WO2007105669A1 - 冷媒加熱装置および加熱容量制御方法 - Google Patents

冷媒加熱装置および加熱容量制御方法 Download PDF

Info

Publication number
WO2007105669A1
WO2007105669A1 PCT/JP2007/054776 JP2007054776W WO2007105669A1 WO 2007105669 A1 WO2007105669 A1 WO 2007105669A1 JP 2007054776 W JP2007054776 W JP 2007054776W WO 2007105669 A1 WO2007105669 A1 WO 2007105669A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heating
heater
compressor
control unit
Prior art date
Application number
PCT/JP2007/054776
Other languages
English (en)
French (fr)
Inventor
Tomohiro Yabu
Atsushi Yoshimi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007105669A1 publication Critical patent/WO2007105669A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • the present invention relates to a refrigerant heating apparatus for heating a refrigerant flowing in a refrigerant circuit and a heating capacity control method thereof.
  • a refrigerant heating apparatus using an induction heater for heating a liquid refrigerant flowing through a refrigerant circuit of an air conditioner to improve heating capacity and defrosting capacity is disclosed.
  • This refrigerant heating device is installed between the outdoor unit and the indoor unit of the air conditioner.
  • the outdoor unit has an outdoor heat exchanger, an expansion valve, a compressor, and a four-way switching valve.
  • the indoor unit has indoor heat exchange. During the defrost operation, the refrigerant that has passed through the indoor heat exchanger of the indoor unit is heated by the induction heater of the refrigerant heating device, and then is expanded by the expansion valve of the outdoor unit and flows into the outdoor heat exchanger.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-5537
  • the refrigerant heating apparatus described in Patent Document 1 merely controls the heater ON / OFF based on temperature information such as the outside air temperature or the refrigerant temperature inside the outdoor heat exchanger. Absent. Therefore, even if refrigerant heating is not required by increasing the operating frequency of the compressor, the heater may operate automatically depending on conditions such as the outside air temperature. Therefore, the conventional refrigerant heating device has a tendency to increase the operation frequency and operation time of the heater, and there is a problem in controllability and power consumption.
  • An object of the present invention is to provide a refrigerant heating device and a heating capacity control method thereof that can improve controllability and reduce power consumption.
  • the refrigerant heating device of the first invention includes a heater and a control unit.
  • the heater heats the refrigerant.
  • the refrigerant flows inside the refrigerant circuit.
  • the control unit controls the operation of the heater.
  • System The control unit controls the heater so as to start heating the heater when the operating frequency of the compressor is the maximum operating frequency.
  • the maximum operating frequency is the maximum operating frequency of the compressor.
  • the control unit controls the heater so as to start heating the heater, so it is possible to improve controllability and reduce power consumption. is there.
  • the refrigerant heating device of the second invention is the refrigerant heating device of the first invention, and the control unit receives a powerful operation request signal for requesting a powerful operation that is an operation for improving the heating capacity of the refrigerant circuit.
  • the heater is controlled to start heating the heater.
  • control unit controls the heater so as to start heating the heater, so that the controllability is further improved and the heater is operated according to customer preferences. Is possible.
  • the refrigerant heating device of the third invention is the refrigerant heating device of the first invention, wherein the controller starts heating the heater when the outside air temperature is equal to or higher than a certain temperature (for example, 10 ° C). Control to avoid this.
  • a certain temperature for example, 10 ° C
  • control unit when the outside air temperature is equal to or higher than a certain temperature, the control unit performs control to avoid the start of heating of the heater, so that the controllability is further improved and the power consumption is further reduced.
  • the refrigerant heating device of the fourth invention is the refrigerant heating device of the first invention, wherein the control unit starts heating the heater when the room temperature is equal to or higher than a certain temperature (for example, 20 ° C). Avoid this.
  • the control unit avoids starting the heating of the heater, so that the controllability is further improved and the power consumption is further reduced.
  • the refrigerant heating device of the fifth invention is the refrigerant heating device of the first invention, and the control unit avoids starting the heating of the heater when the refrigerant circuit performs a cooling operation.
  • the control unit avoids starting the heating of the heater, so that the controllability is further improved and the power consumption is further reduced.
  • the refrigerant heating device of the sixth invention is the refrigerant heating device of the first invention, wherein the control unit When the circuit is in the defrost operation and the evaporation temperature of the refrigerant is equal to or higher than a certain temperature (for example, 10 ° C.), the heating start of the heater is avoided.
  • a certain temperature for example, 10 ° C.
  • the control unit avoids starting the heating of the heater, so the controllability is further improved. In addition, power consumption is further reduced.
  • the refrigerant heating device of the seventh invention is the refrigerant heating device of the first invention, wherein the control unit is configured to start the compressor when a powerful operation request signal is input when the refrigerant circuit is activated. Heating of the heater is started at the timing.
  • the powerful operation request signal requests a powerful operation. Powerful operation is an operation that improves the heating capacity of the refrigerant circuit.
  • the control unit starts heating the heater in accordance with the start timing of the compressor. This improves and it is possible to heat the refrigerant rapidly.
  • a heating capacity control method for a refrigerant heating device is a heating capacity control method for a refrigerant heating device.
  • the refrigerant heating device includes a heater that heats the refrigerant.
  • the refrigerant flows in the refrigerant circuit including the compressor.
  • heating of the heater is started when the operating frequency of the compressor is the maximum operating frequency that is the maximum value of the operating frequency of the compressor.
  • the compressor operating frequency is the maximum operating frequency, which is the maximum operating frequency of the compressor, heating of the heater is started, so it is possible to improve controllability and reduce power consumption It is.
  • controllability is further improved, and the heater can be operated according to the customer's preference.
  • controllability can be further improved and the power consumption can be further reduced.
  • controllability can be further improved and the power consumption can be further reduced. Can be reduced.
  • controllability can be further improved and power consumption can be further reduced.
  • controllability can be further improved, and the power consumption can be further reduced.
  • controllability is further improved, and the refrigerant can be heated rapidly.
  • controllability can be improved and power consumption can be reduced.
  • FIG. 1 is a configuration diagram of an air conditioner including a refrigerant heating device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a refrigerant circuit of the air conditioner of FIG.
  • FIG. 3 is an internal configuration diagram of the refrigerant heating device of FIG.
  • FIG. 4 is a flowchart showing a procedure of a heating capacity control method of the refrigerant heating device of FIG. Explanation of symbols
  • the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, and a refrigerant calorie heat device 4.
  • the outdoor unit 2 is connected to the refrigerant heating device 4 and the indoor unit 3 installed inside the indoor space R via the refrigerant pipe 5 and the refrigerant pipe 6.
  • the refrigerant in the liquid state flows through the refrigerant pipe 5, and the refrigerant in the gas state flows through the refrigerant pipe 6.
  • the refrigerant circuit 10 includes refrigerant pipes 5 and 6, an outdoor unit 2 (specifically, an electromagnetic expansion valve 26, an outdoor heat exchanger 23, a compressor 22 and a four-way switching valve 25), and an indoor unit 3 (components).
  • FIG. 2 shows the refrigerant circuit 10 in the heating operation state. The heating operation will be described in detail later.
  • the refrigerant heating device 4 includes a first connection pipe 11, an IH heater 12, a second connection pipe 16, a control unit 17, an AC power supply 18, a switch 19, And four connecting portions 20a, 20b, 20c, and 20d.
  • the first connection pipe 11 is connected in the middle of the refrigerant circuit 10. Specifically, the first connecting pipe 11 is closer to the indoor heat exchange than the outdoor heat exchange in the refrigerant pipe 5 through which the liquid refrigerant flows between the outdoor heat exchanger 23 and the indoor heat exchanger 27. Get connected!
  • the eaves heater 12 is a heater that heats the refrigerant flowing inside the first connection pipe 11.
  • the scissor heater 12 has a coil 12a and a cylindrical member 12b.
  • the coil 12a is made of a heat insulating material. It is wound around the outer surface of the cylindrical member 12b.
  • the IH heater 12 uses induction heating to heat an iron core (not shown) inside the first connection pipe 11, thereby heating the refrigerant flowing inside the first connection pipe 11.
  • the IH heater 12 can quickly heat the refrigerant, and can improve the heating capacity and the defrosting capacity.
  • the AC power source 18 is an AC power source for the IH heater 12 and is a so-called inverter power source that performs inverter control.
  • the second connection pipe 16 is connected to the refrigerant pipe 6 (liquid refrigerant side) opposite to the refrigerant pipe 5 (liquid refrigerant side) to which the first connection pipe 11 in indoor heat exchange is connected. .
  • the first connection part 20a and the second connection part 20b are provided at both ends of the first connection pipe 11, and connect the first connection pipe 11 and the refrigerant pipe 5.
  • the third connection part 20c and the fourth connection part 20d are provided at both ends of the second connection pipe 16, and connect the second connection pipe 16 and the refrigerant pipe 6.
  • the first to fourth connection parts 20a to 20d also have a force such as a combination of a male screw part formed on the end of the refrigerant pipe 5 or 6 and a flare nut.
  • the control unit 17 controls the operation of the IH heater 12.
  • the operation control of the IH heater 12 is performed by controlling the power supply of 18 AC power and the ONZOFF control of the switch 19.
  • Information regarding the operating frequency f of the compressor 22 is transmitted to the control unit 17 via the control unit 29 of the outdoor unit 2.
  • control unit 17 starts heating the IH heater 12 when a powerful operation request signal Sp requesting a powerful operation, which is an operation for improving the heating capacity of the air conditioner 1 including the refrigerant circuit 10, is input.
  • a powerful operation request signal Sp requesting a powerful operation which is an operation for improving the heating capacity of the air conditioner 1 including the refrigerant circuit 10.
  • the IH heater 12 starts heating when the operating frequency f of the compressor 22 reaches the maximum, but also starts heating when the powerful operation request signal Sp is input. This further improves controllability.
  • the IH heater 12 can be operated according to customer preferences.
  • the powerful operation request signal Sp is transmitted to the control unit 17 via the control unit 32 of the indoor unit 3.
  • the powerful operation request signal Sp is transmitted from a remote controller (not shown) carried by the customer to the remote control receiver 34 by radio (radio waves, infrared rays, etc.) and transmitted to the control unit 32 via the remote controller receiver 34. .
  • controller 17 opens the IH heater 12 when the outside air temperature T force SlO ° C or higher.
  • Information on the outside air temperature T is controlled via the control unit 29 of the outdoor unit 2.
  • the outside temperature T is measured by the outside temperature sensor 30 of the outdoor unit 2.
  • the control unit 17 also opens the IH heater 12 when the room temperature T is 20 ° C or higher.
  • the indoor temperature T is measured by the indoor temperature sensor 33 of the outdoor unit 2,
  • control unit 32 It is sent to the control unit 32. This further improves controllability and further reduces power consumption.
  • control unit 17 avoids starting the heating of the I H heater 12 when the air conditioner 1 including the refrigerant circuit 10 performs a cooling operation. This further improves controllability and further reduces power consumption.
  • the control unit 17 opens the IH heater 12 to open the heat.
  • the evaporation temperature T is the refrigerant temperature sensor built into the outdoor heat exchanger 23 of the outdoor unit 2.
  • control unit 17 stops the IH heater 12 after the IH heater 12 has started and the force has also elapsed for a predetermined time tl.
  • the control unit 17 counts the predetermined time tl.
  • the outdoor unit 2 includes a compressor 22 that compresses the refrigerant, the refrigerant, the outdoor air, An outdoor heat exchanger 23 that exchanges heat between the outdoor heat exchanger 23, an outdoor fan 24 that generates an air flow passing through the outdoor heat exchanger 23, a four-way selector valve 25 that reverses the circulation direction of the refrigerant, and an electromagnetic expansion valve 26, control unit 29, outdoor temperature sensor 30 for measuring outdoor temperature T, and outdoor heat exchanger 2
  • Evaporation temperature T of the refrigerant inside 3 i.e. heating operation and defrost operation
  • Refrigerant evaporating temperature T Refrigerant evaporating temperature T
  • refrigerant condensing temperature i.e. during cooling operation
  • the outdoor unit 2 can reverse the refrigerant flow in the refrigerant circuit 10 by switching the four-way switching valve 25.
  • the control unit 29 controls the compressor 22, the outdoor heat exchanger 23, the outdoor fan 24, the four-way switching valve 25, and the electromagnetic expansion valve 26.
  • control unit 29 detects the outdoor temperature T and the refrigerant temperature measured by the outdoor temperature sensor 30.
  • the indoor unit 3 measures the indoor heat exchanger 27, the cross flow fan 28 that generates the air flow passing through the indoor heat exchanger 27, the control unit 32, and the indoor temperature T.
  • a remote control receiving unit 34 for receiving various signals such as a powerful request signal Sp transmitted from a remote controller (not shown).
  • the indoor heat exchange 27 can both condense and evaporate the refrigerant by inverting the flow direction of the refrigerant inside the refrigerant circuit 10 by the four-way switching valve 25 of the outdoor unit 2. is there. Accordingly, the indoor heat exchanger 27 can perform heating and cooling by exchanging heat between the refrigerant supplied from the outdoor unit 2 through the refrigerant pipes 5 and 6 and the room air.
  • the control unit 32 controls the indoor heat exchanger 27 and the cross flow fan 28 in the indoor unit 2.
  • control unit 32 receives the information about the room temperature T and the powerful request signal Sp.
  • step S1 the control unit 17 of the refrigerant heating device 4 first determines whether or not the powerful operation request signal Sp from the control unit 32 of the indoor unit 3 has been received in step S1. When there is a request for powerful operation, the process proceeds to step S8, and heating of the IH heater 12 is started in accordance with the start timing of the compressor 22. If not, go to step S2.
  • step S2 it is determined whether or not the operating frequency f of the compressor 22 of the outdoor unit 2 is the maximum frequency fmax. If the operating frequency f is not the maximum frequency fmax, the process returns to step S1 to determine the force for which a powerful operation request has been made. If the operating frequency f is greater than or equal to the maximum frequency fmax, go to step S3.
  • step S3 the control unit 17 determines whether the outside air temperature T force SlO ° C or more is based on the information from the control unit 29 of the outdoor unit 2.
  • the outside air temperature T is 10 ° C or higher
  • step SI to avoid starting heating of the IH heater 12, otherwise proceed to step S4.
  • step S 4 the control unit 17 determines whether the indoor temperature T force S is 20 ° C. or more based on information from the control unit 32 of the indoor unit 3. If the room temperature T is 20 ° C or higher,
  • step SI Return to step SI to avoid heating of IH heater 12; Proceed to step S5.
  • step S5 the control unit 17 determines whether the air conditioner 1 including the refrigerant circuit 10 is in a cooling operation. When the cooling operation is being performed, the process returns to step S1 to avoid the start of heating of the IH heater 12, and otherwise the process proceeds to step S6.
  • step S6 the control unit 17 determines whether the air conditioner 1 including the refrigerant circuit 10 is defrosting. If the defrosting operation is being performed, the process proceeds to step S7, and if not, the process returns to step S1 in order to avoid heating the IH heater 12 from starting.
  • step S 7 the control unit 17 determines whether or not the evaporation temperature T force is 10 ° C. or more based on information from the control unit 32 of the indoor unit 3. If the evaporation temperature T is 10 ° C or higher, ev ev
  • step S6 and step S7 if the air conditioner 1 is in differential outlet operation and the evaporation temperature T of the refrigerant is 10 ° C or higher, I ev
  • step S8 the control unit 17 starts heating the IH heater 12, and heats the refrigerant flowing in the first connection pipe 11 connected to the refrigerant circuit 10.
  • step S9 the control unit 17 determines whether or not the heating start force of the IH heater 12 is also a force after a predetermined time tl has elapsed. If the time tl has elapsed, the process proceeds to step S10, and if not, step S9 is repeated to continue heating the IH heater 12.
  • step S10 the control unit 17 stops heating the IH heater 12, and returns to step S1 again.
  • the four-way selector valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant circulates counterclockwise in the refrigerant circuit 10 shown in FIG.
  • the gas refrigerant is compressed by the compressor 22 and then brought to a high temperature and high pressure state.
  • the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 27 of the indoor unit 3 through the four-way switching valve 25, the second connection pipe 16, and the refrigerant pipe 6, and condenses by exchanging heat with the indoor air. Liquid.
  • the indoor air heated by the condensation of the refrigerant is blown out into the indoor space R by the cross flow fan 28, Heat indoor space R.
  • the refrigerant that has become liquid in the indoor heat exchange flows into the first connection pipe 11 of the refrigerant heating device 4 through the refrigerant pipe 5 and is heated by the IH heater 12.
  • the refrigerant heated by the IH heater 12 expands by passing through the electromagnetic expansion valve 26 of the outdoor unit 2 and is depressurized to a predetermined low pressure.
  • the expanded refrigerant evaporates by exchanging heat with outdoor air.
  • an air flow passing through the outdoor heat exchanger 23 is generated by the outdoor fan 24.
  • the refrigerant evaporated and evaporated in the outdoor heat exchanger 23 is sucked into the compressor 22 through the four-way switching valve 25.
  • the control unit 17 of the refrigerant heating device 4 Regardless of the operation frequency, the IH heater 12 is controlled to start heating the IH heater 12.
  • the four-way switching valve 25 is held in a state indicated by a broken line in FIG. 2, and the refrigerant circulates clockwise through the refrigerant circuit 10 shown in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 through the four-way switching valve 25, and exchanges heat with the outdoor air that is forcibly sent to the outdoor heat exchanger by the outdoor fan 24.
  • the liquefied refrigerant is decompressed to a predetermined low pressure by the outdoor expansion valve 13 and flows into the indoor unit 3 through the refrigerant pipe 5 on the liquid refrigerant side.
  • the refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchanger 27. Then, the indoor air cooled by the evaporation of the refrigerant is blown out into the indoor space R by the cross flow fan 28 to cool the indoor space R.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
  • frost may form on the outer surface of the outdoor heat exchanger 23 of the outdoor unit 2.
  • the air conditioner 1 performs a reverse cycle defrost operation for defrosting.
  • reverse cycle defrost operation basically the same as the above cooling operation
  • the four-way switching valve 25 is held in a state indicated by a broken line in FIG. 2, and the refrigerant circulates clockwise through the refrigerant circuit 10 shown in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 via the four-way switching valve 25 and condenses and liquefies.
  • the frost adhering to the outer surface of the outdoor heat exchanger 23 can be melted by the heat of condensation of the refrigerant.
  • the outdoor fan 24 is stopped.
  • the refrigerant is evaporated by the indoor heat exchanger 27 while the cross flow fan 28 is stopped.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
  • step S3 When the start of heating is not avoided due to the condition for avoiding the start of heating in S7, heating of the IH heater 12 is started.
  • the IH heater 12 By heating the liquid refrigerant flowing through the first connection pipe 11 connected to the refrigerant pipe 5 by the IH heater 12, it is possible to improve the defrosting capacity and shorten the defrost time.
  • the air conditioner 1 When the outdoor air is at a temperature of 0 ° C or higher, the air conditioner 1 performs a positive cycle defrost operation in which the indoor space R is heated while defrosting.
  • the four-way switching valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant counterclocks the refrigerant circuit 10 shown in FIG. Circulate around.
  • the compressor 22 In the forward cycle defrost operation, the compressor 22 is operated with a reduced capacity.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the indoor heat exchanger 27 through the four-way switching valve 25, and the cross-flow fan 28 is operated while condensing and liquid. Heat space R.
  • the condensed and liquefied refrigerant is heated by the IH heater 12 of the refrigerant heating device 4, and then the outdoor Flows into heat exchanger 23.
  • the heated refrigerant flows into the outdoor heat exchanger 23, it is possible to melt frost adhering to the outer surface of the outdoor heat exchanger.
  • the outdoor fan 24 is operating.
  • the control unit 17 starts heating the IH heater 12 when the operating frequency of the compressor 22 is the maximum operating frequency fmax that is the maximum value of the operating frequency f of the compressor 22.
  • the IH heater 12 is controlled as follows. As a result, it is possible to improve controllability and reduce power consumption.
  • the control unit 17 when the control unit 17 receives a powerful operation request signal Sp for requesting a powerful operation that is an operation for improving the heating capacity of the air conditioner 1 including the refrigerant circuit 10, IH Control the IH heater 12 to start heating the heater 12. Therefore, the IH heater 12 starts heating when the operating frequency f of the compressor 22 reaches the maximum, but when the powerful operation request signal Sp is input, heating is performed regardless of the operating frequency f of the compressor 22. It will start. This further improves the controllability. In addition, the IH heater 12 can be operated according to customer preferences.
  • control unit 17 determines that the outside air temperature T is a predetermined temperature 1
  • control is performed to avoid heating the IH heater 12. As a result, the controllability is further improved and the power consumption is further reduced.
  • the controller 17 has the room temperature T equal to the predetermined temperature 20
  • control unit 17 avoids starting the heating of the IH heater 12 when the air conditioner 1 including the refrigerant circuit 10 performs a cooling operation. As a result, controllability The power S is further improved and the power consumption is further reduced.
  • control unit 17 is 10 ° when the refrigerant circuit 10 is in the defrost operation and the evaporation temperature T of the refrigerant in the outdoor heat exchanger 23 is the predetermined temperature ev. If it is C or higher, avoid starting heating of IH heater 12. This further improves controllability and further reduces power consumption.
  • control unit 17 controls the IH heater 12 according to the start timing of the compressor 22 when the powerful operation request signal Sp is input when the air conditioner 1 is started. Since heating is started, the controllability is further improved, and the refrigerant can be rapidly heated.
  • the heating capacity control method of the refrigerant heating device 4 is a heating capacity control method of the refrigerant heating device 4 including the heater 12 that heats the refrigerant flowing inside the refrigerant circuit 10 including the compressor 22.
  • the operating frequency f of the compressor 22 is the maximum operating frequency fmax, heating of the heater 12 is started. As a result, it is possible to improve controllability and reduce power consumption.
  • the present invention can be applied to a refrigerant heating device for heating a refrigerant of an air conditioner including a compressor in a refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 制御性を向上するとともに消費電力を削減することができる冷媒加熱装置およびその加熱容量制御方法を提供する。冷媒加熱装置(4)は、ヒータ(12)と、制御部(17)とを備えている。ヒータ(12)は、冷媒を加熱する。冷媒は、冷媒回路(10)の内部を流れる。制御部(17)は、ヒータ(12)の運転を制御する。制御部(17)は、圧縮機(22)の運転周波数が最大運転周波数である場合に、ヒータ(12)の加熱を開始するようにヒータ(12)を制御する。最大運転周波数は、圧縮機(22)の運転周波数の最大値である。

Description

明 細 書
冷媒加熱装置および加熱容量制御方法
技術分野
[0001] 本発明は、冷媒回路を流れる冷媒を加熱するための冷媒加熱装置およびその加 熱容量制御方法に関する。
背景技術
[0002] 空気調和機の冷媒回路を流れる液冷媒を加熱して暖房能力や除霜能力を向上さ せるために、特許文献 1に記載されるように、誘導加熱ヒータを用いた冷媒加熱装置 がある。この冷媒加熱装置は、空気調和機の室外機と室内機との間に設置されてい る。室外機は、室外熱交^^と、膨張弁と、圧縮機と、四路切換弁とを有している。室 内機は、室内熱交翻を有している。デフロスト運転時には、室内機の室内熱交換 器を通過した冷媒は、冷媒加熱装置の誘導加熱ヒータによって加熱されたのち、室 外機の膨張弁で膨張されて室外熱交^^に流入される。
特許文献 1:特開 2002— 5537号公報
発明の開示
発明が解決しょうとする課題
[0003] しかし、特許文献 1に記載された冷媒加熱装置は、外気温度または室外熱交換器 内部における冷媒温度などの温度情報に基づ 、て、ヒータを ON · OFF制御して 、る にすぎない。そのため、圧縮機の運転周波数を上げればヒータによる冷媒加熱が不 要になる場合でも、外気温度等の条件によっては、ヒータが自動的に作動することが ある。したがって、従来の冷媒加熱装置は、ヒータの作動頻度および作動時間が増 加する傾向を有しており、制御性および消費電力の点に問題がある。
本発明の課題は、制御性を向上するとともに消費電力を削減することができる冷媒 加熱装置およびその加熱容量制御方法を提供することにある。
課題を解決するための手段
[0004] 第 1発明の冷媒加熱装置は、ヒータと、制御部とを備えている。ヒータは、冷媒をカロ 熱する。冷媒は、冷媒回路の内部を流れる。制御部は、ヒータの運転を制御する。制 御部は、圧縮機の運転周波数が最大運転周波数である場合に、ヒータの加熱を開 始するようにヒータを制御する。最大運転周波数は、圧縮機の運転周波数の最大値 である。
ここでは、圧縮機の運転周波数が最大運転周波数である場合に、制御部がヒータ の加熱を開始するようにヒータを制御するので、制御性の向上および消費電力の削 減をすることが可能である。
[0005] 第 2発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、冷媒 回路の暖房能力を向上させる運転であるパワフル運転を要求するパワフル運転要求 信号が入力された場合に、ヒータの加熱を開始するようにヒータを制御する。
ここでは、パワフル運転要求信号が入力された場合に、制御部がヒータの加熱を開 始するようにヒータを制御するので、制御性がさらに向上し、および顧客の嗜好に応 じたヒータの作動が可能になる。
[0006] 第 3発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、外気 温度がある一定温度 (例えば、 10°C)以上である場合に、ヒータの加熱開始を回避す る制御を行う。
ここでは、外気温度がある一定温度以上である場合に、制御部がヒータの加熱開始 を回避する制御を行うので、制御性がさらに向上し、かつ、消費電力がさらに削減さ れる。
[0007] 第 4発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、室内 温度がある一定温度 (例えば、 20°C)以上である場合に、ヒータの加熱開始を回避す る。
ここでは、室内温度がある一定温度以上である場合に、制御部がヒータの加熱開始 を回避するので、制御性がさらに向上し、かつ、消費電力がさらに削減される。
[0008] 第 5発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、冷媒 回路が冷房運転をするときに、ヒータの加熱開始を回避する。
ここでは、冷媒回路が冷房運転する場合に、制御部がヒータの加熱開始を回避す るので、制御性がさらに向上し、かつ、消費電力がさらに削減される。
[0009] 第 6発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、冷媒 回路がデフロスト運転をしている間であって、かつ、冷媒の蒸発温度がある一定温度 (例えば、 10°C)以上の場合には、ヒータの加熱開始を回避する。
ここでは、冷媒回路がデフロスト運転をしている間であって、かつ、冷媒の蒸発温度 がある一定温度以上の場合には、制御部がヒータの加熱開始を回避するので、制御 性がさらに向上し、かつ、消費電力がさらに削減される。
[0010] 第 7発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、制御部は、冷媒 回路の起動時において、パワフル運転要求信号が入力されたときに、圧縮機の起動 のタイミングに合わせてヒータの加熱を開始させる。パワフル運転要求信号は、パヮ フル運転を要求する。パワフル運転は、冷媒回路の暖房能力を向上させる運転であ る。
ここでは、冷媒回路の起動時において、ノ^ 7フル運転要求信号が入力されたときに 、制御部が圧縮機の起動のタイミングに合わせてヒータの加熱を開始させるので、制 御性がさら〖こ向上し、急速に冷媒を加熱することが可能である。
[0011] 第 8発明の冷媒加熱装置の加熱容量制御方法は、冷媒加熱装置の加熱容量制御 方法である。冷媒加熱装置は、冷媒を加熱するヒータを備えている。冷媒は、圧縮機 を含む冷媒回路の内部を流れる。この制御方法では、圧縮機の運転周波数が圧縮 機の運転周波数の最大値である最大運転周波数である場合に、ヒータの加熱を開 始させる。
ここでは、圧縮機の運転周波数が圧縮機の運転周波数の最大値である最大運転 周波数である場合に、ヒータの加熱を開始させるので、制御性の向上および消費電 力の削減をすることが可能である。
発明の効果
[0012] 第 1発明によれば、制御性の向上および消費電力の削減をすることができる。
第 2発明によれば、制御性がさらに向上し、顧客の嗜好に応じたヒータの作動をす ることがでさる。
第 3発明によれば、制御性をさらに向上することができ、かつ、消費電力をさらに削 減することができる。
第 4発明によれば、制御性をさらに向上することができ、かつ、消費電力をさらに削 減することができる。
第 5発明によれば、制御性をさらに向上することができ、かつ、消費電力をさらに削 減することができる。
第 6発明によれば、制御性をさらに向上することができ、かつ、消費電力をさらに削 減することができる。
第 7発明によれば、制御性がさらに向上し、急速に冷媒を加熱することができる。 第 8発明によれば、制御性の向上および消費電力の削減をすることができる。 図面の簡単な説明
[0013] [図 1]本発明の実施形態に係わる冷媒加熱装置を備えた空気調和機の構成図。
[図 2]図 1の空気調和機の冷媒回路を示す図。
[図 3]図 1の冷媒加熱装置の内部構成図。
[図 4]図 3の冷媒加熱装置の加熱容量制御方法の手順を示すフローチャート。 符号の説明
[0014] 1 空気調和機
2 室外機
3 室内機
4 冷媒加熱装置
5 冷媒配管
6 冷媒配管
10 冷媒回路
11 第 1接続管
12 IHヒータ
16 第 2接続管
17 制御部
18 交流電源
19 スィッチ
22 圧縮機
23 室外熱交換器 24 ファン
25 四路切換弁
26 電磁膨張弁
27 室内熱交換器
28 クロスフローファン
30 外気温度センサ
31 冷媒温度センサ
33 室内温度センサ
発明を実施するための最良の形態
[0015] 〔実施形態〕
図 1および図 2に示されるように、空気調和機 1は、室外機 2と、室内機 3と、冷媒カロ 熱装置 4とを備えている。室外機 2は、冷媒配管 5および冷媒配管 6を介して、室内空 間 Rの内部に設置された冷媒加熱装置 4および室内機 3に接続されている。図 2に示 されるように、冷媒配管 5には、液体状態の冷媒が流れ、冷媒配管 6には、ガス状態 の冷媒が流れる。冷媒回路 10は、冷媒配管 5および 6と、室外機 2 (具体的には、電 磁膨張弁 26、室外熱交換器 23、圧縮機 22および四路切換弁 25)と、室内機 3 (具 体的には、室内熱交翻 27)と、冷媒加熱装置 4 (具体的には、第 1接続管 11、 IHヒ ータ 12および第 2接続管 16)とから構成される。図 2には、暖房運転時の状態の冷媒 回路 10が示されている。暖房運転の動作については、後段で詳述する。
[0016] <冷媒加熱装置 4の構成 >
冷媒加熱装置 4は、図 2および図 3に示されるように、第 1接続管 11と、 IHヒータ 12 と、第 2接続管 16と、制御部 17と、交流電源 18と、スィッチ 19と、 4個の接続部 20a、 20b、 20c、 20dと、を備えて ヽる。
第 1接続管 11は、冷媒回路 10の途中に接続されている。具体的には、第 1接続管 11は、室外熱交換器 23と室内熱交換器 27との間の液冷媒が流れる冷媒配管 5にお ける室外熱交 よりも室内熱交 に近 ヽ位置に接続されて!ヽる。
ΙΗヒータ 12は、第 1接続管 11の内部を流れる冷媒を加熱するヒータである。 ΙΗヒー タ 12は、コイル 12aと、筒状部材 12bとを有している。コイル 12aは、断熱材からなる 筒状部材 12bの外表面に巻き付いて配置されている。 IHヒータ 12は、誘導加熱を利 用して、第 1接続管 11の内部の鉄心(図示せず)を加熱し、それにより、第 1接続管 1 1の内部を流れる冷媒を加熱する。 IHヒータ 12は、冷媒を迅速に加熱することができ 、暖房能力および除霜能力を向上させることができる。
[0017] 交流電源 18は、 IHヒータ 12のための交流電源であり、インバータ制御を行ういわ ゆるインバータ電源である。
第 2接続管 16は、室内熱交 における第 1接続管 11が接続されている冷媒 配管 5 (液状態の冷媒側)と反対側の冷媒配管 6 (ガス状態の冷媒側)に接続されて いる。
第 1接続部 20aおよび第 2接続部 20bは、第 1接続管 11の両端に設けられ、第 1接 続管 11と冷媒配管 5とを接続する。第 3接続部 20cおよび第 4接続部 20dは、第 2接 続管 16の両端に設けられ、第 2接続管 16と冷媒配管 6とを接続する。第 1〜第 4接続 部 20a〜20dは、たとえば、冷媒配管 5または 6の端部に形成された雄ねじ部とフレア ナットとの組み合わせなど力もなる。
く制御部 17の構成〉
制御部 17は、 IHヒータ 12の運転を制御する。 IHヒータ 12の運転制御は、交流電 源 18力もの電力供給の制御、およびスィッチ 19の ONZOFF制御によって、行われ る。
[0018] 制御部 17は、圧縮機 22の運転周波数が圧縮機 22の運転周波数 fの最大値である 最大運転周波数 f である場合に、 IHヒータ 12の加熱を開始するように IHヒータ 12
max
を制御する。これによつて、制御性の向上および消費電力の削減をすることが可能で ある。圧縮機 22の運転周波数 fに関する情報は、室外機 2の制御部 29を介して、制 御部 17へ送信される。
また、制御部 17は、冷媒回路 10を含む空気調和機 1の暖房能力を向上させる運 転であるパワフル運転を要求するパワフル運転要求信号 Spが入力された場合に、 I Hヒータ 12の加熱を開始するように IHヒータ 12を制御する。したがって、圧縮機 22の 運転周波数 fが最大になったときに IHヒータ 12は加熱開始になるが、パワフル運転 要求信号 Spが入力されたときも加熱開始になる。これによつて、制御性がさらに向上 し、かつ、顧客の嗜好に応じた IHヒータ 12の作動が可能になる。
[0019] ここで、パワフル運転要求信号 Spは、室内機 3の制御部 32を介して制御部 17へ送 信される。パワフル運転要求信号 Spは、顧客の携帯するリモコン(図示せず)から無 線 (電波、赤外線等)でリモコン受信部 34へ発信され、リモコン受信部 34を介して制 御部 32へ送信される。
また、制御部 17は、外気温度 T 力 SlO°C以上である場合に、 IHヒータ 12の加熱開
out
始を回避する制御を行う。これによつて、制御性がさらに向上し、かつ、消費電力がさ らに削減される。外気温度 T に関する情報は、室外機 2の制御部 29を介して、制御
out
部 17へ送信される。外気温度 T は、室外機 2の外気温度センサ 30によって測定さ
out
れ、制御部 29に送られる。
また、制御部 17は、室内温度 Tが 20°C以上である場合に、 IHヒータ 12の加熱開
in
始を回避する。室内温度 T に関する情報は、室内機 3の制御部 32を介して、制御部
in
17へ送信される。室内温度 T は、室外機 2の室内温度センサ 33によって測定され、
m
制御部 32に送られる。これによつて、制御性がさらに向上し、かつ、消費電力がさら に削減される。
[0020] また、制御部 17は、冷媒回路 10を含む空気調和機 1が冷房運転する場合には、 I Hヒータ 12の加熱開始を回避する。これにより、制御性がさらに向上し、かつ、消費 電力がさらに削減される。
制御部 17は、冷媒回路 10がデフロスト運転をしている間であって、かつ、室外熱交 23における冷媒の蒸発温度 T が 10°C以上の場合には、 IHヒータ 12の加熱開
ev
始を回避する。これによつて、制御性がさらに向上し、かつ、消費電力がさらに削減さ れる。蒸発温度 T に関する情報は、室外機 2の制御部 29を介して、制御部 17へ送
ev
信される。蒸発温度 T は、室外機 2の室外熱交 23に内蔵された冷媒温度セン
ev
サ 31によって測定され、制御部 29に送られる。
また、制御部 17は、 IHヒータ 12が始動して力も所定時間 tl経過後に IHヒータ 12を 停止させる。所定時間 tlのカウントは、制御部 17によって行われる。
[0021] <室外機 2の構成 >
室外機 2は、図 2に示されるように、冷媒を圧縮する圧縮機 22と、冷媒と室外空気と の間の熱交換を行う室外熱交換器 23と、室外熱交換器 23を通過する空気流れを発 生する室外ファン 24と、冷媒の循環方向を反転させる四路切換弁 25と、電磁膨張弁 26と、制御部 29と、室外温度 T を測定する室外温度センサ 30と、室外熱交換器 2
out
3の内部における冷媒の蒸発温度 T (すなわち、暖房運転時およびデフロスト運転
ev
時における冷媒の蒸発温度 T )および冷媒の凝縮温度 (すなわち、冷房運転時に
ev
おける冷媒の凝縮温度)を測定することが可能な冷媒温度センサ 31とを備えている。 室外機 2は、四路切換弁 25を切り換えることによって、冷媒回路 10の内部における 冷媒の流れを反転させることができる。
[0022] 制御部 29は、圧縮機 22、室外熱交換器 23、室外ファン 24、四路切換弁 25、およ び電磁膨張弁 26を制御する。
また、制御部 29は、室外温度センサ 30で測定された室外温度 T および冷媒温度
out
センサ 31で測定された蒸発温度 T についての情報を一旦受け取った後に、冷媒カロ
ev
熱装置 4の制御部 17へ送信する。
<室内機 3の構成 >
室内機 3は、図 2に示されるように、室内熱交換器 27と、室内熱交換器 27を通過す る空気流れを発生させるクロスフローファン 28と、制御部 32と、室内温度 Tを測定す
in
る室内温度センサ 33と、リモコン(図示せず)から送信されるパワフル要求信号 Sp等 の各種信号を受信するリモコン受信部 34とを有している。
[0023] 室内熱交翻27は、室外機 2の四路切換弁 25によって冷媒回路 10の内部の冷 媒の流れる方向を反転させることによって、冷媒の凝縮および蒸発の両方を行うこと が可能である。これにより、室内熱交翻27は、冷媒配管 5、 6を通して室外機 2から 供給される冷媒と室内空気との間で熱交換を行うことにより、暖房および冷房を行うこ とが可能である。
制御部 32は、室内機 2の内部の室内熱交換器 27およびクロスフローファン 28等を 制御する。
また、制御部 32は、室内温度 T についての情報およびパワフル要求信号 Spを一 in
且受け取った後に、冷媒加熱装置 4の制御部 17へ送信する。
<冷媒加熱装置 4の加熱容量制御方法 > 以上のように構成された空気調和機 1がデフロスト運転 (以下の <空気調和機 1の 逆サイクルデフロスト運転 >および <空気調和機 1の正サイクルデフロスト運転 >参 照)のときには、冷媒加熱装置 4は、以下のようにして IHヒータ 12の加熱容量の制御 が行われる。
[0024] 以下、図 4に示されるフローチャートを参照しながら、冷媒加熱装置 4の加熱容量制 御方法の手順を説明する。
空気調和機 1の起動時には、冷媒加熱装置 4の制御部 17は、まず、ステップ S1に おいて、室内機 3の制御部 32からのパワフル運転要求信号 Spを受信したか否力判 別する。パワフル運転要求が有った場合にはステップ S8へ進み、圧縮機 22の起動 のタイミングに合わせて IHヒータ 12の加熱を開始させる。そうでない場合にはステツ プ S 2へ進む。
ついで、ステップ S2において、室外機 2の圧縮機 22の運転周波数 fが最大周波数 f maxであるか否カゝ判別する。運転周波数 fが最大周波数 fmaxでない場合には、ステ ップ S 1に戻ってパワフル運転要求が有った力判別する。運転周波数 fが最大周波数 fmax以上である場合はステップ S3に進む。
[0025] したがって、運転周波数 fが最大周波数 fmaxである場合であって、以下のステップ S3〜S7の加熱開始の回避条件によって加熱開始が回避されないときには、 IHヒー タ 12の加熱を開始する。一方、運転周波数 fが最大周波数 fmax未満でも、ステップ S1に戻ってパワフル運転要求が有ったか再び判別する。これにより、制御部 17は、 室内機 3からのパワフル運転要求信号 Spを受信したときには、圧縮機 22の運転周波 数に関係なぐ IHヒータ 12の加熱を開始させることが可能になる。
ついで、ステップ S3において、制御部 17は、室外機 2の制御部 29からの情報に基 づいて外気温度 T 力 SlO°C以上か判別する。外気温度 T が 10°C以上の場合には
out out
、 IHヒータ 12の加熱開始を回避するためにステップ SIへ戻り、そうでない場合には ステップ S4へ進む。
[0026] ついで、ステップ S4において、制御部 17は、室内機 3の制御部 32からの情報に基 づいて室内温度 T力 S20°C以上か判別する。室内温度 Tが 20°C以上の場合には、
in in
IHヒータ 12の加熱開始を回避するためにステップ SIへ戻り、そうでない場合にはス テツプ S 5へ進む。
ついで、ステップ S5において、制御部 17は、冷媒回路 10を含む空気調和機 1が冷 房運転している力否力判別する。冷房運転している場合には、 IHヒータ 12の加熱開 始を回避するためにステップ S1へ戻り、そうでない場合にはステップ S6へ進む。 ついで、ステップ S6において、制御部 17は、冷媒回路 10を含む空気調和機 1がデ フロスト運転している力否力判別する。デフロスト運転している場合にはステップ S 7へ 進み、そうでない場合には、 IHヒータ 12の加熱開始を回避するためにステップ S1へ 戻る。
[0027] ついで、ステップ S7において、制御部 17は、室内機 3の制御部 32からの情報に基 づいて蒸発温度 T 力 lO°C以上か判別する。蒸発温度 T が 10°C以上の場合には、 ev ev
IHヒータ 12の加熱開始を回避するためにステップ SIへ戻り、そうでない場合にはス テツプ S8へ進む。このステップ S6およびステップ S7によって、空気調和機 1がデフ口 スト運転をしている間であって、かつ、冷媒の蒸発温度 T が 10°C以上の場合には、 I ev
Hヒータ 12の加熱開始を回避することが可能になる。
ついで、ステップ S8において、制御部 17は IHヒータ 12の加熱を開始させ、冷媒回 路 10に接続された第 1接続管 11の内部を流れる冷媒を加熱する。
ついで、ステップ S9において、制御部 17は、 IHヒータ 12の加熱開始力も所定の時 間 tlが経過した力否か判別する。時間 tlが経過した場合には、ステップ S10へ進み 、そうでない場合にはステップ S9を繰り返して、 IHヒータ 12の加熱を続行させる。
[0028] 最後に、ステップ S10において、制御部 17は、 IHヒータ 12の加熱を停止し、再び、 ステップ S1へ戻る。
<空気調和機 1の暖房運転 >
暖房運転時は、四路切換弁 25が図 2において実線で示す状態に保持され、冷媒 は、図 2に示される冷媒回路 10を反時計回りに循環する。まず、圧縮機 22によって ガス冷媒を圧縮してから高温高圧の状態にする。ついで、高温高圧のガス冷媒は、 四路切換弁 25、第 2接続管 16および冷媒配管 6を介して、室内機 3の室内熱交換器 27に流入し、室内空気と熱交換して凝縮'液ィ匕する。このとき、冷媒の凝縮によって 加熱された室内空気は、クロスフローファン 28によって室内空間 Rへと吹き出され、 室内空間 Rを暖房する。ついで、室内熱交 において液ィ匕した冷媒は、冷媒配 管 5を通って冷媒加熱装置 4の第 1接続管 11へ流入し、 IHヒータ 12によって加熱さ れる。 IHヒータ 12によって加熱された冷媒は、室外機 2の電磁膨張弁 26を通過する ことによって膨張し、所定の低圧まで減圧される。そののち、室外機 2の室外熱交換 器 23において、膨張した冷媒は、室外空気と熱交換して蒸発する。このとき、室外フ アン 24よって室外熱交換器 23を通過する空気流れが発生している。そして、室外熱 交換器 23で蒸発して気化した冷媒は、四路切換弁 25を介して圧縮機 22に吸入され る。
[0029] ここで、室内機 3のリモコン受信部 34がリモコン(図示せず)から送信されたパワフル 要求信号 Spを受信した場合には、冷媒加熱装置 4の制御部 17は、圧縮機 22の運 転周波数に関係なく、 IHヒータ 12の加熱を開始するように IHヒータ 12を制御する。
<空気調和機 1の冷房運転 >
一方、冷房運転時は、四路切換弁 25が図 2において破線で示す状態に保持され、 冷媒は、図 2に示される冷媒回路 10を時計回りに循環する。圧縮機 22から吐出され た高温高圧のガス冷媒は、四路切換弁 25を介して室外熱交換器 23に流入し、室外 ファン 24によって室外熱交 に強制的に送られた室外空気と熱交換して凝縮- 液化する。液化した冷媒は、室外膨張弁 13で所定の低圧に減圧され、液冷媒側の 冷媒配管 5を通って室内機 3に流入する。室内機 3において、冷媒は、室内熱交換 器 27で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室 内空気は、クロスフローファン 28によって室内空間 Rへと吹き出され、室内空間 Rを 冷房する。また、室内熱交換器 27で蒸発して気化した冷媒は、ガス冷媒側の冷媒配 管 6を通って室外機 2に戻り、圧縮機 22に吸入される。
[0030] 冷房運転時には、圧縮機運転周波数が最大運転周波数であっても、冷媒加熱装 置 4の IHヒータ 12の加熱開始は回避される(図 4のステップ S5参照)。
<空気調和機 1の逆サイクルデフロスト運転 >
室外空気が 0°C未満の気温の場合、室外機 2の室外熱交換器 23の外表面に霜が 付くことがある。このような場合、空気調和機 1は、除霜のために逆サイクルデフロスト 運転を行う。逆サイクルデフロスト運転時には、基本的には、上記の冷房運転と同様 に、四路切換弁 25が図 2において破線で示す状態に保持され、冷媒は、図 2に示さ れる冷媒回路 10を時計回りに循環する。圧縮機 22から吐出された高温高圧のガス 冷媒は、四路切換弁 25を介して室外熱交 23に流入し、凝縮'液化する。
この逆サイクルデフロスト運転時では、冷媒の凝縮熱によって、室外熱交換器 23の 外表面に付着する霜を溶かすことが可能である。このとき、室外ファン 24は停止して いる。一方、室内機 3側では、クロスフローファン 28を停止した状態で、室内熱交換 器 27によって冷媒を蒸発させる。室内熱交換器 27で蒸発して気化した冷媒は、ガス 冷媒側の冷媒配管 6を通って室外機 2に戻り、圧縮機 22に吸入される。
[0031] このとき、冷媒加熱装置 4では、図 4に示されるフローチャートに示されるように運転 周波数 fが最大周波数 fmax以上である場合 (ステップ S2における Yesの場合)であ つて、上記のステップ S3〜S7の加熱開始の回避条件によって加熱開始が回避され ないときには、 IHヒータ 12の加熱を開始する。冷媒配管 5に接続された第 1接続管 1 1を流れる液冷媒を、 IHヒータ 12によって加熱することによって、除霜能力を向上さ せ、デフロスト時間を短縮することが可能になる。
<空気調和機 1の正サイクルデフロスト運転 >
室外空気が 0°C以上の気温の場合、空気調和機 1は、除霜をしながら室内空間 R の暖房を行なう正サイクルデフロスト運転を行う。正サイクルデフロスト運転時には、 基本的には、上記の暖房運転と同様に、四路切換弁 25が図 2において実線で示す 状態に保持され、冷媒は、図 2に示される冷媒回路 10を反時計回りに循環する。
[0032] 正サイクルデフロスト運転では、圧縮機 22は、能力を小さくして運転される。圧縮機 22から吐出された高温高圧のガス冷媒は、四路切換弁 25を介して室内熱交換器 27 に流入し、凝縮 '液ィ匕しながら、クロスフローファン 28を作動することにより、室内空間 Rの暖房を行なう。
このとき、冷媒加熱装置 4では、図 4に示されるフローチャートに示されるように運転 周波数 fが最大周波数 fmax以上である場合 (ステップ S2における Yesの場合)であ つて、上記のステップ S3〜S7の加熱開始の回避条件によって加熱開始が回避され ないときには、 IHヒータ 12の加熱を開始する。
凝縮'液化された冷媒は、冷媒加熱装置 4の IHヒータ 12により加熱された後、室外 熱交換器 23に流れる。加熱された冷媒が室外熱交換器 23に流入することによって、 室外熱交 の外表面に付着する霜を溶かすことが可能である。このとき、室外 ファン 24は運転している。
[0033] <実施形態の特徴 >
(1)
実施形態の冷媒加熱装置 4では、制御部 17は、圧縮機 22の運転周波数が圧縮機 22の運転周波数 fの最大値である最大運転周波数 fmaxである場合に、 IHヒータ 12 の加熱を開始するように IHヒータ 12を制御する。これによつて、制御性の向上および 消費電力の削減をすることが可能である。
(2)
実施形態の冷媒加熱装置 4では、制御部 17は、冷媒回路 10を含む空気調和機 1 の暖房能力を向上させる運転であるパワフル運転を要求するパワフル運転要求信号 Spが入力された場合に、 IHヒータ 12の加熱を開始するように IHヒータ 12を制御する 。したがって、圧縮機 22の運転周波数 fが最大になったときに IHヒータ 12は加熱開 始になるが、パワフル運転要求信号 Spが入力されたときも、圧縮機 22の運転周波数 fに関係なく加熱開始になる。これによつて、制御性がさらに向上する。また、顧客の 嗜好に応じた IHヒータ 12の作動が可能になる。
[0034] (3)
実施形態の冷媒加熱装置 4では、制御部 17は、外気温度 T が所定温度である 1
out
0°C以上である場合に、 IHヒータ 12の加熱開始を回避する制御を行う。これによつて 、制御性がさらに向上し、かつ、消費電力がさらに削減される。
(4)
実施形態の冷媒加熱装置 4では、制御部 17は、室内温度 Tが所定温度である 20
in
°C以上である場合に、 IHヒータ 12の加熱開始を回避する。これによつて、制御性が さらに向上し、かつ、消費電力がさらに削減される。
(5)
実施形態の冷媒加熱装置 4では、制御部 17は、冷媒回路 10を含む空気調和機 1 が冷房運転する場合には、 IHヒータ 12の加熱開始を回避する。これにより、制御性 力 Sさらに向上し、かつ、消費電力がさらに削減される。
[0035] (6)
実施形態の冷媒加熱装置 4では、制御部 17は、冷媒回路 10がデフロスト運転をし ている間であって、かつ、室外熱交換器 23における冷媒の蒸発温度 T が所定温度 ev である 10°C以上の場合には、 IHヒータ 12の加熱開始を回避する。これによつて、制 御性がさらに向上し、かつ、消費電力がさらに削減される。
(7)
実施形態の冷媒加熱装置 4では、制御部 17は、空気調和機 1の起動時において、 パワフル運転要求信号 Spが入力されたときに、圧縮機 22の起動のタイミングに合わ せて IHヒータ 12の加熱を開始させるので、制御性がさらに向上し、急速に冷媒をカロ 熱することが可能になる。
[0036] (8)
実施形態の冷媒加熱装置 4の加熱容量制御方法は、圧縮機 22を含む冷媒回路 1 0の内部を流れる冷媒を加熱するヒータ 12を備えた冷媒加熱装置 4の加熱容量制御 方法である。圧縮機 22の運転周波数 fが最大運転周波数 fmaxである場合に、ヒータ 12の加熱を開始させる。これによつて、制御性の向上および消費電力の削減をする ことが可能である。
産業上の利用可能性
[0037] 本発明は、冷媒回路に圧縮機を含む空気調和機の冷媒を加熱するための冷媒加 熱装置に適用することが可能である。

Claims

請求の範囲
[1] 圧縮機 (22)を含む冷媒回路(10)の内部を流れる冷媒を加熱するヒータ(12)と、 前記ヒータ(12)の運転を制御する制御部(17)と
を備えており、
前記制御部(17)は、前記圧縮機 (22)の運転周波数が前記圧縮機 (22)の運転周 波数の最大値である最大運転周波数である場合に、前記ヒータ(12)の加熱を開始 するように前記ヒータ(12)を制御する、
冷媒加熱装置 (4)。
[2] 前記制御部(17)は、前記冷媒回路(10)の暖房能力を向上させる運転であるパヮ フル運転を要求するパワフル運転要求信号が入力された場合に、前記ヒータ(12)の 加熱を開始するように前記ヒータ(12)を制御する、
請求項 1に記載の冷媒加熱装置 (4)。
[3] 前記制御部(17)は、外気温度がある一定温度以上である場合に、前記ヒータ(12
)の加熱開始を回避する、
請求項 1に記載の冷媒加熱装置 (4)。
[4] 前記制御部(17)は、室内温度がある一定温度以上である場合に、前記ヒータ(12
)の加熱開始を回避する、
請求項 1に記載の冷媒加熱装置 (4)。
[5] 前記冷媒回路(10)が冷房運転をするときには、前記制御部(17)は、前記ヒータ(
12)の加熱開始を回避する、
請求項 1に記載の冷媒加熱装置 (4)。
[6] 前記制御部(17)は、前記冷媒回路(10)がデフロスト運転をしている間であって、 かつ、前記冷媒の蒸発温度がある一定温度以上の場合には、前記ヒータ(12)の加 熱開始を回避する、
請求項 1に記載の冷媒加熱装置 (4)。
[7] 前記制御部(17)は、前記冷媒回路(10)の起動時において、前記冷媒回路(10) の暖房能力を向上させる運転であるパワフル運転を要求するパワフル運転要求信号 が入力されたときに、前記圧縮機 (22)の起動のタイミングに合わせて前記ヒータ( 12 )の加熱を開始させる、
請求項 1に記載の冷媒加熱装置 (4)。
[8] 圧縮機 (22)を含む冷媒回路(10)の内部を流れる冷媒を加熱するヒータ(12)を備 えた冷媒加熱装置の加熱容量制御方法であって、
前記圧縮機 (22)の運転周波数が前記圧縮機 (22)の運転周波数の最大値である 最大運転周波数である場合に、前記ヒータ(12)の加熱を開始させる、
冷媒加熱装置 (4)の加熱容量制御方法。
PCT/JP2007/054776 2006-03-15 2007-03-12 冷媒加熱装置および加熱容量制御方法 WO2007105669A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-070826 2006-03-15
JP2006070826A JP2007247948A (ja) 2006-03-15 2006-03-15 冷媒加熱装置および加熱容量制御方法

Publications (1)

Publication Number Publication Date
WO2007105669A1 true WO2007105669A1 (ja) 2007-09-20

Family

ID=38509490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054776 WO2007105669A1 (ja) 2006-03-15 2007-03-12 冷媒加熱装置および加熱容量制御方法

Country Status (2)

Country Link
JP (1) JP2007247948A (ja)
WO (1) WO2007105669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410256A4 (en) * 2009-03-19 2015-03-18 Daikin Ind Ltd AIR CONDITIONING

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173825A (zh) * 2019-05-31 2019-08-27 广东美的制冷设备有限公司 运行控制方法、控制装置、空调器和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888569A (ja) * 1981-11-24 1983-05-26 松下電器産業株式会社 空気調和装置
JPH03102145A (ja) * 1989-09-14 1991-04-26 Toshiba Corp 空気調和機
JPH09170838A (ja) * 1995-12-20 1997-06-30 Toshiba Corp 冷媒加熱式冷暖房装置
JP2002005537A (ja) * 2000-06-22 2002-01-09 Daikin Ind Ltd 冷媒加熱装置及び空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888569A (ja) * 1981-11-24 1983-05-26 松下電器産業株式会社 空気調和装置
JPH03102145A (ja) * 1989-09-14 1991-04-26 Toshiba Corp 空気調和機
JPH09170838A (ja) * 1995-12-20 1997-06-30 Toshiba Corp 冷媒加熱式冷暖房装置
JP2002005537A (ja) * 2000-06-22 2002-01-09 Daikin Ind Ltd 冷媒加熱装置及び空気調和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410256A4 (en) * 2009-03-19 2015-03-18 Daikin Ind Ltd AIR CONDITIONING
US9074782B2 (en) 2009-03-19 2015-07-07 Daikin Industries, Ltd. Air conditioner with electromagnetic induction heating unit

Also Published As

Publication number Publication date
JP2007247948A (ja) 2007-09-27

Similar Documents

Publication Publication Date Title
WO2007119414A1 (ja) 冷媒加熱装置および加熱制御方法
WO2007091553A1 (ja) 冷媒加熱装置およびその加熱容量制御方法
KR100997284B1 (ko) 공기 조화기 및 그 제어방법
CA2615689C (en) An air conditioning heat pump with secondary compressor
JP5423083B2 (ja) 空気調和装置
WO2007013382A1 (ja) 冷凍空調装置
JP4100432B2 (ja) 冷媒加熱装置
JP6661843B1 (ja) 空気調和装置
CN105865130A (zh) 一种恒温冰箱及其控制方法
JP4815281B2 (ja) 空気調和機
JP2001033117A (ja) 冷凍装置
JP2004093020A (ja) ヒートポンプエアコンの除霜運転制御方法
KR100929192B1 (ko) 공기 조화기
JP2018048752A (ja) 空気調和機
WO2007066585A1 (ja) 冷媒加熱装置
CN110836551A (zh) 热泵系统及热泵系统的控制方法
WO2007105669A1 (ja) 冷媒加熱装置および加熱容量制御方法
JP2001255025A (ja) ヒートポンプ装置
JP4016546B2 (ja) 流体加熱装置
JP2000320914A (ja) 冷凍装置
JP4164960B2 (ja) 冷凍装置
JP2002005536A (ja) ヒートポンプサイクル
JP2001248919A (ja) 空気調和装置
JP2007212138A (ja) 冷媒加熱装置およびその加熱容量制御方法
JP7489932B2 (ja) ハイブリッド温水暖房システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738248

Country of ref document: EP

Kind code of ref document: A1