, a DMD is particularly preferable.

前記露光工程において、前記変調手段により変調された光は、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させられる。
前記マイクロレンズアレイに配置されるマイクロレンズとしては、非球面を有するものであれば、特に制限はなく、目的に応じて適宜選択することができるが、前記非球面がトーリック面であるマイクロレンズであることが好ましい。
更に、前記露光工程において、前記変調手段により変調された光は、アパーチャーアレイ、結合光学系、適宜選択されるその他の光学系などを通過させられることが好ましい。
In the exposure step, the light modulated by the modulation means is allowed to pass through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface in the picture element portion are arranged.
The microlens arranged in the microlens array is not particularly limited as long as it has an aspheric surface, and can be appropriately selected according to the purpose. However, the microlens is a microlens having a toric surface. Preferably there is.
Furthermore, in the exposure step, it is preferable that the light modulated by the modulation means is allowed to pass through an aperture array, a coupling optical system, other optical systems selected as appropriate.

前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル露光、アナログ露光などが挙げられるが、デジタル露光が好適である。
前記デジタル露光の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定のパターン情報に基づいて生成される制御信号に応じて変調されたレーザ光を用いて行われることが好適である。
更に、前記露光工程において、感光層を、露光する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、短時間、且つ高速露光を可能とする観点から、露光光と感光層とを相対的に移動させながら行うことが好ましく、前記デジタル・マイクロミラー・デバイス(DMD)と併用されることが特に好ましい。
In the exposure step, the method for exposing the photosensitive layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include digital exposure and analog exposure, but digital exposure is preferred. .
The digital exposure method is not particularly limited and may be appropriately selected depending on the purpose. For example, the digital exposure method is performed using laser light modulated according to a control signal generated based on predetermined pattern information. Is preferred.
Further, in the exposure step, the method for exposing the photosensitive layer is not particularly limited and can be appropriately selected according to the purpose. From the viewpoint of enabling high-speed exposure in a short time, It is preferably carried out while relatively moving the photosensitive layer, and particularly preferably used in combination with the digital micromirror device (DMD).

以下、本発明の永久パターン形成方法に好適に用いられるパターン形成装置を図面を参照しながら説明する。   Hereinafter, a pattern forming apparatus suitably used in the permanent pattern forming method of the present invention will be described with reference to the drawings.

図7は本発明の永久パターン形成方法に好適に用いられるパターン形成装置の外観を示す概略斜視図である。
前記光変調手段を含むパターン形成装置は、図7に示すように4本の脚部154に支持された厚い板状の設置台156の上面に、シート状のパターン形成材料150を表面に吸着して保持する平板状のステージ152を備えている。
ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、前記設置台156の上面に形成されたガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
FIG. 7 is a schematic perspective view showing the appearance of a pattern forming apparatus suitably used in the permanent pattern forming method of the present invention.
As shown in FIG. 7, the pattern forming apparatus including the light modulation means adsorbs the sheet-like pattern forming material 150 on the upper surface of a thick plate-like installation table 156 supported by four legs 154. A flat plate-like stage 152 is provided.
The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is supported by a guide 158 formed on the upper surface of the installation table 156 so as to be reciprocally movable. The pattern forming apparatus has a drive device (not shown) for driving the stage 152 along the guide 158.

設置台156の中央部には、ステージ152の移動経路を跨ぐように下向きC字状のゲート160が設けられている。ゲート160の各々の端部は、設置台156の長手方向中央部における両側面に固定されている。このゲート160の一方の側面側には、スキャナ162が設けられ、他方の側面側には、パターン形成材料150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。   A downward C-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end portion of the gate 160 is fixed to both side surfaces in the longitudinal center portion of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 that detect the front and rear ends of the pattern forming material 150 are provided on the other side. ing. The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.

図8は、スキャナの構成を示す概略斜視図である。また、図9(A)は、感光層に形成される露光済み領域を示す平面図であり、図9(B)は、露光ヘッドによる露光エリアの配列を示す図である。
スキャナ162は、図8及び図9(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、パターン形成材料150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。
露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。従って、ステージ152の移動に伴い、パターン形成材料150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。
FIG. 8 is a schematic perspective view showing the configuration of the scanner. FIG. 9A is a plan view showing an exposed region formed on the photosensitive layer, and FIG. 9B is a diagram showing an arrangement of exposure areas by the exposure head.
As shown in FIGS. 8 and 9B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (for example, 3 rows and 5 columns). ing. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the pattern forming material 150. In addition, when showing each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure head 166 mn .
An exposure area 168 by the exposure head 166 has a rectangular shape with a short side in the sub-scanning direction. Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the pattern forming material 150 for each exposure head 166. In addition, when showing the exposure area by each exposure head arranged in the m-th row and the n-th column, it is expressed as an exposure area 168 mn .

また、図9(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。 Further, as shown in FIGS. 9A and 9B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed regions 170 are arranged in the direction orthogonal to the sub-scanning direction without gaps. These are arranged with a predetermined interval (natural number times the long side of the exposure area, twice in this example) in the arrangement direction. Therefore, can not be exposed portion between the exposure area 168 11 in the first row and the exposure area 168 12, it can be exposed by the second row of the exposure area 168 21 and the exposure area 168 31 in the third row.

図10は露光ヘッドの概略構成を示す斜視図である。
露光ヘッド16611〜166mn各々は、図10に示すように、光ビームをパターン情報に応じて光変調する前記光変調手段(各描素毎に変調する空間光変調素子)としての、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(以下「DMD」ということがある。)50と、DMD50の光入射側に配置され、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されるレーザ出射部68を備えた光照射手段66としてのファイバアレイ光源66と、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67と、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69と、DMD50で反射されたレーザ光Bを、パターン形成材料150上に結像する結像光学系51とを備えている。なお、図10では、レンズ系67を概略的に示してある。
FIG. 10 is a perspective view showing a schematic configuration of the exposure head.
As shown in FIG. 10, each of the exposure heads 166 11 to 166 mn serves as the light modulation means (spatial light modulation element for modulating each pixel) that modulates a light beam according to pattern information. A digital micromirror device (hereinafter also referred to as “DMD”) 50 manufactured by Instruments Co., Ltd. A fiber array light source 66 as a light irradiating means 66 provided with laser emitting portions 68 arranged in a line along a direction corresponding to the side direction, and a laser beam emitted from the fiber array light source 66 are corrected and placed on the DMD. A condensing lens system 67, a mirror 69 that reflects laser light transmitted through the lens system 67 toward the DMD 50, and a laser reflected by the DMD 50 The B, and an image forming optical system 51 forms an image on the pattern forming material 150. In FIG. 10, the lens system 67 is schematically shown.

図12は、パターン情報に基づいて、DMDの制御を行うコントローラである。
DMD50は、図12に示すように、データ処理部、ミラー駆動制御部などを有するコントローラ302に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。
FIG. 12 shows a controller that controls the DMD based on the pattern information.
As shown in FIG. 12, the DMD 50 is connected to a controller 302 having a data processing unit, a mirror drive control unit, and the like. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the area to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The area to be controlled will be described later. The mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit.

図1は、前記光変調手段としてのデジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図である。
図1に示すように、DMD50は、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
FIG. 1 is a partially enlarged view showing a configuration of a digital micromirror device (DMD) as the light modulation means.
As shown in FIG. 1, in the DMD 50, a large number (for example, 1024 × 768) of micromirrors (micromirrors) 62 each constituting a pixel (pixel) are arranged on a SRAM cell (memory cell) 60 in a lattice shape. This is a mirror device arranged in a row. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a material having high reflectance such as aluminum is deposited on the surface of the micromirror 62. The reflectance of the micromirror 62 is 90% or more, and the arrangement pitch is 13.7 μm as an example in both the vertical and horizontal directions. A silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke. The entire structure is monolithically configured. ing.

図2(A)及び(B)は、DMDの動作を説明する図である。
DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図2(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図2(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。
従って、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを制御することによって、DMD50に入射したレーザ光は、それぞれのマイクロミラー62の傾き方向へ反射される。
なお、図1では、マイクロミラー62が、+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続された前記コントローラ302によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、図示しない光吸収体が配置されている。
2A and 2B are diagrams for explaining the operation of the DMD.
When a digital signal is written in the SRAM cell 60 of the DMD 50, the micromirror 62 supported by the support is tilted in a range of ± α degrees (for example, ± 12 degrees) with respect to the substrate side on which the DMD 50 is disposed with the diagonal line as the center. It is done. 2A shows a state in which the micromirror 62 is tilted to + α degrees when the micromirror 62 is in an on state, and FIG. 2B shows a state in which the micromirror 62 is tilted to −α degrees that is in an off state.
Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the pattern information, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62.
FIG. 1 shows an example of a state in which the micromirror 62 is controlled to + α degrees or −α degrees. On / off control of each micromirror 62 is performed by the controller 302 connected to the DMD 50. A light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the micromirror 62 in the off state travels.

DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。
図3(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図3(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。
図3(B)に示すように、DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。
The DMD 50 is preferably arranged with a slight inclination so that the short side forms a predetermined angle θ (for example, 0.1 ° to 5 °) with the sub-scanning direction.
3A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 3B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted. Show.
As shown in FIG. 3B, the DMD 50 has a plurality of micromirror arrays (for example, 756 pairs) arranged in the short direction, in which a large number (for example, 1024) of micromirrors are arranged in the longitudinal direction. and which is, by inclining the DMD 50, the pitch P 2 of the scanning locus of the exposure beams 53 from each micromirror (scan line), it becomes narrower than the pitch P 1 of the scanning line in the case of not tilting the DMD 50, significant resolution Can be improved. On the other hand, the inclination angle of the DMD 50 is small, the scanning width W 2 in the case of tilting the DMD 50, which is substantially equal to the scanning width W 1 when not inclined DMD 50.

次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
ここで、DMD50全体のデータ処理速度には、限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
DMD50は、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列されているが、コントローラ302により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御される。
図4(A)及び(B)は、DMDの使用領域を示す図である。
図4(A)に示すように、DMDの使用領域としては、DMD50の中央部に配置されたマイクロミラー列を使用してもよく、図4(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。
Next, a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light emitted from the fiber array light source 66 is turned on and off for each pixel, and the pattern forming material 150 has approximately the same number of pixels as the DMD 50 used. Exposure is performed in elementary units (exposure area 168). Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.
Here, the data processing speed of the entire DMD 50 is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. Therefore, one line can be obtained by using only a part of the micromirror array. The modulation speed per hit is increased. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
In the DMD 50, 768 micromirror rows in which 1024 micromirrors are arranged in the main scanning direction are arranged in the subscanning direction, but a part of micromirror rows (eg, 1024 × 256 rows) is arranged by the controller 302. Only is controlled to drive.
4 (A) and 4 (B) are diagrams showing areas where DMD is used.
As shown in FIG. 4 (A), the DMD use area may be a micromirror array arranged at the center of the DMD 50. As shown in FIG. 4 (B), the end of the DMD 50 may be used. Arranged micromirror rows may be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
For example, in the case of using only 384 sets out of 768 sets of micromirror arrays, the modulation can be performed twice as fast per line as compared with the case of using all 768 sets. Also, when only 256 pairs are used in the 768 sets of micromirror arrays, modulation can be performed three times faster per line than when all 768 sets are used.

以上説明した通り、本発明の永久パターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。   As described above, according to the permanent pattern forming method of the present invention, the micromirror array in which 1,024 micromirrors are arranged in the main scanning direction includes the DMD in which 768 sets are arranged in the subscanning direction. By controlling so that only a part of the micromirror rows are driven by the controller, the modulation speed per line becomes faster than when all the micromirror rows are driven.

また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。   In addition, an example in which the DMD micromirror is partially driven has been described, but the length of the direction corresponding to the predetermined direction is reflected on the substrate longer than the length of the direction intersecting the predetermined direction according to the control signal. Even if a long and narrow DMD in which a large number of micromirrors capable of changing the surface angle are arranged in a two-dimensional manner is used, the number of micromirrors for controlling the angle of the reflecting surface is reduced. Can do.

前記露光の方法としては、図5に示すように、スキャナ162によるX方向への1回の走査でパターン形成材料150の全面を露光してもよい。
また、前記露光の方法としては、図6(A)及び(B)に示すように、スキャナ162によりパターン形成材料150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査でパターン形成材料150の全面を露光するようにしてもよい。
As the exposure method, as shown in FIG. 5, the entire surface of the pattern forming material 150 may be exposed by a single scan in the X direction by a scanner 162.
Further, as the exposure method, as shown in FIGS. 6A and 6B, after the pattern forming material 150 is scanned in the X direction by the scanner 162, the scanner 162 is moved by one step in the Y direction. The entire surface of the pattern forming material 150 may be exposed by a plurality of scans by repeating scanning and movement, such as scanning in the direction.

前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、パターンが形成される。   The exposure is performed on a partial area of the photosensitive layer to cure the partial area, and uncured areas other than the cured partial area are removed in a development step described later. A pattern is formed.

次に、レンズ系67及び結像光学系51を説明する。
図11は、図10における露光ヘッドの構成の詳細を示す光軸に沿った複走査方向の断面図である。
図11に示すように、レンズ系67は、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74を備えている。
集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。
Next, the lens system 67 and the imaging optical system 51 will be described.
FIG. 11 is a cross-sectional view in the multiple scanning direction along the optical axis showing the details of the configuration of the exposure head in FIG.
As shown in FIG. 11, the lens system 67 includes a condensing lens 71 that condenses the laser light B as illumination light emitted from the fiber array light source 66, and a rod that is inserted in the optical path of the light that has passed through the condensing lens 71. And an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side.
The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity.

レンズ系67から出射したレーザ光Bは、ミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図10では、このTIRプリズム70は省略してある。   The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 10, the TIR prism 70 is omitted.

図11に示すように、結像光学系51は、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とを備えている。   As shown in FIG. 11, the imaging optical system 51 includes a first imaging optical system including lens systems 52 and 54, a second imaging optical system including lens systems 57 and 58, and these imaging optical systems. And an aperture array 59. The microlens array 55 is inserted between the microlens array 55 and the aperture array 59.

マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。
マイクロレンズ55aの配置ピッチは、縦方向、横方向とも41μmである。マイクロレンズ55aの焦点距離は、0.19mm、NA(開口数)は0.11である。
また、マイクロレンズ55aは、光学ガラスBK7から形成されている。
各マイクロレンズ55aの位置におけるレーザ光Bのビーム径としては、41μmである。
The microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the pixels of the DMD 50. In this example, as will be described later, only 1024 × 256 rows of the 1024 × 768 rows of micromirrors of the DMD 50 are driven, and accordingly, 1024 × 256 rows of microlenses 55a are arranged.
The arrangement pitch of the micro lenses 55a is 41 μm in both the vertical direction and the horizontal direction. The focal length of the micro lens 55a is 0.19 mm, and the NA (numerical aperture) is 0.11.
Further, the microlens 55a is formed from the optical glass BK7.
The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.

アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されている。各アパーチャ59aの径は、10μmである。   In the aperture array 59, a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55 are formed. The diameter of each aperture 59a is 10 μm.

第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。
第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大してパターン形成材料150上に結像、投影する。
従って、光学系全体では、DMD50による像が、4.8倍に拡大されてパターン形成材料150上に結像、投影される。
The first imaging optical system forms an image on the microlens array 55 by enlarging the image by the DMD 50 three times.
The second imaging optical system enlarges the image that has passed through the microlens array 55 by 1.6 times, and forms and projects the image on the pattern forming material 150.
Accordingly, in the entire optical system, an image formed by the DMD 50 is magnified 4.8 times and formed and projected on the pattern forming material 150.

なお、前記第2結像光学系とパターン形成材料150との間にプリズムペア73が配設され、該プリズムペア73を図11において、上下方向に移動させることにより、パターン形成材料150上における像のピントを調節可能となっている。なお同図中において、パターン形成材料150は矢印F方向に副走査送りされる。   A prism pair 73 is disposed between the second imaging optical system and the pattern forming material 150. By moving the prism pair 73 in the vertical direction in FIG. 11, an image on the pattern forming material 150 is obtained. The focus can be adjusted. In the figure, the pattern forming material 150 is sub-scanned in the direction of arrow F.

次に、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等について図面を参照しながら説明する。   Next, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.

図13(A)は前記露光ヘッドの構成を示す光軸に沿った断面図である。
図13(A)に示すように、前記露光ヘッドは、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される。
FIG. 13A is a cross-sectional view along the optical axis showing the configuration of the exposure head.
As shown in FIG. 13A, the exposure head includes a light irradiating means 144 for irradiating the DMD 50 with laser light, and a lens system (imaging optical system) 454 for enlarging the laser light reflected by the DMD 50 to form an image. 458, a microlens array 472 in which a large number of microlenses 474 are arranged corresponding to each pixel portion of the DMD 50, and an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472. , And lens systems (imaging optical systems) 480 and 482 for forming an image of the laser beam that has passed through the aperture on the exposed surface 56.

図14は、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す図である。
図14において、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。図中x方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。
図15(A)及び(B)は、それぞれ、図14におけるx方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。
FIG. 14 is a diagram showing a result of measuring the flatness of the reflecting surface of the micromirror 62 constituting the DMD 50.
In FIG. 14, the same height positions of the reflecting surfaces are shown connected by contour lines, and the pitch of the contour lines is 5 nm. In the drawing, the x direction and the y direction are two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above.
FIGS. 15A and 15B show the height position displacement of the reflecting surface of the micromirror 62 along the x direction and the y direction in FIG. 14, respectively.
As shown in FIGS. 14 and 15, there is distortion on the reflection surface of the micromirror 62, and when attention is particularly paid to the center of the mirror, distortion in one diagonal direction (y direction) is different from that in the other diagonal line. It is larger than the distortion in the direction (x direction). For this reason, the problem that the shape in the condensing position of the laser beam B condensed with the micro lens 55a of the micro lens array 55 may be distorted may occur.

図16(A)及び(B)は、それぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を示す図である。
図16(A)に示すように、マイクロレンズアレイ55は、DMD50のマイクロミラー62に対応して、マイクロレンズ55aを横方向に1024列、縦方向に256列並設して構成される。
マイクロレンズアレイ55の長辺の寸法は、50mmであり、短辺の寸法は20mmである。
なお、同図(A)では、マイクロレンズ55aの並び順を、横方向についてはjで、縦方向についてはkで示す。
FIGS. 16A and 16B are views showing the front and side shapes of the entire microlens array 55, respectively.
As shown in FIG. 16A, the microlens array 55 is configured by arranging microlenses 55a in parallel in the horizontal direction and 1024 rows and in the vertical direction corresponding to the micromirrors 62 of the DMD 50, respectively.
The long side dimension of the microlens array 55 is 50 mm, and the short side dimension is 20 mm.
In FIG. 9A, the arrangement order of the micro lenses 55a is indicated by j for the horizontal direction and k for the vertical direction.

図17(A)及び(B)は、マイクロレンズアレイを構成するマイクロレンズの正面形状及び側面形状を示す図である。なお、図17(A)には、マイクロレンズ55aの等高線を併せて示す。
図17(A)及び(B)に示すように、マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされる。
非球面形状のマイクロレンズ55aは、具体的には、x方向における曲率半径Rxが−0.125mmであり、y方向における曲率半径Ryが−0.1mmとされるトーリックレンズである。
図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図である。
図18に示すように、マイクロレンズアレイ構成するマイクロレンズ55aとして、光出射側の端面が非球面形状であるトーリックレンズが用いられているため、x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなる。
FIGS. 17A and 17B are views showing a front shape and a side shape of the microlens constituting the microlens array. Note that FIG. 17A also shows the contour lines of the microlens 55a.
As shown in FIGS. 17A and 17B, the end surface of the microlens 55a on the light emission side has an aspherical shape that corrects aberration due to distortion of the reflection surface of the micromirror 62.
Specifically, the aspherical microlens 55a is a toric lens having a radius of curvature Rx in the x direction of −0.125 mm and a radius of curvature Ry in the y direction of −0.1 mm.
FIG. 18 is a schematic diagram showing a condensing state by the microlens in one cross section (A) and another cross section (B).
As shown in FIG. 18, since a toric lens having an aspherical end surface on the light emission side is used as the microlens 55a constituting the microlens array, laser light in a cross section parallel to the x direction and the y direction is used. When the B condensing state is compared between the cross section parallel to the x direction and the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller in the latter cross section, and the focal length is smaller. Shorter.

マイクロレンズ55aの形状としては、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状をさらに高精細にすることができる。
また、マイクロレンズ55aの光出射側の端面形状をトーリック面とすることの他、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成することも可能である。
The shape of the microlens 55a may be a secondary aspherical shape or a higher order (4th order, 6th order,...) Aspherical shape. By adopting the higher order aspherical shape, the beam shape can be further refined.
In addition to making the end surface shape of the light exit side of the microlens 55a a toric surface, it is also possible to form a microlens array from microlenses having one of two light passing end surfaces as a spherical surface and the other as a cylindrical surface. It is.

図19a、b、c、及びdは、マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を示す図である。
また、比較のために、マイクロレンズが、曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を、図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)、Cyは、y方向の曲率(=1/Ry)、Xは、x方向に関するレンズ光軸Oからの距離、Yは、y方向に関するレンズ光軸Oからの距離、をそれぞれ示す。
19A, 19B, 19C, and 19D are diagrams showing the results of simulating the beam diameter in the vicinity of the condensing position (focal position) of the microlens 55a by a computer.
For comparison, FIGS. 20a, 20b, 20c, and 20d show the results of a similar simulation performed when the microlens has a spherical shape with a radius of curvature Rx = Ry = −0.1 mm. In addition, the value of z in each figure has shown the evaluation position of the focus direction of the micro lens 55a with the distance from the beam emission surface of the micro lens 55a.
The surface shape of the microlens 55a used for the simulation is calculated by the following calculation formula.
In the above formula, Cx is the curvature in the x direction (= 1 / Rx), Cy is the curvature in the y direction (= 1 / Ry), X is the distance from the lens optical axis O in the x direction, Y Indicates the distance from the lens optical axis O in the y direction, respectively.

図19a〜dと図20a〜dとを比較すると明らかなように、本発明の永久パターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。このため、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。   19A to 19D and FIG. 20A to FIG. 20D, in the permanent pattern forming method of the present invention, the microlens 55a has a focal length in the cross section parallel to the y direction in the cross section parallel to the x direction. By using a toric lens that is smaller than the focal length, distortion of the beam shape in the vicinity of the condensing position is suppressed. Therefore, it is possible to expose the pattern forming material 150 with a higher definition image without distortion.

なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像をパターン形成材料150に露光可能となる。   In addition, when the magnitude relation of the distortion of the center part in the x direction and the y direction of the micromirror 62 is opposite to the above, the focal length in the cross section parallel to the x direction is in the cross section parallel to the y direction. If the microlens is formed of a toric lens that is smaller than the focal length, similarly, it is possible to expose the pattern forming material 150 with a higher definition image without distortion.

アパーチャアレイ59は、マイクロレンズアレイ55の集光位置近傍に配置される。アパーチャアレイ59に備えられた各アパーチャ59aには、対応するマイクロレンズ55aを経た光のみが入射する。従って、1のマイクロレンズ55aに対応する1のアパーチャ59aには、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比を高めることが可能となる。
アパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果が得られが、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下する。この場合に、マイクロレンズ55aを前記非球面形状とすることにより、光の遮断が防止され、光利用効率が高く保たれる。
The aperture array 59 is disposed in the vicinity of the light collection position of the microlens array 55. Only the light that has passed through the corresponding microlens 55 a is incident on each aperture 59 a provided in the aperture array 59. Therefore, it is possible to prevent light from the adjacent micro lens 55a not corresponding to one aperture 59a corresponding to the one micro lens 55a from entering, and to increase the extinction ratio.
If the diameter of the aperture 59a is reduced to some extent, an effect of suppressing distortion of the beam shape at the condensing position of the microlens 55a can be obtained, but the amount of light blocked by the aperture array 59 is increased, and the light utilization efficiency is reduced. . In this case, the microlens 55a having the aspherical shape prevents light from being blocked and keeps light use efficiency high.

また、前記マイクロレンズアレイ55及びアパーチャアレイ59により、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明の永久パターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。   In addition, although the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected by the microlens array 55 and the aperture array 59, the permanent pattern forming method of the present invention using a spatial light modulation element other than the DMD. However, if there is distortion on the surface of the picture element portion of the spatial light modulator, the present invention can be applied to correct the aberration caused by the distortion and prevent the beam shape from being distorted.

図13(A)に示すように、前記結像光学系は、レンズ480、482を備え、アパーチャアレイ476を通過した光は、該結像光学系により被露光面56上に結像される。   As shown in FIG. 13A, the imaging optical system includes lenses 480 and 482, and the light that has passed through the aperture array 476 is imaged on the exposed surface 56 by the imaging optical system.

以上説明したとおり、前記パターン形成装置は、DMD50により反射されたレーザ光が、レンズ系の拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図13(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。
一方、前記パターン形成装置では、マイクロレンズアレイ472及びアパーチャアレイ476を備えているので、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図13(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することが可能となり、MTF特性の低下を防止して、高精細な露光を行うことができる。
なお、露光エリア468が傾いているのは、描素間の隙間を無くす為に、DMD50を傾けて配置しているからである。
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。
更に、光照射手段144に高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。
As described above, in the pattern forming apparatus, the laser light reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 of the lens system and projected onto the exposed surface 56, so that the entire image area is Become wider. At this time, if the microlens array 472 and the aperture array 476 are not arranged, as shown in FIG. 13B, one pixel size (spot size) of each beam spot BS projected onto the exposed surface 56 is set. MTF (Modulation Transfer Function) characteristics representing the sharpness of the exposure area 468 are reduced depending on the size of the exposure area 468.
On the other hand, since the pattern forming apparatus includes the micro lens array 472 and the aperture array 476, the laser light reflected by the DMD 50 corresponds to each pixel part of the DMD 50 by each micro lens of the micro lens array 472. Focused. As a result, as shown in FIG. 13C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, 10 μm × 10 μm). It is possible to perform high-definition exposure while preventing deterioration of characteristics.
Note that the exposure area 468 is inclined because the DMD 50 is inclined and disposed in order to eliminate the gap between the pixels.
In addition, the aperture array can shape the beam so that the spot size on the surface to be exposed 56 is constant even if the beam is thick due to the aberration of the micro lens. Thus, crosstalk between adjacent picture elements can be prevented by passing through the aperture array.
Further, by using a high-intensity light source for the light irradiating means 144, the angle of the light beam incident from the lens 458 to each microlens of the microlens array 472 is reduced, so that a part of the light flux of the adjacent pixel enters. Can be prevented. That is, a high extinction ratio can be realized.

図22(A)及び(B)は、他のマイクロレンズアレイの正面形状及び側面形状を示す図である。
図22に示すとおり、他のマイクロレンズアレイとしては、各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせたものである。
図示の通り、他のマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。
図23は、図22のマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を示す概略図である。
図23に示すように、マイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。
なお、図17及び図18に示したマイクロレンズ55aにおいて、併せて、前記屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正することも可能である。
FIGS. 22A and 22B are views showing the front shape and side shape of another microlens array.
As shown in FIG. 22, as another microlens array, each microlens has a refractive index distribution for correcting aberration due to distortion of the reflection surface of the micromirror 62.
As illustrated, the external shape of the other microlens 155a is a parallel plate. The x and y directions in the figure are as described above.
FIG. 23 is a schematic view showing a condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a of FIG.
As shown in FIG. 23, the micro lens 155a has a refractive index distribution that gradually increases outward from the optical axis O. In FIG. 23, the broken line shown in the micro lens 155a indicates that the refractive index is light. A position changed from the axis O at a predetermined equal pitch is shown. As shown in the drawing, when comparing the cross section parallel to the x direction and the cross section parallel to the y direction, the ratio of the refractive index change of the microlens 155a is larger in the latter cross section, and the focal length is larger. It is shorter. Even when a microlens array composed of such a gradient index lens is used, it is possible to obtain the same effect as when the microlens array 55 is used.
In addition, in the microlens 55a shown in FIGS. 17 and 18, the refractive index distribution is given together, and the aberration due to the distortion of the reflecting surface of the micromirror 62 can be corrected by both the surface shape and the refractive index distribution. Is possible.

本発明の永久パターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
In the permanent pattern forming method of the present invention, it may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correcting optical system composed of a pair of combination lenses.
The light amount distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis is smaller on the exit side than on the incident side. When the DMD is irradiated with the parallel light flux from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.

図24は、光量分布補正光学系による補正の概念を示す説明図である。
図24(A)に示すように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。
前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。すなわち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。
FIG. 24 is an explanatory diagram showing the concept of correction by the light quantity distribution correction optical system.
As shown in FIG. 24A, the case where the entire luminous flux width (total luminous flux width) H0 and H1 is the same for the incident luminous flux and the outgoing luminous flux will be described. In FIG. 24A, the portions denoted by reference numerals 51 and 52 virtually indicate the entrance surface and the exit surface in the light amount distribution correcting optical system.
In the light quantity distribution correcting optical system, it is assumed that the light flux widths h0 and h1 of the light beam incident on the central portion near the optical axis Z1 and the light beam incident on the peripheral portion are the same (h0 = hl). The light quantity distribution correcting optical system expands the light flux width h0 of the incident light beam in the central portion with respect to the light having the same light flux widths h0 and h1 on the incident side, and conversely changes the incident light flux in the peripheral portion. On the other hand, the light beam width h1 is reduced. That is, the width h10 of the outgoing light beam at the center and the width h11 of the outgoing light beam at the periphery are set to satisfy h11 <h10. In terms of the ratio of the luminous flux width, the ratio “h11 / h10” of the luminous flux width in the peripheral portion to the luminous flux width in the central portion on the emission side is smaller than the ratio on the incident side (h1 / h0 = 1) ( (H11 / h10) <1).

このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。   By changing the light flux width in this way, the light flux in the central part, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the overall light utilization efficiency is not reduced. In addition, the light quantity distribution on the irradiated surface is made substantially uniform. The degree of uniformity is, for example, such that the unevenness in the amount of light in the effective area is within 30%, preferably within 20%.

前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図24(B),(C))においても同様である。   The operations and effects of the light quantity distribution correcting optical system are the same when the entire luminous flux width is changed between the incident side and the exit side (FIGS. 24B and 24C).

図24(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24B shows a case where the entire light flux width H0 on the incident side is “reduced” to the width H2 and emitted (H0> H2). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the reduction rate of the light beam, the reduction rate with respect to the incident light beam in the central part is made smaller than that in the peripheral part, and the reduction rate with respect to the incident light beam in the peripheral part is made larger than that in the central part. Also in this case, the ratio “H11 / H10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

図24(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。   FIG. 24C shows a case where the entire light flux width H0 on the incident side is “enlarged” by a width Η3 and emitted (H0 <H3). Even in such a case, the light quantity distribution correcting optical system has the same light beam width h0, h1 on the incident side, and the light beam width h10 in the central part is larger than that in the peripheral part on the emission side. Conversely, the luminous flux width h11 at the peripheral part is made smaller than that at the central part. Considering the expansion rate of the light beam, the expansion rate for the incident light beam in the central portion is made larger than that in the peripheral portion, and the expansion rate for the incident light beam in the peripheral portion is made smaller than that in the central portion. Also in this case, the ratio “h11 / h10” of the light flux width in the peripheral portion to the light flux width in the central portion is smaller than the ratio (h1 / h0 = 1) on the incident side ((h11 / h10) <1). .

このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。   As described above, the light quantity distribution correcting optical system changes the light beam width at each emission position, and the ratio of the light beam width in the peripheral part to the light beam width in the central part near the optical axis Z1 is larger on the outgoing side than on the incident side. Since the light having the same luminous flux width on the incident side is larger on the outgoing side, the luminous flux width in the central portion is larger than that in the peripheral portion, and the luminous flux width in the peripheral portion is smaller than that in the central portion. Become smaller. As a result, it is possible to make use of the light beam at the center part to the peripheral part, and it is possible to form a light beam cross-section with a substantially uniform light amount distribution without reducing the light use efficiency of the entire optical system.

次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明の永久パターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system will be shown. In this example, lens data in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution as in the case where the light irradiation means is a laser array light source is shown. When one semiconductor laser is connected to the incident end of the single mode optical fiber, the light quantity distribution of the emitted light beam from the optical fiber becomes a Gaussian distribution. The permanent pattern forming method of the present invention can be applied to such a case. Further, the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion, for example, by reducing the core diameter of the multi-mode optical fiber and approaching the configuration of the single mode optical fiber.
Table 1 below shows basic lens data.

表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。   As can be seen from Table 1, the pair of combination lenses is composed of two rotationally symmetric aspherical lenses. If the light incident side surface of the first lens disposed on the light incident side is the first surface and the light exit side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.

表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
In Table 1, the surface number Si indicates the number of the i-th surface (i = 1 to 4), the curvature radius ri indicates the curvature radius of the i-th surface, and the surface interval di indicates the i-th surface and the i + 1-th surface. The distance between surfaces on the optical axis is shown. The unit of the surface interval di value is millimeter (mm). The refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
Table 2 below shows the aspheric data of the first surface and the fourth surface.

上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。   The aspheric data is expressed by a coefficient in the following formula (A) that represents the aspheric shape.

上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
In the above formula (A), each coefficient is defined as follows.
Z: Length of a perpendicular line (mm) drawn from a point on the aspheric surface at a height ρ from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
ρ: Distance from optical axis (mm)
K: Conic coefficient C: Paraxial curvature (1 / r, r: Paraxial radius of curvature)
ai: i-th order (i = 3 to 10) aspheric coefficient In the numerical values shown in Table 2, the symbol “E” indicates that the subsequent numerical value is a “power index” with 10 as the base. The numerical value represented by the exponential function with the base of 10 is multiplied by the numerical value before “E”. For example, “1.0E-02” indicates “1.0 × 10 −2 ”.

図26は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示す。ここで、横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図25に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。
図25及び図26に示すように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。
FIG. 26 shows a light amount distribution of illumination light obtained by the pair of combination lenses shown in Tables 1 and 2. Here, the horizontal axis represents coordinates from the optical axis, and the vertical axis represents the light amount ratio (%). For comparison, FIG. 25 shows a light amount distribution (Gaussian distribution) of illumination light when correction is not performed.
As shown in FIGS. 25 and 26, the light amount distribution correction optical system performs a correction to obtain a substantially uniform light amount distribution as compared with the case where the correction is not performed. Thereby, it is possible to perform exposure with uniform laser light without reducing the use efficiency of light, without causing any unevenness.

次に、光照射手段としてのファイバアレイ光源66を説明する。
図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図である。また、図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図である。
Next, the fiber array light source 66 as a light irradiation means will be described.
27A (A) is a perspective view showing a configuration of a fiber array light source, FIG. 27A (B) is a partially enlarged view of (A), and FIGS. 27A (C) and (D) are laser emitting portions. It is a top view which shows the arrangement | sequence of the light emission point in. FIG. 27 b is a front view showing the arrangement of the light emitting points in the laser emission part of the fiber array light source.

図27aに示すように、ファイバアレイ光源66は、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図27bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。   As shown in FIG. 27 a, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. An optical fiber 31 having the same core diameter as that of the multimode optical fiber 30 and a smaller cladding diameter than the multimode optical fiber 30 is coupled to the other end of the multimode optical fiber 30. As shown in detail in FIG. 27b, seven end portions of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows to form a laser. An emission unit 68 is configured.

図27bに示すように、レーザ出射部68は、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。   As shown in FIG. 27b, the laser emitting portion 68 is sandwiched and fixed between two support plates 65 having a flat surface. In addition, a transparent protective plate such as glass is preferably disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate. However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.

また、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。   Further, in order to arrange the emission ends of the optical fibers 31 having a small cladding diameter in a row without any gaps, the multi-mode optical fibers 30 are stacked between two adjacent multi-mode optical fibers 30 in a portion having a large cladding diameter, The exit end of the optical fiber 31 coupled to the stacked multi-mode optical fiber 30 is between the two exit ends of the optical fiber 31 coupled to the two adjacent multi-mode optical fibers 30 at a portion where the cladding diameter is large. It is arranged to be sandwiched between.

このような光ファイバは、図28に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。   In such an optical fiber, as shown in FIG. 28, an optical fiber 31 having a length of 1 to 30 cm and having a small cladding diameter is coaxially provided at the tip of the multimode optical fiber 30 having a large cladding diameter on the laser light emission side. It can be obtained by bonding. In the two optical fibers, the incident end face of the optical fiber 31 is fused and joined to the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31 a of the optical fiber 31 is the same as the diameter of the core 30 a of the multimode optical fiber 30.

また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。   In addition, a short optical fiber in which an optical fiber having a short cladding diameter and a large cladding diameter is fused to an optical fiber having a short cladding diameter and a large cladding diameter may be coupled to the output end of the multimode optical fiber 30 via a ferrule or an optical connector. Good. By detachably coupling using a connector or the like, the tip portion can be easily replaced when an optical fiber having a small cladding diameter is broken, and the cost required for exposure head maintenance can be reduced. Hereinafter, the optical fiber 31 may be referred to as an emission end portion of the multimode optical fiber 30.

マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。   The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index type optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125 μm, a core diameter = 50 μm, NA = 0.2, an incident end face. The transmittance of the coat is 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.

一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。   In general, in the laser light in the infrared region, the propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. In the case of laser light having a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter−core diameter) / 2} is set to an infrared light having a wavelength band of 800 nm. The propagation loss hardly increases even if it is about ½ of the case of propagating infrared light and about ¼ of the case of propagating infrared light in the 1.5 μm wavelength band for communication. Therefore, the cladding diameter can be reduced to 60 μm.

但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。   However, the cladding diameter of the optical fiber 31 is not limited to 60 μm. The clad diameter of the optical fiber used in the conventional fiber array light source is 125 μm, but the depth of focus becomes deeper as the clad diameter becomes smaller. Therefore, the clad diameter of the multimode optical fiber is preferably 80 μm or less, preferably 60 μm or less. More preferably, it is 40 μm or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.

レーザモジュール64は、図29に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。   The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source includes a plurality of (for example, seven) chip-like lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6, arrayed and fixed on the heat block 10. And LD7, collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and one multi-lens. Mode optical fiber 30. The number of semiconductor lasers is not limited to seven. For example, as many as 20 semiconductor laser beams can be incident on a multimode optical fiber having a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2. In addition, the number of optical fibers can be further reduced.

GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。   The GaN-based semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and the maximum output is also all the same (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above 405 nm in a wavelength range of 350 nm to 450 nm may be used.

前記合波レーザ光源は、図30及び図31に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。   As shown in FIGS. 30 and 31, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 includes a package lid 41 created so as to close the opening thereof. After the deaeration process, a sealing gas is introduced, and the package 40 and the package lid 41 are closed by closing the opening of the package 40 with the package lid 41. 41. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by 41.

パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。   A base plate 42 is fixed to the bottom surface of the package 40, and the heat block 10, a condensing lens holder 45 that holds the condensing lens 20, and the multimode optical fiber 30 are disposed on the top surface of the base plate 42. A fiber holder 46 that holds the incident end is attached. The exit end of the multimode optical fiber 30 is drawn out of the package from an opening formed in the wall surface of the package 40.

また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。   Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.

なお、図31においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。   In FIG. 31, in order to avoid complication of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and only the collimator lens 17 among the plurality of collimator lenses is numbered. is doing.

図32は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図32の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。   FIG. 32 shows the front shape of the attachment part of the collimator lenses 11-17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a long and narrow plane. This elongated collimator lens can be formed, for example, by molding resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD7 (left and right direction in FIG. 32).

一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。   On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having a light emission width of 2 μm, and each of the laser beams B1 in a state parallel to the active layer and a divergence angle in a direction perpendicular to the active layer, respectively, for example A laser emitting ~ B7 is used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.

各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。 In the laser beams B1 to B7 emitted from the respective light emitting points, the direction in which the divergence angle is large coincides with the length direction and the direction in which the divergence angle is small with respect to the elongated collimator lenses 11 to 17 as described above. Incident light is incident in a state that coincides with the width direction (direction orthogonal to the length direction). That is, the collimator lenses 11 to 17 have a width of 1.1 mm and a length of 4.6 mm, and the horizontal and vertical beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 6 mm. Each of the collimator lenses 11 to 17 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.

集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。 The condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspheric surface into a long and narrow shape in parallel planes, and is long in the arrangement direction of the collimator lenses 11 to 17, that is, in a horizontal direction and short in a direction perpendicular thereto. Is formed. This condenser lens 20 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 20 is also formed by molding resin or optical glass, for example.

前記ファイバアレイ光源は、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
Since the fiber array light source uses a high-intensity fiber array light source in which the emission ends of the optical fibers of the combined laser light source are arranged in an array as the light irradiating means for illuminating the DMD, it has a high output and a deep focus. A pattern forming apparatus having a depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced.
Further, since the cladding diameter of the output end of the optical fiber is smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep depth of focus can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.

前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。   The light irradiating means is not limited to a fiber array light source including a plurality of the combined laser light sources. For example, a single laser beam that emits laser light incident from a single semiconductor laser having one light emitting point is emitted. A fiber array light source obtained by arraying fiber light sources including optical fibers can be used.

複数の発光点を備えた光照射手段としては、例えば、図33に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図34(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110を用いることも可能である。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。   As the light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 33, a laser array in which a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 are arranged on the heat block 100 is used. Can be used. A chip-shaped multicavity laser 110 in which a plurality of (for example, five) light emitting points 110a shown in FIG. 34A are arranged in a predetermined direction can also be used. Since the multicavity laser 110 can arrange the light emitting points with higher positional accuracy than the case where the chip-shaped semiconductor lasers are arranged, it is easy to multiplex laser beams emitted from the respective light emitting points. However, as the number of light emitting points increases, the multicavity laser 110 is likely to be bent at the time of laser manufacturing. Therefore, the number of light emitting points 110a is preferably 5 or less.

前記光照射手段としては、このマルチキャビティレーザ110や、図34(B)に示すように、ヒートブロック100上に、複数のマルチキャビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。   As the light irradiation means, the multi-cavity laser 110 or a plurality of multi-cavity lasers 110 on the heat block 100 in the same direction as the arrangement direction of the light emitting points 110a of each chip as shown in FIG. An arrayed multi-cavity laser array can be used as a laser light source.

また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。
例えば、図21に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers.
For example, as shown in FIG. 21, a combined laser light source including a chip-shaped multicavity laser 110 having a plurality of (for example, three) light emitting points 110a can be used. This combined laser light source is configured to include a multi-cavity laser 110, one multi-mode optical fiber 130, and a condensing lens 120. The multi-cavity laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.

前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザビームBの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110 a of the multicavity laser 110 is collected by the condenser lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ130への結合効率を上げることができる。   A plurality of light emitting points 110 a of the multicavity laser 110 are arranged in parallel within a width substantially equal to the core diameter of the multimode optical fiber 130, and a focal point substantially equal to the core diameter of the multimode optical fiber 130 is formed as the condenser lens 120. By using a convex lens of a distance or a rod lens that collimates the outgoing beam from the multicavity laser 110 only in a plane perpendicular to the active layer, the coupling efficiency of the laser beam B to the multimode optical fiber 130 can be increased. it can.

また、図35に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。   As shown in FIG. 35, a multi-cavity laser 110 having a plurality of (for example, three) emission points is used, and a plurality of (for example, nine) multi-cavity lasers 110 are equidistant from each other on the heat block 111. A combined laser light source including the laser array 140 arranged in (1) can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.

この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。   This combined laser light source includes a laser array 140, a plurality of lens arrays 114 arranged corresponding to each multi-cavity laser 110, and a single rod arranged between the laser array 140 and the plurality of lens arrays 114. The lens 113, one multimode optical fiber 130, and a condenser lens 120 are provided. The lens array 114 includes a plurality of microlenses corresponding to the emission points of the multicavity laser 110.

上記の構成では、複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then each microlens of the lens array 114. It becomes parallel light. The collimated laser beam L is condensed by the condenser lens 120 and enters the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

更に、他の合波レーザ光源としては、図36(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。   Furthermore, as another combined laser light source, as shown in FIGS. 36A and 36B, a heat block 182 having an L-shaped cross section in the optical axis direction is mounted on a heat block 180 having a substantially rectangular shape. A storage space is formed between the two heat blocks. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers 110 in which a plurality of light emitting points (for example, five) are arranged in an array form the light emitting points 110a of each chip. It is arranged and fixed at equal intervals in the same direction as the arrangement direction.

略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。   A concave portion is formed in the substantially rectangular heat block 180, and a plurality of (for example, two) light emitting points (for example, five) are arranged in an array on the upper surface of the space side of the heat block 180. The multi-cavity laser 110 is arranged such that its emission point is located on the same vertical plane as the emission point of the laser chip arranged on the upper surface of the heat block 182.

マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。   On the laser beam emission side of the multi-cavity laser 110, a collimator lens array 184 in which collimator lenses are arranged corresponding to the light emission points 110a of the respective chips is arranged. In the collimating lens array 184, the length direction of each collimating lens coincides with the direction in which the divergence angle of the laser beam is large (fast axis direction), and the width direction of each collimating lens is in the direction in which the divergence angle is small (slow axis direction). They are arranged to match. Thus, by collimating and integrating the collimating lenses, the space utilization efficiency of the laser light can be improved, the output of the combined laser light source can be increased, and the number of parts can be reduced and the cost can be reduced. .

また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザビームを集光して結合する集光レンズ120と、が配置されている。   Further, on the laser beam emitting side of the collimating lens array 184, there is one multimode optical fiber 130, and a condensing lens 120 that condenses and combines the laser beam at the incident end of the multimode optical fiber 130. Is arranged.

前記構成では、ヒートブロック180、182上に配置された複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。   In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multicavity lasers 110 arranged on the heat blocks 180 and 182 is collimated by the collimating lens array 184 and condensed. The light is condensed by the lens 120 and enters the core 130 a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, is combined into one, and is emitted.

前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。   As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multicavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source can be configured, so that it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus of the present invention.

なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。   It should be noted that a laser module in which each of the combined laser light sources is housed in a casing and the emission end of the multimode optical fiber 130 is pulled out from the casing can be configured.

また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。   In addition, the other end of the multimode optical fiber of the combined laser light source is coupled with another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber. However, for example, a multimode optical fiber having a cladding diameter of 125 μm, 80 μm, 60 μm or the like may be used without coupling another optical fiber to the emission end.

スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザビームB1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザビームB1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。   In each exposure head 166 of the scanner 162, laser beams B1, B2, B3, B4, B5, and B6 emitted in a divergent light state from each of the GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66. , And B7 are collimated by corresponding collimator lenses 11-17. The collimated laser beams B <b> 1 to B <b> 7 are collected by the condenser lens 20 and converge on the incident end face of the core 30 a of the multimode optical fiber 30.

集光光学系は、コリメータレンズ11〜17及び集光レンズ20によって構成される。また、集光光学系とマルチモード光ファイバ30とによって合波光学系が構成される。
集光レンズ20によって上述のように集光されたレーザビームB1〜B7が、マルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザビームBに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。
The condensing optical system includes collimator lenses 11 to 17 and a condensing lens 20. Also, the converging optical system and the multimode optical fiber 30 constitute a multiplexing optical system.
The laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30, propagate through the optical fiber, and are combined into one laser beam B. The light exits from the optical fiber 31 coupled to the exit end of the multimode optical fiber 30.

各レーザモジュールにおいて、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。   In each laser module, when the coupling efficiency of the laser beams B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, the light arranged in an array For each of the fibers 31, a combined laser beam B with an output of 180 mW (= 30 mW × 0.85 × 7) can be obtained. Therefore, the output from the laser emitting unit 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6).

ファイバアレイ光源66のレーザ出射部68には、高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。   In the laser emitting section 68 of the fiber array light source 66, high-luminance light emitting points are arranged in a line along the main scanning direction. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has a low output, so that a desired output cannot be obtained unless multiple rows are arranged. Since the laser light source has a high output, a desired output can be obtained even with a small number of columns, for example, one column.

例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。 For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser having an output of about 30 mW (milliwatt) is usually used as the semiconductor laser, and the core diameter is 50 μm and the cladding diameter is 125 μm. Since a multimode optical fiber having a numerical aperture (NA) of 0.2 is used, if an output of about 1 W (watt) is to be obtained, 48 multimode optical fibers (8 × 6) must be bundled. Since the area of the light emitting region is 0.62 mm 2 (0.675 mm × 0.925 mm), the luminance at the laser emitting portion 68 is 1.6 × 10 6 (W / m 2 ) and one optical fiber is used. The luminance per hit is 3.2 × 10 6 (W / m 2 ).

これに対し、前記光照射手段が合波レーザを照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。 On the other hand, when the light irradiating means is a means capable of irradiating a combined laser, an output of about 1 W can be obtained with six multimode optical fibers, and the area of the light emitting region at the laser emitting portion 68 can be obtained. Is 0.0081 mm 2 (0.325 mm × 0.025 mm), the luminance at the laser emitting portion 68 is 123 × 10 6 (W / m 2 ), which is about 80 times higher than the conventional luminance. be able to. Further, the luminance per optical fiber is 90 × 10 6 (W / m 2 ), and the luminance can be increased by about 28 times compared with the conventional one.

ここで、図37(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。   Here, with reference to FIGS. 37A and 37B, the difference in depth of focus between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission region of the bundled fiber light source of the conventional exposure head in the sub-scanning direction is 0.675 mm, and the diameter of the light emission region of the fiber array light source of the exposure head in the sub-scanning direction is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, since the light emitting area of the light irradiating means (bundle-shaped fiber light source) 1 is large, the angle of the light beam incident on the DMD 3 is increased, and as a result, the scanning surface 5 is moved. The angle of the incident light beam increases. For this reason, the beam diameter tends to increase with respect to the light condensing direction (shift in the focus direction).

一方、図37(B)に示すように、本発明のパターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。従って、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図37(A)及び(B)は、光学的な関係を説明するために展開図とした。   On the other hand, as shown in FIG. 37B, in the exposure head in the pattern forming apparatus of the present invention, the diameter of the light emitting region of the fiber array light source 66 in the sub-scanning direction is small, so that it passes through the lens system 67 and enters the DMD 50. As a result, the angle of the light beam incident on the scanning surface 56 is reduced. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus substantially corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required light quantity of the exposure head is larger. In this example, the size of one pixel projected on the exposure surface is 10 μm × 10 μm. The DMD is a reflective spatial light modulator, but FIGS. 37A and 37B are developed views for explaining the optical relationship.

次に、前記パターン形成装置を用いた本発明の永久パターン形成方法について説明する。
まず、露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。
次に、パターン形成材料150を表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164によりパターン形成材料150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。
次に、ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光が、レンズ系54、58によりパターン形成材料150の被露光面56上に結像される。
このようにして、ファイバアレイ光源66から出射されたレーザ光が、描素毎にオンオフされて、パターン形成材料150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。
また、パターン形成材料150がステージ152と共に一定速度で移動されることにより、パターン形成材料150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
Next, the permanent pattern forming method of the present invention using the pattern forming apparatus will be described.
First, pattern information corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and temporarily stored in a frame memory in the controller. This pattern information is data representing the density of each pixel constituting the image as binary values (whether or not dots are recorded).
Next, the stage 152 having the pattern forming material 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). When the leading edge of the pattern forming material 150 is detected by the detection sensor 164 attached to the gate 160 when the stage 152 passes under the gate 160, the pattern information stored in the frame memory is sequentially read out for a plurality of lines. Then, a control signal is generated for each exposure head 166 based on the pattern information read by the data processing unit. Then, each of the micromirrors of the DMD 50 is on / off controlled for each exposure head 166 based on the generated control signal by the mirror drive control unit.
Next, when the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the micromirrors of the DMD 50 are turned on is exposed to the exposed surface 56 of the pattern forming material 150 by the lens systems 54 and 58. Imaged on top.
In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the pattern forming material 150 is exposed in approximately the same number of pixel units (exposure area 168) as the number of used pixel elements of the DMD 50. The
Further, when the pattern forming material 150 is moved at a constant speed together with the stage 152, the pattern forming material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed region 170 is provided for each exposure head 166. Is formed.

[現像工程]
前記現像工程としては、前記露光工程により前記感光層を露光し、未露光部分を除去することにより現像する工程を有する。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
[Development process]
The developing step includes a step of developing the photosensitive layer by exposing the photosensitive layer by the exposing step and removing an unexposed portion.
There is no restriction | limiting in particular as the removal method of the said unhardened area | region, According to the objective, it can select suitably, For example, the method etc. which remove using a developing solution are mentioned.

前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ性水溶液、水系現像液、有機溶剤などが挙げられ、これらの中でも、弱アルカリ性の水溶液が好ましい。該弱アルカリ水溶液の塩基成分としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム、ピロリン酸ナトリウム、ピロリン酸カリウム、硼砂などが挙げられる。   There is no restriction | limiting in particular as said developing solution, Although it can select suitably according to the objective, For example, alkaline aqueous solution, an aqueous developing solution, an organic solvent etc. are mentioned, Among these, weakly alkaline aqueous solution is preferable. Examples of the basic component of the weak alkaline aqueous solution include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium phosphate, phosphorus Examples include potassium acid, sodium pyrophosphate, potassium pyrophosphate, and borax.

前記弱アルカリ性の水溶液のpHとしては、例えば、約8〜12が好ましく、約9〜11がより好ましい。前記弱アルカリ性の水溶液としては、例えば、0.1〜5質量%の炭酸ナトリウム水溶液又は炭酸カリウム水溶液などが挙げられる。
前記現像液の温度としては、前記感光層の現像性に合わせて適宜選択することができるが、例えば、約25℃〜40℃が好ましい。
The pH of the weak alkaline aqueous solution is, for example, preferably about 8 to 12, and more preferably about 9 to 11. Examples of the weak alkaline aqueous solution include a 0.1 to 5% by mass aqueous sodium carbonate solution or an aqueous potassium carbonate solution.
The temperature of the developer can be appropriately selected according to the developability of the photosensitive layer, and is preferably about 25 ° C. to 40 ° C., for example.

前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。   The developer includes a surfactant, an antifoaming agent, an organic base (for example, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, triethanolamine, etc.) and accelerates development. Therefore, it may be used in combination with an organic solvent (for example, alcohols, ketones, esters, ethers, amides, lactones, etc.). The developer may be an aqueous developer obtained by mixing water or an aqueous alkali solution and an organic solvent, or may be an organic solvent alone.

[その他の工程]
前記その他の工程としては、特に制限はなく、公知のパターン形成における工程の中から適宜選択することが挙げられるが、例えば、剥離工程、硬化処理工程、メッキ工程などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
−剥離工程−
前記剥離工程としては、例えば、第1の態様の永久パターン形成方法における剥離工程及び、前記第2の態様の永久パターン形成方法における剥離工程が挙げられる。
−硬化処理工程−
前記本発明の永久パターン形成方法が、保護膜、層間絶縁膜等の永久パターンの形成を行う永久パターン形成方法である場合には、前記現像工程後に、感光層に対して硬化処理を行う硬化処理工程を備えることが好ましい。
前記硬化処理工程としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
[Other processes]
There is no restriction | limiting in particular as said other process, Although selecting suitably from the process in well-known pattern formation is mentioned, For example, a peeling process, a hardening process process, a plating process, etc. are mentioned. These may be used alone or in combination of two or more.
-Peeling process-
As said peeling process, the peeling process in the permanent pattern formation method of a 1st aspect and the peeling process in the permanent pattern formation method of a said 2nd aspect are mentioned, for example.
-Curing process-
When the permanent pattern forming method of the present invention is a permanent pattern forming method for forming a permanent pattern such as a protective film or an interlayer insulating film, a curing process for curing the photosensitive layer after the developing step It is preferable to provide a process.
There is no restriction | limiting in particular as said hardening process, Although it can select suitably according to the objective, For example, a whole surface exposure process, a whole surface heat processing, etc. are mentioned suitably.

前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. The entire surface exposure accelerates the curing of the resin in the photosensitive composition forming the photosensitive layer, and the surface of the permanent pattern is cured.
There is no restriction | limiting in particular as an apparatus which performs the said whole surface exposure, Although it can select suitably according to the objective, For example, UV exposure machines, such as an ultrahigh pressure mercury lamp, are mentioned suitably.

前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
Examples of the entire surface heat treatment method include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the developing step. The entire surface heating increases the film strength of the surface of the permanent pattern.
As heating temperature in the said whole surface heating, 120-250 degreeC is preferable and 120-200 degreeC is more preferable. When the heating temperature is less than 120 ° C., the film strength may not be improved by heat treatment. When the heating temperature exceeds 250 ° C., the resin in the photosensitive composition is decomposed, and the film quality is weak and brittle. Sometimes.
The heating time in the entire surface heating is preferably 10 to 120 minutes, and more preferably 15 to 60 minutes.
There is no restriction | limiting in particular as an apparatus which performs the said whole surface heating, According to the objective, it can select suitably from well-known apparatuses, For example, a dry oven, a hot plate, IR heater etc. are mentioned.

−メッキ工程−
前記メッキ工程としては、公知のメッキ処理の中から適宜選択した適宜選択した方法により行うことができる。
前記メッキ処理としては、例えば、硫酸銅メッキ、ピロリン酸銅メッキ等の銅メッキ、ハイフローはんだメッキ等のはんだメッキ、ワット浴(硫酸ニッケル−塩化ニッケル)メッキ、スルファミン酸ニッケル等のニッケルメッキ、ハード金メッキ、ソフト金メッキ等の金メッキなど処理が挙げられる。
前記メッキ工程によりメッキ処理した後に前記パターンを除去することにより、また更に必要に応じて不要部をエッチング処理等で除去することにより、前記基体の表面に永久パターンを形成することができる。
-Plating process-
The plating step can be performed by an appropriately selected method selected from known plating processes.
Examples of the plating treatment include copper plating such as copper sulfate plating and copper pyrophosphate plating, solder plating such as high flow solder plating, watt bath (nickel sulfate-nickel chloride) plating, nickel plating such as nickel sulfamate, and hard gold plating. And gold plating such as soft gold plating.
A permanent pattern can be formed on the surface of the substrate by removing the pattern after the plating process in the plating process, and further removing unnecessary portions by an etching process or the like as necessary.

本発明の永久パターン形成方法は、パターン形成材料上に結像させる像の歪みを抑制することにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な配線パターンの形成に好適に使用することができる。   Since the permanent pattern forming method of the present invention can form a permanent pattern with high definition and efficiency by suppressing distortion of an image formed on the pattern forming material, high-definition exposure is required. It can be suitably used for forming various patterns and the like, and can be particularly suitably used for forming high-definition wiring patterns.

−保護膜及び層間絶縁膜形成方法−
本発明の永久パターン形成方法が、いわゆるソルダーレジストを用いて保護膜及び層間絶縁膜の少なくともいずれかを形成する永久パターン形成方法である場合には、プリント配線板上に本発明の永久パターン形成方法により、永久パターンを形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
-Method for forming protective film and interlayer insulating film-
When the permanent pattern forming method of the present invention is a permanent pattern forming method of forming at least one of a protective film and an interlayer insulating film using a so-called solder resist, the permanent pattern forming method of the present invention on a printed wiring board Thus, a permanent pattern can be formed, and soldering can be performed as follows.
That is, the development step forms a hardened layer that is the permanent pattern, and the metal layer is exposed on the surface of the printed wiring board. Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, a semiconductor or a component is mounted on the soldered portion. At this time, the permanent pattern by the hardened layer exhibits a function as a protective film or an insulating film (interlayer insulating film), and prevents external impact and conduction between adjacent electrodes.

本発明の永久パターン形成方法においては、前記永久パターン形成方法により形成される永久パターンが、前記保護膜又は前記層間絶縁膜であると、配線を外部からの衝撃や曲げから保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装に有用である。   In the permanent pattern forming method of the present invention, if the permanent pattern formed by the permanent pattern forming method is the protective film or the interlayer insulating film, the wiring can be protected from external impact and bending, In particular, the interlayer insulating film is useful for high-density mounting of semiconductors and components on, for example, a multilayer wiring board or a build-up wiring board.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

(実施例1)
[永久パターン形成用感光性フィルムの作製]
前記支持体として20μm厚のポリエチレンテレフタレート(PET)フィルム上に、オレフィン/アクリル酸エマルジョン(商品名:ケミパールS−100、三井化学(株)製、固形分濃度:27質量%)を、ワイヤーバーを用いて塗布し、乾燥させて、20μm厚のクッション層を形成した。
Example 1
[Production of photosensitive film for permanent pattern formation]
As a support, an olefin / acrylic acid emulsion (trade name: Chemipearl S-100, manufactured by Mitsui Chemicals, Inc., solid content concentration: 27 mass%) on a polyethylene terephthalate (PET) film having a thickness of 20 μm, a wire bar It was applied and dried to form a cushion layer having a thickness of 20 μm.

次いで、以下の組成からなるバリア層組成物溶液を、前記クッション層上に塗布し、乾燥させて、1.5μm厚のバリア層を形成した。
[バリア層組成物溶液]
・PVA205(商品名:株式会社クラレ製、ポリビニルアルコール、鹸化率=80%)・・・130質量部
・PVP K−90(商品名:GAFコーポレーション社製、ポリビニルピロリドン)・・・60質量部
・サーフロンS−131(商品名:旭硝子(株)製、フッ素系界面活性剤)・・・10質量部
・メタノール・・・1675質量部
・蒸留水・・・1675質量部
Next, a barrier layer composition solution having the following composition was applied onto the cushion layer and dried to form a 1.5 μm thick barrier layer.
[Barrier layer composition solution]
-PVA205 (trade name: manufactured by Kuraray Co., Ltd., polyvinyl alcohol, saponification rate = 80%) ... 130 parts by mass-PVP K-90 (trade name: manufactured by GAF Corporation, polyvinylpyrrolidone) ... 60 parts by mass Surflon S-131 (trade name: manufactured by Asahi Glass Co., Ltd., fluorinated surfactant) ... 10 parts by mass · Methanol ... 1675 parts by mass · Distilled water ... 1675 parts by mass

次いで、以下の組成からなる感光性組成物溶液を、前記支持体上に形成されたバリア層上に塗布し、乾燥させて、前記バリア層上に10μm厚の感光層を形成した。前記感光層上に、保護フィルムとして、12μm厚のポリプロピレンを積層し、永久パターン形成用感光性フィルムを形成した。   Next, a photosensitive composition solution having the following composition was applied onto the barrier layer formed on the support and dried to form a photosensitive layer having a thickness of 10 μm on the barrier layer. On the photosensitive layer, 12 μm thick polypropylene was laminated as a protective film to form a permanent pattern forming photosensitive film.

[感光性組成物溶液の組成]
・硫酸バリウム分散液・・・24.75質量部
・スチレン/無水マレイン酸/ブチルアクリレート共重合体(モル比40/32/28)とベンジルアミン(該共重合体の無水物基に対して1.0当量)との付加反応物の35質量%メチルエチルケトン溶液・・・13.36質量部
・R712(日本化薬社製、2官能アクリルモノマー)・・・3.06質量部
・ジペンタエリスリトールヘキサアクリレート・・・4.59質量部
・IRGACURE819(チバ・スペシャルティー・ケミカルズ社製)・・・1.98質量部
・F780F(大日本インキ社製)の30質量%メチルエチルケトン溶液・・・0.066質量部
・ハイドロキノンモノメチルエーテル・・・0.024質量部
・メチルエチルケトン・・・8.60質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム(堺化学社製、B30)30質量部と、上記スチレン/無水マレイン酸/ブチルアクリレート共重合体の35質量%メチルエチルケトン溶液34.29質量部と、1−メトキシ−2−プロピルアセテート35.71質量部と、を予め混合した後、モーターミルM−200(アイガー社製)で、直径1.0mmのジルコニアビーズを用い、周速9m/sにて3.5時間分散して調製した。
[Composition of photosensitive composition solution]
Barium sulfate dispersion: 24.75 parts by mass Styrene / maleic anhydride / butyl acrylate copolymer (molar ratio 40/32/28) and benzylamine (1 relative to the anhydride group of the copolymer) 0.035 equivalent) and 35 mass% methyl ethyl ketone solution of addition reaction product ... 13.36 parts by mass R712 (manufactured by Nippon Kayaku Co., Ltd., bifunctional acrylic monomer) ... 3.06 parts by mass dipentaerythritol hexa Acrylate: 4.59 parts by mass IRGACURE 819 (Ciba Specialty Chemicals Co., Ltd.) 1.98 parts by mass A 30% by mass methyl ethyl ketone solution of F780F (Dainippon Ink Co., Ltd.) 0.066 Part by mass-Hydroquinone monomethyl ether-0.024 part by mass-Methyl ethyl ketone-8.60 parts by weight The barium sulfate dispersion was composed of 30 parts by weight of barium sulfate (manufactured by Sakai Chemical Co., Ltd., B30), 34.29 parts by weight of a 35% by weight methyl ethyl ketone solution of the styrene / maleic anhydride / butyl acrylate copolymer, and 1-methoxy- After mixing in advance with 35.71 parts by mass of 2-propyl acetate, the motor mill M-200 (manufactured by Eiger) was used for 3.5 hours at a peripheral speed of 9 m / s using zirconia beads having a diameter of 1.0 mm. Prepared by dispersing.

<積層工程>
銅厚12μmの配線形成済み積層基板の表面を化学研磨処理し、該積層基板上に、前記永久パターン形成用感光性フィルムを、前記保護フィルムを剥離した後に、重ね合わせて、真空ラミネータ(MVLP500、名機製作所製)を用いて、0.4MPa、90℃の条件下でラミネートして、積層体を形成した。
前記感光層表面にタック性は無く、前記保護フィルムの剥離性は良好であった。
次いで、前記積層体を室温まで冷却した後、前記支持体及び前記クッション層を、バリア層上から剥離した。この時の剥離性は良好であった。
<Lamination process>
The surface of the laminated substrate having a copper thickness of 12 μm is subjected to a chemical polishing treatment, and the permanent pattern forming photosensitive film is superposed on the laminated substrate after the protective film is peeled off, and then a vacuum laminator (MVLP500, Laminate was made under the conditions of 0.4 MPa and 90 ° C. using a machine manufactured by Meiki Seisakusho.
There was no tackiness on the surface of the photosensitive layer, and the peelability of the protective film was good.
Next, after the laminate was cooled to room temperature, the support and the cushion layer were peeled off from the barrier layer. The peelability at this time was good.

<露光工程>
前記支持体及び前記クッション層を剥離した前記積層体における前記感光層に対し、バリア層上から下記のパターン形成装置を用いて405〜415nmのレーザ光でパターン状に露光し、前記感光層の一部の領域を硬化させた。
<Exposure process>
The photosensitive layer in the laminate from which the support and the cushion layer have been peeled is exposed in a pattern with a laser beam of 405 to 415 nm from above the barrier layer using the following pattern forming apparatus, The area of the part was cured.

<<パターン形成装置>>
前記光照射手段として図27〜32に示す合波レーザ光源と、前記光変調手段として図4に示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された前記光変調手段の内、1024個×256列のみを駆動するように制御されたDMD50と、図13に示した一方の面がトーリック面であるマイクロレンズをアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記感光層に結像する光学系480、482とを有するパターン形成装置を用いた。
<< Pattern Forming Apparatus >>
27 to 32 as the light irradiating means, and 768 pairs of micromirror arrays in which 1024 micromirrors are arranged in the main scanning direction shown in FIG. 4 as the light modulating means are arranged in the sub-scanning direction. Among the optical modulation means, the DMD 50 controlled to drive only 1024 × 256 rows, and the microlens array in which the microlenses whose one surface is a toric surface shown in FIG. 13 are arranged in an array A pattern forming apparatus having 472 and optical systems 480 and 482 for forming an image of light passing through the microlens array on the photosensitive layer was used.

前記マイクロレンズとしては、図17及び図18に示すように、トーリックレンズ55aが用いられており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。   As the microlens, a toric lens 55a is used as shown in FIGS. 17 and 18, and a curvature radius Rx = −0.125 mm in a direction optically corresponding to the x direction, corresponding to the y direction. The radius of curvature Ry in the direction to travel is −0.1 mm.

また、マイクロレンズアレイ55の集光位置近傍に配置されるアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されている。   In addition, the aperture array 59 disposed in the vicinity of the condensing position of the microlens array 55 is disposed so that only light that has passed through the corresponding microlens 55a is incident on each aperture 59a.

<現像工程>
露光後の前記積層体を室温にて10分間静置した後、前記感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて60秒間スプレーし、未硬化の領域を溶解除去した後、水洗し、乾燥させた。
さらに、160℃、30分間の条件で加熱処理を行い、ソルダーレジスト被膜を形成した。得られたソルダーレジスト被膜を目視で観察したところ、剥がれ、ふくれ、変色は認められなかった。
<Development process>
The laminated body after exposure was allowed to stand at room temperature for 10 minutes, and then an aqueous solution of sodium carbonate (30 ° C., 1% by mass) was sprayed on the entire surface of the photosensitive layer for 60 seconds at a spray pressure of 0.15 MPa, and uncured. After dissolving and removing the region, the substrate was washed with water and dried.
Further, a heat treatment was performed at 160 ° C. for 30 minutes to form a solder resist film. When the obtained solder resist film was visually observed, peeling, blistering, and discoloration were not recognized.

[評価]
実施例1の永久パターン形成用感光性フィルム、及び積層体について、以下の条件で、ラミネート性、感度、解像度、保存安定性、耐熱性、及び表面硬度の評価を行った。結果を表3に示す。
[Evaluation]
About the photosensitive film for permanent pattern formation of Example 1, and a laminated body, lamination property, sensitivity, resolution, storage stability, heat resistance, and surface hardness were evaluated on condition of the following. The results are shown in Table 3.

<ラミネート性の評価>
実施例1で製造した前記積層体について、前記感光層と前記配線形成済み積層基板との間の気泡の有無を目視で観察し、以下の評価基準により評価を行った。結果を表3に示す。
−評価基準−
○:気泡が存在しない
×:気泡が存在する
<Evaluation of laminating properties>
About the said laminated body manufactured in Example 1, the presence or absence of the bubble between the said photosensitive layer and the said wiring-laminated laminated board was observed visually, and the following evaluation criteria evaluated. The results are shown in Table 3.
-Evaluation criteria-
○: Air bubbles do not exist ×: Air bubbles exist

<解像度>
(1)最短現像時間の測定方法
実施例1と同様にして製造した積層体から前記支持体及び前記クッション層を剥がし取り、前記感光層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.15MPaの圧力にてスプレーし、炭酸ナトリウム水溶液のスプレー開始から前記感光層が溶解除去されるまでに要した時間を測定し、これを最短現像時間とした。
この結果、前記最短現像時間は、40秒であった。
<Resolution>
(1) Method for measuring the shortest development time The support and the cushion layer are peeled off from the laminate produced in the same manner as in Example 1, and a 1 mass% sodium carbonate aqueous solution at 30 ° C. is added to the entire surface of the photosensitive layer by 0. Spraying was performed at a pressure of 15 MPa, and the time required from the start of spraying of the aqueous sodium carbonate solution until the photosensitive layer was dissolved and removed was measured, and this was taken as the shortest development time.
As a result, the shortest development time was 40 seconds.

(2)感度の測定
実施例1と同様にして製造した積層体から前記支持体及び前記クッション層を剥がし取り、前記感光層に対し、前記バリア層上から、前記光照射手段としての405nmのレーザ光源を有するパターン形成装置を用いて、0.1mJ/cmから21/2倍間隔で100mJ/cmまでの光エネルギー量の異なる光を照射して露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、感光層の全面に、炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得る。こうして得た感度曲線から硬化領域の厚さが4μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とし、これを感度とした。結果を表3に示す。なお、前記パターン形成装置は、前記DMDからなる光変調手段を有し、前記パターン形成材料を備えている。
(2) Measurement of sensitivity The support and the cushion layer are peeled off from the laminate produced in the same manner as in Example 1, and a 405 nm laser as the light irradiation means is applied to the photosensitive layer from above the barrier layer. a patterning device having a light source, and exposure by irradiating light with different light energy amount from 0.1 mJ / cm 2 to 100 mJ / cm 2 at 2 1/2 times the interval, the portion of the photosensitive layer The area was cured. After standing at room temperature for 10 minutes, an aqueous solution of sodium carbonate (30 ° C., 1% by mass) is sprayed over the entire surface of the photosensitive layer at a spray pressure of 0.15 MPa, twice the shortest development time determined in (1) above. Spraying was performed to dissolve and remove the uncured region, and the thickness of the remaining cured region was measured. Next, a sensitivity curve is obtained by plotting the relationship between the light irradiation amount and the thickness of the cured layer. From the sensitivity curve thus obtained, the amount of light energy when the thickness of the cured region was 4 μm was determined as the amount of light energy necessary for curing the photosensitive layer, and this was taken as the sensitivity. The results are shown in Table 3. The pattern forming apparatus includes a light modulating unit made of the DMD and includes the pattern forming material.

(3)解像度の測定
実施例1と同様にして製造した積層体を、室温(23℃、55%RH)にて10分間静置した後、前記支持体及び前記クッション層を剥がし取り、前記パターン形成装置を用いて、ライン/スペース=1/1でライン幅5μm〜20μmまで1μm刻みで各線幅の露光を行い、ライン幅20μm〜50μmまで5μm刻みで各線幅の露光を行った。この際の露光量は、前記(2)で測定した前記パターン形成材料の感光層を硬化させるために必要な光エネルギー量である。室温にて10分間静置した後、前記感光層の全面に、前記現像液として炭酸ナトリウム水溶液(30℃、1質量%)をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化領域を溶解除去した。この様にして得られた硬化樹脂パターン付き銅張積層板の表面を光学顕微鏡で観察し、硬化樹脂パターンのラインにツマリ、ヨレ等の異常のない最小のライン幅を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。結果を表3に示す。
(3) Measurement of resolution A laminate produced in the same manner as in Example 1 was allowed to stand at room temperature (23 ° C., 55% RH) for 10 minutes, and then the support and the cushion layer were peeled off to form the pattern. Using the forming apparatus, each line width was exposed in 1 μm increments from 5 μm to 20 μm in line width / space = 1/1, and each line width was exposed in 5 μm increments from 20 μm to 50 μm in line width. The exposure amount at this time is the amount of light energy necessary for curing the photosensitive layer of the pattern forming material measured in (2). After standing at room temperature for 10 minutes, the shortest development time determined in (1) above with a sodium carbonate aqueous solution (30 ° C., 1% by mass) as the developer on the entire surface of the photosensitive layer at a spray pressure of 0.15 MPa. Spraying for 2 times the time, the uncured area was dissolved and removed. The surface of the copper-clad laminate with the cured resin pattern thus obtained was observed with an optical microscope, and the minimum line width without any abnormalities such as tsumari and twisting was measured on the cured resin pattern line. did. The smaller the numerical value, the better the resolution. The results are shown in Table 3.

<保存安定性>
実施例1と同様にして製造した積層体、及び、前記積層体を40℃、65%RHにて3日間静置したサーモ強制試験用サンプルについて、それぞれ前記(2)感度の測定と同様にして、15段ステップの7段を硬化するのに必要な光エネルギー量を測定した。サーモ試験用サンプルの前記光エネルギー量を、表3に示す。
また、前記サーモ強制試験用サンプルの感度変化を、ステップの段数変化で評価した。−2段〜+2段以内の変化であれば、実用上の露光感度の変化として問題が無い。結果を表3に示す。
<Storage stability>
About the laminated body manufactured like Example 1, and the sample for the thermo compulsory test which left the said laminated body for 3 days at 40 degreeC and 65% RH, it was carried out similarly to the measurement of said (2) sensitivity, respectively. The amount of light energy required to cure 7 steps of 15 steps was measured. Table 3 shows the amount of light energy of the thermo test sample.
Moreover, the sensitivity change of the sample for the thermo forced test was evaluated by the change in the number of steps. If the change is within −2 steps to +2 steps, there is no problem as a practical change in exposure sensitivity. The results are shown in Table 3.

<耐熱性>
前記ソルダーレジスト被膜が形成された基板を酸洗いした後に、水溶性フラックス処理し、260℃のはんだ槽に5秒間ずつ、3回浸漬し、次いで、前記水溶性フラックスを水洗いして除去した。目視にて、ソルダーレジスト被膜を観察し、以下の評価基準により、評価を行った。結果を表3に示す。
−評価基準−
○:剥がれ、ふくれ、及び変色のいずれも認められない。
×:剥がれ、ふくれ、及び変色のいずれかが認められる。
<Heat resistance>
The substrate on which the solder resist film was formed was pickled, then treated with a water-soluble flux, immersed in a solder bath at 260 ° C. for 5 seconds three times, and then the water-soluble flux was washed with water and removed. The solder resist film was visually observed and evaluated according to the following evaluation criteria. The results are shown in Table 3.
-Evaluation criteria-
○: No peeling, blistering, or discoloration is observed.
X: Any of peeling, blistering, and discoloration is recognized.

<表面硬度>
前記耐熱性の評価と同様の処理を行ったソルダーレジスト被膜について、JIS K5400に準拠して表面硬度を測定した。結果を表3に示す。
<Surface hardness>
About the soldering resist film which performed the process similar to the said heat resistance evaluation, the surface hardness was measured based on JISK5400. The results are shown in Table 3.

<バリア層とクッション層との層間剥離性>
作製した積層体から、支持体及びクッション層を、バリア層上から剥離することを試み、そのときの剥離性を以下の評価基準により評価した。
〔評価基準〕
○:バリア層とクッション層との間で剥がれ、バリア層表面に変化がない状態
△:バリア層表面にクッション層の一部が残っている状態
×:バリア層とクッション層との間で剥がれない状態
<Delamination between barrier layer and cushion layer>
An attempt was made to peel the support and the cushion layer from the barrier layer from the prepared laminate, and the peelability at that time was evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: Peeling between the barrier layer and the cushion layer, and no change on the surface of the barrier layer Δ: Part of the cushion layer remaining on the surface of the barrier layer ×: No peeling between the barrier layer and the cushion layer Status

(実施例2)
実施例1において、感光性組成物に熱架橋剤としてメトキシメチロールメラミン5質量部を添加した以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた永久パターン形成用感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性及び表面硬度の評価を行った。結果を表3に示す。
(Example 2)
In Example 1, the photosensitive film and the laminated body were produced like Example 1 except having added 5 mass parts of methoxymethylol melamine as a thermal crosslinking agent to the photosensitive composition.
About the obtained permanent pattern-forming photosensitive film and the laminate, laminating property, sensitivity, resolution, storage stability, heat resistance, delamination between the barrier layer and the cushion layer, and The surface hardness was evaluated. The results are shown in Table 3.

(実施例3)
実施例1において、以下の組成からなる感光性組成物溶液を用いて感光層を形成した以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性及び表面硬度の評価を行った。結果を表3に示す。
(Example 3)
In Example 1, the photosensitive film and the laminated body were produced like Example 1 except having formed the photosensitive layer using the photosensitive composition solution which consists of the following compositions.
About the obtained photosensitive film and the said laminated body, it carries out similarly to Example 1, and evaluates laminating property, sensitivity, resolution, storage stability, heat resistance, delamination property of a barrier layer and a cushion layer, and surface hardness. Went. The results are shown in Table 3.

[感光性組成物溶液の組成]
・ZFR樹脂(日本化薬社製:エポキシ化合物と不飽和モノカルボン酸のエステル化合物との反応生成物に、飽和又は不飽和多塩基酸無水物を反応させた生成物)・・・35質量部
・ESLV−80XY(新日鐵化学社製:分子内に2個以上のエポキシ基を有するエポキシ樹脂)・・・8質量部
・2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン・・・4.5質量部
・2,4−ジエチルキサントン・・・0.5質量部
・シリコーン系エラストマー(SYシリーズ、ワッカー社製)・・・5質量部
・ジペンタエリスリトールヘキサアクリレート・・・3質量部
・メラミン・・・4質量部
・フタロシアニンブルー・・・1質量部
・シリカ・・・20質量部
・沈降性硫酸バリウム・・・15質量部
[Composition of photosensitive composition solution]
・ ZFR resin (manufactured by Nippon Kayaku Co., Ltd .: product obtained by reacting a reaction product of an epoxy compound and an ester compound of an unsaturated monocarboxylic acid with a saturated or unsaturated polybasic acid anhydride) 35 parts by mass ESLV-80XY (manufactured by Nippon Steel Chemical Co., Ltd .: epoxy resin having two or more epoxy groups in the molecule) 8 parts by mass 2-methyl-1- [4- (methylthio) phenyl] -2- Morpholinopropan-1-one: 4.5 parts by mass 2,4-diethylxanthone: 0.5 parts by mass Silicone elastomer (SY series, manufactured by Wacker) ... 5 parts by mass Dipenta Erythritol hexaacrylate: 3 parts by mass Melamine: 4 parts by mass Phthalocyanine blue: 1 part by mass Silica: 20 parts by mass Precipitated barium sulfate: 15 parts by mass

(実施例4)
実施例1において、以下の組成からなる感光性組成物溶液を用いて感光層を形成した以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた永久パターン形成用感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
Example 4
In Example 1, the photosensitive film and the laminated body were produced like Example 1 except having formed the photosensitive layer using the photosensitive composition solution which consists of the following compositions.
About the obtained permanent pattern-forming photosensitive film and the laminate, as in Example 1, laminating properties, sensitivity, resolution, storage stability, heat resistance, delamination between the barrier layer and the cushion layer, The surface hardness was evaluated. The results are shown in Table 3.

−感光性組成物溶液−
下記の組成からなる(a)85質量部をロールミルにより混練し、トリメチロールプロパントリグリシジルエーテル15質量部と混合して感光性組成物溶液を調製した。
[配合成分(a)の組成]
・樹脂A(※)・・・40質量部
・2−ヒドロキシエチルアクリレート・・・15質量部
・ベンジルジエチルケタール・・・2.5質量部
・1−ベンジル−2−メチルイミダゾール・・・1.0質量部
・レベリング剤(商品名:モダフロー、モンサント社製)・・・1.0質量部
・硫酸バリウム・・・25質量部
・フタロシアニングリーン・・・0.5質量部
※前記樹脂Aは、エポキシ当量が217であり、且つ、1分子中に平均して7個のフェノール核残基及びエポキシ基を有するクレゾールノボラック型エポキシ樹脂の1当量と、アクリル酸の1.05当量とを反応させて得られる反応物に、無水テトラヒドロフタル酸の0.67当量を、フェノキシエチルアクリレートを溶媒として常法により反応させて得られた粘調な液体からなる樹脂である。該樹脂Aは、フェノキシエチルアクリレートを35質量部含んだ粘調な液体であり、混合物として63.4mgKOH/gの酸価を示す。
-Photosensitive composition solution-
85 parts by mass of (a) having the following composition was kneaded by a roll mill and mixed with 15 parts by mass of trimethylolpropane triglycidyl ether to prepare a photosensitive composition solution.
[Composition of Compounding Component (a)]
Resin A (*) 40 parts by mass 2-hydroxyethyl acrylate 15 parts by mass benzyl diethyl ketal 2.5 parts by mass 1-benzyl-2-methylimidazole 1. 0 parts by mass-Leveling agent (trade name: Modaflow, manufactured by Monsanto)-1.0 part by mass-Barium sulfate-25 parts by mass-Phthalocyanine green-0.5 parts by mass * The resin A is 1 equivalent of a cresol novolac type epoxy resin having an epoxy equivalent of 217 and having an average of 7 phenol nucleus residues and epoxy groups in one molecule and 1.05 equivalent of acrylic acid are reacted. From the viscous liquid obtained by reacting the resulting reaction product with 0.67 equivalents of tetrahydrophthalic anhydride in a conventional manner using phenoxyethyl acrylate as a solvent. Resin. The resin A is a viscous liquid containing 35 parts by mass of phenoxyethyl acrylate, and exhibits an acid value of 63.4 mgKOH / g as a mixture.

(実施例5)
実施例1において、支持体上にエチレン/酢酸ビニル共重合体溶液(エバフレックス45X(三井デュポンポリケミカル(株)製、酢酸ビニル含有量:46質量%)17質量部と、トルエン83質量部との混合溶液)を塗布、乾燥させてクッション層を形成した以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Example 5)
In Example 1, 17 parts by mass of an ethylene / vinyl acetate copolymer solution (Evaflex 45X (manufactured by Mitsui Dupont Polychemical Co., Ltd., vinyl acetate content: 46% by mass)) on a support, 83 parts by mass of toluene, A photosensitive film and a laminate were produced in the same manner as in Example 1 except that a cushion layer was formed by applying and drying the mixed solution.
About the obtained photosensitive film and the said laminated body, it is the same as that of Example 1, lamination property, sensitivity, resolution, storage stability, heat resistance, delamination property between the barrier layer and the cushion layer, and surface hardness. Evaluation was performed. The results are shown in Table 3.

(実施例6)
実施例1において、支持体上に、以下の組成からなるクッション層形成用塗布液を塗布し、乾燥させてクッション層を形成した以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Example 6)
In Example 1, a photosensitive film and a laminate were produced in the same manner as in Example 1 except that a cushion layer-forming coating solution having the following composition was applied onto a support and dried to form a cushion layer. Was made.
About the obtained photosensitive film and the said laminated body, it is the same as that of Example 1, lamination property, sensitivity, resolution, storage stability, heat resistance, delamination property between the barrier layer and the cushion layer, and surface hardness. Evaluation was performed. The results are shown in Table 3.

[クッション層形成用塗布液]
・メチルメタクリレート/2−エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比):55/11.7/4.5/28.8、質量平均分子量:80000)・・・15.0質量部
・2,2−ビス(4−(メタクリロイルオキシペンタエトキシ)フェニル)プロパン(商品名:BPE−500、新中村化学社製)・・・7.0質量部
・フッ素系界面活性剤(商品名:F177P、大日本インキ化学工業株式会社製)・・・0.3質量部
・メタノール・・・30.0質量部
・メチルエチルケトン・・・19.0質量部
・1−メトキシ−2−プロパノール・・・10.0質量部
[Cushion layer forming coating solution]
Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio (molar ratio): 55 / 11.7 / 4.5 / 28.8, mass average molecular weight: 80000) 15.0 parts by mass -2,2-bis (4- (methacryloyloxypentaethoxy) phenyl) propane (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.)-7.0 parts by mass -Fluorine-based surface activity Agent (trade name: F177P, manufactured by Dainippon Ink & Chemicals, Inc.) 0.3 parts by mass Methanol 30.0 parts by mass Methyl ethyl ketone 19.0 parts by mass 1-methoxy-2 -Propanol ... 10.0 parts by mass

(比較例1)
実施例1において、支持体上にクッション層を形成しなかった以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Comparative Example 1)
In Example 1, a photosensitive film and a laminate were produced in the same manner as in Example 1 except that the cushion layer was not formed on the support.
About the obtained photosensitive film and the said laminated body, it is the same as that of Example 1, lamination property, sensitivity, resolution, storage stability, heat resistance, delamination property between the barrier layer and the cushion layer, and surface hardness. Evaluation was performed. The results are shown in Table 3.

(比較例2)
実施例3において、クッション層上にバリア層を形成しなかった以外は、実施例3と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Comparative Example 2)
In Example 3, a photosensitive film and a laminate were produced in the same manner as in Example 3 except that no barrier layer was formed on the cushion layer.
About the obtained photosensitive film and the said laminated body, it is the same as that of Example 1, lamination property, sensitivity, resolution, storage stability, heat resistance, delamination property between the barrier layer and the cushion layer, and surface hardness. Evaluation was performed. The results are shown in Table 3.

(比較例3)
実施例4において、クッション層上にバリア層を形成しなかった以外は、実施例4と同様にして、感光性フィルム及び積層体を作製した。
得られた永久パターン形成用感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Comparative Example 3)
In Example 4, a photosensitive film and a laminate were produced in the same manner as in Example 4 except that no barrier layer was formed on the cushion layer.
About the obtained permanent pattern-forming photosensitive film and the laminate, as in Example 1, laminating properties, sensitivity, resolution, storage stability, heat resistance, delamination between the barrier layer and the cushion layer, The surface hardness was evaluated. The results are shown in Table 3.

(比較例4)
実施例1において、感光性組成物溶液に硫酸バリウム分散液を添加しなかった以外は、実施例1と同様にして、感光性フィルム及び積層体を作製した。
得られた感光性フィルム、及び前記積層体について、実施例1と同様にして、ラミネート性、感度、解像度、保存安定性、耐熱性、バリア層とクッション層との層間剥離性、及び表面硬度の評価を行った。結果を表3に示す。
(Comparative Example 4)
In Example 1, a photosensitive film and a laminate were produced in the same manner as in Example 1 except that the barium sulfate dispersion was not added to the photosensitive composition solution.
About the obtained photosensitive film and the said laminated body, it is the same as that of Example 1, lamination property, sensitivity, resolution, storage stability, heat resistance, delamination property between the barrier layer and the cushion layer, and surface hardness. Evaluation was performed. The results are shown in Table 3.

表3の結果より、比較例1〜4と比較して、実施例1〜2及び5の永久パターンは、高感度、高解像度であり、かつ、保存安定性に優れ、さらに、形成されたソルダーレジスト被膜の耐熱性及び硬度に優れることが判った。また、実施例3〜4の永久パターンは、感光層のバインダーとしてエポキシアクリレート系樹脂を使用したため、感度、解像度、及び保存安定性にやや劣るが、形成されたソルダーレジスト被膜の耐熱性及び硬度に優れていることが判った。また、実施例6の永久パターン及び積層体は、クッション層の塗布液をバリア層との密着力の高いアルカリ可溶性熱可塑性樹脂を含むものとしたため、高感度、高解像度であり、かつ、保存安定性に優れ、耐熱性及び硬度に優れているが、バリア層とクッション層との層間剥離性が劣ることが判った。 From the results of Table 3, compared with Comparative Examples 1 to 4, the permanent patterns of Examples 1 to 2 and 5 have high sensitivity, high resolution, excellent storage stability, and formed solder. It was found that the resist film was excellent in heat resistance and hardness. Moreover, since the permanent pattern of Examples 3-4 used epoxy acrylate-type resin as a binder of a photosensitive layer, although it is somewhat inferior to a sensitivity, resolution, and storage stability, it is in heat resistance and hardness of the formed solder resist film. It turned out to be excellent. Moreover, since the permanent pattern and laminate of Example 6 include an alkali-soluble thermoplastic resin having high adhesion to the barrier layer in the cushion layer coating solution, it has high sensitivity, high resolution, and storage stability. It was found that the peelability between the barrier layer and the cushion layer was inferior although it was excellent in heat resistance and heat resistance and hardness.

本発明の永久パターン形成方法は、感光層上に結像させる像の歪みを抑制することにより、パッケージ基板を含むプリント配線基板分野における永久パターン(層間絶縁膜、ソルダーレジストパターン等の保護膜)を高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な永久パターンの形成に好適に使用することができる。   The method for forming a permanent pattern according to the present invention suppresses distortion of an image formed on a photosensitive layer, thereby providing a permanent pattern (a protective film such as an interlayer insulating film or a solder resist pattern) in the printed wiring board field including a package substrate. Since it can be formed with high definition and efficiency, it can be suitably used for forming various patterns that require high-definition exposure, and particularly suitable for forming high-definition permanent patterns. be able to.

図1は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。FIG. 1 is an example of a partially enlarged view showing a configuration of a digital micromirror device (DMD). 図2(A)及び(B)は、DMDの動作を説明するための説明図の一例である。2A and 2B are examples of explanatory diagrams for explaining the operation of the DMD. 図3(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。FIGS. 3A and 3B are examples of plan views showing the arrangement of the exposure beam and the scanning line in a case where the DMD is not inclined and in a case where the DMD is inclined. 図4(A)及び(B)は、DMDの使用領域の例を示す図の一例である。4A and 4B are examples of diagrams illustrating examples of DMD usage areas. 図5は、スキャナによる1回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。FIG. 5 is an example of a plan view for explaining an exposure method in which the pattern forming material is exposed by one scanning by the scanner. 図6(A)及び(B)は、スキャナによる複数回の走査でパターン形成材料を露光する露光方式を説明するための平面図の一例である。6A and 6B are examples of plan views for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner. 図7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。FIG. 7 is an example of a schematic perspective view illustrating an appearance of an example of the pattern forming apparatus. 図8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。FIG. 8 is an example of a schematic perspective view illustrating the configuration of the scanner of the pattern forming apparatus. 図9(A)は、パターン形成材料に形成される露光済み領域を示す平面図の一例であり、図9(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。FIG. 9A is an example of a plan view showing an exposed region formed in the pattern forming material, and FIG. 9B is an example of a diagram showing an array of exposure areas by each exposure head. 図10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。FIG. 10 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means. 図11は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。FIG. 11 is an example of a sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. 図12は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。FIG. 12 is an example of a controller that controls DMD based on pattern information. 図13(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図13(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図13(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。FIG. 13A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system, and FIG. 13B shows the exposure when a microlens array or the like is not used. FIG. 13C is an example of a plan view showing a light image projected on the surface to be exposed when a microlens array or the like is used. 図14は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。FIG. 14 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines. 図15(A)及び(B)は、マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。FIGS. 15A and 15B are examples of graphs showing the distortion of the reflection surface of the micromirror in the two diagonal directions of the mirror. 図16は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。FIG. 16 is an example of a front view (A) and a side view (B) of a microlens array used in the pattern forming apparatus. 図17は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。FIG. 17 is an example of a front view (A) and a side view (B) of the microlens constituting the microlens array. 図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。FIG. 18 is an example of a schematic diagram illustrating a condensing state by a microlens in one cross section (A) and another cross section (B). 図19aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 19a is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens of the present invention. 図19bは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19B is an example of a diagram showing the same simulation result as that in FIG. 19A at another position. 図19cは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19c is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図19dは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 19d is an example of a diagram showing the same simulation result as in FIG. 19a at another position. 図20aは、従来の永久パターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。FIG. 20a is an example of a diagram showing the result of simulating the beam diameter in the vicinity of the condensing position of the microlens in the conventional permanent pattern forming method. 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20b is an example of a diagram showing the same simulation result as in FIG. 20a at another position. 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20c is an example of a diagram showing the same simulation result as in FIG. 20a for another position. 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。FIG. 20d is an example of a diagram illustrating simulation results similar to those in FIG. 20a at different positions. 図21は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 21 is an example of a plan view showing another configuration of the combined laser light source. 図22は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。FIG. 22 shows an example of a front view (A) and an example of a side view (B) of the microlens constituting the microlens array. 図23は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。FIG. 23 is an example of a schematic diagram illustrating a light condensing state by the microlens of FIG. 22 in one cross section (A) and another cross section (B). 図24(A)、(B)及び(C)は、光量分布補正光学系による補正の概念についての説明図の一例である。FIGS. 24A, 24B, and 24C are examples of explanatory diagrams about the concept of correction by the light amount distribution correction optical system. 図25は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。FIG. 25 is an example of a graph showing the light amount distribution when the light irradiation means has a Gaussian distribution and the light amount distribution is not corrected. 図26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。FIG. 26 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system. 図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図の一例であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。27A (A) is a perspective view showing the configuration of the fiber array light source, FIG. 27A (B) is an example of a partially enlarged view of (A), and FIGS. 27A (C) and (D) are lasers. It is an example of the top view which shows the arrangement | sequence of the light emission point in an emission part. 図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。FIG. 27 b is an example of a front view showing the arrangement of light emitting points in the laser emission part of the fiber array light source. 図28は、マルチモード光ファイバの構成を示す図の一例である。FIG. 28 is an example of a diagram illustrating a configuration of a multimode optical fiber. 図29は、合波レーザ光源の構成を示す平面図の一例である。FIG. 29 is an example of a plan view showing the configuration of the combined laser light source. 図30は、レーザモジュールの構成を示す平面図の一例である。FIG. 30 is an example of a plan view showing the configuration of the laser module. 図31は、図30に示すレーザモジュールの構成を示す側面図の一例である。FIG. 31 is an example of a side view showing the configuration of the laser module shown in FIG. 図32は、図30に示すレーザモジュールの構成を示す部分側面図である。32 is a partial side view showing the configuration of the laser module shown in FIG. 図33は、レーザアレイの構成を示す斜視図の一例である。FIG. 33 is an example of a perspective view showing a configuration of a laser array. 図34(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図34(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。FIG. 34A is an example of a perspective view showing a configuration of a multi-cavity laser, and FIG. 34B is a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. It is an example. 図35は、合波レーザ光源の他の構成を示す平面図の一例である。FIG. 35 is an example of a plan view showing another configuration of the combined laser light source. 図36(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図36(B)は、(A)の光軸に沿った断面図の一例である。FIG. 36A is an example of a plan view illustrating another configuration of the combined laser light source, and FIG. 36B is an example of a cross-sectional view along the optical axis of FIG. 図37(A)及び(B)は、従来の露光装置における焦点深度と本発明の永久パターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。FIGS. 37A and 37B are examples of cross-sectional views along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the permanent pattern forming method (pattern forming apparatus) of the present invention. .

符号の説明Explanation of symbols

LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
55a マイクロレンズ
56 被露光面(走査面)
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
71 集光レンズ
72 ロッドインテグレータ
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 パターン形成材料
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
474 マイクロレンズ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系
LD1-LD7 GaN-based semiconductor laser 10 Heat block 11-17 Collimator lens 20 Condensing lens 30-31 Multimode optical fiber 44 Collimator lens holder 45 Condensing lens holder 46 Fiber holder 50 Digital micromirror device (DMD)
52 Lens system 53 Reflected light image (exposure beam)
54 Lens of second imaging optical system 55 Micro lens array 55a Micro lens 56 Surface to be exposed (scanning surface)
57 Lens of second imaging optical system 58 Lens of second imaging optical system 59 Aperture array 64 Laser module 66 Fiber array light source 67 Lens system 68 Laser emitting unit 69 Mirror 70 Prism 71 Condensing lens 72 Rod integrator 73 Combination lens 74 Imaging lens 100 Heat block 110 Multi cavity laser 111 Heat block 113 Rod lens 120 Condensing lens 130 Multimode optical fiber 130a Core 140 Laser array 144 Light irradiation means 150 Pattern forming material 152 Stage 155a Micro lens 156 Installation table 158 Guide 160 Gate 162 Scanner 164 Sensor 166 Exposure head 168 Exposure area 170 Exposed area 180 Heat block 184 Collimating lens Ray 302 controller 304 stage driver 454 lens system 468 exposure area 472 microlens array 474 microlens 476 aperture array 478 aperture 480 lens system

Claims (23)

支持体と、クッション層と、物質の移動を抑制可能なバリア層と、(A)バインダー、(B)重合性化合物、(C)光重合開始剤、及び(D)体質顔料を含有する感光性組成物からなる感光層とをこの順に備えてなり、永久パターンの形成に用いられることを特徴とする感光性フィルム。   Photosensitive material comprising a support, a cushion layer, a barrier layer capable of suppressing the movement of a substance, (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator, and (D) an extender pigment. A photosensitive film comprising a photosensitive layer made of a composition in this order and used for forming a permanent pattern. 体質顔料(D)の含有量が、10〜60質量%である請求項1に記載の感光性フィルム。   The photosensitive film according to claim 1, wherein the content of the extender pigment (D) is 10 to 60% by mass. 各層間の層間接着力の中で、クッション層とバリア層との層間接着力が最も小さい請求項1から2のいずれかに記載の感光性フィルム。   The photosensitive film according to claim 1, wherein the interlayer adhesive strength between the cushion layer and the barrier layer is the smallest among the interlayer adhesive strengths between the respective layers. 感光層の厚みが10〜100μmであり、かつクッション層の厚みが5〜100μmである請求項1から3のいずれかに記載の感光性フィルム。   The photosensitive film according to claim 1, wherein the photosensitive layer has a thickness of 10 to 100 μm, and the cushion layer has a thickness of 5 to 100 μm. クッション層が、熱可塑性樹脂を含有する請求項1から4のいずれかに記載の感光性フィルム。   The photosensitive film in any one of Claim 1 to 4 in which a cushion layer contains a thermoplastic resin. 熱可塑性樹脂のガラス転移温度(Tg)及び軟化点のいずれかが、80℃以下である請求項5に記載の感光性フィルム。   The photosensitive film according to claim 5, wherein either the glass transition temperature (Tg) or the softening point of the thermoplastic resin is 80 ° C. or less. バリア層が、ビニル重合体、及びビニル共重合体の少なくともいずれかを含む請求項1から6のいずれかに記載の感光性フィルム。   The photosensitive film according to claim 1, wherein the barrier layer contains at least one of a vinyl polymer and a vinyl copolymer. バインダー(A)が、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる共重合体を含む請求項1から7のいずれかに記載の感光性フィルム。   The binder (A) is (a) maleic anhydride, (b) an aromatic vinyl monomer, and (c) a vinyl monomer, the glass transition temperature (Tg) of the homopolymer of the vinyl monomer. And a copolymer obtained by reacting 0.1 to 1.0 equivalent of a primary amine compound to the anhydride group of the copolymer consisting of a vinyl monomer having a temperature of less than 80 ° C. Item 8. The photosensitive film according to any one of Items 1 to 7. 重合性化合物(B)が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む請求項1から8のいずれかに記載の感光性フィルム。   The photosensitive film in any one of Claim 1 to 8 in which the polymeric compound (B) contains at least 1 sort (s) selected from the monomer which has a (meth) acryl group. 光重合開始剤(C)が、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む請求項1から9のいずれかに記載の感光性フィルム。   The photopolymerization initiator (C) is at least selected from halogenated hydrocarbon derivatives, phosphine oxides, hexaarylbiimidazoles, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts and ketoxime ethers. The photosensitive film in any one of Claim 1 to 9 containing 1 type. 支持体上に熱可塑性樹脂を含む水分散エマルジョンを塗布し、乾燥させてクッション層を形成するクッション層形成工程と、
該クッション層上に、バリア層に含まれる組成物が溶解、乳化又は分散されたバリア層塗布液を塗布し、乾燥させてバリア層を形成するバリア層形成工程と、
該バリア層上に、(A)バインダー、(B)重合性化合物、(C)光重合開始剤及び(D)体質顔料を含有する感光性組成物の溶液を塗布し、乾燥させて感光層を形成する感光層形成工程とを含むことを特徴とする感光性フィルムの製造方法。
A cushion layer forming step of applying a water-dispersed emulsion containing a thermoplastic resin on a support and drying to form a cushion layer; and
On the cushion layer, a barrier layer forming step in which a barrier layer coating solution in which the composition contained in the barrier layer is dissolved, emulsified or dispersed is applied and dried to form a barrier layer;
On the barrier layer, a solution of a photosensitive composition containing (A) a binder, (B) a polymerizable compound, (C) a photopolymerization initiator and (D) an extender pigment is applied and dried to form a photosensitive layer. And a photosensitive layer forming step for forming the photosensitive film.
請求項1から10のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかにより感光層が基材の表面側となるように積層する積層工程と、
前記積層された感光層を、光照射手段から照射される光により露光する露光工程と、
前記露光工程により露光された感光層を現像する現像工程と、を含むことを特徴とする永久パターン形成方法。
A lamination step of laminating the photosensitive film according to any one of claims 1 to 10 so that the photosensitive layer is on the surface side of the substrate by at least one of heating and pressurization,
An exposure step of exposing the laminated photosensitive layer with light irradiated from a light irradiation means;
A development step of developing the photosensitive layer exposed in the exposure step.
露光工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、感光層を現像工程により現像する請求項12に記載の永久パターン形成方法。   The permanent removal according to claim 12, further comprising a peeling step of peeling the support and the cushion layer from the barrier layer simultaneously between the cushion layer and the barrier layer after the exposure step, and then developing the photosensitive layer by the developing step. Pattern forming method. 積層工程後に、クッション層とバリア層との間で、支持体及びクッション層を同時にバリア層上から剥離する剥離工程を有し、次いで、感光層を露光工程により露光する請求項12に記載の永久パターン形成方法。   The permanent layer according to claim 12, further comprising a peeling step of peeling the support and the cushion layer from the barrier layer simultaneously between the cushion layer and the barrier layer after the lamination step, and then exposing the photosensitive layer by the exposure step. Pattern forming method. 保護膜及び層間絶縁膜の少なくともいずれかを形成する請求項12から14のいずれかに記載の永久パターン形成方法。   The permanent pattern formation method according to claim 12, wherein at least one of a protective film and an interlayer insulating film is formed. 露光工程が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後に、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズが配列されたマイクロレンズアレイを通過させた光によって、前記感光層を、露光する請求項12から15のいずれかに記載の永久パターン形成方法。   After the exposure process modulates the light from the light irradiating means by the light modulating means having n picture elements for receiving and emitting the light from the light irradiating means, the exposure process is caused by the distortion of the emission surface in the picture element. The method for forming a permanent pattern according to claim 12, wherein the photosensitive layer is exposed with light that has passed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations are arranged. 非球面が、トーリック面である請求項16に記載の永久パターン形成方法。   The permanent pattern forming method according to claim 16, wherein the aspherical surface is a toric surface. 光変調手段が、n個の描素部の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能である請求項16から17のいずれかに記載の永久パターン形成方法。   18. The light modulation means can control any less than n number of image elements arranged continuously from n image elements in accordance with pattern information. 18. A permanent pattern forming method. 光変調手段が、空間光変調素子である請求項16から18のいずれかに記載の永久パターン形成方法。   The permanent pattern forming method according to claim 16, wherein the light modulation means is a spatial light modulation element. 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である請求項19に記載の永久パターン形成方法。   The permanent pattern formation method according to claim 19, wherein the spatial light modulation element is a digital micromirror device (DMD). 露光が、アパーチャアレイを通して行われる請求項12から20のいずれかに記載の永久パターン形成方法。   21. The permanent pattern forming method according to claim 12, wherein the exposure is performed through an aperture array. 現像工程後に、感光層に対して硬化処理を行う請求項12から21のいずれかに記載の永久パターン形成方法。   The permanent pattern forming method according to claim 12, wherein the photosensitive layer is cured after the development step. 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである請求項22に記載の永久パターン形成方法。
The permanent pattern forming method according to claim 22, wherein the curing process is at least one of a whole surface exposure process and a whole surface heat treatment performed at 120 to 200 ° C.
JP2005198079A 2004-07-06 2005-07-06 Photosensitive film, process for producing the same and process for forming permanent pattern Pending JP2006048031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198079A JP2006048031A (en) 2004-07-06 2005-07-06 Photosensitive film, process for producing the same and process for forming permanent pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004199866 2004-07-06
JP2005198079A JP2006048031A (en) 2004-07-06 2005-07-06 Photosensitive film, process for producing the same and process for forming permanent pattern

Publications (1)

Publication Number Publication Date
JP2006048031A true JP2006048031A (en) 2006-02-16

Family

ID=36026582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198079A Pending JP2006048031A (en) 2004-07-06 2005-07-06 Photosensitive film, process for producing the same and process for forming permanent pattern

Country Status (1)

Country Link
JP (1) JP2006048031A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111003A1 (en) * 2006-03-28 2007-10-04 Fujifilm Corporation Photosensitive composition, photosensitive film, method of forming permanent pattern, and printed wiring board
JP2008257143A (en) * 2007-04-09 2008-10-23 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2011164304A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same
JP2015529853A (en) * 2012-08-27 2015-10-08 チューハイ ダイナミック テクノロジー オプティカル インダストリーカンパニー, リミテッドZhuhai Dynamic Technology Optical Industry Co., Ltd Double layer negative dry film photoresist

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111003A1 (en) * 2006-03-28 2007-10-04 Fujifilm Corporation Photosensitive composition, photosensitive film, method of forming permanent pattern, and printed wiring board
JP2008257143A (en) * 2007-04-09 2008-10-23 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8110328B2 (en) 2007-04-09 2012-02-07 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2011164304A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film and cured product of the same, and printed wiring board using the same
JP2015529853A (en) * 2012-08-27 2015-10-08 チューハイ ダイナミック テクノロジー オプティカル インダストリーカンパニー, リミテッドZhuhai Dynamic Technology Optical Industry Co., Ltd Double layer negative dry film photoresist

Similar Documents

Publication Publication Date Title
JP2006208607A (en) Pattern forming material and device, and permanent pattern forming method
JP2007010785A (en) Method for forming permanent pattern
JP2006251386A (en) Method for forming permanent pattern
JP2007025275A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming same
JP2006243543A (en) Method for forming permanent pattern
WO2006004171A1 (en) Photosensitive film, process for producing the same, process for forming permanent pattern
JP2007133333A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP2006235101A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JPWO2006075633A1 (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method
JP2005311305A (en) Permanent pattern forming method
JP4583916B2 (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method
JP2006048031A (en) Photosensitive film, process for producing the same and process for forming permanent pattern
JP4494243B2 (en) Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same
JP4546368B2 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2007286480A (en) Pattern forming method
JP2007171246A (en) Photosensitive composition, pattern forming material, pattern forming apparatus and pattern forming method
JP2006330655A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP2007133108A (en) Photosensitive solder resist composition and film, and permanent pattern and method of forming same
JP2006023406A (en) Photosensitive film for permanent pattern formation, method for producing the same and permanent pattern forming method
JP2006023405A (en) Photosensitive film for permanent pattern formation, method for producing the same and permanent pattern forming method
JP4546349B2 (en) Pattern forming material, pattern forming method and pattern
JP2006065000A (en) Photosensitive composition for sandblast resist, sandblast resist film using the same, and sandblast resist pattern forming method
JP2006243552A (en) Photosensitive composition, photosensitive film, and permanent pattern and method for forming the same
JP2007025176A (en) Pattern forming material, pattern forming apparatus, and method for forming permanent pattern
JP2006293044A (en) Photosensitive film and method for producing same, and permanent pattern and method for forming same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207