WO2007097032A1 - 回路基板、情報処理装置及び伝送方法 - Google Patents

回路基板、情報処理装置及び伝送方法 Download PDF

Info

Publication number
WO2007097032A1
WO2007097032A1 PCT/JP2006/303637 JP2006303637W WO2007097032A1 WO 2007097032 A1 WO2007097032 A1 WO 2007097032A1 JP 2006303637 W JP2006303637 W JP 2006303637W WO 2007097032 A1 WO2007097032 A1 WO 2007097032A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
buffer
driver
control
Prior art date
Application number
PCT/JP2006/303637
Other languages
English (en)
French (fr)
Inventor
Takuya Satou
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2008501582A priority Critical patent/JP4567086B2/ja
Priority to EP06714774.4A priority patent/EP1990961B1/en
Priority to PCT/JP2006/303637 priority patent/WO2007097032A1/ja
Publication of WO2007097032A1 publication Critical patent/WO2007097032A1/ja
Priority to US12/230,327 priority patent/US7898293B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end
    • H04L25/029Provision of high-impedance states

Definitions

  • the present invention relates to a circuit board that enables high-speed transmission of signals between mounted circuit components, an information processing apparatus having at least one circuit board, and a method for transmitting signals between circuit parts.
  • Patent Document 1 WO2003 / 084161
  • the present invention provides a circuit board on which a circuit component configured to enable high-speed transmission of data and to increase the width of a data pattern, and information processing. It is an object of the present invention to provide a transmission method that enables both high-speed transmission of data and high-speed transmission of data and data eye pattern width.
  • a circuit board is a circuit board on which a plurality of circuit components connected by transmission lines are mounted, and a signal included in the circuit component.
  • the driver unit that transmits the signal has a basic buffer that is always on and at least one control buffer that can be individually turned on and off and connected in parallel to the basic buffer.
  • the output impedance of the basic buffer is It is characterized by being set higher than the characteristic impedance of the transmission line.
  • An information processing apparatus is an information processing apparatus including at least one circuit board on which a plurality of circuit components connected by a transmission line are mounted, wherein the circuit component
  • the driver section has a basic buffer that is always on and at least one control buffer that can be individually turned on and off and connected in parallel to the basic buffer.
  • the output impedance of the basic buffer is the transmission buffer It is characterized by being set higher than the characteristic impedance of the line.
  • a transmission method between a driver circuit and a receiver circuit via a transmission line wherein the output impedance of a basic buffer in which the driver circuit is always on is expressed as the characteristic impedance of the transmission line. Set higher, delay the input signal to the driver circuit to generate a delayed signal, compare the input signal with the delayed signal, and control the control buffer of the driver circuit according to the comparison result And transmitting to the receiver circuit.
  • the present invention high-speed transmission of signals between circuit components mounted on a circuit board is enabled, and the window width of the pattern is reduced by adjusting the output impedance of the basic buffer as in the present invention. It can be expanded, the noise resistance of the clock can be improved, and stable transmission timing can be secured.
  • FIG. 1 is a diagram showing a circuit board or an information processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a circuit of an output unit and a reception unit provided on a circuit board.
  • FIG. 3 is a truth table showing the operation of the control buffer of the output unit.
  • FIG. 4 is a truth table showing the operation of another control buffer in the output unit.
  • FIG. 5 is a time chart illustrating the operation of the output unit.
  • FIG. 6 is a diagram showing an eye pattern of an output signal from an output unit.
  • FIG. 7 is a diagram comparing the eye pattern of the output signal of the present embodiment with the eye pattern of the output signal of the comparative example.
  • FIG. 8 is a diagram showing a comparison result of eye patterns in FIG.
  • FIG. 1 is a schematic diagram of a printed circuit board on which a plurality of LSIs (Large Scale Integration) according to an embodiment of the present invention are mounted.
  • LSIs Large Scale Integration
  • On the circuit board 90 at least a plurality of LSI components 70-1, 70-2, which are circuit components, are mounted.
  • the LSI 70-1 has a signal receiving unit 60-1, a signal processing unit 40-1, and a signal output unit 10-1.
  • the LSI 70-2 includes a signal receiving unit 60-2, a signal processing unit 40-2, and Signal output unit 10-2 is provided.
  • the circuit board 90 includes a connector 80 and can be connected to another connector.
  • the printed circuit board 90 includes an LSI, a memory, and the like that function as at least one information processing unit, and the information processing apparatus 90 can be configured by itself.
  • a plurality of, for example, four printed circuit boards 90 may be combined via a connector 80 to constitute an information processing apparatus.
  • FIG. 2 schematically shows a circuit configuration of the output unit 10 of one LSI, the transmission line 50, and the input unit 10 of another LSI on the circuit board of the present embodiment.
  • the output unit 10 includes a driver circuit including three buffers 31, 32, and 33 connected in parallel.
  • the nofer 31 is a basic buffer that can always operate.
  • the noffer 32 is a control buffer controlled by the control signal -EN1
  • the noffer 33 is a control buffer controlled by the control signal -EN2.
  • the output of the driver circuit changes the output impedance of the driver by turning on or off each of the control buffers connected in parallel.
  • An input signal to the driver circuit is input to FF11 including a D-flip flop.
  • the D- flip-flop operates every time a clock (not shown) is input and has a function of holding data for one cycle. Therefore, the input signal is output from FF11 as input signal data A after one cycle.
  • Data A passes through the delay time adjustment element 4 and becomes a signal OT, which is nother 31, 32, 33.
  • input signal data A is input to FF12 composed of a D-flip-flop, and FF12 outputs input signal data B that is further delayed by one cycle.
  • This input data B is input to FF13, which also has D—flip-flop power, and input signal data C delayed by one cycle is output.
  • the buffer 32 is controlled by a control signal -EN1 output from the exclusive NOR circuit ENOR21.
  • ENOR21 receives input data A and data B one cycle before input data A.
  • control signal -EN1 becomes 1, and driver 32 is not driven.
  • control signal -EN1 becomes 0 and driver 32 is driven.
  • the buffer 33 is a logical sum of the outputs of the exclusive NOR circuits ENOR21 and ENOR22. It is driven by the control signal -EN2 that is the output of the OR circuit 7.
  • Exclusive NOR circuit EN OR22 receives input data A and data C two cycles before input data A. The output of ENO R22 is 1 when data A and data C input to ENOR22 match. If data B and data C match and are different from data A, control signal -EN2 is 1; if data B or data C matches data A, control signal -EN2 is 0.
  • the buffer 33 is controlled by referring to the data two cycles before in addition to the data one cycle before.
  • the receiver circuit 60 connected to the driver circuit 10 by the transmission line 50 is connected to a termination resistor in accordance with the characteristic impedance of the transmission line in order to suppress reflection of a signal received through the transmission line.
  • the terminator in this embodiment is a Thevenin terminator in which a resistor R1 is connected between a signal line and a power supply potential, and a resistor R2 is connected between the signal line and ground.
  • the noffer 61 is a buffer for sending a signal to the next stage of the receiver circuit.
  • the driver of this embodiment also has three parallel-connected buffer forces, but this is an example, and in order to implement the present invention, the number of buffers connected in parallel is limited to three. It is sufficient if there are two or more.
  • FIG. 3 shows a truth table of the enable signal EN1, which is a control signal for the buffer 32.
  • the exclusive NOR circuit outputs 1 if the inputs match and outputs 0 if the inputs differ.
  • ENOR21 drives buffer 32 by setting enable signal EN1 to 0 if data A and data B do not match!
  • FIG. 4 shows a truth table of the enable signal EN2 which is a control signal of the buffer 33.
  • Figure 4 also shows the operation of the enable signal—EN1.
  • ENOR21 indicates an exclusive NOR between data A and data B
  • ENOR22 indicates an exclusive NOR between data A and data C.
  • the enable signal—EN1 is the output of ENOR21
  • the enable signal—EN2 is the logical sum of ENOR21 and ENOR22.
  • X 3 is the case where both parallel drivers 32 and 33 are driven to enhance the output by doubling the driving capability.
  • X 2 is driven by parallel driver 32 but not parallel driver 33 In this case, the driving capacity is to be doubled.
  • FIG. 5 is a diagram for explaining how the output of the driver circuit changes according to the signal input to the driver circuit. If data A as shown in Fig. 5 is input, data B is output with data A delayed by 1 cycle, and data C is output with data A delayed by 2 cycles. The
  • the enable signal EN1 is the output of ENOR21
  • the enable signal EN2 is a logical sum of ENOR21 and ENOR22.
  • OT is the data obtained through the delay time adjustment element as shown in Fig.2.
  • enable signals EN 1 and —EN2 are both 0, so that parallel drivers 32 and 33 operate together, and the drive capability is 3 It has doubled.
  • Cycles (i), (ii) and ( ⁇ ) differ when comparing current data OT and data ⁇ one cycle before, comparing current data ⁇ and data C two cycles ago. But it is different. That is, the signal changes in the current cycle where there is no change up to two cycles ago.
  • Cycles (iii) and (iv) are those when the enable signal EN1 is 0.
  • the enable signal EN2 is 1, the parallel driver 32 operates, but the parallel driver 33 does not operate and the drive capability is normal. Stays twice as high.
  • Cycles (iii) and (iv) are the same forces when comparing the current data OT and the data C two cycles before when the current data OT is compared with the data B one cycle before. That is, the case where changes continue.
  • FIG. 6 is a waveform diagram showing a simulation result of the driver circuit of FIG.
  • the observation position is the position where the transmission signal through the transmission line is input to the receiver.
  • the transmission path is 45 cm
  • the vertical axis of the waveform diagram is the voltage 20 OmV / div
  • the horizontal axis is the time InsZdiv.
  • H ("l") and L ("0") of the signal from the data string is, for example, a force obtained by reading the voltage at the rising edge of the clock. Variations in the clock rise position are unavoidable due to manufacturing variations, as well as applied voltage and ambient temperature.
  • the eye pattern window determines the clock fluctuation range and is found on the eye pattern by defining a voltage level that can distinguish H and L of the signal. If the window width of the eye pattern is wide, the window force is less likely to be lost even if the clock fluctuates. For this reason, it is necessary to increase the window width for stable circuit operation.
  • the voltage level that defines the window width of the clock is set in consideration of noise immunity by checking the operation in the actual circuit.
  • the present inventor has focused on the DC level of the data signal in the circuit configuration of FIG. Compared with the terminating resistance value on the receiver side, the output impedance of the basic buffer 31 is small. The difference in the DC voltage between the H side and L side of the signal is relatively large, resulting in the width of the eye pattern of the data. I found that I was narrowing.
  • the output impedance of the basic buffer 31 is about 50 ⁇ , which is almost the same as the characteristic impedance of the transmission line.
  • the reason why the output impedance of the basic buffer 31 was set to 50 ⁇ is that if the control of the buffers 32 and 33 is not successful, the basic buffer 31 is operated only.
  • the output impedance of the basic buffer 31 is matched with the characteristic impedance of the transmission line.
  • the output impedance of the basic buffer 31 is set to 80 ⁇ , which is larger than the characteristic impedance 50 ⁇ of the conventional transmission line, and the DC voltage on the H side and L side of the signal is set. Close the level and widen the window width of the data eye pattern To do.
  • FIG. 7 shows a simulation waveform of data transmission according to the present embodiment together with a comparative example.
  • the conventional setting is used except that the output impedance of the basic buffer 31 is set to 80 ⁇ . That is, the output impedance of the noffers 32 and 33 is 25 ⁇ , and the termination resistance of the receiver is 70 ⁇ .
  • a circuit in which the output impedance of the basic buffer 31 is 50 ⁇ and the other settings are the same as in this embodiment is adopted.
  • the simulation in Fig. 7 is obtained by superimposing the obtained waveforms by sequentially inputting 16 bits from 0000 to 1111 of a 4-bit signal.
  • the observation position is the position where the transmission signal through the transmission line is input to the receiver.
  • the eye pattern of this embodiment is indicated by A
  • the eye pattern of the comparative example is indicated by B
  • the top and bottom of the pattern window are about 1.11V on the H side and about 690mV on the L side.
  • the voltage on the H side decreases and the voltage on the L side increases, but the width of the eye pattern window increases.
  • the width of the eye pattern window in Embodiment A is expanded by 77 picoseconds on the H side and 79 picoseconds on the L side compared to Comparative Example B. This widening of the eye pattern window width indicates that an output circuit that is resistant to clock fluctuations has been obtained.
  • the output impedance of the basic buffer 31 can be an arbitrary value as long as it is larger than the characteristic impedance of the transmission line. However, if an excessively large value is adopted, the output amplitude becomes small, and the original Since signal processing becomes impossible, it is recommended to use the optimum value for circuit design.
  • the present invention is effective as long as it is an output circuit having one or more control buffers with respect to a force basic buffer having three notches.
  • a signal processing unit for processing signals;
  • a driver section for transmitting signals;
  • the driver unit has a basic buffer that is always on, and at least one control buffer that can be individually turned on and off and connected in parallel to the basic buffer, and the output impedance of the basic buffer is the transmission line A circuit board characterized in that it is set higher than the characteristic impedance.
  • the driver part is a driver part
  • a delay circuit unit that obtains a delayed signal by delaying an input signal
  • a control circuit that compares the input signal and the delay signal to obtain a control signal of the control buffer
  • the driver part is a driver part
  • At least two control buffers At least two control buffers
  • a delay circuit unit that obtains a first delayed signal by delaying the input signal by one cycle; a delay circuit unit that obtains a second delayed signal by delaying the input signal by two cycles; and the input signal and the first delayed signal And a first control circuit for obtaining a first control signal for controlling the control buffer,
  • a second control circuit that obtains a second control signal for controlling the control buffer by comparing the input signal and the second delay signal;
  • An information processing apparatus comprising at least one circuit board on which a plurality of circuit components connected by transmission lines are mounted,
  • the circuit component is a circuit component
  • a signal processing unit for processing signals
  • the driver section has a basic buffer that is always on and at least one control buffer that can be individually turned on and off and connected in parallel to the basic buffer.
  • the output impedance of the basic buffer is An information processing apparatus characterized by being set higher than the characteristic impedance of the transmission line.
  • the information processing apparatus according to appendix 6 or 7, wherein the receiver unit has a termination resistance higher than a characteristic impedance of a transmission line.
  • the driver unit includes a delay circuit unit that obtains a delayed signal by delaying an input signal, and a control circuit that obtains a control signal of the buffer by comparing the input signal and the delayed signal,
  • control buffer is controlled based on the obtained control signal.
  • the driver part is At least two control buffers
  • a delay circuit unit that obtains a first delayed signal by delaying the input signal by one cycle; a delay circuit unit that obtains a second delayed signal by delaying the input signal by two cycles; and the input signal and the first delayed signal And a first control circuit for obtaining a first control signal for controlling the control buffer,
  • a second control circuit that obtains a second control signal for controlling the control buffer by comparing the input signal and the second delay signal
  • a driver circuit having a basic buffer that is always on, at least one control buffer that can be individually turned on / off and connected in parallel to the basic buffer, and an output signal of the driver circuit via a transmission line
  • An output signal of the driver circuit is generated and transmitted to the receiver circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Logic Circuits (AREA)

Abstract

 伝送線路で接続された回路部品を複数個搭載した回路基板が提供される。この回路基板上に搭載された回路部品は少なくとも、信号を処理する信号処理部と、信号を送信するドライバと、信号を受信するレシーバを備えている。さらに、このドライバは、常時オンである基本バッファと、個別にオン・オフが可能で基本バッファに並列に接続された少なくとも1つの制御バッファを有し、基本バッファの出力インピーダンスは、伝送線路の特性インピーダンスより高く設定されている。

Description

明 細 書
回路基板、情報処理装置及び伝送方法
技術分野
[0001] 本発明は、搭載された回路部品間の信号の高速伝送を可能とする回路基板、該回 路基板を少なくとも 1つを有する情報処理装置、及び回路部品間の信号の伝送方法 に関する。
背景技術
[0002] 近年、例えばサーバのような情報処理装置においては、サーバによる信号処理の 速度が向上し、それに伴って回路基板上の信号の高速伝送が求められている。信号 の高速伝送のためには、伝送周波数を高くする必要がある力 伝送周波数を高くす ると、従来と同じ距離を伝送しても、その伝送損失が無視できなくなる。
[0003] 例えばサーバの回路基板上の配線においても、使用周波数が高くなつてくると、表 皮効果等による高周波成分の伝送損失が無視できなくなり、信号のエッジの鋭さが 失われ、レシーバ側での受信信号のレベルが低下することになる。このレシーバ側で の信号レベルの低下は、信号のノイズ耐性やタイミング余裕が減少する結果となる。
[0004] レシーバ側での信号レベルの低下力もたらす問題に対処するために、複数のバッ ファを並列に接続した並列バッファドライバが提案されている(特許文献 1参照)。提 案されたドライバ回路は、信号の変化パターンに応じて、並列のバッファをそれぞれ オンあるいはオフさせることによって、ドライバの駆動能力を増大させ、信号の高周波 伝送損失を補償するものである。
[0005] し力しながら、周波数が高くなるにつれて、クロックのわずかの変動により、信号の 正確なサンプリングができなくなる場合が生じている。
特許文献 1: WO2003/084161
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、上記問題に鑑み、データの高速伝送を可能にするとともに、データのァ ィパターン幅を拡大させるように構成された回路部品を搭載した回路基板、情報処 理装置及びデータの高速伝送とデータのアイパターン幅の拡大をともに可能にする 伝送方法を提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するために、本発明の第 1の態様である回路基板は、伝送線路で 接続された回路部品を複数個搭載した回路基板であって、該回路部品が有する信 号を送信するドライバ部は、常時オンである基本バッファと、個別にオン'オフが可能 で基本バッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本バッ ファの出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定され ていることを特徴とする。
[0008] また、本発明の第 2の態様である情報処理装置は、伝送線路で接続された回路部 品を複数個搭載した少なくとも 1つの回路基板を備える情報処理装置であって、前記 回路部品のドライバ部は、常時オンである基本バッファと、個別にオン'オフの制御が 可能で基本バッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本 バッファの出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定さ れていることを特徴とする。
[0009] さらに、本発明の第 3の態様である、ドライバ回路と伝送線路を介するレシーバ回路 間の伝送方法は、ドライバ回路の常時オンである基本バッファの出力インピーダンス を、前記伝送線路の特性インピーダンスより高く設定し、前記ドライバ回路への入力 信号を遅延させて遅延信号を生成し、前記入力信号と前記遅延信号とを比較し、該 比較結果に応じて、前記ドライバ回路の制御バッファを制御して、前記レシーバ回路 へ伝送することを特徴とする。
発明の効果
[0010] 本発明によると、回路基板に搭載された回路部品間の信号の高速伝送を可能にす るとともに、基本バッファの出力インピーダンスを本発明のように調整することによりァ ィパターンのウィンドウ幅を拡大させることができ、クロックのノイズ耐性を向上させる ことができ、安定した伝送タイミングを確保できる。
図面の簡単な説明
[0011] [図 1]本発明の一実施形態である回路基板あるいは情報処理装置を示す図である。 [図 2]回路基板上に設けられた出力部と受信部との回路を示す図である。
[図 3]出力部の制御バッファの動作を示す真理値表である。
[図 4]出力部の他の制御バッファの動作を示す真理値表である。
[図 5]出力部の動作を例示するタイムチャートである。
[図 6]出力部からの出力信号のアイパターンを示す図である。
[図 7]本実施形態の出力信号のアイパターンと比較例の出力信号のアイパターンとを 対比する図である。
[図 8]図 7のアイパターンの比較結果を示す図である。
符号の説明
[0012] 10 出力部(ドライバ)
31 基本バッファ
32、 33 制御バッファ
50 伝送線路
60 受信部
70 LSI
80 コネクタ
90 回路基板 (情報処理装置)
発明を実施するための最良の形態
[0013] 以下、図面を参照して、本発明の実施の形態であるドライバ回路を説明する。
図 1は、本発明の一実施形態である複数の LSI (Large Scale Integration)が搭載さ れるプリント回路基板の概略図である。回路基板 90には、少なくとも回路部品である LSI70- 1, 70— 2が複数個搭載されている。図では、 2個の LSIを示した力 LSIの 個数は限定されない。 LSI70— 1は、信号受信部 60— 1、信号処理部 40— 1、及び 信号出力部 10— 1を有し、 LSI70— 2は、信号受信部 60— 2、信号処理部 40— 2、 及び信号出力部 10— 2を備えている。 LSI70- 1と LSI70- 2とは、基板上にプリン トされて形成された伝送線路 50— 1で接続され、信号出力部とが信号受信部とによ つて信号の授受が行われる。また、回路基板 90はコネクタ 80を備え、他のコネクタと 接続可能となっている。 [0014] プリント回路基板 90は、少なくとも 1つの情報処理部として機能する LSI及びメモリ 等を備えて、それ自体で情報処理装置 90を構成することが可能である。また、複数、 例えば 4枚のプリント回路基板 90をコネクタ 80を介して組み合わせて、情報処理装 置を構成するようにしてもょ ヽ。
[0015] 図 2は、本実施形態の回路基板上の 1つの LSIの出力部 10と、伝送線路 50と、他 の LSIの入力部 10との回路構成の概略を示す。
[0016] 出力部 10は、並列接続された 3つのバッファ 31, 32, 33を備えるドライバ回路から なる。ノ ッファ 31は、常時動作可能な基本バッファである。ノ ッファ 32は、制御信号- EN1で制御される制御バッファであり、ノッファ 33は、制御信号- EN2で制御される 制御バッファである。ドライバ回路の出力は、並列接続された制御バッファのバッファ をそれぞれオンあるいはオフさせることにより、ドライバの出力インピーダンスを変化さ せる。
[0017] ドライバ回路への入力信号は、 D—フリップフロップからなる FF11に入力する。 D- フリップフロップは、クロック(図示せず)が入力するごとに動作し、 1サイクルだけデー タを保持する機能を有する。よって、入力信号は、 1サイクル後に入力信号データ Aと して、 FF11から出力する。データ Aは、遅延時間調整用素子 4を通り、信号 OTとし てノ ッファ 31, 32, 33【こ人力する。
[0018] 同時に、入力信号データ Aは、 D—フリップフロップからなる FF12に入力し、 FF12 は、さらに 1サイクル遅延した入力信号データ Bを出力する。この入力データ Bは、 D —フリップフロップ力もなる FF13に入力して、さらに 1サイクル遅延した入力信号デ ータ Cを出力する。
[0019] バッファ 32は、排他的 NOR回路 ENOR21から出力される制御信号- EN1によつ て制御される。 ENOR21には、入データ Aと入力データ Aより 1サイクル前のデータ B とが入力する。
[0020] ENOR21に入力するデータ Aとデータ Bとが一致している場合には、制御信号- E N1は 1となり、ドライバ 32を駆動しない。データ Aとデータ Bとが異なる場合には、制 御信号- EN1は 0となり、ドライバ 32を駆動する。
[0021] バッファ 33は、排他的 NOR回路 ENOR21と ENOR22の出力の論理和、すなわ ち OR回路 7の出力である制御信号- EN2によって駆動される。排他的 NOR回路 EN OR22は、入データ Aと入力データ Aより 2サイクル前のデータ Cとが入力する。 ENO R22の出力は、 ENOR22に入力するデータ Aとデータ Cとが一致している場合に 1と なる。データ Bとデータ Cがー致し、かつデータ Aと異なる場合には、制御信号- EN2 は 1となり、データ Bまたはデータ Cがデータ Aと一致する場合には、制御信号- EN2 は 0となる。バッファ 33については、 1サイクル前のデータに加えて 2サイクル前のデ ータを参照して制御する。データの変化に応じて、ドライバ回路の駆動能力を 3倍に 増加させる場合と、第 3のドライバ 33を作動することなぐ駆動能力の増加を 2倍にと どめる場合とを選択できる。 2サイクル前のデータを参照して制御することにより、駆 動能力を 3倍に増強することによってもたらされる波形の乱れを抑制することができる
[0022] ドライバ回路 10と伝送線路 50で接続されたレシーバ回路 60には、伝送線路を介し て受信する信号の反射を抑制するために、伝送線路の特性インピーダンスに合わせ た終端抵抗が接続される。本実施形態の終端抵抗は、信号線と電源電位との間に抵 抗 R1を接続し、信号線とグランドとの間に抵抗 R2を接続してなるテブナン終端であ る。なお、ノッファ 61は、レシーバ回路の次段に信号を送るためのバッファである。
[0023] なお、本実施形態のドライバは、 3つの並列接続されたバッファ力もなるが、これは 一例であって、本発明を実施するためには、並列接続されるバッファは、 3つに限定 されることなく、 2以上の個数があればよい。
[0024] 図 3に、バッファ 32の制御信号であるイネ一ブル信号 EN1の真理値表を示す。
排他的 NOR回路は、入力が一致すると 1を出力し、入力が相違すると 0を出力する。 ENOR21は、データ Aとデータ Bとが一致しな!、場合にイネ一ブル信号 EN 1を 0 としてバッファ 32を駆動する。
[0025] 図 4に、バッファ 33の制御信号であるイネ一ブル信号 EN2の真理値表を示す。
図 4では、ィネーブル信号— EN1の動作もともに示されている。 ENOR21は、データ Aとデータ Bとの排他的 NORを示し、 ENOR22は、データ Aとデータ Cの排他的 NO Rを示す。ィネーブル信号—EN1は、 ENOR21の出力であり、ィネーブル信号—E N2は、 ENOR21と ENOR22との論理和である。 [0026] X 3は、並列ドライバ 32, 33両方を駆動して駆動能力を 3倍にして出力強調する場 合であり、 X 2は、並列ドライバ 32は駆動するものの、並列ドライバ 33は駆動しないで 、駆動能力を 2倍にとどめる場合である。
[0027] 図 5は、ドライバ回路に入力する信号により、ドライバ回路の出力がどのように変化 するかを説明するための図である。図 5に示すようなデータ Aが入力したとすると、デ ータ Bとして、データ Aを 1サイクル遅延させたものが出力され、データ Cとして、デー タ Aを 2サイクル遅延させたものが出力される。
[0028] 前述のように、ィネーブル信号 EN1は、 ENOR21の出力であり、ィネーブル信 号一 EN2は、 ENOR21と ENOR22との論理和である。また、 OTは、図 2に示すよう にデータ Aを遅延時間調整素子を通して得たデータである。
[0029] サイクル(i) , (ii) , (v)では、イネ一ブル信号 EN 1, —EN2はともに 0であるから 、並列ドライバ 32, 33がともに作動して、駆動能力は通常の 3倍となっている。
[0030] サイクル (i) , (ii) , (ν)は、現在のデータ OTと 1サイクル前のデータ Βとを比較する と相違し、現在のデータ ΟΤと 2サイクル前のデータ Cとを比較しても相違する。すな わち 2サイクル前まで変化がなぐ現在のサイクルで信号が変化する場合である。サイ クル(iii) , (iv)は、ィネーブル信号 EN1は 0である力 ィネーブル信号 EN2は 1 である場合で、並列ドライバ 32は作動するが、並列ドライバ 33は作動せず、駆動能 力は通常の 2倍にとどまる。サイクル (iii) , (iv)は、現在のデータ OTと 1サイクル前の データ Bとを比較すると相違する力 現在のデータ OTと 2サイクル前のデータ Cとを 比較すると同じ場合である。すなわち変化が連続するような場合である。
[0031] 図 6は、図 1のドライバ回路のシミュレーション結果を示す波形図である。
これは、 4ビットの信号を 0000から 1111までの 16通りを順次入力して、得られた波 形を重ね合わせて得たものである。観測位置は、伝送路をとおった伝送信号がレシ ーバに入力する位置である。
[0032] このシミュレーションにおいては、伝送路を 45cmであり、波形図の縦軸は、電圧 20 OmV/div,横軸は、時間 InsZdivである。図 6のシミュレーション結果によると、出力 信号の初期振幅 (m)が低下することなぐ波形の縦ないし横方向のぶれが少なくな つている。さらに、図 6の(n)に見られるように、振幅の上下のゆれが少なくなつている 。これは、データの符号列の最後の 1について、駆動能力を 3倍にせず 2倍にとどめ た効果である。このように、変化が連続する場合には、 1サイクル前のデータば力りで なぐ 2サイクル前のデータを参照することによって、より高性能なドライバ回路を得る ことができる。
[0033] データ列から信号の H ("l")と L ("0")とは、例えばクロックの立ち上がりで電圧を 読み出すことによって行われる力 使用する素子自体の特性のばらつき、あるいは L SIの製造時のばらつき、さらには印加電圧や周囲温度によって、クロックの立ち上が り位置の変動は避けられない。アイパターンのウィンドウは、クロックの変動範囲を決 めるもので、信号の Hと Lとを識別可能な電圧レベルを規定して、アイパターン上に見 いだされるものである。アイパターンのウィンドウ幅が広いと、クロックの変動があって もウィンドウ力 外れることは少なくなるので、回路の安定動作のためには、ウィンドウ の幅は広くすることが求められることになる。なお、クロックのウィンドウ幅を規定する 電圧レベルは、実際の回路での動作をチェックして、ノイズ耐性などを考慮して設定 されるちのである。
[0034] 本発明者は、図 2の回路構成において、データ信号の DCレベルに着目した。そし て、レシーバ側の終端抵抗値に比較すると、基本バッファ 31の出力インピーダンスは 小さぐ信号の H側と L側の直流電圧の差が比較的大きいことが、結果的にデータの アイパターンの幅を狭めていることを見出した。
[0035] 従来は、基本バッファ 31の出力インピーダンスを伝送線路の特性インピーダンスと ほぼ同じ約 50 Ωとしていた。また、レシーバの終端抵抗は、伝送線路の特性インピ 一ダンスの 50 Ωより少し大きな 70 Ωとしていた。すなわち、図 2の R1 =R2= 140 Q としていた。なお、基本バッファ 31の出力インピーダンスを 50 Ωとしていたのは、バッ ファ 32、 33の制御がうまくいかなかった場合には、基本バッファ 31のみで動作させる ことになるので、その場合を考慮して基本バッファ 31の出力インピーダンスを伝送線 路の特 '性インピーダンスに合わせるようにして ヽたものである。
[0036] 本実施形態では、図 2の回路で、基本バッファ 31の出力インピーダンスを、従来の 伝送線路の特性インピーダンス 50 Ωより大きな値である 80 Ωとして、信号の H側、 L 側の直流電圧レベルを近づけ、データのアイパターンのウィンドウ幅を広げるように する。
[0037] 図 7に、本実施形態のデータ伝送のシミュレーション波形を、比較例ともに示す。本 実施形態では、基本バッファ 31の出力インピーダンスを 80 Ωとするほかは、従来の 設定を使用する。すなわち、ノ ッファ 32、 33の出力インピーダンスは 25 Ω、レシーバ の終端抵抗は、 70 Ωである。比較例として、基本バッファ 31の出力インピーダンスを 50 Ωとし、それ以外は、本実施形態と同一の設定とした回路を採用した。図 7のシミ ユレーシヨンは、 4ビットの信号を 0000から 1111までの 16通りを順次入力して、得ら れた波形を重ね合わせて得たものである。観測位置は、伝送路をとおった伝送信号 がレシーバに入力する位置である。
[0038] 図 7では、本実施形態のアイパターンを Aで、比較例のアイパターンを Bで示す。ァ ィパターンのウィンドウの上下は、 H側で約 1. 11V程度、 L側で 690mV程度である 。図 7からわ力るように、本実施形態では、 H側の電圧が下がり、 L側の電圧が上がつ ているが、アイパターンのウィンドウの幅は、広がっている。
[0039] この結果を図 8に示す。アイパターンウィンドウの幅は、本実施形態 Aは、比較例 B と比べて、 H側で 77ピコ秒、 L側で 79ピコ秒拡大している。このようなアイパターンゥ インドウの幅の拡大は、クロックの変動に耐性のある出力回路が得られたことを示して いる。
[0040] なお、基本バッファ 31の出力インピーダンスは、伝送線路の特性インピーダンスより 大きな値であれば任意の値をとることができるが、あまり大きな値を採用すると、出力 の振幅が小さくなり、本来の信号処理が不可能となるので、回路設計上最適な値を 採用するとよい。
[0041] 本実施形態のドライバでは、 3つのノ ッファを備える力 基本バッファに対して 1以 上の制御バッファを有する出力回路であれば、本発明は有効である。
[0042] 以上説明した本発明の実施の態様は、以下のとおりである。
(付記 1)
伝送線路で接続された回路部品を複数個搭載した回路基板であって、 該回路部品は少なくとも、
信号を処理する信号処理部と、 信号を送信するドライバ部と、
信号を受信するレシーバ部を備え、
前記ドライバ部は、常時オンである基本バッファと、個別にオン'オフが可能で基本 ノ ッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本バッファの 出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定されて ヽるこ とを特徴とする回路基板。
[0043] (付記 2)
前記制御バッファの出力インピーダンスは、伝送線路の特性インピーダンスより低く 設定されていることを特徴とする付記 1に記載の回路基板。
[0044] (付記 3)
前記レシーバ部は、伝送線路の特性インピーダンスより高 ヽ終端抵抗を有すること を特徴とする付記 1又は 2に記載の回路基板。
[0045] (付記 4)
前記ドライバ部は、
入力信号を遅延させて遅延信号を得る遅延回路部と、
前記入力信号と前記遅延信号とを比較して前記制御バッファの制御信号を得る制 御回路とを備え、
該得られた制御信号に基づ!ヽて、前記制御バッファを制御することを特徴とする付 記 1〜3のいずれか 1項に記載の回路基板。
[0046] (付記 5)
前記ドライバ部は、
少なくとも 2つの制御バッファと、
入力信号を 1サイクル遅延させて第 1の遅延信号を得る遅延回路部と、 入力信号を 2サイクル遅延させて第 2の遅延信号を得る遅延回路部と、 前記入力信号と前記第 1の遅延信号とを比較して前記制御バッファを制御する第 1 の制御信号を得る第 1の制御回路と、
前記入力信号と前記第 2の遅延信号とを比較して前記制御バッファを制御する第 2 の制御信号を得る第 2の制御回路とを備え、 前記第 1の制御信号に基づいて、ある制御バッファを制御し、前記第 1及び第 2の 制御信号に基づ 、て、他の制御バッファを制御することを特徴とする付記 4に記載の 回路基板。
[0047] (付記 6)
伝送線路で接続された回路部品を複数個搭載した少なくとも 1つの回路基板を備 える情報処理装置であって、
前記回路部品は、
信号を処理する信号処理部と、
信号を送信するドライバ部と、
信号を受信するレシーバ部を備え、
前記ドライバ部は、常時オンである基本バッファと、個別にオン'オフの制御が可能 で基本バッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本バッ ファの出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定され て!ヽることを特徴とする情報処理装置。
[0048] (付記 7)
前記制御バッファの出力インピーダンスは、伝送線路の特性インピーダンスより低く 設定されていることを特徴とする付記 6に記載の情報処理装置。
[0049] (付記 8)
前記レシーバ部は、伝送線路の特性インピーダンスより高 、終端抵抗を有すること を特徴とする付記 6又は 7に記載の情報処理装置。
[0050] (付記 9)
前記ドライバ部は、入力信号を遅延させて遅延信号を得る遅延回路部と、 前記入力信号と前記遅延信号とを比較して前記バッファの制御信号を得る制御回 路とを備え、
該得られた制御信号に基づ!ヽて、前記制御バッファを制御することを特徴とする付 記 6〜8の 、ずれか 1項に記載の情報処理装置。
[0051] (付記 10)
前記ドライバ部は、 少なくとも 2つの制御バッファと、
入力信号を 1サイクル遅延させて第 1の遅延信号を得る遅延回路部と、 入力信号を 2サイクル遅延させて第 2の遅延信号を得る遅延回路部と、 前記入力信号と前記第 1の遅延信号とを比較して前記制御バッファを制御する第 1 の制御信号を得る第 1の制御回路と、
前記入力信号と前記第 2の遅延信号とを比較して前記制御バッファを制御する第 2 の制御信号を得る第 2の制御回路とを備え、
前記第 1の制御信号に基づいて、ある制御バッファを制御し、前記第 1及び第 2の 制御信号に基づ 、て、他の制御バッファを制御することを特徴とする付記 9に記載の 情報処理装置。
[0052] (付記 11)
常時オンである基本バッファと、個別にオン ·オフの制御が可能で基本バッファに並 列に接続された少なくとも 1つの制御バッファを有するドライバ回路と、前記ドライバ回 路の出力信号を伝送線路を介して受信するレシーバ回路間の伝送方法であって、 前記基本バッファの出力インピーダンスを、前記ドライバ回路の出力信号を伝送す る伝送線路の特性インピーダンスより高く設定し、
前記ドライバ回路への入力信号を遅延させて遅延信号を生成し、
前記入力信号と前記遅延信号とを比較し、
該比較結果に応じて、前記制御バッファを制御し、
前記ドライバ回路の出力信号を生成して、前記レシーバ回路へ伝送することを特徴 とする伝送方法。
[0053] (付記 12)
前記制御バッファの出力インピーダンスは、伝送線路の特性インピーダンスより低く 設定されていることを特徴とする付記 10に記載の伝送方法。
[0054] (付記 13)
前記レシーバ部は、伝送線路の特性インピーダンスより高 ヽ終端抵抗を有すること を特徴とする付記 10又は 11に記載の伝送方法。

Claims

請求の範囲
[1] 伝送線路で接続された回路部品を複数個搭載した回路基板であって、
該回路部品は少なくとも、
信号を処理する信号処理部と、
信号を送信するドライバ部と、
信号を受信するレシーバ部を備え、
前記ドライバ部は、常時オンである基本バッファと、個別にオン'オフが可能で基本 ノ ッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本バッファの 出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定されて ヽるこ とを特徴とする回路基板。
[2] 前記制御バッファの出力インピーダンスは、伝送線路の特性インピーダンスより低く 設定されて ヽることを特徴とする請求項 1に記載の回路基板。
[3] 前記レシーバ部は、伝送線路の特性インピーダンスより高 ヽ終端抵抗を有すること を特徴とする請求項 1又は 2に記載の回路基板。
[4] 前記ドライバ部は、
入力信号を遅延させて遅延信号を得る遅延回路部と、
前記入力信号と前記遅延信号とを比較して前記制御バッファの制御信号を得る制 御回路とを備え、
該得られた制御信号に基づ 、て、前記制御バッファを制御することを特徴とする請 求項 1〜3のいずれか 1項に記載の回路基板。
[5] 伝送線路で接続された回路部品を複数個搭載した少なくとも 1つの回路基板を備 える情報処理装置であって、
前記回路部品は、
信号を処理する信号処理部と、
信号を送信するドライバ部と、
信号を受信するレシーバ部を備え、
前記ドライバ部は、常時オンである基本バッファと、個別にオン'オフの制御が可能 で基本バッファに並列に接続された少なくとも 1つの制御バッファを有し、該基本バッ ファの出力インピーダンスは、前記伝送線路の特性インピーダンスより高く設定され て!ヽることを特徴とする情報処理装置。
常時オンである基本バッファと、個別にオン ·オフの制御が可能で基本バッファに並 列に接続された少なくとも 1つの制御バッファを有するドライバ回路と、前記ドライバ回 路の出力信号を伝送線路を介して受信するレシーバ回路間の伝送方法であって、 前記基本バッファの出力インピーダンスを、前記ドライバ回路の出力信号を伝送す る伝送線路の特性インピーダンスより高く設定し、
前記ドライバ回路への入力信号を遅延させて遅延信号を生成し、
前記入力信号と前記遅延信号とを比較し、
該比較結果に応じて、前記制御バッファを制御し、
前記ドライバ回路の出力信号を生成して、前記レシーバ回路へ伝送することを特徴 とする伝送方法。
PCT/JP2006/303637 2006-02-27 2006-02-27 回路基板、情報処理装置及び伝送方法 WO2007097032A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008501582A JP4567086B2 (ja) 2006-02-27 2006-02-27 回路基板、情報処理装置及び伝送方法
EP06714774.4A EP1990961B1 (en) 2006-02-27 2006-02-27 Circuit board, information processor and transmitting method
PCT/JP2006/303637 WO2007097032A1 (ja) 2006-02-27 2006-02-27 回路基板、情報処理装置及び伝送方法
US12/230,327 US7898293B2 (en) 2006-02-27 2008-08-27 Circuit board, information processing apparatus, and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303637 WO2007097032A1 (ja) 2006-02-27 2006-02-27 回路基板、情報処理装置及び伝送方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/230,327 Continuation US7898293B2 (en) 2006-02-27 2008-08-27 Circuit board, information processing apparatus, and transmission method

Publications (1)

Publication Number Publication Date
WO2007097032A1 true WO2007097032A1 (ja) 2007-08-30

Family

ID=38437091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303637 WO2007097032A1 (ja) 2006-02-27 2006-02-27 回路基板、情報処理装置及び伝送方法

Country Status (4)

Country Link
US (1) US7898293B2 (ja)
EP (1) EP1990961B1 (ja)
JP (1) JP4567086B2 (ja)
WO (1) WO2007097032A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232729B2 (ja) * 2009-06-30 2013-07-10 株式会社アドバンテスト 出力装置および試験装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239049A (ja) * 1998-02-24 1999-08-31 Matsushita Electric Ind Co Ltd データ出力回路
JP2002094365A (ja) * 2000-09-14 2002-03-29 Nec Corp 出力バッファ回路
WO2003084161A1 (fr) 2002-03-29 2003-10-09 Fujitsu Limited Procede d'attaque, circuit d'attaque, procede d'emission au moyen d'un circuit d'attaque et circuit de commande
JP2004228613A (ja) * 2003-01-17 2004-08-12 Nec Corp プリエンファシス機能を有する出力バッファ回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742832A (en) * 1996-02-09 1998-04-21 Advanced Micro Devices Computer system with programmable driver output's strengths responsive to control signal matching preassigned address range
JP4052697B2 (ja) * 1996-10-09 2008-02-27 富士通株式会社 信号伝送システム、および、該信号伝送システムのレシーバ回路
US6772250B2 (en) * 2001-03-15 2004-08-03 International Business Machines Corporation Boundary scannable one bit precompensated CMOS driver with compensating pulse width control
US7342508B2 (en) * 2003-12-26 2008-03-11 Medtronic Minimed, Inc. Telemetry system and method with variable parameters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239049A (ja) * 1998-02-24 1999-08-31 Matsushita Electric Ind Co Ltd データ出力回路
JP2002094365A (ja) * 2000-09-14 2002-03-29 Nec Corp 出力バッファ回路
WO2003084161A1 (fr) 2002-03-29 2003-10-09 Fujitsu Limited Procede d'attaque, circuit d'attaque, procede d'emission au moyen d'un circuit d'attaque et circuit de commande
JP2004228613A (ja) * 2003-01-17 2004-08-12 Nec Corp プリエンファシス機能を有する出力バッファ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1990961A4

Also Published As

Publication number Publication date
EP1990961A1 (en) 2008-11-12
US7898293B2 (en) 2011-03-01
JP4567086B2 (ja) 2010-10-20
JPWO2007097032A1 (ja) 2009-07-09
US20080317164A1 (en) 2008-12-25
EP1990961B1 (en) 2017-03-15
EP1990961A4 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US11489703B2 (en) Edge based partial response equalization
US9298668B2 (en) Bit error rate reduction buffer, method and apparatus
JP2007251469A (ja) 出力バッファ回路と差動出力バッファ回路並びに伝送方法
JP2009164718A (ja) 出力バッファ回路、差動出力バッファ回路、調整回路及び調整機能付き出力バッファ回路並びに伝送方法
JP6372202B2 (ja) 受信装置、送信装置、および通信システム
US6184717B1 (en) Digital signal transmitter and receiver using source based reference logic levels
US7149271B2 (en) Driver driving method, driver circuit, transmission method using driver, and control circuit
WO2007097032A1 (ja) 回路基板、情報処理装置及び伝送方法
JP3708897B2 (ja) 出力バッファ回路
KR100989736B1 (ko) 소스 구동부 및 이를 구비하는 액정 표시 장치
US7057437B2 (en) Method for reducing electromagnetic interference in a clock generating circuit
JP2007235623A (ja) インタフェース回路および2値データ伝送方法
JP4510048B2 (ja) ドライバ回路装置及びドライバ駆動方法
US9484967B1 (en) Method for duty cycle distortion detection through decision feedback equalizer taps
KR20080022407A (ko) 방사 emi 노이즈를 저감하는 pcb
US20040085088A1 (en) Method and apparatus for high speed bus having adjustable, symmetrical, edge-rate controlled, waveforms
KR101633471B1 (ko) 전압 모드 드라이버 출력 데이터 신호의 이퀄라이징 방법 및 이를 이용하는 드라이버 회로
JP5257493B2 (ja) 出力バッファ回路
JP5407270B2 (ja) 受信回路、電子機器、及び受信回路の制御方法
JP5807048B2 (ja) キャリブレーション装置,キャリブレーション機能付き画像表示装置
JP2010135954A (ja) データ伝送装置
JP2002208969A (ja) 半導体装置
JP2006121002A (ja) 信号伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008501582

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006714774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006714774

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE