WO2007097125A1 - 画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ - Google Patents
画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ Download PDFInfo
- Publication number
- WO2007097125A1 WO2007097125A1 PCT/JP2007/000126 JP2007000126W WO2007097125A1 WO 2007097125 A1 WO2007097125 A1 WO 2007097125A1 JP 2007000126 W JP2007000126 W JP 2007000126W WO 2007097125 A1 WO2007097125 A1 WO 2007097125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image processing
- color
- luminance
- component
- image data
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 40
- 238000003672 processing method Methods 0.000 title claims description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 238000000605 extraction Methods 0.000 claims abstract description 12
- 239000000284 extract Substances 0.000 claims abstract description 8
- 238000012937 correction Methods 0.000 claims description 27
- 230000002596 correlated effect Effects 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 10
- 238000009499 grossing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/58—Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/46—Colour picture communication systems
- H04N1/56—Processing of colour picture signals
- H04N1/60—Colour correction or control
- H04N1/6027—Correction or control of colour gradation or colour contrast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/84—Camera processing pipelines; Components thereof for processing colour signals
- H04N23/88—Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control
Definitions
- Image processing device for correcting texture of image, image processing program, image processing method, and electronic camera
- the present invention relates to an image processing device, an image processing program, an image processing method, and an electronic camera.
- Patent Document 1 is known as an apparatus that compensates for such deterioration in texture.
- a minute amplitude component is extracted from image data using an ⁇ filter or the like, and the minute amplitude component is extracted. Is added to the image data.
- This conventional technology makes it possible to correct the texture such as so-called “spot enhancement”.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2 00 1 _ 1 1 8 0 64 (for example, FIG. 5)
- an object of the present invention is to provide an image processing technique that corrects the texture of an image while preventing deterioration of noise.
- the image processing apparatus of the present invention includes a luminance fluctuation extracting unit, a color difference fluctuation extracting unit, a conversion And an adder.
- the luminance fluctuation extraction unit extracts a local fluctuation component (hereinafter referred to as luminance fluctuation) from the luminance information of the image data.
- the color difference fluctuation extraction unit extracts a local fluctuation component (hereinafter referred to as a color difference fluctuation) from the color difference information of the image data.
- the converter weights and adds the color difference variation to the luminance variation to generate a luminance texture component in a simulated manner.
- the adding unit adds the generated texture component to the luminance information.
- the conversion unit adjusts and changes the weighting ratio of the weighted addition in a direction in which the noise ratio between the color components included in the texture component is made to approach evenly.
- the conversion unit obtains information on a white balance coefficient at the time of generating image data, and calculates a weighting ratio so as to equalize a color noise ratio correlated with the white balance coefficient.
- the conversion unit locally sets the weighting ratio so as to equalize the level-dependent color noise ratio included in the texture component based on the local signal level of the color component of the image data. To calculate.
- the conversion unit obtains information about the color correction coefficient of the image data and calculates a weighting ratio so as to equalize the color noise ratio correlated with the color correction coefficient.
- the conversion unit calculates the weighting ratio for equalizing the color noise ratio correlated with the level difference based on the level difference of the local color signal of the image data.
- the adder acquires information about the gradation correction coefficient of the image data, and changes the addition coefficient of the texture component based on the gradation correction coefficient.
- the image processing program of the present invention is a program for causing a computer to function as the image processing apparatus according to any one of the above ⁇ 1 >> to ⁇ 6 >>.
- the image processing method of the present invention provides image data including luminance information and color difference information.
- Luminance fluctuation extraction step Extracts local fluctuation components (hereinafter referred to as luminance fluctuations) from the luminance information of the image data.
- Color difference fluctuation extraction step Extracts local fluctuation components (hereinafter referred to as color difference fluctuation) from the color difference information of the image data.
- a luminance texture component is artificially generated by weighting and adding the color difference variation to the luminance variation.
- the above conversion step performs a process of adjusting and changing the weighting ratio of the weighted addition in a direction in which the noise ratio between the color components included in the texture component is made to approach evenly.
- An electronic camera of the present invention includes the image processing apparatus according to any one of the above ⁇ 1 >> to ⁇ 6 >>, and an imaging unit that captures an image of a subject and generates image data.
- the image processing device performs image processing on the image data generated by the imaging unit.
- the texture information of the brightness information is enriched by reflecting the local variation of the color difference information in the texture component of the brightness information.
- the weighting ratio for the color difference fluctuation is adjusted and adjusted so that the ratio of the color noise contained in the texture component is made closer.
- FIG. 1 is a block diagram showing an image processing device 51.
- FIG. 2 is a flowchart for explaining texture correction processing by the image processing apparatus 51.
- FIG. 3 A halftone image on a monitor showing the process of texture correction.
- FIG. 4 is a block diagram showing a configuration of an electronic camera 11.
- FIG. 1 is a block diagram showing an image processing apparatus 51 of the present embodiment.
- the image processing apparatus 51 includes a fluctuation extracting unit 52.
- This fluctuation extraction unit 52 takes in luminance information and color difference information of image data and generates a luminance fluctuation part and a color difference fluctuation part.
- the converter 54 artificially generates a luminance texture component by weighting and adding the color difference variation to the luminance variation.
- the adding unit 5 5 performs texture correction on the luminance information using the generated texture component.
- FIG. 2 is a flowchart illustrating the texture correction process performed by the image processing apparatus 51. In the following, the texture correction process will be described along the step numbers shown in FIG.
- Step S 1 The fluctuation extracting unit 5 2 takes in image data to be processed.
- the image data here has signal components consisting of luminance information Y and color difference information Cb, Cr in pixel units.
- the signal component Y C b C r has the following relationship with the color component R G ⁇ generated by the electronic camera.
- Step S 2 The fluctuation extraction unit 52 performs smoothing processing such as a £ filter on each of the luminance information Y and the color difference information C b and C r of the image data to obtain a smoothed image.
- FIG. 3 [ ⁇ ] is a diagram showing an example of the smoothed image.
- Step S3 The fluctuation extractor 52 receives the luminance information ⁇ of the image data and the smoothed By taking the pixel difference from the luminance information, the local fluctuation of the luminance information, that is, the luminance fluctuation is obtained.
- the variation extraction unit 52 obtains a pixel difference between the color difference information C b and C r of the image data and the color difference information after smoothing, thereby obtaining a local variation of the color difference information, that is, a color difference variation (5 Find C b and ⁇ C r.
- Step S 4 The conversion unit 54 generates a luminance material component in a pseudo manner by weighted addition of the following equation.
- Texture component D (5 Y + (5 C b + 8 (5 C r ⁇ ⁇ ⁇ [2]
- the converter 54 appropriately determines the weighting ratio S for the color difference variation.
- any of the determination methods in steps S 5 to S 8 can be selected as a determination method of the weighting ratio and ⁇ .
- Step S5 The conversion unit 54 calculates the white balance coefficient (the gain Wr of the R color component, the gain Wb of the B color component) when generating the image data from the accompanying information of the image data. Get information.
- the output level ratio of the RGB color component of the image sensor is greatly biased depending on the light source color temperature of the image data.
- the color component with a larger white balance coefficient generally has a lower output level of the color signal of the image sensor and a lower SZN.
- the noise ratio S R 6G S B between the color components contained in the image data is estimated to be approximately equal to the white balance coefficient ratio W r: 1: Wb.
- Texture component D (-0.1687 a +0.5000 ⁇ +0.2990) ⁇ R
- the weighting ratio, / S should be determined so that
- the conversion unit 54 determines the weighting ratio ⁇ by obtaining the solution of Equation [6] based on the white balance coefficient. After this determination, conversion unit 54 shifts the operation to step S9.
- Step S6 The conversion unit 54 inversely converts the signal component YC b Cr of the image data into pixel units, and restores the value of the color component RG B that would have occurred in the image sensor. By locally smoothing the value of these color components RG B, the local signal level of the color component R GB can be obtained.
- level-dependent noise such as shot noise is generated in an image sensor. Therefore, the color noise ratio included in the texture component D also fluctuates due to this level-dependent noise.
- the conversion unit 54 obtains the ratio of level-dependent noise (5 R: (5 G: (5 B) between the color components based on the local signal level RG B of the color component RG B.
- level-dependent noise 5 R: (5 G: (5 B)
- the conversion unit 54 obtains the ratio of level-dependent noise (5 R: (5 G: (5 B) between the color components based on the local signal level RG B of the color component RG B.
- level-dependent noise 5 R: (5 G: (5 B) between the color components based on the local signal level RG B of the color component RG B.
- the solutions ⁇ , ⁇ in Eq. [8] are weighting ratios that equalize the shot noise ratio between the color components included in the texture component.
- the conversion unit 54 determines the weighting ratio H, for each local area of the image data. After this determination, the converter 54 shifts the operation to Step S9.
- Step S7 The conversion unit 54 acquires information about the color correction coefficient of the image data from the accompanying information of the image data.
- the noise of the specific color component with the saturation enhancement appears larger in the image data.
- the color correction coefficients of each color component RG B are S r, S g and S b
- the noise ratio S R: ⁇ G: S ⁇ ⁇ between the color components included in the image data is
- the conversion unit 54 determines the weighting ratio H and S based on the color correction coefficient. After this determination, the conversion unit 54 shifts the operation to Step S9.
- Step S 8 The conversion unit 54 inversely transforms the signal component YC b Cr of the image data in units of pixels by using the inverse transformation of the equation [1] to obtain the value of the color component RG B.
- the local signal level of the color component R G B can be obtained.
- the color noise ratio included in the texture component D also changes depending on the level difference of the color component.
- the signal level of color component B is particularly high.
- the color component B contains most of the texture information of the blue region.
- the weight ratio should be adjusted so that the color component with the smaller signal level decreases the contribution ratio of the texture component D.
- the color noise ratio ( R: 6 G: (5 B can be estimated by the following equation) that correlates with the level difference.
- the solution, S in [12] is the weighting ratio, ⁇ , taking into account the color component level difference.
- the conversion unit 54 calculates the solution S of equation [12] for each area of the image data. After obtaining all the weighting ratios and ⁇ for each local area in this way, the conversion unit 54 shifts the operation to Step S9.
- Step S9 The conversion unit 54 converts the luminance variation (5 ⁇ to the color difference variation (5 Cr, 6 Cb) according to the weighting ratio ⁇ determined in any of Steps S5 to S8. Weighted addition is performed to calculate the following material component D.
- Texture component D S Y + (5 C b + 8 (5 C r ⁇ ⁇ ⁇ [2]
- Step S 10 The adding unit 55 adds the texture component D obtained by multiplying the smoothed luminance information (or the luminance information Y of the image data) by a predetermined addition coefficient.
- the luminance variation is amplitude-modulated in proportion to the gradation conversion coefficient (gradient of the gradation conversion curve) of the luminance information Y. Therefore, if the texture component D is multiplied by a certain addition coefficient and added to the luminance information, the texture and noise are likely to be excessive in the image area having a large gradation conversion coefficient. Therefore, the appropriate texture component D can be added by adjusting the addition coefficient locally or in units of pixels so that it is almost inversely proportional to the gradation conversion coefficient.
- the degree of texture enhancement is increased, the image noise increases remarkably, resulting in an image with a customized impression.
- the texture after correction is richer than that shown in Fig. 3 [C] because the texture enhancement due to the color difference variation is added.
- specific color noise is mixed into luminance information by texture correction.
- it is not as much as in Fig. 3 [C], it will be an image of a user-friendly impression.
- the noise ratio of R (red) contained in the texture component D is moderately suppressed, the texture of the clothing (blue) has been successfully reduced.
- the second embodiment is an embodiment of an electronic camera.
- FIG. 4 is a block diagram showing a configuration of the electronic camera 11.
- the taking lens 1 2 is attached to the electronic camera 1 1.
- the light receiving surface of the image sensor 13 is disposed.
- the operation of the imaging element 13 is controlled by the output pulse of the timing generator 2 2 b.
- the image generated by the image sensor 13 is temporarily stored in the buffer memory 17 via the AZ D conversion unit 15 and the signal processing unit 16.
- the buffer memory 17 is connected to the bus 18.
- an image processing unit 19 To this bus 18, an image processing unit 19, a card interface 20, a microprocessor 22, a compression / decompression unit 23, and an image display unit 24 are connected.
- the card interface 20 reads and writes data to and from the removable memory card 21.
- the microprocessor 22 receives a user operation signal from the switch group 2 2 a of the electronic camera 11. Further, the image display unit 24 displays an image on a monitor screen 25 provided on the back surface of the electronic camera 11. In the electronic camera 11 having such a configuration, the texture correction of the first embodiment is executed by the microprocessor 22 and the image processing unit 19.
- This texture correction may be performed on the image data immediately after the image capture, or may be performed later on the image data recorded on the memory card 21.
- an image processing server on the Internet may provide a texture correction image processing method for image data transmitted from a user.
- texture correction is performed in the YCbCr color space.
- the present invention is not limited to this.
- the same texture correction may be performed in the Lab color space, the HSV color space, or other color spaces.
- texture enhancement may be performed only on a part of the screen (main subject, person or skin color area, shaded area, trimming range, background part excluding person or skin color area). In this case, it is possible to effectively enhance the texture of a specific part in the screen while avoiding the adverse effect of noise increase in the entire screen.
- the color difference information is smoothed and output, and the texture component D is output in addition to the smoothed luminance information.
- the smoothed color difference information may be obtained by subtracting the color difference variation from the original color difference information.
- the luminance information after the quality correction can be obtained by adding the texture component to the original luminance information and then subtracting the luminance variation.
- one of steps S5 to S8 is selectively performed to determine the weighting ratio, / S.
- the embodiment is not limited to this.
- a plurality of types of weighting ratios may be determined by performing a plurality of steps S5 to S8. In this case, by taking an average or a weighted average of a plurality of types of weighting ratios, it is possible to obtain a weighting ratio,; 8 in consideration of multiple types of noise equalization.
- the present invention is a technique that can be used for image quality correction and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Processing Of Color Television Signals (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
本発明の画像処理装置は、輝度変動抽出部、色差変動抽出部、変換部、および加算部を備える。輝度変動抽出部は、画像データの輝度情報から局所的な変動成分(以下、輝度変動分)を抽出する。色差変動抽出部は、画像データの色差情報から局所的な変動成分(以下、色差変動分)を抽出する。変換部は、輝度変動分に色差変動分を加重加算して、輝度の質感成分を擬似的に生成する。加算部は、生成された質感成分を輝度情報に加算する。上記構成において、変換部は、質感成分に含まれる色成分間のノイズ比率を均等に近づける方向に、加重加算の重み付け比率を調整変更する。
Description
明 細 書
画像の質感を補正する画像処理装置、 画像処理プログラム、 画像処 理方法、 および電子カメラ
技術分野
[0001 ] 本発明は、 画像処理装置、 画像処理プログラム、 画像処理方法、 および電 子カメラに関する。
背景技術
[0002] 従来、 電子カメラを高感度 (例えば撮像素子の出力ゲインを上げる) に設 定すると、 撮像画像のノイズが増し、 ザヮザヮしたり、 色斑のようなノイズ が現れる。 この種のノイズは、 画像に平滑化処理を施すことによって軽減す ることができる。 しかし、 過度な平滑化処理を行った場合、 被写体の微細な 画像構造が失われ、 質感の乏しい画像になる。
[0003] このような質感低下を補う装置として、 下記の特許文献 1が知られている この特許文献 1では、 εフィルタなどを用いて画像データから微小振幅成 分を抽出し、 その微小振幅成分を画像データに加算する。 この従来技術によ り、 いわゆる 『シヮ強調』 といった質感補正が可能になる。
特許文献 1 :特開 2 0 0 1 _ 1 1 8 0 6 4号公報 (例えば図 5 )
発明の開示
発明が解決しょうとする課題
[0004] ところで、 特許文献 1の従来技術では、 ノイズとして除去すべき微小振幅 成分まで画像データにそのまま加算する。 そのため、 被写体の表面がノイズ によってザヮザヮするといつた問題点があった。
そこで、 本発明は、 ノイズ感の悪化を防止しつつ、 画像の質感を補正する 画像処理技術を提供することを目的とする。
課題を解決するための手段
[0005] 《1》 本発明の画像処理装置は、 輝度変動抽出部、 色差変動抽出部、 変換
部、 および加算部を備える。
輝度変動抽出部は、 画像データの輝度情報から局所的な変動成分 (以下、 輝度変動分) を抽出する。
色差変動抽出部は、 画像データの色差情報から局所的な変動成分 (以下、 色差変動分) を抽出する。
変換部は、 輝度変動分に色差変動分を加重加算して、 輝度の質感成分を擬 似的に生成する。
加算部は、 生成された質感成分を輝度情報に加算する。
上記構成において、 変換部は、 質感成分に含まれる色成分間のノイズ比率 を均等に近づける方向に、 加重加算の重み付け比率を調整変更する。
《2》 なお好ましくは、 変換部は、 画像データを生成する際のホワイ トバ ランス係数を情報取得し、 ホワイ トバランス係数に相関する色ノイズ比率を 均等化するように重み付け比率を算出する。
《3》 また好ましくは、 変換部は、 画像データの色成分の局所的な信号レ ベルに基づいて、 質感成分に含まれるレベル依存性の色ノイズ比率を均等化 するように重み付け比率を局所的に算出する。
《4》 なお好ましくは、 変換部は、 画像データの色補正係数を情報取得し 、 色補正係数に相関する色ノイズ比率を均等化するように重み付け比率を算 出する。
《5》 また好ましくは、 変換部は、 画像データの局所的な色信号のレベル 差異に基づいて、 レベル差異に相関する色ノイズ比率を均等化する前記重み 付け比率を算出する。
《6》 なお好ましくは、 加算部は、 画像データの階調補正係数を情報取得 し、 階調補正係数に基づいて質感成分の加算係数を変更する。
《7》 本発明の画像処理プログラムは、 コンピュータを、 上記 《1》 〜 《 6》 のいずれか 1項に記載の画像処理装置として機能させるためのプログラ ムである。
《8》 本発明の画像処理方法は、 輝度情報および色差情報を含む画像デー
夕に画像処理を施す方法であって、 次のステップを備える。
(1 )輝度変動抽出ステップ…画像データの輝度情報から局所的な変動成分 (以 下、 輝度変動分) を抽出する。
(2)色差変動抽出ステップ…画像データの色差情報から局所的な変動成分 (以 下、 色差変動分) を抽出する。
(3)変換ステップ…輝度変動分に色差変動分を加重加算して、 輝度の質感成分 を擬似的に生成する。
(4)加算ステツプ'■ '質感成分を、 輝度情報に加算する。
なお、 上記の変換ステップは、 質感成分に含まれる色成分間のノイズ比率 を均等に近づける方向に、 加重加算の重み付け比率を調整変更する処理を実 施する。
《9》 本発明の電子カメラは、 上記 《1》 〜 《6》 のいずれか 1項に記載 の画像処理装置と、 被写体を撮像して画像データを生成する撮像部とを備え る。 この電子カメラでは、 画像処理装置が、 撮像部で生成された画像データ に画像処理を施す。
発明の効果
[0006] 本発明では、 色差情報の局所変動を輝度情報の質感成分に反映させること で、 輝度情報の質感表現を豊かにする。 さらに、 色差変動分の加重比率を調 整変更して質感成分に含まれる色ノイズの比率を均等に近づける。 その結果 、 質感成分に特定色成分のノイズが混入することを抑え、 質感補正後の輝度 情報のノイズ悪化を抑制できる。
図面の簡単な説明
[0007] [図 1 ]画像処理装置 5 1を示すブロック図である。
[図 2]画像処理装置 5 1による質感補正処理を説明する流れ図である。
[図 3]質感補正の過程を示すモニタ上の中間調画像である。
[図 4]電子カメラ 1 1の構成を示すブロック図である。
発明を実施するための最良の形態
[0008] 《第 1実施形態》
(構成説明)
図 1は、 本実施形態の画像処理装置 5 1を示すブロック図である。
図 1において、 画像処理装置 5 1は、 変動抽出部 5 2を備える。 この変動 抽出部 5 2は、 画像データの輝度情報および色差情報を取り込み、 輝度変動 分および色差変動分を生成する。 変換部 5 4は、 輝度変動分に色差変動分を 加重加算することにより、 輝度の質感成分を擬似的に生成する。 加算部 5 5 は、 生成された質感成分を用いて、 輝度情報に質感補正を施す。
なお、 これらの構成要件を、 コンピュータで画像処理プログラムを実行す ることによってソフトウェア的に実現してもよい。 また、 上述した構成要件 を、 演算回路などでハードウェア的に実現してもよい。
[0009] (動作説明)
図 2は、 画像処理装置 5 1による質感補正処理を説明する流れ図である。 以下、 図 2に示すステップ番号に沿って、 質感補正処理を説明する。
[0010] ステップ S 1 : 変動抽出部 5 2は、 処理対象の画像データを取り込む。 図
3 [ A ] は、 この処理対象の画像データの一例である。 ここでの画像データ は、 画素単位に、 輝度情報 Yおよび色差情報 C b, C rからなる信号成分を 有する。
この信号成分 Y C b C rは、 例えば、 電子カメラで生成される色成分 R G 巳と、 下式のような関係を有する。
Y =+0. 2990R+0. 5780G+0. 1140B
Cb=-0. 1687R-0. 3313G+0. 5000B
Cr=+0. 5000R-0. 4187G-0. 0817B
… [ 1 ]
[001 1 ] ステップ S 2 : 変動抽出部 5 2は、 画像データの輝度情報 Yおよび色差情 幸 C b、 C rのそれぞれについて、 £フィルタなどの平滑化処理を実施し、 平滑化画像を得る。 図 3 [ Β ] は、 この平滑化後の画像の一例を示す図であ る。
[0012] ステップ S 3 : 変動抽出部 5 2は、 画像データの輝度情報 Υと、 平滑化後
の輝度情報との画素差分を取ることにより、 輝度情報の局所的な変動分すな わち輝度変動分 を求める。 また、 変動抽出部 52は、 画像データの色差 情報 C b, C rと、 平滑化後の色差情報との画素差分を取ることにより、 色 差情報の局所的な変動分すなわち色差変動分 (5 C b, δ C rを求める。
[0013] ステップ S 4 : 変換部 54は、 輝度の質感成分を、 下式の加重加算によつ て、 擬似的に生成する。
質感成分 D=(5 Y + (5 C b + 8 (5 C r ■ ■ ■ [2]
変換部 54は、 この加重加算の前準備として、 色差変動分の重み付け比率 , Sを適正に決定する。 画像処理装置 5 1では、 この重み付け比率 , β の決定方法として、 ステップ S 5〜S 8の決定方法のいずれかをユーザー選 択することができる。
[0014] ステップ S 5 : 変換部 54は、 画像データの付随情報などから、 画像デー タを生成する際のホワイ トバランス係数 (R色成分のゲイン W r、 B色成分 のゲイン W b ) を情報取得する。
一般に、 画像データの光源色温度によって、 撮像素子の RG B色成分の出 カレベル比は大きく偏る。 このとき、 ホワイ トバランス係数の大きな色成分 ほど、 撮像素子の色信号の出力レベルが総じて小さく、 SZNが低い。 この ような理由から、 画像データに含まれる色成分間のノイズ比率 S R 6 G S Bは、 ホワイ トバランス係数の比率 W r : 1 : Wbにほぼ等しいと推定で さる。
δ R δ G δ B=W r : 1 : Wb ■ ■ ■ [3]
ところで、 [2] 式に [ 1 ] 式を代入して、 質感成分 Dを色成分の変動分 δ R, (5 G, (5 Βで表すと、
質感成分 D = (-0.1687 a +0.5000 β +0.2990) δ R
+ (-0.3313 α -0.4187/8+0.5780) δ G
+ (+0.5000 a-0.08V β +0.1140) δ Β
三 L (5 R + M(5 G + N δ B ■ ■ ■ [4] となる。
ここで、 質感成分 Dに含まれる特定色成分のノイズの目立ち方を抑えるに は、 質感成分 Dに含まれる色成分間の色ノイズ比率を均等に近づけることが 好ましい。 すなわち、
L (5 R : M(5 G : N (5 B= 1 : 1 : 1 ■ ■ ■ [5]
に近づけるように、 重み付け比率 , /Sを決定すればよい。
上記の [3] 式、 [4] 式、 [5] 式の条件をまとめ、 Sについて連立 方程式を立てると、
(0.33131:1- 0.1687) + (0.41871:1+0.5) β =0.5871:1- 0.299
(0.3313t2+0.5) a + (0.4187t2-0.813) β =0.587t2-0.114 ■ ■ ■ [6] となる。 ただし、 上式において、 t1=1/Wr, t2=1/Wbである。
例えば、 ホワイ トバランス係数 W r =2.0, Wb=1.47の場合、 [6] 式の 解は、 =0.41, ;8 =0.01となる。 したがって、 これらの解 , βそのもの 、 または、 これらの解に近い重み付け比率ひ, を使用することにより、 質 感成分 Dに含まれる色成分間のノイズ比率を均等に近づけることが可能にな る。
このように、 変換部 54は、 ホワイ トバランス係数に基づいて [6] 式の 解を求めることにより、 重み付け比率ひ, を決定する。 この決定の後、 変 換部 54は、 ステップ S 9に動作を移行する。
ステップ S 6 : 変換部 54は、 画像データの信号成分 YC b C rを画素単 位に逆変換し、 撮像素子で生じたであろう色成分 RG Bの値を復元する。 こ れら色成分 RG Bの値を局所的に平滑化することにより、 色成分 R G Bの局 所的な信号レベルを求めることができる。
一般に、 撮像素子には、 ショットノイズのような、 レベル依存性ノイズが 発生する。 したがって、 このレベル依存性ノイズによっても、 質感成分 Dに 含まれる色ノイズ比率が変動する。
そこで、 変換部 54は、 色成分 RG Bの局所的な信号レベル RG Bに基づ いて、 色成分間のレベル依存性ノイズの比率 (5 R : (5 G : (5 Bを求める。 例えば、 ショットノイズの場合、 撮像素子に生じた局所的な色成分 RG B
(発生電荷量) の平方根に比例したノイズ量となるため、
S R S G δ B=V"R : V"G : V"B ■ ■ ■ [7]
となる。
ステップ S 5で用いた [3] 式に代えて、 この [7] 式を使用することに より、 / Sの連立方程式は、
(0.33131:1- 0.1687) + (0.41871:1+0.5) β =0.5871:1- 0.299
(0.3313t2+0.5) a + (0.4187t2-0.813) β =0.587t2-0.114 ■ ■ ■ [8] となる。 ただし、 上式において、 t1= (G/R), t2= (G/B)である。 なお、 R , G, Bの値は、 ゼロとならないように下限値が制限される。
この [8] 式の解 α, ^は、 質感成分に含まれる色成分間のショットノィ ズ比率を均等化する重み付け比率となる。
このようにして、 変換部 54は、 画像データの局所域ごとに、 重み付け比 率ひ, を決定する。 この決定の後、 変換部 54は、 ステップ S 9に動作を 移行する。
ステップ S 7 : 変換部 54は、 画像データの付随情報などから、 画像デー タの色補正係数を情報取得する。
例えば、 彩度を強調するほど、 画像データには彩度強調された特定色成分 のノイズが大きく現れる。 この場合の各色成分 RG Bの色補正係数を S r , S g, S bとすると、 画像データに含まれる色成分間のノイズ比率 S R : δ G : S Βは、
S R : S G : S B = S r : S g : S b ■ ■ ■ [9]
と推定される。
ステップ S 5で用いた [3] 式に代えて、 この [9] 式を使用することに より、 / Sの連立方程式は、
(0.33131:1- 0.1687) + (0.41871:1+0.5) β =0.5871:1- 0.299
(0.3313t2+0.5) a + (0.4187t2-0.813) β =0.587t2-0.114 ■ ■ ■ [ 1 0] となる。 ただし、 上式において、 t1=Sg/Sr, t2=Sg/Sbである。 なお、 S r , S g, S bの値は、 ゼロとならないように下限値が制限される。
この [ 1 0] 式の解ひ, は、 質感成分 Dにおける彩度補正に伴う色ノィ ズ比率の変化を均等化する重み付け比率となる。
このようにして、 変換部 54は、 色補正係数に基づいて、 重み付け比率ひ , Sを決定する。 この決定の後、 変換部 54は、 ステップ S 9に動作を移行 する。
ステップ S 8 : 変換部 54は、 [ 1 ] 式の逆変換を用いて、 画像データの 信号成分 YC b C rを画素単位に逆変換し、 色成分 RG Bの値を得る。 これ ら色成分 R G Bの値を局所的に平滑化することにより、 色成分 R G Bの局所 的な信号レベルを求めることができる。 この色成分のレベル差異によっても 、 質感成分 Dに含まれる色ノイズ比率は変化する。
例えば、 画面内の原色に近い青色領域では、 色成分 Bの信号レベルが特に 大きくなる。 その結果、 色成分 Bには、 青色領域の質感情報の殆どが含まれ る。
—方、 このような青色領域では、 色成分 Rの信号レベルが極端に小さくな る。 そのため、 この色成分 Rは、 有意な質感情報を殆ど含まず、 ノイズが大 半を占めることになる。
このように、 色成分間のレベル差異に依存して、 質感成分 Dに含まれる色 ノイズ比率は変化する。 このような色ノイズ比率を均等化するには、 信号レ ベルの小さな色成分ほど質感成分 Dの寄与率を下げるように、 重み付け比率 を調整すればよい。
例えば、 局所的な色成分の信号レベルを R G Bとした場合、 レベル差異に 相関する色ノイズ比率 (5 R : 6 G : (5 Bは下式で推定できる。
(5 R : (5 G : (5 B = G B : RB : RG ■ ■ ■ [ 1 1 ]
この [ 1 1 ] 式では、 R《Bのレベル差異に対して、 (5 R》(5 Bのノイズ 推定が成される。
ステップ S 5で用いた [3] 式に代えて、 この [ 1 1 ] 式を使用すること により、 / Sの連立方程式は、
(0.33131:1- 0.1687) + (0.41871:1+0.5) β =0.5871:1- 0.299
(0.3313t2+0.5) a + (0.4187t2-0.813) β =0.587t2-0.114 ■ ■ ■ [ 1 2] となる。 ただし、 上式において、 t1=R/G, t2=B/Gである。 なお、 R, G, B の値は、 ゼロとならないように下限値が制限される。
この [ 1 2] 式の解 , Sは、 色成分のレベル差異を考慮した重み付け比 率 , βとなる。 変換部 54は、 画像データの領域ごとに [ 1 2] 式の解 , Sを算出する。 このようにして、 局所域ごとの重み付け比率 , βを全て 求めた後、 変換部 54は、 ステップ S 9に動作を移行する。
[0018] ステップ S 9 : 変換部 54は、 ステップ S 5〜S 8のいずれかで決定され た重み付け比率 , βに従って、 輝度変動分 (5 Υに色差変動分 (5 C r, 6 C bを加重加算し、 下式の質感成分 Dを算出する。
質感成分 D=S Y + (5 C b + 8 (5 C r ■ ■ ■ [2]
ステップ S 1 0 : 加算部 55は、 平滑化後の輝度情報 (または画像データ の輝度情報 Y) に対して、 所定の加算係数を乗じた質感成分 Dを加算する。 なお、 輝度情報 Yの階調変換係数 (階調変換カーブの傾き) に比例して、 輝度変動分 は振幅変調されている。 そのため、 質感成分 Dに一定の加算 係数を乗じて輝度情報に加算すると、 階調変換係数の大きな画像領域におい て質感やノイズが過多となりやすい。 そこで、 加算係数を、 階調変換係数に ほぼ反比例するように、 局所的または画素単位に調整することにより、 適切 な質感成分 Dの加算が可能になる。
[0019] (第 1実施形態の効果など)
図 3 [C] は、 輝度変動分 のみを用いて、 質感強調を行った画像であ る (色差変動分の重み付け比率 =0、 β = 0) 。 この場合、 質感強調の度 合いを強めるに従って、 画像ノイズが顕著に増し、 ザヮザヮした印象の画像 となる。
[0020] また、 図 3 [D] は、 重み付け比率 、 8を等しく設定 α = β = 0· 2 7) して、 質感強調を行った画像である。 この場合、 色差変動分による質感 強調が加わる分だけ、 図 3 [C] に比べて、 補正後の質感が豊かになる。 し かしながら、 特定の色ノイズが、 質感補正によって輝度情報に混入するため
、 図 3 [ C ] ほどではないにしても、 ザヮザヮした印象の画像となる。
[0021 ] —方、 図 3 [ E ] は、 上述した第 1実施形態のように、 質感成分 Dに含ま れる色成分間の色ノイズ比率を均等に近づけた画像である (ひ = 0 . 4 5, β = . 0 9 ) 。 この場合、 質感成分 Dに含まれる R (赤色) のノイズ比率 が適度に抑制されるため、 服地部分 (青色) のザヮザヮ感を軽減することに 成功している。
[0022] 《第 2実施形態》
第 2実施形態は、 電子カメラの実施形態である。
図 4は、 電子カメラ 1 1の構成を示すブロック図である。
図 4において、 電子カメラ 1 1には、 撮影レンズ 1 2が装着される。 この 撮影レンズ 1 2の像空間には、 撮像素子 1 3の受光面が配置される。 この撮 像素子 1 3は、 タイミングジェネレータ 2 2 bの出力パルスによって動作が 制御される。
この撮像素子 1 3で生成される画像は、 A Z D変換部 1 5および信号処理 部 1 6を介して、 バッファメモリ 1 7に一時記憶される。
このバッファメモリ 1 7は、 バス 1 8に接続される。 このバス 1 8には、 画像処理部 1 9、 カードインターフヱース 2 0、 マイクロプロセッサ 2 2、 圧縮伸張部 2 3、 および画像表示部 2 4が接続される。 この内、 カードイン ターフヱース 2 0は、 着脱自在なメモリカード 2 1に対するデータの読み書 きを行う。 また、 マイクロプロセッサ 2 2には、 電子カメラ 1 1のスィッチ 群 2 2 aからユーザー操作の信号が入力される。 さらに、 画像表示部 2 4は 、 電子カメラ 1 1の背面に設けられたモニタ画面 2 5に画像を表示する。 このような構成の電子カメラ 1 1は、 マイクロプロセッサ 2 2および画像 処理部 1 9によって、 第 1実施形態の質感補正が実行される。
なお、 この質感補正は、 撮像直後の画像データに対して実施してもよいし 、 メモリカード 2 1に記録された画像データに対して後から実施してもよい
[0023] 《実施形態の補足事項》
なお、 上述した実施形態では、 画像処理装置 5 1または電子カメラ 1 1を 用いて、 質感強調を実施する場合について説明した。 しかしながら、 本発明 はこれに限定されるものではない。 例えば、 インターネット上の画像処理サ 一バーにおいて、 ユーザーから伝送される画像データに対して、 質感補正の 画像処理方法をサービス提供してもよい。
[0024] また、 上述した実施形態では、 Y C b C r色空間において質感補正を実施 するケースについて説明した。 しかしながら、 本発明はこれに限定されるも のではない。 例えば、 L a b色空間や H S V色空間その他の色空間上におい て、 同様の質感補正を実施してもよい。
[0025] なお、 上述した実施形態では、 画面全体に対して質感強調を実施するケー スについて説明した。 しかしながら、 本発明はこれに限定されるものではな し、。 例えば、 画面の一部 (主要被写体、 人物や肌色領域、 陰影部、 トリミン グ範囲、 人物や肌色領域を除いた背景部分など) に限って、 質感強調を実施 してもよい。 この場合、 画面全体におけるノイズ増加の悪影響を避けつつ、 画面内の特定箇所の質感を効果的に強調することが可能になる。
[0026] また、 上述した実施形態では、 色差情報を平滑化して出力し、 質感成分 D は平滑化した輝度情報に加えて出力することが好ましい。 しかしながら、 実 施形態はこれに限定されるものではない。 例えば、 元の色差情報から色差変 動分を引くことで、 平滑化された色差情報を求めてもよい。 また例えば、 元 の輝度情報に質感成分を加算した後、 輝度変動分を引くことによつても、 質 感補正された輝度情報を得ることができる。
[0027] なお、 上述した実施形態では、 ステップ S 5〜S 8のいずれかを選択的に 実施して、 重み付け比率 , /Sを決定している。 しかしながら、 実施形態は これに限定されるものではない。 例えば、 ステップ S 5〜S 8のいくつかを 複数実施することで、 複数種類の重み付け比率を決定してもよい。 この場合 、 複数種類の重み付け比率の平均または加重平均を取ることで、 複数通りの ノイズ均等化を考慮した重み付け比率 , ;8を求めることができる。
[0028] なお、 本発明は、 その精神または主要な特徴から逸脱することなく、 他の
いろいろな形で実施することができる。 そのため、 前述の実施例はあらゆる 点で単なる例示に過ぎず、 限定的に解釈してはならない。 本発明の範囲は、 特許請求の範囲によって示すものであって、 明細書本文には、 なんら拘束さ れない。 さらに、 特許請求の範囲の均等範囲に属する変形や変更は、 すべて 本発明の範囲内のものである。
産業上の利用可能性
以上説明したように、 本発明は、 画像の質感補正などに利用可能な技術で める。
Claims
[1 ] 画像データの輝度情報から局所的な変動成分 (以下、 輝度変動分) を抽出 する輝度変動抽出部と、
前記画像データの色差情報から局所的な変動成分 (以下、 色差変動分) を 抽出する色差変動抽出部と、
前記輝度変動分に前記色差変動分を加重加算して、 輝度の質感成分を擬似 的に生成する変換部と、
前記質感成分を、 前記輝度情報に加算する加算部とを備え、
前記変換部は、 前記質感成分に含まれる色成分間の色ノイズ比率を均等に 近づける方向に、 前記加重加算の重み付け比率を調整変更する
ことを特徴とする画像処理装置。
[2] 請求項 1に記載の画像処理装置において、
前記変換部は、
前記画像データを生成する際のホワイ トバランス係数を情報取得し、 前記 ホワイ トバランス係数に相関する前記色ノイズ比率を均等化する前記重み付 け比率を算出する
ことを特徴とする画像処理装置。
[3] 請求項 1に記載の画像処理装置において、
前記変換部は、
前記画像データの色成分の局所的な信号レベルに基づいて、 前記質感成分 に含まれるレベル依存性の色ノイズ比率を均等化する重み付け比率を局所的 に算出する
ことを特徴とする画像処理装置。
[4] 請求項 1に記載の画像処理装置において、
前記変換部は、
前記画像データの色補正係数を情報取得し、 前記色補正係数に相関する前 記色ノイズ比率を均等化する前記重み付け比率を算出する
ことを特徴とする画像処理装置。
[5] 請求項 1に記載の画像処理装置において、
前記変換部は、
前記画像データの局所的な色成分のレベル差異に基づいて、 前記レベル差 異に相関する前記色ノイズ比率を均等化する前記重み付け比率を算出する ことを特徴とする画像処理装置。
[6] 請求項 1ないし請求項 5のいずれか 1項に記載の画像処理装置において、 前記加算部は、
前記画像データの階調補正係数を情報取得し、 前記階調補正係数に基づい て、 前記質感成分の加算係数を変更する
ことを特徴とする画像処理装置。
[7] コンピュータを、 請求項 1ないし請求項 6のいずれか 1項に記載の画像処 理装置として機能させるための画像処理プログラム。
[8] 輝度情報および色差情報を含む画像データに画像処理を施す画像処理方法 であって、
前記画像データの前記輝度情報から局所的な変動成分 (以下、 輝度変動分 ) を抽出する輝度変動抽出ステップと、
前記画像データの前記色差情報から局所的な変動成分 (以下、 色差変動分 ) を抽出する色差変動抽出ステップと、
前記輝度変動分に前記色差変動分を加重加算して、 輝度の質感成分を擬似 的に生成する変換ステップと、
前記質感成分を、 前記輝度情報に加算する加算ステツプとを備え、 前記変換ステップは、 前記質感成分に含まれる前記色成分間のノイズ比率 を均等に近づける方向に、 前記加重加算の重み付け比率を調整変更する ことを特徴とする画像処理方法。
[9] 請求項 1ないし請求項 6のいずれか 1項に記載の画像処理装置と、
被写体を撮像して画像データを生成する撮像部とを備え、
前記画像処理装置は、 前記撮像部で生成された画像データに画像処理を施 す
ことを特徴とする電子カメラ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008501638A JP4752912B2 (ja) | 2006-02-27 | 2007-02-26 | 画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ |
EP20070713508 EP1991008A4 (en) | 2006-02-27 | 2007-02-26 | IMAGE PROCESSING DEVICE FOR CORRECTING MASSIVE IMAGE PERCEPTION, IMAGE PROCESSING PROGRAM AND METHOD, AND ELECTRONIC CAMERA |
US12/216,883 US8040387B2 (en) | 2006-02-27 | 2008-07-11 | Image processing apparatus, image processing program, image processing method, and electronic camera for correcting texture of image |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-050221 | 2006-02-27 | ||
JP2006050221 | 2006-02-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/216,883 Continuation US8040387B2 (en) | 2006-02-27 | 2008-07-11 | Image processing apparatus, image processing program, image processing method, and electronic camera for correcting texture of image |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007097125A1 true WO2007097125A1 (ja) | 2007-08-30 |
Family
ID=38437169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/000126 WO2007097125A1 (ja) | 2006-02-27 | 2007-02-26 | 画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ |
Country Status (4)
Country | Link |
---|---|
US (1) | US8040387B2 (ja) |
EP (1) | EP1991008A4 (ja) |
JP (1) | JP4752912B2 (ja) |
WO (1) | WO2007097125A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081485A1 (ja) * | 2007-12-25 | 2009-07-02 | Fujitsu Limited | 画像処理装置、画像処理方法および画像処理プログラム |
JP2012222616A (ja) * | 2011-04-08 | 2012-11-12 | Nikon Corp | 画像処理装置、撮像装置およびプログラム |
JP2015056013A (ja) * | 2013-09-11 | 2015-03-23 | 株式会社リコー | 画像処理装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2483433A (en) * | 2010-08-31 | 2012-03-14 | Sony Corp | 3D image adjustment based on differences in colour properties between stereo pair |
CN108881875B (zh) * | 2018-08-16 | 2020-01-14 | Oppo广东移动通信有限公司 | 图像白平衡处理方法、装置、存储介质及终端 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0576034A (ja) * | 1991-09-10 | 1993-03-26 | Toshiba Corp | 画像信号処理装置 |
JPH06351036A (ja) * | 1993-06-03 | 1994-12-22 | Matsushita Electric Ind Co Ltd | 高彩度画像ディテール補償回路 |
JPH07170428A (ja) * | 1993-01-19 | 1995-07-04 | Matsushita Electric Ind Co Ltd | 画像表示方法およびその装置 |
JPH09154044A (ja) * | 1995-09-25 | 1997-06-10 | Matsushita Electric Ind Co Ltd | 画像表示方法及びその装置 |
JP2005167896A (ja) * | 2003-12-05 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 画像信号処理装置及び画像信号処理方法 |
WO2005125179A1 (ja) | 2004-06-22 | 2005-12-29 | Nikon Corporation | 質感を強調する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6364494A (ja) * | 1986-09-04 | 1988-03-22 | Sony Corp | 帰還型ノイズリデユ−サ |
JPH0236675A (ja) | 1988-07-27 | 1990-02-06 | Nec Corp | 画像強調方法及び回路 |
JPH0345095A (ja) * | 1989-07-13 | 1991-02-26 | Toshiba Corp | 画像輪郭強調回路 |
US5760843A (en) * | 1993-01-19 | 1998-06-02 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for contrast processing a video signal including brightness level compensation |
JP3381755B2 (ja) * | 1994-10-11 | 2003-03-04 | セイコーエプソン株式会社 | 画像の粒状性を減らすための改良された適応性のあるフィルタリングおよび閾値設定の方法及び装置 |
JP4274590B2 (ja) | 1997-01-20 | 2009-06-10 | オリンパス株式会社 | 画像処理装置 |
JPH11250246A (ja) * | 1998-02-27 | 1999-09-17 | Fuji Photo Film Co Ltd | 画像処理方法および装置 |
US6667815B1 (en) * | 1998-09-30 | 2003-12-23 | Fuji Photo Film Co., Ltd. | Method and apparatus for processing images |
JP4626007B2 (ja) | 1999-06-14 | 2011-02-02 | 株式会社ニコン | 画像処理方法、画像処理プログラムを記録した機械読み取り可能な記録媒体、および画像処理装置 |
US6621937B1 (en) * | 1999-10-08 | 2003-09-16 | Eastman Kodak Company | Removing chroma noise from digital images by using variable shape pixel neighborhood regions |
JP3319727B2 (ja) | 1999-10-20 | 2002-09-03 | 日本放送協会 | 画像処理装置 |
JP3596410B2 (ja) | 2000-03-01 | 2004-12-02 | 日本電気株式会社 | 画像信号処理装置及びその処理方法 |
JP2002044678A (ja) | 2000-07-19 | 2002-02-08 | Sony Corp | カラー映像信号変換装置 |
JP3726653B2 (ja) * | 2000-07-27 | 2005-12-14 | ノーリツ鋼機株式会社 | 画像処理方法、画像処理装置および画像処理方法を実行するプログラムを記録した記録媒体 |
JP4666274B2 (ja) * | 2001-02-20 | 2011-04-06 | 日本電気株式会社 | カラー画像処理装置及びその方法 |
JP4086479B2 (ja) | 2001-03-23 | 2008-05-14 | Necディスプレイソリューションズ株式会社 | 画質改善装置および画質改善方法 |
PT2280070E (pt) * | 2001-07-23 | 2015-10-29 | Univ Leland Stanford Junior | Métodos e composições para inibição mediada por iarn da expressão génica em mamíferos |
JP4197858B2 (ja) * | 2001-08-27 | 2008-12-17 | 富士通株式会社 | 画像処理プログラム |
US7292733B2 (en) * | 2002-10-16 | 2007-11-06 | Matsushita Electric Industrial Co., Ltd. | Image processing apparatus and image processing method |
EP1708490B1 (en) * | 2003-12-03 | 2013-02-13 | Nikon Corporation | Image processing device for controlling intensity of noise removal in a screen, image processing program, image processing method, and electronic camera |
US7382915B2 (en) * | 2004-03-16 | 2008-06-03 | Xerox Corporation | Color to grayscale conversion method and apparatus |
JP4468734B2 (ja) * | 2004-04-27 | 2010-05-26 | オリンパス株式会社 | 映像信号処理装置と映像信号処理プログラム |
-
2007
- 2007-02-26 WO PCT/JP2007/000126 patent/WO2007097125A1/ja active Application Filing
- 2007-02-26 EP EP20070713508 patent/EP1991008A4/en not_active Withdrawn
- 2007-02-26 JP JP2008501638A patent/JP4752912B2/ja active Active
-
2008
- 2008-07-11 US US12/216,883 patent/US8040387B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0576034A (ja) * | 1991-09-10 | 1993-03-26 | Toshiba Corp | 画像信号処理装置 |
JPH07170428A (ja) * | 1993-01-19 | 1995-07-04 | Matsushita Electric Ind Co Ltd | 画像表示方法およびその装置 |
JPH06351036A (ja) * | 1993-06-03 | 1994-12-22 | Matsushita Electric Ind Co Ltd | 高彩度画像ディテール補償回路 |
JPH09154044A (ja) * | 1995-09-25 | 1997-06-10 | Matsushita Electric Ind Co Ltd | 画像表示方法及びその装置 |
JP2005167896A (ja) * | 2003-12-05 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 画像信号処理装置及び画像信号処理方法 |
WO2005125179A1 (ja) | 2004-06-22 | 2005-12-29 | Nikon Corporation | 質感を強調する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1991008A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009081485A1 (ja) * | 2007-12-25 | 2009-07-02 | Fujitsu Limited | 画像処理装置、画像処理方法および画像処理プログラム |
JP4952796B2 (ja) * | 2007-12-25 | 2012-06-13 | 富士通株式会社 | 画像処理装置 |
US8311356B2 (en) | 2007-12-25 | 2012-11-13 | Fujitsu Limited | Image processing apparatus and image processing method |
JP2012222616A (ja) * | 2011-04-08 | 2012-11-12 | Nikon Corp | 画像処理装置、撮像装置およびプログラム |
JP2015056013A (ja) * | 2013-09-11 | 2015-03-23 | 株式会社リコー | 画像処理装置 |
Also Published As
Publication number | Publication date |
---|---|
US8040387B2 (en) | 2011-10-18 |
US20090046166A1 (en) | 2009-02-19 |
EP1991008A4 (en) | 2012-04-18 |
EP1991008A1 (en) | 2008-11-12 |
JPWO2007097125A1 (ja) | 2009-07-09 |
JP4752912B2 (ja) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4273428B2 (ja) | 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体 | |
CN101394485B (zh) | 图像生成方法、装置及图像合成设备 | |
KR101099401B1 (ko) | 화상 처리 장치 및 컴퓨터가 판독 가능한 기록 매체 | |
TWI511559B (zh) | 影像處理方法 | |
WO2006064913A1 (ja) | 画像処理方法 | |
TW201015988A (en) | Image processing apparatus for performing gradation correction on subject image | |
JP4785799B2 (ja) | 画像処理装置、画像処理方法及び撮影装置 | |
JP5392560B2 (ja) | 画像処理装置および画像処理方法 | |
JP4479527B2 (ja) | 画像処理方法、画像処理装置、画像処理プログラム、および電子カメラ | |
WO2006134923A1 (ja) | 画像処理装置、コンピュータプログラム製品および画像処理方法 | |
JP4992433B2 (ja) | 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体 | |
JP2009111541A (ja) | 画像処理装置及び画像処理方法 | |
JP2011003048A (ja) | 画像処理装置、及び画像処理プログラム | |
JP2006114005A (ja) | 階調変換装置、プログラム、電子カメラ、およびその方法 | |
JP4924114B2 (ja) | 画像処理プログラムおよび画像処理方法 | |
JP2011228807A (ja) | 画像処理プログラム、画像処理装置、および画像処理方法 | |
JP4752912B2 (ja) | 画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ | |
JP5234127B2 (ja) | 階調変換装置、プログラム、電子カメラ、及びその方法 | |
JP2006114006A (ja) | 階調変換装置、プログラム、電子カメラ、およびその方法 | |
JPH1079885A (ja) | 画像処理方法および画像処理装置 | |
JP5365881B2 (ja) | 画像処理装置、画像処理方法 | |
WO2005125179A1 (ja) | 質感を強調する画像処理装置、画像処理プログラム、電子カメラ、および画像処理方法 | |
JP5561389B2 (ja) | 画像処理プログラム、画像処理装置、電子カメラ、および画像処理方法 | |
JP5810593B2 (ja) | 画像処理装置、撮像装置およびプログラム | |
JP2007267170A (ja) | 彩度調整機能を有する電子カメラ、および画像処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2008501638 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007713508 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |