WO2007107546A1 - Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement - Google Patents

Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement Download PDF

Info

Publication number
WO2007107546A1
WO2007107546A1 PCT/EP2007/052586 EP2007052586W WO2007107546A1 WO 2007107546 A1 WO2007107546 A1 WO 2007107546A1 EP 2007052586 W EP2007052586 W EP 2007052586W WO 2007107546 A1 WO2007107546 A1 WO 2007107546A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcination
cerium
oxide
temperature
reducibility
Prior art date
Application number
PCT/EP2007/052586
Other languages
English (en)
Inventor
Stephan Verdier
Olivier Larcher
Emmanuel Rohart
Bernard Pacaud
Hirofumi Takemori
Eisaku Suda
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36698944&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007107546(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rhodia Operations filed Critical Rhodia Operations
Priority to PL07727063.5T priority Critical patent/PL2007682T5/pl
Priority to CA2645588A priority patent/CA2645588C/fr
Priority to JP2009500843A priority patent/JP5391059B2/ja
Priority to DE202007019182U priority patent/DE202007019182U1/de
Priority to US12/293,332 priority patent/US8158551B2/en
Priority to KR1020087022944A priority patent/KR101050861B1/ko
Priority to CN2007800086405A priority patent/CN101400609B/zh
Priority to ES07727063T priority patent/ES2585235T5/es
Priority to EP07727063.5A priority patent/EP2007682B2/fr
Publication of WO2007107546A1 publication Critical patent/WO2007107546A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • B01J35/613
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a composition of zirconium oxide and cerium oxide with high reducibility and stable surface area, its method of preparation and its use in particular in the treatment of automobile exhaust gases.
  • so-called multifunctional catalysts are used for the treatment of the exhaust gases of internal combustion engines (automotive post-combustion catalysis).
  • catalysts capable of operating not only the oxidation in particular of carbon monoxide and hydrocarbons present in the exhaust gas but also the reduction including nitrogen oxides also present in these gases (catalysts).
  • Catalysts three ways ").
  • Zirconium oxide and cerium oxide appear today as two particularly important and interesting components of materials used in the composition of this type of catalyst. To be effective in such use, these materials must have a specific surface that remains sufficiently large even at high temperature. In particular, zirconium oxide makes it possible to stabilize the surface of this type of product.
  • reducibility means, here and for the remainder of the description, the cerium IV content in the material capable of being converted into cerium III under the effect of a reducing atmosphere and at a given temperature. This reducibility can be measured for example by a consumption of hydrogen in a given temperature range. It is due to cerium in the case of compositions of the type of those of the invention, the cerium having the property of being reduced or oxidized. This reducibility must, of course, be as high as possible.
  • the object of the invention is the development of compositions with improved properties, capable of meeting the characteristics mentioned above, especially compositions that can be used effectively with palladium.
  • the composition of the invention is based on zirconium oxide and cerium oxide and is characterized in that it has a proportion of cerium oxide of at most 50% by weight, surface area after calcination 4 hours at 1100 ° C of at least 15 m 2 / g and a degree of reducibility of at least 95% after calcination in air at 600 ° C.
  • the invention also relates to a composition based on zirconium oxide and cerium oxide in the same proportions and with the same surface characteristics as those given above and having a degree of reducibility of at least 95% after calcination under air at 700 ° C.
  • the invention also relates to a composition based on zirconium oxide and cerium oxide in the same proportions and with the same surface characteristics as those given above and having a degree of reducibility of at least 85% after calcination under air at 900 ° C.
  • an additive is firstly added, chosen from anionic surfactants, nonionic surfactants, polyethylene glycols, carboxylic acids and their salts and surfactants of the ethoxylate type of carboxymethylated fatty alcohols to the medium derived from the preceding step and then separating said precipitate;
  • specific surface means the specific surface area B. AND. determined by nitrogen adsorption according to ASTM D 3663-78 based on the BRUNAUER method -
  • lanthanides we mean the elements of the group constituted by yttrium and the elements of the periodic classification of atomic number included between 57 and 71 inclusively.
  • compositions of the invention are of the mixed oxide type, based on zirconium oxide and which furthermore comprise cerium oxide. They may also comprise at least one oxide of another element chosen from lanthanides other than cerium. We can therefore have in this case ternary or quaternary compositions in particular.
  • the aforementioned element may be more particularly chosen from yttrium, lanthanum, neodymium or praseodymium.
  • compositions based on zirconium oxides, cerium, praseodymium and lanthanum those based on zirconium oxides, cerium, neodymium and lanthanum and those based on zirconium oxides. , cerium, yttrium and lanthanum.
  • compositions of the invention may vary within a certain range of proportions.
  • this content is at most 50% by weight, more particularly at most 45% and even more particularly at most 40%.
  • Zirconium oxide constitutes the remainder of the composition.
  • the zirconium content may be at least 50% by weight, more particularly at least 55% and even more particularly at least 60%. This content may also be at least 65% and even more particularly at least 70% depending in particular on the possible presence of one or more other elements of the aforementioned type in the composition. Given this presence, the zirconium content may be less than 50% in the ternary or quaternary compositions.
  • the content of the other possible element or all of these elements is usually at most 35%. It may be more particularly at most 30% and even more particularly at most 20% or at most 10%. Moreover, it is preferably at least 3%, more particularly at least 5%. This content can therefore be between 3% and 35% in the most general case.
  • compositions of the invention have as main feature a high reducibility which is measured in the present description by a degree of reducibility.
  • the reducibility of the compositions is determined by measuring their hydrogen consumption measured between 30 ° C and 900 ° C. This measurement is made by programmed temperature reduction using diluted hydrogen in argon. A signal is detected with a thermal conductivity detector. Hydrogen consumption is calculated from the missing baseline hydrogen signal at 30 ° C baseline at 900 ° C.
  • the degree of reducibility represents the percentage of cerium reduced, it being understood that 1/2 mol of H 2 consumed and measured by the method described above corresponds to 1 mole of reduced CeIV.
  • the degree of reducibility can vary depending on the temperature at which the composition could be calcined during its preparation.
  • the given reducibility rates are measured by the method described above on air-calcined compositions of a duration which can vary from 2 to 4 hours at different temperatures. It will be noted that within this time range no significant variation in the degree of reducibility is observed. For this reason and unless otherwise indicated the reducibility rates are given for products having been calcined 2 hours.
  • compositions of the invention after calcination for 2 hours in air at 600 ° C., the compositions of the invention have a degree of reducibility of at least 95%.
  • the reducibility rate can even reach 100%.
  • the compositions of the invention also have a degree of reducibility of at least 95%.
  • the reducibility rate can again reach 100%.
  • the rates of reducibility at 700 ° C. of the compositions of the invention are identical to those at 600 ° C. or do not show significant variations with those measured at 600 ° C.
  • compositions of the invention also have a degree of reducibility of at least 85%.
  • the compositions of the invention may have a proportion of cerium oxide of at most 25%, a content of another lanthanide oxide of at most 15% and a degree of reducibility of at least 15%. minus 80%, more particularly at least 85% after calcination in air at 1000 ° C.
  • compositions of the invention also have particular characteristics of specific surface area.
  • compositions first have a high surface level at high temperature, that is to say after calcination at 1100 ° C for 4 hours the specific surface of these compositions is at least 15 m 2 / g, more especially at least 20 m 2 / g and even more particularly at least 25 m 2 / g.
  • the highest surface values are generally obtained for the compositions comprising at least one of the above-mentioned elements (lanthanide other than cerium) and, for the highest surface values at 1100 ° C., a high zirconium content is obtained. say at least
  • compositions of the invention have a surface stability of between 900 ° C. and 1000 ° C.
  • this stability is measured by the variation between the surface (S 90 O) presented after calcination at 900 ° C. for 4 hours and the surface (S-100 O) presented after calcination at 1000 ° C. for 4 hours. variation being expressed by the ratio (S 90 O - S-iooo) / S 9O o expressed in%.
  • This variation between 900 ° C. and 1000 ° C. can be at most 25%, more particularly at most 15%.
  • This variation also expressed by the ratio (S-noo-S-100O) / SiOoo, can be at most 30%, more particularly at most 20% after calcination for 4 hours at the above-mentioned temperatures.
  • the first step of the process therefore consists in preparing an aqueous mixture comprising compounds of zirconium, cerium and, in the case of the preparation of compositions based on one or more of the aforementioned elements, a compound of this or these elements.
  • the compounds are preferably soluble compounds. This may be in particular salts of zirconium, cerium and lanthanide. These compounds may be chosen from nitrates, sulphates, acetates, chlorides, cerium-ammoniacal nitrate or, for zirconium or cerium,
  • zirconyl sulphate zirconyl nitrate or zirconyl chloride.
  • Zirconyl nitrate is most commonly used.
  • cerium IV salts such as nitrates or cerium-ammoniacal nitrate for example, which are particularly suitable here. It is possible to use ceric nitrate. It is advantageous to use salts of purity of at least 99.5% and more particularly at least 99.9%.
  • An aqueous solution of ceric nitrate may, for example, be obtained by reacting nitric acid with a hydrated ceric oxide prepared in a conventional manner by reacting a solution of a cerous salt, for example cerous nitrate, and an ammonia solution in the presence of hydrogen peroxide.
  • a solution of ceric nitrate obtained by the electrolytic oxidation process of a cerous nitrate solution as described in document FR-A-2,570,087, which constitutes here an interesting raw material. .
  • aqueous solutions of cerium salts and zirconyl salts may have some initial free acidity which can be adjusted by the addition of a base or an acid.
  • This neutralization can be done by adding a basic compound to the aforementioned mixture so as to limit this acidity.
  • This basic compound may be for example a solution of ammonia or alkali hydroxides (sodium, potassium, etc.), but preferably an ammonia solution.
  • the starting mixture contains a cerium compound in which it is in the form of Ce III
  • an oxidizing agent for example hydrogen peroxide.
  • This oxidizing agent can be used by being added to the reaction medium during step (a) or during step (b), especially at the end thereof. It is also possible to use a sol as starting compound of zirconium or cerium.
  • sol any system consisting of fine solid particles of colloidal dimensions, ie dimensions of between about 1 nm and about 500 nm, based on a compound of zirconium or cerium, this compound being generally an oxide and / or or a hydrated oxide of zirconium or cerium, in suspension in an aqueous liquid phase, said particles possibly further possibly containing residual amounts of bound or adsorbed ions such as, for example, nitrates, acetates, chlorides or ammonium. It should be noted that in such a soil, zirconium or cerium may be either totally in the form of colloids, or simultaneously in the form of ions and in the form of colloids.
  • the mixture can be indifferently obtained either from compounds initially in the solid state which will subsequently be introduced into a water tank for example, or even directly from solutions of these compounds and then mixed in any order of said solutions.
  • the initial mixture is thus obtained, then, in accordance with the second step (b) of the method according to the invention, it is heated.
  • the temperature at which this heat treatment is conducted is at least 100 ° C. It can thus be between 100 ° C. and the critical temperature of the reaction medium, in particular between 100 and 350 ° C., preferably between 100 and 200 ° C.
  • the heating operation can be carried out by introducing the aqueous mixture containing the abovementioned compounds into a closed enclosure (autoclave type closed reactor), the necessary pressure then resulting only from the sole heating of the reaction medium (autogenous pressure).
  • autoclave type closed reactor the necessary pressure then resulting only from the sole heating of the reaction medium (autogenous pressure).
  • autogenous pressure the sole heating of the reaction medium
  • the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa). It is of course also possible to exert an external pressure which is added to that subsequent to heating.
  • heating in an open reactor for temperatures close to 100 ° C.
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen in this case.
  • the duration of the treatment is not critical, and can thus vary within wide limits, for example between 1 and 48 hours, preferably between 2 and 24 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the reaction temperature set by heating the medium for example between 30 minutes and 4 hours, these values being given for all purposes. indicative fact.
  • a precipitate is obtained in suspension in the reaction medium.
  • the third step (c) of the process consists in bringing the reaction medium obtained above to a basic pH. This operation is performed by adding to the medium a base such as for example an ammonia solution.
  • a base such as for example an ammonia solution.
  • basic pH is meant a pH value greater than 7 and preferably greater than 8.
  • a ripening This can be carried out directly on the reaction medium obtained after addition of the base or on a suspension obtained after re-watering the precipitate.
  • the ripening is done by heating the environment.
  • the temperature at which the medium is heated is at least 40 ° C, more preferably at least 60 ° C and even more preferably at least 100 ° C.
  • the medium is thus maintained at a constant temperature for a period of time which is usually at least 30 minutes and more particularly at least 1 hour.
  • the ripening can be done at atmospheric pressure or possibly at a higher pressure. It may be noted that it is possible to carry out a second ripening after separation of the precipitate from the reaction medium resulting from the first ripening and return it to the water, this second ripening taking place under the conditions which have been described for the first.
  • an additive is added to the reaction medium resulting from the preceding step which is chosen from anionic surfactants, nonionic surfactants, polyethylene glycols, carboxylic acids and their salts and the surfactants of the ethoxylate type of carboxymethylated fatty alcohols.
  • anionic surfactants nonionic surfactants
  • nonionic surfactants polyethylene glycols
  • carboxylic acids and their salts and the surfactants of the ethoxylate type of carboxymethylated fatty alcohols.
  • surfactants of the anionic type of the anionic type, of the ethoxycarboxylates, the ethoxyl
  • nonionic surfactant there may be mentioned acetylenic surfactants, ethoxylated or propoxylated fatty alcohols, for example those of Rhodasurf ® brands or Antarox ®, alkanolamides, amine oxides, ethoxylated alkanolamides, ethoxylated or propoxylated long-amino chains, for example those of the brand RHODAMEEN ® , ethylene oxide / propylene oxide copolymers, sorbitan derivatives, ethylene glycol, propylene glycol, glycerol, polyglyceryl esters and their ethoxylated derivatives, alkylamines, alkylimidazolines, ethoxylated oils and alkylphenols ethoxylated or propoxylated, in particular those of the brand IGEPAL ® . Also there may be mentioned in particular the products mentioned in WO-98/45212 under the trademarks Igepal ®, DOWANOL ®
  • carboxylic acids it is possible to use, in particular, aliphatic mono- or dicarboxylic acids and, among these, more particularly saturated acids. It is also possible to use fatty acids and more particularly saturated fatty acids. These include formic, acetic, propionic, butyric, isobutyric, valeric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, hydroxystearic, ethyl-2-hexanoic and behenic acids.
  • dicarboxylic acids there may be mentioned oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • the salts of the carboxylic acids can also be used.
  • a surfactant which is chosen from those of the type ethoxylates of carboxymethylated fatty alcohols.
  • product of the carboxymethyl alcohol fatty alcohol ethoxylate type is meant products consisting of ethoxylated or propoxylated fatty alcohols comprising at the end of the chain a -CH 2 -COOH group.
  • R means a carbon chain, saturated or unsaturated, whose length is generally at most 22 carbon atoms, preferably at least 12 carbon atoms
  • R 2 , R 3 , R 4 and R 5 may be identical and represent hydrogen or R 2 may represent a CH 3 group and R 3 , R 4 and R 5 represent hydrogen
  • n is an integer not zero up to 50 and more particularly between 5 and 15, these values being included.
  • a surfactant may consist of a mixture of products of the above formula for which R 1 may be saturated and unsaturated respectively or products comprising both -CH 2 -CH 2 -O groups. and -C (CHs) 2 -CH 2 -O-.
  • step (d 1 ) consists in first separating the precipitate from the reaction medium resulting from step (c), this by any known means, then at add the surfactant additive to this precipitate, by impregnation of the precipitate or by solid / solid mixture depending on the state of the surfactant used.
  • the amount of additive or surfactant used expressed as a percentage by weight of additive relative to the weight of the composition calculated for oxide, is generally between 5% and 100%, more particularly between 15%. and 60%.
  • step (e) comprises a double calcination of the precipitate obtained previously.
  • the first calcination is conducted under inert gas or under vacuum.
  • the inert gas may be helium, argon or nitrogen.
  • the vacuum is generally a primary vacuum with an oxygen partial pressure of less than 10 -1 mbar
  • the calcination temperature is at least 900 ° C.
  • a temperature below this value may not lead to a product having the characteristics given above of reducibility
  • the increase of the calcination temperature leads to an increase of the reducibility which can reach values of 100% towards the highest temperatures, the temperature is also fixed to a value taking into account the fact that the the specific surface area of the product is lower when the calcination temperature used is higher, so that the maximum calcination temperature is generally at most 1000 ° C, since the specific surface area
  • the duration of this first calcination is generally at least 2 hours, preferably at least 4 hours and in particular at least 6 hours. an increase in this duration usually results in an increase in the reducibility rate. Of course, the duration can be set according to the temperature, a low calcination time requiring a higher temperature.
  • a second calcination is then carried out under an oxidizing atmosphere, for example under air.
  • the calcination is generally at a temperature of at least 600 ° C over a period which is generally at least 30 minutes.
  • a temperature below 600 ° C can make it difficult to remove additives used in steps (d) or (d) described above. It is preferable not to exceed a calcination temperature of 900 ° C.
  • compositions of the invention as described above or as obtained by the process mentioned above are in the form of powders but they may optionally be shaped to be in the form of granules, balls, cylinders or nests. bee of variable dimensions.
  • These compositions may be applied to any support conventionally used in the field of catalysis, that is to say in particular thermally inert supports.
  • This support may be chosen from alumina, titanium oxide, cerium oxide, zirconium oxide, silica, spinels, zeolites, silicates, crystalline silicoaluminium phosphates, phosphates of crystalline aluminum.
  • compositions can also be used in catalytic systems.
  • These catalytic systems may comprise a coating (wash coat) with catalytic properties and based on these compositions, on a substrate of the type for example metallic monolith or ceramic.
  • the coating may also include a support of the type mentioned above. This coating is obtained by mixing the composition with the support so as to form a suspension which can then be deposited on the substrate.
  • These catalytic systems and more particularly the compositions of the invention can find very many applications. They are thus particularly well adapted to, and therefore usable in, the catalysis of various reactions such as, for example, dehydration, hydrosulfuration, hydrodenitrification, desulfurization, hydrodesulfurization, dehydrohalogenation, reforming, reforming.
  • the compositions of the invention may be used in combination with precious metals.
  • the invention therefore relates to catalytic systems of the type described above, in which the compositions of the invention are used as a support for precious metals.
  • the metals may be platinum, rhodium, palladium or iridium, they may in particular be incorporated into the compositions by impregnation.
  • the catalytic system contains palladium as a precious metal.
  • the precious metal content in such systems is generally at most 10%, preferably at most 5% and even more preferably at most 1%, this amount being expressed as a mass of metal relative to metal assembly / composition based on oxides of the invention. This content may vary in particular depending on the desired application and the nature of the composition based on oxides.
  • compositions of the invention can give results similar to those of the prior art for a quantity of precious metal less than 10% at least.
  • the reducibility rate of cerium is measured by performing a temperature reduction programmed on an Ohkura Riken TP5000 device.
  • This apparatus makes it possible to measure the hydrogen consumption of a composition according to the invention as a function of the temperature and to deduce therefrom the rate of reduction of the cerium.
  • the experimental protocol consists in weighing 200 mg of the sample in a previously tared container. The sample is then introduced into a quartz cell containing in the bottom of the quartz wool. The sample is finally covered with quartz wool and positioned in the oven of the measuring device.
  • the temperature program is as follows: oxidation: temperature rise up to 500 ° C. with a rise ramp at 10 ° C./min under O 2 to 5% vol in He;
  • thermocouple placed in the quartz cell above the sample. Hydrogen consumption during the reduction phase is deduced by calibrating the variation of the thermal conductivity of the gas stream measured at the outlet of the cell using a thermal conductivity detector (TCD).
  • TCD thermal conductivity detector
  • the cerium reduction rate is calculated from the hydrogen consumption measured between 30 ° C and 900 ° C.
  • This test makes it possible to evaluate under dynamic conditions (oscillation frequency of 1 Hz) the performance of monometallic catalysts in powder form with respect to the removal of pollutants CO, NO and hydrocarbons.
  • the hydrocarbons used in the test are propane and propene.
  • Several isothermal measurements are made by varying the richness of the gaseous mixture between the values of 0.980 and 1.015. The composition of this gaseous mixture for these two values is given in the following table.
  • the evaluation temperature is 480 ° C. and the catalyst mass of 20 mg mixed with 150 mg of SiC used as an inert diluent.
  • COP Cross Point
  • a composition according to the invention is impregnated with a solution of precious metal nitrate palladium or rhodium.
  • palladium a mass content of 0.5% is fixed in palladium element.
  • rhodium a mass content of 0.1% or 0.07% is rhodium.
  • the product is then dried and activated in air at 500 ° C. for 4 hours. Before carrying out the test, aging is carried out at 950 ° C. for 16 hours or at 1050 ° C.
  • This priming test makes it possible to evaluate the temperature at which the three-way catalysts in the form of powder reach 20% or 50% conversion (T20 or T50) with respect to pollutants CO, NO and hydrocarbons.
  • the rich priming test is carried out with a gaseous mixture of richness 1.024.
  • the poor priming test is carried out with a gaseous mixture of richness 0.98.
  • the 20 mg catalyst mass is mixed with 150 mg of SiC used as inert diluent.
  • the conversion with respect to the pollutants mentioned above is then measured as a function of the temperature which varies between 200 and 500 ° C. with a ramp of 25 ° C./min.
  • the priming performance for each pollutant is expressed in T20, at which temperature one reaches 20% conversion.
  • a composition according to the invention is impregnated with a solution of precious metal nitrate such as palladium or rhodium.
  • the product is then dried and activated in air at 500 ° C. for 4 hours.
  • aging is carried out at 950 ° C. for 16 hours or at 1050 ° C. for 48 hours, alternating with an oxidizing flux of 1.8% vol. O 2 /10% by volume H 2 O / n 2 a duration of 5 minutes and a reducing flow 1, 8% vol CO / 10% vol H 2 O / qsp N 2 with a duration of 5 minutes.
  • This example relates to the preparation of a composition according to the invention based on cerium, zirconium and lanthanum oxides in the respective proportions by mass of oxide of 47%, 47% and 6%.
  • a solution of ceric nitrate, a solution of lanthanum nitrate and a solution of zirconyl nitrate are mixed.
  • This mixture (expressed as oxide of the various elements) is adjusted to 80 g / l. This mixture is then heated to 150 ° C. for 4 hours.
  • the suspension thus obtained is then filtered on B ⁇ chner. A precipitate containing 35% by weight of oxide is recovered.
  • an ammonium laurate gel was prepared under the following conditions: 250 g of lauric acid are introduced into 135 ml of ammonia (12 mol / l) and 500 ml of distilled water, and the mixture is then homogenized with using a spatula.
  • This example relates to the preparation of a composition according to the invention based on oxides of cerium, zirconium, lanthanum and yttrium in the respective proportions by mass of oxide of 40%, 50%, 5% and 5% by weight. %.
  • Example 2 In the stoichiometric proportions required to obtain the above composition, a procedure identical to that of Example 1 is followed.
  • the precursor used for the ytthum is a solution of yttrium nitrate.
  • the precipitate has an oxide content of 35%. 41.4 g of ammonium laurate are used per 100 g of precipitate.
  • the product thus obtained has an area of 36 m 2 / g.
  • the surface variation for calcination temperatures between 1000 ° C. and 1100 ° C. is 21%.
  • the dynamic three-way catalytic test indicates a conversion of 95% at the COP for a product impregnated with 0.1% by weight of rhodium.
  • a conversion of 92.5% at the COP is obtained for a product impregnated with 0.07% by weight of rhodium.
  • the 30% reduction in rhodium content causes a 2.5% decrease in COP.
  • This example relates to the preparation of a composition according to the invention based on oxides of cerium, zirconium, lanthanum and neodymium in the respective proportions by mass of oxide of 21%, 72%, 2% and 5% .
  • Example 2 In the stoichiometric proportions required to obtain the above composition, a procedure identical to that of Example 1 is followed.
  • the precursor used for neodymium is a solution of neodymium nitrate.
  • the precipitate has an oxide content of 30%.
  • the product thus obtained has an area of 40 m 2 / g.
  • the surface variation for calcination temperatures between 1000 ° C. and 1100 ° C. is 29%.
  • reducibility rates and a maximum reducibility temperature after calcination in air at different temperatures are given below.
  • the value at 600 ° C it is the product as obtained after the procedure described above in this example.
  • the other temperature value it is the same product which has subsequently undergone additional calcination over the specified time and temperature.
  • this product impregnated with 0.5% by weight of palladium reaches 20% of NO conversion at a temperature of 400 ° C.
  • This example relates to the preparation of a composition according to the invention based on oxides of cerium, zirconium and lanthanum in the respective proportions by weight of oxide of 30%, 42% and 28%.
  • Example 2 In the stoichiometric proportions required to obtain the above composition, a procedure identical to that of Example 1 is followed.
  • the precipitate has an oxide content of 34%. 40 g of ammonium laurate are used per 100 g of precipitate.
  • the product thus obtained has an area of 23 m 2 / g and a degree of reducibility of 98% measured at 600 ° C, the maximum reducibility temperature is 625 ° C.
  • the surface variation for calcination temperatures of between 1000 ° C. and 1100 ° C. is 19%.
  • This example concerns the preparation of a composition similar to that of Example 3, that is to say based on cerium oxides, zirconium oxides, lanthanum and neodymium in the respective proportions by oxide mass of 21%, 72%, 2% and 5%.
  • the nitrate solution is introduced in one hour into the reactor with constant stirring so as to obtain a suspension.
  • the suspension obtained is placed in a stainless steel autoclave equipped with a stirrer.
  • the temperature of the medium is brought to 150 ° C. for 2 hours with stirring.
  • an ammonium laurate gel was prepared under the following conditions: 250 g of lauric acid are introduced into 135 ml of ammonia (12 mol / l) and 500 ml of distilled water, and the mixture is then homogenized with using a spatula.
  • the product thus obtained has an area of 80 m 2 / g.
  • the surface variation for calcination temperatures between 1000 ° C. and 1100 ° C. is 49%.
  • the surface variation for calcination temperatures between 900 ° C. and 1000 ° C. is 22%.
  • the three-way catalytic test indicates an 86% conversion at the COP for a product impregnated at 0.5% by mass of palladium. For a richness of 1.005, the NOx conversion rate measured in this test is 89%.
  • this product impregnated with 0.5% by weight of palladium reaches 20% conversion of NO at a temperature of 415 ° C.
  • This example relates to the preparation of a composition similar to that of Example 2, that is to say based on oxides of cerium, zirconium, lanthanum and yttrium in the respective proportions by mass of 40%, 50%, 5% and 5% oxide.
  • a procedure identical to that of Example 5 is followed.
  • the precursor used for the ytthum is a solution of yttrium nitrate.
  • the precipitate has an oxide content of 25%. 29 g of ammonium laurate are used per 100 g of precipitate.
  • the product thus obtained has an area of 73 m 2 / g.
  • the surface variation for calcination temperatures between 1000 ° C. and 1100 ° C. is greater than 53%.
  • the surface variation for calcination temperatures between 900 ° C. and 1000 ° C. is 26%.
  • the values of reducibility after calcination at different temperatures are indicated below.
  • For the value at 700 ° C it is the product as obtained at the end of the procedure which was mentioned above in this example.
  • For the other temperature value it is the same product that has then further calcined over the time and temperature indicated.
  • the three-way rich-media priming catalytic test indicates that this product impregnated at 0.1% by weight of rhodium reaches 50% conversion of NO at 430 ° C., 50% conversion. propene at 426 ° C and 20% conversion of CO at 365 ° C.
  • Table 1 summarizes the results at the COP of the dynamic three-channel catalytic test after redox aging at 1050 ° C./48 h for the compositions of Examples 2 and 6 which have the same levels of oxides.
  • composition of the invention has a substantially less significant variation in its catalytic properties than that of the comparative composition when the rhodium content decreases by 30% but also that its properties for the lowest rhodium content remain higher than that of the comparative composition. those of the comparative composition for the highest grade.
  • Table 2 summarizes the results at the COP of the three-way dynamic and priming catalytic tests for the compositions of Examples 3 and 5, which have the same contents of oxides, and impregnated at 0.5% by weight. of palladium.
  • composition of the invention has with palladium a significant efficiency and greater than that of the comparative example.

Abstract

La composition de l'invention à base d'oxydes de zirconium et de cérium présente une proportion en oxyde de cérium d'au plus 50 % en masse, un taux de réductibilité d'au moins 95 % après calcination sous air à 600 °C et une surface spécifique après calcination 4 heures à 1100 °C d'au moins 15 m2/g. Elle est préparée en formant un mélange aqueux comprenant des composés du zirconium, du cérium; en chauffant ce mélange à au moins 100 °C et en l'amenant à l'issue du chauffage à un pH basique; en ajoutant un additif de type tensioactif au précipité issu de ce mélange et en calcinant ce précipité sous gaz inerte ou sous vide à une température d'au moins 900 °C puis sous atmosphère oxydante à une température d'au moins 600 °C. La composition peut être utilisée dans le traitement des gaz d'échappement d'automobiles.

Description

COMPOSITION A BASE D'OXYDE DE ZIRCONIUM ET D'OXYDE DE
CERIUM A REDUCTIBILITE ELEVEE ET A SURFACE SPECIFIQUE
STABLE, PROCEDE DE PREPARATION ET UTILISATION DANS LE
TRAITEMENT DES GAZ D'ECHAPPEMENT
La présente invention concerne une composition à base d'oxyde de zirconium et d'oxyde de cérium à réductibilité élevée et à surface spécifique stable, son procédé de préparation et son utilisation notamment dans le traitement des gaz d'échappement d'automobiles. On utilise à l'heure actuelle pour le traitement des gaz d'échappement des moteurs à combustion interne (catalyse postcombustion automobile) des catalyseurs dits multifonctionnels. Par multifonctionnels, on entend les catalyseurs capables d'opérer non seulement l'oxydation en particulier du monoxyde de carbone et des hydrocarbures présents dans les gaz d'échappement mais également la réduction notamment des oxydes d'azote également présents dans ces gaz (catalyseurs "trois voies"). L'oxyde de zirconium et l'oxyde de cérium apparaissent aujourd'hui comme deux constituants particulièrement importants et intéressants de matériaux rentrant dans la composition de ce type de catalyseurs. Pour être efficaces dans une telle utilisation, ces matériaux doivent présenter une surface spécifique qui reste suffisamment importante même à température élevée. L'oxyde de zirconium permet notamment de stabiliser la surface de ce type de produits.
Une autre qualité requise pour ces matériaux est la réductibilité. On entend par réductibilité, ici et pour le reste de la description, le taux de cérium IV dans le matériau susceptible de se transformer en cérium III sous l'effet d'une atmosphère réductrice et à une température donnée. Cette réductibilité peut se mesurer par exemple par une consommation d'hydrogène dans un domaine de températures donné. Elle est due au cérium dans le cas des compositions du type de celles de l'invention, le cérium ayant la propriété de se réduire ou de s'oxyder. Cette réductibilité doit, bien sûr, être la plus élevée possible.
On cherche par ailleurs toujours à augmenter l'efficacité de ces matériaux, notamment lors de leur utilisation comme support de métaux précieux. Dans cette utilisation, ils favorisent la réduction des oxydes d'azote et l'oxydation du monoxyde de carbone et des hydrocarbures. On cherche aussi à développer des systèmes mettant en œuvre le moins possible de métal précieux. Plus particulièrement, on développe les systèmes à base de palladium, ce métal présentant l'intérêt d'être moins coûteux que d'autres métaux précieux comme le platine. A cette date, les systèmes au palladium sont moins efficaces que ceux à base d'autres métaux, notamment pour les compositions à teneur importante en zirconium.
L'objet de l'invention est la mise au point de compositions à propriétés améliorées, susceptibles de répondre aux caractéristiques mentionnées ci- dessus, notamment de compositions susceptibles d'être utilisées efficacement avec le palladium.
Dans ce but, la composition de l'invention est à base d'oxyde de zirconium et d'oxyde de cérium et elle est caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 50% en masse, une surface spécifique après calcination 4 heures à 1 100°C d'au moins 15 m2/g et un taux de réductibilité d'au moins 95% après calcination sous air à 600 °C.
L'invention concerne aussi une composition à base d'oxyde de zirconium et d'oxyde de cérium dans les mêmes proportions et avec la même caractéristique de surface que celles données ci-dessus et présentant un taux de réductibilité d'au moins 95% après calcination sous air à 700 °C.
L'invention concerne aussi une composition à base d'oxyde de zirconium et d'oxyde de cérium dans les mêmes proportions et avec la même caractéristique de surface que celles données ci-dessus et présentant un taux de réductibilité d'au moins 85% après calcination sous air à 900 °C.
L'invention concerne encore un procédé de préparation d'une telle composition qui est caractérisé en ce qu'il comprend les étapes suivantes :
- (a) on forme un mélange aqueux comprenant des composés du zirconium et du cérium; - (b) on chauffe le mélange ainsi formé à une température d'au moins 100°C ce par quoi on obtient un précipité en suspension dans le milieu réactionnel;
- c) on amène le milieu réactionnel obtenu à l'issue du chauffage à un pH basique;
- (d) soit on ajoute d'abord un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés au milieu issu de l'étape précédente et on sépare ensuite ledit précipité;
- (d') soit on sépare d'abord le précipité du milieu issu de l'étape (c) et on ajoute ensuite ledit additif au précipité;
- (e) on effectue une première calcination du précipité ainsi obtenu sous gaz inerte ou sous vide à une température d'au moins 900 °C puis une seconde calcination sous atmosphère oxydante à une température d'au moins 600 °C. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Pour la suite de la description, on entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER -
EMMETT- TELLER décrite dans le périodique "The Journal of the American
Chemical Society, 60, 309 (1938)".
Par lanthanides (Ln), on entend les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
On précise pour la suite de la description que, sauf indication contraire, dans les fourchettes de valeurs qui sont données, les valeurs aux bornes sont incluses. Les teneurs sont données en masse d'oxydes sauf indication contraire, ces oxydes pour l'expression de ces teneurs étant considérés sous la forme de l'oxyde cérique pour le cérium, sous la forme Ln2O3 pour les autres lanthanides Ln et sous la forme Pr6On dans le cas particulier du praséodyme. Les valeurs de surface spécifiques qui sont indiquées pour une température et une durée données correspondent, sauf indication contraire, à des calcinations sous air à un palier de température sur la durée indiquée.
Les compositions de l'invention sont du type oxydes mixtes, à base d'oxyde de zirconium et qui comprennent en outre de l'oxyde de cérium. Elles peuvent comprendre aussi au moins un oxyde d'un autre élément choisi parmi les lanthanides autres que le cérium. On peut donc avoir dans ce cas des compositions ternaires ou quaternaires notamment. L'élément précité peut être plus particulièrement choisi parmi l'yttrium, le lanthane, le néodyme ou le praséodyme. On peut citer plus particulièrement les compositions à base d'oxydes de zirconium, de cérium, de praséodyme et de lanthane, celles à base d'oxydes de zirconium, de cérium, de néodyme et de lanthane et celles à base d'oxydes de zirconium, de cérium, d'yttrium et de lanthane.
Les teneurs des différents constituants dans les compositions de l'invention peuvent varier dans une certaine gamme de proportions.
Pour le cérium, cette teneur est d'au plus 50% en masse, plus particulièrement d'au plus 45% et encore plus particulièrement d'au plus 40%.
L'oxyde de zirconium constitue le reste de la composition. Ainsi la teneur en zirconium peut être d'au moins 50% en masse, plus particulièrement d'au moins 55% et encore plus particulièrement d'au moins 60%. Cette teneur peut aussi être d'au moins 65% et encore plus particulièrement d'au moins 70% en fonction notamment de la possible présence d'un ou plusieurs autres éléments du type précité dans la composition. Compte tenu aussi de cette présence, la teneur en zirconium peut être inférieure à 50% dans les compositions ternaires ou quaternaires.
Plus précisément, la teneur en l'autre élément éventuel ou en l'ensemble de ces éléments est habituellement d'au plus 35%. Elle peut être plus particulièrement d'au plus 30% et encore plus particulièrement d'au plus 20% ou d'au plus 10%. Par ailleurs elle est de préférence d'au moins 3%, plus particulièrement d'au moins 5%. Cette teneur peut donc être comprise entre 3% et 35% dans le cas le plus général.
Les compositions de l'invention présentent comme caractéristique principale une réductibilité élevée qui est mesurée dans la présente description par un taux de réductibilité. La réductibilité des compositions est déterminée par la mesure de leur consommation d'hydrogène mesurée entre 30 °C et 900 °C. Cette mesure est faite par réduction programmée en température en utilisant de l'hydrogène dilué dans l'argon. On détecte un signal avec un détecteur de conductivité thermique. La consommation de l'hydrogène est calculée à partir de la surface manquante du signal d'hydrogène de la ligne de base à 30°C à la ligne de base à 900 °C. Le taux de réductibilité représente le pourcentage de cérium réduit, étant entendu qu'1/2 mole d'H2 consommée et mesurée par la méthode décrite plus haut correspond à 1 mole de CeIV réduit.
Le taux de réductibilité peut varier en fonction de la température à laquelle la composition a pu être calcinée lors de sa préparation.
Dans la présente description, les taux de réductibilité donnés sont mesurés par la méthode décrite ci-dessus sur des compositions ayant subi une calcination sous air d'une durée qui peut varier de 2 à 4 heures à différentes températures. On notera qu'à l'intérieur de cette gamme de temps on n'observe pas de variation significative du taux de réductibilité. Pour cette raison et sauf indication contraire les taux de réductibilité sont donnés pour des produits ayant été calcinés 2 heures.
Ainsi, après calcination 2 heures sous air à 600°C, les compositions de l'invention présentent un taux de réductibilité d'au moins 95%. Le taux de réductibilité peut même atteindre 100%.
Dans le cas d'une calcination 2 heures sous air à 700°C, les compositions de l'invention présentent aussi un taux de réductibilité d'au moins 95%. Le taux de réductibilité peut là aussi atteindre 100%. D'une manière générale, les taux de réductibilité à 700 °C des compositions de l'invention sont identiques à ceux à 600 °C ou ne présentent pas de variations significatives avec ceux mesurés à 600 °C.
Dans le cas d'une calcination 2 heures sous air à 900°C, les compositions de l'invention présentent par ailleurs un taux de réductibilité d'au moins 85%.
Selon un mode de réalisation particulier, les compositions de l'invention peuvent présenter une proportion en oxyde de cérium d'au plus 25%, une teneur en un autre oxyde de lanthanide d'au plus 15% et un taux de réductibilité d'au moins 80%, plus particulièrement d'au moins 85% après calcination sous air à 1000°C.
Les compositions de l'invention présentent en outre des caractéristiques particulières de surface spécifique.
Elles possèdent tout d'abord un niveau de surface important à haute température, c'est-à-dire après calcination à 1 100°C pendant 4 heures la surface spécifique de ces compositions est d'au moins 15 m2/g, plus particulièrement d'au moins 20 m2/g et encore plus particulièrement d'au moins 25 m2/g. Les valeurs de surface les plus élevées sont généralement obtenues pour les compositions comprenant au moins un élément précité (lanthanide autre que le cérium) et, pour les valeurs de surface les plus élevées à 1100°C un teneur importante en zirconium, c'est à dire d'au moins
50%.
On peut noter aussi que les compositions de l'invention présentent une stabilité de leur surface entre 900°C et 1000°C. Pour la présente description, cette stabilité est mesurée par la variation entre la surface (S9Oo) présentée après calcination à 900 °C pendant 4 heures et la surface (S-iooo) présentée après calcination à 1000°C pendant 4 heures, cette variation étant exprimée par le rapport (S90O - S-iooo )/S9Oo exprimé en %. Cette variation entre 900 °C et 1000°C peut être d'au plus 25%, plus particulièrement d'au plus 15%. On peut retrouver aussi une certaine stabilité de surface entre 1000°C et
1100°C. Cette variation, elle aussi exprimée par le rapport (S-noo - S-iooo )/Siooo, peut être d'au plus 30%, plus particulièrement d'au plus 20% après calcination 4 heures aux températures précitées.
Le procédé de préparation des compositions de l'invention va maintenant être décrit.
La première étape du procédé consiste donc à préparer un mélange aqueux comprenant des composés du zirconium, du cérium et, dans le cas de la préparation de compositions à base d'un ou plusieurs éléments précités, d'un composé de ce ou ces éléments.
Les composés sont de préférence des composés solubles. Ce peut être notamment des sels de zirconium, de cérium et de lanthanide. Ces composés peuvent être choisis parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri-ammoniacal ou encore, pour le zirconium ou le cérium les
(oxo)hydroxydes de ces éléments.
A titre d'exemples, on peut ainsi citer le sulfate de zirconyle, le nitrate de zirconyle ou le chlorure de zirconyle. Le nitrate de zirconyle est utilisé le plus généralement. On peut citer aussi notamment les sels de cérium IV tels que nitrates ou nitrate céri-ammoniacal par exemple, qui conviennent ici particulièrement bien. On peut utiliser du nitrate cérique. Il est avantageux d'utiliser des sels de pureté d'au moins 99,5% et plus particulièrement d'au moins 99,9%. Une solution aqueuse de nitrate cérique peut par exemple être obtenue par réaction de l'acide nitrique sur un oxyde cérique hydraté préparé d'une manière classique par réaction d'une solution d'un sel céreux, par exemple le nitrate céreux, et d'une solution d'ammoniaque en présence d'eau oxygénée. On peut également, en particulier, utiliser une solution de nitrate cérique obtenue selon le procédé d'oxydation électrolytique d'une solution de nitrate céreux tel que décrit dans le document FR-A- 2 570 087, et qui constitue ici une matière première intéressante.
On notera ici que les solutions aqueuses de sels de cérium et de sels de zirconyle peuvent présenter une certaine acidité libre initiale qui peut être ajustée par l'addition d'une base ou d'un acide. Il est cependant autant possible de mettre en œuvre une solution initiale de sels de cérium et de zirconium présentant effectivement une certaine acidité libre comme mentionné ci-dessus, que des solutions qui auront été préalablement neutralisées de façon plus ou moins poussée. Cette neutralisation peut se faire par addition d'un composé basique au mélange précité de manière à limiter cette acidité. Ce composé basique peut être par exemple une solution d'ammoniaque ou encore d'hydroxydes d'alcalins (sodium, potassium,...), mais de préférence une solution d'ammoniaque.
On notera enfin que lorsque le mélange de départ contient un composé du cérium dans lequel celui-ci est sous forme de Ce III, il est préférable de faire intervenir dans le cours du procédé un agent oxydant, par exemple de l'eau oxygénée. Cet agent oxydant peut être utilisé en étant ajouté au milieu réactionnel lors de l'étape (a) ou lors de l'étape (b), notamment à la fin de celle-ci. II est aussi possible d'utiliser un sol comme composé de départ du zirconium ou du cérium. Par sol on désigne tout système constitué de fines particules solides de dimensions colloïdales, c'est à dire des dimensions comprises entre environ 1 nm et environ 500nm, à base d'un composé de zirconium ou de cérium ce composé étant généralement un oxyde et/ou un oxyde hydraté de zirconium ou de cérium, en suspension dans une phase liquide aqueuse, lesdites particules pouvant en outre, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des chlorures ou des ammoniums. On notera que dans un tel sol, le zirconium ou le cérium peuvent se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions et sous la forme de colloïdes.
Le mélange peut être indifféremment obtenu soit à partir de composés initialement à l'état solide que l'on introduira par la suite dans un pied de cuve d'eau par exemple, soit encore directement à partir de solutions de ces composés puis mélange, dans un ordre quelconque, desdites solutions.
Le mélange initial étant ainsi obtenu, on procède ensuite, conformément à la deuxième étape (b) du procédé selon l'invention, à son chauffage.
La température à laquelle est mené ce traitement thermique est d'au moins 100°C. Elle peut ainsi être comprise entre 100°C et la température critique du milieu réactionnel, en particulier entre 100 et 350°C, de préférence entre 100 et 200 °C.
L'opération de chauffage peut être conduite en introduisant le mélange aqueux contenant les composés précités dans une enceinte close (réacteur fermé du type autoclave), la pression nécessaire ne résultant alors que du seul chauffage du milieu réactionnel (pression autogène). Dans les conditions de températures données ci-dessus, et en milieux aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). Il est bien entendu également possible d'exercer une pression extérieure qui s'ajoute alors à celle consécutive au chauffage.
On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C. Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote dans ce cas.
La durée du traitement n'est pas critique, et peut ainsi varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le milieu par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif. A l'issue de cette deuxième étape, on obtient un précipité en suspension dans le milieu réactionnel.
La troisième étape (c) du procédé consiste à amener le milieu réactionnel obtenu précédemment à un pH basique. Cette opération est effectuée en ajoutant au milieu une base telle que par exemple une solution d'ammoniaque. Par pH basique on entend une valeur du pH supérieure à 7 et de préférence supérieure à 8.
Il est aussi possible, à ce stade du procédé d'effectuer un mûrissement. Celui-ci peut être réalisé directement sur le milieu réactionnel obtenu après addition de la base ou sur une suspension obtenue après remise dans l'eau du précipité. Le mûrissement se fait en chauffant le milieu. La température à laquelle est chauffé le milieu est d'au moins 40 °C, plus particulièrement d'au moins 60°C et encore plus particulièrement d'au moins 100°C. Le milieu est maintenu ainsi à une température constante pendant une durée qui est habituellement d'au moins 30 minutes et plus particulièrement d'au moins 1 heure. Le mûrissement peut se faire à la pression atmosphérique ou éventuellement à une pression plus élevée. On peut noter qu'il est possible de faire un second mûrissement après séparation du précipité du milieu réactionnel issu du premier mûrissement et remise de celui-ci dans l'eau, ce second mûrissement s'effectuant dans les conditions qui ont été décrites pour le premier.
La suite du procédé peut être mise en œuvre selon deux variantes, c'est- à-dire selon les étapes (d) ou (d') décrites plus haut.
Selon un premier mode de réalisation correspondant à l'étape (d), on ajoute au milieu réactionnel issu de l'étape précédente un additif qui est choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés. En ce qui concerne cet additif on pourra se référer à l'enseignement de la demande WO-98/45212 et utiliser les tensioactifs décrits dans ce document. On peut mentionner comme tensioactifs du type anionique les éthoxycarboxylates, les acides gras éthoxylés ou propoxylés, notamment ceux de la marque ALKAMULS®, les sarcosinates de formule R-C(O)N(CH3)CH2COO", les bétaïnes de formule RR1NH-CH2-COO", R et R' étant des groupes alkyles ou alkylaryles, les esters phosphates, notamment ceux de la marque RHODAFAC®, les sulfates comme les sulfates d'alcool les sulfates d'éther alcool et les éthoxylats d'alcanolamide sulfatés, les sulfonates comme les sulfosuccinates, les alkyl benzène ou alkyl naphtalène sulfonates. Comme tensioactif non ionique, on peut mentionner les tensioactifs acétyléniques, les alcools gras éthoxylés ou propoxylés, par exemple ceux des marques RHODASURF® ou ANTAROX®, les alcanolamides, les oxydes d'aminé, les alcanolamides éthoxylés, les aminés éthoxylées ou propoxylées à longues chaînes, par exemple ceux de la marque RHODAMEEN®, les copolymères oxyde d'éthylène/oxide de propylène, les dérivés du sorbitan, l'éthylène glycol, le propylène glycol, le glycérol, les esters polyglycéryle et leurs dérivés éthoxylés, les alkylamines, les alkylimidazolines, les huiles éthoxylées et les alkylphénols éthoxylés ou propoxylés, notamment ceux de la marque IGEPAL®. On peut citer aussi en particulier les produits cités dans WO-98/45212 sous les marques IGEPAL®, DOWANOL®, RHODAMOX® et ALKAMIDE®.
En ce qui concerne les acides carboxyliques, on peut utiliser notamment les acides mono- ou dicarboxyliques aliphatiques et parmi ceux-ci plus particulièrement les acides saturés. On peut utiliser aussi des acides gras et plus particulièrement les acides gras saturés. On peut citer ainsi notamment les acides formique, acétique, proprionique, butyrique, isobutyrique, valérique, caproïque, caprylique, caprique, laurique, myristique, palmitique, stéarique, hydroxystéarique, éthyl-2-hexanoïque et béhénique. Comme acides dicarboxyliques, on peut mentionner les acides oxalique, malonique, succinique, glutarique, adipique, pimélique, subérique, azélaïque et sébacique.
Les sels des acides carboxyliques peuvent aussi être utilisés.
Enfin, il est possible d'utiliser un tensioactif qui est choisi parmi ceux du type éthoxylats d'alcools gras carboxyméthylés.
Par produit du type éthoxylats d'alcool gras carboxyméthylés on entend les produits constitués d'alcools gras éthoxylés ou propoxylés comportant en bout de chaîne un groupement -CH2-COOH.
Ces produits peuvent répondre à la formule : RrO-(CR2R3-CR4R5-O)n-CH2-COOH dans laquelle Ri désigne une chaîne carbonée, saturée ou insaturée, dont la longueur est généralement d'au plus 22 atomes de carbone, de préférence d'au moins 12 atomes de carbone; R2, R3, R4 et R5 peuvent être identiques et représenter l'hydrogène ou encore R2 peut représenter un groupe CH3 et R3, R4 et R5 représentent l'hydrogène; n est un nombre entier non nul pouvant aller jusqu'à 50 et plus particulièrement compris entre 5 et 15, ces valeurs étant incluses. On notera qu'un tensio-actif peut être constitué d'un mélange de produits de la formule ci-dessus pour lesquels Ri peut être saturé et insaturé respectivement ou encore des produits comportant à la fois des groupements -CH2-CH2-O- et -C(CHs)2-CH2-O-.
On peut bien entendu utiliser un mélange d'additifs du type décrit ci- dessus.
Après l'addition du tensio-actif, on sépare éventuellement le précipité du milieu liquide par tout moyen connu. Un autre mode de réalisation, qui correspond à la mise en œuvre de l'étape (d1), consiste à séparer d'abord le précipité du milieu réactionnel issu de l'étape (c), ceci par tout moyen connu, puis à ajouter l'additif tensioactif à ce précipité, par imprégnation du précipité ou par mélange solide/solide en fonction de l'état du tensio-actif utilisé. D'une manière générale, la quantité d'additif ou tensio-actif utilisée, exprimée en pourcentage en poids d'additif par rapport au poids de la composition calculé en oxyde, est généralement comprise entre 5% et 100% plus particulièrement entre 15% et 60%.
La dernière étape du procédé, étape (e), comporte une double calcination du précipité obtenu précédemment.
La première calcination est conduite sous gaz inerte ou sous vide. Le gaz inerte peut être l'hélium, l'argon ou l'azote. Le vide est généralement un vide primaire avec une pression partielle en oxygène inférieure à 10"1 mbar. La température de calcination est d'au moins 900 °C. Une température en deçà de cette valeur risque de ne pas conduire à un produit présentant les caractéristiques données plus haut de réductibilité. L'augmentation de la température de calcination entraîne une augmentation de la réductibilité qui peut atteindre des valeurs de 100% vers les plus hautes températures. La température est en outre fixée à une valeur tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Ainsi, généralement, la température maximale de calcination est d'au plus 1000°C car au-delà la surface spécifique risque d'être insuffisante. La durée de cette première calcination est généralement d'au moins 2 heures de préférence d'au moins 4 heures et notamment d'au moins 6 heures. Une augmentation de cette durée entraîne habituellement une augmentation du taux de réductibilité. Bien entendu, la durée peut être fixée en fonction de la température, une durée de calcination faible nécessitant une température plus élevée. On effectue ensuite une seconde calcination sous atmosphère oxydante, par exemple sous air. Dans ce cas, la calcination se fait généralement à une température d'au moins 600 °C sur une durée qui est généralement d'au moins 30 minutes. Une température inférieure à 600 °C peut rendre difficile l'élimination des additifs utilisés lors des étapes (d) ou (d') décrites plus haut. Il est préférable de ne pas dépasser une température de calcination de 900 °C.
Les compositions de l'invention telles que décrites plus haut ou telles qu'obtenues par le procédé mentionné précédemment se présentent sous forme de poudres mais elles peuvent éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables. Ces compositions peuvent être appliquées sur tout support utilisé habituellement dans le domaine de la catalyse, c'est à dire notamment des supports inertes thermiquement. Ce support peut être choisi parmi l'alumine, l'oxyde de titane, l'oxyde de cérium, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Les compositions peuvent aussi être utilisées dans des systèmes catalytiques. Ces systèmes catalytiques peuvent comprendre un revêtement (wash coat) à propriétés catalytiques et à base de ces compositions, sur un substrat du type par exemple monolithe métallique ou en céramique. Le revêtement peut comporter lui aussi un support du type de ceux mentionnés plus haut. Ce revêtement est obtenu par mélange de la composition avec le support de manière à former une suspension qui peut être ensuite déposée sur le substrat. Ces systèmes catalytiques et plus particulièrement les compositions de l'invention peuvent trouver de très nombreuses applications. Ils sont ainsi particulièrement bien adaptés à, et donc utilisables, dans la catalyse de diverses réactions telles que, par exemple, la déshydratation, l'hydrosulfuration, l'hydrodénitrification, la désulfuration, l'hydrodésulfuration, la déshydrohalogénation, le reformage, le reformage à la vapeur, le craquage, l'hydrocraquage, l'hydrogénation, la déshydrogénation, l'isomérisation, la dismutation, l'oxychloration, la déshydrocyclisation d'hydrocarbures ou autres composés organiques, les réactions de réduction et/ou d'oxydation, en particuliers des hydrocarbures aromatiques, linéaires, ramifiés, du méthane, du CO, la réaction de Claus, le traitement des gaz d'échappement des moteurs à combustion interne, la démétallation, la méthanation, la shift conversion, l'oxydation catalytique des suies émises par les moteurs à combustion interne comme les moteurs diesel ou essence fonctionnant en régime pauvre. Les systèmes catalytiques et les compositions de l'invention peuvent enfin être utilisés en combinaison avec des pièges à NOx.
Parmi les utilisations citées, le traitement des gaz d'échappement des moteurs à combustion interne (catalyse post combustion automobile) mettant en œuvre les systèmes catalytiques précités constitue une application particulièrement intéressante.
Dans le cas de ces utilisations en catalyse, les compositions de l'invention peuvent être employées en combinaison avec des métaux précieux. L'invention concerne donc des systèmes catalytiques, du type décrit plus haut, dans lesquels les compositions de l'invention sont utilisées comme support des métaux précieux. La nature de ces métaux et les techniques d'incorporation de ceux-ci dans ces compositions sont bien connues de l'homme du métier. Par exemple, les métaux peuvent être le platine, le rhodium, le palladium ou l'iridium, ils peuvent notamment être incorporés aux compositions par imprégnation. Selon un mode de réalisation particulier de l'invention, le système catalytique contient du palladium à titre de métal précieux. La teneur en métal précieux dans de tels systèmes est généralement d'au plus 10%, de préférence d'au plus 5% et encore plus préférentiellement d'au plus 1 %, cette quantité étant exprimée en masse de métal par rapport à l'ensemble métal/composition à base d'oxydes de l'invention. Cette teneur peut varier notamment en fonction de l'application recherchée et de la nature de la composition à base d'oxydes.
Il est intéressant de noter que les compositions de l'invention peuvent donner des résultats semblables à celles de l'art antérieur pour une quantité de métal précieux inférieure de 10% au moins.
Des exemples vont maintenant être donnés.
Les tests d'évaluation qui sont mentionnés dans les exemples ont été conduits dans les conditions suivantes.
Taux de réductibilité
Le taux de réductibilité du cérium est mesuré en effectuant une réduction en température programmée sur un appareil Ohkura Riken TP5000. Cet appareil permet de mesurer la consommation d'hydrogène d'une composition selon l'invention en fonction de la température et d'en déduire le taux de réduction du cérium.
Plus précisément, on utilise l'hydrogène comme gaz réducteur à 10% en volume dans l'argon avec un débit de 30 mL/mn. Le protocole expérimental consiste à peser 200 mg de l'échantillon dans un récipient préalablement taré. L'échantillon est ensuite introduit dans une cellule en quartz contenant dans le fond de la laine de quartz. L'échantillon est enfin recouvert de laine de quartz et positionné dans le four de l'appareil de mesure. Le programme de température est le suivant : - oxydation : montée en température jusqu'à 500 °C avec une rampe de montée à 10°C/mn sous O2 à 5%vol dans He;
- palier de 30 mn puis descente à 30 °C;
- traitement à 30 °C sous Ar pendant 20 mn;
- réduction : montée en température jusqu'à 900 °C avec une rampe de montée à 20°C/mn sous H2 à 10 %vol dans Ar;
- calibration;
- descente en température sous Ar de 900 °C à 30 °C.
Lors de ce programme, la température de l'échantillon est mesurée à l'aide d'un thermocouple placé dans la cellule de quartz au-dessus de l'échantillon. La consommation d'hydrogène lors de la phase de réduction est déduite grâce à la calibration de la variation de la conductivité thermique du flux gazeux mesurée en sortie de la cellule à l'aide d'un détecteur de conductivité thermique (TCD).
Le taux de réduction du cérium est calculé à partir de la consommation d'hydrogène mesurée entre 30°C et 900 °C.
Test catalvtique trois voies dynamique
Ce test permet d'évaluer dans des conditions dynamiques (fréquence d'oscillation de 1 Hz) les performances des catalyseurs monométalliques sous forme de poudre vis à vis de l'élimination des polluants CO, NO et hydrocarbures. Les hydrocarbures mis en œuvre dans le test sont le propane et le propène. Plusieurs mesures sont effectuées en isotherme en faisant varier la richesse du mélange gazeux entre les valeurs 0,980 et 1 ,015. On donne dans le tableau qui suit la composition de ce mélange gazeux pour ces deux valeurs. La température d'évaluation est de 480 °C et la masse de catalyseur de 20 mg en mélange avec 150 mg de SiC utilisé comme diluant inerte. Les performances catalytiques sont données en COP (Cross Over Point) qui est défini comme le point d'intersection des courbes de conversion du CO et du NO en fonction de la richesse du mélange. Pour ce test, on imprègne une composition selon l'invention avec une solution de nitrate de métal précieux palladium ou rhodium. Dans le cas du palladium, on fixe une teneur massique de 0,5% en élément palladium. Dans le cas du rhodium, on fixe une teneur massique de 0,1 % ou 0,07% en élément rhodium. Le produit est ensuite séché et activé sous air à 500 °C pendant 4h. Avant d'effectuer le test, on procède à un vieillissement à 950 °C pendant 16h ou à 1050°C pendant 48h en alternant un flux oxydant 1 ,8%vol O2 / 10%vol H2O / qsp N2 d'une durée de 5 mn et un flux réducteur 1 ,8%vol CO / 10%vol H2O / qsp N2 d'une durée de 5 mn.
Figure imgf000015_0001
Test catalvtiαue trois voies d'amorcaαe
Ce test d'amorçage (ou de light-off) permet d'évaluer la température à laquelle les catalyseurs trois voies sous forme de poudre atteignent 20% ou 50% de conversion (T20 ou T50) vis à vis des polluants CO, NO et hydrocarbures. Le test d'amorçage riche est effectué avec un mélange gazeux de richesse 1 ,024. Le test d'amorçage pauvre est effectué avec un mélange gazeux de richesse 0,98. La masse de catalyseur de 20 mg est mélangée avec 150 mg de SiC utilisé comme diluant inerte. La conversion vis-à-vis des polluants cités plus haut est alors mesurée en fonction de la température qui varie entre 200 et 500 °C avec une rampe de 25°C/min. Les performances d'amorçage pour chaque polluant sont exprimées en T20, température à laquelle on atteint 20% de conversion. Pour ce test, on imprègne une composition selon l'invention avec une solution de nitrate de métal précieux tel que le palladium ou le rhodium. Le produit est ensuite séché et activé sous air à 500 °C pendant 4h. Avant d'effectuer le test, on procède à un vieillissement à 950°C pendant 16h ou à 1050°C pendant 48h en alternant un flux oxydant 1 ,8%vol O2 / 10%vol H2O / qsp N2 d'une durée de 5 mn et un flux réducteur 1 ,8%vol CO / 10%vol H2O / qsp N2 d'une durée de 5 mn. EXEMPLE 1
Cet exemple concerne la préparation d'une composition selon l'invention à base d'oxydes de cérium, de zirconium et de lanthane dans les proportions respectives en masse d'oxyde de 47%, 47% et 6%. Dans les proportions stoechiométriques requises pour l'obtention de la composition ci-dessus, on mélange une solution de nitrate cérique, une solution de nitrate de lanthane et une solution de nitrate de zirconyle.
La concentration de ce mélange (exprimée en oxyde des différents éléments) est ajustée à 80 g/l. Ce mélange est ensuite porté à 150°C pendant 4 heures.
Une solution d'ammoniaque est ensuite ajoutée au milieu réactionnel de telle sorte que le pH soit supérieur à 8,5. Le milieu réactionnel ainsi obtenu est porté à ébullition pendant 2 heures. Après décantation puis soutirage, on remet en suspension le produit solide et le milieu ainsi obtenu est traité pendant 1 heure à 100 °C.
La suspension ainsi obtenue est alors filtrée sur Bϋchner. On récupère un précipité contenant 35% en masse d'oxyde.
On prélève 100 g de ce précipité.
Parallèlement, on a préparé un gel de laurate d'ammonium dans les conditions suivantes: on introduit 250 g d'acide laurique dans 135 ml d'ammoniaque (12 mol/l) et 500 ml d'eau distillée, puis on homogénéise à l'aide d'une spatule.
28 g de ce gel sont ajoutés à 100 g du précipité puis l'ensemble est malaxé jusqu'à obtention d'une pâte homogène. La première calcination a lieu sous azote avec un débit de 300 cm3/mn à une température de 1000°C pendant 4h en palier. Le produit est ensuite ramené à température ambiante. La deuxième calcination est faite sous air avec un débit de 300 cm3/mn à une température de 600 °C pendant 2h en palier. Le produit ainsi obtenu présente une surface de 27 m2/g.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures.
4h 1000°C = 26 m2/g
4h 1 100°C = 23 m2/g La variation de surface pour des températures de calcination comprises entre 1000 °C et 1 1000C est de 12%.
On donne par ailleurs ci-dessous les taux de réductibilité et une température de réductibilité maximale après calcination sous air à différentes températures. Pour la valeur à 600 °C il s'agit du produit tel qu'obtenu à l'issue du mode opératoire qui a été décrit plus haut dans cet exemple. Pour l'autre valeur de température, il s'agit du même produit qui a ensuite subi une calcination supplémentaire sur la durée et à la température indiquées. 2h 600 °C taux de réductibilité = 100% Tmax = 580 °C
2h 900 °C taux de réductibilité = 88%
EXEMPLE 2
Cet exemple concerne la préparation d'une composition selon l'invention à base d'oxydes de cérium, de zirconium, de lanthane et d'yttrium dans les proportions respectives en masse d'oxyde de 40%, 50%, 5% et 5%.
Dans les proportions stoechiométriques requises pour l'obtention de la composition ci-dessus, on suit un mode opératoire identique à celui de l'exemple 1. Le précurseur utilisé pour l'ytthum est une solution de nitrate d'yttrium. Le précipité présente une teneur en oxyde de 35%. On utilise 41 ,4 g de laurate d'ammonium pour 100 g de précipité.
Le produit ainsi obtenu présente une surface de 36 m2/g.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures. 4h 1000°C = 34 m2/g
4h 1 100°C = 27 m2/g
La variation de surface pour des températures de calcination comprises entre 1000 °C et 1 100O est de 21 %.
On donne par ailleurs ci-dessous les taux de réductibilité et une température de réductibilité maximale après calcination sous air à différentes températures. Pour la valeur à 600 °C il s'agit du produit tel qu'obtenu à l'issue du mode opératoire qui a été décrit plus haut dans cet exemple. Pour l'autre valeur de température, il s'agit du même produit qui a ensuite subi une calcination supplémentaire sur la durée et à la température indiquées. 2h 600 °C taux de réductibilité = 96%Tmax = 560 °C
2h 900 °C taux de réductibilité = 88%
On donne par ailleurs ci-dessous les résultats des tests de vieillissement tels que décrits précédemment et obtenus sur le produit issu du procédé de préparation décrit plus haut, c'est-à-dire notamment après une première calcination de 1000°C 4h et une seconde calcination de 600 °C 2h.
Après vieillissement redox 950°C de 16h, le test catalytique trois voies d'amorçage en milieu riche indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 20% de conversion du NO à 350 °C et 20% de conversion du propène à 360 °C.
Après vieillissement redox 1050°C/48h, le test catalytique trois voies d'amorçage en milieu riche indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 50% de conversion du NO à 405 °C, 50% de conversion du propène à 408 °C et 20% de conversion du CO à 345 °C.
De même après vieillissement redox 1050°C/48h, le test catalytique trois voies d'amorçage en milieu pauvre indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 50% de conversion du CO à 360 °C et 50% de conversion du propène à 390 °C.
Après vieillissement redox 1050°C/48h, le test catalytique trois voies dynamique indique une conversion de 95% au COP pour un produit imprégné à 0,1 % en masse de rhodium. On obtient une conversion de 92,5% au COP pour un produit imprégné avec 0,07% en masse de rhodium. La diminution de 30% de la teneur massique en rhodium entraîne une diminution du COP de 2,5%.
EXEMPLE 3
Cet exemple concerne la préparation d'une composition selon l'invention à base d'oxydes de cérium, de zirconium, de lanthane et de néodyme dans les proportions respectives en masse d'oxyde de 21 %, 72%, 2% et 5%.
Dans les proportions stoechiométriques requises pour l'obtention de la composition ci-dessus, on suit un mode opératoire identique à celui de l'exemple 1. Le précurseur utilisé pour le néodyme est une solution de nitrate de néodyme. Le précipité présente une teneur en oxyde de 30%. On utilise
35,5 g de laurate d'ammonium pour 100 g de précipité.
Le produit ainsi obtenu présente une surface de 40 m2/g.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures. 4h 1000°C = 38 m2/g
4h 1 100°C = 27 m2/g
La variation de surface pour des températures de calcination comprises entre 1000°C et 1 100O est de 29%.
On donne par ailleurs ci-dessous les taux de réductibilité et une température de réductibilité maximale après calcination sous air à différentes températures. Pour la valeur à 600 °C il s'agit du produit tel qu'obtenu à l'issue du mode opératoire qui a été décrit plus haut dans cet exemple. Pour l'autre valeur de température, il s'agit du même produit qui a ensuite subi une calcination supplémentaire sur la durée et à la température indiquées.
2h 600 °C taux de réductibilité = 100% Tmax = 540 °C
2h 900 °C taux de réductibilité = 90% 2h 1000 °C taux de réductibilité = 87%
On donne par ailleurs ci-dessous les résultats obtenus sur le produit issu du procédé de préparation décrit plus haut, c'est-à-dire notamment après une première calcination de 1000°C 4h et une seconde calcination de 600 °C 2h après les tests catalytique trois voies décrits précédemment. Le test catalytique trois voies dynamique indique une conversion de 94% au COP pour un produit imprégné à 0,5% en masse de palladium. Pour une richesse de 1 ,005, le taux de conversion des NOx mesuré dans ce test est de 99%.
Dans le test catalytique trois voies d'amorçage en milieu riche, ce produit imprégné à 0,5% en masse de palladium atteint 20% de conversion du NO à une température de 400 °C.
EXEMPLE 4
Cet exemple concerne la préparation d'une composition selon l'invention à base d'oxydes de cérium, de zirconium et de lanthane dans les proportions respectives en masse d'oxyde de 30%, 42% et 28%.
Dans les proportions stoechiométriques requises pour l'obtention de la composition ci-dessus, on suit un mode opératoire identique à celui de l'exemple 1. Le précipité présente une teneur en oxyde de 34%. On utilise 40 g de laurate d'ammonium pour 100 g de précipité.
Le produit ainsi obtenu présente une surface de 23 m2/g et un taux de réductibilité de 98 % mesuré à 600 °C, la température maximale de réductibilité est de 625 °C.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures.
4h 1000°C = 21 m2/g
4h 1 100°C = 17 m2/g
La variation de surface pour des températures de calcination comprises entre 1000 °C et 1 1000C est de 19%.
EXEMPLE 5 COMPARATIF
Cet exemple concerne la préparation d'une composition semblable à celle de l'exemple 3, c'est-à-dire à base d'oxydes de cérium, de zirconium, de lanthane et de néodyme dans les proportions respectives en masse d'oxyde de 21 %, 72%, 2% et 5%.
Dans un bêcher agité, on introduit 900 ml de nitrate de zirconyle (80g/l),
42,3 ml de nitrate de cérium à l'état d'oxydation III (496 g/l), 4,4 ml de nitrate de lanthane (454 g/l) et 9,5 ml de nitrate de néodyme (524 g/l). On complète ensuite avec de l'eau distillée de façon à obtenir 1 litre d'une solution de ces nitrates.
Dans un réacteur agité, on introduit 250 ml d'une solution d'ammoniaque (12 mol/l), 74 ml d'eau oxygénée (1 10 volumes) et on complète ensuite avec de l'eau distillée de façon à obtenir un volume total de 1 litre.
La solution de nitrates est introduite en une heure dans le réacteur sous agitation constante de manière à obtenir une suspension.
La suspension obtenue est placée dans un autoclave en acier inoxydable équipé d'un mobile d'agitation. La température du milieu est portée à 150°C pendant 2 heures sous agitation.
La suspension ainsi obtenue est alors filtrée sur Bϋchner. On récupère un précipité de couleur jaune pâle contenant 23 % en masse d'oxyde. On prélève 76 g de ce précipité.
Parallèlement, on a préparé un gel de laurate d'ammonium dans les conditions suivantes : on introduit 250 g d'acide laurique dans 135 ml d'ammoniaque (12 mol/l) et 500 ml d'eau distillée, puis on homogénéise à l'aide d'une spatule.
21 g de ce gel sont ajoutés au 76 g du précipité dans un broyeur à bille puis l'ensemble est broyé jusqu'à obtention d'une pâte homogène. Le produit est ensuite calciné sous air à 700 °C pendant 4 heures en palier.
Le produit ainsi obtenu présente une surface de 80 m2/g.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures. 4h 900°C = 55 m2/g
4h 1000°C = 43 m2/g
4h 1 100°C = 22 m2/g
La variation de surface pour des températures de calcination comprises entre 1000 °C et 1 1000C est de 49%. La variation de surface pour des températures de calcination comprises entre 900 °C et 1000 °C est de 22%.
On indique ci-dessous les valeurs de réductibilité après calcination à différentes températures. Pour la valeur à 700 °C il s'agit du produit tel qu'obtenu à l'issue du mode opératoire qui a été décrit plus haut dans cet exemple. Pour les autres valeurs de température, il s'agit du même produit qui a ensuite subi une calcination supplémentaire sur la durée et à la température indiquées. 4h 700 °C taux de réductibilité = 85%
2h 900 °C taux de réductibilité = 80%
2h 1000 °C taux de réductibilité = 78%
Le test catalytique trois voies indique une conversion de 86% au COP pour un produit imprégné à 0,5% en masse de palladium. Pour une richesse de 1 ,005, le taux de conversion des NOx mesuré dans ce test est de 89%.
Dans le test catalytique trois voies d'amorçage en milieu riche, ce produit imprégné à 0,5% en masse de palladium atteint 20% de conversion du NO à une température de 415°C.
EXEMPLE 6 COMPARATIF
Cet exemple concerne la préparation d'une composition semblable à celle de l'exemple 2, c'est-à-dire à base d'oxydes de cérium, de zirconium, de lanthane et d'yttrium dans les proportions respectives en masse d'oxyde de 40%, 50%, 5% et 5%. Dans les proportions stoechiométriques requises pour l'obtention de la composition ci-dessus, on suit un mode opératoire identique à celui de l'exemple 5. Le précurseur utilisé pour l'ytthum est une solution de nitrate d'yttrium. Le précipité présente une teneur en oxyde de 25%. On utilise 29 g de laurate d'ammonium pour 100 g de précipité. Le produit ainsi obtenu présente une surface de 73 m2/g.
On indique ci-dessous les surfaces obtenues après calcinations ultérieures à différentes températures. 4h 900°C = 54 m2/g 4h 1000°C = 43 m2/g 4h 1 100°C = 20 m2/g
La variation de surface pour des températures de calcination comprises entre 1000°C et 1 100 °C est supérieure à 53%.
La variation de surface pour des températures de calcination comprises entre 900 °C et 1000 °C est de 26%. On indique ci-dessous les valeurs de réductibilité après calcination à différentes températures. Pour la valeur à 700 °C il s'agit du produit tel qu'obtenu à l'issue du mode opératoire qui a été mentionné plus haut dans cet exemple. Pour l'autre valeur de température, il s'agit du même produit qui a ensuite subi une calcination supplémentaire sur la durée et à la température indiquées.
2h 700 °C taux de réductibilité = 68%
2h 900 °C taux de réductibilité = 63% On donne par ailleurs ci-dessous les résultats des tests de vieillissement tels que décrits précédemment et obtenus sur le produit issu du procédé de préparation décrit plus haut pour l'exemple 5, c'est-à-dire après une calcination à 700°C 4h.
Après un vieillissement redox 950°C/16h, le test catalytique trois voies d'amorçage en milieu riche indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 20% de conversion du NO à 390 °C et 20% de conversion du propène à 395 °C.
Après vieillissement redox 1050°C/48h, le test catalytique trois voies d'amorçage en milieu riche indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 50% de conversion du NO à 430 °C, 50% de conversion du propène à 426 °C et 20% de conversion du CO à 365 °C.
Après vieillissement redox 1050°C/48h, le test catalytique trois voies d'amorçage en milieu pauvre indique que ce produit imprégné à 0,1 % en masse de rhodium atteint 50% de conversion du CO à 390 °C et 50% de conversion du propène à 450 °C.
Après vieillissement redox 1050°C/48h, le test catalytique trois voies dynamique indique une conversion de 91 % COP pour un produit imprégné à
0,1 % en masse de rhodium. On obtient une conversion de 84% de COP pour un produit imprégné avec 0,07% en masse de rhodium. La diminution de 30% de la teneur massique en rhodium entraîne une diminution du COP de 6%.
On a récapitulé dans le tableau 1 ci-dessous les résultats au COP du test catalytique trois voies dynamique après vieillissement redox 1050°C/48h pour les compositions des exemples 2 et 6 qui présentent les mêmes teneurs en oxydes. Tableau 1
Figure imgf000023_0001
II apparaît que la composition de l'invention présente une variation de ses propriétés catalytiques nettement moins importante que celle de la composition comparative lorsque la teneur en rhodium diminue de 30% mais aussi que ses propriétés pour la teneur la plus faible en rhodium restent supérieures à celles de la composition comparative pour la teneur la plus haute.
On a récapitulé dans le tableau 2 ci-dessous les résultats au COP des tests catalytiques trois voies dynamique et d'amorçage pour les compositions des exemples 3 et 5, qui présentent les mêmes teneurs en oxydes, et imprégnées à 0,5% en masse de palladium.
Tableau 2
Figure imgf000023_0002
On voit que la composition de l'invention présente avec le palladium une efficacité importante et supérieure à celle de l'exemple comparatif.

Claims

REVENDICATIONS
1 - Composition à base d'oxyde de zirconium et d'oxyde de cérium, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 50% en masse, un taux de réductibilité d'au moins 95% après calcination sous air à 600 °C et une surface spécifique après calcination 4 heures à 1100°C d'au moins 15 m2/g.
2- Composition à base d'oxyde de zirconium et d'oxyde de cérium, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 50% en masse, un taux de réductibilité d'au moins 95% après calcination sous air à 700 °C et une surface spécifique après calcination 4 heures à 1100°C d'au moins 15 m2/g.
3- Composition à base d'oxyde de zirconium et d'oxyde de cérium, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 50% en masse, un taux de réductibilité d'au moins 85% après calcination sous air à 900 °C et une surface spécifique après calcination 4 heures à 1100 °C d'au moins 15 m2/g.
4- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins un oxyde d'un autre élément choisi parmi les lanthanides autres que le cérium.
5- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend au moins un oxyde d'un lanthanide choisi parmi l'ytthum, le lanthane, le néodyme et le praséodyme.
6- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 45%.
7- Composition selon l'une des revendications 1 à 5, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 40%.
8- Composition selon l'une des revendications 1 à 5, caractérisée en ce qu'elle présente une proportion en oxyde de cérium d'au plus 25%, une teneur en un autre oxyde de lanthanide d'au plus 15% et un taux de réductibilité d'au moins 80%, plus particulièrement d'au moins 85%, après calcination sous air à 1000°C.
9- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une surface spécifique après calcination 4 heures à 1 100°C d'au moins 20 m2/g, plus particulièrement d'au moins 25 m2/g.
10- Composition selon l'une des revendications 4 à 9, caractérisée en ce qu'elle présente une teneur en lanthanide comprise entre 3% et 35%.
11 - Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle présente une variation de surface spécifique d'au plus 30%, plus particulièrement d'au plus 20%, après calcination 4 heures à 1000°C puis 4 heures à 1 1000C.
12- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
- (a) on forme un mélange aqueux comprenant des composés du zirconium, du cérium et, éventuellement, d'un élément précité; - (b) on chauffe le mélange ainsi formé à une température d'au moins 100°C ce par quoi on obtient un précipité en suspension dans le milieu réactionnel;
- c) on amène le milieu réactionnel obtenu à l'issue du chauffage à un pH basique;
- (d) soit on ajoute d'abord un additif, choisi parmi les tensioactifs anioniques, les tensioactifs non ioniques, les polyéthylène-glycols, les acides carboxyliques et leurs sels et les tensioactifs du type éthoxylats d'alcools gras carboxyméthylés au milieu issu de l'étape précédente et on sépare ensuite ledit précipité;
- (d') soit on sépare d'abord le précipité du milieu issu de l'étape (c) et on ajoute ensuite ledit additif au précipité;
- (e) on effectue une première calcination du précipité ainsi obtenu sous gaz inerte ou sous vide à une température d'au moins 900°C puis une seconde calcination sous atmosphère oxydante à une température d'au moins 600 °C.
13- Procédé selon la revendication 12, caractérisé en ce qu'à l'issue de l'étape c) on effectue un mûrissement du milieu réactionnel en chauffant le milieu à une température d'au moins 40 °C. 14- Procédé selon la revendication 12 ou 13, caractérisé en ce qu'on utilise comme composés du zirconium, du cérium et de l'élément précité un composé choisi parmi les nitrates, les sulfates, les acétates, les chlorures, le nitrate céri- ammoniacal.
15- Procédé selon l'une des revendications 12 à 14, caractérisé en ce que la seconde calcination est faite sous air.
16- Système catalytique, caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 1 1 ou obtenue par le procédé selon l'une des revendications 12 à 15.
17- Système catalytique selon la revendication 16, caractérisé en ce qu'il comprend, à titre de support, la composition précitée et du palladium supporté par ladite composition.
18- Procédé de traitement des gaz d'échappement des moteurs à combustion interne, caractérisé en ce qu'on utilise à titre de catalyseur un système catalytique selon la revendication 16 ou 17.
PCT/EP2007/052586 2006-03-21 2007-03-19 Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement WO2007107546A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL07727063.5T PL2007682T5 (pl) 2006-03-21 2007-03-19 Kompozycja na bazie tlenku cyrkonu i tlenku ceru o wysokiej redukcyjności i o stałej powierzchni właściwej, sposób wytwarzania i zastosowania przy obróbce gazów spalinowych
CA2645588A CA2645588C (fr) 2006-03-21 2007-03-19 Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement
JP2009500843A JP5391059B2 (ja) 2006-03-21 2007-03-19 高い還元性および安定な比表面積を有する、酸化ジルコニウムおよび酸化セリウムに基づく組成物、調製方法、ならびに排気ガスの処理における使用
DE202007019182U DE202007019182U1 (de) 2006-03-21 2007-03-19 Zusammensetzung auf der Grundlage von Zirconiumoxid und von Ceroxid mit hoher Reduzierbarkeit und mit einer stabilen spezifischen Oberfläche, insbesondere zur Verwendung bei der Behandlung von Abgasen
US12/293,332 US8158551B2 (en) 2006-03-21 2007-03-19 Catalyst compositions for the treatment of vehicular exhaust gases comprise zirconium oxide and cerium oxide, and have a high reducibility and a stable specific surface area
KR1020087022944A KR101050861B1 (ko) 2006-03-21 2007-03-19 높은 환원능 및 안정한 비표면적을 갖는 산화지르코늄 및 산화세륨 기재의 조성물, 그의 제조 방법, 및 배기 가스 처리에서의 용도
CN2007800086405A CN101400609B (zh) 2006-03-21 2007-03-19 具有高的可还原性和稳定比表面积的基于氧化锆和氧化铈的组合物、制备方法以及在废气处理中的用途
ES07727063T ES2585235T5 (es) 2006-03-21 2007-03-19 Composición a base de óxido de circonio y óxido de cerio con reducibilidad elevada y superficie específica estable, procedimiento de preparación y uso en el tratamiento de los gases de escape
EP07727063.5A EP2007682B2 (fr) 2006-03-21 2007-03-19 Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0602450A FR2898887B1 (fr) 2006-03-21 2006-03-21 Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable procede de preparation et utilisation dans le traitement des gaz d'echappement
FR0602450 2006-03-21

Publications (1)

Publication Number Publication Date
WO2007107546A1 true WO2007107546A1 (fr) 2007-09-27

Family

ID=36698944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052586 WO2007107546A1 (fr) 2006-03-21 2007-03-19 Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement

Country Status (12)

Country Link
US (1) US8158551B2 (fr)
EP (1) EP2007682B2 (fr)
JP (1) JP5391059B2 (fr)
KR (1) KR101050861B1 (fr)
CN (1) CN101400609B (fr)
CA (1) CA2645588C (fr)
DE (1) DE202007019182U1 (fr)
ES (1) ES2585235T5 (fr)
FR (1) FR2898887B1 (fr)
PL (1) PL2007682T5 (fr)
RU (1) RU2407584C2 (fr)
WO (1) WO2007107546A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870378A1 (fr) * 2006-06-20 2007-12-26 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Oxyde mixte à base de zirconium et procédé de production correspondant
WO2010104658A2 (fr) 2009-02-20 2010-09-16 Basf Catalysts Llc Composites catalytiques à base de palladium sur support
US8728435B2 (en) 2006-05-15 2014-05-20 Rhodia Operations High specific surface/reducibility catalyst/catalyst support compositions comprising oxides of zirconium, cerium and lanthanum and of yttrium, gadolinium or samarium
US9757711B2 (en) 2009-12-25 2017-09-12 Solvay Special Chem Japan, Ltd. Complex oxide, method for producing same, and exhaust gas purifying catalyst
FR3050451A1 (fr) * 2016-04-26 2017-10-27 Rhodia Operations Oxyde mixte a base de cerium et de zirconium
EP3409355A4 (fr) * 2016-01-28 2019-07-24 Catalar Corporation OXYDE COMPOSITE À BASE DE Zr SUPPORTANT Pd

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530372B2 (en) * 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
KR101805599B1 (ko) * 2009-11-25 2017-12-07 솔베이 스페셜켐 재팬 가부시키가이샤 복합 산화물, 그 제조법 및 배기가스 정화용 촉매
FR2955098B1 (fr) * 2010-01-11 2014-09-05 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium et d'une autre terre rare a temperature maximale de reductibilite reduite, procede de preparation et utilisation dans le domaine de la catalyse.
FR2962431B1 (fr) * 2010-07-07 2018-01-19 Rhodia Operations Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catlyse.
FR2972366B1 (fr) 2011-03-08 2016-01-15 Rhodia Operations Procede de traitement d'un gaz contenant des oxydes d'azote (nox) utilisant comme catalyseur une composition a base de zirconium, de cerium et de niobium
WO2013060341A1 (fr) * 2011-10-24 2013-05-02 Haldor Topsøe A/S Composition de catalyseur s'utilisant dans la réduction catalytique sélective d'oxydes d'azote
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US9511353B2 (en) 2013-03-15 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) Firing (calcination) process and method related to metallic substrates coated with ZPGM catalyst
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9314771B2 (en) * 2013-07-11 2016-04-19 Sabic Global Technologies B.V. Use of lanthanide oxides to reduce sintering of catalysts
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
EP3020689A1 (fr) 2014-11-12 2016-05-18 Rhodia Operations Particules d'oxyde de cérium et son procédé de production
US9616386B2 (en) * 2015-03-23 2017-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purification of exhaust gas, NOx storage-reduction catalyst, and method for purifying exhaust gas
WO2017173018A1 (fr) 2016-04-01 2017-10-05 Pacific Industrial Development Corporation Procédé de préparation d'oxydes mixtes à base de zirconium mésoporeux
JP6932726B2 (ja) * 2016-05-18 2021-09-08 ローディア オペレーションズ 酸化セリウム粒子およびそれらの製造方法
CN106190340B (zh) * 2016-07-19 2019-07-12 太原理工大学 可再生复合金属氧化物高温煤气脱硫剂及制备方法
US11433376B2 (en) * 2017-05-11 2022-09-06 Rhodia Operations Mixed oxide with enhanced resistance and NOx storage capacity
CN107573968B (zh) * 2017-09-18 2020-01-03 肖连朝 一种利用废弃油脂制备高纯度生物烷烃的方法
EP3935015A1 (fr) 2019-03-03 2022-01-12 Rhodia Operations Oxyde mixte présentant un volume poreux élevé
US20230129838A1 (en) 2020-02-14 2023-04-27 Neo Performance Materials (Singapore) Pte. Ltd. Process for making cerium and zirconium containing compositions using mesitylene and composition made by same
DE102021118801A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118803A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118802A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045212A1 (fr) * 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
EP0955267A1 (fr) * 1996-12-27 1999-11-10 Anan Kasei Co., Ltd Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz
US20030224931A1 (en) * 2002-03-22 2003-12-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide and method for producing the same, and catalyst
FR2852596A1 (fr) * 2003-03-18 2004-09-24 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
FR2852591A1 (fr) * 2003-03-18 2004-09-24 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
FR2859470A1 (fr) * 2003-09-04 2005-03-11 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
FR2897609A1 (fr) 2006-02-17 2007-08-24 Rhodia Recherches & Tech Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
WO2007109359A2 (fr) 2006-03-21 2007-09-27 Crane Co. Système de commande de siège
FR2908761A1 (fr) 2006-11-16 2008-05-23 Rhodia Recherches & Tech Composition a base d'oxydes de zirconium,de cerium, d'yttrium, de lanthane et d'une autre terre rare,a haute reductibilite,procede de preparation et utilisation en catalyse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570087B1 (fr) 1984-09-13 1986-11-21 Rhone Poulenc Spec Chim Procede d'oxydation electrolytique et ensemble d'electrolyse pour sa mise en oeuvre
JPH0838898A (ja) * 1994-08-01 1996-02-13 Mazda Motor Corp 排気ガス浄化用触媒
FR2736343B1 (fr) 1995-07-03 1997-09-19 Rhone Poulenc Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
JP4094689B2 (ja) * 1996-04-05 2008-06-04 阿南化成株式会社 酸素吸収放出能を有する複合酸化物の製造法
US5948377A (en) * 1996-09-04 1999-09-07 Engelhard Corporation Catalyst composition
DE69719211T2 (de) 1996-10-15 2003-12-18 Rhodia Rare Earths Inc Cerium und zirkonium oxide, mischoxide und feste lösungen mit verbesserte thermische stabilität fur katalyse von abgassysteme und verfahren zur herstellung
JP2000176282A (ja) * 1998-12-16 2000-06-27 Toyota Central Res & Dev Lab Inc リーン排ガス浄化用触媒
EP1035074B1 (fr) 1999-03-05 2007-02-14 Daiichi Kigenso Kagaku Co., Ltd. Oxyde mixte de zirconium et de cerium, procédé pour sa préparation, materiau catalytique contenant l'oxyde mixte et l'utilisation de ce materiau catalytique pour la purification de gaz d'échappement
JP4225071B2 (ja) * 2002-03-22 2009-02-18 株式会社豊田中央研究所 セリア−ジルコニア固溶体の製造方法
JP2003277059A (ja) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc セリア−ジルコニア系複合酸化物
FR2841547B1 (fr) 2002-06-26 2005-05-06 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxydes de cerium, de lanthane et d'une autre terre rare, son procede de preparation et son utilisation comme catalyseur
JP2005231951A (ja) * 2004-02-19 2005-09-02 Tosoh Corp 複合酸化物及び排ガス浄化用触媒
US7964527B2 (en) 2006-02-17 2011-06-21 Rhodia Operations Catalytic compositions comprising the oxides of zirconium, cerium, yttrium, lanthanum and other rare earths

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0955267A1 (fr) * 1996-12-27 1999-11-10 Anan Kasei Co., Ltd Oxyde de compose zirconium et cerium, procede d'elaboration correspondant et co-catalyseur d'epuration des gaz
WO1998045212A1 (fr) * 1997-04-04 1998-10-15 Rhodia Rare Earths Inc. OXYDES DE CERIUM, OXYDES DE ZIRCONIUM, OXYDES MIXTES Ce/Zr ET SOLUTIONS SOLIDES Ce/Zr PRESENTANT UNE STABILITE THERMIQUE ET UNE CAPACITE DE STOCKAGE D'OXYGENE AMELIOREES
US20030224931A1 (en) * 2002-03-22 2003-12-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide and method for producing the same, and catalyst
FR2852596A1 (fr) * 2003-03-18 2004-09-24 Rhodia Elect & Catalysis Composition a base d'oxydes de cerium et de zirconium a surface specifique stable entre 900 c et 1000 c, son procede de preparation et son utilisation comme catalyseur
FR2852591A1 (fr) * 2003-03-18 2004-09-24 Rhodia Elect & Catalysis Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
FR2859470A1 (fr) * 2003-09-04 2005-03-11 Rhodia Elect & Catalysis Composition a base d'oxyde de cerium et d'oxyde de zirconium a reductibilite et surface elevees, procede de preparation et utilisation comme catalyseur
FR2897609A1 (fr) 2006-02-17 2007-08-24 Rhodia Recherches & Tech Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
WO2007109359A2 (fr) 2006-03-21 2007-09-27 Crane Co. Système de commande de siège
FR2908761A1 (fr) 2006-11-16 2008-05-23 Rhodia Recherches & Tech Composition a base d'oxydes de zirconium,de cerium, d'yttrium, de lanthane et d'une autre terre rare,a haute reductibilite,procede de preparation et utilisation en catalyse

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728435B2 (en) 2006-05-15 2014-05-20 Rhodia Operations High specific surface/reducibility catalyst/catalyst support compositions comprising oxides of zirconium, cerium and lanthanum and of yttrium, gadolinium or samarium
EP2024084B1 (fr) * 2006-05-15 2019-07-10 Rhodia Opérations Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, et utilisation comme catalyseur
US7781365B2 (en) 2006-06-20 2010-08-24 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based mixed oxide and production process thereof
EP1870378A1 (fr) * 2006-06-20 2007-12-26 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Oxyde mixte à base de zirconium et procédé de production correspondant
EP2398587A2 (fr) * 2009-02-20 2011-12-28 BASF Corporation Composites catalytiques à base de palladium sur support
JP2012518531A (ja) * 2009-02-20 2012-08-16 ビー・エイ・エス・エフ、コーポレーション パラジウム担持触媒複合体
EP2398587A4 (fr) * 2009-02-20 2012-01-18 Basf Corp Composites catalytiques à base de palladium sur support
WO2010104658A2 (fr) 2009-02-20 2010-09-16 Basf Catalysts Llc Composites catalytiques à base de palladium sur support
US9757711B2 (en) 2009-12-25 2017-09-12 Solvay Special Chem Japan, Ltd. Complex oxide, method for producing same, and exhaust gas purifying catalyst
EP3409355A4 (fr) * 2016-01-28 2019-07-24 Catalar Corporation OXYDE COMPOSITE À BASE DE Zr SUPPORTANT Pd
US11084022B2 (en) 2016-01-28 2021-08-10 Cataler Corporation Pd-supporting Zr-based composite oxide
FR3050451A1 (fr) * 2016-04-26 2017-10-27 Rhodia Operations Oxyde mixte a base de cerium et de zirconium
WO2017187086A1 (fr) * 2016-04-26 2017-11-02 Rhodia Operations Oxyde mixte à base de cérium et de zirconium pour la catalyse automobile

Also Published As

Publication number Publication date
KR20080094735A (ko) 2008-10-23
CN101400609B (zh) 2012-07-11
JP5391059B2 (ja) 2014-01-15
PL2007682T5 (pl) 2022-10-31
ES2585235T3 (es) 2016-10-04
FR2898887A1 (fr) 2007-09-28
EP2007682A1 (fr) 2008-12-31
RU2008141699A (ru) 2010-04-27
RU2407584C2 (ru) 2010-12-27
CN101400609A (zh) 2009-04-01
FR2898887B1 (fr) 2008-05-02
CA2645588A1 (fr) 2007-09-27
ES2585235T5 (es) 2022-10-13
CA2645588C (fr) 2017-09-12
DE202007019182U1 (de) 2011-03-10
EP2007682B1 (fr) 2016-05-04
US8158551B2 (en) 2012-04-17
EP2007682B2 (fr) 2022-06-08
KR101050861B1 (ko) 2011-07-20
US20090220398A1 (en) 2009-09-03
PL2007682T3 (pl) 2016-12-30
JP2009530091A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
EP2007682B1 (fr) Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable, procede de preparation et utilisation dans le traitement des gaz d'echappement
EP1660406B1 (fr) Composition a base d 'oxyde de cerium et d 'oxyde de zirconium a conductibilite et surface elevees, procedes de preparation et utilisation comme catalyseur
EP2566617B1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse
EP2024084B1 (fr) Composition a base d'oxydes de zirconium, de cerium, de lanthane et d'yttrium, de gadolinium ou de samarium, a surface specifique et reductibilite elevees, et utilisation comme catalyseur
EP2523907B1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'une autre terre rare a temperature maximale de reductibilite reduite, procede de preparation et utilisation dans le domaine de la catalyse
CA2519188C (fr) Composition a base d'oxyde de zirconium et d'oxyde de cerium a temperature maximale de reductibilite reduite, son procede de preparation et son utilisation comme catalyseur
EP1991354A1 (fr) Composition a base d'oxydes de zirconium, de cerium, d'yttrium, de lanthane et d'une autre terre rare, procede de preparation et utilisation en catalyse
WO2012171947A1 (fr) Composition a base d'oxydes de cerium, de zirconium et d'une autre terre rare a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
EP2288426A2 (fr) Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.
WO2012072439A1 (fr) Composition a base d'oxyde de zirconium et d'au moins un oxyde d'une terre rare autre que le cerium, a porosite specifique, ses procedes de preparation et son utilisation en catalyse
EP2729415A1 (fr) Composition consistant en un oxyde mixte de cerium et de zirconium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
WO2007000514A2 (fr) Procede et dispositif de traitement de gaz pour l'oxydation catalytique du monoxyde de carbone et des hydrocarbures utilisant une composition a base d'un metal et d'une zircone comprenant de la silice
FR2867769A1 (fr) Composition a base d'oxydes de zirconium, de cerium et d'etain, preparation et utilisation comme catalyseur
EP2729416A1 (fr) Composition consistant en un oxyde mixte de zirconium et de cerium a reductibilite elevee, procede de preparation et utilisation dans le domaine de la catalyse
FR2908761A1 (fr) Composition a base d'oxydes de zirconium,de cerium, d'yttrium, de lanthane et d'une autre terre rare,a haute reductibilite,procede de preparation et utilisation en catalyse
FR2908762A1 (fr) Composition a base d'oxydes de zirconium,de cerium,de lanthane et d'une autre terre rare,a haute reductibilite, procede de preparation et utilisation en catalyse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07727063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780008640.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2645588

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4961/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009500843

Country of ref document: JP

Ref document number: 1020087022944

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007727063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008141699

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12293332

Country of ref document: US