WO2007102754A1 - Procédé pour examiner la capacité porteuse d'un toit ou plancher en béton armé - Google Patents

Procédé pour examiner la capacité porteuse d'un toit ou plancher en béton armé Download PDF

Info

Publication number
WO2007102754A1
WO2007102754A1 PCT/RU2007/000173 RU2007000173W WO2007102754A1 WO 2007102754 A1 WO2007102754 A1 WO 2007102754A1 RU 2007000173 W RU2007000173 W RU 2007000173W WO 2007102754 A1 WO2007102754 A1 WO 2007102754A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
rod
stayed
reinforcement
reinforced concrete
Prior art date
Application number
PCT/RU2007/000173
Other languages
English (en)
French (fr)
Inventor
Igor Gennadievich Korolev
Original Assignee
Igor Gennadievich Korolev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Igor Gennadievich Korolev filed Critical Igor Gennadievich Korolev
Priority to US11/920,948 priority Critical patent/US20090231151A1/en
Publication of WO2007102754A1 publication Critical patent/WO2007102754A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws

Definitions

  • a method of controlling the bearing capacity of a reinforced concrete coating or overlap The field of technology.
  • the invention relates to the field of quality control of reinforced concrete structures by non-destructive methods, namely to measuring the stress-strain state of the reinforcement of coatings and ceilings of the cable-stayed system and can be used for monitoring buildings and structures.
  • a known method of monitoring the state of the insulation coating of a metal underground structure by passing an alternating current of high frequency in the circuit of a metal structure - anode grounding, during operation determine the loss tangent and calculate the aging coefficient of the insulation coating / 1 /.
  • the closest is the magnetostrictive method of measuring stress in reinforcement of reinforced concrete structures, which consists in measuring changes in elastic anisotropy in steel reinforcement during the movement of a reinforced concrete structure inside an annular inductive stress sensor due to the excitation of eddy currents inducing electromotive force in the structure reinforcement.
  • the disadvantages of the known methods is the inability to continuously monitor the stress state of the reinforcement during loading of the reinforced concrete structure, due to the need to ensure high voltage in a controlled the facility and high energy consumption, as well as insufficient safety of work and the complexity of implementation.
  • the technical task is to ensure constant monitoring and efficiency of obtaining information about the bearing capacity of reinforced concrete floors and coatings on the stress-strain state of cable-stayed fittings during the operation of the building while reducing energy consumption and increasing safety.
  • each rod or cable-stayed cable reinforcement is pre-calibrated for tensile stress and electrical resistance, and during construction and operation During the period of loading the coating or overlap, the electric current is passed through each stressed rod or cable of the cable-stayed armature and changes in its electrical resistance are monitored, by which the stress state of the rod or rope is determined, and the load-bearing capacity of the coating or overlap is judged by the maximum allowable voltage in the rod or cable .
  • each rod or cable of the cable-stayed fittings is pre-calibrated for tensile stress and electrical resistance, and during the construction and operation of the building during loading of the coating or floor and any supporting structures, an electric current is passed through each tensioned rod or cable of the cable-stayed fittings and control the changes in its electrical resistance, which determine the stress state of the rod or rope, and the maximum allowable voltage th in the rod or rope judged on the bearing capacity of coverage or overlap.
  • the proposed set of actions namely the preliminary calibration of reinforcing rods or ropes, will allow for the passage of electric alternating current or direct current using a simple computer program of the controller to ensure the detection of maximum permissible voltages and emergencies during the construction and operation of buildings and structures to collapse coatings and overlap.
  • the method of magnetostriction of ferromagnets is caused by a complex random dependence of changes in the elastic anisotropy in steel reinforcement of reinforced concrete structures and resistance to the passage of electric current R (ohm) to the mechanical tensile stress ⁇ y ⁇ p (kg / cm 2 ) developing in the ferromagnet, which induces EMF.
  • R electric current
  • ⁇ y ⁇ p mechanical tensile stress
  • the electrical resistance of the bar decreases proportionally mechanical stress due to the appearance of an additional arising electromotive force, which arises due to the forced orientation of the polar charged domain ferromagnet along the axis of application of tensile forces.
  • the effect is especially pronounced when a direct or alternating electric current passes through a loaded reinforcing bar or reinforcing rope.
  • Figure l presents a connection diagram of prestressed rods of cable-stayed armature of a hanging coating
  • Fig. 3 is a graph of the electrical resistance R (ohm) versus mechanical stress ⁇ (kg / cm 2 ) under tension of a reinforcing bar.
  • the prestressed rods or ropes 1 of the cable-stayed cable armature are connected to an electric current source and through an ohmmeter 2 to a recording device 3 and a signaling device 4.
  • the rod 1 is connected to an electric current supply through a current regulator 5, an amplifier 6 and an ohmmeter 2.
  • Each critical value of tensile stresses ⁇ (kg / cm 2 ) developing in the rods and ropes during operation will correspond to a certain value of electrical resistance R (ohm) for each rod and rope, and determined by a computer program as a signal (emergency) value.
  • the proposed technology makes it possible to control the physics of construction and installation processes and operation processes of erected monolithic-reinforced concrete large-span structures at
  • each steel cable of cable-stayed reinforcement is calibrated according to the scheme presented in figure 2.
  • a tensile force F (kg / cm 2 ) is applied to the cable 1 and the electrical resistance in the circuit is measured: cable 1 is a current regulator 5, an amplifier 6, an ohmmeter 2.
  • the control electrical resistance R is fixed, which corresponds to the maximum operating mechanical stress ⁇ od, according to GOST 10884-94 for each steel grade (see fig.Z).
  • Calibration data is recorded in the memory of the recording device 3, as the maximum permissible value.
  • an electric current is passed through each rope 1.
  • the control device in the cable switches on the signal device 4.
  • the proposed method provides an electronic three-dimensional system for monitoring mechanical stresses of any reinforced concrete structure. Continuous diagnostics of emergency conditions of load-bearing structures of buildings and structures and their stress-strain state both in pre-stressed power self-regulating cable-stayed system and in individual reinforcing rods and ropes inserted into the concrete forming layer in conventional load-bearing reinforced concrete structures in diagonal and orthogonal directions for zones the greatest bending moments (according to the calculated moment diagram) using the magnetostriction effect of ferromagnets.
  • Sources of information l.SU J ⁇ b725006, cl. GOlN 27/02, 03/30/1980.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

Способ контроля несущей способности железобетонного покрытия или перекрытия. Область техники.
Изобретение относится к области контроля качества железобетонных конструкций неразрушающими методами, а именно к измерению напряженно- деформируемого состояния арматуры покрытий и перекрытий вантовой системы и может найти применение для мониторинга зданий и сооружений.
Предшествующий уровень техники.
Известен способ контроля состояния изоляционного покрытия металлического подземного сооружения путем пропуска переменного тока высокой частоты в цепи металлическое сооружение - анодное заземление, в период эксплуатации определяют тангенс угла потерь и вычисляют коэффициент старения изоляционного покрытия/ 1/.
Известен способ измерения напряженного состояния металла элементов конструкций ядерных энергетических установок путем измерения изменения его электрического сопротивления/2/.
Наиболее близким является магнитострикционный способ измерения напряжения в арматуре железобетонных конструкций, заключающийся в измерении измененений упругой анизотропии в стальной арматуре в процессе передвижения железобетонной конструкции внутри кольцевого индуктивного датчика напряжений за счет, возбуждения в арматуре конструкции вихревых токов, индуктирующих электродвижэущую силу./З/
Недостатками известных способов является невозможность осуществления постоянного контроля напряженного состояния арматуры в процессе нагружения железобетонной конструкции, из-за необходимости обеспечения высокого напряжения в контролируемом объекте и большого расхода электроэнергии, а также недостаточная безопасность работ и сложность осуществления.
Раскрытие изобретения.
Техническая задача заключается в обеспечении постоянного контроля и оперативности получения информации о несущей способности железобетонного перекрытия и покрытия по напряженно- деформируемому состоянию вантовой арматуры в период эксплуатации здания при сокращении расхода электроэнергии и повышении безопасности.
Поставленная задача решается таким образом, что в способе контроля несущей способности предварительно-напряженного железобетонного покрытия или перекрытия по напряженно- деформируемому состоянию вантовой арматуры путем пропуска по арматуре электрического тока и измерения электросопротивления, по изменению которого судят о напряженном состоянии арматуры, согласно изобретения, каждый стержень или канат вантовой арматуры предварительно тарируют по растягивающему напряжению и электросопротивлению, а в процессе возведения и эксплуатации здания в период нагружения покрытия или перекрытия по каждому напряженному стержню или канату вантовой арматуры пропускают электрический ток и контролируют изменения его электросопротивления, по которому определяют напряженное состояние стержня или каната, и по предельно допустимому напряжению в стержне или кагате судят о несущей способности покрытия или перекрытия. По напряженному стержню или канату вантовой арматуры пропускают переменный электрический ток или постоянный электрический ток. Предлагаемый способ отличается от известного тем, что каждый стержень или канат вантовой арматуры предварительно тарируют по растягивающему напряжению и электросопротивлению, а в процессе возведения и эксплуатации здания в период нагружения покрытия или перекрытия и любых несущих конструкций по каждому напряженному стержню или канату вантовой арматуры пропускают электрический ток и контролируют изменения его электросопротивления, по которому определяют напряженное состояние стержня или каната, и по предельно допустимому напряжению в стержне или канате судят о несущей способности покрытия или перекрытия.
Предлагаемая совокупность действий, а именно предварительная тарировка арматурных стержней или канатов позволит при прохождении электрического переменного тока или постоянного тока с помощью простой компьютерной программы контролера обеспечить возможность обнаружения предельно допустимых напряжений и возникновения аварийных ситуаций в процессе возведения и эксплуатации конструкции зданий и сооружений по обрушению покрытий и перекрытий.
Метод магнитострикции ферромагнетиков (арматурных стальных канатов и стержней) обусловлен сложной случайной зависимостью изменений упругой анизотропии в стальной арматуре железобетонных конструкций и сопротивления прохождению электрического тока R(oм) к развивающимся в ферромагнетике механическим растягивающим напряжением σyпp (кг/см2), индуцирующим ЭДС. Случайность зависимости R от σ, обусловлена случайными магнитными характеристиками прокатно-тянутых партий строительной арматуры. При растягивании арматурного стержня в упругой стадии, электрическое сопротивление стержня падает пропорционально механическому напряжению за счет появления дополнительно возникающей электродвижущей силы, которая возникает за счет принудительной ориентации полярно заряженных домен ферромагнитика вдоль оси приложения растягивающих усилий. Эффект особенно ярко выражен при прохождении постоянного или переменного электрического тока через нагружаемый арматурный стержень либо арматурный канат.
Краткое описание чертежей.
На фиг.l представлена схема подключения предварительно напряженных стержней вантовой арматуры висячего покрытия; фиг.2 - схема подключения стержня при тарировании; фиг.З - график зависимости электросопротивления R(oм) от механического напряжения σ(кг/cм2) при натяжении арматурного стержня.
Предварительно напряженные стержни или канаты 1 вантовой арматуры покрытия подсоединены к источнику электрического тока и через омметр 2 к регистрирующему устройству 3 и сигнальному устройству 4. При тарировании стержень 1 подключают к источнику питания электрического тока через регулятор силы тока 5, усилитель 6 и омметр 2.
Варианты осуществления изобретения.
При возведении и эксплуатации несущих конструкций зданий, в том числе большепролетных зданий при нагружении плит покрытий и междуэтажных перекрытий, пространственных криволинейных железобетонных оболочек с предварительно напряженной саморегулируемой системой - вантовой арматуры, достаточно пропустить по арматурным стержням или канатам слабый электрический ток, чтобы можно было контролировать электрическое сопротивление в каждом стержне или канате с помощью компьютерной программы (см. фиг.l). Для этого используемые для возведения покрытий и перекрытий стержни и канаты вантовой арматуры предварительно тарируют по растягивающему механическому напряжению и электросопротивлению. Каждому критическому значению растягивающих напряжений σ (кг/см2), развивающихся в стержнях и канатах в процессе эксплуатации, будет соответствовать определенная величина электросопротивления R(oм) своя для каждого стержня и каната, и определяемая компьютерной программой, как сигнальная (аварийная) величина.
Предлагаемая технология дает возможность контролировать физику строительно-монтажных процессов и процессов эксплуатации возводимых монолитно-железобетонных большепролетных конструкций при
- экстремальных условиях эксплуатации атомных и тепловых электростанций, бассейнов, аквапарков, бань, где имеют место ярко выраженные резкие колебания температуры и влажности, следовательно дополнительные тепловые деформации и напряжения и повышенные требования к коррозионной стойкости предварительно - напряженной apмaтypы(cтepжнeй и канатов).
- ответственных (стратегических) условиях эксплуатации: жилые, общественно-административные, спортивные здания и сооружения, где необходима немедленная эвакуация людей в случае аварийного состояния строительной конструкции.
Промышленная применимость.
Перед возведением висячего покрытия (см.фиг.l), с предварительно напряженной вантовой арматурой 1 по диагоналям, каждый стальной канат вантовой арматуры тарируют по схеме представленной на фиг.2. К канату 1 прикладывают растягивающее усилие F(кг/cм2) и измеряют электросопротивление в цепи: канат 1- регулятор силы тока 5, усилитель 6, омметр 2. Фиксируют контрольное электросопротивление Rконтрольное, соответствующее предельному рабочему механическому напряжению σод, по ГОСТ 10884-94 для каждой марки стали (см.фиг.З). Данные тарировки заносят в память регистрирующего устройства 3, как предельно допустимую величину. В процессе эксплуатации покрытия при его нагружении через каждый канат 1 пропускают электрический ток. При достижении контрольного значения электросопротивления Rконтрольное в канате включается сигнальное устройство 4.
Предлагаемый способ обеспечивает получение электронной трехмерной системы контроля механических напряжений любой железобетонной конструкции. Непрерывная диагностика аварийных состояний несущих конструкций зданий и сооружений и их напряженно-деформируемого состояния как в предварительно напряженной силовой саморегулирующей вантовой системы, так и в отдельных арматурных стержнях и канатах, введенных в формообразующий слой бетона в обычных несущих железобетонных конструкциях в диагональных и ортогональных направлениях для зон наибольших изгибающих моментов ( по расчетной эпюре моментов) с использованием эффекта магнитострикции ферромагнетиков.
Источники информации: l.SU J\Ь725006, кл. GOlN 27/02, 30.03.1980.
2.3aявкa PФJV22004112734, кл. GOlN 27/02, 20.10.2005
3. SU Ж306409, кл. GOlN 27/02, 11.06.1971 (прототип).

Claims

Формула изобретения.
1. Способ контроля несущей способности предварительно- напряженного железобетонного покрытия или перекрытия по напряженно-деформируемому состоянию вантовой арматуры путем пропуска по арматуре электрического тока и измерения электросопротивления, по изменению которого судят о напряженном состоянии арматуры, отличающийся тем, что каждый* стержень или канат вантовой арматуры предварительно тарируют по растягивающему напряжению и электросопротивлению, а в процессе возведения и эксплуатации здания в период нагружения покрытия или перекрытия по каждому напряженному стержню или канату вантовой арматуры пропускают электрический ток и контролируют изменения его электросопротивления, по которому определяют напряженное состояние стержня или каната, и по предельно допустимому напряжению в стержне или канате судят о несущей способности покрытия или перекрытия.
2. Способ по п.l, отличающийся тем, что по напряженному стержню или . канату вантовой арматуры пропускают переменный электрический ток.
3. Способ по п.l, отличающийся тем, что по напряженному стержню или канату вантовой арматуры пропускают постоянный электрический ток.
PCT/RU2007/000173 2006-03-02 2007-04-11 Procédé pour examiner la capacité porteuse d'un toit ou plancher en béton armé WO2007102754A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/920,948 US20090231151A1 (en) 2006-03-02 2007-04-11 Method for Monitoring the Carrying Capacity of Steel-Concrete Structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006106390 2006-03-02
RU2006106390/28A RU2319952C2 (ru) 2006-03-02 2006-03-02 Способ контроля несущей способности железобетонного покрытия или перекрытия

Publications (1)

Publication Number Publication Date
WO2007102754A1 true WO2007102754A1 (fr) 2007-09-13

Family

ID=38069226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000173 WO2007102754A1 (fr) 2006-03-02 2007-04-11 Procédé pour examiner la capacité porteuse d'un toit ou plancher en béton armé

Country Status (7)

Country Link
US (1) US20090231151A1 (ru)
EP (1) EP1830181B1 (ru)
AT (1) ATE478331T1 (ru)
DE (1) DE602007008487D1 (ru)
EA (1) EA009973B1 (ru)
RU (1) RU2319952C2 (ru)
WO (1) WO2007102754A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354336B (zh) * 2008-09-05 2010-12-22 首钢总公司 一种取向硅钢涂层表面拉应力的测试方法
FR3000207B1 (fr) * 2012-12-20 2015-07-17 Soletanche Freyssinet Procede et systeme pour surveiller un ouvrage de genie civil.
CN103698177A (zh) * 2013-12-13 2014-04-02 河北省首钢迁安钢铁有限责任公司 用于测定取向硅钢涂层给予钢板拉应力的试样处理方法
US10012615B1 (en) * 2017-07-24 2018-07-03 1440814 Ontario Inc. Impedance probe for detecting breaks in prestressed concrete pipe
CN108896625B (zh) * 2018-07-11 2021-04-23 重庆交通大学 一种应变场融合机敏网结构裂缝监测方法
CN110390800B (zh) * 2019-06-06 2021-04-20 北京市地质研究所 网式灾害监测预警系统
RU2740537C1 (ru) * 2020-06-02 2021-01-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Способ определения механического напряжения в стальной арматуре железобетонной конструкции
CN113074847B (zh) * 2021-03-26 2022-11-01 重庆交通大学 一种基于电阻应变效应的在役结构预应力检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU246901A1 (ru) * Московский инженерно физический институт Способ определения прочностных свойств материалов
GB2057690A (en) * 1979-08-28 1981-04-01 Ford Motor Co Testing metal components for strain therein
SU1472820A1 (ru) * 1987-09-18 1989-04-15 Научно-Исследовательский Институт Бетона И Железобетона Госстроя Ссср Способ контрол напр женного состо ни бетонных и железобетонных конструкций

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1233691A (ru) * 1969-01-10 1971-05-26
SU725006A1 (ru) * 1978-03-24 1980-03-30 Научно-Исследовательский Институт Постоянного Тока Способ контрол состо ни изол ционного покрыти подземного сооружени
CH656227A5 (de) * 1982-03-25 1986-06-13 Mettler Instrumente Ag Messwandler fuer einen kraftmesser.
DE3600034A1 (de) * 1986-01-03 1987-07-09 Franke Lutz Dr Ing Verfahren zur ermittlung mechanischer fehlstellen an bauelementen aus faserverbundmaterial, anwendung des verfahrens und messvorrichtung und bewehrungsstab zur durchfuehrung des verfahrens
SU1675694A1 (ru) * 1989-04-05 1991-09-07 Московский Автомобильно-Дорожный Институт Способ измерени механических напр жений в арматуре готовых железобетонных конструкций
RU2006813C1 (ru) * 1991-03-19 1994-01-30 Вологодский Политехнический Институт Способ неразрушающего контроля прочности строительных конструкций
US5540096A (en) * 1994-06-07 1996-07-30 Washington Suburban Sanitary Commission Method for the non-destructive evaluation of prestressed concrete structures
JP3052047B2 (ja) * 1994-09-07 2000-06-12 本田技研工業株式会社 強磁性金属体の応力測定方法、シート状センサにおける応力分布測定方法および応力分布測定用シート状センサ
JPH08193993A (ja) * 1994-11-16 1996-07-30 Kumagai Gumi Co Ltd コンクリート構造物のひびわれ検知方法
JP3010467B2 (ja) * 1995-01-24 2000-02-21 日本原子力研究所 鉄筋コンクリートの非破壊検査方法とその装置
JP2000002598A (ja) * 1998-06-15 2000-01-07 Yamamoto Mekki Shikenki:Kk 高速電気めっきの内部応力試験装置
DE10102577C1 (de) * 2001-01-20 2002-06-20 Univ Braunschweig Tech Verfahren zur Zustandserkennung von elektrisch leitfähigen länglichen Spanngliedern
JP2003107025A (ja) * 2001-09-28 2003-04-09 Nobuaki Otsuki コンクリート部材中のマクロセル腐蝕速度算定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU246901A1 (ru) * Московский инженерно физический институт Способ определения прочностных свойств материалов
SU306409A1 (ru) * ПАКНТ КЛР БИоЛ ОТЕКЛ Лгнитострик'шонный способ измерения
GB2057690A (en) * 1979-08-28 1981-04-01 Ford Motor Co Testing metal components for strain therein
SU1472820A1 (ru) * 1987-09-18 1989-04-15 Научно-Исследовательский Институт Бетона И Железобетона Госстроя Ссср Способ контрол напр женного состо ни бетонных и железобетонных конструкций

Also Published As

Publication number Publication date
ATE478331T1 (de) 2010-09-15
US20090231151A1 (en) 2009-09-17
EA009973B1 (ru) 2008-04-28
DE602007008487D1 (de) 2010-09-30
EA200700372A1 (ru) 2007-10-26
EP1830181B1 (en) 2010-08-18
EP1830181A1 (en) 2007-09-05
RU2319952C2 (ru) 2008-03-20

Similar Documents

Publication Publication Date Title
WO2007102754A1 (fr) Procédé pour examiner la capacité porteuse d'un toit ou plancher en béton armé
KR100210256B1 (ko) 응력을 받는 역학적 구조물에 사용하기 위한 스트레인 감시장치 및 방법
Zhang et al. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors
Yuan et al. Cyclic behavior of corroded reinforced concrete bridge piers
Sumitro et al. Monitoring based maintenance utilizing actual stress sensory technology
Rizkalla et al. Multiple shear key connections for precast shear wall panels
Du et al. Structural performance of RC beams under simultaneous loading and reinforcement corrosion
Kim et al. Automatic measurement and warning of tension force reduction in a PT tendon using eddy current sensing
Wan Using fiber-reinforced polymer (FRP) composites in bridge construction and monitoring their performance: An overview
Rezaifar et al. Magneto-electric active control of scaled-down reinforced concrete columns
Zhang et al. Prediction of fatigue damage in ribbed steel bars under cyclic loading with a magneto-mechanical coupling model
Garhwal et al. Performance of expanded polystyrene (EPS) sandwiched concrete panels subjected to accelerated corrosion
Ahmadi et al. Feasibility of using Static-Cast Concrete Transmission Poles fully reinforced with glass-fibre reinforced polymer bars and stirrups: A case study
Zhang et al. A prestress testing method for the steel strands inside in-service structures based on the electrical resistance
WO2008133540A1 (en) Building construction accident warning
Dong et al. Characterization of self-prestressing iron-based shape memory alloy bars for new structures
Raza et al. Anchorage behavior of Fe-SMA rebars Post-Installed into concrete
Haryanto et al. Structural behavior of negative moment region NSM-CFRP strengthened RC T-beams with various embedment depth under monotonic and cyclic loading
Wang et al. Monitoring of cable forces using magneto-elastic sensors
El-Sayed et al. Effect of stirrup corrosion on the shear strength of reinforced concrete short beams
Liu et al. Prestress Monitoring of Internal Steel Strands Using the Magnetoelastic Inductance Method.
Pan et al. A new near-surface-mounted anchorage system of shape memory alloys for local strengthening
Saeed et al. Flexural strengthening of RC columns with EB-CFRP sheets and NSM-CFRP rods and ropes
Zhao et al. Non-destructive condition evaluation of stress in steel cable using magnetoelastic technology
Kim et al. Tensile force monitoring for construction of FCM bridges using EEM sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11920948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07747887

Country of ref document: EP

Kind code of ref document: A1