WO2007101631A1 - Test zum nachweis von pathologischen prionen - Google Patents

Test zum nachweis von pathologischen prionen Download PDF

Info

Publication number
WO2007101631A1
WO2007101631A1 PCT/EP2007/001844 EP2007001844W WO2007101631A1 WO 2007101631 A1 WO2007101631 A1 WO 2007101631A1 EP 2007001844 W EP2007001844 W EP 2007001844W WO 2007101631 A1 WO2007101631 A1 WO 2007101631A1
Authority
WO
WIPO (PCT)
Prior art keywords
prp
pathological
plasmin
prion protein
detection
Prior art date
Application number
PCT/EP2007/001844
Other languages
English (en)
French (fr)
Inventor
Latza Reinhard
Original Assignee
Latza Reinhard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latza Reinhard filed Critical Latza Reinhard
Priority to DE502007001585T priority Critical patent/DE502007001585D1/de
Priority to JP2008557646A priority patent/JP2009529130A/ja
Priority to DK07723032.4T priority patent/DK1991875T3/da
Priority to US12/281,892 priority patent/US20090176258A1/en
Priority to AT07723032T priority patent/ATE443871T1/de
Priority to PL07723032T priority patent/PL1991875T3/pl
Priority to EP07723032A priority patent/EP1991875B1/de
Publication of WO2007101631A1 publication Critical patent/WO2007101631A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/968Plasmin, i.e. fibrinolysin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders
    • G01N2800/2828Prion diseases

Definitions

  • the present invention relates to a method for detecting pathological prion proteins in vitro in a sample and to a diagnostic kit for carrying out this method.
  • Transmissible spongiform encephalopathies or prion diseases are degenerative brain diseases that are associated with characteristic spongy histological changes in the brain and are always fatal.
  • the agent of these diseases is an infectious protein without detectable nucleic acid, the prion ("proteinaceous infectious agent"), which is a misfolded form (PrP Sc , Sc : "Scrapie") of a naturally occurring protein, the cellular prion protein (PrP).
  • the multiplication of the pathogen occurs by converting the normal structure of the prion protein into the misfolded form, the occurrence of which is associated with the infection or with the disease.
  • TSE agents are often referred to as prions, and the entire spectrum of these conditions are grouped together as prion diseases.
  • Spongiform encephalopathies occur in many mammals, including humans. In humans, these are Creutzfeldt-Jakob Disease (CJD), Gerstmann-St Hurssler-Scheinker Syndrome (GSS), Lethal Familial Insomnia (FFI), Kuru and the variant of Creutzfeldt-Jakob Disease (vCJD). The longest scrapie in sheep is known.
  • BSE bovine spongiform encephalopathy
  • Prionics Check originally developed by Prionics AG (Zurich, Switzerland), has been marketed worldwide since 1 February 2001 by Roche Diagnostics. The test is based on the Western Blot, the test duration is seven to eight hours.
  • Platelia ® BSE test is marketed by Bio-Rad Laboratories (USA) and developed together with the Commission de l'Energie Atomique (France). It is based on an ELISA; the test duration is four to seven hours.
  • Enfer TSE from Enfer Technology (Ireland) is based on the ELISA principle; the test duration is four hours.
  • the tests can only be performed post-mortem and require less than one gram of tissue from the brain stem, in which a particularly large number of PrP Sc molecules are accumulated.
  • a disadvantage of all three tests is the insufficient sensitivity.
  • the disease must be at an advanced stage with a high level of accumulation of BSE prions for clear test results. Therefore, official authorities and institutes use other methods such as histopathology and immunohistochemistry in cases of suspicion or to confirm a diagnosis. New techniques such as immuno-PCR, specific ligand adsorption, and fluorescence correlation spectroscopy (FCS) are being explored to improve assay sensitivity.
  • CDI conformation dependent immunoassay
  • PrP Sc is incubated in excess of PrP to increase the PrP aggregates, which are destroyed in the subsequent ultrasound treatment, so that new, smaller aggregates are formed.
  • the latter serve as a "template” for the formation of newer PrP Sc aggregates.
  • the PMCA method takes at least 75 hours to reach the reported sensitivity.
  • hamster brain tissue is added as a "template” and it is unclear at what stage of the infection the animals studied were.
  • the serine protease plasmin (preferred cleavage site Lys-Xaa> Arg-Xaa) is an enzyme synthesized by plasminogen, a ubiquitous zymogen precursor, which plays an important role in the conversion of fibrin into soluble products (fibrinolysis) and in the proteolytic degradation of the extracellular Matrix (plasmin-induced proteolysis) plays. Recently, it has been reported that plasmin is able to cleave PrP c in vitro and that PrP c and the NH 2 region of the PrP molecule can stimulate t-PA (tissue-type plasminogen activator) mediated piasm formation.
  • t-PA tissue-type plasminogen activator
  • the present invention therefore an object of the invention to provide a test for the detection of pathological prions, which has a high sensitivity, which can be carried out automatically if necessary in a small amount of time and relatively low cost, which is able to pathological prions in to detect an early stage of disease, and can be dispensed with a proteinase K treatment.
  • the non-pathological form of the prion protein is cleaved while the pathological form of the prion protein remains undigested.
  • the pathological form has the same amino acid sequence as the physiological form of the prion protein, but a different spatial structure.
  • the primary cleavage site for plasmin was found to be in the range of amino acid residues 106 to 126 of the prion protein in all species tested.
  • the primary cleavage site of the pathological form is partially hidden, disguised ("buried core") and thus difficult to access for the enzymatic activity of the plasmid.
  • the good cleavage of the physiological form in comparison to the poor cleavage of the pathological form is the principle of the method developed here to distinguish between the two prion forms.
  • pathological prion proteins are detected by this method.
  • PrP the prion protein in general, for example, when reference is made to structural characteristics of the prion protein
  • PrP 0 the cellular form of the prion protein, ie its non-pathological form present in healthy cells;
  • PrP Sc the pathological form of the prion protein.
  • the sample taken for the procedure can basically come from any human or animal subject suspected of having the pathological form of the prion protein.
  • the sample can be, for example, of human origin, or derived from a bovine or hamster.
  • the sample can be taken from a living or dead subject.
  • the starting material for the sample may be any liquid or solid material derived from the body of the subject which might contain the pathological form of the prion protein.
  • Exemplary starting materials for the samples may be blood samples, tissue samples or body fluids such as urine, milk, cerebrospinal fluid or saliva.
  • a capture antibody is first fixed on a solid phase.
  • the capture antibody has the property of recognizing and binding both the pathological form (PrP Sc ) and the non-pathological form of the prion protein (PrP c ).
  • the capture antibodies may be, for example, monoclonal or polyclonal. Suitable capture antibodies can be prepared by standard methods or obtained commercially. Exemplary capture antibodies are the anti-PrP antibodies SAF32 and SAF61 (Spi-Bio, Montigny Ie Bretonneux, France).
  • solid phase all solid materials which allow the capture of the capture antibody and do not interfere with the detection of the pathological form of the prion protein can serve as the solid phase.
  • Preferred solid phases are microtiter plates or magnetic or non-magnetic beads. The use of a microtiter plate as solid phase is particularly preferred.
  • the fixation of the capture antibody to the solid phase can be accomplished in any manner known to those skilled in the art.
  • the capture antibody can be bound directly to the solid phase.
  • the capture antibody can be covalently coupled to the solid phase.
  • the capture antibody can also be adsorbed on the surface of the solid phase.
  • it is for example pipetted onto the bottom of a well of a microtiter plate and for a suitable period of time (for example at least 16 Hours) at a suitable temperature (for example 4 ° C).
  • a suitable period of time for example at least 16 Hours
  • a suitable temperature for example 4 ° C
  • the fixation of the capture antibody may also be via a bridging antibody that mediates binding of the capture antibody to the solid phase.
  • a suitable blocking buffer may consist of a suitable buffer system and a blocking reagent such as bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • incubation After fixation of the capture antibodies to the solid phase, incubation with the sample is performed. This leads to the binding of the pathological (PrP Sc ) and the non-pathological form (PrP c ) of the prion protein to the fixed capture antibodies. Incubation is for a time sufficient to bind both forms of the prion protein as quantitatively as possible from the capture antibodies. Preferably, the incubation time is not more than 2 hours.
  • the remainder of the sample is separated from the resulting solid-phase complexes, capture antibodies and prion proteins. If a microtiter plate is used as the solid phase, the removal of the sample can be done, for example, by suction. If beads are used as solid phase, then the complexes containing the beads can be sedimented by centrifugation or, in the case of magnetic beads, under the action of magnetic force, and the sample located in the supernatant can be removed.
  • the complexes of solid phase, capture antibody and both forms of the prion protein are mixed with plasmin.
  • plasmin specifically cleaves the non-pathological form of the prion protein (PrP c ) contained in the complexes, the pathological form of the prion protein (PrP Sc ) which is likewise not contained in the complexes.
  • the complexes After cleavage of the non-pathological form of the prion protein, the complexes contain the solid phase, the capture antibodies and the intact, undigested pathological form of the prion protein (PrP Sc ) or the capture fragment bound by the capture antibody of the non-pathological form of the prion protein. Those cleavage fragments of the non-pathological form of the prion protein that are not bound by the capture antibodies are removed from the complexes in this step.
  • the plasmin used for the cleavage of PrP is not further limited, except that it must be able to specifically cleave the non-pathological form but not the pathological form of the prion protein. It may therefore be, for example, recombinant or native plasmin. It may be prepared in a manner known to those skilled in the art, for example by activation of plasminogen on an activator (for example urokinase or streptokinase), which may be, for example, matrix-bound. It can be human plasmin or plasmin from other species. It will be apparent to those skilled in the art that it is possible to introduce into the amino acid sequence of plasmin also mutations or deletions, without thereby affecting the activity of plasmin according to the invention. Also such modified plasmin is included in the present invention.
  • plasmin is preferably present in a solution containing a physiological buffer, such as PBS.
  • concentration of plasmin is chosen so that it is sufficient for the cleavage of the non-pathological form of the prion protein contained in the complexes for the time interval intended for the cleavage.
  • concentration of plasmin is preferably 10 nM to 2 ⁇ M, more preferably 25 nM to 1 ⁇ M, and still more preferably 40 nM to 60 nM.
  • the Incubation time of the complexes with plasmin is not particularly limited. However, this incubation time is preferably not more than 30 minutes.
  • the cleavage of the non-pathological form of the prion protein is stopped by the addition of a suitable reagent which inhibits the activity of plasmin.
  • a suitable reagent which inhibits the activity of plasmin.
  • aprotinin is used for this purpose.
  • the activity of plasmin inhibiting reagent is added in solid or preferably liquid form and in a sufficient concentration for the inhibition of plasmin activity. In the case of aprotinin, the preferred concentration is 4 to 6 ⁇ M.
  • the manner of the separation is adapted to the detection system used, especially to the solid phase used. In many cases it is preferred to simply remove the unbound PrP c fission fragments by aspiration.
  • the uncleaved prion protein contained in the complexes is detected with detection antibodies.
  • the uncleaved prion protein is essentially exclusively the pathological form of the prion protein (PrP Sc ).
  • the detection antibodies to be used for its detection have the ability to specifically bind PrP Sc . Since the non-pathological form of the prion protein has been substantially completely removed from the complexes, an antibody which recognizes both PrP Sc and PrP c can also be used as the detection antibody.
  • the detection of the detection antibody is carried out in any manner known to those skilled in the art. For this purpose, a large number of suitable detection methods are known from the prior art.
  • enzyme-linked immunosorbent assay ELISA
  • enzyme-linked immunoassay EIA
  • nanobead technology eg europium labeled nanobeads
  • fluorescence for example time-resolved fluorescence
  • luminescence methods are mentioned.
  • the detection preferably takes place by means of ELISA (enzyme-linked immunoabsorbent assay) techniques known to the person skilled in the art.
  • the detection antibody may be conjugated to biotin and detected by a streptavidin-polyperoxidase conjugate which is added immediately prior to measurement with activators such as luminol or TMB (3, 3 ', 5, 5'-tetramethylbenzidine) ,
  • activators such as luminol or TMB (3, 3 ', 5, 5'-tetramethylbenzidine)
  • the detection via the biotin / streptavidin or avidin system preferably takes place if the capture antibody has not already been fixed to the solid phase with this system.
  • detection antibodies according to the invention are the biotinylated anti-PrP antibodies SAF32 and SAF61 (Spi-Bio, Montigny Ie Bretonneux, France).
  • the detection antibodies can be conjugated with a detection molecule, a group suitable for detection or else with solid structures (for example microbeads or nanobeads, such as, for example, europium nanobeads) in order to detect with one of the above to allow said or other known from the prior art detection method. It may therefore be preferred, for example, to use detection antibodies conjugated to biotin or fluorescent labels (such as fluorescein isothiocyanate or rhodamine).
  • the detection antibodies may be, for example, polyclonal or preferably monoclonal. Suitable detection antibodies can be prepared by standard methods or obtained commercially.
  • the capture antibody and the detection antibody are selected such that the capture antibody is directed against an epitope of the prion protein that is amino terminal to the primary cleavage site of plasmin if the detection antibody recognizes an epitope of the prion protein that is carboxyterminal to the primary cleavage site of Plasmin is arranged. Accordingly, it is also preferred that the capture antibody is directed against an epitope of the prion protein that is carboxyterminal to the primary cleavage site of plasmin when the detection antibody recognizes an epitope of the prion protein that is amino terminal to the primary cleavage site of plasmin.
  • detection antibody and capture antibody are chosen such that the capture antibody is directed against an epitope of the prion protein that is in the region of amino acid residues 1-110 when the detection antibody is directed against an epitope is outside this range, or the detection antibody is directed against an epitope that is in the region of amino acid residues 1-110 when the capture antibody is directed against an epitope that is outside this range.
  • the detection of the non-cleaved prion protein contained in the complexes takes place quantitatively. This is possible, for example, if an ELISA test is used to detect the prion protein, in which the measured signal intensity is proportional to the amount of prion protein detected in the sample.
  • kits can also be used for carrying out the method according to the invention for the detection of pathological prion proteins.
  • kits of the invention contain capture antibodies directed against both the pathological (PrP) and non-pathological (PrP) forms of the prion protein, plasmin and detection antibodies.
  • the capture antibodies are already fixed on a solid phase.
  • the solid phase used here are preferably microtiter plates or magnetic or nonmagnetic beads.
  • the detection antibodies contained in the kit recognize both the pathological and the non-pathological form of the prion protein.
  • the capture antibody contained in the kit is directed against an epitope of the prion protein which is amino terminal to the primary cleavage site of plasmin when the detection antibody recognizes an epitope of the prion protein carboxyterminal to the primary cleavage site of plasmin.
  • the capture Antibody is directed against an epitope of the prion protein which is carboxy-terminal to the primary cleavage site of plasmin when the detection antibody recognizes an epitope of the prion protein amino-terminal to the primary cleavage site of plasmin.
  • the capture antibody contained in the kit is directed against an epitope of the prion protein which is in the region of the amino acid residues 1-10 when the detection antibody is directed against an epitope which lies outside this range.
  • the detection antibody contained in the kit may also be directed against an epitope located in the region of amino acid residues 1-110 when the capture antibody is directed against an epitope that is outside this range.
  • the kit additionally contains a blocking buffer to saturate free binding sites of the solid phase, a wash buffer and / or aprotinin.
  • plasmin in the kit is either dissolved in a buffer solution or lyophilized as a solid.
  • aprotinin is included in the kit, it may also be dissolved in a buffer solution or lyophilized as a solid. Any additions to the solutions included in the kit (for example, detergents, blocking reagents) may also be included in the kit.
  • the method according to the invention makes it possible to detect pathological prion proteins in an early stage of disease with low specificity of time and costs, with high specificity and sensitivity, if appropriate as part of an automated test.
  • the detection of PrP Sc in different species such as human, hamster or bovine with extremely high sensitivity.
  • the ID50 dose the infectious dose which causes disease in at least 50% of the exposed animals;.... Prusiner S., Proc Natl Acad Sci USA, 1998, 10, 95, from 13,363 to 13,383
  • the sensitivity of tests for the detection of pathological prions the lower the ID 50 / ml value, the higher the sensitivity of the test).
  • ID 50 / ml values of less than 1,000 ID 5 o / ml can be achieved with the method according to the invention.
  • the ID 50 / ml values of the commercially available tests Prionics Check (ID 50 / ml: 1,000,000-100,000, BSE homogenate as a sample, detection limit 10 ° - 10 " 'dilution), Platelia ® BSE test (ID 50 / ml: 3,000; BSE homogenate as sample; detection limit 10 "2; 5 dilution) and Enfer TSA (ID 50 AnI: 30,000; BSE homogenate as sample; detection limit 10 " 1 ' 5 dilution).
  • the method according to the invention is based on the good cleavability of the physiological PrP form by plasmin in comparison to the poor cleavability of the pathological form.
  • the specific folding of the PrP Sc molecule, which conceals the primary cleavage site for plasmin, and the higher enzymatic selectivity of the plasmid allow a distinction between the two forms after the immobilization of the prions.
  • the use of plasmin has the advantage over proteinase K that only PrP c is cleaved and not fully digested, with the antibodies used remaining intact.
  • the procedure lasts about 3.5 hours in total and does not require any special pretreatment of the sample, such as the Platelia ® BSE test.
  • the binding of the prions is specific from the beginning.
  • the time required for the method according to the invention is also significantly lower than in the case of the prionics check, in which the detection takes place after a Western blot.
  • the method according to the invention reduces the dependence on a specific type of antibody and is thus extremely flexible: since PrP c is always split into two fragments by plasmin, different ones can be used Antibodies can be used so that either the amino-terminal region or the carboxy-terminal region of the PrP molecule can be detected.
  • the method according to the invention allows the measurement of the initial rate of the PrP c cleavage.
  • the method according to the invention can easily be carried out automatically, which favors the use in routine.
  • the method could also be used to increase the sensitivity of other immunological methods for the detection of prion ("mild" digestion, thus better signal-to-noise ratio).
  • FIG. 1 shows the epitopes of the anti-PrP antibodies used for the exemplary experiments.
  • FIG. 2 shows the in vitro cleavage of non-immobilized prion proteins by human plasmin as a function of various plasmin concentrations.
  • rhuPrP means: recombinant human PrP, huPrP: human PrP c (serum), hamPrP c : hamster PrP c (brain homogenate). Mean values and standard deviations of three independent experiments are shown. Shown is the percentage ratio of the intensity of a sample after the indicated incubation time with plasmin to the intensity of the sample without incubation with plasmin. All specified values are background corrected.
  • FIG. 3 shows the cleavage of native human PrP by human plasmin after immobilization on the microtiter plate.
  • the capture antibody used was SAF32 (recognizes epitope between amino acid residues 58 and 89 of the PrP molecule) and detection antibody of biotinylated 3F4 (recognizes epitope between amino acid residues 108 and 111 of the PrP molecule).
  • FIG. 4 shows the cleavage of native hamster PrP by human plasmin after immobilization on the microtiter plate.
  • the capture antibody used was SAF32 (recognizes epitope between amino acid residues 58 and 89 of the PrP molecule) and detection antibody of biotinylated 3F4 (recognizes epitope between amino acid residues 108 and 111 of the PrP molecule).
  • SAF32 recognition antibody
  • biotinylated 3F4 detects epitope between amino acid residues 108 and 111 of the PrP molecule.
  • Various sample dilutions were treated directly on the plate with plasmin at different incubation times and at 37 ° C. Shown is the percentage ratio of the intensity of a sample after the indicated incubation time with plasmin to the intensity of the sample without incubation with plasmin.
  • FIG. 5 shows the cleavage of native PrP c (from hamster brain homogenate) by human plasmin after immobilization on a microtiter plate.
  • the capture antibody used was PRI3O8 (recognizes epitope between amino acid residues 106-126 of the PrP molecule) and detection antibody of biotinylated SAF32 (recognizes epitope between amino acid residues 58-89 of the PrP molecule).
  • the PRI3O8 epitope contains the cleavage site of the plasmid, which suppresses the cleavage of PrP c .
  • FIG. 6 shows the cleavage of recombinant human PrP with exchanged lysine residues in lysine cluster 2 (dLC2) by human plasmin after immobilization on a microtiter plate.
  • Lysine cluster 2 comprises amino acid residues 101 to 110 of PrP.
  • the lysine residues at positions 101, 104, 106 and 110 contained therein were replaced by alanine.
  • Different sample concentrations were investigated.
  • the capture antibody used was SAF61 (recognizes epitope between amino acid residues 142-160 of the PrP molecule) and as the detection antibody of biotinylated SAF32 (recognizes epitope between amino acid residues 58-89 of the PrP molecule). Shown is the percentage ratio of the intensity of a sample after the indicated incubation time with plasmin to the intensity of the sample without incubation with plasmin. All specified values are background corrected.
  • FIG. 7 shows the cleavage of recombinant human PrP with exchanged lysine residues in lysine cluster 2 (dLC2) by human plasmin after immobilization on a microtiter plate in excess of bPrP (bovine PrP from bovine brain homogenate).
  • the capture antibody used was SAF61 (recognizes epitope between amino acid residues 142-160 of the PrP molecule) and detection antibody of biotinylated SAF32 (recognizes epitope between amino acid residues 58-89 of the PrP molecule). Shown is the percentage ratio of the intensity of a sample after the indicated incubation time with plasmin to the intensity of the sample without incubation with plasmin. All specified values are background corrected.
  • FIG. 8 shows the cleavage of PrP Sc from hamster brain homogenate by human plasmin after immobilization on a microtiter plate.
  • the capture antibody used was SAF61 (recognizes epitope between amino acid residues 142-160 of the PrP molecule) and detection antibody SAF32-biotin (recognizes epitope between amino acid residues 58-89 of the PrP molecule).
  • SAF61 recognition antibody
  • SAF32-biotin recognition antibody
  • FIG. 8 shows the cleavage of PrP Sc from hamster brain homogenate by human plasmin after immobilization on a microtiter plate.
  • SAF61 recognition antibody
  • SAF32-biotin detects epitope between amino acid residues 58-89 of the PrP molecule
  • FIG. 9 Cleavage of PrP Sc (from hamster brain homogenate) in excess of native PrP c by human plasmin after immobilization on a microtiter plate.
  • a capture antibody was SAF61 (recognizes epitope between the amino acid residues 142-160 of the PrP molecule) and as a detection antibody biotinylated SAF32 (recognizes epitope between the amino acid residues 58-89 of PrP molecule) used.
  • It mean PrP c is the normal cellular form of PrP Sc and PrP pathological form of PrP.
  • the brain homogenate from scrapie hamster was diluted in brain homogenate from healthy hamsters. Mean values and standard deviations of three independent experiments are shown. Shown is the percentage ratio of the intensity of a sample after the indicated incubation time with plasmin to the intensity of the sample without incubation with plasmin. All specified values are background corrected
  • PrPrP recombinant human PrP
  • native PrP c human serum, hamster brain homogenate
  • the capture antibody used was SAF32 (recognizes epitope between amino acid residues 58 and 89 of the PrP molecule) and detection antibody with biotin-coupled 3F4 (recognizes epitope between amino acid residues 108 and 11 of the PrP molecule).
  • SApolyHRP streptavidin-polyperoxidase conjugate
  • TMB trimethylbenzidine
  • the epitope of the detection antibody is located exactly in the primary cleavage site of the prion protein, whereby only un-cleaved prion proteins in the sample can be detected by ELISA (FIG. 1).
  • Example 2.1 Cleavage of immobilized PrP c from human plasma or hamster brain homogenate
  • the blocking buffer was aspirated from the plates and the samples (pooled human citrated plasma, appropriately diluted in reaction buffer: 1 part blocking buffer + 4 parts PBS) pipetted onto the plates. After two hours incubation at room temperature, the plates were washed three times with wash buffer (TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce, Rockford, USA)). 100 ⁇ l of 50 nM human plasmin (Chromogenix, Sweden) in PBS (Perbio, Bonn) were subsequently pipetted into the wells. The plates were incubated for 0, 10, 20 and 30 minutes at 37 ° C.
  • thermoshaker THERMOSTAR, BMG, Offenburg
  • 25 ⁇ l of 5 ⁇ M aprotinin from Merck Biosciences, Schwalbach
  • the plates were washed three times with the washing buffer.
  • biotinylated detection antibody 3F4, Signet, Dedham, USA, 125 ng / ml
  • ELISA For the ELISA test, the detection antibody was incubated for 1 hour at room temperature with gentle shaking in the dark. After washing six times with in each case 300 ⁇ l of washing buffer (TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce, Rockford, USA)), a streptavidin-polyperoxidase Conjugate (SApolyHRP, Pierce, Rockford, USA) in reaction buffer (1 part blocking buffer + 4 parts PBS) diluted 1: 5000 and pipetted to 100 ul per well on the microtiter plates. After incubation for 20 minutes at room temperature with gentle shaking in the dark, washing was again carried out six times with 300 ⁇ l of washing buffer each time.
  • the results of cleavage of hamster brain homogenate immobilized PrP are shown in FIG.
  • the residual liquid was aspirated and the free binding sites by addition of 100 ⁇ l blocking Buffer (Superblock, Perbio, Bonn) in each well saturated for 1 hour
  • the blocking buffer was aspirated from the plates and the samples (hamster brain homogenate extract from healthy animals, diluted accordingly in reaction buffer: 1 part blocking buffer + 4 parts
  • TBS washing buffer
  • Tween-20 0.5% Tween-20
  • the blocking buffer was aspirated from the plates and the samples (recombinant human PrP with alanine-exchanged lysine residues in lysine cluster 2 (dLC2), from the Institute of Laboratory Medicine, Charite, Campus Virchow Schl, appropriately diluted in reaction buffer: 1 part blocking Buffer + 4 parts PBS) were pipetted onto the plates. After two hours of incubation at room temperature, the plates were washed three times with wash buffer (TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce). Rockford, USA)).
  • wash buffer TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce). Rockford, USA)
  • Example 2.4 Cleavage of immobilized recombinant and native PrP c in a mixture
  • the blocking buffer was aspirated from the plates and the samples (recombinant human PrP with by Alanine exchanged lysine residues in lysine cluster 2 (dLC2), from the Institute of Laboratory Medicine, Charite, Campus Virchow réelleum; diluted to 25.7; 14.1 and 7.1 ng / ml in bovine brain homogenate diluted 1: 100 in reaction buffer; Reaction buffer: 1 part blocking buffer + 4 parts PBS) were pipetted onto the plates. After two hours incubation at room temperature, the plates were washed three times with wash buffer (TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce, Rockford, USA)).
  • wash buffer TBS (Burph TBS, Pierce, Rockford, USA) with 0.5% Tween-20 (Surfact-Amps, Pierce, Rockford, USA)
  • native bovine PrP c can also be cleaved from a mixture having a different concentration of mimicked human recombinant PrP, whose cleavage is greatly suppressed by plasmin due to the mutation (see previous example).
  • Example 3 Test for detecting PrP Sc in a sample with PrP c
  • Example 3.1 Cleavage of PrP 0 from hamster brain homogenate of infected animals by plasmin after immobilization on a microtiter plate
  • PrP Sc can still be clearly detected even in a 1: 6400 dilution of the hamster brain homogenate of scrapie-infected animals in buffer.
  • the measured intensity is proportional to the concentration of the hamster brain homogenate (and therefore of the PrP Sc ).
  • Example 3.2 Columns of PrP Sc from hamster brain in excess of PrP by plasmin after immobilization on a microtiter plate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Aufgabe der Erfindung war es, ein Verfahren zum Nachweis von pathologischen Prionen zur Verfügung zu stellen, das hochsensitiv ist, mit geringem Zeit- und Kostenaufwand durchgeführt werden kann, und den Nachweis von Prionen in einem frühen Krankheitsstadium erlaubt. Diese Aufgabe wird gelöst, indem fixierte Capture-Antikörper die in einer Probe enthaltene pathologische und nichtpathologische Form des Prionproteins binden, und die gebundene nichtpathologische Form anschließend spezifisch mittels Plasmin gespalten wird. Die durch die fixierten Capture-Antikörper gebundene, ungespaltene, pathologische Form des Prionproteins kann danach auf einfache Weise durch Detektions-Antikörper nachgewiesen werden. Nachweis von pathologischen Prionen.

Description

Test zum Nachweis von pathologischen Prionen
Die vorliegende Erfindung betrifft ein Verfahren zum Nachweis von pathologischen Prionproteinen in vitro in einer Probe und einen diagnostischen Kit zur Durchführung dieses Verfahrens.
Die übertragbaren spongiformen Enzephalopathien (transmissiblen spongiformen Enzephalopathien, TSE) oder Prionkrankheiten sind degenerative Hirnerkrankungen, die mit charakteristischen schwammartigen histologischen Veränderungen des Gehirns einhergehen und stets tödlich verlaufen. Nach der Theorie von Prusiner (Science 1982, 216: 136-144) ist das Agens dieser Erkrankungen ein infektiöses Protein ohne nachweisbare Nukleinsäure, das Prion („proteinaceous infectious agent"). Es handelt sich dabei um eine fehlgefaltete Form (PrPSc, Sc: „Scrapie") eines natürlicherweise vorkommenden Proteins, des zellulären Prionproteins (PrP ). Die Vermehrung des Erregers erfolgt durch Umwandlung der normalen Struktur des Prionproteins in die fehlgefaltete Form, deren Auftreten mit der Infektion bzw. mit der Erkrankung assoziiert ist. In Übereinstimmung mit dieser Hypothese sind Mausstämme, denen das Prionprotein fehlt, experimentell nicht infizierbar. Demzufolge werden die TSE- Erreger auch häufig als Prionen bezeichnet und der gesamte Formenkreis dieser Krankheitsbilder als Prion-Erkrankungen zusammengefasst. Die spongiformen Enzephalopathien kommen bei vielen Säugetieren einschließlich des Menschen vor. Beim Menschen handelt es sich um die Creutzfeldt- Jakob-Krankheit (CJK), das Gerstmann-Sträussler-Scheinker- Syndrom (GSS), die letale familiäre Insomnie (FFI), Kuru und die Variante der Creutzfeldt- Jakob-Krankheit (vCJK). Am längsten ist die Traberkrankheit (Scrapie) bei Schafen bekannt. Seit 1984 ist die bovine spongiforme Enzephalopathie (BSE) und seit 1996 die Variante der Creutzfeldt- Jakob- Krankheit dokumentiert. Seitdem sind in Großbritannien und anderen EU-Länder über 180.000 Rinder an der bovinen spongiformen Enzephalopathie (BSE) erkrankt und getötet worden. In Deutschland ist bei mehr als 290 Rindern die BSE nachgewiesen worden.
1993 erkrankten erstmals 2 junge britische Bauern an einer ungewöhnlichen Form der Creutzfeldt- Jakob-Krankheit (CJK), die 1996 als die neue Variante der CJK (vCJK) beschrieben wurde. Bis dato sind dieser Erkrankung über 100 Menschen in Großbritannien anheimgefallen. Heute kann als gesichert gelten, dass es sich dabei um BSE beim Menschen handelt.
Angesichts des tödlichen Verlaufs, der Übertragbarkeit auf Menschen, der langen Inkubationszeiten und der fehlenden Therapien ist die Diagnostik der transmissiblen spongiformen Enzephalopathien von größter Bedeutung.
Bisher haben drei BSE-Schnelltests die EU-Zulassung erhalten (EUROPEAN COMMISSION (1999) DIRECTORATE-GENERAL XXIV CONSUMER POLICY AND CONSUMER HEALTH PROTECTION Directorate B - Scientific Health Opinions The Evaluation of Tests for the Diagnosis of transmissible spongioform encephalopathy in bovines www.eu-komission.de):
• Prionics Check, ursprünglich entwickelt von der Firma Prionics AG (Zürich, Schweiz), wird seit dem 1. Februar 2001 von Roche Diagnostics weltweit vermarktet. Der Test basiert auf dem Western-Blot, die Testdauer beträgt sieben bis acht Stunden.
• Platelia® BSE-Test wird von der Firma Bio-Rad Laboratories (USA) vertrieben und wurde zusammen mit der Commission de L'Energie Atomique (Frankreich) entwickelt. Zugrunde liegt ein ELISA; die Testdauer beträgt vier bis sieben Stunden. • Enfer TSE der Firma Enfer Technology (Irland) basiert auf dem ELISA- Prinzip; die Testdauer beträgt vier Stunden.
Alle drei Tests verwenden Prion-spezifische Antikörper gegen das Bruchstück PrP27"30. Werden PrPc und PrPSc mit dem proteolytischen Enzym Proteinase K behandelt, wird PrP vollständig verdaut, während PrP auf Grund seiner strukturellen Verschiedenheit nur partiell verdaut wird. Es verbleibt das Proteinase-K-resistente Fragment PrP27"30, das anschließend nachgewiesen wird. Die Verdauung durch Proteinase K erfordert zusätzliche Arbeitsschritte in diesen Tests und exakte Kontrolle der Konzentration und Wirkungszeit des Enzyms, so dass nach verlängerter Behandlung auch die pathologischen Prionen fast vollständig verdaut werden können. Da die Verdauung zuerst in der Probe erfolgt und danach die Prionen spezifisch nachgewiesen werden, verliert diese Methode an Empfindlichkeit. Eine weitere Gemeinsamkeit: Die Tests können erst post mortem durchgeführt werden und benötigen weniger als ein Gramm Gewebe aus dem Stammhirn, in dem besonders viele PrPSc -Moleküle akkumuliert werden. Ein Nachteil aller drei Tests ist die nicht ausreichende Empfindlichkeit. Die Krankheit muss sich in einem fortgeschrittenen Stadium mit entsprechend starker Anhäufung von BSE-Prionen befinden, damit man klare Testergebnisse erhält. Deshalb wenden offizielle Behörden und Institute in Verdachtsfällen oder zur Absicherung einer Diagnose andere Methoden wie Histopathologie und Immunhistochemie an. Neue Techniken wie Immuno-PCR, spezifische Liganden- Adsorption und Fluoreszenz-Korrelations-Spektroskopie (FCS) werden erforscht, um die Testempfindlichkeit zu verbessern.
Eine weitere Methode, der konformationsabhängige Assay (conformation dependent immunoassay-CDI; Safar J. et al., Nature Medicine 1998, 4: 10, 1157- 1 165), basiert auf der spezifischen Konformation des PrPSc-Moleküls und zwar auf der teilweise verdeckten Bindungsstelle für den monoklonalen Antikörper 3F4. Zum Nachweis der pathologischen Form wird das Verhältnis des Signals zwischen nativer und denaturierter (entfaltetes PrP-Molekül) Probe verwendet. Diese Methode erfordert auch eine zusätzliche Vorbehandlung der Probe und ist relativ zeitaufwändig. Eine andere Reihe von Nachweismethoden verwendet Techniken zum Anreichern der Probe mit pathologischen Prionen. Eine Methode dieser Reihe ist die PMCA- (protein misfolding cyclic amplification) Methode von Soto (Fa. Serono; Castilla J. et al. Nature Medicine Online Publication 28.08.2005). Hierzu wird PrPSc im Überschuss von PrP inkubiert, um die PrP -Aggregate zu vermehren, die bei der nachfolgenden Ultraschallbehandlung zerstört werden, so dass neue, kleinere Aggregate gebildet werden. Letztere dienen als „Matrize" zur Bildung neuerer PrPSc-Aggregate.
Diese Zyklen werden mehrmals wiederholt (bis zu 150 mal). Bei der PMCA- Methode vergehen mindestens 75 Stunden bis die berichtete Sensitivität erreicht wird. Zudem wird als „Matrize" Hamster-Hirngewebe zugefugt und es ist unklar, in welchem Stadium der Infektion sich die untersuchten Tiere befanden.
Die Serinprotease Plasmin (bevorzugte Spaltstelle Lys-Xaa>Arg-Xaa) ist ein von Plasminogen, einem ubiquitären Zymogen-Präkursor, synthetisiertes Enzym, das eine wichtige Rolle bei der Umwandlung des Fibrins in lösliche Produkte (Fibrinolyse) und bei dem proteolytischen Abbau der extrazellulären Matrix (plasmininduzierte Proteolyse) spielt. In letzter Zeit wurde berichtet, dass Plasmin in der Lage ist, PrPc in vitro zu spalten, und dass PrPc und die NH2-Region des PrP-Moleküls die t-PA (tissue-type Plasminogen activator) vermittelte Piasminbildung stimulieren können. Es wurde weiterhin gefunden, dass die Primärspaltstelle des Plasmins auf dem PrP -Molekül in der Region der Aminosäurereste 108-112 liegt. Über die Aktivität von Plasmin gegenüber der pathologischen Form (PrPSc) des Prionproteins liegen allerdings noch keine weiteren Erkenntnisse vor.
Somit gibt es bisher keine routinemäßig einsetzbaren Testverfahren, mit denen eine eindeutige frühe Diagnose am lebenden Tier oder am Menschen während der Inkubationszeit, d. h. vor Eintritt von klinisch erfassbaren Symptomen, gestellt werden kann. Es besteht daher Bedarf an einem Schnelltest zum Nachweis von pathologischen Prionen, der die vorstehend genannten Nachteile des Stands der Technik überwindet.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Test zum Nachweis von pathologischen Prionen zur Verfügung zu stellen, der eine hohe Sensitivität aufweist, der mit geringem Zeitaufwand und vergleichsweise geringen Kosten gegebenenfalls automatisiert durchgeführt werden kann, der in der Lage ist, pathologische Prionen in einem frühen Krankheitsstadium nachzuweisen, und bei dem auf eine Proteinase K-Behandlung verzichtet werden kann.
Diese und andere für den Fachmann ohne weiteres ersichtliche Aufgaben werden durch die nachstehend beschriebene Erfindung gelöst.
Überraschenderweise wurde gefunden, dass sich die pathologische Form des Prionproteins mit hoher Selektivität und relativ geringem Aufwand in vitro in einer Probe nachweisen lässt, wenn man:
a) Capture-Antikörper, die sowohl die pathologische (PrPSc) als auch die nicht-pathologische Form (PrPc) des Prionproteins erkennen, auf einer festen Phase fixiert; b) die Probe mit den fixierten Antikörpern aus Schritt a) inkubiert, wobei die pathologische und die nicht-pathologische Form des Prionproteins an die fixierten Antikörper unter Bildung von Komplexen binden; c) die Probe von den entstandenen Komplexen abtrennt; d) die Komplexe mit Plasmin inkubiert, wobei die nicht-pathologische Form des Prionproteins gespalten wird; e) die durch die Inkubation mit Plasmin erhaltenen Spaltfragmente von den Komplexen abtrennt; und f) das in den Komplexen enthaltene, nicht gespaltene Prionprotein mit Detektions-Antikörpern detektiert. Durch die Behandlung mit Plasmin wird überraschenderweise die nichtpathologische Form des Prionproteins gespalten, während die pathologische Form des Prionproteins unverdaut bleibt. Die pathologische Form hat die gleiche Aminosäuresequenz wie die physiologische Form des Prionproteins, aber eine davon verschiedene Raumstruktur. Es wurde gefunden, dass die Primärspaltstelle für Plasmin in allen untersuchten Spezies im Bereich der Aminosäurereste 106 bis 126 des Prionproteins liegt. Die Primärspaltstelle der pathologischen Form liegt teilweise verdeckt, getarnt („buried core") und ist somit schwer zugänglich für die enzymatische Aktivität des Plasmins. Die gute Spaltbarkeit der physiologischen Form im Vergleich zu der schlechten Spaltbarkeit der pathologischen Form ist das Prinzip der hier entwickelten Methode zum Unterscheiden zwischen den beiden Prionenformen.
Erfindungsgemäß werden mit diesem Verfahren pathologische Prionproteine nachgewiesen.
Hierin verwendet bedeuten:
PrP: das Prionprotein allgemein, zum Beispiel wenn auf strukturelle Charakteristika des Prionproteins bezug genommen wird;
PrP0: die zelluläre Form des Prionproteins, also dessen in gesunden Zellen vorliegende, nicht pathologische Form; und
PrPSc: die pathologische Form des Prionproteins.
Die für das Verfahren entnommene Probe kann dabei grundsätzlich von jedem menschlichen oder tierischen Subjekt stammen, das im Verdacht steht, die pathologische Form des Prionproteins aufzuweisen. Die Probe kann zum Beispiel menschlichen Ursprungs sein, oder von einem Rind oder einem Hamster stammen. Die Probe kann einem lebenden oder toten Subjekt entnommen werden. Grundsätzlich kann als Ausgangsmaterial für die Probe jedes flüssige oder feste, von dem Körper des Subjektes stammende Material dienen, das die pathologische Form des Prionproteins enthalten könnte. Beispielhafte Ausgangsmaterialien für die Proben können Blutproben, Gewebeproben oder Körperflüssigkeiten wie Urin, Milch, Liquor oder Speichel sein. Vor allem bei festen Proben kann es notwendig sein, das Ausgangsmaterial zunächst aufzuschließen, so dass die pathologische Form des Prionproteins für das erfindungsgemäße Verfahren in geeigneter Form vorliegt. Diese Aufschlussverfahren sind dem Fachmann seit langem wohlbekannt.
Bei dem erfindungsgemäßen Verfahren wird zunächst ein Capture-Antikörper auf einer festen Phase fixiert.
Der Capture-Antikörper weist die Eigenschaft auf, sowohl die pathologische Form (PrPSc) als auch die nicht-pathologische Form des Prionproteins (PrPc) zu erkennen und zu binden. Die Capture-Antikörper können zum Beispiel monoklonal oder polyklonal sein. Geeignete Capture-Antikörper können nach Standardmethoden selbst hergestellt oder kommerziell erhalten werden. Beispielhafte Capture-Antikörper sind die Anti-PrP -Antikörper SAF32 und SAF61 (Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich).
Als feste Phase können grundsätzlich alle festen Materialien dienen, die die Fixierung des Capture-Antikörpers ermöglichen, und die der Detektion der pathologischen Form des Prionproteins nicht im Wege stehen. Bevorzugt werden als feste Phasen Mikro titerplatten oder magnetische oder nicht-magnetische Beads verwendet. Die Verwendung einer Mikrotiterplatte als feste Phase ist besonders bevorzugt.
Die Fixierung des Capture-Antikörpers an die feste Phase kann auf irgendeine, dem Fachmann bekannte Weise erfolgen. Der Capture-Antikörper kann dabei direkt an die feste Phase gebunden werden. Zum Beispiel kann der Capture- Antikörper kovalent an die feste Phase gekoppelt werden. Andererseits kann der Capture-Antikörper an der Oberfläche der festen Phase auch adsorbiert werden. Dazu wird er beispielsweise auf den Boden einer Kavität einer Mikrotiterplatte pipettiert und für einen geeigneten Zeitraum (zum Beispiel wenigstens 16 Stunden) bei einer geeigneten Temperatur (zum Beispiel 4°C) inkubiert. Es ist auch möglich, den Capture- Antikörper mit der festen Phase über das dem Fachmann bekannte Biotin/ A vidin oder Streptavidin-System zu koppeln. Alternativ kann die Fixierung des Capture-Antikörpers auch über einen verbrückenden Antikörper erfolgen, der die Bindung des Capture-Antikörpers an die feste Phase vermittelt. Bevorzugt ist allerdings, dass der Capture-Antikörper direkt an der festen Phase fixiert wird.
Nach der Fixierung können freie Bindungsstellen der festen Phase mit einem geeigneten Blocking-Puffer gesättigt werden, dessen einzelne Bestandteile dem Fachmann bekannt sind. Ein geeigneter Blocking-Puffer kann beispielsweise aus einem geeigneten Puffersystem und einem Blocking-Reagenz, wie zum Beispiel Rinderserumalbumin (BSA) bestehen.
Nach der Fixierung der Capture-Antikörper an die feste Phase erfolgt die Inkubation mit der Probe. Dabei kommt es zur Bindung der pathologischen (PrPSc) und der nicht-pathologischen Form (PrPc) des Prionproteins an die fixierten Capture-Antikörper. Die Inkubation erfolgt für einen Zeitraum, der ausreicht, damit beide Formen des Prionproteins möglichst quantitativ von den Capture- Antikörpern gebunden werden. Vorzugsweise beträgt die Inkubationszeit nicht mehr als 2 Stunden.
Nach der Inkubation wird die restliche Probe von den entstandenen Komplexen aus fester Phase, Capture-Antikörpern und Prionproteinen abgetrennt. Wird als feste Phase eine Mikrotiterplatte verwendet, dann kann die Entfernung der Probe zum Beispiel durch Absaugen erfolgen. Werden Beads als feste Phase verwendet, dann können die die Beads enthaltenden Komplexe durch Zentrifugation oder, im Fall von magnetischen Beads, unter Einwirkung von magnetischer Kraft sedimentiert, und die im Überstand befindliche Probe abgenommen werden.
Danach werden die Komplexe aus fester Phase, Capture-Antikörper und beiden Formen des Prionproteins mit Plasmin versetzt. Diesem Schritt liegt das entscheidende und überraschende Prinzip zugrunde, dass Plasmin die in den Komplexen enthaltene nicht-pathologische Form des Prionproteins (PrPc) spezifisch spaltet, die ebenfalls in den Komplexen enthaltene pathologische Form des Prionproteins (PrPSc) dagegen nicht. Nach der Spaltung der nichtpathologischen Form des Prionproteins enthalten die Komplexe die feste Phase, die Capture-Antikörper und die intakte, unverdaute pathologische Form des Prionproteins (PrPSc) bzw. das von den Capture- Antikörpern gebundene Spaltfragment der nicht-pathologischen Form des Prionproteins. Diejenigen Spaltfragmente der nicht-pathologischen Form des Prionproteins, die nicht von den Capture- Antikörpern gebunden werden, werden in diesem Schritt von den Komplexen entfernt.
Das für die Spaltung von PrP verwendete Plasmin ist nicht weiter eingeschränkt, mit der Ausnahme dass es in der Lage sein muss, die nicht-pathologische Form, nicht aber die pathologische Form des Prionproteins, spezifisch zu spalten. Es kann daher zum Beispiel rekombinantes oder natives Plasmin sein. Es kann auf dem Fachmann bekannte Weise, zum Beispiel durch Aktivierung von Plasminogen an einem Aktivator (zum Beispiel Urokinase oder Streptokinase), der zum Beispiel matrixgebunden sein kann, hergestellt sein. Es kann Human- Plasmin sein oder Plasmin aus anderen Spezies. Dem Fachmann ist klar, dass es möglich ist, in die Aminosäuresequenz von Plasmin auch Mutationen oder Deletionen einzuführen, ohne das dadurch die erfindungsgemäße Aktivität von Plasmin beeinträchtigt wird. Auch derart modifiziertes Plasmin wird von der vorliegenden Erfindung umfasst.
Für die Spaltung der nicht-pathologischen Form des Prionproteins liegt Plasmin bevorzugt in einer Lösung vor, die einen physiologischen Puffer, wie zum Beispiel PBS enthält. Die Konzentration von Plasmin wird so gewählt, dass sie für die Spaltung der nicht-pathologischen Form des in den Komplexen enthaltenen Prionproteins für das für die Spaltung vorgesehene Zeitintervall ausreichend ist. Die Konzentration von Plasmin beträgt vorzugsweise 10 nM bis 2 μM, noch bevorzugter 25 nM bis 1 μM, und noch mehr bevorzugt 40 nM bis 60 nM. Die Inkubationszeit der Komplexe mit Plasmin ist nicht besonders eingeschränkt. Bevorzugt beträgt diese Inkubationszeit allerdings nicht mehr als 30 Minuten.
In einer bevorzugten Ausführungsform wird die Spaltung der nichtpathologischen Form des Prionproteins durch die Zugabe eines geeigneten Reagenzes, das die Aktivität von Plasmin inhibiert, gestoppt. Bevorzugt wird hierfür Aprotinin verwendet. Das die Aktivität von Plasmin inhibierende Reagenz wird in fester oder bevorzugt flüssiger Form und in einer für die Inhibierung der Plasmin- Aktivität ausreichenden Konzentration zugegeben. Im Fall von Aprotinin beträgt die bevorzugte Konzentration 4 bis 6 μM.
Anschließend werden die durch die Inkubation mit Plasmin erhaltenen Spaltfragmente der nicht-pathologischen Form des Prionproteins, die nicht von dem Capture- Antikörper gebunden werden, von den Komplexen aus fester Phase, Capture- Antikörpern und der pathologischen Form des Prionproteins (PrPSc) bzw. dem durch die Spaltung mit Plasmin generierten und von den Capture- Antikörpern gebundenen Spaltfragments der nicht-pathologischen Form des Prionproteins (PrPc) abgetrennt. Die Art und Weise der Abtrennung wird dabei an das verwendete Nachweissystem, vor allem an die verwendete feste Phase angepasst. In vielen Fällen ist es bevorzugt, die ungebundenen PrPc- Spaltfragmente einfach durch Absaugen zu entfernen.
Nach der Abtrennung der ungebundenen PrP -Spaltfragmente von den Komplexen, wird das in den Komplexen enthaltene, nicht gespaltene Prionprotein mit Detektions- Antikörpern nachgewiesen. Bei dem nicht gespaltenen Prionprotein handelt es sich im Wesentlichen ausschließlich um die pathologische Form des Prionproteins (PrPSc). Die zu dessen Nachweis einzusetzenden Detektions- Antikörper weisen die Fähigkeit auf, PrPSc spezifisch zu binden. Da die nicht-pathologische Form des Prionproteins von den Komplexen im Wesentlichen vollständig entfernt wurde, kann als Detektions- Antikörper auch ein Antikörper verwendet werden, der sowohl PrPSc als auch PrPc erkennt. Die Detektion des Detektions- Antikörpers erfolgt auf irgendeine dem Fachmann bekannte Art und Weise. Hierzu ist aus dem Stand der Technik eine Vielzahl an geeigneten Detektionsverfahren bekannt. Als eine nicht erschöpfende Auswahl dieser Techniken seien ELISA (enzyme-linked immunosorbent assay), EIA (enzyme-linked immunoassay), Nanobeadstechnologie (zum Beispiel mit Europium markierte Nanobeads), Fluoreszenz- (zum Beispiel zeitaufgelöste Fluoreszenz) und Lumineszenzmethoden genannt.
Bevorzugt erfolgt die Detektion über dem Fachmann bekannte ELISA (enzyme- linked immunoabsorbent assay) -Techniken. Beispielsweise kann der Detektions- Antikörper mit Biotin konjugiert sein und dessen Detektion über ein Streptavidin- Polyperoxidase-Konjugat erfolgen, das unmittelbar vor der Messung mit Aktivatoren wie zum Beispiel Luminol oder TMB (3, 3', 5, 5'- Tetramethylbenzidin) versetzt wird. Bevorzugt erfolgt die Detektion über das Biotin/Streptavidin oder Avidin-System dann, wenn nicht bereits der Capture- Antikörper mit diesem System an die feste Phase fixiert worden ist. Beispiele für erfindungsgemäße Detektions- Antikörper sind die biotinylierten Anti-PrP- Antikörper SAF32 und SAF61 (Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich).
Dem Fachmann ist daher klar, das die Detektions- Antikörper mit einem Detektionsmolekül, einer für die Detektion geeigneten Gruppe oder auch mit festen Strukturen (zum Beispiel Mikrobeads oder Nanobeads, wie beispielsweise Europium-Nanobeads) konjugiert sein können, um den Nachweis mit einem der oben genannten oder weiteren aus dem Stand der Technik bekannten Nachweisverfahren zu ermöglichen. Es kann daher zum Beispiel bevorzugt sein, Detektions-Antikörper einzusetzen, die mit Biotin oder Fluoreszenzmarkern (wie zum Beispiel Fluorescein-Isothiocyanat oder Rhodamin) konjugiert sind. Die Detektions-Antikörper können zum Beispiel polyklonal oder bevorzugt monoklonal sein. Geeignete Detektions-Antikörper können nach Standardmethoden selbst hergestellt oder kommerziell erhalten werden. In einer bevorzugten Ausfuhrungsform werden der Capture-Antikörper und der Detektionsantikörper so gewählt, dass der Capture-Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das aminoterminal zur Primärspaltstelle von Plasmin liegt, wenn der Detektionsantikörper ein Epitop des Prionproteins erkennt, das carboxyterminal zur Primärspaltstelle von Plasmin angeordnet ist. Dementsprechend ist es auch bevorzugt, dass der Capture-Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das carboxyterminal zur Primärspaltstelle von Plasmin liegt, wenn der Detektionsantikörper ein Epitop des Prionproteins erkennt, das aminoterminal zur Primärspaltstelle von Plasmin angeordnet ist.
In einer bevorzugten Ausführungsform werden somit Detektions- Antikörper und Capture-Antikörper so gewählt, dass der Capture-Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Detektionsantikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt, oder der Detektionsantikörper gegen ein Epitop gerichtet ist, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Capture-Antikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt.
In einer weiteren bevorzugten Ausführungsform erfolgt die Detektion des in den Komplexen enthaltenen, nicht gespaltenen Prionproteins quantitativ. Dies ist zum Beispiel möglich, wenn zur Detektion des Prionproteins ein ELISA-Test eingesetzt wird, bei dem die gemessene Signalintensität proportional zu der Menge des detektierten Prionproteins in der Probe ist. Wendet man das erfindungsgemäße Verfahren beispielsweise an Duplikaten von Proben an, und inkubiert die eine Probe mit einer für die vollständige Spaltung der nichtpathologischen Form des Prionproteins ausreichenden Menge Plasmin für eine dafür ausreichende Zeit (zum Beispiel für 30 Minuten mit 50 nM Plasmin) und lässt die andere Probe unbehandelt, dann lässt sich anhand des Verhältnisses der Signalintensität der behandelten Probe zu der Signalintensität der unbehandelten Probe feststellen, zu welchem Ausmaß die Spaltung der Gesamtpopulation des Prionproteins erfolgt ist. Für das erfindungsgemäße Verfahren kann es außerdem von Vorteil sein, wenn zwischen einem oder mehreren Einzelschritten des Verfahrens ein oder mehrere Waschschritte durchgeführt werden, für die dem Fachmann bekannte, geeignete Waschpuffer eingesetzt werden. Bevorzugt werden hierfür physiologische Pufferlösungen, wie PBS oder TBS eingesetzt, die mit Detergenzien wie Tween- 20 supplementiert sein können.
Erfindungsgemäß können für die Durchführung des erfindungsgemäßen Verfahrens zum Nachweis von pathologischen Prionproteinen auch Kits eingesetzt werden.
Die erfindungsgemäßen Kits enthalten Capture-Antikörper, die gegen sowohl die pathologische (PrP ) als auch die nicht-pathologische Form (PrP ) des Prionproteins gerichtet sind, Plasmin und Detektions-Antikörper.
Die erfindungswesentlichen Merkmale dieser Bestandteile des Kits wurden bereits ausführlich beschrieben.
So kann es zum Beispiel vorteilhaft sein, wenn die Capture-Antikörper bereits auf einer festen Phase fixiert vorliegen. Als feste Phase dienen hierbei vorzugsweise Mikrotiterplatten oder magnetische oder nichtmagnetische Beads.
In einer Ausführungsform erkennen die im Kit enthaltenen Detektionsantikörper sowohl die pathologische als auch die nicht-pathologische Form des Prionproteins.
In einer bevorzugten Ausführungsform ist der im Kit enthaltene Capture- Antikörper gegen ein Epitop des Prionproteins gerichtet, das aminoterminal zur Primärspaltstelle von Plasmin liegt, wenn der Detektionsantikörper ein Epitop des Prionproteins erkennt, das carboxyterminal zur Primärspaltstelle von Plasmin angeordnet ist. Alternativ kann es auch bevorzugt sein, dass der Capture- Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das carboxyterminal zur Primärspaltstelle von Plasmin liegt, wenn der Detektionsantikörper ein Epitop des Prionproteins erkennt, das aminoterminal zur Primärspaltstelle von Plasmin angeordnet ist.
In einer weiteren bevorzugten Ausfuhrungsform ist der im Kit enthaltene Capture- Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das sich im Bereich der Aminosäurereste 1-1 10 befindet, wenn der Detektionsantikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt. Andererseits kann der im Kit enthaltene Detektionsantikörper auch gegen ein Epitop gerichtet sein, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Capture- Antikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt.
In einer noch weiteren bevorzugten Ausführungsform enthält der Kit zusätzlich einen Blocking-Puffer zur Sättigung freier Bindungsstellen der festen Phase, einen Waschpuffer und/oder Aprotinin.
In einer noch weiteren Ausführungsform liegt Plasmin in dem Kit entweder in einer Pufferlösung gelöst oder lyophilisiert als Feststoff vor.
Falls Aprotinin in dem Kit enthalten ist, kann dies ebenfalls in einer Pufferlösung gelöst oder lyophilisiert als Feststoff vorliegen. Eventuelle Zusätze zu den im Kit enthaltenen Lösungen (zum Beispiel Detergenzien, Blocking-Reagenzien) können ebenfalls im Kit enthalten sein.
Das erfindungsgemäße Verfahren erlaubt es, pathologische Prionproteine in einem frühen Krankheitsstadium bei geringem Kosten- und Zeitaufwand mit hoher Spezifität und Sensitivität gegebenenfalls im Rahmen eines automatisierten Tests nachzuweisen. Dabei gelingt der Nachweis von PrPSc in unterschiedlichen Spezies, wie Mensch, Hamster oder Rind mit außerordentlich hoher Sensitivität. Durch die Bestimmung der ID50-Dosis (die infektiöse Dosis, die in mindestens 50% der exponierten Tiere eine Erkrankung verursacht; Prusiner S., Proc. Natl. Acad. Sei. USA, 1998, 10, 95, 13363-13383) lässt sich die Sensitivität von Tests zum Nachweis von pathologischen Prionen ermitteln (je niedriger die ID50/ml- Wert, desto höher die Sensitivität des Tests). Mit dem erfindungsgemäßen Verfahren können Werte von weniger als 1.000 ID5o/ml erreicht werden. Zu Vergleichszwecken seien die ID50/ml- Werte der kommerziell erhältlichen Tests Prionics Check (ID50/ml: 1.000.000-100.000; BSE-Homogenat als Probe; Nachweisgrenze 10°- 10" '-Verdünnung), Platelia® BSE-Test (ID50/ml: 3.000; BSE- Homogenat als Probe; Nachweisgrenze 10"2;5-Verdünnung) und Enfer TSA (ID50AnI: 30.000; BSE-Homogenat als Probe; Nachweisgrenze 10"1'5- Verdünnung) angegeben.
Das erfindungsgemäße Verfahren basiert auf der guten Spaltbarkeit der physiologischen PrP-Form durch Plasmin im Vergleich zu der schlechten Spaltbarkeit der pathologischen Form. Die spezifische Faltung des PrPSc- Moleküls, die die Primärspaltstelle für Plasmin verdeckt, und die höhere enzymatische Selektivität des Plasmins erlauben eine Unterscheidung zwischen den beiden Formen nach der Immobilisierung der Prionen. Die Verwendung von Plasmin hat den Vorteil gegenüber Proteinase K, dass nur PrPc gespalten und nicht vollständig verdaut wird, wobei die verwendeten Antikörper intakt bleiben.
Das Verfahren dauert insgesamt etwa 3,5 Stunden und erfordert keine spezielle Vorbehandlung der Probe, wie z.B. der Platelia® BSE-Test. Im Unterschied zum Enfer-Test, wo die Adsorption der Prionen unspezifisch auf der Oberfläche der Mikrotiterplatte erfolgt, ist die Bindung der Prionen von Anfang an spezifisch. Der Zeitaufwand beim erfindungsgemäßen Verfahren ist ferner deutlich geringer als beim Prionics-Check, bei dem der Nachweis nach einem Western-Blot erfolgt.
Das erfindungsgemäße Verfahren vermindert die Abhängigkeit von einem spezifischen Antikörpertyp und ist somit äußerst flexibel: Da PrPc grundsätzlich durch Plasmin in zwei Fragmente gespalten wird, können unterschiedliche Antikörper verwendet werden, so dass entweder die aminoterminale Region oder die carboxyterminale Region des PrP-Moleküls nachgewiesen werden kann.
Ferner erlaubt das erfindungsgemäße Verfahren im Gegensatz zu allen anderen bisher bekannten Verfahren die Messung der Anfangsgeschwindigkeit der PrPc- Spaltung. Das erfindungsgemäße Verfahren kann leicht automatisiert durchgeführt werden, was den Einsatz in der Routine begünstigt. Das Verfahren könnte zudem auch zur Erhöhung der Sensitivität anderer immunologischen Methoden zum Nachweis von Prion eingesetzt werden („milde" Verdauung, dadurch besseres Signal-Rauschen- Verhältnis).
Die vorliegende Erfindung wird im Folgenden anhand von Beispielen illustriert, wobei diese jedoch nicht als einschränkend verstanden werden sollen.
Figur 1 zeigt die Epitope der für die beispielhaften Versuche eingesetzten Anti- PrP-Antikörper.
Figur 2 zeigt die in vitro-Spaltung von nicht immobilisierten Prionproteinen durch humanes Plasmin in Abhängigkeit von verschiedenen Plasmin-Konzentrationen. In der Legende bedeuten rhuPrP: rekombinantes humanes PrP, huPrP : humanes PrPc (Serum), hamPrPc: Hamster-PrPc (Hirnhomogenisat). Es sind Mittelwerte und Standardabweichungen von drei unabhängigen Versuchen dargestellt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert.
Figur 3 zeigt die Spaltung von nativem Human-PrP durch humanes Plasmin nach Immobilisierung auf der Mikrotiterplatte. Als Capture-Antikörper wurde SAF32 (erkennt Epitop zwischen den Aminosäureresten 58 und 89 des PrP-Moleküls) und als Detektionsantikörper biotinylierter 3F4 (erkennt Epitop zwischen den Aminosäureresten 108 und 111 des PrP-Moleküls) eingesetzt. Es wurden verschiedene Probenverdünnungen direkt auf der Platte mit Plasmin bei unterschiedlicher Inkubationsdauer bei 37°C behandelt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert.
Figur 4 zeigt die Spaltung von nativem Hamster-PrP durch humanes Plasmin nach Immobilisierung auf der Mikrotiterplatte. Als Capture- Antikörper wurde SAF32 (erkennt Epitop zwischen den Aminosäureresten 58 und 89 des PrP- Moleküls) und als Detektionsantikörper biotinylierter 3F4 (erkennt Epitop zwischen den Aminosäureresten 108 und 111 des PrP-Moleküls) eingesetzt. Es wurden verschiedene Probenverdünnungen direkt auf der Platte mit Plasmin bei unterschiedlicher Inkubationsdauer und bei 37°C behandelt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin.
Figur 5 zeigt die Spaltung von nativem PrPc (aus Hamster-Hirnhomogenisat) durch humanes Plasmin nach Immobilisierung auf einer Mikrotiterplatte. Als Capture-Antikörper wurde PRI3O8 (erkennt Epitop zwischen den Aminosäureresten 106-126 des PrP-Moleküls) und als Detektions- Antikörper biotinylierter SAF32 (erkennt Epitop zwischen den Aminosäureresten 58-89 des PrP-Moleküls) eingesetzt. Das PRI3O8-Epitop beinhaltet die Spaltstelle des Plasmins, wodurch die Spaltung von PrPc unterdrückt wird.
Figur 6 zeigt die Spaltung von rekombinantem Human-PrP mit ausgetauschten Lysinresten im Lysincluster 2 (dLC2) durch humanes Plasmin nach der Immobilisierung auf einer Mikrotiterplatte. Das Lysincluster 2 umfasst die Aminosäurereste 101 bis 110 des PrP. Die darin enthaltenen Lysinreste an Position 101, 104, 106 und 110 waren durch Alanin ausgetauscht. Es wurden unterschiedliche Probenkonzentrationen untersucht. Als Capture-Antikörper wurde SAF61 (erkennt Epitop zwischen den Aminosäureresten 142-160 des PrP- Moleküls) und als Detektionsantikörper biotinylierter SAF32 (erkennt Epitop zwischen den Aminosäureresten 58-89 des PrP-Moleküls) eingesetzt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert.
Figur 7 zeigt die Spaltung von rekombinantem Human-PrP mit ausgetauschten Lysinresten im Lysincluster 2 (dLC2) durch humanes Plasmin nach der Immobilisierung auf einer Mikrotiterplatte im Überschuß von bPrP (bovines PrP aus Rinderhirnhomogenisat). Als Capture- Antikörper wurde SAF61 (erkennt Epitop zwischen den Aminosäureresten 142-160 des PrP -Moleküls) und als Detektionsantikörper biotinylierter SAF32 (erkennt Epitop zwischen den Aminosäureresten 58-89 des PrP-Moleküls) eingesetzt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert.
Figur 8 zeigt die Spaltung von PrPSc aus Hamster-Hirnhomogenisat durch humanes Plasmin nach der Immobilisierung auf einer Mikrotiterplatte. Als Capture- Antikörper wurde SAF61 (erkennt Epitop zwischen den Aminosäureresten 142-160 des PrP-Moleküls) und als Detektionsantikörper SAF32-Biotin (erkennt Epitop zwischen Aminosäureresten 58-89 des PrP- Moleküls) eingesetzt. Es sind verschiedene Verdünnungen von Hirnliomogenisaten von mit Scrapie infizierten Tieren dargestellt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert. Es sind Mittelwerte und Standardabweichungen von drei unabhängigen Versuchen dargestellt.
Figur 9: Spaltung von PrPSc (aus Hamster-Hirnhomogenisat) im Überschuss von nativem PrPc durch humanes Plasmin nach Immobilisierung auf einer Mikrotiterplatte. Als Capture-Antikörper wurde SAF61 (erkennt Epitop zwischen den Aminosäureresten 142-160 des PrP-Moleküls) und als Detektionsantikörper biotinylierter SAF32 (erkennt Epitop zwischen den Aminosäureresten 58-89 des PrP-Moleküls) eingesetzt. Es bedeuten PrPc die normale, zelluläre Form von PrP und PrPSc die pathologische Form von PrP. Das Hirnhomogenisat aus Scrapie- Hamster wurde in Hirnhomogenisat aus gesunden Hamstern verdünnt. Es sind Mittelwerte und Standardabweichungen von drei unabhängigen Versuchen dargestellt. Gezeigt ist das prozentuale Verhältnis der Intensität einer Probe nach der angegebenen Inkubationszeit mit Plasmin zur Intensität der Probe ohne Inkubation mit Plasmin. Sämtliche angegebenen Werte sind hintergrundkorrigiert
Beispiel 1: Spaltung von nicht immobilisiertem PrP durch Plasmin
In einer Reihe von Versuchen wurde sowohl das rekombinante humane PrP (rhuPrP), als auch natives PrPc (Humanserum, Hamster-Hirnhomogenisat) in vitro mit Plasmin gespalten, wobei der Plasmin- Verdau allerdings in einem Proberöhrchen erfolgte, und die Prionproteine zum Zeitpunkt des Verdaus nicht immobilisiert waren.
Rekombinantes humanes PrP (rhuPrP), humanes PrP (Serum; huPrP ) und Hamster PrP (Hirnhomogenisat; hamPrP ) wurden in Ausgangskonzentrationen von 553 bis 575 pg/ml (Kalibrierung gegen rekombinantes humanes PrP; Fa. Roboscreen) für 30 Minuten bei 37°C mit unterschiedlichen Konzentrationen an humanem Plasmin in einem Proberöhrchen inkubiert. Anschließend wurde die Reaktion durch Zugabe von Aprotinin gestoppt und PrP durch einen ELISA-Test nachgewiesen. Als Capture- Antikörper wurde SAF32 (erkennt Epitop zwischen den Aminosäureresten 58 und 89 des PrP-Moleküls) und als Detektionsantikörper mit Biotin gekoppelter 3F4 (erkennt Epitop zwischen den Aminosäureresten 108 und 1 1 1 des PrP-Moleküls) eingesetzt. Für den ELISA-Test wurde die Probe mit einem Streptavidin-Polyperoxidase-Konjugat (SApolyHRP, Fa. Pierce, Rockford, USA), das in Reaktionspuffer (1 Teil Blocking-Puffer + 4 Teile PBS) 1 :5000 verdünnt war, versetzt, und für 20 Minuten bei Raumtemperatur inkubiert. Anschließend wurde TMB (3, 3', 5, 5'-Tetramethylbenzidin) als Substrat zu der Probe gegeben und für 30 Minuten inkubiert. Nach der Zugabe von Stopplösung (0,25% H2SO4 in destilliertem Wasser) wurde die Extinktion der Probe bei 405 nm mit einem ELISA-Reader (Tecan Genios; Tecan, Schweiz) gemessen.
Das Epitop des Detektionsantikörpers liegt genau in der Primärspaltstelle des Prionproteins, wodurch lediglich nicht gespaltene Prionproteine in der Probe durch ELISA detektiert werden können (Fig. 1).
Es zeigte sich, dass die Spaltung von nativem PrPc in vitro durch die Gegenwart von in der Probe vorhandenen Plasmin-Inhibitoren nur schwer zu kontrollieren ist, wenn der Verdau in einem Proberöhrchen ohne vorherige Immobilisierung der Prionproteine durchgeführt wird. Für eine signifikante Spaltung von rekombinantem humanem PrP im Teströhrchen ist demnach eine Plasmin- Konzentration von etwa 200 nM nötig, während das gleiche Maß an Spaltung für Human-PrPc und Hamster-PrPc erst bei einer Plasmin-Konzentration von über 1 μM erreicht wird (Fig. 2).
Aus diesem Grund wurde ein Test entwickelt, bei dem in einer Probe enthaltene Prionen zunächst mittels eines monoklonalen Antikörpers immobilisiert, dann mit humanem Plasmin behandelt und die restlichen, nicht gespaltenen Prionen anschließend mit einem anderen markierten Antikörper nachgewiesen werden. Da die Probe vor dem Plasmin- Verdau von den Komplexen aus fixierten Antikörpern und Prionproteinen getrennt wird, können in der Probe enthaltene Plasmin- Inhibitoren bzw. Plasmin- Substrate die Plasmin-Aktivität beim Verdau nicht inhibieren oder beeinflussen.
Beispiel 2: Spaltung vom immobilisiertem PrP durch Plasmin
In weiteren Versuchen wurde die Spaltung von PrP durch Plasmin nach Immobilisierung mittels auf Mikrotiterplatten fixierten Antikörpern untersucht (Fig. 3 und Fig. 4). Dafür wurden sowohl Antikörper verwendet, die gegen unterschiedliche Epitope des PrP-Moleküls gerichtet sind (Fig. 1 ; Fig. 5), als auch rhuPrP eingesetzt, bei dem die Lysin-Reste in der Spaltregion des Plasmins durch Alanin ausgetauscht sind (Fig. 6 und Fig. 7).
Beispiel 2.1: Spaltung von immobilisiertem PrPc aus Humanplasma bzw. Hamsterhirnhomogenat
Zur Spaltung von immobilisiertem PrP aus Humanplasma wurden drei transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) mit 100 μl/Kavität monoklonalem Antikörper (Anti-PrP: SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration: 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0, Fa. Perbio, Bonn) für 16-18 Stunden bei 4°C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die Proben (gepooltes humanes Citratplasma, entsprechend verdünnt in Reaktionspuffer: 1 Teil Blocking-Puffer + 4 Teile PBS) auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. In die Kavitäten wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert. Die Platten wurden für 0, 10, 20 und 30 Minuten bei 37°C in einem Thermoschüttler (THERMOSTAR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden in jede Kavität 25 μl 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion des unverdauten PrP wurden 100 μl biotinylierter Detektionsantikörper (3F4, Fa. Signet, Dedham, USA; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert.
ELISA-Test: Für den ELISA-Test wurde mit dem Detektionsantikörper für 1 Stunde bei Raumtemperatur unter leichtem Schütteln im Dunkeln inkubiert. Nach sechsmaligem Waschen mit jeweils 300 μl Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) wurde ein Streptavidin-Polyperoxidase-Konjugat (SApolyHRP, Fa. Pierce, Rockford, USA) in Reaktionspuffer (1 Teil Blocking-Puffer + 4 Teile PBS) 1 :5000 verdünnt und zu 100 μl pro Kavität auf die Mikrotiterplatten pipettiert. Nach 20 Minuten Inkubation bei Raumtemperatur unter leichtem Schütteln im Dunkeln wurde wiederum sechsmal mit jeweils 300 μl Waschpuffer gewaschen. Anschließend wurden jeweils 100 μl auf Raumtemperatur gebrachtes TMB (3, 3', 5, 5'-Tetramethylbenzidin) als Substrat in jede Kavität pipettiert und für 30 Minuten bei Raumtemperatur unter mäßigem Schütteln im Dunkeln inkubiert. Nach der Zugabe von 50 μl Stopplösung (0,25% H2SO4 in destilliertem Wasser) je Kavität wurde die Extinktion der Probe bei 405 nm mit einem ELISA-Reader (Tecan Genios; Tecan, Schweiz) gemessen.
Die Ergebnisse der Spaltung von immobilisiertem PrPc aus Humanplasma sind in Fig. 3 dargestellt. Analog dazu wurde auch die Spaltung von immobilisiertem PrPc aus Hamsterhirnhomogenat durchgeführt, mit der einzigen Ausnahme, dass für die Probe nicht gepooltes humanes Citratplasma, sondern Hamsterhirnhomogenat aus gesunden Tieren verwendet wurde. Die Ergebnisse der Spaltung von immobilisiertem PrP aus Hamsterhirnhomogenat sind in Fig. 4 gezeigt.
Die exponential abnehmende prozentuale Intensität, die in den Fig. 3 und 4 erkennbar ist, macht deutlich, dass der als Detektionsantikörper verwendete biotinylierte 3F4, der ein Epitop zwischen den Aminosäureresten 108 und 111 des PrP-Moleküls erkennt, mit fortschreitender Inkubationsdauer immer weniger Epitope detektiert. Dies zeigt, dass das Epitop dieses PrP -Antikörpers auf dem PrPc-Fragment liegt, das durch die Spaltung mit Plasmin abgebaut und vor dem Nachweis mit dem Detektionsantikörper ausgewaschen wurde. Es zeigte sich ferner, dass bereits nach zwanzig Minuten Inkubation mit Plasmin die Gesamtmenge des immobilisierten PrP aus Humanplasma der 1 :200- Verdünnung durch Plasmin gespalten war. Bei der 1 :50- und der 1 :100- Verdünnung war nach 30 Minuten Plasmin-Inkubation praktisch kein ungespaltenes Human-PrP mehr vorhanden (Fig. 3).
Beim Hamsterhomogenat (1 : 400- Verdünnung) war nach 20 Minuten Plasmin- Inkubation die Gesamtmenge des immobilisierten PrPc durch Plasmin gespalten. Bei der 1 : 100- und der 1 : 200- Verdünnung war nach 30 Minuten Inkubation mit Plasmin praktisch kein ungespaltenes Hamster-PrP mehr detektierbar (Fig. 4).
Beispiel 2.2: Unterdrückung der Spaltung von PrP
Zur Unterdrückung der PrP-Spaltung durch Plasmin wurden zwei transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) mit 100 μl/Kavität monoklonalem Antikörper (Anti-PrP: PRI308, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration: 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0 (Fa. Perbio, Bonn) für 16-18 Stunden bei 4°C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die Proben (Hamsterhirnhomogenatextrakt aus gesunden Tieren, entsprechend verdünnt in Reaktionspuffer: 1 Teil Blocking-Puffer + 4 Teile PBS) auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. Auf eine Mikrotiterplatte wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert, während auf die zweite Mikrotiterplatte 100 μl PBS pipettiert wurden. Die Platten wurden für 30 Minuten bei 37°C in einem Thermoschüttler (THERMOSTAR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden auf beide Platten 25 μl/Kavität 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion des unverdauten PrP wurden 100 μl biotinylierter Detektionsantikörper (SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert. Im Anschluss wurde der ELISA-Test gemäß obiger Vorschrift durchgeführt.
Wie aus Fig. 5 ersichtlich ist, ist nach der Immobilisierung von nativem PrPc mittels eines Capture-Antikörpers (PRI3O8), der als Epitop die Aminosäurereste 106-126 des PrP-Moleküls erkennt, keine Spaltung mit Plasmin möglich. Dies zeigt, dass durch die Bindung von PrP durch den Capture-Antikörper die Primärspaltstelle von PrP für Plasmin maskiert ist, und sich diese zwischen den Aminosäureresten 106-126 des PrP-Moleküls befinden muss.
Beispiel 2.3; Spaltung von rekombinantem PrPc
Zur Spaltung von rekombinantem PrP wurden vier transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) mit 100 μl/Kavität monoklonalem Antikörper (Anti-PrP: SAF61, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0, Fa. Perbio, Bonn) für 16-18 Stunden bei 40C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die Proben (rekombinantes humanes PrP mit durch Alanin ausgetauschten Lysinresten im Lysin-Cluster 2 (dLC2), vom Institut für Labormedizin, Charite, Campus Virchow Klinikum; entsprechend verdünnt in Reaktionspuffer: 1 Teil Blocking-Puffer + 4 Teile PBS) wurden auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. In die Mikrotiterplatten wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert. Die Platten wurden für 0, 5, 15 und 30 Minuten bei 37°C in einem Thermoschüttler (THERMOST AR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden auf alle Platten 25 μl/Kavität 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion des unverdauten PrPc wurden 100 μl biotinylierter Detektionsantikörper (SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert. Im Anschluss wurde der ELISA-Test gemäß obiger Vorschrift durchgeführt.
Die Ergebnisse (Fig. 6) zeigen, dass der Austausch von Lysinresten im Lysin- Cluster 2 (dLC2) von humanem PrP durch Alanin zu einer signifikanten Beeinträchtigung der Spaltung von PrP durch Plasmin führt. So sind in der Probe, die das mutierte PrPc in einer Konzentration von 25,7 ng/ml enthielt, nach 30 Minuten noch über 70% des mutierten PrP unverdaut. Auch bei geringeren Konzentrationen des mutierten PrPc ist die Plasmin-Spaltung stark gehemmt.
Beispiel 2.4: Spaltung von immobilisiertem rekombinantem und nativem PrPc in einem Gemisch
Zur Spaltung von immobilisiertem rekombinantem und nativem PrPc in einem Gemisch wurden sieben transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) mit 100 μl/Kavität monoklonalem Antikörper (Anti- PrP: SAF61, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0, Fa. Perbio, Bonn) für 16-18 Stunden bei 4°C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die Proben (rekombinantes humanes PrP mit durch Alanin ausgetauschten Lysinresten im Lysin-Cluster 2 (dLC2), vom Institut für Labormedizin, Charite, Campus Virchow Klinikum; verdünnt auf 25,7; 14,1 und 7,1 ng/ml in Rinderhirnhomogenisat, 1 :100 verdünnt in Reaktionspuffer; Reaktionspuffer: 1 Teil Blocking-Puffer + 4 Teile PBS) wurden auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. In die Mikrotiterplatten wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert. Die Platten wurden für 0, 5, 10, 15, 20, 25 und 30 Minuten bei 37°C in einem Thermoschüttler (THERMOSTAR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden auf alle Platten 25 μl/Kavität 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion des unverdauten PrP wurden 100 μl biotinylierter Detektorantikörper (SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert. Im Anschluss wurde der ELISA- Test gemäß obiger Vorschrift durchgeführt.
Aus Fig. 7 ist ersichtlich, dass natives Rinder-PrPc auch aus einem Gemisch mit unterschiedlichen Konzentration an imitiertem, rekombinantem Human-PrP, dessen Spaltung durch Plasmin aufgrund der Mutation stark unterdrückt ist (siehe vorangegangenes Beispiel), gespalten werden kann.
Beispiel 3: Test zum Nachweis von PrPSc in einer Probe mit PrPc
In einer weiteren Reihe von Versuchen wurden Scrapie-Proben (Hamster-263K- Stamm) mit Plasmin untersucht. Es wurde Hirnhomogenisat aus infizierten Tieren im Terminalstadium in verschiedenen Konzentrationen auf die Gegenwart von PrPSc hin untersucht (Fig. 8). Außerdem wurden verschiedene Mengen von Hirnhomogenisat aus infizierten Tieren zu Hirnhomogenisat aus gesunden Tieren zugegeben, um den Nachweis der pathologischen Form in Anwesenheit von größeren Konzentrationen der normalen Form zu überprüfen (Fig. 9).
Beispiel 3.1: Spaltung von PrP0 aus Hamsterhirnhomogenat von infizierten Tieren durch Plasmin nach Immobilisierung auf einer Mikrotiterplatte
Zur Vorbereitung der Proben wurden 40 μl Hamsterhirnhomogenat aus mit Scrapie infizierten Tieren mit 40 μl 2% Sarkosyl (Fa. Sigma, Seelze) gemischt, für 60 Sekunden bei Stufe 3 mit Ultraschall behandelt (Ultraschallgerät UP100H, Fa. Dr. Hielscher, Teltow) und für 2 Stunden bei Raumtemperatur auf einem Rotor (neoLab-Rotor, Fa. Roth, Karlsruhe) inkubiert. Danach wurde eine Verdünnungsreihe in Reaktionspuffer vorbereitet.
Vier transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) wurden mit 100 μl/Kavität monoklonalem Antikörper (Anti-PrP: SAF61, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0, Fa. Perbio, Bonn) für 16-18 Stunden bei 4°C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die vorbereiteten Proben wurden auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. In die Mikrotiterplatten wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert. Die Platten wurden für 5, 15 und 30 Minuten bei 370C in einem Thermoschüttler (THERMOSTAR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden auf alle Platten 25 μl/Kavität 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion unverdauter PrP -Moleküle wurden 100 μl biotinylierter Detektionsantikörper (SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert. Im Anschluss wurde der ELISA-Test gemäß obiger Vorschrift durchgeführt.
Es zeigte sich, dass PrPSc selbst in einer 1 : 6400- Verdünnung des Hamsterhirnhomogenats von mit Scrapie infizierten Tieren in Puffer noch deutlich nachzuweisen ist. Die gemessene Intensität ist proportional zur Konzentration des Hamsterhirnhomogenats (und damit des PrPSc).
Beispiel 3.2: Spalten von PrPSc aus Hamsterhirnhomogenat im Überschuss von PrP durch Plasmin nach Immobilisierung auf einer Mikrotiterplatte
Zur Vorbereitung der Proben wurden 40 μl Hamsterhirnhomogenat aus mit Scrapie infizierten Tieren bzw. aus gesunden Tieren mit 40 μl 2% Sarkosyl (Fa. Sigma, Seelze) gemischt, für 60 Sekunden bei Stufe 3 mit Ultraschall behandelt (Ultraschallgerät UP100H, Fa. Dr. Hielscher, Teltow) und für 2 Stunden bei Raumtemperatur auf einem Rotor (neoLab-Rotor Fa. Roth, Karlsruhe) inkubiert. Danach wurde eine Verdünnungsreihe von Scrapie-Homogenisaten in Normal- Homgenisaten vorbereitet. Unmittelbar vor dem Pipettieren auf die Platten wurden die Proben 1 : 100 in Reaktionspuffer verdünnt.
Sieben transparente Mikrotiterplatten (Lumi-Nunc Maxi-Sorp F96; Fa. Nunc, Wiesbaden) wurden mit 100 μl/Kavität monoklonalem Antikörper (Anti-PrP: SAF61, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; Konzentration 1 μg/ml in Carbonat/Bicarbonat Puffer pH 9,0, Fa. Perbio, Bonn) für 16-18 Stunden bei 4°C beschichtet. Die Restflüssigkeit wurde abgesaugt und die freien Bindungsstellen durch Zugabe von 100 μl Blocking-Puffer (Superblock, Fa. Perbio, Bonn) in jede Kavität für 1 Stunde saturiert. Der Blocking-Puffer wurde von den Platten abgesaugt und die vorbereiteten Proben wurden auf die Platten pipettiert. Nach zweistündiger Inkubation bei Raumtemperatur wurden die Platten dreimal mit Waschpuffer (TBS (Burph TBS, Fa. Pierce, Rockford, USA) mit 0,5% Tween-20 (Surfact-Amps, Fa. Pierce, Rockford, USA)) gewaschen. In die Mikrotiterplatten wurden anschließend 100 μl 50 nM humanes Plasmin (Fa. Chromogenix, Stockholm, Schweden) in PBS (Fa. Perbio, Bonn) pipettiert. Die Platten wurden für 5, 15 und 30 Minuten bei 37°C in einem Thermoschüttler (THERMOSTAR, Fa. BMG, Offenburg) bei 500 Umdrehungen pro Minute inkubiert. Danach wurden auf alle Platten 25 μl/Kavität 5 μM Aprotinin (Fa. Merck Biosciences, Schwalbach) in PBS pipettiert. Nach 5 Minuten Inkubation bei Raumtemperatur wurden die Platten dreimal mit dem Waschpuffer gewaschen. Zur Detektion unverdauter PrP-Moleküle wurden 100 μl biotinylierter Detektionsantikörper (SAF32, Fa. Spi-Bio, Montigny Ie Bretonneux, Frankreich; 125 ng/ml) in Reaktionspuffer in jede Kavität pipettiert. Im Anschluss wurde der ELISA-Test gemäß obiger Vorschrift durchgeführt.
Aus Fig. 9 ist ersichtlich, dass die pathologische Form des Prionproteins (PrPSc) selbst bei 6400-fachem Überschuss der nicht-pathologischen Form des Prionproteins (PrP ) noch deutlich nachgewiesen werden kann. Dies zeigt, dass der Nachweis von PrPSc durch das erfindungsgemäße Verfahren nicht nur an
Subjekten gelingt, die sich im terminalen Krankheitsstadium befinden, in dem die Konzentration an PrPSc die Konzentration von PrPc übersteigt, sondern bereits deutlich vorher, in einem frühen vorklinischen Stadium möglich ist.

Claims

Patentansprüche:
1. Verfahren zum Nachweis von pathologischen Prionproteinen in vitro in einer Probe, wobei man: a) Capture-Antikörper, die sowohl die pathologische (PrPSc) als auch die nicht-pathologische Form (PrPc) des Prionproteins erkennen, auf einer festen Phase fixiert; b) die Probe mit den fixierten Antikörpern aus Schritt a) inkubiert, wobei die pathologische und die nicht-pathologische Form des Prionproteins an die fixierten Antikörper unter Bildung von Komplexen binden; c) die Probe von den entstandenen Komplexen abtrennt; d) die Komplexe mit Plasmin inkubiert, wobei die nicht-pathologische Form des Prionproteins gespalten wird; e) die durch die Inkubation mit Plasmin erhaltenen Spaltfragmente von den Komplexen abtrennt; und f) das in den Komplexen enthaltene, nicht gespaltene Prionprotein mit Detektions-Antikörpern detektiert.
2. Verfahren nach Anspruch 1, wobei die Detektion in Schritt f) quantitativ erfolgt.
3. Verfahren nach Anspruch 1, wobei die Detektions- Antikörper sowohl die pathologische als auch die nicht-pathologische Form des Prionproteins erkennen.
4. Verfahren nach Anspruch 1 , wobei der Capture-Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Detektionsantikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt, oder der Detektionsantikörper gegen ein Epitop gerichtet ist, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Capture- Antikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt.
5. Verfahren nach einem der vorangegangenen Ansprüche, wobei nach Schritt a) freie Bindungsstellen der festen Phase durch Blocking-Puffer gesättigt werden.
6. Verfahren nach einem der vorangegangenen Ansprüche, wobei die festen Phasen Mikrotiterplatten oder paramagnetische oder nicht-magnetische Beads sind.
7. Verfahren nach einem der vorangegangenen Ansprüche, wobei die Inkubationszeit in Schritt b) nicht mehr als etwa 2 Stunden beträgt.
8. Verfahren nach einem der vorangegangenen Ansprüche, wobei die Inkubationszeit in Schritt d) nicht mehr als etwa 30 Minuten beträgt.
9. Verfahren nach einem der vorangegangenen Ansprüche, wobei auf die Inkubation mit Plasmin in Schritt d) die Zugabe von Aprotinin folgt.
10. Verfahren nach einem der vorangegangenen Ansprüche, wobei zwischen den einzelnen Schritten Waschschritte durchgeführt werden.
1 1. Verfahren nach einem der vorangegangenen Ansprüche, wobei die Detektionsantikörper Biotin, Fluoreszenzmarker und/oder Nanobeads, insbesondere mit Europium markierte Nanobeads, enthalten.
12. Verfahren nach einem der vorangegangenen Ansprüche, wobei die Detektion in Schritt f) durch einen ELISA-Test erfolgt.
13. Diagnostischer Kit zum Nachweis von pathologischen Prionen in vitro in einer Probe, enthaltend: a) Capture-Antikörper, die gegen sowohl die pathologische (PrPSc) als auch die nicht-pathologische Form (PrP0) des Prionproteins gerichtet sind, b) Plasmin; und c) Detektions-Antikörper.
14. Diagnostischer Kit nach Anspruch 13, wobei die Capture-Antikörper bereits auf einer festen Phase fixiert sind.
15. Diagnostischer Kit nach Anspruch 14, wobei die feste Phase Mikrotiterplatten oder Beads sind.
16. Diagnostischer Kit nach Anspruch 13, wobei die Detektionsantikörper sowohl die pathologische als auch die nicht-pathologische Form des Prionproteins erkennen.
17. Diagnostischer Kit nach Anspruch 13, zusätzlich enthaltend Blocking- Puffer zur Sättigung freier Bindungsstellen der festen Phase, Waschpuffer und/oder Aprotinin.
18. Diagnostischer Kit nach Anspruch 13, wobei Plasmin in einer Pufferlösung gelöst oder lyophilisiert als Feststoff vorliegt.
19. Diagnostischer Kit nach Anspruch 13, wobei der Capture-Antikörper gegen ein Epitop des Prionproteins gerichtet ist, das sich im Bereich der Aminosäurereste 1-110 befindet, wenn der Detektionsantikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt, oder der Detektionsantikörper gegen ein Epitop gerichtet ist, das sich im Bereich der Aminosäurereste 1-1 10 befindet, wenn der Capture-Antikörper gegen ein Epitop gerichtet ist, das außerhalb dieses Bereichs liegt.
PCT/EP2007/001844 2006-03-06 2007-03-03 Test zum nachweis von pathologischen prionen WO2007101631A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502007001585T DE502007001585D1 (de) 2006-03-06 2007-03-03 Test zum nachweis von pathologischen prionen
JP2008557646A JP2009529130A (ja) 2006-03-06 2007-03-03 病原性プリオン類の検出試験法
DK07723032.4T DK1991875T3 (da) 2006-03-06 2007-03-03 Test til påvisning af patologiske prioner
US12/281,892 US20090176258A1 (en) 2006-03-06 2007-03-03 Test for the detection of pathological prions
AT07723032T ATE443871T1 (de) 2006-03-06 2007-03-03 Test zum nachweis von pathologischen prionen
PL07723032T PL1991875T3 (pl) 2006-03-06 2007-03-03 Test do wykrywania patologicznych prionów
EP07723032A EP1991875B1 (de) 2006-03-06 2007-03-03 Test zum nachweis von pathologischen prionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006010647.4 2006-03-06
DE102006010647A DE102006010647A1 (de) 2006-03-06 2006-03-06 Test zum Nachweis von pathologischen Prionen

Publications (1)

Publication Number Publication Date
WO2007101631A1 true WO2007101631A1 (de) 2007-09-13

Family

ID=38137464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001844 WO2007101631A1 (de) 2006-03-06 2007-03-03 Test zum nachweis von pathologischen prionen

Country Status (11)

Country Link
US (1) US20090176258A1 (de)
EP (1) EP1991875B1 (de)
JP (1) JP2009529130A (de)
AT (1) ATE443871T1 (de)
DE (2) DE102006010647A1 (de)
DK (1) DK1991875T3 (de)
ES (1) ES2330690T3 (de)
PL (1) PL1991875T3 (de)
PT (1) PT1991875E (de)
SI (1) SI1991875T1 (de)
WO (1) WO2007101631A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124100A1 (en) * 2007-04-04 2008-10-16 Novartis Ag Prion elisa
EP2503336A1 (de) * 2011-03-21 2012-09-26 Etablissement Français du Sang Mit Plasminogen beschichtete Nanobeads als direkter Träger zur zyklischen Amplifikation des Prion-Proteins PrPsc

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013106713A1 (de) 2013-06-26 2014-12-31 Forschungszentrum Jülich GmbH Verfahren zur Ermittlung von Indikatoren zur Bestimmung von Krankheiten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073106A2 (en) * 2002-02-28 2003-09-04 Microsens Biophage Limited Binding of pathological forms of prion proteins
JP2003321498A (ja) * 2002-04-30 2003-11-11 Obihiro Univ Of Agriculture & Veterinary Medicine 抗異常型プリオンモノクローナル抗体及びその製造方法並びにそれを用いた異常型プリオンタンパク質の免疫測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073106A2 (en) * 2002-02-28 2003-09-04 Microsens Biophage Limited Binding of pathological forms of prion proteins
JP2003321498A (ja) * 2002-04-30 2003-11-11 Obihiro Univ Of Agriculture & Veterinary Medicine 抗異常型プリオンモノクローナル抗体及びその製造方法並びにそれを用いた異常型プリオンタンパク質の免疫測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200401, Derwent World Patents Index; AN 2004-003614, XP002439411 *
XANTHOPOULOS ET AL: "Tissue plasminogen activator in brain tissues infected with transmissible spongiform encephalopathies", NEUROBIOLOGY OF DISEASE, BLACKWELL SCIENCE, OXFORD, GB, vol. 20, no. 2, November 2005 (2005-11-01), pages 519 - 527, XP005118686, ISSN: 0969-9961 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124100A1 (en) * 2007-04-04 2008-10-16 Novartis Ag Prion elisa
EP2503336A1 (de) * 2011-03-21 2012-09-26 Etablissement Français du Sang Mit Plasminogen beschichtete Nanobeads als direkter Träger zur zyklischen Amplifikation des Prion-Proteins PrPsc
FR2973114A1 (fr) * 2011-03-21 2012-09-28 Ets Francais Du Sang Nanobilles recouvertes de plasminogene comme support direct d'amplification cyclique de la proteine prion prpsc

Also Published As

Publication number Publication date
US20090176258A1 (en) 2009-07-09
DE502007001585D1 (de) 2009-11-05
SI1991875T1 (sl) 2010-01-29
EP1991875A1 (de) 2008-11-19
DE102006010647A1 (de) 2007-09-13
PT1991875E (pt) 2009-12-03
EP1991875B1 (de) 2009-09-23
ATE443871T1 (de) 2009-10-15
PL1991875T3 (pl) 2010-02-26
DK1991875T3 (da) 2010-02-01
ES2330690T3 (es) 2009-12-14
JP2009529130A (ja) 2009-08-13

Similar Documents

Publication Publication Date Title
DE60032932T2 (de) Verfahren zur diagnose einer von einem prionenstamm verursachten übertragbaren subakuten spongiformen enzephalopathie in einer biologischen probe
Rohn et al. Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease
AU2015262399B9 (en) Surrogate biomarker for evaluating intracerebral amyloid beta peptide accumulation and method for analysis thereof
CN101137670A (zh) 用单克隆抗体体外诊断阿尔茨海默病的方法
DE69713498T2 (de) Methode zum nachweis übertragbarer spongiformer enzephalopathien
DE102011057021A1 (de) Verfahren zur selektiven Quantifizierung von A-Beta-Aggregaten
WO2014207049A2 (de) Verfahren zur ermittlung von indikatoren zur bestimmung von krankheiten
DE19649359C1 (de) Verfahren zum Nachweis biologisch aktiver Substanzen in Substanzbibliotheken
EP1991875B1 (de) Test zum nachweis von pathologischen prionen
DE69601922T2 (de) Verfahren zur hochempfindlichen dosierung von herztroponin - i
DE102005057920A1 (de) Immunoassay zur simultanen immunchemischen Bestimmung eines Analyten (Antigen) und eines gegen den Analyten gerichteten Therapieantikörpers in Proben
EP1902317B1 (de) Verfahren zur selektiven bestimmung pathologischer proteinablagerungen
Vidal et al. Comparative study of the PrPBSE distribution in brains from BSE field cases using rapid tests
EP1636591A1 (de) Nachweis von protease-resistentem prion-protein nach asymmetrischer spontaner interaktion
WO2002086511A2 (de) VERFAHREN ZUR UNTERSUCHUNG VON PRION-PROTEIN ENTHALTENDEN PROBEN AUF DAS EVENTUELLE VORLIEGEN DER PrPSc-FORM
WO2021239700A2 (de) Bestimmung krankheitsspezifischer protein-aggregate in stuhlproben
EP1636589A1 (de) Nachweise von protease-resistentem prion-protein nach spontaner transformationsreaktion
DE10201777A1 (de) Verfahren zum Nachweis von pathogenen Prionenproteinen durch Massenspektroskopie
WO2002061433A1 (de) Auffinden von wirkstoffen gegen mit spezifischen proteinen assoziierte krankheiten
EP1241478B1 (de) Verfahren zur Erfassung der Pathogenese und/oder zur Diagnose von 'transmissiblen spongiformen Enzephalopathien'
DE10120562C2 (de) Verfahren zur Diagnose von übertragbaren spongiformen Enzephalopathien
US20040126821A1 (en) Detection of advanced glycation endproducts in a cerebrospinal fluid sample
WO2011009432A1 (de) Immunoassay zur bestimmung des freien targets (antigen) in proben, gegen das ein therapeutischer antikörper gerichtet ist (free target immunoassay)
DE10061200A1 (de) Verfahren und Kit zur Diagnose spongiformer Encephalopathien
EP1217378A1 (de) Verfahren zum Nachweis von fortgeschrittenen Glyzierungsendprodukte in Zerebrospinalflüssigkeit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007723032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008557646

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12281892

Country of ref document: US