WO2007104401A1 - Elément optique, procédé pour sa fabrication et dispositif pour mettre en œuvre le procédé - Google Patents

Elément optique, procédé pour sa fabrication et dispositif pour mettre en œuvre le procédé Download PDF

Info

Publication number
WO2007104401A1
WO2007104401A1 PCT/EP2007/001332 EP2007001332W WO2007104401A1 WO 2007104401 A1 WO2007104401 A1 WO 2007104401A1 EP 2007001332 W EP2007001332 W EP 2007001332W WO 2007104401 A1 WO2007104401 A1 WO 2007104401A1
Authority
WO
WIPO (PCT)
Prior art keywords
photo
substrate
addressable polymer
optical
polymer
Prior art date
Application number
PCT/EP2007/001332
Other languages
German (de)
English (en)
Inventor
Dominik Giel
Original Assignee
Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. filed Critical Frauhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
Publication of WO2007104401A1 publication Critical patent/WO2007104401A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0493Special holograms not otherwise provided for, e.g. conoscopic, referenceless holography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/0478Serial printer, i.e. point oriented processing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0493Special holograms not otherwise provided for, e.g. conoscopic, referenceless holography
    • G03H2001/0495Polarisation preserving holography where amplitude, phase and polarisation state of the original objet wavefront are recorded
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/31Polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/51Photoanisotropic reactivity wherein polarized light induces material birefringence, e.g. azo-dye doped polymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2270/00Substrate bearing the hologram
    • G03H2270/55Substrate bearing the hologram being an optical element, e.g. spectacles

Definitions

  • the present invention relates to an optical element, a method for producing the optical element and an apparatus for carrying out the method for producing the optical element.
  • the present invention is particularly useful in the field of rapid prototyping of optical elements, such as an optical lens ("lens rapid prototyping").
  • a method to obtain optical elements with arbitrary properties, such as. focal length, and with customized aspherical correction, would therefore be desirable in rapid prototyping.
  • a particular advantage of a combination of conventional lens with these holographic optical elements is that the refractive surfaces of the conventional lenses (refraction) and the holographic structures in the region of the wavelength (diffraction) have a different sign of dispersion, whereby a combination of lens and holographic optical element allows a very effective correction of color errors.
  • the holographic elements used for this purpose are based on the principle of diffraction at a spatially varying absorption (so-called amplitude holograms) or a spatially varying refractive index (phase holograms) or a reflection with spatially varying maturities (reflection holograms).
  • these holographic optical elements are predominantly obtained by photolithography, i. Exposure and etching, or by embossing.
  • an optical component having a substrate formed as an optical element, wherein one side of the substrate is coated with a film of a photo-addressable polymer and in this photo-addressable polymer, a polarization hologram is generated.
  • the side of the substrate on which the photo-addressable polymer is disposed may be planar.
  • the substrate may be formed as a plano-convex lens, on the planar side of which the photo-addressable polymer is arranged.
  • the polarization hologram may be formed as a phase polarization hologram by direct exposure to laser light in the photo-addressable polymer.
  • the above object is achieved according to the invention by a method for producing the aforementioned optical component, wherein the polarization hologram is generated by exposing a surface of the photo-addressable polymer directly on the optical element.
  • the photo-addressable polymer can be applied to the surface of the substrate by spin coating.
  • the polarization hologram can be generated by means of laser light, in particular by means of linearly polarized light.
  • phase polarization hologram is generated in the photo-addressable polymer.
  • the above object is achieved according to the invention by a device for carrying out the aforementioned method, wherein a collimated beam of polarized light can be focused on the one layer of the photoaddressable polymer on the optical element via an optical system.
  • this apparatus comprises means for manipulating a polarization axis of the collimated beam of polarized light disposed between a light source and the optic.
  • the device may include a light source for generating laser light, in particular linearly polarized light.
  • a point of impact of the light, in particular of the laser, on the photoaddressable polymer can be changed by reflection at a movable reflection device.
  • a positioning table can be provided, on which the substrate can be stored, wherein a point of impact of the light, in particular the laser can be modifiable on the photo-addressable polymer by displacement of the positioning table and / or displacement of the substrate arranged on the positioning table.
  • the apparatus may further comprise a controller with which an orientation of the polarization axis of the collimated beam of polarized light and a position of the beam focus on the photo-addressable polymer can be controlled.
  • FIG. 1 shows an embodiment of an apparatus for generating a phase polarization hologram in a photo-addressable polymer layer on a planar side of a plano-convex lens
  • FIG. 2 shows an exemplary embodiment of an optical component, in the present case a plano-convex lens, which is coated with a layer of photo-addressable polymer material (PAP material), wherein a hologram is exposed in the PAP layer, and
  • PAP material photo-addressable polymer material
  • holographic optical elements As explained above, holographic optical elements according to the prior art are predominantly produced by photolithography or embossing. In contrast, the present invention teaches to use holographic optical elements based on polarization holograms, which result from the direct exposure of a photo-addressable polymer (PAP).
  • PAP photo-addressable polymer
  • phase polarization hologram is based on the spatial variation of birefringence ("phase polarization hologram") or the dichroism of a medium ("amplitude polarization hologram”).
  • phase polarization holograms are described according to the publication by Gabriella Cincotti: 'Polarization Grating': Design and Applications, IEEE Journal of quantum electronics, Vol. 39, No.12, December 2003, Section B ("Space-variant retarder”). ) simply referred to as polarization holograms.
  • phase polarization hologram is based on the property of photoaddressable polymers ("PAP"), after which the PAP material changes its molecular structure under laser irradiation.
  • PAP photoaddressable polymers
  • the material is sensitive to a particular wavelength representing the writing wavelength of the hologram
  • the hologram can be read out non-destructively at different wavelengths (the so-called read wavelengths).
  • a change in the PAP material which is selective in the case of the write wavelength can then preferably be read with attenuated laser light.
  • a film of a photo-addressable polymer is applied on a flat side. Due to the very high refractive index modulations of the photo-addressable polymer, polarization holograms can be achieved in this film of the PAP material with very thin layer thicknesses of the polymer and simultaneously high diffraction efficiency.
  • FIG. 1 A device for generating such polarization holograms by direct exposure is shown in FIG.
  • the device has a light source 1, which generates a collimated beam 2 of polarized light, the polarization axis of which can be freely selected via a device 3.
  • An optic 4 then focuses the light onto a layer of PAP material 6, which is applied to the optical component 7.
  • the light source 1 generates laser light which can be focused on the one PAP layer 6.
  • the optical component 7 is arranged on a positioning table 8, wherein the PAP layer 6 can be moved by means of a displacement of the positioning table 8 or via a displacement of the optical element 7 on the positioning table 8 under the laser beam focus.
  • the point of impact of the laser beam may be realized by reflection at a movable tilting mirror 9 or similar means (i.e., by so-called "scanning" of the laser beam).
  • the orientation of the polarization axis of the collimated beam 2 of polarized light and the position of the beam focus on the PAP material 6 can be controlled by a control computer 5.
  • Fig. 2 shows a plano-convex lens 7 as an example of an optical element coated on the flat side with a film of PAP material 6, wherein in the PAP material 6 with the device of FIG a phase polarization hologram is written.
  • phase polarization hologram can now be used to correct the optical properties of the plano-convex lens 7.
  • the polarization hologram necessary for correcting the optical properties is simplified in FIG. 2 by a ring system with two different orientations 10 and 11, i. it's a binary hologram.
  • phase polarization hologram achieves theoretical diffraction efficiencies of 100% for circularly polarized light of handedness (e.g., purely left-handed circularly polarized light). On the other hand, e.g. achieve with a binary amplitude hologram only a maximum diffraction efficiency of about 46%.
  • the high diffraction efficiency of polarization holograms is of great importance for the application, since in holographic optical components with low diffraction efficiency only a portion of the light is diffracted by the hologram, so that the rest disturbs the operation of the optical component. In this case, it applies that polarization holograms are to be assessed with higher quality when exclusively circularly polarized light is used.
  • the PAP polymer is inexpensive to manufacture and process compared to optical glasses.
  • planoconvex lenses as a substrate for the PAP film, a very inexpensive optical component is available.
  • holograms with more than two quantization steps are no longer expensive to produce. This also makes it possible to realize higher diffraction efficiency and better quality holograms.
  • optical components as a carrier in contrast to holography on flat substrates results in significantly lower requirements for the coherence of the light source used for reading, since the coherence length of the light source must be on the order of the phase shift caused by the hologram when reading each hologram.
  • the hologram for optical correction of an existing optical element the requirements for the coherence of the reading light source with respect to a pure holographic optical element are significantly weaker.
  • the described combinations of holographic optical element and conventional optical element can be used for a wider choice of light sources.
  • the “preferred thickness” thus depends on the wavelength, the maximum refractive index difference at this wavelength (magnetic property) and the geometry.
  • FIG. It An illustration of another optical component is shown in FIG. It is a (dispersion) lens which has been exposed to a square area on a strip of 1, 6 micrometer thick PAP film (surface of the lens 5 x 5 mm).
  • the PAP layer is applied to a substantially planar substrate of a mirrored plastic and appears yellow, as it absorbs the green (write) radiation.
  • the lens reflects a logo of the Fraunhofer Institute for Physical Measurement Techniques (IPM).
  • a layer thickness in the range of 1.7 microns ⁇ 0.2 microns has been found sufficient for accuracy.
  • PAP material to the optical element can be carried out in accordance with a coating of Wafem (photolithography) and / or a coating of writable CD-ROM blanks.
  • the "whole" PAP layer is exposed in full thickness, but this layer is so thin that it can be interpreted as a "surface” (in the sense of a surface hologram) "written, rather, the layer is seen visually only from the surface.
  • a method for producing optical components by deep-depth exposure is particularly feasible, especially when an optically homogeneous volume of PAP polymer is used.
  • the present experimental setup should preferably be modified such that the writing light does not completely penetrate the PAP layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

La présente invention concerne un composant optique muni d'un substrat réalisé sous la forme d'un élément optique, un côté du substrat étant recouvert d'un film en polymère photo-adressable et un hologramme de polarisation étant généré dans ce polymère photo-adressable, un procédé pour la fabrication de celui-ci et un dispositif pour mettre en oevre ce procédé.
PCT/EP2007/001332 2006-03-16 2007-02-15 Elément optique, procédé pour sa fabrication et dispositif pour mettre en œuvre le procédé WO2007104401A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012225.9 2006-03-16
DE200610012225 DE102006012225A1 (de) 2006-03-16 2006-03-16 Optisches Element, Verfahren zu dessen Herstellung und Vorrichtung zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
WO2007104401A1 true WO2007104401A1 (fr) 2007-09-20

Family

ID=38002049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001332 WO2007104401A1 (fr) 2006-03-16 2007-02-15 Elément optique, procédé pour sa fabrication et dispositif pour mettre en œuvre le procédé

Country Status (2)

Country Link
DE (1) DE102006012225A1 (fr)
WO (1) WO2007104401A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006747A1 (fr) * 2007-07-12 2009-01-15 Heptagon Oy Elément optique, système d'éclairage et procédé de conception d'un élément optique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644413A (en) * 1992-08-07 1997-07-01 Matsushita Electric Industrial Co., Ltd. Optical head for adjusting a positional relation between the information medium and the optical head
US6069859A (en) * 1998-02-09 2000-05-30 Kabushiki Kaisha Sankyo Seiki Seisakusho Polarization separating element having partially polarizing properties for diffracting an ordinary light beam and a process for producing the same
US20060044638A1 (en) * 2004-08-30 2006-03-02 Sharp Kabushiki Kaisha Hologram laser unit and optical pickup apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220595A1 (de) * 1972-04-27 1973-11-08 Licentia Gmbh Verfahren zur herstellung eines phasenhologrammes
US5011284A (en) * 1990-03-22 1991-04-30 Kaiser Optical Systems Detection system for Raman scattering employing holographic diffraction
DE19910248A1 (de) * 1999-03-08 2000-10-05 Bayer Ag Holographisches Aufzeichnungsmaterial
DE10038890C2 (de) * 2000-08-09 2003-03-27 Infineon Technologies Ag Detektorelement und Verfahren zum Herstellen eines Detektorelements zum Erfassen holographisch gespeicherter Daten und holographisches Speicherelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644413A (en) * 1992-08-07 1997-07-01 Matsushita Electric Industrial Co., Ltd. Optical head for adjusting a positional relation between the information medium and the optical head
US6069859A (en) * 1998-02-09 2000-05-30 Kabushiki Kaisha Sankyo Seiki Seisakusho Polarization separating element having partially polarizing properties for diffracting an ordinary light beam and a process for producing the same
US20060044638A1 (en) * 2004-08-30 2006-03-02 Sharp Kabushiki Kaisha Hologram laser unit and optical pickup apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUFFETEAU, T. ET AL.: "Biaxial Orientation in a Photoaddressable Azopolymer Thin Film As Evidenced by Polarized UV-Visible, Infrared, and Raman Spectra", MACROMOLECULES, vol. 37, 2004, pages 2880 - 2889, XP002433281 *
CLOUTIER S G ET AL: "Measurement of permanent vectorial photoinduced anisotropy in azo-dye-doped photoresist using polarization holography", JOURNAL OF OPTICS. A, PURE AND APPLIED OPTICS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL,, GB, vol. 4, no. 6, 1 November 2002 (2002-11-01), pages S228 - S234, XP020080978, ISSN: 1464-4258 *

Also Published As

Publication number Publication date
DE102006012225A1 (de) 2007-09-20

Similar Documents

Publication Publication Date Title
DE102012104900B4 (de) Verfahren und Vorrichtung zur schichtweisen Erzeugung dünner Volumengitterstapel, Strahlvereiniger für ein holografisches Display sowie Solarmodul und Hologrammbauteil
DE69630381T2 (de) Optisches datenspeicher medium und verfahren zur dessen anzeichnung und wiedergabe
EP4032688B1 (fr) Procédé et dispositif de fabrication d'un objet tridimensionnel dans une matière de base optiquement réactive
EP3494440A1 (fr) Procédé et dispositif de génération lithographique d'une structure cible sur une structure initiale non plane
WO2012123128A1 (fr) Dispositif et procédé de mesure d'un objet au moyen d'optiques de forme libre
DE60210327T2 (de) Optisches abtastgerät
Murphy et al. Holographic beam-shaping diffractive diffusers fabricated by using controlled laser speckle
Reda et al. Varifocal diffractive lenses for multi-depth microscope imaging
Choi et al. Interferometric inscription of surface relief gratings on optical fiber using azo polymer film
Chanda et al. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals
WO2007104401A1 (fr) Elément optique, procédé pour sa fabrication et dispositif pour mettre en œuvre le procédé
DE602004009807T2 (de) Optischer aufzeichnungsträger
DE60128614T2 (de) Anamorphes Prisma, optischer Kopf und optisches Aufzeichnungs-/Lesegerät
DE102012216219A1 (de) Master für die Herstellung eines Volumenreflexionshologramms mit verbesserter Markerausbildung
WO2006015989A1 (fr) Procede pour produire des cristaux photoniques
DE102006005860A1 (de) Verfahren und Vorrichtung zur Herstellung von Polarisationshologrammen
DE102011086029B4 (de) Verfahren zur Herstellung eines Faser-Gitters
WO2021129970A1 (fr) Dispositif et procédé de production d'éléments optiques holographiques
DE102020107944A1 (de) Verfahren zur Herstellung eines kontinuierlichen diffraktiven optischen Elementes, Vorrichtung zur Durchführung des Herstellungsverfahrens und kontinuierliches diffraktives optisches Element
DE102008043324A1 (de) Optische Anordnung zur dreidimensionalen Strukturierung einer Materialschicht
DE102005018750A1 (de) Verfahren zur Herstellung von winkelreduzierter Hologrammen sowie der integrierten Wiedergabe winkelreduzierter Hologramme
DE102005035550A1 (de) Breitbandiges diffraktives optisches Element
DE102007038642A1 (de) Verfahren zum Herstellen eines sich entlang eines vorgegebenen Wellenleiterpfads erstreckenden Wellenleiters für ein Lichtsignal einer vorgegebenen Signalwellenlänge und Wellenleitbauteil
WO2007020412A1 (fr) Element optique et procede de fabrication
DE102018132790A1 (de) Vorrichtung und Verfahren zur Herstellung eines Edgelithologramms, Edgelithologramm sowie Beleuchtungsvorrichtung für ein Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07722834

Country of ref document: EP

Kind code of ref document: A1