WO2007104884A1 - Diode electroluminescente blanche monolithique - Google Patents

Diode electroluminescente blanche monolithique Download PDF

Info

Publication number
WO2007104884A1
WO2007104884A1 PCT/FR2007/050898 FR2007050898W WO2007104884A1 WO 2007104884 A1 WO2007104884 A1 WO 2007104884A1 FR 2007050898 W FR2007050898 W FR 2007050898W WO 2007104884 A1 WO2007104884 A1 WO 2007104884A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
quantum
photons
stack
matrix
Prior art date
Application number
PCT/FR2007/050898
Other languages
English (en)
Inventor
Jean Massies
Benjamin Damilano
Original Assignee
Centre National De La Recherche Scientifique - Cnrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs filed Critical Centre National De La Recherche Scientifique - Cnrs
Priority to EP07731714A priority Critical patent/EP1994571A1/fr
Priority to JP2008558861A priority patent/JP2009530803A/ja
Priority to US12/225,039 priority patent/US20090101934A1/en
Publication of WO2007104884A1 publication Critical patent/WO2007104884A1/fr
Priority to US12/882,868 priority patent/US8470618B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Definitions

  • the present invention relates to the field of light-emitting diodes, and in particular to the field of monolithic light-emitting diodes.
  • Such diodes are for example known from the application US Pat. No. 6,445,009 in which is disclosed a diode comprising a device including a substrate, on which is positioned a matrix comprising at least one stack of quantum wells of GaN or GaInN type emitting in the visible at temperature. ambient in a layer of AlN or GaN respectively.
  • Ml-V nitrides are effective materials for the production of monolithic light-emitting diodes.
  • a first object of the present invention is not to be limited by electric injection light yields for different wavelengths.
  • This feature may be useful if it is desired to make diodes that can change color, but it is a disadvantage for a white emission for uses intended for lighting.
  • a second object of the present invention is therefore to avoid the variation of the colored emission as a function of the current intensity of the diode.
  • white diodes consisting of a first monolithic part emitting in the blue (blue diode) are used a lot, above which a phosphorescent material is positioned which absorbs a part of the blue photons emitted by the blue diode and re-emits yellow photons, the combination of these two lights providing a white light.
  • these diodes in two parts blue-phosphorus standard diode have on the one hand the disadvantage that the phosphor positioned above the blue diode causes a degradation of the overall performance of the device over time. This leads to a degradation of the white color over time and a limitation of the life of the white LED compared to a standard blue LED.
  • Another object of the present invention is therefore to produce a white diode by single epitaxial growth, that is to say a monolithic diode.
  • Another object of the present invention is to provide a white diode whose emission properties are stable over time.
  • a diode comprising a stack of semiconductor layers in the passive zone of the diode.
  • This stack of layers is made so as to constitute a mirror for the wavelength emitted by the active zone in order to increase the extraction efficiency of the photons.
  • these layers must have an emission wavelength very close to that of the active zone, for example less than 0.9 times half the width of the spectrum.
  • the emission wavelength of these layers is between 450 and 459 nm.
  • the function of the semiconductor layers in the aforementioned document is not to denature the hue of the active area, so for example that a blue LED remain blue, while increasing the extraction efficiency using the mirror properties of the quantum well stack.
  • Such a diode therefore makes it impossible to achieve color combinations between the light emitted by the active zone and the light emitted by the passive zone.
  • Another object of the invention is to provide a diode that can potentially emit in the entire visible spectrum, especially under excitation of a blue LED.
  • a device comprising an Mn-V nitride matrix, said matrix comprising at least a first active portion in which an electric current flows, and at least a second passive portion in which does not pass electrical current, said matrix comprising at least a first zone comprising a first stack of quantum wells or of Ml-V nitride quantum dot planes, said first region being positioned in said first active portion, and at least one second region comprising a second quantum well stack or Ml nitride quantum dot planes -V, characterized in that said second zone is positioned in said passive portion of said matrix.
  • the stacks of quantum wells or quantum boxes respectively positioned in the active portion and in the passive portion of the device it is possible to effectively control the lights emitted by the first zone and the second zone so as to generate at the output of the device, a light that can spread over the entire visible spectrum.
  • the first zone comprising a first stack of quantum wells or Ml-V nitride quantum dot planes forms a first quantum confinement and the second zone comprises a second quantum well stack or quantum quantum box planes.
  • Ml-V forms a second quantum confinement.
  • the present invention thus solves the problems related to the emission differences as a function of the currents that pass through two different quantum zones in the known diodes.
  • the second zone of quantum confinement positioned in the passive zone will in fact be optically pumped by the photons emitted by the first quantum confinement zone, the latter being itself even pumped electrically by the current of the diode passing into the active area.
  • optical pumping of the second zone in the passive portion of the matrix of the device then makes it possible to avoid the drawbacks associated with electrical pumping, and in particular the dependence of the emission with the intensity of the current.
  • the monolithic constitution of the matrix comprising the passive zone and the active zone in a nitride material M1-V makes it possible to produce the device according to the invention by a single step of epitaxial growth.
  • the distribution of the Ml-V nitride elements in the matrix is made according to the invention so that said first zone forms a quantum confinement, and that the second zone forms a quantum confinement, that is to say that the matrix portion between these areas forms a quantum barrier between these areas. This is done in a manner known per se by choosing the Ml-V nitride materials as a function of the forbidden bands of these materials.
  • said at least one first zone is capable of emitting photons at at least a first wavelength by electrical injection by said current flowing in said active zone, said at least one first wavelength being determined by the dimensions of said first quantum well stack or quantum well quantum dot planes of the Ml-V nitride and the composition of said first quantum well stack or Ml-V nitride quantum dot planes.
  • said at least second zone is capable of emitting photons at at least a second wavelength by optical pumping by said photons emitted by said first zone, said at least one second wavelength being determined by the dimensions of said second quantum well stack or Ml-V nitride quantum dot planes and the composition of said second quantum well stack or Ml-V nitride quantum dot planes.
  • said first zone and said second zone are chosen so that the combination of the light signal corresponding to the photons at said first wavelength and the light signal corresponding to the photons at said second wavelength produce substantially white light.
  • said at least one first zone is capable of emitting photons in the blue by electric injection by said current passing through said active zone.
  • said at least one second zone is able to emit photons in the yolk by optical pumping by said photons emitted by said first zone.
  • the emission in the yellow allows in particular to use only a stack of quantum wells or quantum dot planes.
  • said at least one second zone is capable of emitting photons in the green and in the red by optical pumping by said photons emitted by said first zone.
  • said first zone consists of a stack of quantum wells of InGaN / GaN type.
  • said nitride matrix M 1 -V comprises a third conductive portion forming a quantum barrier for said first zone.
  • the invention also relates to a light-emitting diode comprising a device as previously described, and means for generating said current, said means for generating said current being arranged so as to define said first active portion in which said electric current passes, and said second passive portion in which does not pass said electric current.
  • FIG. 1 represents an exemplary light-emitting diode according to the present invention
  • FIG. 2 represents a color diagram for the choice of components in a light-emitting diode according to FIG. 1;
  • FIG. 3 represents the nanometer emission wavelength in an AIN / GaN / AIN quantum well or for an AIN / GaN / AIN quantum box that can be used in a device such as that of FIG. 1;
  • FIG. 4 shows the emission wavelength for a thick Gay -x In x N layer usable in the device of Figure 1;
  • FIG. 5 represents the emission wavelength for Gao.8lrto.2N wells that can be used in the device of FIG.
  • FIG. 6 represents another embodiment of a light-emitting diode according to the invention.
  • FIG. 7 shows yet another embodiment of a light emitting diode according to the invention.
  • a light emitting diode 1 As illustrated in Figure 1, a light emitting diode 1 according to the invention comprises a substrate 7 on which is formed a matrix 13 comprising different portions which will be described in more detail later.
  • the matrix 13 firstly comprises an active portion conducting electrical current, and in particular current lines 11. This electric current is generated by current generating means, for example by metal contacts in the form of a positive terminal 10A, a negative terminal 10B, and a semi-transparent contact 10C.
  • the active portion of the matrix 13 is thus defined as the portion of the matrix traversed by the current emitted by the current generation means 10A, 10B and
  • This active portion comprises a first zone 3 positioned in the active portion so as to be traversed by the current lines 1 1.
  • This zone 3 corresponds to a quantum confinement able to be electrically pumped by the current emitted by the current generating means 1 OA, 10B and 10C. It will be called after electric injection zone.
  • This electric injection zone 3 consists, for example, of a stack of InGaN / GaN quantum wells. The characteristics of this electric injection zone 3 are chosen so that the electric injection produced by the current allows the emission of photons, for example blue, as represented by the arrow 8.
  • This electric injection zone 3 is delimited. by a conductive part 4 of n-doped GaN, and a p-doped part GaN 12. The function of these parts 4 and 12 is to conduct the current through the confined area 3.
  • the current generating means 10A, 10B and 10C, the active portion, and the quantially confined electrical injection zone 3 generally form a blue diode 2 whose structure is known per se.
  • the matrix 13 also comprises a passive portion that the electric field lines 11 can not reach.
  • a zone 5 which is quantum-confined is positioned in this passive portion.
  • This zone 5 consists for example of a stack of GaN / AlN quantum boxes.
  • This zone 5 can be pumped optically by the photons emitted by the electric injection zone 3.
  • the zone 5 will be called thereafter optical pumping zone.
  • the optical pumping zone 5 By optical pumping by the photons emitted by the electric injection zone 3, the optical pumping zone 5 emits photons at a wavelength different from that which it receives. More precisely, in a manner known for optical pumping, the length of the photons emitted by the optical pumping zone 5 is greater than the wavelength of the excitation photons that it receives from the electric injection zone 3.
  • the portion passive also comprises a zone 6 of AIN carrying out a quantum barrier function for the GaN quantum dots of the optical pumping zone.
  • the height of the quantum boxes GaN of the optical pumping zone 5 is chosen so that the photons 9 emitted by this zone have a wavelength substantially in the yolk.
  • the number of quantum dot planes is chosen so that certain blue photons 8 pass through the optical pumping zone 5.
  • the optical pumping zone 5 then has a blue / yellow passive converter function.
  • the combination of blue photons 8 emitted by the electric injection zone 3 and yellow photons 9 emitted by the optical pumping zone 5 then allows the generation of a substantially white light at the output of a transparent substrate 7, for example sapphire.
  • the emission properties of the electric injection zone 3 and the optical pumping zone 5 can be adapted to the desired color by modifying the dimensions and compositions of the quantum wells or quantum dots of at least one of these zones. .
  • Ml-V nitride materials may be used in the constitution of the matrix 13 according to the invention while respecting the quantum confinement constraints for the electric injection 3 and optical pumping zones 5.
  • the Ml-V nitrides are GaN, InN, AlN and their alloys and can be noted (Ga, In, Al) - N.
  • quantum boxes of GaN in AIN or else quantum boxes.
  • quantum boxes of GaInN in AIN or quantum boxes of GaInN in AIGaInN.
  • GalnN / GaN quantum wells It is known that all these combinations respect the conditions of quantum confinement.
  • the references in the third column correspond to the references of FIG. 1.
  • the first electric injection zone 3 is formed of five Gao.85lno.15N quantum well stacks and a GaN layer.
  • the second optical pumping zone is formed of twenty stacks of GaN quantum dot planes and a layer of AlN.
  • the example of dimensioning and composition of Table 1 allows an emission in the blue by electric injection of the zone 3, and an emission in the yellow by optical pumping of the zone 5.
  • compositions and dimensioning can be carried out by those skilled in the art, in particular by means of the emission graphs of FIGS. 3, 4 and 5.
  • FIG. 3 represents the nanometer emission wavelength in an AIN / GaN / AIN quantum well or for an AIN / GaN / AIN quantum box.
  • the wavelength of resignation depends on the width of the quantum well or the dimensioning of the quantum boxes, in particular the height of the quantum boxes.
  • FIG. 5 represents the emission wavelength for Ga0.sln0.2N quantum wells in a GaN matrix.
  • the optically confined optical pumping zone 5 can also be positioned above the quantially confined electrical injection zone 3 in the direction of epitaxial growth.
  • the metal contacts 1 OC have been removed so as to orient the field lines 1 1 while avoiding a higher passive portion containing the optical pumping zone 5.
  • the electric injection zone 3 is electrically pumped by the current along the current lines 1 1 so as to emit photons, for example in the blue, towards the top of the device. These photons then optically pump the optical pumping zone 5 which re-emits photons, for example in the yellow.
  • the light obtained by the combination of these lights can then as before be a white light.
  • a diode 1 comprising a first quantatively confined optical pumping zone 5A and a second quantum confinement optic pumping zone 5B, both positioned in a passive portion of the matrix of the diode 1.
  • the first optical pumping zone 5A is for example located above the electric injection zone 3, and the second optical pumping zone 5B below.
  • the current generating means 10A and 10B are arranged such that no current passes through the passive portion of the matrix.
  • the two optical pumping zones 5A and 5B may be chosen to emit photons in the same wavelength or at different wavelengths.
  • the skilled person can adapt the thickness parameters of the optical or electrical pumping zones so as to obtain the desired light emission by combining the photons emitted by the two zones of optical and electrical pumping. He will be able to realize a white light by using the teaching of the combinations of colors as illustrated in figure 2.
  • the combination of a emission of the first zone 3 in the blue and quantum dot planes emitting in the red and in the Green allows in particular to obtain a good color temperature and a good color rendering index.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

L'invention se rapporte à un dispositif comprenant une matrice (13) de nitrure III-V, ladite matrice (13) comprenant au moins une première portion active (3, 4, 12) dans laquelle passe un courant électrique (11), et au moins une seconde portion passive (5, 6) dans laquelle ne passe pas de courant électrique, ladite matrice comprenant au moins une première zone (3) formant un premier confinement quantique de nitrure III-V, ladite première zone (3) étant positionnée dans ladite première portion active (3, 4, 12), et au moins une seconde zone (5) formant un second confinement quantique de nitrure III-V, caractérisé en ce que ladite seconde zone est positionnée dans ladite portion passive de ladite matrice (5, 6).

Description

DIODE ÉLECTROLUMINESCENTE BLANCHE MONOLITHIQUE
La présente invention concerne le domaine des diodes électroluminescentes, et notamment le domaine des diodes électroluminescentes monolithiques.
De telles diodes sont par exemple connues de la demande US 6,445,009 dans laquelle est divulguée une diode comprenant un dispositif incluant un substrat, sur lequel est positionnée une matrice comprenant au moins un empilement de puits quantiques de type GaN ou GaInN émettant dans le visible à température ambiante dans une couche de AIN ou GaN respectivement.
Dans la demande US 6,445,009, on utilise donc un système de matériaux (Al, Ga, In)N ou nitrures Ml-V, qui sont des semiconducteurs à large bande interdite, et qui ont la particularité de pouvoir émettre dans l'ensemble du spectre visible. Par exemple, en mélangeant dans la zone active de la diode, c'est-à-dire dans la zone dans laquelle passe le courant de la diode, des puits quantiques ou boites quantiques lnGaN/(AI)GaN émettant dans le bleu et d'autres émettant dans le jaune, on obtient une lumière blanche.
II est par ailleurs reconnu que les nitrures Ml-V sont des matériaux efficaces pour la production de diodes électroluminescentes monolithiques.
Toutefois, il est connu que le rendement des émissions par pompage électrique varie selon la longueur d'onde émise, et en particulier, que le rendement dans le bleu est deux fois meilleur que le rendement dans le jaune. C'est pour cela que les diodes bleues sont les plus courantes sur le marché aujourd'hui. Le rendement lumineux dans les diodes émettant dans le bleu et dans le jaune est donc limité par les propriétés des boîtes quantiques ou des puits quantiques émettant dans le jaune.
Un premier but de la présente invention est de ne pas être limité par des rendements lumineux par injection électrique pour des longueurs d'onde différentes.
Par ailleurs, il est connu que dans les diodes à injection électrique utilisant des boîtes quantiques ou des puits quantiques, la répartition des électrons et des trous dans les boîtes quantiques ou les puits quantiques est modifiée en fonction de la tension appliquée à la diode. La couleur émise peut donc varier avec l'intensité du courant électrique.
Cette caractéristique peut être utile si l'on désire réaliser des diodes pouvant changer de couleur, mais elle est un inconvénient pour une émission dans le blanc pour des usages destinés à l'éclairage.
Un deuxième but de la présente invention est donc d'éviter la variation de l'émission colorée en fonction de l'intensité du courant de la diode.
Dans le domaine des diodes non monolithiques, on utilise beaucoup des diodes blanches constituées d'une première partie monolithique émettant dans le bleu (diode bleue), au-dessus de laquelle on positionne un matériau phosphorescent qui absorbe une partie des photons bleus émis par la diode bleue et réémet des photons jaunes, la combinaison de ces deux lumières fournissant une lumière blanche. Toutefois, ces diodes en deux parties de type diode standard bleue - phosphore possèdent d'une part l'inconvénient que le phosphore positionné au-dessus de la diode bleue entraîne une dégradation des performances générales du dispositif au cours du temps. Ceci conduit à une dégradation de la couleur blanche au cours du temps et à une limitation de la durée de vie de la DEL blanche par rapport à une DEL bleue standard.
D'autre part, on comprend que la fabrication d'une telle DEL blanche nécessite une première étape classique de croissance par épitaxie de la DEL bleue, et une étape supplémentaire de dépôt du phosphore. Cette étape supplémentaire de dépôt induit donc des coûts de production plus importants.
Un autre but de la présente invention est donc de réaliser une diode blanche par seule croissance épitaxiale, c'est-à-dire une diode monolithique.
Un autre but de la présente invention est de réaliser une diode blanche dont les propriétés d'émission sont stables dans le temps.
On connaît également la demande US 2003/006430 qui décrit une diode comprenant des couches de GaN dopées Si ou Se permettant d'avoir une émission dans le jaune. Il est connu que dans de telles couches l'émission est provoquée par des niveaux profonds qui proviennent de défauts cristallins. L'efficacité quantique de ce type de couche est donc limitée. En outre, ces niveaux profonds émettent à une longueur d'onde qui est fixée dans le jaune. La diode du document précité ne permet donc en aucun cas de pouvoir obtenir une diode pouvant émettre dans l'ensemble du spectre visible par combinaison de couleurs entre la lumière émise dans la zone active et celle émise dans la zone passive.
On connaît également la demande 2002/0139984 qui décrit une diode comprenant un empilement de couches semi-conductrices dans la zone passive de la diode. Cet empilement de couches est réalisé de sorte à constituer un miroir pour la longueur d'onde émise par la zone active afin d'augmenter le rendement d'extraction des photons. En outre, ces couches doivent avoir une longueur d'onde d'émission très proche de celle de la zone active, par exemple moins de 0.9 fois la moitié de la largeur du spectre. Ainsi, par exemple pour une DEL bleue à 450 nm et une largeur de 20 nm, la longueur d'onde d'émission de ces couches est comprise entre 450 et 459 nm. Il en résulte que la fonction des couches semi-conductrices dans le document susmentionné, est de ne pas dénaturer la teinte de la zone active, de sorte par exemple qu'une DEL bleue rester bleue, tout en augmentant le rendement d'extraction en utilisant les propriétés miroirs de l'empilement des puits quantiques. Une telle diode ne permet donc pas de réaliser des combinaisons de couleurs entre la lumière émise par la zone active et la lumière émise par la zone passive.
Un autre but de l'invention est de fournir une diode qui puisse potentiellement émettre dans l'ensemble du spectre visible, notamment sous excitation d'une DEL bleue.
Au moins un de ces buts est atteint selon la présente invention par un dispositif comprenant une matrice de nitrure Ml-V, ladite matrice comprenant au moins une première portion active dans laquelle passe un courant électrique, et au moins une seconde portion passive dans laquelle ne passe pas de courant électrique, ladite matrice comprenant au moins une première zone comprenant un premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V, ladite première zone étant positionnée dans ladite première portion active, et au moins une seconde zone comprenant un deuxième empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V, caractérisé en ce que ladite seconde zone est positionnée dans ladite portion passive de ladite matrice.
Grâce aux empilements de puits quantiques ou de boîtes quantiques respectivement positionnés dans la portion active et dans la portion passive du dispositif, il est possible de contrôler de façon efficace les lumières émises par la première zone et la seconde zone de sorte à générer en sortie du dispositif, une lumière pouvant s'étaler sur l'ensemble du spectre visible.
Selon l'invention, la première zone comprenant un premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V forme un premier confinement quantique et la seconde zone comprenant un deuxième empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V forme un second confinement quantique.
En positionnant la deuxième zone de confinement quantique dans la portion passive de la matrice monolithique, la présente invention résout donc les problèmes liés aux différences d'émission en fonction des courants qui traversent deux zones quantiques différentes dans les diodes connues.
Ainsi, dans le dispositif selon la présente invention, la deuxième zone de confinement quantique positionnée dans la zone passive sera en fait pompée optiquement par les photons émis par la première zone de confinement quantique, cette dernière étant elle- même pompée électriquement par le courant de la diode passant dans la zone active.
Le pompage optique de la seconde zone dans la portion passive de la matrice du dispositif permet alors d'éviter les inconvénients liés au pompage électrique, et notamment la dépendance de l'émission avec l'intensité du courant.
Par ailleurs, la constitution monolithique de la matrice comprenant la zone passive et la zone active en un matériau nitrure Ml-V, permet de réaliser le dispositif selon l'invention par une seule étape de croissance épitaxiale.
La répartition des éléments nitrure Ml-V dans la matrice est faite selon l'invention de sorte que ladite première zone forme un confinement quantique, et que la seconde zone forme un confinement quantique, c'est-à-dire que la partie de matrice entre ces zones forme une barrière quantique entre ces zones. Ceci est réalisé de façon connue en soi en choisissant les matériaux nitrure Ml-V en fonction des bandes interdites de ces matériaux.
Afin de pouvoir adapter notamment la couleur de la lumière émise par la première zone, ladite au moins une première zone est apte à émettre des photons à au moins une première longueur d'onde par injection électrique par ledit courant passant dans ladite zone active, ladite au moins première longueur d'onde étant déterminée par les dimensions dudit premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V et la composition dudit premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V. De la même façon, ladite au moins seconde zone est apte à émettre des photons à au moins une seconde longueur d'onde par pompage optique par lesdits photons émis par ladite première zone, ladite au moins une seconde longueur d'onde étant déterminée par les dimensions dudit second empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V et la composition dudit second empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V.
Afin de produire une lumière blanche, et notamment pour des applications à l'éclairage, ladite première zone et ladite seconde zone sont choisies de sorte que la combinaison du signal lumineux correspondant aux photons à ladite première longueur d'onde et du signal lumineux correspondant aux photons à ladite seconde longueur d'onde produise une lumière sensiblement blanche.
Afin de bénéficier d'un bon rendement des émissions de lumières, ladite au moins une première zone est apte à émettre des photons dans le bleu par injection électrique par ledit courant passant dans ladite zone active.
Dans ce cas, afin d'obtenir une lumière blanche en sortie du dispositif, ladite au moins une seconde zone est apte à émettre des photons dans le jaune par pompage optique par lesdits photons émis par ladite première zone.
L'émission dans le jaune permet notamment de n'utiliser qu'un empilement de puits quantiques ou de plans de boîtes quantiques.
Selon un autre mode de réalisation, permettant d'améliorer la température de couleur et l'indice de rendu des couleurs tout en obtenant une lumière blanche en sortie du dispositif, ladite au moins une seconde zone est apte à émettre des photons dans le vert et dans le rouge par pompage optique par lesdits photons émis par ladite première zone.
Selon une variante de l'invention, ladite première zone est constituée d'un empilement de puits quantiques de type InGaN/GaN.
Dans ce mode de réalisation de l'invention, ladite seconde zone est constituée d'un empilement de plans de boîtes quantiques de type GaN/AIN.
Afin de permettre le passage du courant vers la première zone active tout en réalisant le confinement quantique de la première zone active, ladite matrice de nitrure M l-V comprend une troisième portion conductrice formant barrière quantique pour ladite première zone.
L'invention concerne également une diode électroluminescente comprenant un dispositif tel que précédemment décrit, et des moyens de génération dudit courant, lesdits moyens de génération dudit courant étant agencés de sorte à définir ladite première portion active dans laquelle passe ledit courant électrique, et ladite seconde portion passive dans laquelle ne passe pas ledit courant électrique.
L'invention sera mieux comprise à l'aide de la description détaillée ci-dessous et des figures annexées dans lesquelles :
- la figure 1 représente un exemple de diode électroluminescente selon la présente invention ; - la figure 2 représente un diagramme chromatique pour les choix des composants dans une diode électroluminescente selon la FIG. 1 ;
- la figure 3 représente la longueur d'onde d'émission en nanomètre dans un puit quantique AIN/GaN/AIN ou pour une boîte quantique AIN/GaN/AIN utilisable dans un dispositif tel que celui de la figure. 1 ;
- la figure 4 représente la longueur d'onde d'émission pour une couche épaisse de Gai-xlnxN utilisable dans le dispositif de la figure 1 ;
- la figure 5 représente la longueur d'onde d'émission pour des puits de Gao.8lrto.2N utilisables dans le dispositif de la figure
1 ;
- la figure 6 représente un autre exemple de réalisation d'une diode électroluminescente selon l'invention ;
- la figure 7 représente encore un autre exemple de réalisation d'une diode électroluminescente selon l'invention.
Comme illustré sur la figure 1 , une diode électroluminescente 1 selon l'invention comprend un substrat 7 sur lequel est formée une matrice 13 comprenant différentes portions qui seront décrites plus en détail par la suite.
La matrice 13 comprend d'abord une portion active conductrice de courant électrique, et en particulier de lignes de courant 1 1 . Ce courant électrique est généré par des moyens de génération de courant, par exemple par des contacts métalliques sous la forme d'une borne positive 10A, d'une borne négative 10B, et d'un contact semi-transparent 10C. La portion active de la matrice 13 est donc définie comme la portion de la matrice traversée par le courant émis par les moyens de génération de courant 10A, 10B et
10C. Cette portion active comprend une première zone 3 positionnée dans la portion active de sorte à être traversée par les lignes de courant 1 1 . Cette zone 3 correspond à un confinement quantique apte à être pompé électriquement par le courant émis par les moyens de génération de courant 1 OA, 10B et 10C. Elle sera appelée par la suite zone d'injection électrique. Cette zone d'injection électrique 3 est par exemple constituée d'un empilement de puits quantiques de InGaN/GaN. Les caractéristiques de cette zone d'injection électrique 3 sont choisies de sorte que l'injection électrique réalisée par le courant permette l'émission de photons, par exemple bleus, comme représenté par la flèche 8. Cette zone d'injection électrique 3 est délimitée par une partie conductrice 4 de GaN dopé n, et une partie 12 de GaN dopé p. La fonction de ces parties 4 et 12 est de conduire le courant au travers de la zone confinée 3.
Les moyens de génération de courant 10A, 10B et 10C, la portion active, et la zone d'injection électrique confinée quantiquement 3 forment de façon générale une diode bleue 2 dont la structure est connue en soi.
Selon l'invention, la matrice 13 comprend également une portion passive que ne peuvent pas atteindre les lignes de champ électrique 1 1 . Selon l'invention, on positionne dans cette portion passive une zone 5 confinée quantiquement. Cette zone 5 est par exemple constituée d'un empilement de boîtes quantiques de GaN/AIN. Cette zone 5 peut être pompée optiquement par les photons émis par la zone d'injection électrique 3. La zone 5 sera appelée par la suite zone de pompage optique.
Par pompage optique par les photons émis par la zone d'injection électrique 3, la zone de pompage optique 5 émet des photons à une longueur d'onde différente de celle qu'elle reçoit. Plus précisément, de façon connue pour le pompage optique, la longueur des photons émis par la zone de pompage optique 5 est supérieure à la longueur d'onde des photons d'excitation qu'elle reçoit de la zone d'injection électrique 3. La portion passive comprend également une zone 6 de AIN réalisant une fonction de barrière quantique pour les boîtes quantiques GaN de la zone de pompage optique. La hauteur des boîtes quantiques GaN de la zone de pompage optique 5 est choisie de sorte que les photons 9 émis par cette zone aient une longueur d'onde sensiblement dans le jaune. Le nombre de plans de boîtes quantiques est choisi de sorte que certains photons bleus 8 traversent la zone de pompage optique 5. La zone de pompage optique 5 a alors une fonction de convertisseur passif bleu/jaune. La combinaison des photons bleus 8 émis par la zone d'injection électrique 3 et des photons jaunes 9 émis par la zone de pompage optique 5 permet alors la génération d'une lumière sensiblement blanche en sortie d'un substrat transparent 7, par exemple de saphir.
Les propriétés d'émission de la zone d'injection électrique 3 et de la zone de pompage optique 5 peuvent être adaptée à la couleur désirée en modifiant les dimensions et les compositions des puits quantiques ou des boîtes quantiques d'au moins une de ces zones.
En particulier, toutes les combinaisons de couleurs telles que données sur le diagramme chromatique de la figure 2 sont possibles. Pour un usage d'éclairage, on privilégiera une combinaison de couleurs générant une lumière blanche, mais il est entendu que des lumières colorées peuvent résulter de la combinaison des longueurs d'onde émises par la première zone d'injection électrique 3 et la seconde zone de pompage optique 5 comme décrit précédemment. En particulier, afin d'améliorer la température de couleur et l'indice de rendu des couleurs obtenues, on pourra préférer à un empilement de boîtes quantiques émettant dans le jaune, la combinaison d'un premier empilement émettant dans le rouge, et d'un second empilement émettant dans le vert, ces deux empilements étant toujours, selon l'invention positionnés dans une zone passive de la matrice 13 de la diode 1 .
Il est par ailleurs entendu que différentes combinaisons des matériaux nitrure Ml-V, peuvent être utilisées dans la constitution de la matrice 13 selon l'invention en respectant les contraintes de confinement quantique pour les zones d'injection électrique 3 et de pompage optique 5. Les nitrures Ml-V sont GaN, InN, AIN et leurs alliages et peuvent être notés (Ga, In, Al) - N. En particulier, on pourra utiliser des boîtes quantiques de GaN dans de l'AIN, ou bien des boîtes quantiques de GaInN dans de l'AIN, ou bien des boîtes quantiques de GaInN dans de l'AIGaInN. On peut également utiliser des puits quantiques GalnN/GaN. Il est connu que toutes ces combinaisons respectent les conditions de confinement quantique.
L'utilisation des seuls nitrures Ml-V pour la matrice 13 permet alors de réaliser une diode 1 en une seule étape de croissance épitaxiale, et de tirer parti des bonnes propriétés d'émission lumineuse de ces matériaux.
On fournit maintenant une description détaillée d'un exemple de structure et de dimensionnement de la matrice 13 selon l'invention sous la forme du tableau 1 ci-dessous qui représente la succession des couches dans la matrice 13 selon l'invention.
Figure imgf000015_0001
x 20
Figure imgf000015_0002
Tableau 1
Dans le tableau 1 ci-dessus, les références de la troisième colonne correspondent aux références de la FIG. 1 . La première zone d'injection électrique 3 est formée de cinq empilements de puits quantiques Gao.85lno.15N et d'une couche de GaN. La seconde zone de pompage optique est formée de vingt empilements de plans de boîtes quantiques GaN et d'une couche de AIN.
L'exemple de dimensionnement et de composition du tableau 1 permet une émission dans le bleu par injection électrique de la zone 3, et une émission dans le jaune par pompage optique de la zone 5.
Par ailleurs, d'autres combinaisons de compositions et de dimensionnement peuvent être réalisées par l'homme du métier, notamment à l'aide des graphiques d'émission des figures 3, 4 et 5.
La figure 3 représente en effet la longueur d'onde d'émission en nanomètre dans un puits quantique AIN/GaN/AIN ou pour une boîte quantique AIN/GaN/AIN. La longueur d'onde démission dépend de la largeur du puits quantique ou du dimensionnement des boîtes quantiques, notamment de la hauteur des boîtes quantiques.
La figure 4 représente par ailleurs la longueur d'onde d'émission pour une couche épaisse de Gai-xlnxN, sans effet quantique. Cette longueur d'onde dépend notamment de la composante x en In.
Enfin, la figure 5 représente la longueur d'onde d'émission pour des puits quantiques de Ga0.sln0.2N dans une matrice GaN.
On décrit maintenant différentes variantes de l'invention.
Comme illustré figure 6, la zone de pompage optique confinée quantiquement 5 peut également être positionnée au-dessus de la zone d'injection électrique confinée quantiquement 3 dans le sens de la croissance épitaxiale. Dans cette configuration, on a supprimé les contacts métalliques 1 OC de sorte à orienter les lignes de champ 1 1 en évitant une portion passive supérieure contenant la zone de pompage optique 5. En fonctionnement, la zone d'injection électrique 3 est pompée électriquement par le courant selon les lignes de courant 1 1 de sorte à émettre des photons, par exemple dans le bleu, vers le haut du dispositif. Ces photons pompent ensuite optiquement la zone de pompage optique 5 qui réémet des photons, par exemple dans le jaune. La lumière obtenue par la combinaison de ces lumières peut alors comme précédemment être une lumière blanche.
Comme illustré maintenant figure 7, il est également possible de combiner les deux modes de réalisation tels que précédemment décrits en une diode 1 comprenant une première zone de pompage optique confinée quantiquement 5A et une seconde zone de pompage optique confinée quantiquement 5B, toutes les deux positionnées dans une portion passive de la matrice de la diode 1 . La première zone de pompage optique 5A est par exemple située au-dessus de la zone d'injection électrique 3, et la seconde zone de pompage optique 5B en dessous. Comme précédemment, les moyens de génération de courant 10 A et 10B sont agencés de sorte qu'aucun courant ne traverse la portion passive de la matrice. Les deux zones de pompage optique 5A et 5B peuvent être choisies pour émettre des photons dans la même longueur d'onde ou selon des longueurs d'onde différentes.
Selon un autre mode de réalisation non représenté, il est également possible de positionner plusieurs zones d'injection électriques confinées quantiquement 3 dans la portion active de la matrice 13 traversée par un courant électrique.
Dans tous les modes de réalisation, il est enfin entendu que l'homme du métier pourra adapter les paramètres d'épaisseur des zones de pompage optique ou électrique de façon à obtenir l'émission lumineuse désirée par combinaison des photons émis par les deux zones de pompage optique et électrique. Il pourra notamment réaliser une lumière blanche en utilisant l'enseignement des combinaisons de couleurs telles qu'illustrées figure 2. La combinaison d'une émission de la première zone 3 dans le bleu et de plans de boîtes quantiques émettant dans le rouge et dans le vert permet notamment d'obtenir une bonne température de couleur ainsi qu'un bon indice de rendu des couleurs.

Claims

REVENDICATIONS
1 . Dispositif comprenant une matrice (13) de nitrure Ml-V, ladite matrice (13) comprenant au moins une première portion active (3, 4, 12) dans laquelle passe un courant électrique (1 1 ), et au moins une seconde portion passive (5, 6, 5A, 5B) dans laquelle ne passe pas de courant électrique, ladite matrice comprenant au moins une première zone (3) comprenant un premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V, ladite première zone (3) étant positionnée dans ladite première portion active (3, 4, 12), et au moins une seconde zone (5, 5A, 5B) comprenant un deuxième empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V, caractérisé en ce que ladite seconde zone est positionnée dans ladite portion passive de ladite matrice (5, 6).
2. Dispositif selon la revendication 1 , dans lequel ladite au moins une première zone est apte à émettre des photons au moins une première longueur d'onde par injection électrique par ledit courant passant dans ladite zone active, ladite au moins première longueur d'onde étant déterminée par les dimensions dudit premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V et la composition dudit premier empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V.
3. Dispositif selon la revendication 2, dans lequel ladite au moins seconde zone est apte à émettre des photons à au moins une seconde longueur d'onde par pompage optique par lesdits photons émis par ladite première zone, ladite au moins une seconde longueur d'onde étant déterminée par les dimensions dudit second empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V et la composition dudit second empilement de puits quantiques ou de plans de boîtes quantiques de nitrure Ml-V.
4. Dispositif selon la revendication 3, dans lequel ladite au moins une première zone et ladite au moins seconde zone sont choisies de sorte que la combinaison du signal lumineux (8) correspondant aux photons à ladite au moins une première longueur d'onde et du second signal lumineux (9) correspondant aux photons à ladite au moins une seconde longueur d'onde produise une lumière blanche.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel ladite au moins une première zone est apte à émettre des photons dans le bleu par injection électrique par ledit courant passant dans ladite zone active.
6. Dispositif selon la revendication 5, dans lequel ladite au moins une seconde zone est apte à émettre des photons dans le jaune par pompage optique par lesdits photons émis par ladite première zone.
7. Dispositif selon la revendication 5, dans lequel ladite au moins une seconde zone est apte à émettre des photons dans le vert et dans le rouge par pompage optique par lesdits photons émis par ladite première zone.
8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel ladite première zone est constituée d'un empilement de puits quantiques de type InGaN/GaN.
9. Dispositif selon l'une quelconque des revendications précédentes, dans lequel ladite seconde zone est constituée d'un empilement de plans de boîtes quantiques de type GaN/AIN.
10. Diode électroluminescente comprenant un dispositif selon l'une quelconque des revendications précédentes, et des moyens de génération (1 OA, 10B, 10C) dudit courant, lesdits moyens de génération dudit courant étant agencés de sorte à définir ladite première portion active dans laquelle passe ledit courant électrique, et ladite seconde portion passive dans laquelle ne passe pas ledit courant électrique.
PCT/FR2007/050898 2006-03-13 2007-03-09 Diode electroluminescente blanche monolithique WO2007104884A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07731714A EP1994571A1 (fr) 2006-03-13 2007-03-09 Diode electroluminescente blanche monolithique
JP2008558861A JP2009530803A (ja) 2006-03-13 2007-03-09 モノリシック白色発光ダイオード
US12/225,039 US20090101934A1 (en) 2006-03-13 2007-03-09 Monolithic White Light-Emitting Diode
US12/882,868 US8470618B2 (en) 2006-03-13 2010-09-15 Method of manufacturing a light-emitting diode having electrically active and passive portions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0650842A FR2898434B1 (fr) 2006-03-13 2006-03-13 Diode electroluminescente blanche monolithique
FR0650842 2006-03-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/225,039 A-371-Of-International US20090101934A1 (en) 2006-03-13 2007-03-09 Monolithic White Light-Emitting Diode
US12/882,868 Division US8470618B2 (en) 2006-03-13 2010-09-15 Method of manufacturing a light-emitting diode having electrically active and passive portions

Publications (1)

Publication Number Publication Date
WO2007104884A1 true WO2007104884A1 (fr) 2007-09-20

Family

ID=37388447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/050898 WO2007104884A1 (fr) 2006-03-13 2007-03-09 Diode electroluminescente blanche monolithique

Country Status (6)

Country Link
US (2) US20090101934A1 (fr)
EP (1) EP1994571A1 (fr)
JP (1) JP2009530803A (fr)
KR (1) KR20080104368A (fr)
FR (1) FR2898434B1 (fr)
WO (1) WO2007104884A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541217A (ja) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放射放出用の半導体ボディ
JP2011501408A (ja) * 2007-10-12 2011-01-06 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ 蛍光体を含まない赤色及び白色窒化物ベースのledの作製
WO2014140118A1 (fr) 2013-03-14 2014-09-18 Centre National De La Recherche Scientifique Dispositif monolithique emetteur de lumiere

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932608B1 (fr) * 2008-06-13 2011-04-22 Centre Nat Rech Scient Procede de croissance de nitrure d'elements du groupe iii.
DE102009023351A1 (de) 2009-05-29 2010-12-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
KR100993074B1 (ko) * 2009-12-29 2010-11-08 엘지이노텍 주식회사 발광소자, 발광소자의 제조방법 및 발광소자 패키지
KR101011757B1 (ko) * 2010-04-09 2011-02-07 엘지이노텍 주식회사 발광 소자, 발광 소자의 제조방법 및 발광 소자 패키지
EP2610930B1 (fr) 2010-08-23 2019-12-25 Samsung Display Co., Ltd. Dispositif à diodes électroluminescentes blanches et à puces multiples
KR101244926B1 (ko) 2011-04-28 2013-03-18 피에스아이 주식회사 초소형 led 소자 및 그 제조방법
KR101209449B1 (ko) 2011-04-29 2012-12-07 피에스아이 주식회사 풀-칼라 led 디스플레이 장치 및 그 제조방법
DE102013103602A1 (de) * 2013-04-10 2014-10-16 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu seiner Herstellung
JP6183060B2 (ja) * 2013-08-24 2017-08-23 日亜化学工業株式会社 半導体発光素子
US9331298B2 (en) 2013-09-12 2016-05-03 Board Of Trustees Of Michigan State University Nanocluster based light emitting device
FR3019380B1 (fr) * 2014-04-01 2017-09-01 Centre Nat Rech Scient Pixel semiconducteur, matrice de tels pixels, structure semiconductrice pour la realisation de tels pixels et leurs procedes de fabrication
DE102014107472A1 (de) 2014-05-27 2015-12-03 Osram Opto Semiconductors Gmbh Halbleiterbauelement und Beleuchtungsvorrichtung
JP2017220586A (ja) * 2016-06-08 2017-12-14 国立大学法人 東京大学 半導体発光素子
FR3066045A1 (fr) * 2017-05-02 2018-11-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Diode electroluminescente comprenant des couches de conversion en longueur d'onde
KR101921825B1 (ko) 2017-07-19 2018-11-23 한국과학기술원 질화물 기반 반도체 양자점의 하위밴드 전이를 이용한 광통신파장에서 상온 동작 가능한 결정적 양자광원과 그 제작 방법 및 동작 방법
US10868213B2 (en) * 2018-06-26 2020-12-15 Lumileds Llc LED utilizing internal color conversion with light extraction enhancements
JP2022163951A (ja) * 2021-04-15 2022-10-27 聯嘉光電股▲ふん▼有限公司 三原色スペクトルで発光できるフリップチップ型発光ダイオード構造及び製造方法
US20230282766A1 (en) * 2022-03-03 2023-09-07 Seoul Viosys Co., Ltd Monolithic di-chromatic device and light emitting module having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211737A2 (fr) * 2000-12-04 2002-06-05 Ngk Insulators, Ltd. Dispositif semi-conducteur émetteur de lumière
US6445009B1 (en) * 2000-08-08 2002-09-03 Centre National De La Recherche Scientifique Stacking of GaN or GaInN quantum dots on a silicon substrate, their preparation procedure electroluminescent device and lighting device comprising these stackings
US20020139984A1 (en) * 2001-01-26 2002-10-03 Kabushiki Kaisha Toshiba Semiconductor light emitting element
US20030006430A1 (en) * 2001-06-08 2003-01-09 Naoki Shibata Group III nitride compound semiconductor light-emitting element
US20060039437A1 (en) * 2000-05-30 2006-02-23 Osram Opto Semiconductors Gmbh & Co. Ohg Optically pumped, surface-emitting semiconductor laser device and method for the manufacture thereof

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593966B1 (fr) * 1986-02-04 1988-09-09 Ankri David Structure semi-conductrice monolithique d'un transistor bipolaire a heterojonction et d'un laser
US4818079A (en) * 1987-01-15 1989-04-04 California Institute Of Technology Multiple quantum well optical modulator
JPH11135838A (ja) * 1997-10-20 1999-05-21 Ind Technol Res Inst 白色発光ダイオード及びその製造方法
FR2772187B1 (fr) 1997-12-09 2000-03-17 Thomson Csf Procede et dispositif de fabrication de materiaux semiconducteurs iii-n par photolyse d'ammoniac
US5907165A (en) * 1998-05-01 1999-05-25 Lucent Technologies Inc. INP heterostructure devices
FR2796657B1 (fr) 1999-07-20 2001-10-26 Thomson Csf Procede de synthese de materiaux massifs monocristallins en nitrures d'elements de la colonne iii du tableau de la classification periodique
FR2803433B1 (fr) 1999-12-30 2003-02-14 Thomson Csf Procede de realisation d'une grille metallique enterree dans une structure en materiau semiconducteur
TW497277B (en) * 2000-03-10 2002-08-01 Toshiba Corp Semiconductor light emitting device and method for manufacturing the same
FR2807909B1 (fr) * 2000-04-12 2006-07-28 Centre Nat Rech Scient COUCHE MINCE SEMI-CONDUCTRICE DE GaInN, SON PROCEDE DE PREPARATION; DEL COMPRENANT CETTE COUCHE ET DISPOSITIF D'ECLAIRAGE COMPRENANT CETTE DEL
JP2001352098A (ja) * 2000-06-07 2001-12-21 Sanyo Electric Co Ltd 半導体発光素子およびその製造方法
FR2810159B1 (fr) 2000-06-09 2005-04-08 Centre Nat Rech Scient Couche epaisse de nitrure de gallium ou de nitrure mixte de gallium et d'un autre metal, procede de preparation, et dispositif electronique ou optoelectronique comprenant une telle couche
KR100382481B1 (ko) * 2000-06-09 2003-05-01 엘지전자 주식회사 백색 발광 다이오드 소자 및 그 제조 방법
AU2002231019A1 (en) * 2000-12-15 2002-06-24 Stanford University Laser diode with nitrogen incorporating barrier
JP2002246642A (ja) * 2001-02-13 2002-08-30 Canon Inc 窒化物系化合物半導体発光素子
US6611539B2 (en) * 2001-05-29 2003-08-26 Nsc Nanosemiconductor Gmbh Wavelength-tunable vertical cavity surface emitting laser and method of making same
US7676307B2 (en) * 2001-11-05 2010-03-09 Ford Global Technologies System and method for controlling a safety system of a vehicle in response to conditions sensed by tire sensors related applications
JP2004022969A (ja) * 2002-06-19 2004-01-22 Nippon Telegr & Teleph Corp <Ntt> 半導体発光素子
TW586246B (en) 2002-10-28 2004-05-01 Super Nova Optoelectronics Cor Manufacturing method of white light LED and the light-emitting device thereof
JP2004207583A (ja) * 2002-12-26 2004-07-22 Sony Corp 半導体装置
US6998320B2 (en) * 2003-04-23 2006-02-14 Triquint Semiconductor, Inc. Passivation layer for group III-V semiconductor devices
CN1275337C (zh) * 2003-09-17 2006-09-13 北京工大智源科技发展有限公司 高效高亮度多有源区隧道再生白光发光二极管
US7122827B2 (en) * 2003-10-15 2006-10-17 General Electric Company Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same
TWI229465B (en) * 2004-03-02 2005-03-11 Genesis Photonics Inc Single chip white light component
US7580837B2 (en) * 2004-08-12 2009-08-25 At&T Intellectual Property I, L.P. System and method for targeted tuning module of a speech recognition system
US7323721B2 (en) * 2004-09-09 2008-01-29 Blue Photonics Inc. Monolithic multi-color, multi-quantum well semiconductor LED
US7223998B2 (en) * 2004-09-10 2007-05-29 The Regents Of The University Of California White, single or multi-color light emitting diodes by recycling guided modes
US7402831B2 (en) * 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
TWI267212B (en) * 2004-12-30 2006-11-21 Ind Tech Res Inst Quantum dots/quantum well light emitting diode
FR2888664B1 (fr) * 2005-07-18 2008-05-02 Centre Nat Rech Scient Procede de realisation d'un transistor bipolaire a heterojonction
US7593436B2 (en) * 2006-06-16 2009-09-22 Vi Systems Gmbh Electrooptically Bragg-reflector stopband-tunable optoelectronic device for high-speed data transfer
KR20090086942A (ko) * 2006-09-08 2009-08-14 에이전시 포 사이언스, 테크놀로지 앤드 리서치 가변 파장 발광 다이오드
FR2908925B1 (fr) * 2006-11-17 2009-02-20 St Microelectronics Sa PROCEDE D'INTEGRATION D'UN COMPOSANT DE TYPE III-N, TEL QUE DU GaN, SUR UN SUBSTRAT DE SILICIUM (001) NOMINAL

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039437A1 (en) * 2000-05-30 2006-02-23 Osram Opto Semiconductors Gmbh & Co. Ohg Optically pumped, surface-emitting semiconductor laser device and method for the manufacture thereof
US6445009B1 (en) * 2000-08-08 2002-09-03 Centre National De La Recherche Scientifique Stacking of GaN or GaInN quantum dots on a silicon substrate, their preparation procedure electroluminescent device and lighting device comprising these stackings
EP1211737A2 (fr) * 2000-12-04 2002-06-05 Ngk Insulators, Ltd. Dispositif semi-conducteur émetteur de lumière
US20020139984A1 (en) * 2001-01-26 2002-10-03 Kabushiki Kaisha Toshiba Semiconductor light emitting element
US20030006430A1 (en) * 2001-06-08 2003-01-09 Naoki Shibata Group III nitride compound semiconductor light-emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KALLIAKOS S ET AL: "Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 96, no. 1, 1 July 2004 (2004-07-01), pages 180 - 185, XP012067946, ISSN: 0021-8979 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541217A (ja) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 放射放出用の半導体ボディ
US8426843B2 (en) 2007-09-28 2013-04-23 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor body
JP2011501408A (ja) * 2007-10-12 2011-01-06 エイジェンシー フォア サイエンス テクノロジー アンド リサーチ 蛍光体を含まない赤色及び白色窒化物ベースのledの作製
WO2014140118A1 (fr) 2013-03-14 2014-09-18 Centre National De La Recherche Scientifique Dispositif monolithique emetteur de lumiere

Also Published As

Publication number Publication date
US8470618B2 (en) 2013-06-25
JP2009530803A (ja) 2009-08-27
US20090101934A1 (en) 2009-04-23
FR2898434A1 (fr) 2007-09-14
KR20080104368A (ko) 2008-12-02
EP1994571A1 (fr) 2008-11-26
US20110045623A1 (en) 2011-02-24
FR2898434B1 (fr) 2008-05-23

Similar Documents

Publication Publication Date Title
WO2007104884A1 (fr) Diode electroluminescente blanche monolithique
EP3061137B1 (fr) Dispositif emissif lumineux
EP3127159B1 (fr) Pixel semiconducteur, matrice de tels pixels, structure semiconductrice pour la réalisation de tels pixels et leurs procédés de fabrication
EP2979307B1 (fr) Diode electroluminescente a multiples puits quantiques et jonction p-n asymetrique
FR3012677A1 (fr) Dispositif emissif lumineux, dispositif et procede d&#39;ajustement d&#39;une emission lumineuse d&#39;une diode electroluminescente a phosphore
EP3347916B1 (fr) Dispositif electroluminescent a capteur de lumiere integre
FR3030995A1 (fr) Source de lumiere electroluminescente a parametre de luminance ajuste ou ajustable en luminance et procede d&#39;ajustement d&#39;un parametre de luminance de la source de lumiere electroluminescente
FR3003402A1 (fr) Dispositif monolithique emetteur de lumiere.
FR3093237A1 (fr) Diode electroluminescente, pixel comportant une pluralite de diodes electroluminescentes et procedes de fabrication associes
EP1273049B1 (fr) PROCEDE DE PREPARATION D&#39;UNE COUCHE MINCE SEMI-CONDUCTRICE DE GaInN
EP3399559B1 (fr) Diode électroluminescente comprenant des couches de conversion en longueur d&#39;onde et procédé de réalisation correspondant
EP0069608A1 (fr) Laser à semiconductor à courte longeur d&#39;onde
FR3091022A1 (fr) Procede de fabrication de structures optoelectroniques pourvues de diodes electroluminescentes coplanaires
FR3087580A1 (fr) Procede de realisation d’un dispositif optoelectronique comprenant des diodes electroluminescentes homogenes en dimensions
WO2017001760A1 (fr) Dispositif electroluminescent a semiconducteur comportant une couche photoluminescente structuree
CN108521075B (zh) 一种基于蓝光InGaN量子阱的绿光发射激光器
FR3103322A1 (fr) Procédé de fabrication d’un ensemble d’émetteurs de lumière
FR3096834A1 (fr) Dispositif optoelectronique comportant une diode electroluminescente ayant une couche limitant les courants de fuite
FR3137499A1 (fr) Dispositif optoélectronique à zones de transitions
WO2023247456A1 (fr) Elément émetteur de lumière à générateur d&#39;onde stationnaire et dispositif optoélectronique associé
EP4136500A1 (fr) Dispositif optoélectronique comportant un polariseur et au moins un émetteur de rayonnement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07731714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007731714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008558861

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020087024979

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12225039

Country of ref document: US