WO2007107552A1 - Procede de realisation de srtuctures de formes complexes en materiaux composites - Google Patents

Procede de realisation de srtuctures de formes complexes en materiaux composites Download PDF

Info

Publication number
WO2007107552A1
WO2007107552A1 PCT/EP2007/052621 EP2007052621W WO2007107552A1 WO 2007107552 A1 WO2007107552 A1 WO 2007107552A1 EP 2007052621 W EP2007052621 W EP 2007052621W WO 2007107552 A1 WO2007107552 A1 WO 2007107552A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
bladder
elements
pressure
granular solid
Prior art date
Application number
PCT/EP2007/052621
Other languages
English (en)
Inventor
Frédérick CAVALIERE
Maurice Guitton
Severine Guitton
Original Assignee
European Aeronautic Defence And Space Company Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence And Space Company Eads France filed Critical European Aeronautic Defence And Space Company Eads France
Priority to CN200780018112.8A priority Critical patent/CN101448630B/zh
Priority to US12/296,689 priority patent/US20090309268A1/en
Priority to CA2649599A priority patent/CA2649599C/fr
Priority to DE602007008208T priority patent/DE602007008208D1/de
Priority to EP07727098A priority patent/EP1996390B1/fr
Priority to AT07727098T priority patent/ATE476285T1/de
Publication of WO2007107552A1 publication Critical patent/WO2007107552A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3821Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process composed of particles enclosed in a bag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/48Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling
    • B29C33/50Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible
    • B29C33/505Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with means for collapsing or disassembling elastic or flexible cores or mandrels, e.g. inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K13/00Other constructional types of cut-off apparatus; Arrangements for cutting-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K43/00Auxiliary closure means in valves, which in case of repair, e.g. rewashering, of the valve, can take over the function of the normal closure means; Devices for temporary replacement of parts of valves for the same purpose

Definitions

  • the present invention belongs to the field of producing parts of complex shapes made of composite materials requiring molds during manufacturing operations. More particularly, the process according to the invention uses elements of molds which are trapped in the part at the time of its production and are then extracted to allow the production of so-called non-demoldable parts.
  • Parts made of composite materials comprising fibers in a matrix are most often made using molds intended to give the material used the shape of said part.
  • the fibrous material which is dry or previously impregnated with resin, is deposited on the mold whose shape it has to conform to and undergoes a more or less complex cycle that may include resin injection and / or pressurizing and / or heating phases.
  • the workpiece having achieved the desired mechanical and dimensional properties is removed from the mold.
  • Parts of complex shapes sometimes require the use of molds, some of which may be blocked in the room at the time of demolding. This is frequently the case of hollow or enveloping forms that require that the mold comprises particular elements or cores that fill the hollow forms of the part during its production.
  • the difficulty is to find a material to make the core that is economically acceptable, or able to withstand the sometimes extreme conditions encountered during the process of producing the composite material part, or sufficiently strong to withstand mechanical handling and stresses. during the preparation of the part with strict tolerances of shape and can be removed mechanically or by fusion without risk of damaging the part or is dissolved by water or other solvent compatible with the material of the part.
  • Another method consists in producing a core in a material that is sufficiently deformable so that said core can be extracted by deformation.
  • a core made of an elastomer, possibly including recesses can be extracted by stretching and necking through an opening of smaller dimensions than those of the section of the core.
  • the defect of the cores using a deformable material is their dimensional instability due to their low rigidity which does not allow to obtain the reproduction, within the tolerances required by certain applications, results during the manufacture of parts.
  • the low coefficient of necking does not solve situations with significant variations in the section of the core, especially when the core must be extracted through an opening of reduced section.
  • one solution is to make a bladder in an elastomeric material, which bladder is filled with a granular material.
  • the bladder whose shape is preferably made according to the desired shape of the core, is placed in a mold against whose walls it is applied by means of a depression between the walls of the bladder and those of the mold corresponding to the desired shape of the core.
  • a problem that arises with this type of embodiment is the dimensional quality of the part produced which may be insufficient. This quality is in fact affected by the effective dimensions of the bladder and / or the core after the emptying as well as those due to the heating and pressure cycles generally used for the polymerization of the resin. If these dimensional variations are not a problem for composite parts of large diffusion such as air conditioning pipes, they are generally unacceptable for the production of high performance composite parts, such as structural parts with geometric tolerances.
  • the method according to the invention uses an extractable core comprising a flexible bladder whose rigidity is provided by a filling of a granular solid material and an intergranular fluid.
  • the method of producing a composite material part comprising fibers of a resin passing from a pasty or liquid state to a solid state during a hardening phase and comprising a partially closed zone, in a corresponding volume of all or part of the partially closed zone is occupied by a core, said core comprising a bladder of flexible material having an outer surface delimiting a volume of the core whose shapes and dimensions are in agreement with the volume of the partially closed zone and having an inner surface defining a volume of the bladder, which volume of the bladder is filled with a granular solid material and an intergranular fluid, is characterized in that pressure is exerted on the inner surface of the bladder by the granular solid material and or the fluid so that the volume of the core is controlled in a controlled manner before the composite material be totally hardened.
  • This modification of the volume of the core before the resin is hardened has the effect of balancing and homogenizing the pressures on the different parts used to obtain a shape of the part within the desired tolerances and therefore to avoid local deformations of the room, as well as a good health matter.
  • the volume of the core is modified in a controlled manner by selecting the granular solid material as a function of its coefficient of thermal expansion and elevation. temperature associated with the curing phase of the resin.
  • the volume of the core is modified controlled material by selecting the granular solid material among materials having a coefficient of thermal expansion close to the thermal expansion of the composite material of the piece.
  • the granular solid material may be a borosilicate glass or a nickel-iron alloy Invar type with a low coefficient of expansion.
  • the solid granular material is chosen from materials whose thermal expansion coefficient is between 2 10E-6 per Kelvin and 9 10E-6 per Kelvin.
  • the volume of the core is modified of controlled material by selecting the granular solid material from among materials having a coefficient of thermal expansion greater than the coefficient of thermal expansion of the composite material of the piece, for example an aluminum alloy.
  • the core is filled with a granular solid material and or a selected interstitial fluid with a coefficient of thermal conductivity capable of ensuring the diffusion of heat during the heat treatment.
  • the action of the core prior to curing the resin is also achieved by increasing the pressure Pn of the interstitial fluid prior to curing the resin.
  • the pressure Pn is increased to a value substantially equal to a pressure Pa used to maintain the fibers on the core during the curing phase of the resin, with the effect of balancing the pressure exerted on the workpiece by a bladder setting in pressure.
  • the pressure Pn is increased to a value at least equal to a resin injection pressure Pr, for example if the process uses resin transfer in dry fibers, in order to control the pressure of the resin PR, make it homogeneous, allow better control of dimensions, to obtain a good health material, and to avoid that the surface of the core and thus the wall of the part is deformed by the pressure of the resin.
  • a resin injection pressure Pr for example if the process uses resin transfer in dry fibers
  • the pressure Pn in the bladder of the core, previously emptied granular solid material is decreased to a value less than the atmospheric pressure which causes its partial crushing.
  • FIG. 1 an example of a part made of composite material and comprising a non-demoldable hollow volume.
  • Figure 2 a core corresponding to the hollow volume of the part shown in Figure 1 consists of a flexible bladder.
  • Figure 3 A multi-component mold for preparing the core using the flexible bladder.
  • Figure 4 the mold and the bladder in the nucleus preparation position during the filling step of the nucleus and before the step of reducing the pressure in the bladder.
  • FIGS. 5a, 5b and 5c example of use of the bladder according to various methods for producing composite material parts:
  • FIG. 6 principle of extraction of the bladder from the core of the part after hardening of the composite material
  • the composite materials to which the invention is preferentially addressed are the materials comprising fibers such as, for example, glass fiber, carbon fiber or Kevlar®-type aramid, trapped in a matrix organic such as for example a polyester resin or an epoxy resin.
  • a widely used technique for producing a composite material part is to deposit the fibers on a shape or a mold having the desired shape for the part to be produced.
  • the fibers are deposited after having been coated with a non-polymerized resin, this is called pre-impregnated fibers, or they are deposited dry and then subsequently coated by resin transfer according to the so-called RTM technique.
  • the resin initially in the pasty or liquid state is cured, generally by polymerization, for example during a curing phase.
  • a core 2 makes it possible to reserve the space which must not be filled with resin and which serves to support the fibers 12, 13 deposited to form the part .
  • the core 2 must also withstand the pressure so as not to be crushed or deformed by these pressures which are exerted during the placement of the fibers on the core, particularly when using automatic fiber-laying devices or, on the workpiece in progress during the hardening phase by the fiber compression means, or that is exerted by the resin when it is injected.
  • This core is made by means of a bladder 21 which is filled with a granular solid material 31, that is to say a material fractionated into elements of sufficiently small dimensions so that the elements can fill the interior volume 26 of the bladder 21 as far as possible.
  • the bladder is made with external dimensions corresponding to the desired dimensions for the core in a flexible material such as an elastomer capable of withstanding the chemical and thermal environment encountered during the application of the production method of the workpiece. Silicone resins which have characteristics which make it possible to satisfy these conditions in most common cases are found, but other materials, for example rubbers, can also be envisaged.
  • the bladder 21 On at least one of its faces 22 which remains accessible when the piece 1 is made, the bladder 21 has a first opening 23 through which the elements of the granular solid material 31 can be introduced and extracted.
  • the bladder 21 has a second opening 24 to reduce or increase the pressure of a fluid 32 contained in the bladder.
  • Said first opening 23 and said second opening 24 may be on different faces of the bladder provided that they remain accessible particularly when the pressure inside the core must be changed for the second opening 24 and when the core must be removed. of the part for the first opening 23.
  • the same opening can ensure the role of the two openings or a shutter 25 mounted on the first opening, after filling the core with the granular solid material, may include the second opening.
  • the elements of the solid granular material 31 have dimensions and shapes adapted so that said elements can flow easily through the first opening 23 of the bladder 21. These are for example beads made of a metallic or vitreous material or any other material of sufficient rigidity and resistant to the temperature conditions encountered during the production of the part.
  • the bladder 21 is placed in a support, for example a recessed form 44 made of separable parts 41, 42, 43, to allow the bladder 21 to be placed and removed, giving it the desired shapes and dimensions for the core 2 then,
  • the inner volume of the bladder 21 is completely filled with granular solid material elements 31 by the first opening 23 provided for this purpose, 3- the volume remaining in the bladder which corresponds to the interstices between the granular solid material elements is filled with a fluid 32,
  • the filling opening 23 is closed by a shutter 25 and a depression is created inside the bladder by suction of a portion of the fluid 32 inside the bladder 21 by means (not shown) connected to the second opening 24,
  • the core is removed from the support while maintaining the depression, which enables the core to retain its size and shape because of the compacting of the granular solid material 31 inside the bladder 21.
  • the bladder of the core may be partially filled with granular solid material and or fluid during its introduction during step 1. A partial filling does not interfere with this step 1 and it reduces the full filling time of step 2.
  • the fluid 32 used to fill the interstitial volume during step 3 is advantageously a gas and even more advantageously air.
  • the fluid is advantageously a liquid because of its incompressibility compared to a gas.
  • the core 2 thus produced is used during the removal operations of the fibers 12, 13 in the same manner as would be a demoldable core or a core intended to be destroyed after the hardening of the composite material.
  • the core 2 can serve as support for the fibers 12, 13 which must constitute a part 1 whose core substantially represents the shape or be inserted between different fiber layers to reserve a hollow space in a complex room.
  • the pressure Pn in the core 2 is increased by such so that the pressure Pa exerted by the other means of the mold when these means are means having a certain flexibility, for example a bladder 51, 53 as illustrated in Figures 5a and 5b or an elastomer counterform (not shown), in particular those located on the face of the part opposite the face in contact with the core, be balanced.
  • a bladder 51, 53 as illustrated in Figures 5a and 5b or an elastomer counterform (not shown), in particular those located on the face of the part opposite the face in contact with the core, be balanced.
  • the pressure Pn in the core 2 is increased so that the core compresses the composite material 12, 13 against the walls of the mold 52, 54 when the latter is a rigid-walled mold.
  • the part is produced according to a resin transfer process as illustrated in FIG. 5c, after injection of resin 14 until total impregnation of the fibers 13 and feeding at a vacuum PR level the injection openings of the resin 14 are closed and the pressure Pn is increased in the bladder of the core to a value greater than or equal to the pressure value Pr to compact the composite material and homogenize the pressure.
  • the method ensures a better pressurization of the fiber 12, 13 comprising the resin with the effect of greatly reducing the risk of the presence of air bubbles and to improve the fiber volume ratio in the core of the composite material and secondly avoids local deformations induced by surface irregularities and inevitable defects in the dimensions of a core 2 made with a bladder 21 elastomer.
  • the method ensures that the wall of the part 1 in the course of realization perfectly matches the surface of the mold, including in its internal structure, that is to say that the fibers 12, 13 are oriented in directions substantially parallel to the surface of the mold 52, 54.
  • the core as illustrated in FIG. 5a is used as a support for depositing pre-impregnated fibers 12 and then pressure is exerted from outside the part in progress towards the core 2, for example by means of a bladder 51 which envelops the part comprising the core 2 subjected to a pressure Pa and in which a partial vacuum is created.
  • a bladder 51 which envelops the part comprising the core 2 subjected to a pressure Pa and in which a partial vacuum is created.
  • this external pressure Pa is established, the pressure Pn in the core is increased so that the composite material 12 is homogeneously and substantially isostatically compressed during its polymerization phase between the pressure exerted by the outer bladder 51 and that 21 of the nucleus.
  • the pressure Pn in the core 2 is set to the value of the pressure Pa exerted on the outer bladder 51, in general the pressure of the autoclave in which the part 1 is made.
  • the core 2 is used as a counter-form to apply pre-impregnated fibers 12 already deposited in a cavity 55 of a mold 52 against which the fibers 12 must be maintained and, if necessary, the core 2 is covered with new pre-impregnated fibers 12 .
  • Pressure is exerted from outside the workpiece during production to compress the composite material 12 against the mold 52, for example by means of an outer bladder 53 which covers the workpiece comprising the core 2 and the creation of a partial vacuum between the outer bladder and the mold, or by means of a counter-shape (solution not shown) may include a bearing portion of an elastomeric material.
  • this external pressure Pa is established, the pressure Pn in the core is increased so that the composite material 12 is compressed during its polymerization phase between the pressure exerted by the outer bladder or against-shape and by that exerted by the bladder of the nucleus.
  • the pressure Pn in the core 2 is set to the value of the pressure Pa exerted on the outer bladder, in general the pressure of the autoclave in which the piece is made.
  • c) as shown in Figure 5c the core 2 is placed between the dry fibers 13 deposited in a closed mold 54 whose inner surfaces correspond to the outer surfaces of the part 1 to achieve.
  • a fluid resin 14 is injected into the mold 54 which fills the space between the fibers 13 according to the process for producing composite material parts known as Resin Transfer Molding (RTM).
  • RTM Resin Transfer Molding
  • the pressure Pn is increased in the core 2 to compress the zones of the part between the core 2 and the walls of the mold 54.
  • the pressure Pn in the core 2 is chosen at least equal to at the pressure Pr at which the resin 14 is injected or higher by a value of pressure difference depending on the desired compression of the fibers 13 in the zone of the core 2.
  • the pressure Pn in the bladder 21 of the core and if necessary the other pressures used in the process of producing the composite material part are brought back to atmospheric pressure and the piece is out of the mold.
  • the core 2 is then emptied of granular solid material elements 31 that it contains by the first opening which has remained accessible which allows it to acquire the flexibility and the possibility of being deformed to be extracted by pulling the volume of the it has helped to form as illustrated in FIG. 6.
  • the first opening 23 of the bladder 21 of the emptied core of the granular solid material elements 31 is closed and a depression Pd is created in the bladder, for example by using the second opening 24, so that the bladder is deformed, flattened or crushed, under the effect of atmospheric pressure which allows on the one hand to take off the bladder 21 of the composite material of the part 1 without significant effort and on the other hand to facilitate the extraction of the bladder 21 by the opening of the part.
  • the piece may have one, two or more cores, each being prepared, put in place and extracted by applying the same process to participate in the production of the composite material part.
  • the process for producing the composite material part uses a heat treatment to harden the resin used, the most frequent case, the granular solid material 31 and, if appropriate, the fluid used to fill the bladder 21 of the core 2 are chosen. according to their thermal conductivity and thermal expansion characteristics to participate in the thermal behavior of the mold.
  • the granular solid material 31 is chosen with a coefficient of thermal expansion substantially equal to that of the composite material in question.
  • a borosilicate glass is advantageously chosen as a granular solid material.
  • Borosilicate glasses, rich in silica, are known for their excellent behavior at high temperatures and their low coefficient of thermal expansion around 3.5 10E-6 per Kelvin, substantially equal to that of common composite materials.
  • the choice of a material having a substantial increase in volume with the temperature makes it possible to increase in a controlled manner the dimensions of the core 2 when the temperature increases during the heat treatment with the effect of participating in the pressure generated by the core 2 on the composite material during polymerization.
  • Such an effect is for example obtained with an aluminum alloy having a coefficient of expansion of the order of 24 10E-6 per Kelvin, especially if the part is made in a hollow mold made of a material having a coefficient of thermal expansion more low.
  • the dilation obtained in a direction having an absolute value depending on the size of the core 2 in the direction considered, the use of controlled expansion core will most often be used when the core has dimensions substantially equivalent in all directions to obtain a homogeneous dilation of the nucleus.
  • the granular solid material is chosen with a high thermal conduction, for example a metal alloy.
  • This alloy will for example be based on aluminum if the expansion is without inconvenience or if it is desired, and will be for example a low coefficient of expansion alloy such as an invar (iron-based metal alloy with a high content of nickel) if a low coefficient of thermal expansion is sought in association with high thermal conduction.
  • granular solid material elements 31 having spherical or sufficiently blunted shapes are preferably chosen so that the elements flow easily into the core 2 when it is filled or emptied and for the drainage of the fluid and the resulting pressure are homogeneous when the pressure Pn is decreased or increased in the bladder 21 of the core 2.
  • substantially spherical elements provides a compact filling leaving a volume unoccupied by said elements of the order of 40% which makes it possible to lighten in a non negligible way the realized core 2 and when the fluid is a gas.
  • a dense material is used for said elements such as invar whose density is of the order of 8, the apparent density of the core obtained is less than 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

Pour réaliser une pièce en matériau composite dont la forme est dite non démoulable il est nécessaire de réaliser des éléments de moule dit noyaux qui doivent être extrait de la pièce après le durcissement du matériau composite. Le procédé consiste dans une première étape à réaliser un noyau à partir d'une vessie en élastomère (21) dont la forme voulue est obtenue en remplissant la vessie avec un matériau solide granulaire (31) et une mise en dépression de la vessie et dans une seconde étape, après la mise en place du noyau et du matériau composite (12) a modifier de manière contrôlée le volume du noyau par exemple en sélectionnant le matériau solide granulaire pour ses propriétés de dilatation thermique ou en agissant sur la pression dans la vessie.

Description

Procédé de réalisation de structures de formes complexes en matériaux composites
La présente invention appartient au domaine de la réalisation de pièces de formes complexes en matériaux composites nécessitant des moules pendant les opérations de fabrication. Plus particulièrement le procédé suivant l'invention met en oeuvre des éléments de moules qui se trouvent emprisonnés dans la pièce au moment de sa réalisation et en sont ensuite extraits pour permettre la réalisation de pièces dites non démoulables.
Les pièces en matériaux composites comportant des fibres dans une matrice, par exemple une résine, sont le plus souvent réalisées à l'aide de moules destinés à donner au matériau utilisé la forme de ladite pièce. Le matériau fibreux, sec ou préalablement imprégné de résine, est déposé sur le moule dont il doit épouser la forme et subit un cycle plus ou moins complexe pouvant comporter des phases d'injection de résine et ou de mise en pression et ou de chauffage.
Après le durcissement de la résine, généralement par polymérisation, la pièce en cours de réalisation ayant atteint les propriétés mécaniques et dimensionnelles recherchées est retirée du moule.
Les pièces de formes complexes nécessitent parfois d'utiliser des moules dont certains éléments peuvent se trouver bloqués dans la pièce au moment du démoulage. Il en est fréquemment ainsi des formes creuses ou enveloppantes qui nécessitent que le moule comporte des éléments particuliers ou noyaux qui remplissent les formes creuses de la pièce pendant sa réalisation.
Pour que l'extraction desdits noyaux soit possible sans endommager la pièce qui vient d'être réalisée, il est alors nécessaire, sauf à réaliser la pièce en plusieurs éléments assemblés dans une étape ultérieure, de construire des noyaux particuliers en plusieurs parties qui se déboîtent au moyen de clés pour être extraits de la pièce. Toutefois de tel noyaux en plusieurs éléments emboîtés ne sont pas toujours réalisables en pratique et sont toujours plus chers que des moules en un seul élément et peuvent s'avérer très complexes aussi bien au niveau de leur conception qu'au niveau de leur mise en oeuvre. Une autre méthode également utilisée consiste à réaliser le noyau dans un matériau qui permet de détruire ledit noyau pour l'éliminer de la pièce par exemple par une action mécanique ou par fusion ou dissolution du matériau du noyau. Dans ce cas la difficulté est de trouver un matériau pour réaliser le noyau qui soit économiquement acceptable, soit apte à résister aux conditions parfois extrêmes rencontrées lors du processus de réalisation de la pièce en matériau composite, soit suffisamment solide pour résister aux manipulations et contraintes mécaniques pendant la préparation de la pièce en respectant des tolérances de formes sévères et puisse être éliminé mécaniquement ou par fusion sans risque d'endommager la pièce ou soit dissout par de l'eau ou par un autre solvant compatible avec le matériau de la pièce. Ces combinaisons de conditions ne sont pas toujours possibles et dans tous les cas il est nécessaire de fabriquer autant de noyaux ou de jeux de noyaux que de pièces à réaliser ce qui est, ainsi que la phase d'élimination du noyau et de respect des conditions d'hygiène et de sécurité en vigueur, coûteux sur le plan industriel.
Une autre méthode consiste à réaliser un noyau dans une matière qui soit suffisamment déformable pour que ledit noyau puisse être extrait par déformation. Ainsi un noyau réalisé dans un élastomère, éventuellement comportant des évidements, pourra être extrait par étirement et striction au travers d'une ouverture de dimensions plus petites que celles de la section du noyau. Le défaut des noyaux utilisant une matière déformable est leur instabilité dimensionnelle due à leur faible rigidité qui ne permet pas d'obtenir la reproduction, dans les tolérances exigées par certaines applications, des résultats lors de la fabrication des pièces. De plus le faible coefficient de striction ne permet pas de résoudre les situations avec des variations significatives de la section du noyau, en particulier lorsque le noyau doit être extrait par une ouverture de section réduite.
Pour réaliser un noyau à la fois rigide et qui puisse être extrait de la pièce après durcissement, une solution consiste à réaliser une vessie dans un matériau en élastomère, laquelle vessie est remplie d'un matériau granulaire. Dans une première étape la vessie, dont la forme est de préférence réalisée suivant la forme recherchée du noyau, est placée dans un moule contre les parois duquel elle est appliquée au moyen d'une dépression entre les parois de la vessie et celles du moule correspondant à la forme voulue du noyau. Après le remplissage de la vessie par le matériau granulaire, la dépression entre les parois du moule et de la vessie est interrompue et l'intérieur de la vessie est mis au vide ce qui a pour effet de compacter et de bloquer sous les forces d'écrasement de la vessie soumise à la pression atmosphérique le matériau granulaire contenu par ladite vessie, donnant ainsi à cette dernière à la fois la forme et la rigidité recherchée pour servir de support à la pose de tissus préimprégnés de résine. Après durcissement de la résine, la mise au vide à l'intérieur de la vessie est supprimée et la vessie est ouverte pour extraire le matériau granulaire. L'enveloppe vidée de la vessie est alors suffisamment déformable pour être retirée de la pièce en matériau composite dans laquelle elle est emprisonnée. Le brevet US 5262121 décrit un tel procédé de réalisation de tuyauteries complexes en matériau composite. Un problème qui se pose avec ce type de réalisation est la qualité dimensionnelle de la pièce réalisée qui peut être insuffisante. Cette qualité est en effet affectée par les variations de dimensions effectives de la vessie et ou du noyau après la mise au vide ainsi que par celles dues aux cycles de chauffage et de pression généralement utilisés pour la polymérisation de la résine. Si ces variations de dimensions ne sont pas gênantes pour des pièces composites de grande diffusion comme par exemples des tuyauteries de conditionnement d'air, elles sont généralement inacceptables pour la réalisation de pièces composites hautes performances, comme par exemple des pièces structurales avec des tolérances géométriques serrées destinées à un assemblage précis et dont les caractéristiques dimensionnelles sont souvent critiques de même que la santé structurale du matériau de la pièce finie qui ne doit pas contenir de bulles de gaz ou porosités, ni de poches de résine, ni de fibres « sèches », phénomènes qui conduisent à des taux de rebut importants en fabrication et sont autant de sources de délamination lorsque la pièce est soumise à des sollicitations en service ce qui conduit à surdimensionner les pièces dont la résistance structurale doit être est essentielle. Afin de réaliser des pièces en matériau composite, comportant des formes non démoulables par des formes de moule conventionnel, avec les qualités dimensionnelles et structurales requises pour des pièces de qualité structurale telles que les pièces utilisées dans le domaine aéronautique, le procédé suivant l'invention met en oeuvre un noyau extractible comportant une vessie souple dont la rigidité est assurée par un remplissage d'un matériau solide granulaire et d'un fluide inter-granulaire.
Le procédé de réalisation d'une pièce en matériau composite comportant des fibres d'une résine passant d'un état pâteux ou liquide à un état solide au cours d'une phase de durcissement et comportant une zone partiellement refermée, dans un volume correspondant en tout ou partie à la zone partiellement refermée est occupé par un noyau, ledit noyau comportant une vessie en matériau souple présentant une surface extérieure délimitant un volume du noyau dont les formes et les dimensions sont en accord avec le volume de la zone partiellement refermée et présentant une surface intérieure déterminant un volume de la vessie, lequel volume de la vessie est rempli d'un matériau solide granulaire et d'un fluide inter-granulaire, est caractérisé en ce qu'une pression est exercée sur la surface intérieure de la vessie par le matériau solide granulaire et ou le fluide de sorte que le volume du noyau soit modifié de manière contrôlée avant que le matériau composite ne soit totalement durci. Cette modification du volume du noyau avant que la résine ne soit durcie a pour effet d'équilibrer et d'homogénéiser les pressions sur les différentes parties mises en oeuvre permettant d'obtenir une forme de la pièce dans les tolérances recherchées et donc d'éviter les déformations locales de la pièce, ainsi qu'une bonne santé matière.
En particulier lorsque le durcissement de la résine est associé à une phase de cure thermique avec élévation de la température, le volume du noyau est modifié de manière contrôlée en sélectionnant le matériau solide granulaire en fonction de son coefficient de dilatation thermique et de l'élévation de température associée à la phase de durcissement de la résine.
Pour éviter les déformations de la pièce lors de sa réalisation malgré l'élévation de la température au cours de la phase de durcissement de la résine, le volume du noyau est modifiée de matière contrôlée en sélectionnant le matériau solide granulaire parmi des matériaux ayant un coefficient de dilatation thermique proche de la dilatation thermique du matériau composite de la pièce. En particulier le matériau solide granulaire peut être un verre borosilicate ou un alliage fer nickel type Invar à faible coefficient de dilatation.
De façon générale lorsqu'un faible coefficient de dilatation est recherché le matériau solide granulaire est choisi parmi des matériaux dont le coefficient de dilatation thermique est compris entre 2 10E-6 par Kelvin et 9 10E-6 par Kelvin.
Lorsque le noyau doit avantageusement exercer une pression sur la pièce en cours de réalisation le volume du noyau est modifiée de matière contrôlée en sélectionnant le matériau solide granulaire parmi des matériaux ayant un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite de la pièce, par exemple un alliage d'aluminium.
Lorsque la résine est durcie par une cure thermique, avantageusement le noyau est rempli avec un matériau solide granulaire et ou un fluide intersticiel choisis avec un coefficient de conductivité thermique apte à assurer la diffusion de la chaleur pendant la cure thermique.
Seul ou en combinaison avec l'action du matériau solide granulaire, l'action du noyau avant le durcissement de la résine est également obtenu en augmentant la pression Pn du fluide intersticiel avant le durcissement de la résine. En particulier la pression Pn est augmentée à une valeur sensiblement égale à une pression Pa utilisée pour maintenir les fibres sur le noyau pendant la phase de durcissement de la résine, avec pour effet d'équilibrer la pression exercée sur la pièce par une vessie de mise en pression.
En particulier la pression Pn est augmentée à une valeur au moins égale à une pression Pr d'injection de la résine, par exemple si le procédé utilise un transfert de résine dans des fibres sèches, afin de contrôler la pression de la résine PR, de la rendre homogène, permettre un meilleur contrôle des dimensions, d'obtenir une bonne santé matière, et d'éviter que la surface du noyau et donc la paroi de la pièce ne soit déformée par la pression de la résine.
Avantageusement, pour que la vessie soit décollée de la paroi de la pièce et puisse être extraite de la pièce dans laquelle elle est emprisonnée, la pression Pn dans la vessie du noyau, préalablement vidée du matériau solide granulaire, est diminuée à une valeur inférieure à la pression atmosphérique ce qui provoque son écrasement partiel.
La présentation détaillée d'un exemple de mise en oeuvre du procédé suivant l'invention est réalisée en références aux dessins qui représentent: Figure 1 : un exemple de pièce réalisée en matériau composite et comportant un volume creux non démoulable. Figure 2 : un noyau correspondant au volume en creux de la pièce présentée sur la figure 1 est constitué d'une vessie souple. Figure 3 : un moule en plusieurs éléments destiné à préparer le noyau en utilisant la vessie souple.
Figure 4 : le moule et la vessie en position de préparation du noyau pendant l'étape de remplissage du noyau et avant l'étape de diminution de la pression dans la vessie.
Figures 5a, 5b et 5c : exemple d'utilisation de la vessie suivant différents procédés de réalisation de pièces en matériau composite:
Pièce obtenue par dépose de fibres préimprégnées sur la forme du noyau (figure 5a), pièce réalisée dans un moule comportant une empreinte en creux dans laquelle sont déposées des fibres préimprégnées et dans laquelle est appliquée le noyau (figure 5b), pièce réalisée dans un moule fermé contenant le noyau suivant la technique de transfert de résine (figure 5c) Figure 6 : principe d'extraction de la vessie du noyau de la pièce après durcissement du matériau composite Les matériaux composites auxquels s'adresse préférentiellement l'invention sont les matériaux comportants des fibres telles que par exemple des fibres de verre, de carbone ou d'aramide type Kevlar®, emprisonnées dans une matrice organique telle que par exemple une résine polyester ou une résine époxy.
Ces genres de matériaux composites sont aujourd'hui largement utilisés dans de nombreux secteurs industriels pour la réalisation de pièces de formes plus ou moins complexes et pouvant être plus ou moins chargées. Une technique largement répandue pour réaliser une pièce en matériau composite consiste à déposer les fibres sur une forme ou un moule ayant la forme souhaitée pour la pièce à réaliser. Les fibres sont déposées après avoir été enrobées avec une résine non polymérisée, on parle alors de fibres préimprégnées, ou bien sont déposées sèches puis enrobées ultérieurement par transfert de résine suivant la technique dite RTM.
Dans une autre étape, la résine initialement à l'état pâteux ou liquide est durcie, en général par polymérisation par exemple au cours d'une phase de cure thermique.
Au cours de l'étape de durcissement et ou au cours de l'étape qui la précède, il est essentiel d'appliquer des pressions et températures parfaitement contrôlées pour que le matériau composite acquière ses propriétés structurales. En particulier il convient d'éviter la formation de bulles d'air dans le matériau ainsi que des accumulations de résine sans fibre ou avec une concentration en fibres trop faible. Une des principales difficultés lors de l'application des pressions nécessaires en vue d'obtenir ce résultat est de ne pas générer de déformations locales de la pièce et de maintenir un état de surface des pièces réalisées aussi proche que possible de l'état final recherché.
Lorsqu'une pièce 1 comporte une zone 11 partiellement ou presque totalement refermée sur elle même, un noyau 2 permet de réserver l'espace qui ne doit pas être rempli de résine et qui sert de support aux fibres 12, 13 déposées pour former la pièce. Le noyau 2 doit également résister à la pression pour ne pas être écrasé ni déformé par ces pressions qui sont exercées pendant le placement des fibres sur le noyau, en particulier lorsque sont utilisés des dispositifs de pose automatique de fibres ou, sur la pièce en cours de réalisation pendant la phase de durcissement par les moyens de compression des fibres, ou qui est exercée par la résine lorsque celle ci est injectée. Ce noyau est réalisé au moyen d'une vessie 21 qui est remplie d'un matériau solide granulaire 31 c'est à dire un matériau fractionné en éléments de dimensions suffisamment petites pour que les éléments puissent remplir le volume intérieur 26 de la vessie 21 jusque dans les plus petits espaces intérieurs de la vessie. La vessie est réalisée avec des dimensions extérieures correspondant aux dimensions voulues pour le noyau dans un matériau souple tel qu'un élastomère capable de résister à l'environnement chimique et thermique rencontré lors de l'application du procédé de réalisation de la pièce. On trouve des résines silicones qui présentent des caractéristiques qui permettent de satisfaire ces conditions dans la plupart des cas courants, mais d'autres matériaux, par exemple des caoutchoucs, peuvent également être envisagés. Sur au moins une de ses faces 22 qui reste accessible lorsque la pièce 1 est réalisée, la vessie 21 comporte une première ouverture 23 par laquelle les éléments du matériau solide granulaire 31 peuvent être introduits et extraits. Sur une au moins de ses faces 27 qui reste accessible pendant la réalisation de la pièce 1 et lorsque la pièce est réalisée, la vessie 21 comporte une seconde ouverture 24 permettant de diminuer ou d'augmenter la pression d'un fluide 32 contenu dans la vessie. Ladite première ouverture 23 et la dite seconde ouverture 24 peuvent être sur des faces différentes de la vessie sous réserve de rester accessibles en particulier lorsque la pression à l'intérieure du noyau doit être modifiée pour la seconde ouverture 24 et lorsque le noyau doit être retiré de la pièce pour la première ouverture 23. En particulier une même ouverture peut assurer le rôle des deux ouvertures ou bien un obturateur 25 monté sur la première ouverture, après le remplissage du noyau avec le matériau solide granulaire, peut comporter la seconde ouverture. De préférence les éléments du matériau solide granulaire 31 ont des dimensions et des formes adaptées pour que lesdits éléments puissent s'écouler aisément par la première ouverture 23 de la vessie 21. Il s'agit par exemple de billes réalisées dans un matériau métallique ou vitreux ou tout autre matériau d'une rigidité suffisante et résistant aux conditions de températures rencontrées lors de la réalisation de la pièce.
Pour donner à la vessie 21 la forme et les dimensions voulues et pour que celles ci soient stables aux cours des opérations de préparation de la pièce à réaliser, il est procédé aux étapes suivantes :
1- la vessie 21 est placée dans un support, par exemple une forme en creux 44 réalisée en parties séparables 41 , 42, 43, pour permettre de placer et de retirer la vessie 21 , lui donnant les formes et dimensions voulues pour le noyau 2 puis,
2- le volume intérieur de la vessie 21 est totalement rempli avec des éléments de matériau solide granulaire 31 par la première ouverture 23 prévue à cette fin, 3- le volume restant dans la vessie qui correspond aux interstices entre les éléments de matériau solide granulaire est rempli avec un fluide 32,
4- l'ouverture de remplissage 23 est fermée par un obturateur 25 et une dépression est créée à l'intérieur de la vessie par aspiration d'une partie du fluide 32 à l'intérieur de la vessie 21 par des moyens (non représentés) raccordés sur la seconde ouverture 24,
5- le noyau est retiré du support en maintenant la dépression ce qui permet au noyau de conserver ses dimensions et sa forme du fait du compactage du matériau solide granulaire 31 à l'intérieur de la vessie 21.
Il convient de noter que la vessie du noyau peut être partiellement remplie de matériau solide granulaire et ou de fluide lors de sa mise en place au cours de l'étape 1. Un remplissage partiel ne gêne pas cette étape 1 et elle permet de diminuer le temps de remplissage complet de l'étape 2.
Par ailleurs le fluide 32 utilisé pour remplir le volume interstitiel lors de l'étape 3 est avantageusement un gaz et encore plus avantageusement de l'air. Toutefois si des pressions élevées sont recherchées lors des étapes ultérieures lorsque la pression dans le noyau 2 doit être augmentée, le fluide est avantageusement un liquide en raison de son incompressibilité comparativement à un gaz.
Le noyau 2 ainsi réalisé est utilisé lors des opérations de dépose des fibres 12, 13 de la même manière que le serait un noyau démoulable ou un noyau destiné à être détruit après le durcissement du matériau composite. En particulier le noyau 2 peut servir de support des fibres 12, 13 devant constituer une pièce 1 dont le noyau représente sensiblement la forme ou être inséré entre différentes couches de fibres pour réserver un espace creux dans une pièce complexe.
Dans un premier mode de mise en oeuvre du procédé suivant l'invention, lorsque les différentes parties du moule et les fibres 12, 13 ont été placées et le cas échéant la résine 14 injectée, la pression Pn dans le noyau 2 est augmentée de telle sorte que la pression Pa exercée par les autres moyens du moule lorsque ces moyens sont des moyens présentant une certaine souplesse, par exemple une vessie 51 , 53 comme illustré sur les figures 5a et 5b ou une contre-forme en élastomère (non représentée), en particulier ceux situés sur la face de la pièce opposée à la face en contact avec le noyau, soit équilibrée.
Dans un second mode de mise en oeuvre du procédé suivant l'invention, lorsque les différentes parties du moule 52, 54 et les fibres 12, 13 ont été placées et le cas échéant la résine 14 injectée, la pression Pn dans le noyau 2 est augmentée de telle sorte que le noyau comprime le matériau composite 12, 13 contre les parois du moule 52, 54 lorsque celui-ci est un moule à parois rigides. Notamment, lorsque la pièce est réalisée suivant un procédé par transfert de résine comme illustré sur la figure 5c, après injection de la résine 14 jusqu'à imprégnation totale des fibres 13 et gavage à un niveau dépression PR les ouvertures d'injection de la résine 14 sont fermées et la pression Pn est augmentée dans la vessie du noyau à une valeur supérieure ou égale à la valeur pression Pr pour compacter le matériau composite et homogénéiser la pression. Par ce procédé, d'une part on assure une meilleure mise en pression de la fibre 12, 13 comportant la résine avec pour effet de diminuer fortement le risque de présence de bulles d'air et d'améliorer le taux volumique de fibre dans le coeur du matériau composite et d'autre part on évite les déformations locales induites par les irrégularités de surface et les inévitables défauts dans les dimensions d'un noyau 2 réalisé avec une vessie 21 en élastomère. En outre, lorsqu'une forme rigide 52, 54 de moule est utilisée, le procédé garanti que la paroi de la pièce 1 en cours de réalisation épouse parfaitement la surface du moule, y compris dans sa structure interne, c'est à dire que les fibres 12, 13 sont orientées dans des directions sensiblement parallèles à la surface du moule 52, 54.
Ainsi, suivant le type de pièces réalisées et le procédé de réalisation de matériaux composites mis en oeuvre : a) le noyau comme illustré figure 5a est utilisé comme support pour déposer des fibres 12 préimprégnées puis une pression est exercée de l'extérieur de la pièce en cours de réalisation en direction du noyau 2, par exemple au moyen d'une vessie 51 qui enveloppe la pièce comportant le noyau 2 soumise à une pression Pa et dans laquelle est créé un vide partiel. Lorsque cette pression extérieure Pa est établie, la pression Pn dans le noyau est augmentée de sorte que le matériau composite 12 se trouve comprimé de manière homogène et sensiblement isostatique pendant sa phase de polymérisation entre la pression exercée par la vessie extérieure 51 et par celle 21 du noyau. Avantageusement la pression Pn dans le noyau 2 est établie à la valeur de la pression Pa s'exerçant sur la vessie extérieure 51 , en général la pression de l'autoclave dans lequel est réalisée la pièce 1. b) comme illustré sur la figure 5b le noyau 2 est utilisé comme contre- forme pour appliquer des fibres 12 préimprégnées déjà déposées dans une empreinte 55 d'un moule 52 contre lequel les fibres 12 doivent être maintenues puis, le cas échéant, le noyau 2 est recouvert de nouvelles fibres 12 préimprégnées. Une pression est exercée de l'extérieur de la pièce en cours de réalisation pour comprimer le matériau composite 12 contre le moule 52, par exemple soit au moyen d'une vessie extérieure 53 qui recouvre la pièce comportant le noyau 2 et de la création d'un vide partiel entre la vessie extérieure et le moule, soit au moyen d'une contre-forme (solution non représentée) pouvant comporter une partie d'appui en un matériau élastomère. Lorsque cette pression extérieure Pa est établie, la pression Pn dans le noyau est augmentée de sorte que le matériau composite 12 se trouve comprimé pendant sa phase de polymérisation entre la pression exercée par la vessie extérieure ou la contre-forme et par celle exercée par la vessie du noyau. Avantageusement lorsqu'une vessie extérieure 53 est utilisée, la pression Pn dans le noyau 2 est établie à la valeur de la pression Pa s'exerçant sur la vessie extérieure, en général la pression de l'autoclave dans lequel est réalisée la pièce. c) comme illustré sur la figure 5c le noyau 2 est placé entre les fibres sèches 13 déposées dans un moule fermé 54 dont les surfaces intérieures correspondent aux surfaces extérieures de la pièce 1 à réaliser. Une résine fluide 14 est injectée à l'intérieur du moule 54 qui rempli l'espace entre les fibres 13 suivant le procédé de réalisation de pièces en matériau composite connu sous le nom de Moulage par Transfert de Résine (RTM). Avant que la résine 14 ne durcisse, la pression Pn est augmentée dans le noyau 2 pour comprimer les zones de la pièce entre le noyau 2 et les parois du moule 54. Dans ce cas la pression Pn dans le noyau 2 est choisie au moins égale à la pression Pr à laquelle la résine 14 est injectée ou supérieure d'une valeur d'écart de pression fonction de la compression voulue des fibres 13 dans la zone du noyau 2. Dans tous les cas lorsque le cycle de durcissement du matériau de la pièce 1 est terminé, la pression Pn dans la vessie 21 du noyau et le cas échéant les autres pressions mises en oeuvre dans le procédé de réalisation de la pièce en matériau composite sont ramenées à la pression atmosphérique et la pièce est sortie du moule. Le noyau 2 est alors vidé des éléments de matériau solide granulaire 31 qu'il contient par la première ouverture qui est restée accessible ce qui lui permet d'acquérir la souplesse et la possibilité d'être déformé pour être extrait par traction du volume de la pièce qu'il a contribué à former comme illustré sur la figure 6. Avantageusement la première ouverture 23 de la vessie 21 du noyau vidée des éléments de matériau solide granulaire 31 est refermée et une dépression Pd est créée dans la vessie, par exemple en utilisant la seconde ouverture 24, de telle sorte que la vessie se trouve déformée, aplatie ou écrasée, sous l'effet de la pression atmosphérique ce qui permet d'une part de décoller la vessie 21 du matériau composite de la pièce 1 sans effort significatif et d'autre part de faciliter l'extraction de la vessie 21 par l'ouverture de la pièce. La pièce peut comporter un, deux ou plusieurs noyaux, chacun étant préparé, mis en place et extrait par application du même procédé pour participer à la réalisation de la pièce en matériau composite.
Avantageusement, lorsque le procédé de réalisation de la pièce en matériau composite utilise une cure thermique pour durcir la résine utilisée, cas le plus fréquent, le matériau solide granulaire 31 et le cas échéant le fluide utilisés pour remplir la vessie 21 du noyau 2 sont choisis en fonction de leurs caractéristiques de conductivité thermique et de dilation thermique pour participer au comportement thermique du moule.
Avantageusement lorsque la stabilité dimensionnelle du moule est essentielle pour la réalisation de la pièce, le matériau solide granulaire 31 est choisi avec un coefficient de dilatation thermique sensiblement égal à celui du matériau composite considéré. En pratique les matériaux composites ayant de faibles coefficients de dilatation on choisit avantageusement un verre borosilicate comme matériau solide granulaire. Les verres borosilicate, riche en silice, sont réputés pour leur excellent comportement aux températures élevées et leur faible coefficient de dilatation thermique autour de 3,5 10E-6 par Kelvin, sensiblement égal à celui des matériaux composites courants.
A contrario le choix d'un matériau ayant une augmentation sensible de volume avec la température permet d'augmenter de manière contrôlée les dimensions du noyau 2 lorsque la température augmente pendant la cure thermique avec pour effet de participer à la pression générée par le noyau 2 sur le matériau composite en cours de polymérisation. Un tel effet est par exemple obtenu avec un alliage d'aluminium ayant un coefficient de dilatation de l'ordre de 24 10E-6 par Kelvin notamment si la pièce est réalisée dans un moule creux réalisé avec un matériau ayant un coefficient de dilation thermique plus faible. La dilatation obtenue suivant une direction ayant une valeur absolue fonction de la dimension du noyau 2 dans la direction considérée, l'utilisation de noyau à dilatation contrôlée sera le plus souvent utilisée lorsque le noyau a des dimensions sensiblement équivalentes dans toutes les directions pour obtenir une dilatation homogène du noyau.
Lorsqu'une valeur précise de coefficient de dilatation est recherchée sans qu'un matériau ne donne simplement cette valeur, il est avantageux de mélanger des éléments de matériau solide granulaire de coefficients de dilatation différents pour obtenir la valeur recherchée.
Avantageusement lorsqu'une diffusion rapide et homogène de la chaleur est recherchée, le matériau solide granulaire est choisi avec une conduction thermique élevée, par exemple un alliage métallique. Cet alliage sera par exemple à base d'aluminium si la dilation est sans inconvénient ou si elle est recherchée, et sera par exemple un alliage à faible coefficient de dilatation tel qu'un invar (alliage métallique à base de fer et à forte teneur en nickel) si un faible coefficient de dilatation thermique est recherché en association avec une conduction thermique élevée.
Dans tous les cas on choisit de préférence des éléments de matériau solide granulaire 31 ayant des formes sphériques ou suffisamment émoussées pour que les éléments s'écoulent aisément dans le noyau 2 lorsque celui-ci est rempli ou vidé et pour que le drainage du fluide et la pression résultante soient homogènes lorsque la pression Pn est diminuée ou augmentée dans la vessie 21 du noyau 2. En outre l'utilisation d'éléments sensiblement sphériques permet d'obtenir un remplissage compact laissant un volume inoccupé par lesdits éléments de l'ordre de 40% qui permet d'alléger de manière non négligeable le noyau 2 réalisé et lorsque le fluide est un gaz. Par exemple lorsque qu'un matériau dense est utilisé pour lesdits éléments tel que l'invar dont la densité est de l'ordre de 8, la densité apparente du noyau obtenue est inférieure à 5.

Claims

Revendications
- Procédé de réalisation d'une pièce (1 ) en matériau composite, ledit matériau composite comportant des fibres (12, 13) enrobées d'une résine (14) passant d'un état pâteux ou liquide à un état solide au cours d'une phase de durcissement pendant laquelle phase de durcissement la résine est soumise à une élévation de température, ladite pièce (1 ) comportant une zone partiellement refermée (11 ), dans lequel un volume correspondant en tout ou partie à la zone partiellement refermée (11 ) est occupé, au moins à certaines étapes du procédé, par un noyau (2), ledit noyau comportant une vessie (21 ) en matériau souple présentant une surface extérieure délimitant un volume du noyau (2) dont les formes et les dimensions sont en accord avec le volume de la zone partiellement refermée (11 ) et présentant une surface intérieure déterminant un volume de la vessie (21 ), lequel volume de la vessie (21 ) est rempli d'éléments d'un matériau solide granulaire (31 ) et d'un fluide (32) intergranulaire, caractérisé en ce que les éléments du matériau solide granulaire (31 ) sont choisis pour obtenir un coefficient de dilatation apparent du matériau solide granulaire tel que le volume du noyau (2) est modifié de manière contrôlée, c'est à dire que les dimensions du noyau varient de manière prédéterminée, sous l'effet de l'élévation de température associée à la phase de durcissement de la résine. - Procédé suivant la revendication 1 dans lequel le volume du noyau (2) est modifié de manière contrôlée en sélectionnant les éléments du matériau solide granulaire (31 ) parmi des éléments dont les matériaux ont un coefficient de dilatation thermique sensiblement égal au coefficient de dilatation thermique du matériau composite de la pièce. - Procédé suivant la revendication 2 dans lequel les éléments du matériau solide granulaire (31 ) sélectionnés sont constitués essentiellement en un verre borosilicate. 4- Procédé suivant la revendication 2 dans lequel les éléments du matériau solide granulaire (31 ) sélectionnés sont constitués essentiellement en un alliage fer nickel, type Invar, à faible coefficient de dilatation.
5- Procédé suivant la revendication 2 dans lequel le matériau solide granulaire (31 ) est constitués d'éléments sélectionnés parmi des éléments en un matériau ou en différents matériaux, le matériau solide granulaire comportant alors un mélange d'éléments réalisés avec des matériaux différents, dont les coefficients de dilatation thermiques sont compris entre 2 10E-6 par Kelvin et 9 10E-6 par Kelvin. 6- Procédé suivant la revendication 1 dans lequel le volume du noyau (2) est modifié de manière contrôlée en sélectionnant les éléments du matériau solide granulaire (31 ) parmi des éléments dont les matériaux ont un coefficient de dilatation thermique supérieur au coefficient de dilatation thermique du matériau composite de la pièce. 7- Procédé suivant la revendication 6 dans lequel les éléments du matériau solide granulaire (31 ) sélectionnés sont constitués essentiellement en un alliage d'aluminium.
8- Procédé suivant l'une des revendications précédentes dans lequel le fluide (32) intergranulaire est un fluide incompressible. 9- Procédé suivant l'une des revendications précédentes dans lequel le matériau solide granulaire (31 ) et ou le fluide intergranulaire (32) sont sélectionnés en outre avec un coefficient de conductivité thermique apte à assurer la diffusion de la chaleur et l'homogénéité de la température lorsque la température de la pièce (1 ) est modifiée lors de la mise en œuvre du procédé.
10- Procédé suivant l'une des revendications précédentes dans lequel la pression Pn du fluide intersticiel est augmentée pendant la phase de durcissement de la résine. 11- Procédé suivant la revendication 10 dans lequel la pression Pn est augmentée à une valeur sensiblement égale à une pression Pa utilisée pour maintenir les fibres sur le noyau pendant la phase de durcissement de la résine. 12- Procédé suivant la revendication 11 dans lequel la pression Pn est augmentée à une valeur au moins égale à une pression Pr d'injection de la résine (14). 13- Procédé suivant l'une des revendication précédentes dans lequel la pression Pn dans la vessie (21 ) du noyau (2) est diminuée à une valeur Pd inférieure à la pression atmosphérique après avoir été vidée, au moins partiellement du matériau rigide granulaire (31 ), afin d'extraire la vessie (21) de la pièce (1 ).
PCT/EP2007/052621 2006-03-20 2007-03-20 Procede de realisation de srtuctures de formes complexes en materiaux composites WO2007107552A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200780018112.8A CN101448630B (zh) 2006-03-20 2007-03-20 复合材料制成的复杂形状的结构的制造方法
US12/296,689 US20090309268A1 (en) 2006-03-20 2007-03-20 Method for producing structures of complex shapes of composite materials
CA2649599A CA2649599C (fr) 2006-03-20 2007-03-20 Procede de realisation de structures de formes complexes en materiaux composites
DE602007008208T DE602007008208D1 (de) 2006-03-20 2007-03-20 Verfahren zur herstellung von strukturen komplexer formen aus verbundmaterialien
EP07727098A EP1996390B1 (fr) 2006-03-20 2007-03-20 Procede de realisation de structures de formes complexes en materiaux composites
AT07727098T ATE476285T1 (de) 2006-03-20 2007-03-20 Verfahren zur herstellung von strukturen komplexer formen aus verbundmaterialien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR06/50956 2006-03-20
FR0650956A FR2898538A1 (fr) 2006-03-20 2006-03-20 Procede de realisation de structures de formes complexes en materiaux composites

Publications (1)

Publication Number Publication Date
WO2007107552A1 true WO2007107552A1 (fr) 2007-09-27

Family

ID=37496607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052621 WO2007107552A1 (fr) 2006-03-20 2007-03-20 Procede de realisation de srtuctures de formes complexes en materiaux composites

Country Status (10)

Country Link
US (1) US20090309268A1 (fr)
EP (1) EP1996390B1 (fr)
CN (1) CN101448630B (fr)
AT (1) ATE476285T1 (fr)
CA (1) CA2649599C (fr)
DE (1) DE602007008208D1 (fr)
ES (1) ES2351282T3 (fr)
FR (1) FR2898538A1 (fr)
RU (1) RU2433045C2 (fr)
WO (1) WO2007107552A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067596A1 (fr) * 2007-12-06 2009-06-10 Saab Ab Procédé et appareil pour la fabrication d'un article comportant un espace vide
US20110042863A1 (en) * 2007-11-30 2011-02-24 Cavaliere Frederick Method for making a moulding core, and moulding core for making a complex part made of a composite material

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034203B4 (de) * 2008-07-21 2018-04-26 Airbus Helicopters Deutschland GmbH Herstellung von Faserverbundbauteilen mit Formkernen
US8668800B2 (en) * 2011-03-25 2014-03-11 Maurice Guitton Method of manufacturing hollow composite parts with in situ formed internal structures
JP5679062B2 (ja) * 2012-06-12 2015-03-04 三菱レイヨン株式会社 繊維強化プラスチックの成形方法及びその成形装置
DE102012216830A1 (de) * 2012-09-19 2014-03-20 Wobben Properties Gmbh Verfahren zur Herstellung von Windenergieanlagen-Rotorblättern, sowie zur Herstellung eines Formkerns hierfür
WO2014064784A1 (fr) * 2012-10-24 2014-05-01 三菱レイヨン株式会社 Procédé permettant de mouler une matière plastique renforcée par des fibres
EP2829387B1 (fr) 2013-07-23 2016-09-07 Airbus Operations GmbH Matière granulée utilisée dans un procédé de moulage d'un matériau composite par voie liquide
US20160214331A1 (en) * 2013-10-04 2016-07-28 United Technologies Corporation Flexible resin transfer molding tool
US10160028B2 (en) * 2015-02-03 2018-12-25 Bell Helicopter Textron Inc. Expanding flexible bladder to insert tool
EP3159129A1 (fr) 2015-10-22 2017-04-26 Evonik Röhm GmbH Fabrication de structures complexes creuses en sandwich ou en mousse a l'aide d'un noyau de moule
US20170232688A1 (en) * 2016-02-15 2017-08-17 General Electric Company Incorporation Of Jamming Technologies In Tooling For Composites Processing
US10639855B2 (en) * 2017-02-07 2020-05-05 General Electric Company Applicator systems for applying pressure to a structure
CN107253334B (zh) * 2017-04-28 2023-03-21 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种成型复合材料t形长桁加筋壁板的模具及工艺
FR3074086B1 (fr) * 2017-11-30 2020-12-25 Absolute Composite Procede de realisation d'une piece comportant un profil creux en materiaux composites et piece obtenue a partir du procede
CN108297323A (zh) * 2018-02-07 2018-07-20 杜剑 一种树脂与固体材料结合的复合材料及其制备方法
WO2020229698A1 (fr) * 2019-05-16 2020-11-19 Basf Polyurethanes Gmbh Procédé de production de ressorts composites et de noyau de moule pour un tel procédé
CN110757839B (zh) * 2019-11-06 2021-09-10 航天特种材料及工艺技术研究所 薄壁结构整体原位成型热防护套时的形状保持装置及方法
CN110774610A (zh) * 2019-11-07 2020-02-11 哈尔滨工业大学 一种多通路复合材料异型管及其成型方法
US20210308967A1 (en) * 2020-04-07 2021-10-07 Rohr, Inc. Hybrid mandrel for use in tooling methods and the manufacture of thrust reverser cascades and structures susceptible to trapped tooling
CN113085229B (zh) * 2021-04-22 2022-02-15 同济大学 碳纤维增强热固性树脂基复合材料分层损伤修复装置及方法
US12059823B2 (en) * 2021-09-13 2024-08-13 Rohr, Inc. Tooling element and methods for forming and using same
SE2151179A1 (sv) * 2021-09-27 2023-03-28 Blue Ocean Closures Ab Fiberbaserad förpackningskapsel samt en metod att pressforma densamma

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292101A (en) * 1979-03-05 1981-09-29 Reichert James B Method of fabricating composite members
US5262121A (en) 1991-12-18 1993-11-16 Goodno Kenneth T Method of making and using flexible mandrel
DE4215919A1 (de) * 1992-05-14 1993-11-18 Basf Ag Verfahren zur Herstellung von rohrförmigen oder hohlen Formteilen
WO1995014563A1 (fr) * 1993-11-26 1995-06-01 Alan Roger Harper Procede et appareil de moulage et produits obtenus
GB2292332A (en) * 1994-04-22 1996-02-21 Alan Roger Harper Moulding process and apparatus
GB2381491A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446092A (en) * 1978-06-22 1984-05-01 Structural Fibers, Inc. Method for making lined vessels
US4783232A (en) * 1983-09-02 1988-11-08 Allied-Signal Inc. Filament winding using a rotationally molded inner layer
US5087193A (en) * 1990-08-09 1992-02-11 Herbert Jr Kenneth H Apparatus for forming a composite article
US5131834A (en) * 1990-12-21 1992-07-21 Northrop Corporation Silicone gel isostatic pressurizing bag and method of use and manufacture
US5266249A (en) * 1992-01-02 1993-11-30 Fusion Composites, Inc. Method of forming a fiber reinforced plastic structure
US5387098A (en) * 1992-04-23 1995-02-07 The Boeing Company Flexible reusable mandrels
US5374388A (en) * 1993-04-22 1994-12-20 Lockheed Corporation Method of forming contoured repair patches
US5772950A (en) * 1994-08-31 1998-06-30 The Boeing Company Method of vacuum forming a composite
US5968445A (en) * 1998-01-05 1999-10-19 The Boeing Company Method and apparatus for curing large composite panels
US7052572B2 (en) * 2001-08-01 2006-05-30 Fuji Jukogyo Kabushiki Kaisha Method for manufacturing a structure
US7559332B2 (en) * 2002-07-02 2009-07-14 Toyota Motor Sales U.S.A., Inc. Media removal apparatus and methods of removing media
US7811495B2 (en) * 2005-01-26 2010-10-12 University Of Maine System Board Of Trustees Composite construction members and method of making

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292101A (en) * 1979-03-05 1981-09-29 Reichert James B Method of fabricating composite members
US5262121A (en) 1991-12-18 1993-11-16 Goodno Kenneth T Method of making and using flexible mandrel
DE4215919A1 (de) * 1992-05-14 1993-11-18 Basf Ag Verfahren zur Herstellung von rohrförmigen oder hohlen Formteilen
WO1995014563A1 (fr) * 1993-11-26 1995-06-01 Alan Roger Harper Procede et appareil de moulage et produits obtenus
GB2292332A (en) * 1994-04-22 1996-02-21 Alan Roger Harper Moulding process and apparatus
GB2381491A (en) * 2001-10-30 2003-05-07 Trysome Ltd Forming composite structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042863A1 (en) * 2007-11-30 2011-02-24 Cavaliere Frederick Method for making a moulding core, and moulding core for making a complex part made of a composite material
US9387604B2 (en) * 2007-11-30 2016-07-12 European Aeronautic Defence And Space Company Eads France Method for making a molding core, and molding core for making a complex part made of a composite material
EP2067596A1 (fr) * 2007-12-06 2009-06-10 Saab Ab Procédé et appareil pour la fabrication d'un article comportant un espace vide
US7758793B2 (en) 2007-12-06 2010-07-20 Saab Ab Method and apparatus for manufacturing of an article including an empty space

Also Published As

Publication number Publication date
ES2351282T3 (es) 2011-02-02
RU2008141311A (ru) 2010-04-27
CA2649599C (fr) 2015-10-27
CN101448630A (zh) 2009-06-03
CN101448630B (zh) 2014-10-29
US20090309268A1 (en) 2009-12-17
DE602007008208D1 (de) 2010-09-16
ATE476285T1 (de) 2010-08-15
EP1996390A1 (fr) 2008-12-03
EP1996390B1 (fr) 2010-08-04
FR2898538A1 (fr) 2007-09-21
RU2433045C2 (ru) 2011-11-10
CA2649599A1 (fr) 2007-09-27

Similar Documents

Publication Publication Date Title
EP1996390B1 (fr) Procede de realisation de structures de formes complexes en materiaux composites
EP2004390B1 (fr) Procede de realisation de panneaux raidis en materiau composites
CA2254091C (fr) Procede de fabrication de pieces creuses en materiau composite
EP3077183B1 (fr) Procédé d'imprégnation d'une préforme fibreuse
CA2434447A1 (fr) Fabrication des composites par un procede d'injection flexible au moyen d'un moule a double chambre ou a chambres multiples
CA2232097C (fr) Procede de realisation de pieces creuses de precision en materiau composite
CA2707111C (fr) Procede de realisation d'un noyau de moulage et noyau de moulage pour la fabrication d'une piece complexe en materiau composite
FR3026980A1 (fr) Procede d'immobilisation d'une preforme dans un moule
FR2993814A1 (fr) Dispositif pour la fabrication d'une piece composite comportant une cloche et procede associe
JP4347472B2 (ja) 圧縮成形製品を製造するための装置及び方法
EP2879859B1 (fr) Procédé de fabrication d'un outillage de moulage destiné au moulage d'une pièce en matériau composite
CA2863155A1 (fr) Dispositif et procede de fabrication d'une piece moulee en un materiau composite
EP2505327B1 (fr) Procédé de fabrication d'un outillage de moulage destiné au moulage d'une pièce en matériau composite
WO2018234686A1 (fr) Procédé de réalisation d'une pièce de forme tronconique ou cylindrique en matériau composite et outillage d'imprégnation d'une préforme fibreuse de forme tronconique ou cylindrique
EP2682257A1 (fr) Procédé et dispositif de fabrication de pièces en matériau composite par RTM
EP2146834B1 (fr) Procede et dispositif de moulage sous pression de materiaux composites
FR3146087A1 (fr) Procédé et outil de moulage pour la fabrication d’un composant en plastique
FR2937278A1 (fr) Procede de realisation de pieces de formes creuses en materiau composite
FR2999469A1 (fr) Procede de fabrication de pieces en materiau composite a ame a cellule ouverte
FR2869384A1 (fr) Conduit de transport de fluide en materiau composite et procede pour sa fabrication
FR2525519A1 (fr) Procede de moulage de produits creux en beton et boite de raccordement obtenue selon ce procede
FR3059586A1 (fr) Mandrin fusible hydrosoluble a base d'elements granulaires

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018112.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007727098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2649599

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008141311

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8810/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12296689

Country of ref document: US