WO2007100016A1 - Envelope for display and method for sealing the same - Google Patents

Envelope for display and method for sealing the same Download PDF

Info

Publication number
WO2007100016A1
WO2007100016A1 PCT/JP2007/053820 JP2007053820W WO2007100016A1 WO 2007100016 A1 WO2007100016 A1 WO 2007100016A1 JP 2007053820 W JP2007053820 W JP 2007053820W WO 2007100016 A1 WO2007100016 A1 WO 2007100016A1
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
sealing
compound
display
group
Prior art date
Application number
PCT/JP2007/053820
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Yamazaki
Yuichi Itou
Yuichi Kuroki
Kenji Ishizeki
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2007100016A1 publication Critical patent/WO2007100016A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/20Seals between parts of vessels
    • H01J5/22Vacuum-tight joints between parts of vessel
    • H01J5/24Vacuum-tight joints between parts of vessel between insulating parts of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display

Definitions

  • the present invention relates to a display envelope, a sealing method, and a sealing material composition used for a television broadcast receiver, a monitor device and the like in video equipment.
  • a display (FED), a plasma display (PDP), a cathode ray tube (CRT), etc. (hereinafter collectively referred to as a display device) having a field emission type cold cathode include two or more.
  • Components specifically, in the case of CRT, a display panel (glass panel) on which an image is displayed, a glass funnel with an electron gun, and in the case of FED, typically the front panel (Display panel portion), a rear panel portion having a cold cathode disposed opposite to the front panel portion, and an outer frame that surrounds and surrounds the front panel portion and the rear panel portion. It is formed from an envelope obtained by wearing.
  • these sealing methods include frit glass made into a slurry, applied to an end face, dried at a relatively low temperature, and then fired at a higher temperature. It is carried out by attaching a sheet-like material to the end face and firing.
  • flit glass lead content is high, and PbO_BO—ZnO—SiO series crystalline low melting point solder glass is used.
  • the sealed envelope is evacuated at a high temperature of about 250 to 380 ° C in order to make the inside of the envelope a high vacuum.
  • the sealing portion is loaded with tensile vacuum stress caused by the vacuum inside the envelope and tensile thermal stress caused by the temperature difference between the inside and outside. Strength that can be withstood is required.
  • the sealing part is required to have a pressure strength of 0.3 MPa or more, high airtightness, and insulation.
  • the back substrate arranged in the vacuum envelope has a multilayer structure such as a force sword electrode, a resistance layer, an emitter, an insulating layer, etc. , It is desired that the heat treatment be performed at as low a temperature as possible. Also, depending on the type of emitter
  • the emitter may be oxidized and the electron emission characteristics may be deteriorated. Therefore, a sealing material that can be sealed at less than 400 ° C. is desired.
  • frit glass contains 60% by mass or more of lead, and it is desired to make it lead-free in view of environmental impact.
  • Patent document i and patent document 2 disclose sealing materials such as epoxy resins and silicone resins that can be sealed at a temperature of less than 400 ° C and do not contain lead.
  • these conventional sealing materials have (1) insufficient adhesive strength with glass, (2) insufficient strength at high temperature, and (3) the sealing material itself decomposes during high-temperature vacuum evacuation, causing gas to escape.
  • There are problems such as (4) high gas permeability and inability to maintain a high vacuum.
  • Patent Documents 3 to 6 describe adhesives containing polybenzimidazole rosin, polyimide resin, or a polyphenyl compound. However, these sealing materials do not sufficiently solve the problems (1) to (4).
  • Patent Document 7 A sealing material mainly composed of a strong polyimide compound or a polyamic acid compound can be sealed at a low temperature, and has excellent properties such as high bending strength, bending elastic modulus and electrical breakdown strength of the sealed portion. It aims to eliminate the conventional problems (1) to (4) above.
  • a sealing material mainly composed of a polyimide compound or a polyamic acid compound It has been found that when the sealed display envelope is used in the atmosphere for a long time, the strength of the sealed portion of the display envelope is reduced and the degree of vacuum is reduced. did.
  • the sealing material mainly composed of a polyimide compound or a polyamic acid compound is required to be improved.
  • Patent Document 1 JP-A 52-124854
  • Patent Document 2 Japanese Patent Laid-Open No. 245153
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-21298
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-251768
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-251769
  • Patent Document 6 JP-A-10-275573
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-319448
  • the present invention has been made in view of the above-described problems in the prior art, and is selected from a polyimide compound and a polyamic acid compound for sealing a constituent member of a display envelope made of glass.
  • the sealing material containing at least one kind of compound With respect to the sealing material containing at least one kind of compound, the above-mentioned problems (1) to (4) can be solved, without impairing the excellent sealing properties, and in an atmosphere with temperature changes.
  • an envelope for display that hardly causes a decrease in strength of the sealing portion or a decrease in vacuum, a sealing method for the constituent member of the envelope, and a sealing composition The purpose is to provide.
  • the present inventor has intensively studied to achieve the above-mentioned object.
  • at least one member selected from a polyimide compound and a polyamide oxide compound is used as a constituent member of two or more display envelopes made of glass.
  • a sealing material containing more than one kind of compound the decrease in the strength of the sealing part and the decrease in the degree of vacuum, etc., occur from the specific material in the sealing material. It was found that this was basically eliminated by adding the inorganic oxide filler. This is presumably because the thermal expansion coefficient of the sealing layer was lowered by the addition of the inorganic oxide filler, and approached the thermal expansion coefficient of the glass of the display envelope constituting member.
  • This invention is based on said novel knowledge, and has the following summary.
  • Two or more display envelope components made of glass are display envelopes sealed via a sealing layer
  • the sealing layer is made of a fired body of a sealing material mainly containing at least one compound selected from a polyimide compound and a polyamide oxide compound containing an inorganic oxide filler, and the inorganic oxide filler is And at least one filler selected from the group consisting of glass, silica, alumina and titania, and an alkali metal oxide is contained in an amount of 1% by mass or less based on the inorganic oxide filler. Envelope.
  • a primer layer containing a fired body of at least one compound selected from an organometallic compound and a hydrolyzate thereof on at least one side of the sealing layer. Envelope for display according to crab.
  • M represents at least one element selected from the group consisting of Si, Ti and Zr
  • R 1 represents a hydrolyzable group
  • R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms.
  • N represents an integer of 0 to 2.
  • the sealing surface of two or more display envelope components made of glass contains at least one compound selected from a polyimide compound and a polyamic acid compound as a main component and contains an inorganic oxide filler.
  • a step of forming a layer of a sealing material containing 1% by mass or less of an alkali metal oxide in the inorganic oxide filler, and the sealing surfaces of the two or more display envelope constituent members are: A step of bonding through the layer of the sealing material, and a step of solidifying the sealing material by heating to a temperature of 250 to 400 ° C. Sealing method.
  • the adhesive strength with the glass is sufficient, (2) the strength is insufficient at high temperature, (3) the sealing layer itself is decomposed during high-temperature evacuation. (4)
  • the problem of conventional sealing materials such as high gas permeability and inability to maintain a high vacuum, has been improved, and in an atmosphere with temperature changes. Even when used, there is almost no drop in the strength of the sealing part or a decrease in the degree of vacuum.In addition, the strength of the sealing part due to the generation of bubbles in the sealing layer or the airtightness due to insufficient sealing.
  • a display envelope having sealing properties that do not cause degradation is provided.
  • a sealing method for efficiently producing a powerful display envelope and a sealing material composition used therefor.
  • FIG. 1 is a partially cutaway side view of an embodiment of a display device according to the present invention, in which the display device is configured as a CRT.
  • FIG. 2 is a partially cutaway side view of another embodiment of a display device according to the present invention, wherein the display device is configured as a typical FED.
  • Display device 1 Display device
  • Gate electrode 64 Insulating layer
  • the sealing layer in the present invention is characterized by comprising a fired body of a sealing material containing as a main component at least one compound selected from a polyimide compound and a polyamic acid compound.
  • main component means that one or more compounds selected from a polyimide compound and a polyamic acid compound are based on the total mass excluding the inorganic oxide filler in the solid content of the sealing material, It means preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • polyimide compound those having a structure represented by the following formula 1 are preferable.
  • a polyamic acid compound is a precursor of a polyimide compound, even when a polyamic acid compound is used, it is preferable to use a polyamide oxide that forms a polyimide compound having a structure represented by the following formula 1.
  • X represents the main skeleton of the diamine compound
  • Y represents the main skeleton of the tetracarboxylic dianhydride.
  • the main skeleton of the diamine compound means the main chain excluding the amino group of the diamine compound
  • the main skeleton of the tetracarboxylic dianhydride means the main chain excluding the carboxylic dianhydride group.
  • X and Y mean the following.
  • R is one selected from the group consisting of one, one O—, one CO—, —SO—, one S—, —CH—, and one C (CH 2) —. is there.
  • the polyimide compound may be composed of only the structure represented by Formula 1, but it is preferable that the terminal portion is sealed with a monoamine or dicarboxylic anhydride.
  • the polyimide compound whose end is sealed with monoamine or dicarboxylic anhydride preferably has a structure represented by the following formula 2 or formula 3. In the following formulas 2 and 3, X and Y are as defined in formula 1.
  • X ′ in the formula 2 is preferably the following formula 20 or formula 21.
  • R 4 is an alkyl group having 1 to 4 carbon atoms
  • R 5 is an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • r is an integer of 0 to 2, preferably 0 to 1. Is an integer.
  • the sealing layer in the present invention uses at least one compound selected from the group consisting of a polyimide compound and a polyamic acid compound having a structure represented by the formula 20 and a hydrolyzate thereof.
  • a sealing portion having particularly high strength and sealing physical properties can be obtained.
  • Y ′ in the formula 3 represents the following formula 22 to formula 2
  • polyimide compound of Formula 3 in which Y 'is any one of Formulas 22 to 26 is excellent in adhesive strength in a high-temperature environment experienced during a high-temperature evacuation process because it is thermoset during firing.
  • the polyimide compounds of the formulas 1 to 3 are vinylene group, ethynino group, vinylidene group, benzocyclobutene-4'-yl group, isocyanato group, aryl group, oxsilane group, oxetane group. It preferably has at least one bridging group selected from the group consisting of a cyano group and an isopropenyl group.
  • the polyimide compounds of the formulas 1 to 3 are thermally cured at the time of firing due to the introduction of these crosslinking groups, and are excellent in the adhesive strength under the high temperature environment experienced during the high temperature evacuation process.
  • a polyamic acid compound having a structure represented by the following formulas 27 to 29 can also be used.
  • X is a main skeleton of a diamine compound
  • X ′ is a main skeleton of a monoamine compound
  • Y is a main skeleton of a tetracarboxylic dianhydride
  • Y ′ is a dicarboxylic acid. It is the main skeleton of anhydride.
  • XY means the following.
  • each R is independently selected from one of —, —O_, —CO_—SO— —S——CH—, and —C (CH) —force, group force, and so on.
  • n is independently 0 7 and each Z is independently CH or a phenyl group.
  • R is at least one selected from the group consisting of O 2 CO 3 —SO 2 S——CH— and 1 C (CH 3) —.
  • X 'in the formula 28 is preferably the above formula 20 or the formula 21.
  • the adhesion to glass can be improved.
  • the polyamic acid compound of the formula 28 in which X ′ is the formula 20 or the formula 21 is excellent in adhesive strength in a high-temperature environment experienced during a high-temperature vacuum exhaust process because it is thermoset during firing.
  • Y 'in the formula 29 is preferably any one of the above formulas 22 to 26. Since the polyamic acid compound of Formula 29 in which Y ′ is any one of Formulas 22 to 26 is thermally cured during firing, it has excellent adhesive strength under a high temperature environment experienced during a high temperature vacuum exhaust process.
  • the polyamic acid compounds represented by the above formulas 27 to 29 are vinylene group, ethur group, vinylidene group. It preferably has at least one bridging group selected from the group consisting of a group, a benzocyclobutene 4′-yl group, an isocyanate group, an aryl group, an oxsilane group, an oxetane group, a cyano group, and an isopropenyl group.
  • the polyamic acid compounds of the above formulas 27 to 29 become thermosetting upon firing due to the introduction of these crosslinking groups, and are excellent in adhesive strength under a high temperature environment experienced during a high temperature evacuation process.
  • the polyimide compound having the structure of Formula 1 and the polyamic acid compound of Formula 27 are synthesized by condensation of a diamine compound and tetracarboxylic dianhydride. As in the case of ordinary polycondensation polymers, these can control the molecular weight by adjusting the molar ratio of the monomer components. That is, a high molecular weight product can be formed by using 0.8 to 1.2 mol of diamine compound for 1 mol of tetracarboxylic dianhydride. When at least one compound selected from a polyimide compound and a polyamic acid compound is a high molecular weight compound, the fired product is excellent in mechanical strength, electrical insulation and the like, and is outgassed in a high temperature environment. Therefore, it is preferable as a sealing material.
  • the molar ratio is more preferably 0.9 to 1.1 mol of the diamine compound per 1 mol of acid dianhydride.
  • diamines that can be used to synthesize the polyimide compound having the structure of formula 1 or the polyamic acid compound of formula 27 include the following (a) to (1) diamine compounds.
  • ⁇ -ditrifluoromethylbenzyl) benzene 1,3-bis (4-amino- ⁇ , ⁇ -ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino- ⁇ , ⁇ -ditrifluoromethylbenzyl) benzene 1,4-bis (4-amino- ⁇ , ⁇ -ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine.
  • Diamine which is a siloxane diamine 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4aminobutyl) tetramethyldisiloxane, ⁇ -bis (3— Aminopropyl) polydimethylsiloxane, ⁇ -bis (3-aminobutyl) polydimethylsiloxane.
  • Diamine an alicyclic diamine; 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,2-di (2 aminoethyl) cyclo Hexane, 1,3-di (2aminoethyl) cyclohexane, 1,4-di (2aminoethyl) cyclohexane, bis (4aminocyclohexyl) methane, 2, 6_bis (aminomethyl) ) Bicyclo [2 • 2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2 ⁇ 2.1] heptane.
  • the diamine compounds exemplified above can be used alone or in combination as appropriate. Further, the diamine compound has at least one selected from the group consisting of a fluorine atom, a methyl group, a methoxy group, a trifluoromethyl group, and a trifluoromethoxy group, with some or all of the hydrogen atoms on the aromatic ring of the diamine compound. It can be diamine substituted with two substituents. For the purpose of introducing branching, a part of the diamine compound may be replaced with triamines or tetraamines. Specific examples of such triamines include, for example, pararozuaniline.
  • tetracarboxylic dianhydrides that can be used to synthesize the polyimide compound having the structure of Formula 1 and the polyamic acid compound of Formula 27 include the following. Pyromellitic dianhydride, 3, 3 ', 4, 4' _biphenyltetracarboxylic dianhydride, 3, 3 ', 4, 4' _benzophenone tetracarboxylic dianhydride, bis ( 3,4-dicanoloxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 2,2_bis (3,4-dicarboxyphenyl) propane dianhydride, 2, 2_bis (3,4-dicarboxyphenyl 1,1,3,3,3_hexafluoropropane dianhydride, 1 , 3 _bis (3, 4—Zicanol
  • any of the above tetracarboxylic dianhydrides some or all of the hydrogen atoms on the aromatic ring are derived from a fluorine atom, a methyl group, a methoxy group, a trifluoromethyl group, and a trifluoromethoxy group. It can be used by being substituted with at least one substituent selected from the group consisting of
  • the ethynyl group, benzocyclobutene 4'-yl group, vinyl group, aryl group, cyano group, isocyanate group, ditrimethyl group, or isopropenyl group serving as a crosslinking point may be converted to the above diacid group. It can be used even if it is introduced as a substituent on some or all of the hydrogen atoms on the aromatic ring of water. Furthermore, it can also be incorporated into the main chain skeleton in which the vinylene group, vinylidene group, or ethynylidene group serving as a crosslinking point is not a substituent, as long as it does not impair the moldability.
  • a part of tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or otatacarboxylic dianhydride.
  • a polyimide compound or a polyamic acid compound is added.
  • a dicarboxylic acid anhydride or a monoamine compound may be included as a terminal sealing material.
  • dicarboxylic acid anhydride that can be used as the end-capping agent include the following compounds.
  • aromatic dicarboxylic acid anhydrides phthalic anhydride is preferably used.
  • the monoamine compound that can be used as the end-capping agent include the following. Aniline, o toluidine, m-toluidine, p-toluidine, 2,3-xylysine, 2,6 xylidine, 3,4 xylidine, 3,5 xylidine, o chloroaniline, m-chloroaniline, p-chloroaniline, o —Bromoaniline, m-Bromoaniline, p-Bromoaniline, o_Nitroanilin, p-Nitroaniline, m —Nitroaniline, o_Aminophenol, ⁇ aminophenol, m -Aminophenol, o anisidine, m anisidine, p_anisidine, o-phenetidine, m_phenetidine, p_phenetidine, o-aminobenzaldehyde, p-amin
  • These monoamine compounds and dicarboxylic acid anhydrides may be used alone or in admixture of two or more.
  • the amount of these end-capping agents used is 1 to several times the difference in the number of moles used between the diamine compound and tetracarboxylic dianhydride (excess component is tetracarboxylic dianhydride), or dicarboxylic anhydride However, it is generally used in an amount of about 0.01 mol times at least one of the components.
  • the synthesis reaction of the polyimide compound or polyamic acid compound is usually carried out in an organic solvent.
  • organic solvent any solvent can be used as long as it can dissolve the polyimide compound and the polyamide oxide compound, which have no problem in producing the polyimide compound and the polyamide oxide compound, and also generate a force.
  • Specific examples include amide solvents, ether solvents, and phenol solvents, and more specifically, the following organic solvents are exemplified. These may be used alone or in combination of two or more.
  • amide solvents are preferred from the standpoints of solution stability and workability.
  • At least one compound selected from the synthesized polyimide compounds and polyamic acid compounds can be used as a sealing material to be described later while being dissolved in these organic solvents.
  • the solvent for the polyimide compound is preferably cresol.
  • N-methylpyrrolidone is preferred as the solvent for the polyamic acid compound.
  • These organic solvents can also be used as a solvent when using at least one compound selected from a synthesized polyimide compound and polyamic acid compound as a solution.
  • the reaction temperature for synthesizing the polyamic acid compound is -20 to 60 ° C, preferably 0 to 40 ° C.
  • the reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent and the reaction temperature.
  • the obtained organic solvent solution containing a polyamic acid compound is referred to as a sealing material containing a polyamic acid compound.
  • the polyamic acid compound is a precursor of the polyimide compound, it can be used as a sealing material by heating and dehydrating the obtained polyamic acid compound to 150 to 400 ° C. to imidize it.
  • the reaction temperature when synthesizing the polyimide compound is 100 ° C or higher, preferably 150 to
  • the temperature is generally 300 ° C., and it is generally performed while extracting water generated by the reaction.
  • the precursor polyamic acid compound Prior to imidization, the precursor polyamic acid compound is first synthesized at a low temperature of 100 ° C or lower, and then the temperature can be raised to 100 ° C or higher to be imidized. After mixing the product and the diamine compound, imidization can be performed by immediately raising the temperature to 100 ° C or higher in the presence of an organic base.
  • the reaction time is the tetracarboxylic acid used. It depends on the type of acid dianhydride, the type of solvent, the type and amount of the organic base catalyst, and the reaction temperature. In this case, it is common and effective to remove water by azeotropic distillation by removing azeotropic agent such as toluene in the reaction system.
  • an organic solvent solution containing the obtained polyimide compound dissolved or dispersed is referred to as a sealing material solution containing a polyimide compound.
  • the sealing liquid containing the polyimide compound has good storage stability, and is coated on the sealing surface of the envelope component made of glass and then heat-dried or pre-fired, then compared by firing. Even when fired at a low temperature and low pressure, a sufficient 90 degree sealing peel strength can be obtained.
  • the temperature of drying or pre-baking varies depending on the boiling point of the solvent, and cannot be specified, but is usually 150 to 300 ° C.
  • the main firing is performed at 250 to 400 ° C.
  • the polyimide compound may be used after being formed into a film by a known method, not as a solution dissolved in an organic solvent.
  • a diaminosiloxane compound may be included in the sealing material in order to improve the sealing property of the sealing layer.
  • the polyimide compound and the polyamic acid compound are those in the above formulas 1 to 3 or formulas 27 to 29, where X is any one of formulas 4 to 7.
  • Masle The diaminosiloxane is preferably used in an amount of 0.10 mol or less with respect to 1 mol of the polyimide compound having the structure of Formula 1 to Formula 3 or the polyamic acid compound of Formula 27 to Formula 29. . If the amount of diaminosiloxane compound is 0.1 mol or less, the heat resistance inherent in the sealing layer will not be impaired, and storage stability such as phase separation of the sealing material will also be a problem. Will not occur.
  • Logarithmic viscosity is generally used as an index of the molecular weight of a polyimide compound.
  • the polyimide compound of the present invention has a logarithmic viscosity of 0.5 g / dL in a mixed solvent (90:10) of p_chlorophenol and phenol, 35.
  • C is preferably 0.01 to 5.0, and more preferably 0.10 to 0.50.
  • the molecular weight of the polyamic acid compound can be measured by gel permeation chromatography (GPC), and the mass average molecular weight of the polyamic acid compound of the present invention is preferred. It is 4000-30000, More preferably, it is 5000-15000.
  • the sealing layer in the present invention contains at least one inorganic oxide filler selected from the group consisting of glass, silica, alumina and titania.
  • glass having a low alkali content called non-alkali glass is preferable, and non-alkali glass fiber (fiber) is particularly preferable.
  • the thermal expansion coefficient is smaller than that of a polyimide resin formed from at least one compound selected from the above-mentioned polyimide compounds and polyamic acid compounds that form a sealing material. It has a coefficient of expansion, preferably 38 X 10- 6 / ° C or less, particularly good Mashiku is preferably those having the 20 X 10- 6 / ° C.
  • the thermal expansion coefficient of the inorganic oxide filler exceeds 38 ⁇ 10 _6 / ° C, the effect of suppressing the above-described decrease in the strength of the sealing portion and the decrease in the degree of vacuum is reduced, which is preferable.
  • the lower limit of the thermal expansion coefficient of the inorganic oxide filler is not particularly limited, but is preferably 1 ⁇ 10 _6 / ° C or more.
  • the thermal expansion coefficient of the inorganic oxide filler is 1 X 10 _6 / ° C or more, the difference between the thermal expansion coefficient of at least one compound selected from the polyimide compounds and polyimide acid compounds used for the sealing material is different. It is preferable because it does not become too large and inconveniences such as peeling at the interface between the resin and the film hardly occur when the temperature changes.
  • the thermal expansion coefficient of the sealing layer containing the inorganic oxide filler is preferably 38 ⁇ 10 ⁇ ° C. or less, and particularly preferably 20 ⁇ 10 ⁇ 6 / ° C. or less. If the Netsu ⁇ expansion coefficient of the sealing layer is more than 38 X 10- 6 / ° C, since the effect of suppressing the decrease in the degradation or the degree of vacuum strength of the sealing portion as described above it is reduced unfavorably.
  • the lower limit of the thermal expansion coefficient of the sealing layer in particular limited, such les, but the thermal expansion coefficient is preferably suitable when Ru der 6 X 10_ 6 / ° C or more.
  • the inorganic oxide filler used in the present invention is that the content of the alkali metal oxide in the inorganic oxide filler is 1% by mass or less, preferably 0.8% by mass or less, particularly preferably 0. 6% by mass or less.
  • alkali metal oxide content Means the total amount of alkali metal oxides such as lithium, sodium and potassium.
  • the content of alkali metal oxide here is the content calculated as the equivalent amount of alkali metal oxide when the alkali metal is present in a form other than oxide in the inorganic oxide filler. means.
  • the content power of the alkali metal oxide in the inorganic oxide filler exceeds 1% by mass, bubbles are generated in the sealing material layer at the stage of firing the sealing material, and the sealing strength is reduced. It will cause a decrease in sealing performance.
  • the amount of the alkali metal oxide contained in the inorganic oxide filler in the present invention is determined according to JISM8852, 8853 or 8856.
  • the form of the inorganic oxide filler is preferably granular or fibrous.
  • the average maximum length of the inorganic oxide filler is preferably 0.5 to 500 ⁇ m, particularly preferably:! To 200 ⁇ m.
  • an elongated shape having an aspect ratio of preferably 2 to 100, particularly preferably 4 to 20, particularly a fiber is preferable.
  • the aspect ratio is less than 2, the effect of adding the inorganic oxide filler is not significant.
  • the aspect ratio exceeds 100, the fluidity of the sealing material liquid containing the inorganic oxide filler decreases, and the This is not preferable because workability is lowered.
  • the inorganic oxide filler is preferably contained in an amount of 10 to 60% by mass, particularly preferably 20 to 50% by mass, based on the sealing layer.
  • the content of the inorganic oxide filler is less than 10% by mass, the effect of including the inorganic oxide filler is poor, and conversely, when the content exceeds 60% by mass, the seal containing the inorganic oxide filler is included. Neither is preferred because the fluidity of the dressing liquid or the like decreases.
  • the inorganic oxide filler is preferably treated with a silane coupling agent in order to improve compatibility with the polyimide resin constituting the sealing material.
  • the silane coupling agent is preferably a silane having an amino group, and the amino group is preferably a primary or secondary amino group.
  • the treatment of the inorganic oxide filler with the silane coupling agent is usually performed by silane coupling. It is preferably carried out by immersing the inorganic oxide filler in an aqueous liquid or liquid in which the agent is dissolved or dispersed, preferably with stirring.
  • the silane coupling agent is attached to the surface of the inorganic oxide filler with respect to 100 parts by mass of the inorganic oxide filler, preferably from 0.5 to 5 parts by mass, particularly preferably from 0.5 to 2 parts by mass. It is processed.
  • additives in addition to the above inorganic oxide filler, other additives can be contained for the purpose of adjusting the viscosity of the sealing material solution, reducing the thermal stress of the fired body, and the like.
  • additives are not particularly limited, and examples include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, and aluminum silicate.
  • a lead-free inorganic sealing material such as a phosphoric acid-based or bismuth-based material is used in combination with a sealing material composed of at least one compound selected from the above-mentioned polyimide compounds and polyamic acid compounds. Also good.
  • Such inorganic sealing materials are used when the display device needs to be sealed at a higher temperature, specifically 400 ° C or higher, or when it is necessary to match characteristics. Preferably used.
  • the primer layer when sealing the display envelope using the sealing material, it is preferable to place a primer layer on at least one side of the sealing layer.
  • the primer layer includes a fired body of one or more compounds selected from an organometallic compound represented by the following formula (A) and a hydrolyzate thereof.
  • M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, and R 2 has 1 to 4 carbon atoms.
  • R 1 represents a hydrolyzable group
  • R 2 has 1 to 4 carbon atoms.
  • An alkyl group or a phenyl group, and n represents an integer of 0 to 2.
  • R 1 in the formula (A) usually represents a group capable of forming a hydroxyl group or a siloxane bond by hydrolysis at 25 to 100 ° C in the presence of no catalyst and excess water.
  • n is an integer of 0 to 2, preferably an integer of 0 to 1, particularly preferably 0. Since the number power of n increases as the number of hydroxyl groups increases, the envelope constituent member made of glass, and the sealing layer The number of bonds increases, and good adhesion at the interface is developed. In the hydrolyzate of the organometallic compound represented by the formula (A), some unhydrolyzed R 1 groups may remain.
  • R 1 include a hydrogen atom, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and an isocyanate group.
  • Specific examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • hydrolysis is promoted when an acid is used as a catalyst, which is preferable.
  • having an alkoxy group it is possible to generate a large number of hydroxyl groups depending on the hydrolysis and the condensation reaction conditions, so that the adhesion at the interface can be improved.
  • compounds in which some alkoxy groups are substituted with acetylylacetonate groups can be used.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Since a compound having an isocyanate group or a halogen atom has a high hydrolysis rate, hydrolysis proceeds with moisture in the air even if the compound is applied as it is. For this reason, the probability of reacting the envelope component with the sealing material is higher than the condensation reaction of the hydrolyzable compound itself, so that the adhesion at the interface can be increased.
  • Preferred hydrolyzable groups include alkoxy groups or isocyanate groups from the viewpoint of ease of handling and safety.
  • M in the formula (A) is at least one element selected from the group force consisting of Si, Ti, and Zr, and any compound containing these elements generates a hydroxyl group or has an adhesive property at the interface. Can be increased. From the point of availability, Si has a more favorable reaction control and is easy to handle and has high storage stability.
  • R 2 in the formula (A) is an alkyl group or phenyl group having carbon numbers:!
  • a methyl group, an ethyl group, a butyl group, and a phenyl group are used. If the number of carbons increases excessively, its function is impaired due to its hydrophobicity and steric hindrance.
  • a methyl group or an ethyl group is preferable.
  • a silicon compound is tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxyoxysilane, tetrabutoxysilane, tetraisocyanatesilane, methyltrichlorosilane. , Methyltrimethoxysila , Methyl triisocyanate silane, ethyltrimethoxysilane, butyltrimethoxysilane phenyltrichlorosilane, and phenyltrimethoxysilane.
  • examples of the titanium compound include tetrachloro titanium, tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, tetrabutoxy titanium, tripropoxy monoacetyl cetato titanium, and dipropoxy bis acetyl cetato titanium. It is done.
  • zirconium compound examples include tetrapropoxyzirconium, tetrabutoxyzinoleconium, and tributoxymonoacetylacetonatozirconium.
  • One or more compounds selected from the organometallic compound represented by the above formula (A) and a hydrolyzate thereof are preferably contained in a medium such as alcohol, preferably in a range of 0.5 to 10% by mass.
  • the primer layer-forming material is in the form of a solution or a dispersion.
  • a hydrolysis-condensable compound containing an aluminum element may be added.
  • specific examples include aluminum alkoxy compounds, and aluminum isopropoxide.
  • the display device is typically a light source that emits light from a cathode (force sword) under high vacuum and collides with a phosphor to excite and emit light.
  • Sword luminescence type Such power sword luminescence type display devices are represented by field emission type cold cathode display devices (FED), cathode ray tubes (CRT), and the like.
  • Such a display device is provided with a vacuum envelope made of glass with a high vacuum inside in order to realize force-sword luminescence.
  • the glass forming the envelope in the present invention is preferably SiO-SrO-BaO-QO-AlO system, SiO-TO-QO1 AlO
  • the vacuum envelope after sealing is evacuated at a high temperature in order to make the inside high vacuum.
  • This high-temperature evacuation process has been conventionally performed at 250 to 380 ° C.
  • the heat treatment at the time of manufacturing the display device is performed at the lowest possible temperature. Therefore, it is expected that the high-temperature evacuation process will be carried out at a temperature of 200 to 330 ° C in the future.
  • vacuum stress and thermal stress are applied to the sealing portion of the vacuum envelope.
  • the display device according to the present invention will be described below using the conventional CRT and FED configurations as examples.
  • the display device in the present invention is not limited to CRT and FED.
  • CRT and FED which is not an envelope in which the inside is in a vacuum in the final product state
  • a display device having an envelope that temporarily undergoes a vacuum state for gas replacement or the like is also included.
  • plasma display (PDP) is also included.
  • FIG. 1 is a partially cutaway side view of an embodiment of a display device according to the present invention, and the display device 1 is configured as a CRT.
  • the right side of the drawing is the front side and the left side is the rear side.
  • a display device 1 includes a vacuum envelope (glass bulb) 11 including a display panel unit 2 and a glass funnel unit 3.
  • the display panel part 2 constituting the front side of the vacuum envelope 11 is located in front of the vacuum envelope 11 and has a substantially planar display area 21 for displaying an image and a rear side from the side of the face part including the display area 21. It consists of a skirt portion 22 that extends in the direction.
  • a neck 31 for storing the electron gun 16 is provided at the rear end of the glass channel portion 3 constituting the rear side of the vacuum envelope 11.
  • the display panel part 2 and the glass funnel part 3 constituting the vacuum envelope 11 are usually made of glass.
  • the display region 21 of the display panel unit 2 may be a multilayer material made of a light-transmitting resin in its front side portion that is not entirely made of glass.
  • the constituent members of the vacuum envelope 11 may be made of an inorganic material other than glass, specifically, for example, ceramic or metal.
  • the display device 1 shown in Fig. 1 also has an explosion-proof reinforcement band 17 for maintaining strength.
  • a phosphor 13 that emits fluorescence by interaction with an electron beam emitted from the electron gun 16; an aluminum film 14 that reflects the fluorescence to the display surface 21 side; and the electron beam landing on a predetermined position of the phosphor 13
  • the display panel portion 2 and the glass funnel portion 3 which are constituent members of the vacuum envelope 11 are sealed via the sealing layer 5.
  • the sealing layer 5 is formed by applying a sealing material to the sealing surface of the vacuum envelope constituent member by the method described later, that is, after applying the sealing material in a liquid state, or using the sealing material as a film. It is a layer of a fired body of a sealing material obtained by firing under desired conditions after being attached.
  • the sealing surface of the vacuum envelope 11 components specifically, the rear end surface of the skirt portion 22 of the display panel portion 2 and the front end surface of the glass funnel portion 3 are sealed. It is sealed through the attachment layer 5.
  • the bending strength of the sealing portion of the vacuum envelope is preferably 30 MPa or more at 220 ° C.
  • the sealing portion of the envelope refers to a portion of the sealing layer 5 and the component constituting the envelope that is in the immediate vicinity of the sealing layer 5, and when the bending mode is loaded, The strength at the time of breaking as the starting point was defined as the bending strength of the sealing portion.
  • the display device 1 of FIG. 1 it is the bending strength of the sealing portion composed of the rear end portion of the skirt portion 22 and the front end portion of the funnel portion 3.
  • the bending strength can be determined, for example, as a measured value of a four-point bending test performed by a method according to JIS R1601, as described in the examples described later.
  • FIG. 2 is a partially cutaway side view of another embodiment of a display device according to the present invention, and the display device is configured as a typical FED.
  • the upper side of the drawing is the front side and the lower side is the rear side.
  • a front panel portion (display panel portion) 2 ′ located on the front side thereof, and a rear panel portion 3 ′ disposed on the rear side thereof facing the front panel portion 2 ′, the front panel portion.
  • a vacuum envelope 11 ′ is composed of the outer frame 4 disposed between the panel portion 2 ′ and the rear panel portion 3 ′.
  • the front panel part 2 ', the rear panel part 3' and the outer frame 4 which are constituent members of the vacuum envelope 11 'are usually made of glass.
  • the joint surfaces of the constituent members of the vacuum envelope 11 ′ are sealed through the sealing layer 5. Therefore, the joint surface between the front panel portion 2 ′ and the outer frame 4 and the joint surface between the rear panel portion 3 ′ and the outer frame 4 are sealed via the sealing layer 5.
  • the rear panel portion 3 ′ is a field emission type electron source substrate.
  • the cathode 61 and the negative electrode 61 are provided on the inner side surface thereof, that is, the surface facing the front panel portion 2 ′.
  • the field emission cold cathode 62 is formed on the inner side surface thereof, that is, the surface facing the front panel portion 2 ′.
  • a Goto electrode 63 that controls the electron flow is formed across the insulating layer 64.
  • an anode 65 and a phosphor pixel 66 paired with the field emission cold cathode 62 are provided on the surface of the front panel portion 2 ′ facing the rear panel portion 3 ′.
  • the sealing layer 5, that is, the sealing material of the present invention is required to have the same characteristics as the display device 1 of the first embodiment.
  • sealing the envelope component of the display device in the present invention it is preferably performed as follows. That is, for the sealing surface of the envelope constituent member for the display device to be sealed, preferably one kind selected from the organometallic compound represented by the formula (A) and the hydrolyzate thereof.
  • a primer single layer forming material comprising a solution or dispersion containing the above compound is applied. Application may be either spraying or brushing.
  • a layer of primer layer forming material having a thickness of preferably 1 to: OOOnm is preferably formed on the sealing surface after drying. The drying is performed at room temperature in a short time, but the conditions vary depending on the type of primer layer forming material.
  • the primer layer forming material layer contains, as a main component, one or more compounds selected from polyimide compounds and polyamic acids containing an inorganic oxide filler.
  • a sealing material or a liquid thereof is applied, or a sealing material film mainly composed of a polyimide compound containing an inorganic oxide filler is applied.
  • the coated surface is preferably dried or pre-baked at 150 to 200 ° C. to form a sealing material layer.
  • the layer of the primer layer forming material and the layer of the sealing material are preferably formed on both the sealing surfaces of the envelope constituent member to be sealed as described above. Piece of wear Alternatively, only the primer layer forming material layer may be formed.
  • the sealing surface of the envelope constituting member having the primer layer forming material layer and the sealing material layer is preferably 250 to 400 ° C, and preferably 500 to 10 It is sealed by firing for about 10 minutes, preferably at 330 to 400 ° C for 300 to 10 minutes, more preferably at 330 to 400 ° C for 60 to 10 minutes.
  • the envelope components are evacuated at a high temperature of 200 to 330 ° C. so that the inside of the envelope component is placed in a high vacuum, and the envelope of the display device is manufactured.
  • the firing of the sealing surface in the present invention may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon gas atmosphere, or may be performed in the air.
  • an inert gas atmosphere such as a nitrogen atmosphere or an argon gas atmosphere
  • the firing temperature is less than 400 ° C, problems such as thermal deformation related to the metal member in the display device when the conventional frit glass is used as the sealing material are eliminated.
  • the primer layer forming material and the sealing material are applied separately in this order.
  • the primer layer forming material and the sealing material are The sealing composition to be included can be applied simultaneously to the sealing surface of the envelope constituent member.
  • the sealing composition include a primer layer forming material containing one or more compounds selected from an organometallic compound represented by the following formula (A) and a hydrolyzate thereof, an inorganic oxide filler, and a polyimide compound. And a sealing material containing at least one compound selected from polyamic acid compounds.
  • M represents at least one element selected from the group consisting of Si, Ti and Zr
  • R 1 represents a hydrolyzable group
  • R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms.
  • N represents an integer of 0 to 2.
  • the ratio of the primer layer forming material and the sealing material in the sealing composition is preferably from 0.5 to 10 parts by weight, particularly preferably 1 to 100 parts by weight of the sealing material. ⁇ 5 parts by mass is preferred.
  • Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples.
  • Polyimide (1) is 28 mass%
  • glass fiber filler A (average fiber diameter 10 mu m, average fiber length 70 ⁇ ⁇ , aspect ratio: 7) is 12 mass 0/0
  • Jihidorota one Bineoru 60 mass 0/0 Each material was weighed so as to have a ratio of 5 and mixed into a paste-like material while being ground using a mortar.
  • the content of alkali metal oxide in the above glass fiber filler ⁇ ⁇ is Na ⁇ : 0.3%
  • the glass fiber filler A is as follows.
  • the paste-like material is used as a sealing material for glass envelopes.
  • the thermal expansion coefficient (ii) of the sealing layer when this paste-like material is used as a sealing material was measured by the following method.
  • the state of bubbles generated in the sealing layer is defined as the area ratio by the method described in (2) below. It was measured.
  • Table 1 The content of the glass fiber filler A in the obtained sealing layer is the same as the ratio of the glass fiber filler A to the total of the polyimide (1) and the glass fiber filler A at the time of the paste-like preparation. %.
  • the paste was cast on a glass plate with a coater with a predetermined gap, pre-baked at 160 ° C for 30 minutes and 220 ° C for 2 hours, and then fired at 350 ° C for 2 hours. Thereafter, the film was peeled off from the glass by dipping in warm water at 80 ° C and dried at 150 ° C for 3 hours to obtain a film.
  • This film is cut to a size of 5mm x 17mm, heated at 5 ° C / min from 30 ° C to 150 ° C using TMA60 manufactured by Shimadzu Corporation, and the coefficient of thermal expansion (ct) is measured by tensile measurement. It was measured.
  • Paste-like material is made up of two 60 mm square plate-like soda-lime glasses (glass composition Si ⁇ : 71
  • the resulting image is binarized to separate the bubble part from the likely part, and the area of the bubble part (A) and the area of the observed adhesion part (B) are calculated.
  • the area ratio (%) was defined. From experience, when this area ratio is 10 or more, there is a high possibility that there is a problem in maintaining airtightness and mechanical reliability.
  • Example 1 polyimide (2) is used instead of polyimide (1) and glass fiber filler Instead of A, glass fiber filler B (average fiber diameter 10 ⁇ , average fiber length 100 / m, aspect ratio: 10) made of the same glass is used, and the content of glass fiber filler B in the sealing layer A pasty material was produced in the same manner as in Example 1 except that the content was 20% by mass, and a sealing layer was produced.
  • glass fiber filler B average fiber diameter 10 ⁇ , average fiber length 100 / m, aspect ratio: 10
  • glass fiber filler C made of the same glass (average fiber diameter 10 ⁇ m, average fiber length 40 ⁇ m, aspect ratio: 4) was used instead of glass fiber filler A.
  • a pasty material was produced in the same manner as in Example 1 except that the content of C was 40% by mass in the sealing layer to prepare a sealing layer.
  • Example 1 As shown in Table 2, as a filler, Example 4 (no addition), Example 5 (Kaolin: average minor axis about 4 ⁇ m, average major axis about 24 ⁇ m, aspect ratio: 6 ), Example 6 (My power: scale-like particles, average minor axis about 0.24 xm, average major axis about 12 xm, aspect ratio: 50) And a sealing layer was produced.
  • the thermal expansion coefficient of the sealing layer is small, and the generated bubbles in the sealing layer are small.
  • the filler does not contain any additive (Example 4), and the thermal expansion coefficient of the sealing layer is large. In the case of the product added, the bubbles generated in the sealing layer were large.
  • the display envelope provided by the present invention is used as a display device such as a display (FED), a plasma display (PDP), and a cathode ray tube (CRT) having a field emission cold cathode.
  • a display FED
  • PDP plasma display
  • CRT cathode ray tube

Abstract

This invention provides an envelope for a display, which, even when used in an atmosphere which undergoes a temperature change, does not substantially cause any lowering in strength of a sealed part and has improved practical durability, and a method for sealing members constituting the envelope and a composition for sealing. The envelope for a display comprises two or more glass members constituting an envelope for a display which have been sealed through a sealing layer, and is characterized in that the sealing layer is formed of a sinter of a sealing material composed mainly of at least one compound selected from polyimide compounds and polyamic acid compounds and containing an inorganic oxide filler, the inorganic oxide filler is at least one filler selected from the group consisting of glass, silica, alumina and titania, and the alkali metal oxide is contained in an amount of not more than 1% by mass based on the inorganic oxide filler.

Description

明 細 書  Specification
ディスプレー用外囲器及びその封着方法  Envelope for display and sealing method thereof
技術分野  Technical field
[0001] 本発明は、映像機器におけるテレビジョン放送受像機やモニター機器等に用いら れるディスプレー用外囲器、封着方法及び封着材組成物に関する。  TECHNICAL FIELD [0001] The present invention relates to a display envelope, a sealing method, and a sealing material composition used for a television broadcast receiver, a monitor device and the like in video equipment.
背景技術  Background art
[0002] 一般的に、電界放出型冷陰極を持つディスプレー(FED)、プラズマディスプレー( PDP)、陰極線管(CRT)など(以下、これらをあわせてディスプレー装置と称する。 ) は、二つ以上の部材、具体的には、 CRTの場合は、画像が映し出されるディスプレ 一パネル部(ガラスパネル部)と、電子銃を持つガラスファンネル部、また、 FEDの場 合は、典型的にはフロントパネル部(ディスプレーパネル部)、該フロントパネル部に 対向して配置される冷陰極を有するリアパネル部、及び該フロントパネル部と該リア パネル部との間にあって周囲を包囲する外枠からなり、これらを封着して得られる外 囲器から形成されている。  In general, a display (FED), a plasma display (PDP), a cathode ray tube (CRT), etc. (hereinafter collectively referred to as a display device) having a field emission type cold cathode include two or more. Components, specifically, in the case of CRT, a display panel (glass panel) on which an image is displayed, a glass funnel with an electron gun, and in the case of FED, typically the front panel (Display panel portion), a rear panel portion having a cold cathode disposed opposite to the front panel portion, and an outer frame that surrounds and surrounds the front panel portion and the rear panel portion. It is formed from an envelope obtained by wearing.
[0003] 従来、これらの封着は、特許文献 1に記載されているように、フリットガラスをスラリー にした後、端面に塗布し、比較的低温で乾燥した後に、より高い温度で焼成するか、 又はシート状にしたものを端面に取り付けて、焼成することなどで実施される。前記フ リットガラスとしては鉛の含有量が高レ、 Pb〇_ B O -ZnO - SiO系の結晶性低融 点ハンダガラスが用いられてレ、る。  [0003] Conventionally, as described in Patent Document 1, these sealing methods include frit glass made into a slurry, applied to an end face, dried at a relatively low temperature, and then fired at a higher temperature. It is carried out by attaching a sheet-like material to the end face and firing. As the above-mentioned flit glass, lead content is high, and PbO_BO—ZnO—SiO series crystalline low melting point solder glass is used.
[0004] 封着後の外囲器は、内部を高真空にするため、およそ 250〜380°Cの高温で真空 排気される。この際、封着部には外囲器内部が真空になることに起因する引張り性の 真空応力と、内外の温度差に起因する引張り性の熱応力とが負荷されるので、これら の応力に耐えうる強度が要求される。また、ディスプレー装置の長期信頼性を確保す る上で、前記封着部は 0. 3MPa以上の耐圧強度、高い気密性及び絶縁性が必要と される。 [0004] The sealed envelope is evacuated at a high temperature of about 250 to 380 ° C in order to make the inside of the envelope a high vacuum. At this time, the sealing portion is loaded with tensile vacuum stress caused by the vacuum inside the envelope and tensile thermal stress caused by the temperature difference between the inside and outside. Strength that can be withstood is required. Moreover, in order to ensure the long-term reliability of the display device, the sealing part is required to have a pressure strength of 0.3 MPa or more, high airtightness, and insulation.
[0005] 一方、 FEDの場合、真空外囲器内に配置される背面基板が力ソード電極、抵抗層 、ェミッタ、絶縁層などの多層構造となっており、各層間の熱膨張特性の違いから、 熱処理はなるべく低温でなされることが望まれている。また、ェミッタの種類にもよるが[0005] On the other hand, in the case of FED, the back substrate arranged in the vacuum envelope has a multilayer structure such as a force sword electrode, a resistance layer, an emitter, an insulating layer, etc. , It is desired that the heat treatment be performed at as low a temperature as possible. Also, depending on the type of emitter
、400°C以上の封着温度ではェミッタが酸化して電子放出特性が劣化する懸念があ る。したがって、 400°C未満で封着できる封着材料が望まれている。 At a sealing temperature of 400 ° C or higher, the emitter may be oxidized and the electron emission characteristics may be deteriorated. Therefore, a sealing material that can be sealed at less than 400 ° C. is desired.
[0006] また、 CRTでは大型化、フラット化が進み、内蔵されるシャドウマスクなど金属部材 のわず力、な変形が電子ビームの位置ずれを引き起こし、画像に悪影響を与えるよう になった。そこで、以前は問題とならなかった封着工程での金属の熱変形がクローズ アップされるようになり、封着温度の低温化が望まれている。こうした熱変形は封着温 度を 400°C未満にすることでほとんど抑止されることがわ力、つてきている。  [0006] In addition, CRTs have become larger and flattened, and the undue force and deformation of metal members such as built-in shadow masks have caused the position of the electron beam to shift and have an adverse effect on images. Therefore, the thermal deformation of metals in the sealing process, which was not a problem before, has been brought up, and it is desired to lower the sealing temperature. It has become obvious that these thermal deformations are almost completely suppressed by making the sealing temperature below 400 ° C.
[0007] し力 ながら、フリットガラスを用いた封着においては、焼成温度が 400°C以上必要 であって、 400°C未満の焼成温度で封着した場合には、封着部の強度が十分でなく 、その後の高温真空排気工程で封着部が破壊する可能性が生じる問題や、真空外 囲器の長期信頼性が確保できないといった問題があった。また、フリットガラスは、鉛 を 60質量%以上含み、環境に対する影響に鑑み、無鉛化することが望まれている。  [0007] However, in sealing using frit glass, a firing temperature of 400 ° C or higher is required, and when sealing is performed at a firing temperature of less than 400 ° C, the strength of the sealed portion is reduced. Insufficient, there was a problem that the sealing part could be broken in the subsequent high-temperature evacuation process, and there was a problem that the long-term reliability of the vacuum envelope could not be secured. In addition, frit glass contains 60% by mass or more of lead, and it is desired to make it lead-free in view of environmental impact.
[0008] 温度が 400°C未満で封着でき、かつ鉛を含まない封着材としては、エポキシ樹脂や シリコーン樹脂などの封着材が特許文献 i及び特許文献 2に開示されている。しかし 、これら従来の封着材は、(1)ガラスとの接着強度が十分でない、 (2)高温で強度が 不足する、(3)高温真空排気時に封着材自身が分解して、ガスを発生させて電子銃 又は冷陰極に悪影響を与える、(4)ガス透過性が高く高真空を保持できない、等の 問題があった。  [0008] Patent document i and patent document 2 disclose sealing materials such as epoxy resins and silicone resins that can be sealed at a temperature of less than 400 ° C and do not contain lead. However, these conventional sealing materials have (1) insufficient adhesive strength with glass, (2) insufficient strength at high temperature, and (3) the sealing material itself decomposes during high-temperature vacuum evacuation, causing gas to escape. There are problems such as (4) high gas permeability and inability to maintain a high vacuum.
他の封着材の例として、ポリべンゾイミダゾール榭脂、ポリイミド樹脂、又はポリフエ ニル化合物を含む接着剤が特許文献 3〜6に記載されている。しかし、これらの封着 材は、上記(1)〜(4)の問題を充分に解消するものではない。  As examples of other sealing materials, Patent Documents 3 to 6 describe adhesives containing polybenzimidazole rosin, polyimide resin, or a polyphenyl compound. However, these sealing materials do not sufficiently solve the problems (1) to (4).
[0009] 先に、本出願人は、ポリイミド化合物又はポリアミド酸化合物を主成分とする封着材 を特許文献 7として提案した。力、かるポリイミド化合物又はポリアミド酸化合物を主成 分とする封着材は、低温度で封着でき、また、封着部の曲げ強度、曲げ弾性率及び 電気絶縁破壊強度に高く優れた特性を有するものであり、従来の上記(1)〜(4)の 問題点の角 消を目指すものである。 [0009] Previously, the present applicant has proposed a sealing material mainly comprising a polyimide compound or a polyamic acid compound as Patent Document 7. A sealing material mainly composed of a strong polyimide compound or a polyamic acid compound can be sealed at a low temperature, and has excellent properties such as high bending strength, bending elastic modulus and electrical breakdown strength of the sealed portion. It aims to eliminate the conventional problems (1) to (4) above.
し力、しながら、力、かるポリイミド化合物又はポリアミド酸化合物を主成分とする封着材 を使用した場合、封着されたディスプレー用外囲器を大気中にて長時間使用した場 合、ディスプレー用外囲器の封着部の強度の低下や真空度の低下などを起こすこと が判明した。 A sealing material mainly composed of a polyimide compound or a polyamic acid compound. It has been found that when the sealed display envelope is used in the atmosphere for a long time, the strength of the sealed portion of the display envelope is reduced and the degree of vacuum is reduced. did.
特に、使用雰囲気でも温度の変化が大きい場合などは顕著である。ディスプレー装 置は、多くの場合には、温度変化のある雰囲気での使用が避けられないので、ポリイ ミド化合物又はポリアミド酸化合物を主成分とする封着材においては改善が要求され るものである。  This is particularly noticeable when the change in temperature is large even in the use atmosphere. In many cases, it is inevitable to use the display device in an atmosphere with a temperature change. Therefore, the sealing material mainly composed of a polyimide compound or a polyamic acid compound is required to be improved. .
特許文献 1 :特開昭 52— 124854号公報  Patent Document 1: JP-A 52-124854
特許文献 2:特開平 4一 245153号公報  Patent Document 2: Japanese Patent Laid-Open No. 245153
特許文献 3:特開 2000— 21298号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-21298
特許文献 4 :特開 2000— 251768号公報  Patent Document 4: Japanese Patent Laid-Open No. 2000-251768
特許文献 5:特開 2000— 251769号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2000-251769
特許文献 6 :特開平 10— 275573号公報  Patent Document 6: JP-A-10-275573
特許文献 7:特開 2004— 319448号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-319448
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、従来技術における上記の問題点に鑑みてなされたものであり、ガラスか らなるディスプレー用外囲器の構成部材を封着するためのポリイミド化合物及びポリ アミド酸化合物から選ばれる少なくとも 1種以上の化合物を含む封着材について、上 記した(1)〜 (4)における問題点を解消できるという、優れた封着特性を損なうことな ぐさらに、温度変化のある雰囲気で使用された場合にも、封着部の強度の低下や真 空度の低下などをほとんど起こすことのないディスプレー用外囲器、該外囲器構成部 材の封着方法、及び封着用組成物を提供することを目的とする。 [0010] The present invention has been made in view of the above-described problems in the prior art, and is selected from a polyimide compound and a polyamic acid compound for sealing a constituent member of a display envelope made of glass. With respect to the sealing material containing at least one kind of compound, the above-mentioned problems (1) to (4) can be solved, without impairing the excellent sealing properties, and in an atmosphere with temperature changes. When used, an envelope for display that hardly causes a decrease in strength of the sealing portion or a decrease in vacuum, a sealing method for the constituent member of the envelope, and a sealing composition The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0011] 本発明者は、前述の目的を達成すべく鋭意研究を進めたところ、ガラスからなる 2 以上のディスプレー用外囲器の構成部材を、ポリイミド化合物及びポリアミド酸化合 物から選ばれる少なくとも 1種以上の化合物を含む封着材を使用して封着する場合 に生じる封着部の強度の低下や真空度の低下などは、封着材中に特定の材質から なる無機酸化物フィラーを添加せしめることにより、基本的に解消されることを見出し た。これは、無機酸化物フィラーの添加により封着層の熱膨張係数が低下し、デイス プレー用外囲器構成部材のガラスの熱膨張係数に近づいたためと思われる。 [0011] The present inventor has intensively studied to achieve the above-mentioned object. As a result, at least one member selected from a polyimide compound and a polyamide oxide compound is used as a constituent member of two or more display envelopes made of glass. When sealing using a sealing material containing more than one kind of compound, the decrease in the strength of the sealing part and the decrease in the degree of vacuum, etc., occur from the specific material in the sealing material. It was found that this was basically eliminated by adding the inorganic oxide filler. This is presumably because the thermal expansion coefficient of the sealing layer was lowered by the addition of the inorganic oxide filler, and approached the thermal expansion coefficient of the glass of the display envelope constituting member.
しかし、力、かる無機酸化物フィラーを添加した場合、上記の目的は達成されるもの の、無機酸化物フィラーを含むポリイミド樹脂からなる封着層には気泡の発生が生じ てしまい、封着部の強度低下やシール不足による気密性の低下を引き起こすことが 判明した。  However, when a strong inorganic oxide filler is added, the above-mentioned purpose is achieved, but bubbles are generated in the sealing layer made of the polyimide resin containing the inorganic oxide filler, and the sealing portion It has been found that this causes a decrease in the airtightness due to a decrease in strength and a lack of seal.
力、かる問題を解消すべく研究を進めたところ、力、かる封着部における気泡発生は、 添加する無機酸化物フィラーに含まれるアルカリ金属成分に基づくことがわかり、ァ ルカリ金属酸化物の含有量力 S;L質量%以下である無機酸化物フィラーを使用するこ とにより解消しうることを見出した。これは、無機酸化物フイラ一中にアルカリ金属酸化 物が含有される場合には、アルカリ金属により封着材中のポリイミド化合物やポリアミ ド酸化合物の加水分解が促進され、気泡が発生するが、アルカリ金属酸化物の含有 量が 1質量%以下であると、この加水分解が抑制されるためと思われる。  As a result of research to eliminate such problems, it was found that the generation of bubbles in the sealed part of the force and the crack was based on the alkali metal component contained in the inorganic oxide filler to be added. It was found that the use of an inorganic oxide filler having a mass strength of S; L mass% or less can be eliminated. This is because when an alkali metal oxide is contained in the inorganic oxide filler, hydrolysis of the polyimide compound or polyamic acid compound in the sealing material is accelerated by the alkali metal, and bubbles are generated. This is because the hydrolysis is suppressed when the content of the alkali metal oxide is 1% by mass or less.
本発明は、上記の新規な知見に基づくものであり、下記の要旨を有する。  This invention is based on said novel knowledge, and has the following summary.
(1)ガラスからなる 2以上のディスプレー用外囲器構成部材が、封着層を介して封着 されたディスプレー用外囲器であって、  (1) Two or more display envelope components made of glass are display envelopes sealed via a sealing layer,
前記封着層が、無機酸化物フィラーを含む、ポリイミド化合物及びポリアミド酸化合 物から選ばれる少なくとも 1種以上の化合物を主成分とする封着材の焼成体からなり 、前記無機酸化物フイラ一は、ガラス、シリカ、アルミナ及びチタニアからなる群から選 ばれる少なくとも 1種のフィラーであり、かつアルカリ金属酸化物が無機酸化物フイラ 一に対して 1質量%以下含有されることを特徴とするディスプレー用外囲器。  The sealing layer is made of a fired body of a sealing material mainly containing at least one compound selected from a polyimide compound and a polyamide oxide compound containing an inorganic oxide filler, and the inorganic oxide filler is And at least one filler selected from the group consisting of glass, silica, alumina and titania, and an alkali metal oxide is contained in an amount of 1% by mass or less based on the inorganic oxide filler. Envelope.
(2)前記封着層が、 38 X 10— 6/°C以下の熱膨張係数を有する上記(1)に記載のデ イスプレー用外囲器。 (2) the sealing layer, 38 X 10- 6 / ° de Lee spray envelope according to the above (1) having a C or less coefficient of thermal expansion.
(3)前記無機酸化物フィラーが、ガラス繊維である上記(1)又は(2)に記載のデイス プレー用外囲器。  (3) The envelope for a display according to the above (1) or (2), wherein the inorganic oxide filler is glass fiber.
(4)前記無機酸化物フィラーが、アスペクト比 2〜: 100を有する上記(1)〜(3)のレ、ず れかに記載のディスプレー用外囲器。 (5)前記無機酸化物フィラーが、封着層に 10〜60質量%含まれる上記(1)〜 (4)の いずれかに記載のディスプレー用外囲器。 (4) The envelope for display according to any one of the above (1) to (3), wherein the inorganic oxide filler has an aspect ratio of 2 to 100. (5) The envelope for display according to any one of (1) to (4), wherein the inorganic oxide filler is contained in the sealing layer in an amount of 10 to 60% by mass.
(6)前記無機酸化物フィラーがシランカップリング剤で処理されている上記(1)〜(5) のレ、ずれかに記載のディスプレー用外囲器。  (6) The envelope for display according to (1) to (5) above, wherein the inorganic oxide filler is treated with a silane coupling agent.
(7)前記封着層の少なくとも片側に、有機金属化合物及びその加水分解物から選ば れる少なくとも 1種の化合物の焼成体を含むプライマー層が存在する上記(1)〜(6) のレ、ずれかに記載のディスプレー用外囲器。  (7) In the above (1) to (6), there is a primer layer containing a fired body of at least one compound selected from an organometallic compound and a hydrolyzate thereof on at least one side of the sealing layer. Envelope for display according to crab.
(8)前記有機金属化合物が、下記式 (A)で表される化合物である上記(7)に記載の ディスプレー用外囲器。  (8) The envelope for display according to (7), wherein the organometallic compound is a compound represented by the following formula (A).
R2 MR1 - - - (A) R 2 MR 1 ---(A)
n (4— n)  n (4— n)
(式中、 Mは Si、 Ti及び Zrからなる群から選ばれる少なくとも一つの元素を示し、 R1 は加水分解性基を示し、 R2は炭素数 1〜4のアルキル基又はフエ二ル基を示し、 nは 0〜 2の整数を表す。 ) (Wherein, M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms. N represents an integer of 0 to 2.)
(9)前記外囲器が、真空外囲器である上記(1)〜(8)のいずれかに記載の画デイス プレー用外囲器。  (9) The image display envelope according to any one of (1) to (8), wherein the envelope is a vacuum envelope.
(10)ガラスからなる 2以上のディスプレー用外囲器構成部材の封着面に、ポリイミド 化合物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合物を主成分と し、かつ無機酸化物フィラーを含み、前記無機酸化物フイラ一中にアルカリ金属酸化 物が 1質量%以下含有された封着材の層を形成する工程、前記 2以上のディスプレ 一用外囲器構成部材の封着面同士が、前記封着材の層を介して接合される工程、 次いで、 250〜400°Cの温度に加熱して封着材を固化せしめる工程、を含むことを 特徴とするディスプレー用外囲器構成部材の封着方法。  (10) The sealing surface of two or more display envelope components made of glass contains at least one compound selected from a polyimide compound and a polyamic acid compound as a main component and contains an inorganic oxide filler. A step of forming a layer of a sealing material containing 1% by mass or less of an alkali metal oxide in the inorganic oxide filler, and the sealing surfaces of the two or more display envelope constituent members are: A step of bonding through the layer of the sealing material, and a step of solidifying the sealing material by heating to a temperature of 250 to 400 ° C. Sealing method.
(11)前記封着材の層を形成する前に、前記外囲器構成部材の封着面に、式 (A)で 表される有機金属化合物及びその加水分解物から選ばれる 1種以上の化合物を含 むプライマー層形成材を塗布する工程、を含む上記(10)に記載のディスプレー用 外囲器構成部材の封着方法。 (12)ポリイミド化合物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合 物を主成分とし、かつアルカリ金属酸化物の含有量が 1質量%以下である無機酸化 物フイラ一を含むことを特徴とするディスプレー用外囲器構成部材の封着用組成物。 発明の効果 (11) Before forming the sealing material layer, on the sealing surface of the envelope component member, at least one selected from the organometallic compound represented by the formula (A) and a hydrolyzate thereof. The method for sealing an envelope constituting member for display according to the above (10), comprising a step of applying a primer layer forming material containing a compound. (12) An inorganic oxide filler comprising at least one compound selected from a polyimide compound and a polyamic acid compound as a main component and an alkali metal oxide content of 1% by mass or less. A composition for sealing an envelope constituting member for display. The invention's effect
[0013] 本発明によれば、(1)ガラスとの接着強度が十分でなレ、、 (2)高温で強度が不足す る、(3)高温真空排気時に封着層自身が分解して、ガスを発生させて電子銃又は冷 陰極に悪影響を与える、 (4)ガス透過性が高く高真空を保持できない、という従来の 封着材の有する難点が改善され、かつ温度変化のある雰囲気で使用された場合にも 、封着部の強度の低下や真空度の低下などがほとんど起こることなぐさらに、封着 層における気泡の発生に起因する封着部の強度低下やシール不足による気密性の 低下を引き起こすことのない封着特性、を有するディスプレー用外囲器が提供される  [0013] According to the present invention, (1) the adhesive strength with the glass is sufficient, (2) the strength is insufficient at high temperature, (3) the sealing layer itself is decomposed during high-temperature evacuation. (4) The problem of conventional sealing materials, such as high gas permeability and inability to maintain a high vacuum, has been improved, and in an atmosphere with temperature changes. Even when used, there is almost no drop in the strength of the sealing part or a decrease in the degree of vacuum.In addition, the strength of the sealing part due to the generation of bubbles in the sealing layer or the airtightness due to insufficient sealing. A display envelope having sealing properties that do not cause degradation is provided.
[0014] また、本発明によれば、力かるディスプレー用外囲器を効率よく製造するための封 着方法、及び、それに使用される封着材組成物も提供される。 [0014] According to the present invention, there are also provided a sealing method for efficiently producing a powerful display envelope, and a sealing material composition used therefor.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明におけるディスプレー装置の 1実施形態の一部切欠き側面図であり、デ イスプレー装置は CRTとして構成されてレ、る。  FIG. 1 is a partially cutaway side view of an embodiment of a display device according to the present invention, in which the display device is configured as a CRT.
[図 2]本発明におけるディスプレー装置の別の 1実施形態の一部切欠き側面図であり 、ディスプレー装置は典型的な FEDとして構成されてレ、る。  FIG. 2 is a partially cutaway side view of another embodiment of a display device according to the present invention, wherein the display device is configured as a typical FED.
符号の説明  Explanation of symbols
[0016] 1:ディスプレー装置 1,:ディスプレー装置  [0016] 1: Display device 1: Display device
11 :真空外囲器 11 ' :真空外囲器  11: Vacuum envelope 11 ': Vacuum envelope
13 :蛍光体 14 :アルミニウム膜  13: Phosphor 14: Aluminum film
15 :シャドウマスク 16 :電子銃  15: Shadow mask 16: Electron gun
17:防爆補強バンド 18:スタッドピン  17: Explosion-proof reinforcement band 18: Stud pin
2:ディスプレーパネル部  2: Display panel
2':ディスプレーパネル部(フロントパネル部)  2 ': Display panel (front panel)
21 :ディスプレー領域 22 :スカート部 3 :ガラスファンネル部 21: Display area 22: Skirt part 3: Glass funnel part
3,:リアパネル部 31 :ネック咅 B  3: Rear panel 31: Neck 咅 B
4 :外枠 :封着層  4: Outer frame: Sealing layer
61 :陰極 62 :電解放出型冷陰極  61: Cathode 62: Field emission cold cathode
63 :ゲート電極 64 :絶縁層  63: Gate electrode 64: Insulating layer
65 :陽極 66 :蛍光体画素  65: Anode 66: Phosphor pixel
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] (I)封着層 [0017] (I) Sealing layer
本発明における封着層は、ポリイミド化合物及びポリアミド酸化合物から選ばれる少 なくとも 1種以上の化合物を主成分とする封着材の焼成体からなることを特徴とする。 ここで、「主成分とする」とは、ポリイミド化合物及びポリアミド酸化合物から選ばれる 1 種以上の化合物が、封着材の固形分のうち無機酸化物フィラーを除いた全質量に対 して、好ましくは 70質量%以上、より好ましくは 80質量%以上、さらに好ましくは 90質 量%以上含まれることを意味する。  The sealing layer in the present invention is characterized by comprising a fired body of a sealing material containing as a main component at least one compound selected from a polyimide compound and a polyamic acid compound. Here, “main component” means that one or more compounds selected from a polyimide compound and a polyamic acid compound are based on the total mass excluding the inorganic oxide filler in the solid content of the sealing material, It means preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
ポリイミド化合物としては、下記式 1に示す構造を有するものが好ましい。なお、ポリ アミド酸化合物は、ポリイミド化合物の前駆体であるため、ポリアミド酸化合物を使用 する場合も、下記式 1に示す構造を有するポリイミド化合物を形成するポリアミド酸化 合物の使用が好ましい。  As the polyimide compound, those having a structure represented by the following formula 1 are preferable. In addition, since a polyamic acid compound is a precursor of a polyimide compound, even when a polyamic acid compound is used, it is preferable to use a polyamide oxide that forms a polyimide compound having a structure represented by the following formula 1.
[0018] [化 1]
Figure imgf000009_0001
[0018] [Chemical 1]
Figure imgf000009_0001
[0019] 上記式 1中、 Xはジァミン化合物の主骨格を示し、 Yはテトラカルボン酸二無水物の 主骨格を示す。ここでジァミン化合物の主骨格とは、ジァミンィ匕合物のアミノ基を除い た主鎖を意味し、テトラカルボン酸二無水物の主骨格とは、カルボン酸二無水物基を 除いた主鎖を意味する。  In the above formula 1, X represents the main skeleton of the diamine compound, and Y represents the main skeleton of the tetracarboxylic dianhydride. Here, the main skeleton of the diamine compound means the main chain excluding the amino group of the diamine compound, and the main skeleton of the tetracarboxylic dianhydride means the main chain excluding the carboxylic dianhydride group. means.
[0020] X、 Yは、より具体的には、以下を意味する。  [0020] More specifically, X and Y mean the following.
(A) Xが下記式 4〜式 8のうちのいずれか一つのとき、 Yは、下記式 9〜式 14のうち のいずれか一つである。下記式 4〜式 8において、 Rは、各々独立に 〇 CO— -SO S—、 -CH—及び一 C (CH ) —力 なる群力 選択されるい ずれか一つであり、 nは各々独立に 0 7であり、 Zは各々独立に CH又はフエニル基 である。 (A) When X is any one of the following formulas 4 to 8, Y is the following formulas 9 to 14. Any one of them. In the following formulas 4 to 8, each R is independently O CO— —SO 2 S—, —CH— and one C (CH 2) — force group force is one selected, and n is each independently And Z is each independently CH or a phenyl group.
(B) Xが下記式 15のとき、 Yは、下記式 16又は式 17である。下記式 15において、 Rは、一、一 O—、一 CO—、 -SO―、一 S―、 -CH—及び一 C (CH ) —からなる 群から選択されるレ、ずれか一つである。  (B) When X is Formula 15 below, Y is Formula 16 or Formula 17 below. In the following formula 15, R is one selected from the group consisting of one, one O—, one CO—, —SO—, one S—, —CH—, and one C (CH 2) —. is there.
(C) Xが下記式 18のとき、 Yは下記式 19である。  (C) When X is the following formula 18, Y is the following formula 19.
[0021] [化 2]
Figure imgf000010_0001
[0021] [Chemical 2]
Figure imgf000010_0001
[0022] [化 3]
Figure imgf000010_0002
[0022] [Chemical 3]
Figure imgf000010_0002
[0023] [化 4]
Figure imgf000010_0003
[0023] [Chemical 4]
Figure imgf000010_0003
[0024] [化 5]
Figure imgf000010_0004
[0024] [Chemical 5]
Figure imgf000010_0004
[0025] [化 6]  [0025] [Chemical 6]
Figure imgf000010_0005
Figure imgf000010_0005
[0026] [化 7] [0027] [化 8] [0026] [Chemical 7] [0027] [Chemical 8]
[0028] [化 9] [0028] [Chemical 9]
[0029] [化 10] [0029] [Chemical 10]
[0030] [化 11]
Figure imgf000011_0001
[0030] [Chemical 11]
Figure imgf000011_0001
[0031] [化 12]
Figure imgf000011_0002
[0031] [Chemical 12]
Figure imgf000011_0002
[0032] [化 13] [0032] [Chemical 13]
Figure imgf000011_0003
[0033] [化 14]
Figure imgf000011_0003
[0033] [Chemical 14]
Figure imgf000012_0001
Figure imgf000012_0001
[0037] ポリイミド化合物は、式 1で示される構造のみで構成されていてもよいが、その末端 部分がモノアミン又はジカルボン酸無水物で封止されているのが好ましい。末端がモ ノアミン又はジカルボン酸無水物で封止されたポリイミド化合物は、下記式 2又は式 3 で示される構造を有していることが好ましい。なお、下記式 2及び式 3中、 X及び Yは 、式 1の定義と同じである。  [0037] The polyimide compound may be composed of only the structure represented by Formula 1, but it is preferable that the terminal portion is sealed with a monoamine or dicarboxylic anhydride. The polyimide compound whose end is sealed with monoamine or dicarboxylic anhydride preferably has a structure represented by the following formula 2 or formula 3. In the following formulas 2 and 3, X and Y are as defined in formula 1.
[0038] [化 18]  [0038] [Chemical 18]
Figure imgf000012_0002
Figure imgf000012_0002
[0039] [化 19]
Figure imgf000013_0001
[0039] [Chemical 19]
Figure imgf000013_0001
[0040] 前記式 2のポリイミド化合物において、式 2中の X'は下記式 20又は式 21であること が好ましい。  In the polyimide compound of the formula 2, X ′ in the formula 2 is preferably the following formula 20 or formula 21.
-Si- (OR4) R5 ' ' '式 20 -Si- (OR 4 ) R 5 '''Formula 20
3-r r 式 20中、 R4炭素数 1〜4のアルキル基、 R5は炭素数 1〜3のアルキル基は又はフエ ニル基であり、 rは 0〜2の整数、好ましくは 0〜1の整数である。 3-rr In formula 20, R 4 is an alkyl group having 1 to 4 carbon atoms, R 5 is an alkyl group having 1 to 3 carbon atoms or a phenyl group, and r is an integer of 0 to 2, preferably 0 to 1. Is an integer.
[0041] [化 20]
Figure imgf000013_0002
[0041] [Chemical 20]
Figure imgf000013_0002
[0042] 本発明における封着層として、 X'が式 20で表される構造を有するポリイミド化合物 及びポリアミド酸化合物、並びにそれらの加水分解物から選ばれる少なくとも 1種以 上の化合物を使用した場合、特に大きい強度及び封着物性を有する封着部が得ら れるので好ましい。  [0042] When the sealing layer in the present invention uses at least one compound selected from the group consisting of a polyimide compound and a polyamic acid compound having a structure represented by the formula 20 and a hydrolyzate thereof. In particular, it is preferable because a sealing portion having particularly high strength and sealing physical properties can be obtained.
[0043] 一方、前記式 3のポリイミド化合物を使用する場合、式 3中の Y'は下記式 22〜式 2 On the other hand, when the polyimide compound of the formula 3 is used, Y ′ in the formula 3 represents the following formula 22 to formula 2
6のレ、ずれかであることが好ましレ、。 It is preferable to be 6 or a gap.
[0044] [化 21]
Figure imgf000013_0003
[0044] [Chemical 21]
Figure imgf000013_0003
[0045] [化 22]  [0045] [Chemical 22]
\=/ … 3 \ = /… 3
[0046] [化 23]
Figure imgf000014_0001
[0046] [Chemical 23]
Figure imgf000014_0001
[0047] [化 24]
Figure imgf000014_0002
[0047] [Chemical 24]
Figure imgf000014_0002
[0048] [化 25]
Figure imgf000014_0003
[0048] [Chemical 25]
Figure imgf000014_0003
[0049] Y'が式 22〜式 26のいずれかである式 3のポリイミド化合物は、焼成時に熱硬化す るため、高温真空排気工程時に経験する高温環境下における接着強度に優れてい る。  [0049] The polyimide compound of Formula 3 in which Y 'is any one of Formulas 22 to 26 is excellent in adhesive strength in a high-temperature environment experienced during a high-temperature evacuation process because it is thermoset during firing.
[0050] 本発明において、前記式 1ないし式 3のポリイミド化合物は、ビニレン基、ェチニノレ 基、ビニリデン基、ベンゾシクロブテン— 4'—ィル基、イソシァネート基、ァリル基、ォ キシラン基、ォキセタン基、シァノ基、及びイソプロぺニル基からなる群から選択され る少なくとも 1つの架橋基を有することが好ましい。前記式 1ないし式 3のポリイミドィ匕 合物は、これらの架橋基の導入により焼成時に熱硬化するようになり、高温真空排気 工程時に経験する高温環境下における接着強度に優れている。  [0050] In the present invention, the polyimide compounds of the formulas 1 to 3 are vinylene group, ethynino group, vinylidene group, benzocyclobutene-4'-yl group, isocyanato group, aryl group, oxsilane group, oxetane group. It preferably has at least one bridging group selected from the group consisting of a cyano group and an isopropenyl group. The polyimide compounds of the formulas 1 to 3 are thermally cured at the time of firing due to the introduction of these crosslinking groups, and are excellent in the adhesive strength under the high temperature environment experienced during the high temperature evacuation process.
[0051] また、本発明の封着材は、下記式 27ないし式 29で示される構造を有するポリアミド 酸化合物を使用することも可能である。  [0051] For the sealing material of the present invention, a polyamic acid compound having a structure represented by the following formulas 27 to 29 can also be used.
[0052] [化 26]
Figure imgf000014_0004
[0052] [Chemical 26]
Figure imgf000014_0004
[0053] [化 27]
Figure imgf000014_0005
[0054] [化 28]
[0053] [Chemical 27]
Figure imgf000014_0005
[0054] [Chemical 28]
…式 29... Formula 29
Figure imgf000015_0001
Figure imgf000015_0001
[0055] 式 27〜式 29中、 Xはジァミン化合物の主骨格であり、 X'はモノアミン化合物の主 骨格であり、 Yはテトラカルボン酸二無水物の主骨格であり、 Y'はジカルボン酸無水 物の主骨格である。  In Formulas 27 to 29, X is a main skeleton of a diamine compound, X ′ is a main skeleton of a monoamine compound, Y is a main skeleton of a tetracarboxylic dianhydride, and Y ′ is a dicarboxylic acid. It is the main skeleton of anhydride.
[0056] X Yは、より具体的には、以下を意味する。  [0056] More specifically, XY means the following.
(A) Xが上記式 4〜式 8のうちのいずれか一つのとき、 Yは、上記式 9〜式 14のうち のいずれか一つである。上記式 4〜式 8において、 Rは、各々独立に—、 _〇_、― CO_ -SO― _S― -CH—及び _C (CH ) —力、らなる群力、ら選択されるい ずれか一つであり、 nは各々独立に 0 7であり、 Zは各々独立に CH又はフエニル基 である。  (A) When X is any one of the above formulas 4 to 8, Y is any one of the above formulas 9 to 14. In the above Equations 4 to 8, each R is independently selected from one of —, —O_, —CO_—SO— —S——CH—, and —C (CH) —force, group force, and so on. Each of n is independently 0 7 and each Z is independently CH or a phenyl group.
(B) Xが上記式 15のとき、 Yは、上記式 16又は式 17である。上記式 15において、 Rは、 O CO— -SO S— -CH—及び一 C (CH ) —からなる 群から選択されるレ、ずれか一つである。  (B) When X is Formula 15 above, Y is Formula 16 or Formula 17 above. In the above formula 15, R is at least one selected from the group consisting of O 2 CO 3 —SO 2 S——CH— and 1 C (CH 3) —.
(C) Xが上記式 18のとき、 Yは上記式 19である。  (C) When X is the above formula 18, Y is the above formula 19.
[0057] 前記式 28のポリアミド酸化合物を使用する場合、式 28中の X'は上記式 20又は式 21であることが好ましい。  [0057] When the polyamic acid compound of the formula 28 is used, X 'in the formula 28 is preferably the above formula 20 or the formula 21.
[0058] 本発明の封着材として、 X'が式 20又は式 21である式 28のポリアミド酸化合物を使 用することにより、ガラスへの密着性を向上させることが可能になる。また、 X'が式 20 又は式 21である式 28のポリアミド酸化合物は、焼成時に熱硬化するため、高温真空 排気工程時に経験する高温環境下における接着強度に優れている。  [0058] By using the polyamic acid compound of the formula 28 in which X 'is the formula 20 or the formula 21 as the sealing material of the present invention, the adhesion to glass can be improved. In addition, the polyamic acid compound of the formula 28 in which X ′ is the formula 20 or the formula 21 is excellent in adhesive strength in a high-temperature environment experienced during a high-temperature vacuum exhaust process because it is thermoset during firing.
[0059] 前記式 29のポリアミド酸化合物を使用する場合、式 29中の Y'は上記式 22〜式 26 のいずれかであることが好ましレ、。 Y'が式 22〜式 26のいずれかである式 29のポリア ミド酸化合物は、焼成時に熱硬化するため、高温真空排気工程時に経験する高温環 境下における接着強度に優れている。  [0059] When the polyamic acid compound of the formula 29 is used, Y 'in the formula 29 is preferably any one of the above formulas 22 to 26. Since the polyamic acid compound of Formula 29 in which Y ′ is any one of Formulas 22 to 26 is thermally cured during firing, it has excellent adhesive strength under a high temperature environment experienced during a high temperature vacuum exhaust process.
[0060] 前記式 27ないし式 29のポリアミド酸化合物は、ビニレン基、ェチュル基、ビニリデン 基、ベンゾシクロブテン 4'ーィル基、イソシァネート基、ァリル基、ォキシラン基、ォ キセタン基、シァノ基、及びイソプロぺニル基からなる群から選択される少なくとも 1つ の架橋基を有することが好ましい。前記式 27ないし式 29のポリアミド酸化合物は、こ れらの架橋基の導入により焼成時に熱硬化するようになり、高温真空排気工程時に 経験する高温環境下における接着強度に優れている。 [0060] The polyamic acid compounds represented by the above formulas 27 to 29 are vinylene group, ethur group, vinylidene group. It preferably has at least one bridging group selected from the group consisting of a group, a benzocyclobutene 4′-yl group, an isocyanate group, an aryl group, an oxsilane group, an oxetane group, a cyano group, and an isopropenyl group. The polyamic acid compounds of the above formulas 27 to 29 become thermosetting upon firing due to the introduction of these crosslinking groups, and are excellent in adhesive strength under a high temperature environment experienced during a high temperature evacuation process.
[0061] 式 1の構造を有するポリイミド化合物及び式 27のポリアミド酸化合物は、ジアミンィ匕 合物とテトラカルボン酸二無水物の縮合により合成される。これらは通常の重縮合系 ポリマーの場合と同様に、モノマー成分のモル比を調節することで分子量を制御する こと力 Sできる。即ち、テトラカルボン酸二無水物 1モルに対し、 0. 8〜: 1. 2モルのジァ ミンィ匕合物を使用することで、高分子量体を形成することが可能になる。ポリイミドィ匕 合物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合物が高分子量体 であると、その焼成体が機械的強度、電気絶縁性等に優れており、また、高温環境 下でアウトガスの発生がないため、封着材として好ましい。上記のモル比は、より好ま しくは、酸二無水物 1モルに対してジァミン化合物 0. 9〜: 1. 1モルである。  [0061] The polyimide compound having the structure of Formula 1 and the polyamic acid compound of Formula 27 are synthesized by condensation of a diamine compound and tetracarboxylic dianhydride. As in the case of ordinary polycondensation polymers, these can control the molecular weight by adjusting the molar ratio of the monomer components. That is, a high molecular weight product can be formed by using 0.8 to 1.2 mol of diamine compound for 1 mol of tetracarboxylic dianhydride. When at least one compound selected from a polyimide compound and a polyamic acid compound is a high molecular weight compound, the fired product is excellent in mechanical strength, electrical insulation and the like, and is outgassed in a high temperature environment. Therefore, it is preferable as a sealing material. The molar ratio is more preferably 0.9 to 1.1 mol of the diamine compound per 1 mol of acid dianhydride.
[0062] 式 1の構造を有するポリイミド化合物又は式 27のポリアミド酸化合物を合成するのに 使用可能なジァミンとしては、具体的には例えば以下の(a)〜(1)ジァミン化合物が 挙げられる。  [0062] Specific examples of diamines that can be used to synthesize the polyimide compound having the structure of formula 1 or the polyamic acid compound of formula 27 include the following (a) to (1) diamine compounds.
(a)ベンゼン環 1個を有するジァミン; p—フエ二レンジァミン、 m—フエ二レンジァミン  (a) Diamine having one benzene ring; p-phenylenediamine, m-phenylenediamine
(b)ベンゼン環 2個を有するジァミン; 3, 3,ージアミノジフエニノレエーテノレ、 3, 4 ' - ジアミノジフエ二ルエーテル、 4, 4 'ージアミノジフエニルエーテル、 3, 3 'ージアミノジ フエニルスルフイド、 3, 4,一ジァミノジフヱニルスルフイド、 4, 4 '—ジァミノジフヱ二ノレ スノレフイド、 3, 3 '—ジアミノジフエニルスルホン、 3, 4 '—ジアミノジフエニルスルホン(b) Diamine having two benzene rings; 3, 3, -diaminodiphenylenoate, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylsulfur Id, 3, 4, 1-Diaminodiphenylsulfide, 4, 4'-Diaminodiphenyl-2-sulfenolide, 3, 3'-Diaminodiphenylsulfone, 3, 4'-Diaminodiphenylsulfone
、 4, 4 '—ジアミノジフエニルスルホン、 3, 3 '—ジァミノべンゾフエノン、 4, 4'—ジアミ ノベンゾフエノン、 3, 4 '—ジァミノべンゾフエノン、 3, 3 '—ジアミノジフエニルメタン、 4 , 4 '—ジアミノジフエニルメタン、 3, 4 '—ジアミノジフエニルメタン、 2, 2—ジ(3 アミ ノフエニル)プロパン、 2, 2—ジ(4—ァミノフエニル)プロパン、 2 _ (3—ァミノフエニル ) _ 2 _ (4—ァミノフエニル)プロパン、 2, 2—ジ(3—ァミノフエ二ル)一 1, 1 , 1 , 3, 3 , 3 へキサフノレ才ロプロノヽ。ン、 2, 2 ジ(4ーァミノフエ二ノレ) 1, 1, 1, 3, 3, 3— へキサフルォロプロパン、 2— (3—ァミノフエニル) 2— (4—ァミノフエ二ル)一 1, 1 , 1, 3, 3, 3—へキサフノレ才ロプロノヽ。ン。 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 3, 4' -diaminodiphenylmethane, 2, 2-di (3aminophenyl) propane, 2,2-di (4-aminophenyl) propane, 2 _ (3-aminophenyl) _ 2 _ (4-Aminophenyl) propane, 2,2-di (3-aminophenyl) 1,1,1,1,3,3 , 3 Hepros 2, 2 Di (4-aminophenol) 1, 1, 1, 3, 3, 3— Hexafluoropropane, 2— (3-Aminophenyl) 2— (4-Aminophenyl) 1, 1, 1, 1, 3, 3, 3—Hempaphnole-born Loprono. N.
(c)ベンゼン環 3個を有するジァミン; 1 , 1—ジ(3 _ァミノフエニル) _ 1 _フエニルェ タン、 1, 1—ジ(4—ァミノフエ二ル)一 1—フエニルェタン、 1— (3—ァミノフエ二ル)一 1— (4—ァミノフエ二ル)一 1—フエニルェタン、 1, 3 ビス(3 アミノフエノキシ)ベン ゼン、 1, 3 ビス(4 アミノフエノキシ)ベンゼン、 1, 4 ビス(3 アミノフエノキシ)ベ ンゼン、 1, 4 ビス(4 アミノフエノキシ)ベンゼン、 1, 3 ビス(3 ァミノベンゾィル )ベンゼン、 1, 3 ビス(4 ァミノべンゾィル)ベンゼン、 1, 4 ビス(3 ァミノべンゾ ィル)ベンゼン、 1, 4 ビス(4 ァミノべンゾィル)ベンゼン、 1, 3 ビス(3 ァミノ一 ひ, ひ一ジメチルベンジル)ベンゼン、 1, 3 _ビス(4—ァミノ一ひ, a—ジメチルベン ジル)ベンゼン、 1, 4_ビス(3—ァミノ一ひ, ひ一ジメチルベンジル)ベンゼン、 1, 4 —ビス(4—アミノー α, α ジメチルベンジル)ベンゼン、 1, 3—ビス(3—アミノー α (c) Diamine having three benzene rings; 1, 1-di (3_aminophenyl) _ 1_phenylethane, 1,1-di (4-aminophenyl) -1-1-phenylethane, 1- (3-aminophenol 1) 1- (4-aminophenol) 1 1-phenylethane, 1,3 bis (3 aminophenoxy) benzene, 1,3 bis (4 aminophenoxy) benzene, 1,4 bis (3 aminophenoxy) benzene, 1,4 bis (4 aminophenoxy) benzene, 1,3 bis (3 aminobenzoyl) benzene, 1,3 bis (4 aminobenzoyl) benzene, 1,4 bis (3 aminobenzoyl) benzene, 1,4 Bis (4-aminobenzoyl) benzene, 1,3 Bis (3-aminobenzene, dimethylbenzyl) benzene, 1,3_Bis (4-aminobenzene, a-dimethylbenzen) benzene, 1, 4_ Bis (3-amino), One dimethylbenzyl) benzene, 1, 4 - bis (4-amino-alpha, alpha-dimethylbenzyl) benzene, 1, 3- bis (3-amino-alpha
, α ジトリフルォロメチルベンジル)ベンゼン、 1, 3—ビス(4—アミノー α, α ジト リフルォロメチルベンジル)ベンゼン、 1, 4—ビス(3—アミノー α, α—ジトリフルォロ メチルベンジル)ベンゼン、 1, 4—ビス(4—アミノー α, α ジトリフルォロメチルベン ジル)ベンゼン、 2, 6 ビス(3 アミノフエノキシ)ベンゾニトリル、 2, 6 ビス(3 アミ ノフエノキシ)ピリジン。 , α-ditrifluoromethylbenzyl) benzene, 1,3-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 1,4-bis (3-amino-α, α-ditrifluoromethylbenzyl) benzene 1,4-bis (4-amino-α, α-ditrifluoromethylbenzyl) benzene, 2,6-bis (3-aminophenoxy) benzonitrile, 2,6-bis (3-aminophenoxy) pyridine.
(d)ベンゼン環 4個を有するジァミン; 4, 4,一ビス(3—アミノフエノキシ)ビフエニル、 4, 4'—ビス(4—アミノフエノキシ)ビフエニル、ビス [4— (3—アミノフエノキシ)フエ二 ル]ケトン、ビス [4— (4—アミノフエノキシ)フエニル]ケトン、ビス [4— (3—アミノフエノ キシ)フヱニル]スルフイド、ビス [4— (4—ァミノフヱノキシ)フヱニル]スルフイド、ビス [ 4- (3-アミノフエノキシ)フエ二ノレ]スノレホン、ビス [4 _ (4 _アミノフエノキシ)フエ二 ル]スルホン、ビス [4— (3—アミノフエノキシ)フエニル]エーテル、ビス [4— (4—アミ ノフエノキシ)フエニル]エーテル、 2, 2 _ビス [4— (3 アミノフエノキシ)フエニル]プ 口パン、 2, 2_ビス [4— (4 アミノフエノキシ)フエニル]プロパン、 2, 2_ビス [3_ ( 3_アミノフエノキシ)フエ二ル]— 1, 1, 1, 3, 3, 3 _へキサフルォロプロパン、 2, 2 —ビス [4— (4 アミノフエノキシ)フエ二ル]— 1, 1, 1, 3, 3, 3_へキサフルォロプロ パン。 (d) Diamine having four benzene rings; 4, 4, 1-bis (3-aminophenoxy) biphenyl, 4, 4'-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] Ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) ) Phenenole] snorephone, bis [4_ (4_aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, 2 , 2_bis [4— (3 aminophenoxy) phenyl] bread, 2, 2_bis [4— (4 aminophenoxy) phenyl] propane, 2, 2_bis [3_ (3_aminophenoxy) phenyl] — 1, 1, 1, 3, 3, 3 _Hexafluoropropane, 2, 2 —bis [4— (4 aminophenoxy) phenyl] — 1, 1, 1, 3, 3, 3_hexafluoropro Bread.
(e)ベンゼン環 5個を有するジァミン; 1 , 3—ビス [4一(3—アミノフエノキシ)ベンゾィ ノレ]ベンゼン、 1 , 3—ビス [4— (4—アミノフエノキシ)ベンゾィノレ]ベンゼン、 1 , 4—ビ ス [4— (3—アミノフエノキシ)ベンゾィル]ベンゼン、 1, 4 _ビス [4— (4—アミノフエノ キシ)ベンゾィル]ベンゼン、 1 , 3 ビス [4— (3 アミノフエノキシ)一 ひ, ひ一ジメチ ルベンジル]ベンゼン、 1 , 3 _ビス [4— (4—アミノフエノキシ)一 ひ, ひ一ジメチルべ ンジル]ベンゼン、 1 , 4 ビス [4— (3 アミノフエノキシ)一 ひ, ひ一ジメチルベンジ ル]ベンゼン、 1 , 4_ビス [4— (4 アミノフエノキシ)一 ひ, ひ一ジメチルベンジル]ベ ンゼン。  (e) Diamine having five benzene rings; 1,3-bis [4 (3- (aminophenoxy) benzoinole] benzene, 1,3-bis [4- (4-aminophenoxy) benzoinole] benzene, 1,4— Bis [4— (3-Aminophenoxy) benzoyl] benzene, 1,4_bis [4 -— (4-Aminophenoxy) benzoyl] benzene, 1,3 bis [4— (3 aminophenoxy) one, dimethyl benzyl ] Benzene, 1,3_bis [4- (4-Aminophenoxy) 1, dimethyl benzyl] benzene, 1,4 bis [4- (3 Aminophenoxy), 1, dimethylbenzyl] benzene, 1 , 4_bis [4- (4 aminophenoxy) -1, dimethylbenzyl] benzene.
(f)ベンゼン環 6個を有するジァミン; 4, 4,一ビス [4— (4—アミノフエノキシ)ベンゾィ ル]ジフエニルエーテル、 4, 4 '—ビス [4— (4—ァミノ一ひ, ひ一ジメチルベンジル) フエノキシ]ベンゾフエノン、 4, 4 '—ビス [4— (4—ァミノ一ひ, ひ一ジメチルベンジル )フエノキシ]ジフエニルスルホン、 4, 4'—ビス [4— (4—アミノフエノキシ)フエノキシ] ジフエニノレスノレホン。  (f) Diamine having 6 benzene rings; 4, 4, 1 bis [4- (4-aminophenoxy) benzoyl] diphenyl ether, 4, 4'-bis [4- (4-amino), 1 Dimethylbenzyl) phenoxy] benzophenone, 4, 4'-bis [4- (4-amino), dimethylbenzyl) phenoxy] diphenylsulfone, 4, 4'-bis [4- (4-aminophenoxy) phenoxy] Gifu Nino Resnorehon.
(g)芳香族置換基を有するジァミン; 3, 3 '—ジアミノー 4, 4'ージフエノキシベンゾフ ェノン、 3, 3 '—ジアミノー 4, 4'ージビフエノキシベンゾフエノン、 3, 3 '—ジアミノー 4 フエノキシベンゾフエノン、 3, 3 '—ジアミノー 4ービフエノキシベンゾフエノン。  (g) Diamine having an aromatic substituent; 3, 3'-diamino-4,4'-diphenoxybenzophenone, 3,3'-diamino-4,4'-dibiphenoxybenzophenone, 3, 3'-diamino-4-phenoxybenzophenone, 3, 3'-diamino-4-biphenoxybenzophenone.
(h)スピロビインダン環を有するジァミン; 6, 6,一ビス(3—アミノフエノキシ) 3, 3, 3, , 3, ,一テトラメチル 1 , 1,一スピロビインダン、 6, 6,一ビス(4—アミノフエノキシ) 3 , 3, 3, ' 3, ,一テトラメチル 1 , 1,一スピロビインダン。  (h) Diamine having a spirobiindane ring; 6, 6, monobis (3-aminophenoxy) 3, 3, 3, 3, 4, monotetramethyl 1, 1, monospirobiindane, 6, 6, monobis (4-aminophenoxy) ) 3, 3, 3, '3,, tetramethyl 1, 1, spirobiindane.
(i)シロキサンジァミン類であるジァミン; 1 , 3—ビス(3—ァミノプロピル)テトラメチル ジシロキサン、 1, 3 _ビス(4 アミノブチル)テトラメチルジシロキサン、 ひ, ω—ビス( 3—ァミノプロピル)ポリジメチルシロキサン、 ひ, ω—ビス(3—アミノブチル)ポリジメ チルシロキサン。  (i) Diamine which is a siloxane diamine; 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4aminobutyl) tetramethyldisiloxane, ω-bis (3— Aminopropyl) polydimethylsiloxane, ω-bis (3-aminobutyl) polydimethylsiloxane.
(j)エチレングリコールジァミン類であるジァミン;ビス(アミノメチル)エーテル、ビス(2 —アミノエチル)エーテル、ビス(3—ァミノプロピル)エーテル、ビス(2 アミノメトキシ )ェチル]エーテル、ビス [2 _ (2 _アミノエトキシ)ェチル]エーテル、ビス [2 _ (3 - ァミノプロボキシ)ェチル]エーテル、 1, 2 _ビス(アミノメトキシ)ェタン、 1, 2 _ビス(2 アミノエトキシ)ェタン、 1, 2—ビス [2—(アミノメトキシ)エトキシ]ェタン、 1 , 2—ビス [2—(2 アミノエトキシ)エトキシ]ェタン、エチレングリコールビス(3 ァミノプロピル )エーテル、ジエチレングリコールビス(3—ァミノプロピル)エーテル、トリエチレングリ コールビス(3—ァミノプロピル)エーテル。 (j) Diamine which is an ethylene glycol diamine; bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, bis (2aminomethoxy) ethyl] ether, bis [2 _ (2_aminoethoxy) ethyl] ether, bis [2_ (3-aminopropoxy) ethyl] ether, 1,2_bis (aminomethoxy) ethane, 1,2_bis (2 Aminoethoxy) ethane, 1,2-bis [2- (aminomethoxy) ethoxy] ethane, 1,2-bis [2- (2 aminoethoxy) ethoxy] ethane, ethylene glycol bis (3 aminopropyl) ether, diethylene glycol bis ( 3-Aminopropyl) ether, triethylene glycol bis (3-aminopropyl) ether.
(k)メチレンジァミン類であるジァミン;エチレンジァミン、 1, 3—ジァミノプロパン、 1, 4—ジアミノブタン、 1 , 5—ジァミノペンタン、 1 , 6—ジァミノへキサン、 1, 7—ジァミノ ヘプタン、 1 , 8—ジアミノ才クタン、 1 , 9—ジアミノノナン、 1 , 10—ジァミノデカン、 1, 11—ジアミノウンデカン、 1, 12—ジアミノドデカン。  (k) Diamine which is a methylenediamine; ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diamino Talented Kutan, 1,9-Diaminononane, 1,10-Diaminodecane, 1,11-Diaminoundecane, 1,12-Diaminododecane.
(1)脂環式ジァミン類であるジァミン; 1, 2—ジアミノシクロへキサン、 1 , 3—ジアミノシ クロへキサン、 1 , 4—ジアミノシクロへキサン、 1 , 2—ジ(2 アミノエチル)シクロへキ サン、 1 , 3—ジ(2 アミノエチル)シクロへキサン、 1, 4—ジ(2 アミノエチル)シクロ へキサン、ビス(4 アミノシクロへキシル)メタン、 2, 6 _ビス(アミノメチル)ビシクロ [2 • 2. 1]ヘプタン、 2, 5—ビス(アミノメチル)ビシクロ [2· 2. 1]ヘプタン。  (1) Diamine, an alicyclic diamine; 1,2-diaminocyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,2-di (2 aminoethyl) cyclo Hexane, 1,3-di (2aminoethyl) cyclohexane, 1,4-di (2aminoethyl) cyclohexane, bis (4aminocyclohexyl) methane, 2, 6_bis (aminomethyl) ) Bicyclo [2 • 2.1] heptane, 2,5-bis (aminomethyl) bicyclo [2 · 2.1] heptane.
[0063] また、上記例示したジァミン化合物は、適宜単独で、又は混合して使用することが できる。また、ジァミン化合物は、上記ジァミン化合物の芳香環上の水素原子の一部 もしくは全てをフッ素原子、メチル基、メトキシ基、トリフルォロメチル基、及びトリフル ォロメトキシ基からなる群から選ばれた少なくとも 1つの置換基で置換したジァミンで あってもよレ、。また、分岐を導入する目的で、ジァミン化合物の一部をトリアミン類、テ トラアミン類と代えてもよい。このようなトリァミン類の具体例としては、例えばパラロー ズァニリンが挙げられる。 [0063] The diamine compounds exemplified above can be used alone or in combination as appropriate. Further, the diamine compound has at least one selected from the group consisting of a fluorine atom, a methyl group, a methoxy group, a trifluoromethyl group, and a trifluoromethoxy group, with some or all of the hydrogen atoms on the aromatic ring of the diamine compound. It can be diamine substituted with two substituents. For the purpose of introducing branching, a part of the diamine compound may be replaced with triamines or tetraamines. Specific examples of such triamines include, for example, pararozuaniline.
[0064] 式 1の構造を有するポリイミド化合物及び式 27のポリアミド酸化合物を合成するの に使用可能なテトラカルボン酸二無水物としては、具体的には例えば、以下のものが 挙げられる。ピロメリット酸二無水物、 3, 3 ', 4, 4' _ビフヱニルテトラカルボン酸二無 水物、 3, 3 ', 4, 4' _ベンゾフエノンテトラカルボン酸二無水物、ビス(3, 4—ジカノレ ボキシフエニル)エーテル二無水物、ビス(3, 4—ジカルボキシフエニル)スルフイド二 無水物、ビス(3, 4—ジカルボキシフヱニル)スルホン二無水物、 2, 2_ビス(3, 4- ジカルボキシフエニル)プロパン二無水物、 2, 2_ビス(3, 4—ジカルボキシフエニル 1 , 1, 3, 3, 3_へキサフルォロプロパン二無水物、 1 , 3 _ビス(3, 4—ジカノレ ボキシフエノキシ)ベンゼン二無水物、 1 , 4 ビス(3, 4—ジカノレボキシフエノキシ)ベ ンゼン二無水物、 4, 4 '—ビス(3, 4—ジカルボキシフエノキシ)ビフエニルニ無水物 、 2, 2 ビス [ (3, 4 ジカルボキシフエノキシ)フエニル]プロパン二無水物、 2, 3, 6 , 7_ナフタレンテトラカルボン酸二無水物、 1 , 4, 5, 8 _ナフタレンテトラカルボン酸 二無水物、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シ クロペンタンテトラカルボン酸二無水物、 2, 2' , 3, 3, _ベンゾフエノンテトラカルボン 酸二無水物、 2, 2' , 3, 3' _ビフヱニルテトラカルボン酸二無水物、 2, 2_ビス(2, 3—ジカルボキシフエニル)プロパン二無水物、 2, 2_ビス(2, 3—ジカルボキシフエ 二ル)一 1, 1, 1 , 3, 3, 3 _へキサフルォロプロパン二無水物、ビス(2, 3—ジカルボ キシフエ二ノレ)エーテル二無水物、ビス(2, 3—ジカルボキシフエ二ノレ)スルフイド二無 水物、ビス(2, 3—ジカルボキシフエニル)スルホン二無水物、 1, 3_ビス(2, 3—ジ カルボキシフエノキシ)ベンゼン二無水物、 1 , 4_ビス(2, 3—ジカルボキシフエノキ シ)ベンゼン二無水物、及び 1 , 2, 5, 6 ナフタレンテトラカルボン酸二無水物。上 記例示したテトラカルボン酸二無水物は、適宜単独で、又は混合して用いることがで きる。 [0064] Specific examples of tetracarboxylic dianhydrides that can be used to synthesize the polyimide compound having the structure of Formula 1 and the polyamic acid compound of Formula 27 include the following. Pyromellitic dianhydride, 3, 3 ', 4, 4' _biphenyltetracarboxylic dianhydride, 3, 3 ', 4, 4' _benzophenone tetracarboxylic dianhydride, bis ( 3,4-dicanoloxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 2,2_bis (3,4-dicarboxyphenyl) propane dianhydride, 2, 2_bis (3,4-dicarboxyphenyl 1,1,3,3,3_hexafluoropropane dianhydride, 1 , 3 _bis (3, 4—Zicanol Boxyphenoxy) benzene dianhydride, 1,4 bis (3,4-dicanolevoxyphenoxy) benzene dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride, 2,2bis [(3,4 dicarboxyphenoxy) phenyl] propane dianhydride, 2, 3, 6, 7_naphthalene tetracarboxylic dianhydride, 1, 4, 5, 8 _naphthalene tetracarboxylic acid Dianhydride, ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 2, 2 ', 3, 3, _benzophenone tetracarboxylic dianhydride, 2, 2 ', 3, 3' _biphenyltetracarboxylic dianhydride, 2, 2_bis (2,3-dicarboxyphenyl) propane dianhydride, 2, 2_bis (2, 3— Dicarboxyphenyl) 1,1,1,1,3,3,3_hexafluoropropane dianhydride Bis (2,3-dicarboxyphenylphenol) ether dianhydride, bis (2,3-dicarboxyphenyl) sulfide dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, 1,3_bis (2,3-dicarboxyphenoxy) benzene dianhydride, 1,4_bis (2,3-dicarboxyphenoxy) benzene dianhydride, and 1, 2, 5, 6 Naphthalene tetracarboxylic dianhydride. The tetracarboxylic dianhydrides exemplified above can be used alone or in combination as appropriate.
[0065] また、上記テトラカルボン酸二無水物のいずれも、それらの芳香環上の水素原子の 一部もしくは全てをフッ素原子、メチル基、メトキシ基、トリフルォロメチル基、及びトリ フルォロメトキシ基からなる群から選ばれた少なくとも 1つの置換基で置換して用いる ことちできる。  [0065] In any of the above tetracarboxylic dianhydrides, some or all of the hydrogen atoms on the aromatic ring are derived from a fluorine atom, a methyl group, a methoxy group, a trifluoromethyl group, and a trifluoromethoxy group. It can be used by being substituted with at least one substituent selected from the group consisting of
[0066] 更に、架橋点となるェチニル基、ベンゾシクロブテン 4'ーィル基、ビニル基、ァリ ル基、シァノ基、イソシァネート基、二トリ口基、又はイソプロぺニル基を、上記酸二無 水物の芳香環上の水素原子の一部もしくは全てに置換基として導入しても用いること 力 Sできる。更にまた、好ましくは成形力卩ェ性を損なわない範囲内で、架橋点となるビ 二レン基、ビニリデン基、又はェチニリデン基を置換基ではなぐ主鎖骨格中に組み 込むこともできる。  [0066] Further, the ethynyl group, benzocyclobutene 4'-yl group, vinyl group, aryl group, cyano group, isocyanate group, ditrimethyl group, or isopropenyl group serving as a crosslinking point may be converted to the above diacid group. It can be used even if it is introduced as a substituent on some or all of the hydrogen atoms on the aromatic ring of water. Furthermore, it can also be incorporated into the main chain skeleton in which the vinylene group, vinylidene group, or ethynylidene group serving as a crosslinking point is not a substituent, as long as it does not impair the moldability.
[0067] また、分岐を導入する目的で、テトラカルボン酸二無水物の一部をへキサカルボン 酸三無水物類、又はオタタカルボン酸四無水物類と代えてもょレ、。  [0067] Further, for the purpose of introducing a branch, a part of tetracarboxylic dianhydride may be replaced with hexacarboxylic dianhydride or otatacarboxylic dianhydride.
また、封着層に耐熱性を付与するため、ポリイミド化合物又はポリアミド酸化合物を 合成する際に、末端封止材としてジカルボン酸無水物又はモノアミン化合物を含め てもよい。ポリイミド化合物及びポリアミド酸化合物の末端をジカルボン酸無水物又は モノアミン化合物で封止することで、上記式 2及び式 3のポリイミド化合物、ならびに上 記式 28及び式 29のポリアミド酸化合物を得ることができる。 In order to give heat resistance to the sealing layer, a polyimide compound or a polyamic acid compound is added. At the time of synthesis, a dicarboxylic acid anhydride or a monoamine compound may be included as a terminal sealing material. By sealing the ends of the polyimide compound and the polyamic acid compound with a dicarboxylic acid anhydride or a monoamine compound, the polyimide compound of the above formulas 2 and 3 and the polyamic acid compound of the above formulas 28 and 29 can be obtained. .
[0068] 末端封止剤として使用可能なジカルボン酸無水物としては、具体的には例えば、 下記の化合物が挙げられる。 [0068] Specific examples of the dicarboxylic acid anhydride that can be used as the end-capping agent include the following compounds.
フタル酸無水物、 2, 3 _ベンゾフヱノンジカルボン酸無水物、 3, 4 _ベンゾフエノン ジカルボン酸無水物、 2, 3—ジカルボキシフヱユルフェニルエーテル無水物、 3, 4 —ジカルボキシフエユルフェニルエーテル無水物、 2, 3—ビフエニルジカルボン酸無 水物、 3, 4 _ビフヱニルジカルボン酸無水物、 2, 3—ジカルボキシフヱユルフェニル スルホン無水物、 3, 4—ジカルボキシフヱユルフェニルスルホン無水物、 2, 3—ジカ ノレボキシフエユルフェニルスルフイド無水物、 3, 4—ジカルボキシフエユルフェニルス ルフイド無水物、 1 , 2 ナフタレンジカルボン酸無水物、 2, 3 ナフタレンジカルボ ン酸無水物、 1 , 8—ナフタレンジカルボン酸無水物、 1 , 2—アントラセンジカルボン 酸無水物、 2, 3 アントラセンジカルボン酸無水物, 1 , 9 アントラセンジカルボン 酸無水物。  Phthalic anhydride, 2, 3_benzophenone dicarboxylic anhydride, 3, 4_benzophenone dicarboxylic anhydride, 2,3-dicarboxyphenyl phenyl ether anhydride, 3, 4—dicarboxyphenol Phenyl ether anhydride, 2,3-Biphenyldicarboxylic acid anhydrous, 3,4_biphenyldicarboxylic anhydride, 2,3-dicarboxyphenylsulfone anhydride, 3,4-dicarboxylヱ Urphenylsulfone anhydride, 2,3-dicarboxylphenyl phenyl sulfide anhydride, 3,4-dicarboxyphenyl phenyl sulfide anhydride, 1, 2 naphthalenedicarboxylic anhydride, 2, 3 Naphthalene dicarboxylic anhydride, 1,8-naphthalene dicarboxylic anhydride, 1,2-anthracene dicarboxylic anhydride, 2,3 anthracene dicarboxylic anhydride, 1,9 anthra Njikarubon acid anhydride.
これらは単独又は 2種以上混合して用いることができる。これらの芳香族ジカルボン 酸無水物の中で、好ましくはフタル酸無水物が使用される。  These may be used alone or in combination of two or more. Of these aromatic dicarboxylic acid anhydrides, phthalic anhydride is preferably used.
[0069] 末端封止剤として使用可能なモノアミン化合物としては、具体的には例えば次のよ うなものが挙げられる。ァニリン、 o トルイジン、 m—トルイジン、 p トルイジン、 2, 3 ーキシリジン、 2, 6 キシリジン、 3, 4 キシリジン、 3, 5 キシリジン、 o クロロア二 リン、 m—クロロア二リン、 p—クロロア二リン、 o—ブロモア二リン、 m—ブロモア二リン、 p—ブロモア二リン、 o _二トロア二リン、 p 二トロア二リン、 m—ニトロァニリン、 o _アミ ノフエノール、 ρ ァミノフエノール、 m—ァミノフエノール, o ァニシジン、 m ァニシ ジン、 p_ァニシジン, o—フエネチジン、 m_フエネチジン、 p _フエネチジン、 o—ァ ミノべンズアルデヒド、 p—ァミノべンズアルデヒド、 m—ァミノべンズアルデヒド、 o—ァ ミノべンゾニトリル、 ρ—ァミノべンゾニトリル、 m—ァミノべンゾニトリル, 2 _アミノビフエ ニル, 3 アミノビフエニル、 4 アミノビフエニル、 2 ァミノフエユルフェニルエーテ ノレ、 3 ァミノフエユルフェニルエーテノレ, 4ーァミノフエユルフェニルエーテル、 2 ァ ミノべンゾフエノン、 3 ァミノべンゾフエノン、 4ーァミノべンゾフエノン、 2 ァミノフエ ニルフエニルスルフイド、 3—ァミノフエユルフェニルスルフイド、 4 アミノフヱニルフエ ニルスルフイド、 2 _アミノフヱ二ルフヱニルスルホン、 3 _アミノフヱ二ルフヱニルスル ホン、 4—ァミノフエユルフェニルスルホン、 ひ一ナフチルァミン、 β—ナフチルァミン , 1—ァミノ一 2_ナフトール、 5—ァミノ一 1 _ナフトール、 2—ァミノ一 1 _ナフトーノレ , 4—ァミノ一 1 _ナフロール、 5—ァミノ一 2_ナフトール、 7—ァミノ一 2_ナフトーノレ 、 8 ァミノ一 1—ナフトール、 8 ァミノ一 2 ナフトール、 1—アミノアントラセン、 2- アミノアントラセン、 9—ァミノアントラセン等。通常、これらの芳香族モノアミンの中で、 好ましくはァニリンの誘導体が使用される。これらは単独で又は 2種以上混合して用 レ、ることができる。 [0069] Specific examples of the monoamine compound that can be used as the end-capping agent include the following. Aniline, o toluidine, m-toluidine, p-toluidine, 2,3-xylysine, 2,6 xylidine, 3,4 xylidine, 3,5 xylidine, o chloroaniline, m-chloroaniline, p-chloroaniline, o —Bromoaniline, m-Bromoaniline, p-Bromoaniline, o_Nitroanilin, p-Nitroaniline, m —Nitroaniline, o_Aminophenol, ρaminophenol, m -Aminophenol, o anisidine, m anisidine, p_anisidine, o-phenetidine, m_phenetidine, p_phenetidine, o-aminobenzaldehyde, p-aminobenzaldehyde, m-aminobenzaldehyde, o-aminominobe Zononitrile, ρ-aminobenzonitrile, m-aminobenzonitrile, 2_aminobiphenyl, 3 aminobiphenyl, 4 aminobiphenyl , 2 Amino Feuyl Phenylate Nore, 3-aminophenyl phenyl ether, 4-aminophenol phenyl ether, 2-aminobenzofenone, 3-aminobenzofenone, 4-aminominobenzophenone, 2-aminominophenylsulfide, 3-aminophenol Phenylsulfide, 4-aminophenylphenylsulfide, 2-aminophenylsulfonesulfone, 3-aminophenylsulfonylsulfone, 4-aminophenylphenylsulfone, naphthylamine, β-naphthylamine, 1-aminomino 2_Naphthol, 5—Amino 1 _Naphthol, 2—Amino 1 1 _Naphthonore, 4—Amino 1 _Naflor, 5—Amino 1 2_Naphthol, 7—Amino 1 2 Naphthonore, 8 Amino 1—Naphthol , 8 amino 1-naphthol, 1-aminoanthracene, 2-aminoanthracene, 9-a Roh anthracene and the like. Usually, among these aromatic monoamines, derivatives of aniline are preferably used. These can be used alone or in admixture of two or more.
[0070] これらモノアミン化合物及びジカルボン酸無水物は、単独又は 2種以上混合して用 いてもよい。これら末端封止剤の使用量としては、ジァミン化合物とテトラカルボン酸 二無水物の使用モル数の差の 1〜数倍のモノアミン化合物(過剰成分がテトラカルボ ン酸ニ無水物)、あるいはジカルボン酸無水物(過剰成分がジァミン)であればよいが 、少なくとも一方の成分の 0· 01モル倍程度使用するのが一般的である。  [0070] These monoamine compounds and dicarboxylic acid anhydrides may be used alone or in admixture of two or more. The amount of these end-capping agents used is 1 to several times the difference in the number of moles used between the diamine compound and tetracarboxylic dianhydride (excess component is tetracarboxylic dianhydride), or dicarboxylic anhydride However, it is generally used in an amount of about 0.01 mol times at least one of the components.
[0071] 上記ポリイミド化合物又はポリアミド酸化合物の合成反応は、通常有機溶剤中で実 施する。この反応に用いる有機溶剤としては、ポリイミド化合物及びポリアミド酸化合 物を製造するのに問題がなぐし力も生成したポリイミド化合物及びポリアミド酸化合 物を溶解できるものであればどのようなものでも使用できる。具体的には、アミド系の 溶剤、エーテル系の溶剤、フエノール系の溶剤が例示でき、より具体的には、下記の 有機溶剤が挙げられる。これらは単独又は 2種以上混合して使用することもできる。  [0071] The synthesis reaction of the polyimide compound or polyamic acid compound is usually carried out in an organic solvent. As the organic solvent used in this reaction, any solvent can be used as long as it can dissolve the polyimide compound and the polyamide oxide compound, which have no problem in producing the polyimide compound and the polyamide oxide compound, and also generate a force. Specific examples include amide solvents, ether solvents, and phenol solvents, and more specifically, the following organic solvents are exemplified. These may be used alone or in combination of two or more.
Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド、 Ν, Ν—ジェチルァセト アミド、 Ν, Ν—ジメチルメトキシァセトアミド、 Ν メチル _ 2_ピロリドン、 1 , 3—ジメ チル一 2_イミダゾリジノン、 Ν メチルカプロラタタム、 1 , 2—ジメトキシェタン一ビス( 2—メトキシェチル)エーテル、 1 , 2_ビス(2—メトキシエトキシ)ェタン、ビス [2— (2 —メトキシエトキシ)ェチノレ]エーテノレ、テトラヒドロフラン、 1 , 3_ジォキサン、 1, 4- ジォキサン、ピリジン、ピコリン、ジメチルスルホキシド、ジメチルスルホン、テトラメチル 尿素、へキサメチルホスホルアミド、フエノール、 o—クレゾール、 m—クレゾール、 p— クレゾ一ノレ、クレゾ一ノレ酸、 o—クロ口フエノーノレ、 m—クロ口フエノーノレ、 p—クロ口フエ ノーノレ、 ァニソール等。 Ν, Ν-dimethylformamide, Ν, Ν-dimethylacetamide, Ν, Ν-jetylacetamide, Ν, Ν-dimethylmethoxyacetamide, メ チ ル methyl_2_pyrrolidone, 1,3-dimethyl-1-amide Lidinone, メ チ ル Methylcaprolatatam, 1,2-dimethoxyethane monobis (2-methoxyethyl) ether, 1,2_bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethynole] Ethereal, tetrahydrofuran, 1,3_dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxide, dimethyl sulfone, tetramethyl Urea, Hexamethylphosphoramide, Phenols, o-Cresol, m-Cresol, p-Crezo Monore, Crezo Monoreic Acid, o-Crocuo Fenenore, m-Crocuo Fenenore, p-Crocao Fou Nore, Anisole etc.
特にアミド系の溶剤が溶液の安定性、作業性の点から好ましレ、。  In particular, amide solvents are preferred from the standpoints of solution stability and workability.
[0072] 合成されたポリイミド化合物及びポリアミド酸化合物から選ばれる少なくとも 1種以上 の化合物は、これらの有機溶剤に溶解させたままで後述する封着材として使用するこ とができる。このような態様で使用する場合、ポリイミド化合物の溶剤としては、クレゾ ールが好ましい。ポリアミド酸化合物の溶剤としては N—メチルピロリドンが好ましい。 なお、これらの有機溶剤は、合成されたポリイミド化合物及びポリアミド酸化合物から 選ばれる少なくとも 1種以上の化合物を溶液として使用する際の溶剤としても使用す ること力 Sできる。 [0072] At least one compound selected from the synthesized polyimide compounds and polyamic acid compounds can be used as a sealing material to be described later while being dissolved in these organic solvents. When used in such an embodiment, the solvent for the polyimide compound is preferably cresol. N-methylpyrrolidone is preferred as the solvent for the polyamic acid compound. These organic solvents can also be used as a solvent when using at least one compound selected from a synthesized polyimide compound and polyamic acid compound as a solution.
[0073] また、ポリイミド化合物及びポリアミド酸化合物を合成するにあたって既知の有機塩 基触媒を共存させることも可能である。好ましくはピリジン及び γ —ピコリンである。こ れら触媒の使用量としては、テトラカルボン酸二無水物の総量 1モルに対し、 0. 001 〜0· 50モルである。特に好ましくは 0· 01〜0. 1モルである。  [0073] It is also possible to coexist a known organic base catalyst in the synthesis of the polyimide compound and the polyamic acid compound. Pyridine and γ-picoline are preferred. The amount of these catalysts to be used is 0.001 to 0.50 mol with respect to 1 mol of the total amount of tetracarboxylic dianhydride. Particularly preferably, it is 0 · 01 to 0.1 mol.
[0074] ポリアミド酸化合物を合成する際の反応温度は、— 20〜60°C、好ましくは 0〜40°C である。反応時間は、使用するテトラカルボン酸二無水物の種類、溶剤の種類及び 反応温度等により異なる。  [0074] The reaction temperature for synthesizing the polyamic acid compound is -20 to 60 ° C, preferably 0 to 40 ° C. The reaction time varies depending on the type of tetracarboxylic dianhydride used, the type of solvent and the reaction temperature.
本発明においては、得られたポリアミド酸化合物を含有する有機溶剤の溶液を、ポ リアミド酸化合物を含む封着材と呼ぶ。ポリアミド酸化合物は、ポリイミド化合物の前 駆体であるため、得られたポリアミド酸化合物を 150〜400°Cに加熱脱水してイミド化 することにより封着材として用レ、ること力できる。  In the present invention, the obtained organic solvent solution containing a polyamic acid compound is referred to as a sealing material containing a polyamic acid compound. Since the polyamic acid compound is a precursor of the polyimide compound, it can be used as a sealing material by heating and dehydrating the obtained polyamic acid compound to 150 to 400 ° C. to imidize it.
[0075] また、ポリイミド化合物を合成する際の反応温度は、 100°C以上、好ましくは 150〜  [0075] The reaction temperature when synthesizing the polyimide compound is 100 ° C or higher, preferably 150 to
300°Cであり、反応によって生じる水を抜き出しながら行うのが一般的である。イミド 化に先立ち、その前駆体であるポリアミド酸化合物を 100°C以下の低温でまず合成し 、ついで温度を 100°C以上に上げてイミド化することも可能である力 単にテトラカル ボン酸二無水物とジァミン化合物と、を混合した後、有機塩基存在下、すぐに 100°C 以上に昇温することでイミド化することもできる。反応時間は、使用するテトラカルボン 酸二無水物の種類、溶剤の種類、有機塩基触媒の種類と量及び反応温度等により 異なる。この場合、イミド化反応によって生じる水はトルエン等の共沸剤を反応系に カロえて、共沸により水を除去する方法が一般的で有効である。 The temperature is generally 300 ° C., and it is generally performed while extracting water generated by the reaction. Prior to imidization, the precursor polyamic acid compound is first synthesized at a low temperature of 100 ° C or lower, and then the temperature can be raised to 100 ° C or higher to be imidized. After mixing the product and the diamine compound, imidization can be performed by immediately raising the temperature to 100 ° C or higher in the presence of an organic base. The reaction time is the tetracarboxylic acid used. It depends on the type of acid dianhydride, the type of solvent, the type and amount of the organic base catalyst, and the reaction temperature. In this case, it is common and effective to remove water by azeotropic distillation by removing azeotropic agent such as toluene in the reaction system.
また、まず前駆体であるポリアミド酸化合物を合成した後、無水酢酸などのイミドィ匕 剤を用いて化学的にイミド化を行うことも可能である。  It is also possible to first synthesize a polyamic acid compound as a precursor and then chemically imidize it using an imidizing agent such as acetic anhydride.
[0076] 本発明においては、得られたポリイミド化合物を溶解又は分散して含有する有機溶 剤液を、ポリイミド化合物を含有する封着材液と呼ぶ。ポリイミド化合物を含有する封 着材液は保存安定性が良好で、しかもガラスからなる外囲器構成部材の封着面に塗 布してから加熱乾燥又はプレ焼成した後、本焼成することで比較的低温低圧で焼成 しても充分な 90度封着剥離強度が得られる。ここで乾燥又はプレ焼成の温度として は、溶媒の沸点によって異なり、特定はできなレ、が、通常、 150〜300°Cである。一 方、本焼成は 250〜400°Cで実施される。  [0076] In the present invention, an organic solvent solution containing the obtained polyimide compound dissolved or dispersed is referred to as a sealing material solution containing a polyimide compound. The sealing liquid containing the polyimide compound has good storage stability, and is coated on the sealing surface of the envelope component made of glass and then heat-dried or pre-fired, then compared by firing. Even when fired at a low temperature and low pressure, a sufficient 90 degree sealing peel strength can be obtained. Here, the temperature of drying or pre-baking varies depending on the boiling point of the solvent, and cannot be specified, but is usually 150 to 300 ° C. On the other hand, the main firing is performed at 250 to 400 ° C.
なお、ポリイミド化合物は、有機溶剤に溶解させた溶液としてではなぐ公知の方法 でフィルムに成形して使用してもよい。  The polyimide compound may be used after being formed into a film by a known method, not as a solution dissolved in an organic solvent.
[0077] また、封着層の封着性を向上させるために、上記成分に加えて、ジァミノシロキサン 化合物を封着材に含めてもよい。ジァミノシロキサンを併用する場合、ポリイミド化合 物及びポリアミド酸化合物は、上記式 1ないし式 3、又は式 27ないし式 29において、 Xが式 4ないし式 7のいずれかのものを用いることが好ましレ、。なお、ジアミノシロキサ ンは、式 1ないし式 3の構造を有するポリイミド化合物又は式 27ないし式 29のポリアミ ド酸化合物 1モルに対して、 0. 10モル以下となる量で使用することが好ましい。ジァ ミノシロキサンィ匕合物を 0· 1モル以下とすれば、封着層が本来有する耐熱性が損な われることがなぐまた封着材が相分離を起こす等の保存安定性にも問題を生じるこ とがない。  [0077] In addition to the above components, a diaminosiloxane compound may be included in the sealing material in order to improve the sealing property of the sealing layer. When diaminosiloxane is used in combination, it is preferable that the polyimide compound and the polyamic acid compound are those in the above formulas 1 to 3 or formulas 27 to 29, where X is any one of formulas 4 to 7. Masle. The diaminosiloxane is preferably used in an amount of 0.10 mol or less with respect to 1 mol of the polyimide compound having the structure of Formula 1 to Formula 3 or the polyamic acid compound of Formula 27 to Formula 29. . If the amount of diaminosiloxane compound is 0.1 mol or less, the heat resistance inherent in the sealing layer will not be impaired, and storage stability such as phase separation of the sealing material will also be a problem. Will not occur.
[0078] ポリイミド化合物の分子量の指標としては一般的に対数粘度が用いられる。本発明 のポリイミド化合物の対数粘度は、 p_クロロフヱノールとフヱノールの混合溶媒(90 : 10)中、 0. 5g/ dL濃度、 35。Cにおレヽて好ましくは 0. 01-5. 0であり、より好ましく は、 0. 10〜0. 50である。ポリアミド酸化合物の分子量はゲル浸透クロマトグラフィー (GPC)で測定可能であり、本発明のポリアミド酸化合物の質量平均分子量は、好ま しくは 4000〜30000であり、より好ましくは 5000〜15000である。 [0078] Logarithmic viscosity is generally used as an index of the molecular weight of a polyimide compound. The polyimide compound of the present invention has a logarithmic viscosity of 0.5 g / dL in a mixed solvent (90:10) of p_chlorophenol and phenol, 35. C is preferably 0.01 to 5.0, and more preferably 0.10 to 0.50. The molecular weight of the polyamic acid compound can be measured by gel permeation chromatography (GPC), and the mass average molecular weight of the polyamic acid compound of the present invention is preferred. It is 4000-30000, More preferably, it is 5000-15000.
[0079] (II)封着層に含有される無機酸化物フィラー [0079] (II) Inorganic oxide filler contained in the sealing layer
本発明における封着層には、ガラス、シリカ、アルミナ及びチタニアからなる群から 選ばれる少なくとも 1種の無機酸化物フィラーが含まれる。なかでも、無アルカリガラス と呼ばれるアルカリ含有量が小さいガラスが好ましぐ特に無アルカリガラス繊維 (ファ ィバー)が好ましい。  The sealing layer in the present invention contains at least one inorganic oxide filler selected from the group consisting of glass, silica, alumina and titania. Of these, glass having a low alkali content called non-alkali glass is preferable, and non-alkali glass fiber (fiber) is particularly preferable.
[0080] 無機酸化物フイラ一としては、熱膨張係数が、封着材を形成する上記ポリイミド化合 物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合物から形成されるポ リイミド樹脂よりも小さい熱膨張係数を有し、好ましくは 38 X 10— 6/°C以下、特に好 ましくは 20 X 10— 6/°C以下を有するものが好適である。無機酸化物フィラーの熱膨 張係数が 38 X 10_6/°Cを超える場合には、上記した封着部の強度の低下や真空 度の低下を抑える効果が小さくなるので好ましくなレ、。無機酸化物フィラーの熱膨張 係数の下限については、特に制限されないが、好ましくは 1 X 10_6/°C以上であると 好適である。無機酸化物フィラーの熱膨張係数が 1 X 10_6/°C以上であると、封着 材に用いるポリイミド化合物及びポリイミド酸化合物から選ばれる少なくとも 1種の化 合物の熱膨張係数との差が大きくなりすぎず、温度変化時に樹脂とフィルムとの界面 での剥離などの不都合が生じにくいため好ましい。 [0080] As an inorganic oxide filler, the thermal expansion coefficient is smaller than that of a polyimide resin formed from at least one compound selected from the above-mentioned polyimide compounds and polyamic acid compounds that form a sealing material. It has a coefficient of expansion, preferably 38 X 10- 6 / ° C or less, particularly good Mashiku is preferably those having the 20 X 10- 6 / ° C. When the thermal expansion coefficient of the inorganic oxide filler exceeds 38 × 10 _6 / ° C, the effect of suppressing the above-described decrease in the strength of the sealing portion and the decrease in the degree of vacuum is reduced, which is preferable. The lower limit of the thermal expansion coefficient of the inorganic oxide filler is not particularly limited, but is preferably 1 × 10 _6 / ° C or more. When the thermal expansion coefficient of the inorganic oxide filler is 1 X 10 _6 / ° C or more, the difference between the thermal expansion coefficient of at least one compound selected from the polyimide compounds and polyimide acid compounds used for the sealing material is different. It is preferable because it does not become too large and inconveniences such as peeling at the interface between the resin and the film hardly occur when the temperature changes.
無機酸化物フィラーが含有された封着層の熱膨張係数は、好ましくは 38 X 10—ソ °C以下、特に好ましくは 20 X 10_6/°C以下であることが好適である。封着層の熱膨 張係数が 38 X 10— 6/°Cを超える場合には、上記した封着部の強度の低下や真空 度の低下を抑える効果が小さくなるので好ましくない。封着層の熱膨張係数の下限 については、特に制限されなレ、が、熱膨張係数が好ましくは 6 X 10_6/°C以上であ ると好適である。熱膨張係数が 6 X 10_6Z°C以上であると、ガラスからなるディスプレ 一用外囲器構成部材の熱膨張係数との差が大きくなりすぎず、温度変化時に封着 層と外囲器構成部材との界面での剥離などの不都合が生じにくいため好ましい。 本発明で使用される無機酸化物フイラ一として重要なことは、無機酸化物フィラー 中のアルカリ金属酸化物の含有量が 1質量%以下、好ましくは 0. 8質量%以下、特 に好ましくは 0. 6質量%以下であることである。ここで、アルカリ金属酸化物の含有量 とは、リチウム、ナトリウム、カリウムなどのアルカリ金属酸化物の合計量を意味する。 また、ここでのアルカリ金属酸化物の含有量とは、無機酸化物フイラ一中にアルカリ 金属が酸化物以外の形態で存在する場合には、アルカリ金属酸化物相当量として算 出した含有量を意味する。 The thermal expansion coefficient of the sealing layer containing the inorganic oxide filler is preferably 38 × 10− ° C. or less, and particularly preferably 20 × 10 −6 / ° C. or less. If the Netsu膨expansion coefficient of the sealing layer is more than 38 X 10- 6 / ° C, since the effect of suppressing the decrease in the degradation or the degree of vacuum strength of the sealing portion as described above it is reduced unfavorably. The lower limit of the thermal expansion coefficient of the sealing layer, in particular limited, such les, but the thermal expansion coefficient is preferably suitable when Ru der 6 X 10_ 6 / ° C or more. If the coefficient of thermal expansion is 6 X 10_ 6 Z ° C or higher, the difference between the coefficient of thermal expansion of the glass envelope components will not be too large, and the sealing layer and envelope will change when the temperature changes. This is preferable because inconveniences such as peeling at the interfaces with the constituent members hardly occur. What is important as the inorganic oxide filler used in the present invention is that the content of the alkali metal oxide in the inorganic oxide filler is 1% by mass or less, preferably 0.8% by mass or less, particularly preferably 0. 6% by mass or less. Where alkali metal oxide content Means the total amount of alkali metal oxides such as lithium, sodium and potassium. The content of alkali metal oxide here is the content calculated as the equivalent amount of alkali metal oxide when the alkali metal is present in a form other than oxide in the inorganic oxide filler. means.
[0081] 無機酸化物フイラ一中のアルカリ金属酸化物の含有量力 1質量%を超える場合に は、封着材を焼成する段階で封着材の層に気泡が発生し封着強度の低下やシール 性の低下を引き起こしてしまう。本発明で無機酸化物フィラーに含有されるアルカリ 金属酸化物の量は、 JISM8852, 8853又は 8856により求められる。  [0081] When the content power of the alkali metal oxide in the inorganic oxide filler exceeds 1% by mass, bubbles are generated in the sealing material layer at the stage of firing the sealing material, and the sealing strength is reduced. It will cause a decrease in sealing performance. The amount of the alkali metal oxide contained in the inorganic oxide filler in the present invention is determined according to JISM8852, 8853 or 8856.
[0082] 無機酸化物フィラーの形態は粒状ないし繊維状であることが好ましい。無機酸化物 フィラーの平均最大長サイズは好ましくは、 0. 5〜500 x m、特に好ましくは、:!〜 20 0 μ mであるのが好適である。  [0082] The form of the inorganic oxide filler is preferably granular or fibrous. The average maximum length of the inorganic oxide filler is preferably 0.5 to 500 × m, particularly preferably:! To 200 μm.
なかでも、アスペクト比が好ましくは 2〜: 100、特に好ましくは 4〜20の細長い形状、 特に繊維状であるのが好適である。アスペクト比が 2より小さい場合には、無機酸化 物フイラ一を添加する効果が顕著でなぐまた、 100を超える場合には、これを含有 する封着材液の流動性が低下し、塗布などの作業性が低下するので好ましくない。 無機酸化物フイラ一は、封着層に対して、好ましくは 10〜60質量%、特に好ましく は、 20〜50質量%含有される。無機酸化物フィラーの含有量が 10質量%よりも小さ い場合には、無機酸化物フィラーを含有させる効果が乏しぐ逆に 60質量%を超え る場合には、無機酸化物フィラーを含有する封着材液などの流動性が低下するので いずれも好ましくはない。  Among them, an elongated shape having an aspect ratio of preferably 2 to 100, particularly preferably 4 to 20, particularly a fiber is preferable. When the aspect ratio is less than 2, the effect of adding the inorganic oxide filler is not significant. When the aspect ratio exceeds 100, the fluidity of the sealing material liquid containing the inorganic oxide filler decreases, and the This is not preferable because workability is lowered. The inorganic oxide filler is preferably contained in an amount of 10 to 60% by mass, particularly preferably 20 to 50% by mass, based on the sealing layer. When the content of the inorganic oxide filler is less than 10% by mass, the effect of including the inorganic oxide filler is poor, and conversely, when the content exceeds 60% by mass, the seal containing the inorganic oxide filler is included. Neither is preferred because the fluidity of the dressing liquid or the like decreases.
[0083] 本発明において、無機酸化物フイラ一は、封着材を構成するポリイミド榭脂との親 和性を向上させるために、シランカップリング剤で処理されるのが好ましい。この場合 のシランカップリング剤としては、アミノ基を有するシランが好ましぐ該ァミノ基は 1級 及び 2級のアミノ基であることが好ましい。具体的には、 Ί—ァミノプロピルトリエトキシ シラン、 N _ j3 — (アミノエチル)一 γ—ァミノプロピルトリメトキシシラン、 Ν— /3— (ァ ミノェチル)一 N '— j3— (アミノエチル)一 γ—ァミノプロピルトリメトキシシラン、 γ - [0083] In the present invention, the inorganic oxide filler is preferably treated with a silane coupling agent in order to improve compatibility with the polyimide resin constituting the sealing material. In this case, the silane coupling agent is preferably a silane having an amino group, and the amino group is preferably a primary or secondary amino group. Specifically, Ί— Aminopropyltriethoxysilane, N _ j3 — (Aminoethyl) γ-Aminopropyltrimethoxysilane, Ν— / 3— (Aminoethyl) ONE N '— j3— (Aminoethyl) ) Γ-Aminopropyltrimethoxysilane, γ-
[0084] シランカップリング剤による無機酸化物フィラーの処理は、通常、シランカップリング 剤を溶解又は分散させた水性液液中に無機酸化物フィラーを好ましくは攪拌下に浸 漬することにより行われる。シランカップリング剤は、無機酸化物フィラー 100質量部 に対して、好ましくは 0. :!〜 5質量部、特に好ましくは 0. 5〜2質量部が無機酸化物 フィラーの表面に付着するように処理される。 [0084] The treatment of the inorganic oxide filler with the silane coupling agent is usually performed by silane coupling. It is preferably carried out by immersing the inorganic oxide filler in an aqueous liquid or liquid in which the agent is dissolved or dispersed, preferably with stirring. Preferably, the silane coupling agent is attached to the surface of the inorganic oxide filler with respect to 100 parts by mass of the inorganic oxide filler, preferably from 0.5 to 5 parts by mass, particularly preferably from 0.5 to 2 parts by mass. It is processed.
[0085] 本発明においては、上記の無機酸化物フィラーに加えて、封着材溶液の粘性調整 、焼成体の熱応力低減等を目的として、他の添加材を含有させることができる。これら の添加材としては特に制約はなぐ例えば、炭酸カルシウム、炭酸マグネシウム、硫 酸バリウム、硫酸マグネシウム、珪酸アルミニウムなどが挙げられる。  [0085] In the present invention, in addition to the above inorganic oxide filler, other additives can be contained for the purpose of adjusting the viscosity of the sealing material solution, reducing the thermal stress of the fired body, and the like. These additives are not particularly limited, and examples include calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, and aluminum silicate.
更に、本発明では、上記したポリイミド化合物及びポリアミド酸化合物から選ばれる 少なくとも 1種以上の化合物からなる封着材とともに、リン酸系又はビスマス系といつ た無鉛の無機系封着材を併用してもよい。このような無機系封着材は、ディスプレー 装置が、より高温で、具体的には 400°C以上、で封着することが必要な場合や、特性 のマッチングをとることが必要な場合等に好ましく使用される。  Furthermore, in the present invention, a lead-free inorganic sealing material such as a phosphoric acid-based or bismuth-based material is used in combination with a sealing material composed of at least one compound selected from the above-mentioned polyimide compounds and polyamic acid compounds. Also good. Such inorganic sealing materials are used when the display device needs to be sealed at a higher temperature, specifically 400 ° C or higher, or when it is necessary to match characteristics. Preferably used.
[0086] (III)プライマー層  [0086] (III) Primer layer
本発明では、上記封着材を使用してディスプレー用外囲器を封着する場合、上記 封着層の少なくとも片側においてプライマー層を介することが好ましい。該プライマー 層は、下記式 (A)で表される有機金属化合物及びその加水分解物から選ばれる 1種 以上の化合物の焼成体を含む。  In the present invention, when sealing the display envelope using the sealing material, it is preferable to place a primer layer on at least one side of the sealing layer. The primer layer includes a fired body of one or more compounds selected from an organometallic compound represented by the following formula (A) and a hydrolyzate thereof.
R2 MR1 …(A) R 2 MR 1 (A)
n (4-n) 式 (A)中、 Mは Si、 Ti及び Zrからなる群から選ばれる少なくとも一つの元素を示し 、 R1は加水分解性基を示し、 R2は炭素数 1〜4のアルキル基又はフエ二ル基を示し、 nは 0〜2の整数を表す。 n (4-n) In the formula (A), M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, and R 2 has 1 to 4 carbon atoms. An alkyl group or a phenyl group, and n represents an integer of 0 to 2.
[0087] 式 (A)における R1は、通常、無触媒、過剰の水の共存下に 25〜: 100°Cで加水分 解されて、水酸基又はシロキサン結合ができる基を表わす。 nは、 0〜2の整数である 力 好ましくは 0〜1の整数であり、特に好ましくは 0である。 nの数力 、さレ、ほど、生成 する水酸基の数が多くなるため、ガラスからなる外囲器構成部材、及び上記封着層と の結合数が増え、界面での良好な接着性が発現する。なお、式 (A)で表される有機 金属化合物の加水分解物中には、一部の未加水分解の R1基が残ってレ、てもよレ、。 [0087] R 1 in the formula (A) usually represents a group capable of forming a hydroxyl group or a siloxane bond by hydrolysis at 25 to 100 ° C in the presence of no catalyst and excess water. n is an integer of 0 to 2, preferably an integer of 0 to 1, particularly preferably 0. Since the number power of n increases as the number of hydroxyl groups increases, the envelope constituent member made of glass, and the sealing layer The number of bonds increases, and good adhesion at the interface is developed. In the hydrolyzate of the organometallic compound represented by the formula (A), some unhydrolyzed R 1 groups may remain.
[0088] また、 R1の好ましい例としては、水素原子、炭素数 1〜4のアルコキシ基、ハロゲン 原子又はイソシァネート基が挙げられる。炭素数 1〜4のアルコキシ基の具体例として は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が挙げられる。アルコキシ基を 有する場合には、触媒として酸を共存させると加水分解が促進されるため好ましレ、。 アルコキシ基を有する場合には、加水分解およびその縮合反応条件によって、多く の水酸基を生成させることが可能となるため、界面での接着性を高めることが可能と なる。また一部のアルコキシ基をァセチルァセトナト基で置換した化合物も用いられる [0088] Preferable examples of R 1 include a hydrogen atom, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and an isocyanate group. Specific examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. In the case of having an alkoxy group, hydrolysis is promoted when an acid is used as a catalyst, which is preferable. In the case of having an alkoxy group, it is possible to generate a large number of hydroxyl groups depending on the hydrolysis and the condensation reaction conditions, so that the adhesion at the interface can be improved. Also, compounds in which some alkoxy groups are substituted with acetylylacetonate groups can be used.
[0089] ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が 挙げられる。イソシァネート基やハロゲン原子を有する化合物は加水分解速度が速 いため、その化合物をそのまま塗布しても空気中の水分によって加水分解が進行す る。そのため加水分解性化合物自身の縮合反応よりも、外囲器構成部材ゃ封着材と 反応する確率が上がるため、界面での密着性を高めることが可能となる。 [0089] Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Since a compound having an isocyanate group or a halogen atom has a high hydrolysis rate, hydrolysis proceeds with moisture in the air even if the compound is applied as it is. For this reason, the probability of reacting the envelope component with the sealing material is higher than the condensation reaction of the hydrolyzable compound itself, so that the adhesion at the interface can be increased.
好ましい加水分解性基としては、取り扱いの容易さや安全性の点からアルコキシ基 又はイソシァネート基を挙げることができる。  Preferred hydrolyzable groups include alkoxy groups or isocyanate groups from the viewpoint of ease of handling and safety.
[0090] 式 (A)における Mは、 Si、 Ti及び Zrからなる群力ら選ばれる少なくとも一つの元素 であり、これらの元素を含んだ化合物はいずれも水酸基を生じやすぐ界面での接着 性を高めることが可能となる。入手のし易さの点から、 Siがより好ましぐ反応制御がし やすぐ取り扱いが容易で保存安定性も高い。  [0090] M in the formula (A) is at least one element selected from the group force consisting of Si, Ti, and Zr, and any compound containing these elements generates a hydroxyl group or has an adhesive property at the interface. Can be increased. From the point of availability, Si has a more favorable reaction control and is easy to handle and has high storage stability.
[0091] 式 (A)における R2は、炭素数:!〜 4のアルキル基又はフエニル基である。好ましくは 、メチル基、ェチル基、ブチル基、フエニル基が挙げられる。過度に炭素数が増える とその疎水性や立体障害により、その機能を損なってしまうため好ましくなレ、。好まし くはメチル基又はェチル基が挙げられる。 [0091] R 2 in the formula (A) is an alkyl group or phenyl group having carbon numbers:! Preferably, a methyl group, an ethyl group, a butyl group, and a phenyl group are used. If the number of carbons increases excessively, its function is impaired due to its hydrophobicity and steric hindrance. A methyl group or an ethyl group is preferable.
[0092] 式 (A)で示される化合物の好ましい具体例として、ケィ素化合物は、テトラクロロシ ラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロピポキシシラン、テトラブト キシシラン、テトライソシァネートシラン、メチルトリクロロシラン、メチルトリメトキシシラ ン、メチルトリイソシァネートシラン、ェチルトリメトキシシラン、ブチルトリメトキシシラン フエニルトリクロロシラン、フエニルトリメトキシシランが挙げられる。 [0092] As a preferable specific example of the compound represented by the formula (A), a silicon compound is tetrachlorosilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxyoxysilane, tetrabutoxysilane, tetraisocyanatesilane, methyltrichlorosilane. , Methyltrimethoxysila , Methyl triisocyanate silane, ethyltrimethoxysilane, butyltrimethoxysilane phenyltrichlorosilane, and phenyltrimethoxysilane.
[0093] また、チタン化合物としては、テトラクロ口チタン、テトラメトキシチタン、テトラエトキシ チタン、テトラプロピポキシチタン、テトラブトキシチタン、トリプロポキシモノァセチルァ セトナトチタン、ジプロポキシビスァセチルァセトナトチタンが挙げられる。  [0093] Further, examples of the titanium compound include tetrachloro titanium, tetramethoxy titanium, tetraethoxy titanium, tetrapropoxy titanium, tetrabutoxy titanium, tripropoxy monoacetyl cetato titanium, and dipropoxy bis acetyl cetato titanium. It is done.
また、ジルコニウム化合物としては、テトラプロポキシジルコニウム、テトラブトキシジノレ コニゥム、トリブトキシモノァセチルァセトナトジルコニウムが挙げられる。  Examples of the zirconium compound include tetrapropoxyzirconium, tetrabutoxyzinoleconium, and tributoxymonoacetylacetonatozirconium.
[0094] 上記した式 (A)で表される有機金属化合物及びその加水分解物から選ばれる 1種 以上の化合物は、必要により、アルコールなどの媒体中に好ましくは 0. 5〜: 10質量 %の濃度にて溶解又は分散され、溶液又は分散液の形態のプライマー層形成材とさ れる。  [0094] One or more compounds selected from the organometallic compound represented by the above formula (A) and a hydrolyzate thereof are preferably contained in a medium such as alcohol, preferably in a range of 0.5 to 10% by mass. The primer layer-forming material is in the form of a solution or a dispersion.
[0095] また、加水分解縮合反応を進めるにあたり、アルミニウム元素を含有する加水分解 縮合性化合物を添加してもよい。具体的に例示すると、アルミニウムのアルコキシィ匕 合物類が挙げられ、アルミニゥイソプロポキシドが挙げられる。  [0095] In proceeding with the hydrolysis-condensation reaction, a hydrolysis-condensable compound containing an aluminum element may be added. Specific examples include aluminum alkoxy compounds, and aluminum isopropoxide.
[0096] (IV)ディスプレー用外囲器  [0096] (IV) Display envelope
本発明におけるディスプレー装置とは、代表的には、高真空下において、陰極 (力 ソード)から放出され、高速で運動する電子を蛍光体に衝突させて、励起、発光させ るレ、わゆる力ソードルミネセンスタイプのものである。このような力ソードルミネセンスタ イブのディスプレー用装置は、電界放出型冷陰極を持つディスプレー装置 (FED)、 陰極線管(CRT)などによって代表される。  The display device according to the present invention is typically a light source that emits light from a cathode (force sword) under high vacuum and collides with a phosphor to excite and emit light. Sword luminescence type. Such power sword luminescence type display devices are represented by field emission type cold cathode display devices (FED), cathode ray tubes (CRT), and the like.
[0097] このようなディスプレー装置は、力ソードルミネセンスを実現するため、内部が高真 空になったガラスからなる真空外囲器を備えている。本発明で外囲器を形成するガラ スは、好ましくは、 Si〇 - SrO-BaO-Q O— Al〇系, SiO— TO— Q〇一 Al O  [0097] Such a display device is provided with a vacuum envelope made of glass with a high vacuum inside in order to realize force-sword luminescence. The glass forming the envelope in the present invention is preferably SiO-SrO-BaO-QO-AlO system, SiO-TO-QO1 AlO
2 2 2 3 2 2 2 系、 SiO -TO-Q O-Al〇 -ZrO系などが使用される。なお、これらの式で、 T 2 2 2 3 2 2 2 system, SiO 2 -TO-Q O—Al 0 -ZrO system, etc. are used. In these equations, T
3 2 2 2 3 2 3 2 2 2 3 2
Oはアルカリ土類金属の酸化物、 Q Oはアルカリ金属酸化物を表す。なかでも、 SiO  O represents an oxide of an alkaline earth metal, and Q O represents an alkali metal oxide. Above all, SiO
2  2
-TO-Q O-Al〇系ガラスが好ましい。真空外囲器内には、高速の電子ビーム -TO-Q O-AlO glass is preferred. Inside the vacuum envelope, a high-speed electron beam
2 2 2 3 2 2 2 3
を放出するための駆動回路と、該電子ビームが衝突することで励起されて蛍光を生じ る蛍光体が塗布されたディスプレーパネル部と、が設置される。 Is excited when the electron beam collides with a drive circuit for emitting light, and generates fluorescence. And a display panel portion coated with a phosphor.
[0098] 封着後の真空外囲器は、内部を高真空にするために高温で真空排気される。この 高温真空排気工程は、従来 250〜380°Cで実施されてきたが、従来技術でも述べた ように、ディスプレー用装置の製造時の熱処理は可能な限り低温で実施されることが 好ましい。したがって、高温真空排気工程は、今後 200〜330°Cの温度で実施され ると予想される。この高温真空排気工程の際、真空外囲器の封着部には、真空応力 と熱応力と、が負荷される。  [0098] The vacuum envelope after sealing is evacuated at a high temperature in order to make the inside high vacuum. This high-temperature evacuation process has been conventionally performed at 250 to 380 ° C. However, as described in the prior art, it is preferable that the heat treatment at the time of manufacturing the display device is performed at the lowest possible temperature. Therefore, it is expected that the high-temperature evacuation process will be carried out at a temperature of 200 to 330 ° C in the future. During the high-temperature evacuation process, vacuum stress and thermal stress are applied to the sealing portion of the vacuum envelope.
[0099] 本発明におけるディスプレー装置について、従来の CRT及び FEDの構成を例に、 以下に説明する。ただし、本発明におけるディスプレー装置は、 CRT及び FEDのみ に限定されるものではなレ、。 CRT及び FEDのように最終製品の状態で内部が真空と なる外囲器ではなくとも、ガス置換などのために一時的に真空状態を経るような外囲 器を有するディスプレー装置も含む。例えば、プラズマディスプレー(PDP)なども含 まれる。  [0099] The display device according to the present invention will be described below using the conventional CRT and FED configurations as examples. However, the display device in the present invention is not limited to CRT and FED. Including CRT and FED, which is not an envelope in which the inside is in a vacuum in the final product state, a display device having an envelope that temporarily undergoes a vacuum state for gas replacement or the like is also included. For example, plasma display (PDP) is also included.
[0100] 図 1は、本発明におけるディスプレー装置の 1実施形態の一部切欠き側面図であり 、ディスプレー装置 1は、 CRTとして構成される。図 1中、図面右側を前側とし、左側 を後側とする。  FIG. 1 is a partially cutaway side view of an embodiment of a display device according to the present invention, and the display device 1 is configured as a CRT. In Fig. 1, the right side of the drawing is the front side and the left side is the rear side.
図 1において、ディスプレー装置 1は、ディスプレーパネル部 2と、ガラスファンネル 部 3と、で構成される真空外囲器 (ガラスバルブ) 11を備えている。真空外囲器 11の 前側を構成するディスプレーパネル部 2は、その前方に位置し、画像を表示するため の略平面状のディスプレー領域 21と、該ディスプレー領域 21を含むフェース部の側 部から後方に延びるスカート部 22よりなる。真空外囲器 11の後側を構成するガラスフ アンネル部 3の後端には、電子銃 16を格納するネック 31が設けられている。真空外 囲器 11を構成するディスプレーパネル部 2及びガラスファンネル部 3は、通常、ガラス 製である。但し、ディスプレーパネル部 2のディスプレー領域 21は、その全体がガラス 製ではなぐその前側部分が光透過性の樹脂からなる複層材であってもよい。また、 真空外囲器 11の構成部材は、ガラス以外の無機材料製、具体的には例えば、セラミ ック製又は金属製であってもよレ、。  In FIG. 1, a display device 1 includes a vacuum envelope (glass bulb) 11 including a display panel unit 2 and a glass funnel unit 3. The display panel part 2 constituting the front side of the vacuum envelope 11 is located in front of the vacuum envelope 11 and has a substantially planar display area 21 for displaying an image and a rear side from the side of the face part including the display area 21. It consists of a skirt portion 22 that extends in the direction. A neck 31 for storing the electron gun 16 is provided at the rear end of the glass channel portion 3 constituting the rear side of the vacuum envelope 11. The display panel part 2 and the glass funnel part 3 constituting the vacuum envelope 11 are usually made of glass. However, the display region 21 of the display panel unit 2 may be a multilayer material made of a light-transmitting resin in its front side portion that is not entirely made of glass. Further, the constituent members of the vacuum envelope 11 may be made of an inorganic material other than glass, specifically, for example, ceramic or metal.
[0101] 図 1のディスプレー装置 1では、この他、強度を保持するための防爆補強バンド 17 、電子銃 16から放出される電子ビームとの相互作用により蛍光を発する蛍光体 13、 該蛍光をディスプレー面 21の側に反射するアルミニウム膜 14、該電子ビームを蛍光 体 13の所定の位置にランディングさせるためのシャドウマスク 15、該シャドウマスクを スカート部 22の内壁に固定するためのスタッドピン 18等を含む。 [0101] The display device 1 shown in Fig. 1 also has an explosion-proof reinforcement band 17 for maintaining strength. A phosphor 13 that emits fluorescence by interaction with an electron beam emitted from the electron gun 16; an aluminum film 14 that reflects the fluorescence to the display surface 21 side; and the electron beam landing on a predetermined position of the phosphor 13 A shadow mask 15 for making the shadow mask 15, a stud pin 18 for fixing the shadow mask to the inner wall of the skirt portion 22, and the like.
[0102] 本発明におけるディスプレー装置 1では、真空外囲器 11の構成部材であるデイス プレーパネル部 2と、ガラスファンネル部 3とが封着層 5を介して封着される。封着層 5 は、後述する方法により、真空外囲器構成部材の封着面に封着材を適用、即ち、液 体の状態で封着材を塗布した後、又は封着材をフィルムとして取り付けた後、所望の 条件で焼成させて得た封着材の焼成体の層である。図 1のディスプレー装置 1では、 真空外囲器 11構成部材の封着面、具体的にはディスプレーパネル部 2のスカート部 22の後側の端面と、ガラスファンネル部 3の前側の端面とが封着層 5を介して封着さ れる。 In the display device 1 according to the present invention, the display panel portion 2 and the glass funnel portion 3 which are constituent members of the vacuum envelope 11 are sealed via the sealing layer 5. The sealing layer 5 is formed by applying a sealing material to the sealing surface of the vacuum envelope constituent member by the method described later, that is, after applying the sealing material in a liquid state, or using the sealing material as a film. It is a layer of a fired body of a sealing material obtained by firing under desired conditions after being attached. In the display device 1 shown in FIG. 1, the sealing surface of the vacuum envelope 11 components, specifically, the rear end surface of the skirt portion 22 of the display panel portion 2 and the front end surface of the glass funnel portion 3 are sealed. It is sealed through the attachment layer 5.
[0103] 本発明におけるディスプレー装置は、真空外囲器の封着部の曲げ強度が 220°Cに おいて 30MPa以上であることが好ましい。ここで外囲器の封着部とは、封着層 5と外 囲器構成部材における前記封着層 5の極近傍力 なる部分を指し、曲げモードを負 荷した際、当該封着部を起点として破壊するときの強度を封着部の曲げ強度とした。 図 1のディスプレー装置 1を例にとると、スカート部 22の後端部分及びファンネル部 3 の前端部分からなる封着部の曲げ強度である。  [0103] In the display device of the present invention, the bending strength of the sealing portion of the vacuum envelope is preferably 30 MPa or more at 220 ° C. Here, the sealing portion of the envelope refers to a portion of the sealing layer 5 and the component constituting the envelope that is in the immediate vicinity of the sealing layer 5, and when the bending mode is loaded, The strength at the time of breaking as the starting point was defined as the bending strength of the sealing portion. Taking the display device 1 of FIG. 1 as an example, it is the bending strength of the sealing portion composed of the rear end portion of the skirt portion 22 and the front end portion of the funnel portion 3.
本発明で、曲げ強度は、例えば、後述する実施例に記載するように、 JIS R1601 に準じた方法で実施される 4点曲げ試験の測定値として求めることができる。  In the present invention, the bending strength can be determined, for example, as a measured value of a four-point bending test performed by a method according to JIS R1601, as described in the examples described later.
[0104] 図 2は、本発明におけるディスプレー装置の別の 1実施形態の一部切欠き側面図 であり、ディスプレー装置は、典型的な FEDとして構成されている。図 2中、図面上側 を前側とし、下側を後側とする。図 2のディスプレー装置 1 'では、その前側に位置す るフロントパネル部(ディスプレーパネル部) 2'と、その後側に、該フロントパネル部 2' に対向した配置されるリアパネル部 3 '、該フロントパネル部 2'と該リアパネル部 3 'の 間に配置される外枠 4と、で真空外囲器 11 'が構成されている。真空外囲器 11 'の構 成部材であるフロントパネル部 2'、リアパネル部 3 '及び外枠 4は、通常はガラス製で ある。但し、ガラス以外の無機材料製、例えばセラミック製又は金属製であってもよい 。ここで真空外囲器 11 'の構成部材同士の接合面は、封着層 5を介して封着されて いる。したがって、フロントパネル部 2'と、外枠 4との接合面、及びリアパネル部 3'と、 外枠 4との接合面は、封着層 5を介して封着されている。 FIG. 2 is a partially cutaway side view of another embodiment of a display device according to the present invention, and the display device is configured as a typical FED. In Fig. 2, the upper side of the drawing is the front side and the lower side is the rear side. In the display device 1 ′ in FIG. 2, a front panel portion (display panel portion) 2 ′ located on the front side thereof, and a rear panel portion 3 ′ disposed on the rear side thereof facing the front panel portion 2 ′, the front panel portion. A vacuum envelope 11 ′ is composed of the outer frame 4 disposed between the panel portion 2 ′ and the rear panel portion 3 ′. The front panel part 2 ', the rear panel part 3' and the outer frame 4 which are constituent members of the vacuum envelope 11 'are usually made of glass. However, it may be made of an inorganic material other than glass, for example, ceramic or metal. . Here, the joint surfaces of the constituent members of the vacuum envelope 11 ′ are sealed through the sealing layer 5. Therefore, the joint surface between the front panel portion 2 ′ and the outer frame 4 and the joint surface between the rear panel portion 3 ′ and the outer frame 4 are sealed via the sealing layer 5.
ディスプレー装置 1 'において、リアパネル部 3 'は、電界放出型の電子源基板であ り、その内側面、即ちフロントパネル部 2'に対向する面上には、陰極 61、及び該陰 極 61上に形成される電界放出型冷陰極 62を有している。また、リアパネル部 3 'のフ ロントパネル部 2'に対向する面上には、絶縁層 64をはさんで電子流を制御するグー ト電極 63が形成されている。一方、フロントパネル部 2'のリアパネル部 3 'に対向する 面上には、陽極 65、及び該電界放出型冷陰極 62と対をなす蛍光体画素 66が設け られている。  In the display device 1 ′, the rear panel portion 3 ′ is a field emission type electron source substrate. On the inner side surface thereof, that is, the surface facing the front panel portion 2 ′, the cathode 61 and the negative electrode 61 are provided. The field emission cold cathode 62 is formed. Further, on the surface of the rear panel portion 3 ′ that faces the front panel portion 2 ′, a Goto electrode 63 that controls the electron flow is formed across the insulating layer 64. On the other hand, an anode 65 and a phosphor pixel 66 paired with the field emission cold cathode 62 are provided on the surface of the front panel portion 2 ′ facing the rear panel portion 3 ′.
この FEDディスプレー装置においても、封着層 5、即ち本発明の封着材には第 1実 施形態のディスプレー装置 1と同様の特性が要求される。  Also in this FED display device, the sealing layer 5, that is, the sealing material of the present invention, is required to have the same characteristics as the display device 1 of the first embodiment.
[0105] (V)封着方法 [0105] (V) Sealing method
本発明におレ、てディスプレー装置の外囲器構成部材を封着する場合、好ましくは 次のように行われる。即ち、封着しょうとするディスプレー装置用の外囲器構成部材 の封着面に対して、好ましくは、前記した式 (A)で表される有機金属化合物及びその 加水分解物から選ばれる 1種以上の化合物を含む溶液又は分散液からなるプライマ 一層形成材が塗布される。塗布は、噴霧又は刷毛塗りのいずれの手段でもよい。乾 燥後に封着面上に、好ましくは 1〜: !OOOnmの厚みのプライマー層形成材の層が形 成されるのが好適である。上記乾燥は、室温にて短時間にて行われるが、その条件 についてはプライマー層形成材の種類により異なる。  When sealing the envelope component of the display device in the present invention, it is preferably performed as follows. That is, for the sealing surface of the envelope constituent member for the display device to be sealed, preferably one kind selected from the organometallic compound represented by the formula (A) and the hydrolyzate thereof. A primer single layer forming material comprising a solution or dispersion containing the above compound is applied. Application may be either spraying or brushing. A layer of primer layer forming material having a thickness of preferably 1 to: OOOnm is preferably formed on the sealing surface after drying. The drying is performed at room temperature in a short time, but the conditions vary depending on the type of primer layer forming material.
[0106] プライマー層形成材の層を形成した後、該プライマー層形成材の層の上に、無機 酸化物フィラーを含有する、ポリイミド化合物及びポリアミド酸から選ばれる 1種以上 の化合物を主成分とする封着材又はその液を塗布するか、若しくは無機酸化物フィ ラーを含むポリイミド化合物を主成分とする封着材フィルムを貼り付ける。塗布面には 、好ましくは 150〜200°Cにて、乾燥又はプレ焼成して封着材の層が形成される。 封着される外囲器構成部材の好ましくは両方の封着面に対して上記のようにしてプ ライマー層形成材の層及び封着材の層が形成されるが、必要に応じて、封着面の片 方は、プライマー層形成材の層のみを形成してもよい。 [0106] After forming the primer layer forming material layer, the primer layer forming material layer contains, as a main component, one or more compounds selected from polyimide compounds and polyamic acids containing an inorganic oxide filler. A sealing material or a liquid thereof is applied, or a sealing material film mainly composed of a polyimide compound containing an inorganic oxide filler is applied. The coated surface is preferably dried or pre-baked at 150 to 200 ° C. to form a sealing material layer. The layer of the primer layer forming material and the layer of the sealing material are preferably formed on both the sealing surfaces of the envelope constituent member to be sealed as described above. Piece of wear Alternatively, only the primer layer forming material layer may be formed.
[0107] 次いで、プライマー層形成材の層及び封着材の層を有する外囲器構成部材の封 着面は、封着面同士を合わせて、好ましくは 250〜400°Cで 500〜: 10分間、より好ま しくは 330〜400°Cで 300〜10分間、さらに好ましくは 330〜400°Cで 60〜: 10分間 本焼成することにより封着される。その後、外囲器構成部材はその内部を高真空に するため、 200〜330°Cの高温で真空排気することでディスプレー装置の外囲器が 製造される。  [0107] Next, the sealing surface of the envelope constituting member having the primer layer forming material layer and the sealing material layer is preferably 250 to 400 ° C, and preferably 500 to 10 It is sealed by firing for about 10 minutes, preferably at 330 to 400 ° C for 300 to 10 minutes, more preferably at 330 to 400 ° C for 60 to 10 minutes. After that, the envelope components are evacuated at a high temperature of 200 to 330 ° C. so that the inside of the envelope component is placed in a high vacuum, and the envelope of the display device is manufactured.
[0108] 本発明における上記の封着面の焼成は、例えば、窒素雰囲気、アルゴンガス雰囲 気のような不活性ガス雰囲気下で実施してもよぐ又は空気中で実施してよい。 本発明における封着においては、焼成温度が 400°C未満であるため、従来のフリツ トガラスを封着材に使用した場合におけるディスプレー装置中の金属部材に関する 熱変形等の問題が解消されてレ、る。  [0108] The firing of the sealing surface in the present invention may be performed in an inert gas atmosphere such as a nitrogen atmosphere or an argon gas atmosphere, or may be performed in the air. In the sealing in the present invention, since the firing temperature is less than 400 ° C, problems such as thermal deformation related to the metal member in the display device when the conventional frit glass is used as the sealing material are eliminated. The
[0109] なお、上記においては、プライマー層形成材と、封着材とを、該順序で別個に適用 する場合について説明したが、本発明においては、プライマー層形成材と、封着材と を含む封着用組成物として、外囲器構成部材の封着面に同時に適用することができ る。かかる封着用組成物としては、下記式 (A)で表される有機金属化合物及びその 加水分解物から選ばれる 1種以上の化合物を含むプライマー層形成材と、無機酸化 物フイラ一と、ポリイミド化合物及びポリアミド酸化合物から選ばれる 1種以上の化合 物を含む封着材と、を含むものが好ましい。  [0109] In the above description, the primer layer forming material and the sealing material are applied separately in this order. However, in the present invention, the primer layer forming material and the sealing material are The sealing composition to be included can be applied simultaneously to the sealing surface of the envelope constituent member. Examples of the sealing composition include a primer layer forming material containing one or more compounds selected from an organometallic compound represented by the following formula (A) and a hydrolyzate thereof, an inorganic oxide filler, and a polyimide compound. And a sealing material containing at least one compound selected from polyamic acid compounds.
R2 MR1 …(A) R 2 MR 1 (A)
n (4-n)  n (4-n)
(式中、 Mは Si、 Ti及び Zrからなる群から選ばれる少なくとも一つの元素を示し、 R1 は加水分解性基を示し、 R2は炭素数 1〜4のアルキル基又はフエ二ル基を示し、 nは 0〜2の整数を表す。 ) (Wherein, M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms. N represents an integer of 0 to 2.)
前記封着用組成物におけるプライマー層形成材と封着材との割合は、封着材 100 質量部に対して、プライマー層形成材が好ましくは、 0. 5〜: 10質量部、特に好ましく は 1〜5質量部が好適である。 実施例 The ratio of the primer layer forming material and the sealing material in the sealing composition is preferably from 0.5 to 10 parts by weight, particularly preferably 1 to 100 parts by weight of the sealing material. ˜5 parts by mass is preferred. Example
[0110] 以下、本発明を実施例及び比較例により具体的に説明するが、これらに限定して 解釈されるものではない。  [0110] The present invention will be specifically described below with reference to Examples and Comparative Examples, but should not be construed as being limited thereto.
なお、実施例及び比較例の中で、特に断りのない単位は質量基準である。 例 1〜3が実施例であり、例 4〜6が比較例である。  In Examples and Comparative Examples, the unit without particular notice is based on mass. Examples 1 to 3 are examples, and examples 4 to 6 are comparative examples.
(ポリイミド(1)の合成)  (Synthesis of polyimide (1))
攪拌器、還流冷却器および窒素導入管を備えた容器に、 4, 4' ビス(3—アミノフ エノキシ)ビフエ二ノレ 55· 26g (0. 15モノレ)、 3, 4、 3,, 4'ービフエニノレテトラ力ノレボン 酸二無水物 15. 0g (0. 051モノレ)、無水ピロメリット酸 16. 69g (0. 0765モノレ)、 4— フエ二ルェチニルフタル酸無水物 11 · 17g (0. 045モル)、 m クレゾ一ノレ 290gを入 れ、室温で 20時間攪拌した。その後、 200°Cで 3時間反応し、室温まで冷却した。次 いで、メタノール 600gを添加後、濾過してポリイミド(1)を得た。  In a vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube, 4, 4 'Bis (3-aminophenoxy) biphenol 55 · 26g (0.15 monole), 3, 4, 3, 4'- Biphenylenotetracarboxylic Norebon dianhydride 15.0 g (0.051 monole), pyromellitic anhydride 16.69 g (0.0765 monole), 4-phenol ethynyl phthalic anhydride 11 · 17 g (0.045 mol) ), 290 g of Crezo Monore were added and stirred at room temperature for 20 hours. Thereafter, the mixture was reacted at 200 ° C for 3 hours and cooled to room temperature. Next, 600 g of methanol was added, followed by filtration to obtain polyimide (1).
[0111] (ポリイミド(2)の合成) [0111] (Synthesis of polyimide (2))
攪拌器、還流冷却器および窒素導入管を備えた容器に、 1 , 3—ビス(3—ァミノフエ ノキシ)ベンゼン 35. 08g (0. 12モノレ)、 3, 3 ジァミノべンゾフエノン 6. 37g (0. 93 モノレ)、 3, 4、 3 ', 4,一ビ、フエニノレテトラ力ノレボン酸二無水物 39. 72g (0. 135モノレ) 、 4_フエニルェチュルフタル酸無水物 7. 44g (0. 03モル)、 m_タレゾール 275g を入れ、室温で 20時間攪拌した。その後、 200°Cで 3時間反応し、室温まで冷却した 。次いで、メタノール 550gを添加後、濾過してポリイミド(2)を得た。  In a vessel equipped with a stirrer, reflux condenser and nitrogen inlet tube, 35.08g (0.12 monole) of 1,3-bis (3-aminophenoxy) benzene, 6.37g of 3,3 diaminobenzozoenone (0. 93 Monore), 3, 4, 3 ', 4, Ibi, Phenyloretol Norebonic dianhydride 39. 72g (0. 135 Monore), 4_ Phenylethylphthalic anhydride 7.44g (0.03) Mol), m_Talesol 275 g was added and stirred at room temperature for 20 hours. Thereafter, the mixture was reacted at 200 ° C for 3 hours and cooled to room temperature. Next, 550 g of methanol was added, followed by filtration to obtain polyimide (2).
[0112] [例 1] [0112] [Example 1]
ポリイミド(1)が 28質量%、ガラス繊維フィラー A (平均繊維径 10 μ m、平均繊維長 70 μ πι、アスペクト比: 7)が 12質量0 /0、及びジヒドロタ一ビネオールが 60質量0 /0の 割合になるように、それぞれの材料を計り取り、乳鉢を用いてすり潰すようにしながら 混合してペースト状物にした。 Polyimide (1) is 28 mass%, glass fiber filler A (average fiber diameter 10 mu m, average fiber length 70 μ πι, aspect ratio: 7) is 12 mass 0/0, and Jihidorota one Bineoru 60 mass 0/0 Each material was weighed so as to have a ratio of 5 and mixed into a paste-like material while being ground using a mortar.
なお、上記ガラス繊維フィラー Αのアルカリ金属酸化物の含有量は、 Na〇:0. 3%  The content of alkali metal oxide in the above glass fiber filler 繊 維 is Na ○: 0.3%
2 2
、 K〇:0. 2%及び Li〇:0%であった。また、ガラス繊維フィラー Aは、次のようにし, K 0: 0.2% and Li 0: 0%. The glass fiber filler A is as follows.
2 2 twenty two
てシランカップリング剤により処理した。水 100g及び 3—ァミノプロピルトリメトキシシラ ン lgを仕込んだ容器中に、ガラス繊維フィラー AlOgを添加し、攪拌下に室温で 4時 間処理し、濾過、乾燥させた。 And treated with a silane coupling agent. Add glass fiber filler AlOg to a container charged with 100 g of water and 3-aminopropyltrimethoxysilane lg and stir at room temperature for 4 hours. Interprocessed, filtered and dried.
上記ペースト状物は、ガラス外囲器の封着材に使用されるが、このペースト状物を 封着材とした場合の封着層の熱膨張係数(ひ)を下記の方法で測定した。次いで、こ のペースト状物を使用してガラス外囲器に使用されるガラス板を用いて、下記の(2) に記載される方法で、封着層に発生する気泡の状態を面積比として測定した。これら の結果を表 1に示した。得られた封着層中のガラス繊維フィラー Aの含有量は、ぺー スト状物作成時のポリイミド(1)とガラス繊維フィラー Aとの合計に対するガラス繊維フ イラ一 Aの割合と同じで、 30%である。  The paste-like material is used as a sealing material for glass envelopes. The thermal expansion coefficient (ii) of the sealing layer when this paste-like material is used as a sealing material was measured by the following method. Next, using this paste-like material, using the glass plate used in the glass envelope, the state of bubbles generated in the sealing layer is defined as the area ratio by the method described in (2) below. It was measured. These results are shown in Table 1. The content of the glass fiber filler A in the obtained sealing layer is the same as the ratio of the glass fiber filler A to the total of the polyimide (1) and the glass fiber filler A at the time of the paste-like preparation. %.
[0113] (1)封着層の熱膨張係数(ひ) [0113] (1) Thermal expansion coefficient of sealing layer
ペースト状物を所定ギャップのコーターでガラス板上にキャストし、 160°Cで 30分お よび 220°Cで 2時間プレ焼成した後、 350°Cで 2時間焼成した。その後、 80°Cの温水 に浸漬してガラスからフィルムを剥離し、 150°Cで 3時間乾燥して、フィルムを得た。 このフィルムを 5mm X 17mmの大きさに切断し、島津製作所社製 TMA60を用い 、 30°Cから 150°Cまで 5°C/分で昇温して、引っ張り測定により熱膨張係数(ct )を測 定した。  The paste was cast on a glass plate with a coater with a predetermined gap, pre-baked at 160 ° C for 30 minutes and 220 ° C for 2 hours, and then fired at 350 ° C for 2 hours. Thereafter, the film was peeled off from the glass by dipping in warm water at 80 ° C and dried at 150 ° C for 3 hours to obtain a film. This film is cut to a size of 5mm x 17mm, heated at 5 ° C / min from 30 ° C to 150 ° C using TMA60 manufactured by Shimadzu Corporation, and the coefficient of thermal expansion (ct) is measured by tensile measurement. It was measured.
(2)発生気泡の面積比  (2) Generated bubble area ratio
ペースト状物を、 2枚の 60mm角の板状ソーダライムガラス(ガラス組成 Si〇 : 71  Paste-like material is made up of two 60 mm square plate-like soda-lime glasses (glass composition Si〇: 71
2 2
%、 Ca〇:10%、 Na 0 : 13%、 Al O : 2%、 Mg〇:4%。両面は鏡面)の中央にそ %, Ca 0: 10%, Na 0: 13%, Al 2 O: 2%, Mg 0: 4%. (Both sides are mirror surfaces)
2 2 3  2 2 3
れぞれ約 0· 13g計り取った後、 150°Cで 30分乾燥、 220°Cで 120分の熱処理をカロ えた。冷却後、二つのガラス片を接合面で重ね合わせ、約 100g/cm2の荷重を負 荷した状態で 350°Cで 120分の焼成を実施し、接着部のサンプルを得た。接着面を 鏡面であるガラス越しに観察し、気泡の状態をデジタルカメラで撮影した。 About 0.13g each was weighed, dried at 150 ° C for 30 minutes, and heat treated at 220 ° C for 120 minutes. After cooling, the two glass pieces were superposed on the joint surface, and baked at 350 ° C for 120 minutes with a load of about 100 g / cm 2 , and a sample of the bonded portion was obtained. The bonded surface was observed through the mirror glass, and the state of bubbles was photographed with a digital camera.
得られた画像を 2値化処理により気泡部分とそうでなレ、部分に分離し、気泡部分の 面積 (A)と観察した接着部の面積 (B)を算出し、 100 X AZBを気泡の面積比(%) と定義した。経験から、この面積比が 10以上のときは気密性保持や機械的信頼性に 問題のある可能性が高いと考えられる。  The resulting image is binarized to separate the bubble part from the likely part, and the area of the bubble part (A) and the area of the observed adhesion part (B) are calculated. The area ratio (%) was defined. From experience, when this area ratio is 10 or more, there is a high possibility that there is a problem in maintaining airtightness and mechanical reliability.
[0114] [例 2] [0114] [Example 2]
例 1において、ポリイミド(1)の代りにポリイミド(2)を使用し、かつガラス繊維フィラー Aの代りに、同じガラスからなるガラス繊維フィラー B (平均繊維径 10 μ ΐη、平均繊維 長 100 / m、アスペクト比: 10)を使用し、ガラス繊維フィラー Bの含有量を封着層中 に 20質量%としたほかは、例 1と同様にしてペースト状物を製造し、封着層を作製し た。 In Example 1, polyimide (2) is used instead of polyimide (1) and glass fiber filler Instead of A, glass fiber filler B (average fiber diameter 10 μΐη, average fiber length 100 / m, aspect ratio: 10) made of the same glass is used, and the content of glass fiber filler B in the sealing layer A pasty material was produced in the same manner as in Example 1 except that the content was 20% by mass, and a sealing layer was produced.
このペースト状物を使用した封着層について、例 1と同様にして、熱膨張係数(ひ) を測定し、かつ発生気泡の面積比を求めた。その結果を表 1に示す。  For the sealing layer using this paste-like material, the thermal expansion coefficient (ii) was measured in the same manner as in Example 1, and the area ratio of the generated bubbles was determined. The results are shown in Table 1.
[0115] [例 3] [0115] [Example 3]
例 1において、ガラス繊維フィラー Aの代りに、同じガラスからなるガラス繊維フイラ 一 C (平均繊維径 10 μ m、平均繊維長 40 μ m、アスペクト比: 4)を使用し、ガラス繊 維フイラ一 Cの含有量を封着層中に 40質量%としたほかは、例 1と同様にしてペース ト状物を製造し、封着層を作製した。  In Example 1, glass fiber filler C made of the same glass (average fiber diameter 10 μm, average fiber length 40 μm, aspect ratio: 4) was used instead of glass fiber filler A. A pasty material was produced in the same manner as in Example 1 except that the content of C was 40% by mass in the sealing layer to prepare a sealing layer.
このペースト状物を使用した封着層について、例 1と同様にして、熱膨張係数(ひ) を測定し、かつ発生気泡の面積比を求めた。その結果を表 1に示す。  For the sealing layer using this paste-like material, the thermal expansion coefficient (ii) was measured in the same manner as in Example 1, and the area ratio of the generated bubbles was determined. The results are shown in Table 1.
[0116] [表 1] [0116] [Table 1]
Figure imgf000036_0001
Figure imgf000036_0001
[例 4〜6コ [Example 4-6
例 1において、それぞれ、表 2に示されるように、フイラ一として、例 4 (無添加)、例 5 (カオリン:平均短軸約 4 μ m、平均長軸約 24 μ m、アスペクト比: 6)、例 6 (マイ力:燐 片状粒子、平均短軸約 0. 24 x m、平均長軸約 12 x m、アスペクト比: 50)を使用し たほかは、例 1と同様にしてペースト状物を製造し、封着層を作製した。  In Example 1, as shown in Table 2, as a filler, Example 4 (no addition), Example 5 (Kaolin: average minor axis about 4 μm, average major axis about 24 μm, aspect ratio: 6 ), Example 6 (My power: scale-like particles, average minor axis about 0.24 xm, average major axis about 12 xm, aspect ratio: 50) And a sealing layer was produced.
このペースト状物を使用した封着層について、例 1と同様にして、熱膨張係数(ひ) を測定し、かつ発生気泡の面積比を求めた。その結果を表 2に示す。 For the sealing layer using this paste-like material, the coefficient of thermal expansion ( And the area ratio of the generated bubbles was determined. The results are shown in Table 2.
[0118] [表 2] [0118] [Table 2]
Figure imgf000037_0001
Figure imgf000037_0001
[0119] 表 1及び表 2から明らかなように、本発明のいずれの実施例でも、封着層の熱膨張 係数は小さぐまた、封着層における発生気泡は小さい。一方、比較例である例 4〜6 では、フィラーが無添加(例 4)のものは、封着層の熱膨張係数は大きぐまた、力オリ ン (例 5)又はマイ力(例 6)を添加したものは、封着層における発生気泡が大きかった 産業上の利用可能性 As is apparent from Tables 1 and 2, in any of the examples of the present invention, the thermal expansion coefficient of the sealing layer is small, and the generated bubbles in the sealing layer are small. On the other hand, in Examples 4 to 6, which are comparative examples, the filler does not contain any additive (Example 4), and the thermal expansion coefficient of the sealing layer is large. In the case of the product added, the bubbles generated in the sealing layer were large.
[0120] 本発明により提供されるディスプレー用外囲器は電界放出型冷陰極を持つディス プレー(FED)、プラズマディスプレー(PDP)、陰極線管(CRT)などのディスプレー 装置として利用される。 なお、 2006年 3月 1日に出願された日本特許出願 2006— 55573号の明細書、特 許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。 [0120] The display envelope provided by the present invention is used as a display device such as a display (FED), a plasma display (PDP), and a cathode ray tube (CRT) having a field emission cold cathode. It should be noted that the entire contents of the description, patent claims, drawings and abstract of Japanese Patent Application No. 2006-55573 filed on March 1, 2006 are incorporated herein by reference. And that is what we take in.

Claims

請求の範囲 The scope of the claims
[1] ガラスからなる 2以上のディスプレー用外囲器構成部材が、封着層を介して封着さ れたディスプレー用外囲器であって、  [1] Two or more display envelope components made of glass are display envelopes sealed with a sealing layer,
前記封着層が、無機酸化物フィラーを含む、ポリイミド化合物及びポリアミド酸化合 物から選ばれる少なくとも 1種以上の化合物を主成分とする封着材の焼成体からなり 、前記無機酸化物フイラ一は、ガラス、シリカ、アルミナ及びチタユアからなる群から選 ばれる少なくとも 1種のフィラーであり、かつアルカリ金属酸化物が無機酸化物フイラ 一に対して 1質量%以下含有されることを特徴とするディスプレー用外囲器。  The sealing layer is made of a fired body of a sealing material mainly containing at least one compound selected from a polyimide compound and a polyamide oxide compound containing an inorganic oxide filler, and the inorganic oxide filler is And at least one filler selected from the group consisting of glass, silica, alumina, and titaure, and an alkali metal oxide is contained in an amount of 1% by mass or less based on the inorganic oxide filler. Envelope.
[2] 前記封着層が、 38 X 10_6/°C以下の熱膨張係数を有する請求項 1に記載のディ スプレー用外囲器。 [2] The display envelope according to [1], wherein the sealing layer has a thermal expansion coefficient of 38 × 10 _6 / ° C. or less.
[3] 前記無機酸化物フィラーが、ガラス繊維である請求項 1又は 2に記載のディスプレ 一用外囲器。  [3] The envelope for display according to claim 1 or 2, wherein the inorganic oxide filler is glass fiber.
[4] 前記無機酸化物フィラーが、アスペクト比 2〜: 100を有する請求項 1〜3のいずれか に記載のディスプレー用外囲器。  [4] The envelope for display according to any one of claims 1 to 3, wherein the inorganic oxide filler has an aspect ratio of 2 to 100.
[5] 前記無機酸化物フィラーが、封着層に 10〜60質量%含まれる請求項:!〜 4のいず れかに記載のディスプレー用外囲器。 [5] The envelope for display according to any one of [5] to [4], wherein the inorganic oxide filler is contained in the sealing layer in an amount of 10 to 60% by mass.
[6] 前記無機酸化物フィラーが、シランカップリング剤で処理されている請求項 1〜5の いずれかに記載のディスプレー用外囲器。 6. The display envelope according to any one of claims 1 to 5, wherein the inorganic oxide filler is treated with a silane coupling agent.
[7] 前記封着層の少なくとも片側に、有機金属化合物及びその加水分解物から選ばれ る少なくとも 1種の化合物の焼成体を含むプライマー層が存在する請求項 1〜6のい ずれかに記載のディスプレー用外囲器。 [7] The primer layer according to any one of claims 1 to 6, wherein a primer layer containing a fired body of at least one compound selected from an organometallic compound and a hydrolyzate thereof is present on at least one side of the sealing layer. Envelope for display.
[8] 前記有機金属化合物が、下記式 (A)で表される化合物である請求項 7に記載のデ イスプレー用外囲器。 8. The display envelope according to claim 7, wherein the organometallic compound is a compound represented by the following formula (A).
R2 MR1 - - - (A) R 2 MR 1 ---(A)
n (4— n)  n (4— n)
(式中、 Mは Si、 Ti及び Zrからなる群から選ばれる少なくとも一つの元素を示し、 R1 は加水分解性基を示し、 R2は炭素数 1〜4のアルキル基又はフエ二ル基を示し、 nは 0〜 2の整数を表す。 ) (Wherein, M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms. Where n is Represents an integer of 0-2. )
[9] 前記外囲器が、真空外囲器である請求項 1〜8のいずれかに記載のディスプレー 用外囲器。  [9] The display envelope according to any one of [1] to [8], wherein the envelope is a vacuum envelope.
[10] ガラスからなる 2以上のディスプレー用外囲器構成部材の封着面に、ポリイミド化合 物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合物を主成分とし、か つ無機酸化物フィラーを含み、前記無機酸化物フイラ一中にアルカリ金属酸化物が 1 質量%以下含有された封着材の層を形成する工程、  [10] At least one compound selected from a polyimide compound and a polyamic acid compound as a main component and an inorganic oxide filler on the sealing surface of two or more display envelope components made of glass A step of forming a sealing material layer containing 1% by mass or less of an alkali metal oxide in the inorganic oxide filler,
前記 2以上のディスプレー用外囲器構成部材の封着面同士が、前記封着材の層を 介して接合される工程、  A step in which the sealing surfaces of the two or more display envelope constituent members are joined together via the sealing material layer;
次いで、 250〜400°Cの温度に加熱して封着材を固化せしめる工程、  Next, a step of solidifying the sealing material by heating to a temperature of 250 to 400 ° C,
を含むことを特徴とするディスプレー用外囲器構成部材の封着方法。  A method for sealing an envelope constituting member for display, comprising:
[11] 前記封着材の層を形成する前に、前記外囲器構成部材の封着面に、式 (A)で表さ れる有機金属化合物及びその加水分解物から選ばれる 1種以上の化合物を含むプ ライマー層形成材を塗布する工程、を含む請求項 10に記載のディスプレー用外囲 器構成部材の封着方法。 [11] Before forming the sealing material layer, on the sealing surface of the envelope component member, at least one selected from the organometallic compound represented by the formula (A) and a hydrolyzate thereof. The method for sealing an envelope constituent member for a display according to claim 10, comprising a step of applying a primer layer-forming material containing a compound.
R2 MR1 - - - (A) R 2 MR 1 ---(A)
n (4-n)  n (4-n)
(式中、 Mは Si、 Ti及び Zrからなる群から選ばれる少なくとも一つの元素を示し、 R1 は加水分解性基を示し、 R2は炭素数 1〜4のアルキル基又はフエ二ル基を示し、 nは 0〜 2の整数を表す。 ) (Wherein, M represents at least one element selected from the group consisting of Si, Ti and Zr, R 1 represents a hydrolyzable group, R 2 represents an alkyl group or a phenyl group having 1 to 4 carbon atoms. N represents an integer of 0 to 2.)
[12] ポリイミド化合物及びポリアミド酸化合物から選ばれる少なくとも 1種以上の化合物を 主成分とし、かつアルカリ金属酸化物の含有量が 1質量%以下である無機酸化物フ イラ一を含むことを特徴とするディスプレー用外囲器構成部材の封着用組成物。  [12] It comprises an inorganic oxide filler comprising at least one compound selected from a polyimide compound and a polyamic acid compound as a main component and an alkali metal oxide content of 1% by mass or less. A composition for sealing an envelope constituting member for display.
PCT/JP2007/053820 2006-03-01 2007-02-28 Envelope for display and method for sealing the same WO2007100016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006055573 2006-03-01
JP2006-055573 2006-03-01

Publications (1)

Publication Number Publication Date
WO2007100016A1 true WO2007100016A1 (en) 2007-09-07

Family

ID=38459117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053820 WO2007100016A1 (en) 2006-03-01 2007-02-28 Envelope for display and method for sealing the same

Country Status (1)

Country Link
WO (1) WO2007100016A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324539A (en) * 1997-05-22 1998-12-08 Asahi Glass Co Ltd Fine spherical glass and its production
JP2000267115A (en) * 1999-03-18 2000-09-29 Toshiba Corp Liquid crystal display device and sealing material for liquid crystal display device
JP2001207152A (en) * 2000-01-28 2001-07-31 Minoru Yamada Sealing material and sealed glass structure
JP2002100238A (en) * 2000-09-26 2002-04-05 Asahi Glass Co Ltd Sheet-like molding and laminate
JP2003183624A (en) * 2001-12-13 2003-07-03 Asahi Glass Co Ltd Sealing composition and sealed structure
JP2004319448A (en) * 2003-03-31 2004-11-11 Mitsui Chemicals Inc Vacuum envelope for image display device, sealant for image display device, image display device, and sealing method of vacuum envelope for image display device
WO2005091325A1 (en) * 2004-03-18 2005-09-29 Asahi Glass Company, Limited Electric field emission type image display unit and production method therefor
WO2006022265A1 (en) * 2004-08-23 2006-03-02 Asahi Glass Company, Limited Envelope for image display, sealing material, sealing method, and image display
JP2006241367A (en) * 2005-03-04 2006-09-14 Sumitomo Metal Mining Co Ltd Sealing resin composition and sealed structure using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324539A (en) * 1997-05-22 1998-12-08 Asahi Glass Co Ltd Fine spherical glass and its production
JP2000267115A (en) * 1999-03-18 2000-09-29 Toshiba Corp Liquid crystal display device and sealing material for liquid crystal display device
JP2001207152A (en) * 2000-01-28 2001-07-31 Minoru Yamada Sealing material and sealed glass structure
JP2002100238A (en) * 2000-09-26 2002-04-05 Asahi Glass Co Ltd Sheet-like molding and laminate
JP2003183624A (en) * 2001-12-13 2003-07-03 Asahi Glass Co Ltd Sealing composition and sealed structure
JP2004319448A (en) * 2003-03-31 2004-11-11 Mitsui Chemicals Inc Vacuum envelope for image display device, sealant for image display device, image display device, and sealing method of vacuum envelope for image display device
WO2005091325A1 (en) * 2004-03-18 2005-09-29 Asahi Glass Company, Limited Electric field emission type image display unit and production method therefor
WO2006022265A1 (en) * 2004-08-23 2006-03-02 Asahi Glass Company, Limited Envelope for image display, sealing material, sealing method, and image display
JP2006241367A (en) * 2005-03-04 2006-09-14 Sumitomo Metal Mining Co Ltd Sealing resin composition and sealed structure using the same

Similar Documents

Publication Publication Date Title
JP6555126B2 (en) Polyimide resin, resin composition and laminated film using the same
JPH10330616A (en) Paste of heat-resistant resin
JPWO2014050878A1 (en) Resin composition, cured film, laminated film, and method for manufacturing semiconductor device
TW201920371A (en) Polyimide resin, polyimide varnish and polyimide film
JPS587473A (en) Adhesive composition
US20080129182A1 (en) Vacuum envelope for image display device and sealant for image display device
WO2019086963A2 (en) Organosilicon-modified polyimide resin composition and application thereof
JP4500569B2 (en) Vacuum envelope for image display device, sealing material for image display device, image display device, and sealing method for image display device vacuum envelope
WO2007100016A1 (en) Envelope for display and method for sealing the same
JP2011168675A (en) Adhesive composition and method for producing adhesive
WO2006022265A1 (en) Envelope for image display, sealing material, sealing method, and image display
JP4503572B2 (en) Display envelope, method for manufacturing the same, and display including the envelope
WO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
WO2007100013A1 (en) Housing for displays and method for sealing the same
JP2007265977A (en) Envelope for display and method for sealing same
JP2019019279A (en) Resin composition, resin film and light-emitting device
JP2007265978A (en) Envelope for display and method for sealing same
WO2007046374A1 (en) Envelope for display and display comprising said envelope
JP2629361B2 (en) Paste composition and semiconductor device using the same
TWI783922B (en) Method for controlling polyimide skeleton structure, and method for producing polyimide
WO2007080961A1 (en) Resin paste for hermetic sealing of display
JP2007214119A (en) Resin paste for hermetic sealing of display, and display using the same
TWI798530B (en) Polyamide resin composition, polyimide resin film and manufacturing method thereof, laminate, electronic component and manufacturing method thereof
CN101015032A (en) Envelope for image display, sealing material, sealing method, and image display
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737539

Country of ref document: EP

Kind code of ref document: A1