WO2007094178A1 - 新規な(s,s)-ブタンジオール脱水素酵素、その遺伝子、及びその利用法 - Google Patents

新規な(s,s)-ブタンジオール脱水素酵素、その遺伝子、及びその利用法 Download PDF

Info

Publication number
WO2007094178A1
WO2007094178A1 PCT/JP2007/051763 JP2007051763W WO2007094178A1 WO 2007094178 A1 WO2007094178 A1 WO 2007094178A1 JP 2007051763 W JP2007051763 W JP 2007051763W WO 2007094178 A1 WO2007094178 A1 WO 2007094178A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
propanediol
dna
chloro
butanediol
Prior art date
Application number
PCT/JP2007/051763
Other languages
English (en)
French (fr)
Inventor
Daisuke Moriyama
Naoaki Taoka
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US12/223,319 priority Critical patent/US20110143406A1/en
Priority to EP07707937A priority patent/EP1985700A4/en
Priority to JP2008500440A priority patent/JPWO2007094178A1/ja
Publication of WO2007094178A1 publication Critical patent/WO2007094178A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01304Diacetyl reductase, (S)-acetoin forming (1.1.1.304)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Definitions

  • the present invention relates to a novel (S, S) -butanediol dehydrogenase. Further, the present invention relates to a gene encoding the enzyme protein, a vector containing the gene, a transformant containing the vector, and a method for producing an optically active alcohol using the transformant.
  • (S, S) butanediol dehydrogenase is used in the biosynthesis and metabolism of 2,3 butanediol, or in the fermentation production of (2S, 3S) —2,3 butanediol using glucose as a raw material. It is an enzyme that has an important role.
  • (2S, 3S) -2,3-butanediol produced by this enzymatic reaction is a useful compound as a raw material for pharmaceuticals and liquid crystals.
  • Examples of (S, S) butanediol dehydrogenase which have been highly purified and whose properties have been clarified, include the following enzymes.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-357639
  • Non-patent literature l Biosci. Biotechnol. Biochem., 65 (8), 1876-1878 (2001)
  • An object of the present invention is to provide a novel (S, S) -butanediol dehydrogenase that differs from the enzymes disclosed in the above-mentioned literature in terms of substrate specificity.
  • Another object of the present invention is to provide a gene encoding the enzyme protein, a vector containing the gene, a transformant containing the vector, and a method for producing an optically active alcohol using the transformant. To do.
  • One feature of the present invention is a polypeptide having the physical properties shown in the following (1) to (2).
  • NAD + Acidic nicotinamide adenine dinucleotide
  • NADH reduced nicotinamide adenine dinucleotide
  • NAD + is used as a coenzyme for oxidation reaction.
  • NA DH is used as a coenzyme for the reduction reaction.
  • polypeptide of [1] having the physical properties shown in the following (3).
  • Substrate specificity Racemic 3 Chloro-1, 2 Propanediol selectively oxidizes the hydroxyl group in the (R) configuration, leaving (S) —3 black 1,2 propanediol.
  • polypeptide [1] or [2] having the physicochemical properties shown in the following (4) to (6).
  • One feature of the present invention is the polypeptide according to any one of [1] to [3], which is produced by a microorganism belonging to the genus Otalobactrum.
  • One feature of the present invention is the polypeptide according to [4], wherein the microorganism belonging to the genus Otalobactrum is Ochrobactrum sp.
  • One feature of the present invention is DNA encoding the polypeptide according to any one of [1] to [6].
  • One feature of the present invention is the following DNA (a), (b) or (c).
  • One feature of the present invention is an expression vector comprising the DNA of [7] or [8].
  • the expression vector is Escherichia coli HB101 (pTSOB) (pTSOB) (pTSOB) (pTSOB) (pTSOB)
  • FERM BP-10461 The expression vector according to claim 9, which is a separable plasmid pTSOB.
  • One feature of the present invention is a transformant obtained by transforming a host cell with the expression vector according to [9] or [10].
  • One aspect of the present invention is the transformant according to [11], wherein the host cell is Escherichia coli.
  • One feature of the present invention is the transformant according to [11], which is Escherichia coli HB101 (pTSOB) (FERM BP-10461).
  • One feature of the present invention is that the culture of the polypeptide or the transformant is allowed to act on a racemic alcohol, and the alcohol having one stereo is oxidized to produce an alcohol having the other stereo. And a process for collecting the remaining optically active alcohol, and a process for producing the optically active alcohol.
  • One feature of the present invention is that the step of reacting the culture of the polypeptide or the transformant with a compound having a carbonyl group, and the ability of collecting the produced optically active alcohol are also provided. This is also a method for producing an optically active alcohol.
  • the present invention provides a novel (S, S) butanediol dehydrogenase, a DNA encoding the enzyme, and a transformant having the DNA. Also, by using the enzyme and the transformant, a practical method for producing useful optically active alcohols such as (S) -3 chloro-1,2 propanediol is provided.
  • FIG. 1 is a schematic diagram showing the construction of recombinant vectors pTSOB and pTSOBGl.
  • the “polypeptide” in the embodiment includes an activity that oxidizes the hydroxyl group in the (R) configuration of racemic 3-chloro-1,2-propanediol and leaves (S) -3-chloro-1,2-propanediol. It can be obtained from a microorganism having The microorganism used as the origin of the polypeptide is not particularly limited, and examples thereof include bacteria belonging to the genus Otarobactrum, and particularly preferable examples include Ochrobactrum sp. KNKc71-3 strain. The above KNKc71-3 strain is a microorganism isolated from soil by the present inventors.
  • the cell size is 0.7-0.8 X 1.5-5.
  • the microorganism that produces the polypeptide (enzyme) of the embodiment may be either a wild-type strain or a mutant strain.
  • microorganisms derived by genetic techniques such as cell fusion or genetic manipulation well known to those skilled in the art can also be used.
  • Such a genetically engineered microbe can be obtained, for example, by isolating and Z or purifying these enzymes to determine part or all of the amino acid sequence of the enzyme, based on this amino acid sequence.
  • a step of determining the base sequence of DNA encoding DNA a step of obtaining DNA encoding a polypeptide based on the base sequence, a step of obtaining a recombinant microorganism by introducing this DNA into an appropriate host microorganism, And the step of culturing the recombinant microorganism to obtain the enzyme of the embodiment, which is obtained by a method well known to those skilled in the art.
  • polypeptide of the embodiment examples include polypeptides having the following physicochemical properties (1) to (2):
  • NAD + Acidic nicotinamide adenine dinucleotide
  • NADH reduced nicotinamide adenine dinucleotide
  • NAD + is used as a coenzyme for oxidation reaction.
  • NA DH is used as a coenzyme for the reduction reaction.
  • (2S, 3S) — 23 butanediol has a (S) configuration by simply oxidizing the hydroxyl group of meso 2,3 butanediol ( S) The hydroxyl group in the configuration is also oxidized.
  • a polypeptide having the following physical properties (3) can be exemplified:
  • Substrate specificity Racemic 3 Chloro-1, 2 Propanediol selectively oxidizes the hydroxyl group in the (R) configuration, leaving (S) —3 black 1,2 propanediol.
  • polypeptide having the following physical properties of (4) to (6) can be exemplified:
  • the polypeptide may be a polypeptide having the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, or 1 in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing. Or a plurality (eg, 20, preferably 15, more preferably 10, more preferably 5, 4, 3, or 2 or less) of amino acids are substituted, inserted, deleted and Z or
  • the added amino acid sequence also has the ability to selectively oxidize the hydroxyl group in the (R) configuration of the racemic 3-chloro-1,2-propanediol and leave the (S) -3chloro-1,2-propanediol as an enzyme. It may be a polypeptide having.
  • a polypeptide having an amino acid sequence ability in which one or more amino acids are substituted, inserted, deleted, and Z or added is Cur rent Protocols in Molecular Biology (John Wiley and bons, Inc., 1989) and the like, and can selectively prepare the (R) -configured hydroxyl group of racemic 3-chloro-1,2-propanediol, (S) —3 As long as it has an enzyme activity that allows chloro-1,2 propanediol to remain, it is included in the polypeptide.
  • the highly conserved region represents a position where amino acids are matched between a plurality of sequences when the amino acid sequences are optimally aligned and compared for a plurality of enzymes having different origins.
  • the highly conserved region is confirmed by comparing the amino acid sequence shown in SEQ ID NO: 1 with the amino acid sequence of 2,3-butanediol dehydrogenase derived from other microorganisms using a tool such as GENETYX. can do.
  • amino acid sequence modified by substitution, insertion, deletion and Z or attachment may contain only one type (for example, substitution) of modification, and two or more types. Including modifications (eg, substitutions and insertions).
  • the amino acid after substitution is preferably a homologous amino acid of the original amino acid.
  • the amino acids in the same group of the following groups are regarded as homologous amino acids.
  • the number of amino acids to be substituted, inserted, deleted, and Z or added selectively modify the hydroxyl group in the (R) configuration of the modified polypeptideca S racemate 3-chloromouth-1, 2-propanediol.
  • it is not particularly limited as long as it has an enzymatic activity to leave (S) -3-chloro- 1,2-propanediol, it has the same sequence identity as the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing. It is preferably 3 ⁇ 40%. A sequence identity of 90% or more is more preferred, 95% or more is more preferred, and 99% or more is most preferred.
  • sequence identity is determined by comparing the amino acid sequence shown in SEQ ID NO: 1 with the modified amino acid sequence in the same manner as the confirmation of the highly conserved region described above. It is expressed as a value obtained by dividing the number by the total number of amino acids and multiplying by 100.
  • the cells After centrifuging the cells from the culture, the cells are suspended in an appropriate buffer, and the cells are disrupted using a physical method such as glass beads or a biochemical method such as an enzyme.
  • a crude enzyme solution of the enzyme can be obtained by dissolving and further removing solids in the solution by centrifugation.
  • the crude enzyme solution can be further purified by methods usually used by those skilled in the art, for example, methods such as ammonium sulfate precipitation, dialysis, and chromatography alone or in combination.
  • methods such as ammonium sulfate precipitation, dialysis, and chromatography alone or in combination.
  • hydrophobic chromatography, ion exchange chromatography, and gel filtration chromatography can be used alone or in combination.
  • the acid activity of the enzyme is measured by adding 0.1 M substrate, NAD + 2 mM, and enzyme solution to lOO mM phosphate buffer (pH 8.0), and 30 ° C. By measuring the increase in absorbance at a wavelength of 340 nm.
  • the enzyme reduction activity was measured by adding 20 mM substrate, NADH 0.167 mM, and enzyme solution to 100 mM phosphate buffer (pH 5.5) and measuring the decrease in absorbance at 340 nm at 30 ° C. By doing, you get.
  • the optimum pH and optimum temperature of the enzyme can be determined, for example, by measuring the activity by changing the reaction pH and the reaction temperature in the activity measurement system.
  • the molecular weight of the enzyme can be determined by calculating from the relative elution time of the standard protein by, for example, gel filtration analysis using a Superdex 200HR10 / 30 (Pharmacia Biotech) column.
  • the molecular weight of the subunit can be determined by calculating the relative mobility of the standard protein by 20% SDS-polyacrylamide gel electrophoresis.
  • the “DNA” in the embodiment is a DNA encoding the above polypeptide, and any DNA can be used as long as it can express the polypeptide in the host cell introduced according to the method described below. May be included, and an arbitrary untranslated region may be included. If the polypeptide can be obtained, those skilled in the art can obtain the DNA of the embodiments from the microorganism that is the origin of the polypeptide by a known method.
  • the purified enzyme was digested with an appropriate endopeptidase, and the cleaved fragment was purified by reverse-phase HPLC using a YMC-Pack SIL-06 (YMC) column, and then the AB 1492 type protein sheet was purified. Determine a part of the partial amino acid sequence with Quensa (Applied Biosystems). Based on the partial amino acid sequence obtained, a PCR primer is synthesized.
  • chromosomal DNA of the microorganism is prepared from the microorganism that is the origin of the DNA by a conventional DNA isolation method, for example, Here ford method (Cell, 18, 1261 (1979)).
  • telomere sequence a part of the DNA encoding the polypeptide (core sequence) is amplified, and the base sequence is determined.
  • the base sequence can be determined by the dideoxy 'chain' termination method or the like. For example, it can be performed using ABI 37 3A DNA Sequencer (Applied Biosystems).
  • the chromosomal DNA of the microorganism is digested with a restriction enzyme whose recognition sequence does not exist in the core sequence, and the generated DNA fragment is expressed as T4.
  • a self-circulating ligase is used to prepare a truncated DNA for inverse PCR (Inverse PCR: Nucleic Acids Res., 16, 8186 (1988)).
  • a primer serving as a starting point for synthesizing DNA is synthesized outside the core sequence, and the peripheral region of the core sequence is amplified by inverse PCR.
  • Examples of the DNA of the embodiment include, for example, DNA consisting of the base sequence shown in SEQ ID NO: 2 of the sequence listing, or DNA and DNA string consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 2 of the sequence listing. DNA that hybridizes under conditions can be listed.
  • DNA complementary to the base sequence shown in SEQ ID NO: 2 in the sequence listing and DNA that is hybridized under stringent conditions is shown in SEQ ID NO: 2 in the sequence listing.
  • Stringent DNA with a complementary DNA sequence as a probe It means DNA obtained by using the Koguchi-ichi Hybridization Method, the Plaque Hybridization Method, or the Southern Hybridization Method under various conditions.
  • DNA that hybridizes under stringent conditions means, for example, hybridization at 65 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which colony or plaque-derived DNA is immobilized.
  • 2X SSC solution (1X SSC solution is composed of 150 mM sodium chloride and 15 mM sodium citrate) at 65 ° C.
  • the DNA that can be obtained can be raised by washing the filter.
  • washed with 0.5 times SSC solution at 65 ° C more preferably washed with 0.2 times SSC solution at 65 ° C, more preferably 0.1 times SSC at 65 ° C It can be obtained by washing with a solution.
  • the DNA that can be hybridized under the above conditions is 60% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95%, with the DNA represented by SEQ ID NO: 2. % Or more, most preferably 99% or more of the DNA, and the encoded polypeptide selectively oxidizes the hydroxyl group in the (R) configuration of the racemic 3-chloro- 1,2-propanediol. However, as long as it has an activity to leave (3) -3-chloro-1,2-propanediol, it is included in the DNA.
  • sequence identity means that two DNAs to be compared are optimally aligned and both nucleic acid bases (eg, A, T, C, G, U, or I) are both aligned. The number of matching positions in this sequence is divided by the total number of comparison bases, and this result is expressed by multiplying by 100.
  • Sequence identity can be calculated, for example, using the following sequence analysis tool: GCG Wise onsin Package (Program Manual for The Wisconsin Package, Version 8, September 1994, Genetics Computer Group, 575 Science Drive Madison , Wisconsin, USA 53711; Rice, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hinxton Hall, Cambridge, CB10 IRQ, England), and the ExPASy World Wide Web for molecular biology ⁇ ⁇ ⁇ (Geneva University Hospital and University of Geneva, Gen eva, Switzerland).
  • the vector DNA used for introducing the enzyme DNA of the embodiment into the host microorganism and expressing it in the introduced host microorganism is one that can express the enzyme gene in an appropriate host microorganism. If there is a deviation, it can be used.
  • beta DNA include plasmid vectors, phage vectors, and cosmid vectors.
  • a shuttle vector capable of gene exchange with other host strains can also be used.
  • Such vectors contain control elements of operably linked promoters (lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter, etc.) It can be suitably used as an expression vector comprising an expression unit operably linked to a form of DNA.
  • promoters lacUV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter, etc.
  • pUCNT International Publication No. WO94Z03613
  • regulatory element refers to a base sequence having a functional promoter and any associated transcription element (eg, enhancer, CCAAT box, TATA box, SPI site, etc.).
  • operably linked refers to DNA in which various regulatory elements such as promoters, enhancers, etc. can operate in a host cell so that the gene is expressed. It is connected in a state. It is well known to those skilled in the art that the types and types of control factors can vary depending on the owner.
  • Examples of the “host cell” into which the vector having the DNA of the embodiment is introduced include bacteria, yeast, filamentous fungi, plant cells, animal cells, etc., but Escherichia coli, which is preferred for bacteria from the viewpoint of introduction and expression efficiency, is particularly preferred.
  • the DNA of the embodiment can be introduced into a host cell by a conventional method. When Escherichia coli is used as the host cell, the vector having the DNA of the embodiment can be introduced into the host cell, for example, by the salt calcium chloride method.
  • Transformant The “transformant” of the embodiment can be obtained by incorporating DNA encoding the above polypeptide into the vector and introducing it into a host cell. Culture of the transformant can be performed using a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like as long as it grows.
  • Examples of the transformant include coli HB101 (pTSOB) described later.
  • This transformant has a deposit number of FERM BP—10461, and is a patent biological deposit center, National Institute of Advanced Industrial Science and Technology ( ⁇ 305-8566, Tsukuba Ito, Ibaraki Prefecture 1 1–1 Deposited in the center 6).
  • the enzyme according to the embodiment or a transformant having the ability to produce the enzyme is allowed to act on a racemic alcohol, and an alcohol having one of the three isomers is preferentially acidified, and the other has the other steric.
  • a method for producing optically active alcohol by allowing alcohol to remain will be described in detail.
  • NAD + is required as a coenzyme. It can be carried out by adding the required amount of NAD + to the reaction system.
  • an enzyme that has the ability to convert the reduced coenzyme (NADH) to oxidized form (NAD +) (hereinafter referred to as oxidized coenzyme regeneration ability) and its substrate, that is, oxidized coenzyme regeneration.
  • the enzyme having the ability to regenerate oxidized coenzyme for example, NADH oxidase, NA DH dehydrogenase and the like can be used.
  • a reaction can be performed by adding an oxidized coenzyme regeneration system to the asymmetric acid-acid reaction system by both DNA encoding the above enzyme and DNA encoding NADH oxidase.
  • the reaction can be carried out efficiently without separately preparing an enzyme capable of regenerating oxidized coenzyme and adding it to the reaction system.
  • Such a transformant can be obtained by incorporating DNA encoding the above enzyme and DNA encoding NADH oxidase into the same vector and introducing it into a host cell, as well as incompatibility of these two types of DNA. Incorporate into two different vectors of different sex groups It can also be obtained by introduction into the same host cell.
  • the reaction proceeds with NAD + present in the microbial cell, and NADH generated by reduction of NAD + is also re-oxidized in the microbial cell.
  • a racemic alcohol serving as a substrate, a coenzyme such as NAD +, and a culture of the transformant are added to a suitable solvent, and the mixture is reacted with stirring under pH adjustment.
  • a suitable solvent such as water
  • an aqueous solvent may be used, or a mixture of an aqueous solvent and an organic solvent may be used.
  • the organic solvent include toluene, ethyl acetate, n-butyl acetate, hexane, isopropanol, diisopropyl ether, methanol, acetone, dimethyl sulfoxide and the like.
  • This reaction is carried out at a temperature of 10 to 70 ° C., and the pH of the reaction solution is maintained at 6 to 12 during the reaction.
  • the reaction can be carried out batchwise or continuously.
  • the reaction substrate can be added at a charge concentration of 0.1% to 70% (WZV).
  • the term "culture” refers to a microbial cell, a culture solution containing the microbial cell, or a processed product of the microbial cell.
  • the treated cells include dried cells obtained by dehydration with acetone or diphosphorus pentoxide or drying using a desiccator or a fan, treated with a surfactant, treated with a lytic enzyme, immobilized bacteria. Examples include cell-free extracted preparations obtained by disrupting the body or fungus body.
  • the enzyme of the embodiment may be purified from the culture and used.
  • optically active alcohols obtained by any of the above methods is not particularly limited.
  • a solvent such as ethyl acetate, toluene, t-butyl methyl ether, hexane, etc.
  • dehydrated, distilled, crystallized, or silica gel column chromatography, etc. Can be purified with a high purity optically active key. Lecoles can be easily obtained.
  • NADH oxidized coenzyme
  • reduced coenzyme regeneration ability an enzyme having the ability to convert the oxidized coenzyme (NAD +) to reduced form (NADH) (hereinafter referred to as reduced coenzyme regeneration ability) together with its substrate, that is, a reduced coenzyme regeneration system.
  • Hydrogenase, formate dehydrogenase, alcohol dehydrogenase, glucose 6-phosphate dehydrogenase, glucose dehydrogenase, and the like can be used as the enzyme having the ability to regenerate reduced coenzyme.
  • Glucose dehydrogenase and formate dehydrogenase are preferably used.
  • Such a reaction can also be carried out by adding a reduced coenzyme regeneration system to the asymmetric reduction reaction system, but the DNA encoding the enzyme and the DNA encoding the glucose dehydrogenase are also included.
  • the reaction can be carried out efficiently without separately preparing an enzyme having the ability to regenerate reduced coenzyme and adding it to the reaction system.
  • a transformant can be obtained by incorporating DNA encoding the above enzyme and glucose dehydrogenase into the same vector and introducing it into a host cell. It can also be obtained by incorporating each into two different vectors of different incompatibility groups and introducing them into the same host cell.
  • Production of a compound-powered optically active alcohol having a carbonyl group using the enzyme or transformant culture of the embodiment can be carried out as follows. However, it is not limited to the following method.
  • a compound having a carbonyl group as a substrate, a coenzyme such as NADH, and a culture of the transformant are added to a suitable solvent, and the mixture is stirred and reacted under pH adjustment.
  • a suitable solvent such as water
  • an aqueous solvent may be used, or an aqueous and organic solvent may be mixed and used.
  • the organic solvent include toluene, ethyl acetate, n-butyl acetate, hexane, isopropanol, diisopropyl ether, methanol, acetone, dimethyl sulfoxide and the like.
  • This reaction is carried out at a temperature of 10 to 70 ° C, and the pH of the reaction solution is maintained at 4 to LO during the reaction.
  • the reaction can be carried out batchwise or continuously.
  • the reaction substrate can be added at a feed concentration of 0.1% to 70% (WZV).
  • optically active alcohols obtained by any of the above methods is not particularly limited. For example, directly from the reaction solution or after separation of cells, etc., and extracted with a solvent such as ethyl acetate, toluene, t-butyl methyl ether, hexane, etc., dehydrated, distilled, crystallized, or silica gel column chromatography, etc. Can be easily obtained with high purity optically active alcohols.
  • a solvent such as ethyl acetate, toluene, t-butyl methyl ether, hexane, etc.
  • This liquid medium is aseptically inoculated with 3 strains of Otarobactrum sp. (Q £ hrobactrum sp.) KNKc71-3 and cultured with shaking at 30 ° C for 40 hours. I got it.
  • Ammonium sulfate was added to this active fraction to 1M, and Phenyl— pre-equilibrated with lOmM phosphate buffer (pH 7.0) containing 1M ammonium sulfate. Apply to TO YOP EARL 650M (Tosohichi Co., Ltd.) column (50 ml), adsorb the enzyme, wash the column with the same buffer, and then use the linear gradient of ammonium sulfate to 1M force to 0M. Was eluted. Ammonium sulfate was added to this active fraction to a concentration of 1.2 M.
  • the specific activity of the purified enzyme was about 119 UZmg-protein.
  • this enzyme is called ROB.
  • a summary of the purification history is shown in Table 1.
  • the molecular weight of the purified ROB subunit obtained in Example 1 was determined by sodium dodecyl sulfate-polyacrylamide electrophoresis and found to be about 30,000.
  • (2S, 3S) -2,3-butanediol acid activity at 10 to 70 ° C. was measured.
  • the activity was measured by adding (2S, 3S) -2,3-butanediol 0.1M, NAD + 2mM and enzyme solution to lOOmM phosphate buffer (pH 8.0) at 10-70 ° C for 1 minute.
  • the reaction was carried out by measuring the increase in absorbance at a wavelength of 340 nm. As a result, the optimum temperature of action was 70 ° C.
  • the N-terminal amino acid sequence was analyzed by an ABI492 type protein sequencer (Applied Biosystems).
  • the purified ROB was denatured in the presence of 8M urea and then denatured with lysyl endopeptidase derived from Achromopacter, and the amino acid sequence of the obtained peptide fragment was analyzed.
  • primer 1 (5,-AARG AYGGNTTYG AYATHG C—3 ′: SEQ ID NO: 3)
  • primer 2 5, — GCYTGNCCYGTDATRTARTC-3 ′: SEQ ID NO: 4) are used. Synthesized.
  • KNK c71-3 strain used in this procedure is prepared in a small amount as described in Molecular Biology Experiment Protocol 1 (Maruzen) P. 36 It went by.
  • the amplified DNA was subcloned into pT7Blue Vector (Novagen), and its nucleotide sequence was determined. As a result, the amplified DNA had 628 base strength excluding the primer sequence. The sequence is shown in SEQ ID NO: 5. Hereinafter, this sequence is referred to as a “core sequence”.
  • Primer 3 serving as a complementary sequence based on the base sequence near the 5 'end of the core sequence
  • primer 4 (5,-ATCGGCTGAGAATGTGGACGCCTT-3 ': SEQ ID NO: 6), and based on the base sequence near the 3' side, primer 4 (5'-TATGTCGACGGCA TTGCGCTTGGT-3 ': SEQ ID NO: 7) Produced.
  • chromosomal DNA of Ochrobactrum sp. KNKc71-3 strain was digested with restriction enzyme ApaLI, and the digest was self-cycled using T4 DNA ligase. 100 ng of this self-closed product, 2 primers (primer 3 and primer 4) 50 pmol each, d NTP 10 nmol each, ExTaq (manufactured by Takara Shuzo) 2.
  • the amplified DNA was subcloned into pT7Blue Vector (Novagen), and its nucleotide sequence was determined. Based on this result and the result of the core sequence, the entire base sequence of the gene encoding ROB derived from Odilobactrum sp. KNKc71-3 strain was determined. The entire base sequence of the gene encoding ROB is shown in SEQ ID NO: 2, and the deduced amino acid sequence encoded by the gene is shown in SEQ ID NO: 1.
  • primer 5 (5,-AGGAAAGGATGACATATGTCGGCTAAC ACCAAGGT-3 ': SEQ ID NO: 8) in which the Ndel site is added to the start codon portion of the ROB gene, and the end of the ROB gene
  • Primer 6 (5,-GCGGAATTCTCAGCGGTAAACGATAC) with an EcoRI site immediately after the codon CGC-3, SEQ ID NO: 9) was synthesized.
  • 2 primers (Primer 5 and Primer 6) 50 pmol each, Ochrobactrum sp.
  • KNKc71 3 strains of DNA 14 ng DNA, 10 nmol each of dNTP, ExTaq (Takara Shuzo) 2.
  • ExTaq buffer solution containing 5 U 50 1 was prepared, heat denaturation (95 ° C, 1 minute), annealing (65 ° C, 1 minute), extension reaction (72 ° C, 1 minute) for 30 cycles, cooled to 4 ° C, and then agarose gel Amplified DNA was confirmed by electrophoresis.
  • This amplified fragment is digested with Ndel and EcoRI and inserted into the Ndel and EcoRI sites downstream of the lac promoter of plasmid pUCNT, which can be prepared by those skilled in the art by the method disclosed in International Publication No. W094Z 03613.
  • Vector pNTOB was obtained.
  • G in the Ndel site of the E. coli expression vector pUCNT used in Example 10 was converted to T by PCR to construct plasmid pUCT.
  • a primer with the Shine-Dalgarno sequence (9 bases) of Escherichia coli 5 bases upstream from the start codon of the ROB gene, followed by the EcoRI site just before it. 7 (5′-GC SEQ ID NO: 10) and a primer 8 (5′-GCGGGATCCTCAGCGGTAAACGATACCGC 3: SEQ ID NO: 11) in which a BamHI site was added immediately after the termination codon of the ROB gene were synthesized.
  • primers primer 7 and primer 8 50 pmol each, Ochrobactrum sp.
  • KNKc71 3 strains of chromosomal DNA 14 ng, dNTP each lOnmo 1, ExTaq (manufactured by Takara Shuzo) 2.5 Ex Buffer 50 1 was prepared, heat denaturation (95 ° C, 1 min), annealing (65 ° C, 1 min), extension reaction (72 ° C, 1 min), 30 cycles, cooling to 4 ° C Thereafter, the amplified DNA was confirmed by agarose gel electrophoresis.
  • pTSOB Figure 1 shows the fabrication method and structure.
  • the Shine-Dalgarno sequence (9 bases) of Escherichia coli is located 5 bases upstream from the start codon of the gene for glenolecase dehydrogenase (hereinafter referred to as GDH) derived from Bacillus megaterium IAM 1030, and the BamHI site immediately before that.
  • GDH glenolecase dehydrogenase
  • double-stranded DNA with a Pstl site added immediately after the stop codon was obtained by the following method.
  • primer 9 upstream of the start codon of the structural gene of GDH with the Shine-Dalgarno sequence (9 bases) of E. coli and a BamHI site immediately before it 5′-GCCGGATCCTAAGGAGGTTAACAATGTAT AAADATTTAGAAGG-3 ′: SEQ ID NO: 12) and primer 10 (5—GCGCTGC AGTTATCCGCGTCCTGCTTGG A-3 ′: SEQ ID NO: 13) with a Pstl site immediately after the termination codon were synthesized according to a conventional method.
  • pTSOBGl double-stranded DNA was synthesized by PCR using plasmid pGDKl (Eur. J. Biochem., 186, 389 (1 989)) as a saddle.
  • the obtained DNA fragment was digested with BamHI and Pstl and inserted into the BamHI and Pstl sites of pTSOB constructed in Example 11 to obtain a recombinant vector pTSOBGl.
  • Fig. 1 shows the production method and structure of pTSOBGl.
  • E. coli HB101 (Takara Shuzo) was transformed with each of the recombinant vector pTSOB obtained in Example 11 and the recombinant vector pT SOBG1 obtained in Example 12, and recombinant Escherichia coli HB101 (pTSOB) and HB101 (pTSOBGl) was obtained.
  • Escherichia coli HB101 (pTSOB) a transformant obtained in this way, was granted the accession number FERM BP-10461 on November 30, 2005 by the National Institute of Advanced Industrial Science and Technology (IPOD: ZIP code 305- 8566 Tsukuba Sakai Higashi, Ibaraki Prefecture 1 1 1 Deposited in the center 6)!
  • pTSOB Escherichia coli HB101
  • pTSOBGl HB101
  • pUCT Escherichia coli HB101
  • the reduction activity of 2,3 butanedione was measured by adding 2,3 butanedione 10 mM, NADH 0.167 mM and enzyme solution to lOO mM phosphate buffer (pH 5.5) at 30 ° C. The reaction was carried out for minutes and the decrease in absorbance at a wavelength of 340 nm was measured. GDH activity was measured by adding 0.1 M glucose, 2 mg NADP + 2 mM and enzyme to 1 M Tris-HCl buffer (pH 8.0), and measuring the increase in absorbance at 340 nm at 25 ° C. went.
  • Example 14 To 1 ml of the cell-free extract of recombinant Escherichia coli HB101 (pTSOBGl) obtained in Example 14, add 40 mg of glucose, 10 mg of NAD + lmg, 10 mg of 4-hydroxy-2-butanone, 30 Shake for 10 hours at ° C. After completion of the reaction, the reaction solution was saturated with ammonium sulfate, extracted with ethyl acetate, and the produced 1,3-butanediol was analyzed under the same conditions as in Example 15. As a result, 9.3 mg of 1,3 butanediol was produced, and its optical purity was S form of 100% ee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、新規な(S,S)-ブタンジオール脱水素酵素を提供することを課題とする。また本発明は、該酵素タンパク質をコードする遺伝子、該遺伝子を含むベクター、該ベクターを含む形質転換体、及び該形質転換体を用いた光学活性アルコールの製造方法を提供することを課題とする。  本発明の実施形態のポリペプチドは、例えば、NAD+を補酵素として、(2S,3S)-2,3-ブタンジオールに作用して、(S)-アセトインを生成する作用、及び、NADHを補酵素として、2,3-ブタンジオンを還元し、(2S,3S)-2,3-ブタンジオールを生成する作用を含む理化学的性質を有する。                                                                      

Description

明 細 書
新規な(s, S)一ブタンジオール脱水素酵素、その遺伝子、及びその利 用法
技術分野
[0001] 本発明は、新規な(S, S)—ブタンジオール脱水素酵素に関する。また本発明は、 該酵素タンパク質をコードする遺伝子、該遺伝子を含むベクター、該ベクターを含む 形質転換体、及び該形質転換体を用いた光学活性アルコールの製造方法に関する 背景技術
[0002] (S, S) ブタンジオール脱水素酵素は、 2, 3 ブタンジオールの生合成や代謝、 または、グルコースを原料とした(2S, 3S)— 2, 3 ブタンジオールの発酵生産にお いて重要な役割を有する酵素である。また、この酵素反応により生産される(2S, 3S ) - 2, 3—ブタンジオールは医薬品や液晶の原料として有用な化合物である。
[0003] 高度に精製され、その諸性質が明らかにされた (S, S) ブタンジオール脱水素酵 素としては次の酵素があげられる。
[0004] -Zoodoea ramigera由来の (S, S) ブタンジオール脱水素酵素(特許文献 lZ特 開 2004— 357639)
•Brevibacterium saccharolvticum C— 1012由来の(S. S)—ブタンジオール脱水 素酵素(非特許文献 1/Biosci. Biotechnol. Biochem. , 65 (8) , 1876 - 18 78 (2001) )
これらの 2つの酵素はいずれも、 2, 3 ブタンジオールの 3種類の異性体のうち、( 2S, 3S)— 2, 3 ブタンジオールをのみ選択的に酸ィ匕する活性を有している。 特許文献 1:特開 2004— 357639号公報
非特許文献 l : Biosci. Biotechnol. Biochem. , 65 (8) , 1876 - 1878 (2001 )
発明の開示
発明が解決しょうとする課題 [0005] 本発明は、上記文献に開示された各酵素とは基質特異性の点で異なる新規な (S, S)—ブタンジオール脱水素酵素を提供することを課題とする。また本発明は、該酵 素タンパク質をコードする遺伝子、該遺伝子を含むベクター、該ベクターを含む形質 転換体、及び該形質転換体を用いた光学活性アルコールの製造方法を提供するこ とを課題とする。
課題を解決するための手段
[0006] 〔1〕本発明の一つの特徴は、下記(1)から(2)に示す理ィ匕学的性質を有するポリべ プチドである。
(1)作用:
(a)酸ィ匕型ニコチンアミドアデニンジヌクレオチド (以後、 NAD+と略す)を補酵素とし て、(2S, 3S)— 2, 3 ブタンジオールに作用して、(S) ァセトインを生成する。
(b)還元型ニコチンアミドアデニンジヌクレオチド (以後、 NADHと略す)を補酵素とし て、 2, 3 ブタンジオンを還元し、 (2S, 3S)— 2, 3 ブタンジオールを生成する。
(2)基質特異性:
(a)酸化反応の補酵素として NAD+を利用する。また、還元反応の補酵素として NA DHを利用する。
(b) 2, 3 ブタンジオールの 3種類の異性体のうち、(2S, 3S)— 2, 3 ブタンジォ ールの(S)配置の水酸基を酸化するだけでなぐ meso 2, 3 ブタンジオールの( S)配置の水酸基も酸化する。
〔2〕本発明の一つの特徴は、下記(3)に示す理ィ匕学的性質を有する〔1〕のポリぺプ チドである。
(3)基質特異性:ラセミ体 3 クロロー 1 , 2 プロパンジオールの (R)配置の水酸基 を選択的に酸化し、(S)— 3 クロ口 1, 2 プロパンジオールを残存させる。
〔3〕本発明の一つの特徴は、下記 (4)から (6)に示す理化学的性質を有する〔1〕ま たは〔2〕のポリペプチドである。
(4)分子量:ドデシル硫酸ナトリウム ポリアクリルアミドゲル電気泳動分析において 約 30, 000。
(5)酸化至適 pH : 10. 0力ら 12. 0。 (6)還元至適 pH : 5. 0から 5. 5。
〔4〕本発明の一つの特徴は、オタロバクトラム属に属する微生物により産生される〔1〕 から〔3〕のいずれかに記載のポリペプチドである。
〔5〕本発明の一つの特徴は、前記オタロバクトラム属に属する微生物が、オタロバタト ラム'スピーシーズ(Ochrobactrum sp.)である〔4〕に記載のポリペプチドである。
〔6〕本発明の一つの特徴は、以下の(a)、(b)又は(c)のポリペプチドである。
(a)配列表の配列番号 1で示されるアミノ酸配列力 なるポリペプチド、
(b)配列表の配列番号 1で示されるアミノ酸配列において 1若しくは数個のアミノ酸が 置換、挿入、欠失及び Zまたは付加されたアミノ酸配列力もなり、かつ、ラセミ体 3— クロロー 1, 2—プロパンジオールの(R)配置の水酸基を選択的に酸化し、 (S) - 3- クロロー 1 , 2—プロパンジオールを残存させる酵素活性を有するポリペプチド。
(c)配列表の配列番号 1で示されるアミノ酸配列と 80%以上の配列同一性を示すァ ミノ酸配列からなり、かつ、ラセミ体 3—クロ口— 1, 2—プロパンジオールの(R)配置 の水酸基を選択的に酸化し、(S)— 3—クロロー 1, 2—プロパンジオールを残存させ る酵素活性を有するポリペプチド。
〔7〕本発明の一つの特徴は、〔1〕から〔6〕のいずれかに記載のポリペプチドをコード する DNAである。
〔8〕本発明の一つの特徴は、以下の(a)、 (b)又は(c)の DNAである。
(a)配列表の配列番号 2に示した塩基配列力 なる DNA、
(b)配列表の配列番号 2に示した塩基配列と相補的な塩基配列力 なる DNAとストリ ンジェントな条件下でハイブリダィズし、かつ、ラセミ体 3—クロロー 1, 2—プロパンジ オールの(R)配置の水酸基を選択的に酸化し、(S)— 3—クロロー 1, 2—プロパンジ オールを残存させる酵素活性を有するポリペプチドをコードする DNA。
(c)配列表の配列番号 2に示した塩基配列と 80%以上の配列同一性を示す塩基配 列からなり、かつ、ラセミ体 3—クロロー 1, 2—プロパンジオールの(R)配置の水酸基 を選択的に酸化し、(3)—3—クロロー1, 2—プロパンジォールを残存させる酵素活 性を有するポリペプチドをコードする DNA。
〔9〕本発明の一つの特徴は、〔7〕または〔8〕に記載の DNAを含む発現ベクターであ る。
〔10〕本発明の一つの特徴は、発現ベクターが Escherichia coli HB101 (pTSOB) (
FERM BP- 10461)力 分離しうるプラスミド pTSOBである請求項 9に記載の発 現ベクターである。
〔11〕本発明の一つの特徴は、〔9〕または〔10〕に記載の発現ベクターを用いて宿主 細胞を形質転換して得られた形質転換体である。
〔12〕本発明の一つの特徴は、前記宿主細胞が大腸菌である、〔11〕記載の形質転 換体である。
「131本発明の一つの特徴は、 Escherichia coli HB101 (pTSOB) (FERM BP— 10461)である〔11〕記載の形質転換体である。
〔14〕本発明の一つの特徴は、上記ポリペプチド又は上記形質転換体の培養物を、 ラセミ体のアルコールに作用させ、一方の立体を有するアルコールを酸化してもう一 方の立体を有するアルコールを残存させる工程、並びに、残存した光学活性アルコ ールを採取する工程力もなる光学活性アルコールの製造方法である。
〔15〕本発明の一つの特徴は、上記ポリペプチド又は上記形質転換体の培養物を、 カルボ二ル基を有する化合物と反応させる工程、並びに、生成した光学活性アルコ ールを採取する工程力もなる光学活性アルコールの製造方法でもある。
発明の効果
[0007] 本発明は、新規な(S, S) ブタンジオール脱水素酵素、該酵素をコードする DNA 、該 DNAを有する形質転換体を提供する。また、該酵素、該形質転換体を用いるこ とにより、(S)— 3 クロロー 1, 2 プロパンジオール等の有用な光学活性アルコー ル類の実用的な製造方法が提供される。
図面の簡単な説明
[0008] [図 1]図 1は、組換えベクター pTSOB、 pTSOBGlの構築を示す模式図である。
発明を実施するための最良の形態
[0009] 以下、本発明を実施形態を用いて詳細に説明する。本発明の範囲はこれら実施形 態に限定されるものではない。
[0010] 本明細書にぉ 、て記述されて 、る、 DNAの単離、ベクターの調製、形質転換等の 遺伝子操作は、特に明記しない限り、 Molecular Cloning 2nd Edition (Cold Spring Ha rbor Laboratory Press, 1989)、 Current Protocols in Molecular Biology (Greene Publi shing Associates and Wiley- Interscience)等の成書に記載されている方法により実施 できる。また、本明細書の記述に用いられる%は、特に断りのない限り、%(wZv)を 意味する。
[0011] 1.ポリペプチド
実施形態の「ポリペプチド」としては、ラセミ体ー3—クロロー 1, 2—プロパンジォー ルの(R)配置の水酸基を酸化し、(S)— 3—クロロー 1, 2—プロパンジオールを残存 させる活性を有する微生物から取得することができる。ポリペプチドの起源として用い られる微生物は特に限定されないが、例えば、オタロバクトラム属に属するバクテリア が挙げられ、特に好ましいもの してォクロバクトラム*スピーシーズ(Ochrobactrum s p.) KNKc71— 3株を挙げることができる。上記 KNKc71— 3株は、本発明者らによ つて土壌カゝら分離された微生物である。
[0012] 以下に、ォクロバクトラム *スピーシーズ(Ochrobactrum sp.) KNKc71— 3株の菌学 的性質を示す。
A.形態
(1)細胞の大きさは 0. 7〜0. 8 X 1. 5〜2. の桿状。
(2)鞭毛による運動性がある。
(3)胞子はない。
(4)グラム染色:陰性
(5)コロニーの形態:円形、レンズ状、全縁滑らか、クリーム色
B.生理学的性質
(1)硝酸塩還元:陰性
(2)インドール産生:陰性
(3)ブドウ糖酸性化:陰性
(4)アルギニンジヒドロラーゼ活性:陰性
(5)ゥレアーゼ活性:陰性
(6)エスクリン加水分解:陰性 (7)ゼラチン加水分解:陰性
(8) β ガラクトシダーゼ活性:陰性
(9)ォキシダーゼ活性:陽性
(10)カタラーゼ活性:陽性
(11)資化性試験:ブドゥ糖、 L ァラビノース、 D—マンノース、 Ν ァセチル一 D— ダルコサミン、マルトース、 dl—リンゴ酸、クェン酸ナトリウムの資化性がある。
(12)マッコンキー寒天上での生育性:生育する
(13) Tween80の加水分解:陰性
(14)嫌気性条件下での生育性:生育しな!ヽ
実施形態のポリペプチド (酵素)を産生する微生物は、野生株または変異株のいず れでもあり得る。あるいは、当業者に周知の、細胞融合または遺伝子操作などの遺伝 学的手法により誘導された微生物も用いられ得る。そのような遺伝子操作された微生 物は、例えば、これらの酵素を単離及び Zまたは精製して酵素のアミノ酸配列の一 部または全部を決定する工程、このアミノ酸配列に基づ 、てポリペプチドをコードす る DNAの塩基配列を決定する工程、この塩基配列に基づ 、てポリペプチドをコード する DNAを得る工程、この DNAを適当な宿主微生物に導入して組換え微生物を得 る工程、及びこの組換え微生物を培養して実施形態の酵素を得る工程、を包含する 、当業者に周知の方法により得られる。
実施形態のポリペプチドとしては、例えば、以下の(1)から(2)の理化学的性質を 有するポリペプチドを挙げることができる:
(1)作用:
(a)酸ィ匕型ニコチンアミドアデニンジヌクレオチド (以後、 NAD+と略す)を補酵素とし て、(2S, 3S)— 2, 3 ブタンジオールに作用して、(S) ァセトインを生成する。
(b)還元型ニコチンアミドアデニンジヌクレオチド (以後、 NADHと略す)を補酵素とし て、 2, 3 ブタンジオンを還元し、 (2S, 3S)— 2, 3 ブタンジオールを生成する。
(2)基質特異性:
(a)酸化反応の補酵素として NAD+を利用する。また、還元反応の補酵素として NA DHを利用する。 (b) 2, 3 ブタンジオールの 3種類の異性体のうち、(2S, 3S)— 2, 3 ブタンジォ ールの(S)配置の水酸基を酸化するだけでなぐ meso 2, 3 ブタンジオールの( S)配置の水酸基も酸化する。
[0014] 好ましくは、上記(1)、 (2)の理ィ匕学的性質に加え、さらに下記(3)の理ィ匕学的性質 を有するポリペプチドを挙げることができる:
(3)基質特異性:ラセミ体 3 クロロー 1 , 2 プロパンジオールの (R)配置の水酸基 を選択的に酸化し、(S)— 3 クロ口 1, 2 プロパンジオールを残存させる。
[0015] さらに好ましくは、上記(1)から(3)の理ィ匕学的性質に加え、さらに下記 (4)から(6) の理ィ匕学的性質を有するポリペプチドを挙げることができる:
(4)分子量:ドデシル硫酸ナトリウム ポリアクリルアミドゲル電気泳動分析において 約 30, 000。
(5)酸化至適 pH : 10. 0力ら 12. 0。
(6)還元至適 pH : 5. 0力ら 5. 5。
[0016] また、上記ポリペプチドとしては、配列表の配列番号 1に示したアミノ酸配列力 な るポリペプチドであってもよぐまたは、配列表の配列番号 1に示したアミノ酸配列に おいて 1若しくは複数個(例えば、 20個、好ましくは 15個、より好ましくは 10個、さら に好ましくは 5個、 4個、 3個、または 2個以下)のアミノ酸が置換、挿入、欠失及び Z または付加されたアミノ酸配列力もなり、ラセミ体 3 クロ口一 1, 2 プロパンジォー ルの(R)配置の水酸基を選択的に酸化し、(S)— 3 クロロー 1, 2 プロパンジォー ルを残存させる酵素活性を有するポリペプチドであってもよい。
[0017] 配列表の配列番号 1に示したアミノ酸配列において 1若しくは複数個のアミノ酸が 置換、挿入、欠失及び Zまたは付加されたアミノ酸配列力もなるポリペプチドは、 Cur rent Protocols in Molecular Biology (John Wiley and bons, Inc., 1989)等に己载の公 知の方法に準じて調製することができ、ラセミ体 3 クロロー 1, 2 プロパンジオール の(R)配置の水酸基を選択的に酸化し、(S)— 3 クロロー 1, 2 プロパンジオール を残存させる酵素活性を有する限り上記ポリペプチドに包含される。
[0018] 配列表の配列番号 1に示したアミノ酸配列にぉ 、て、アミノ酸が置換、挿入、欠失 及び Zまたは付加される場所は特に制限されないが、高度保存領域を避けるのが好 ましい。ここで、高度保存領域とは、由来の異なる複数の酵素について、アミノ酸配列 を最適に整列させて比較した場合に、複数の配列間でアミノ酸が一致して 、る位置 を表す。高度保存領域は、配列番号 1に示したアミノ酸配列と、前述した他の微生物 由来の 2,3—ブタンジオール脱水素酵素のアミノ酸配列とを、 GENETYX等のツー ルを用いて比較することにより確認することができる。
[0019] 置換、挿入、欠失及び Z又は付カ卩により改変されたアミノ酸配列としては、 1種類の タイプ (例えば置換)の改変のみを含むものであっても良!、し、 2種以上の改変(例え ば、置換と挿入)を含んで 、ても良 、。
[0020] また、置換の場合には、置換後のアミノ酸はもとのアミノ酸の同族アミノ酸であるの が好ましい。ここでは、以下に挙げる各群の同一群内のアミノ酸を同族アミノ酸とする
(第 1群:中性非極性アミノ酸) Gly, Ala, Val, Leu, lie, Met, Cys, Pro, Phe
(第 2群:中性極性アミノ酸) Ser, Thr, Gin, Asn, Trp, Tyr
(第 3群:酸性アミノ酸) Glu, Asp
(第 4群:塩基性アミノ酸) His, Lys, Arg
置換、挿入、欠失及び Zまたは付加されるアミノ酸の数としては、改変後のポリぺプ チドカ Sラセミ体 3—クロ口— 1 , 2—プロパンジオールの (R)配置の水酸基を選択的に 酸ィ匕し、(S)— 3—クロ口— 1, 2—プロパンジオールを残存させる酵素活性を有する 限り、特に制限されないが、配列表の配列番号 1に示すアミノ酸配列と、配列同一性 力 ¾0%であることが好ましい。配列同一性 90%以上がより好ましぐ 95%以上が更 に好ましぐ 99%以上がより最も好ましい。配列同一性は、前記の高度保存領域の 確認と同様にして、配列表の配列番号 1に示したアミノ酸配列と改変されたアミノ酸配 列とを比較し、両方の配列でアミノ酸が一致した位置の数を比較総アミノ酸数で除し 、さらに 100を乗じた値で表される。
[0021] 2. m
以下に、ォクロバクトラム 'スピーシーズ(Ochrobactrum sp.)KNKc71— 3株より、 実施形態のポリペプチドを取得する方法の例を記載するが、本発明はこれに限定さ れない。 [0022] まず、ラセミ体 3—クロロー 1, 2—プロパンジオールの(R)配置の水酸基を選択的 に酸ィ匕し、(S)— 3—クロ口— 1, 2—プロパンジオールを残存させる酵素活性を有す る微生物を適切な培地で培養する。培養方法としては、その微生物が増殖する限り、 通常の炭素源、窒素源、無機塩類、有機栄養素などを含む液体栄養培地が用いら れ得る。培養は、例えば、温度 25°Cから 37°C、 pH4〜8で振とうもしくは通気すること で行い得る。
[0023] 培養液から菌体を遠心分離した後、菌体を適当な緩衝液中に懸濁し、該菌体をグ ラスビーズ等の物理的手法、酵素などの生化学的手法などを用いて破砕または溶解 し、更に遠心分離により該溶液中の固形物を除去することにより、酵素の粗酵素液を 得ることができる。また、粗酵素液を当業者が通常用いる手法、例えば、硫酸アンモ -ゥム沈殿、透析、クロマトグラフィー等の方法を単独でまたは組み合わせて更に精 製することができる。クロマトグラフィーは、疎水クロマトグラフィー、イオン交換クロマト グラフィー、ゲル濾過クロマトグラフィーを単独で、または組み合わせて用いることもで きる。
[0024] 実施形態にお!、て酵素の酸ィ匕活性の測定は、 lOOmMリン酸緩衝液 (pH8. 0)に 、基質 0. 1M、 NAD+ 2mM、及び酵素溶液を添加し、 30°Cで波長 340nmの吸光 度の増加を測定することにより行ない得る。また、酵素の還元活性の測定は、 100m Mリン酸緩衝液 (pH5. 5)に、基質 20mM、 NADH 0. 167mM、及び酵素溶液を 添加し、 30°Cで波長 340nmの吸光度の減少を測定することにより行な 、得る。
[0025] 酵素の至適 pH、至適温度は、例えば、上記活性測定系にお 、て反応 pH、反応温 度を変えて活性を測定することによって決定し得る。酵素の分子量の測定は、例えば Superdex 200HR10/30 (Pharmacia Biotech社製)カラムを用いたゲル濾過分析により 、標準タンパク質の相対溶出時間から算出することにより決定し得る。また、サブュ- ットの分子量は、 20%SDS—ポリアクリルアミドゲル電気泳動により、標準タンパク質 の相対移動度力 算出することにより決定し得る。
[0026] 3. DNA
実施形態の「DNA」は、上記ポリペプチドをコードする DNAであり、後述する方法 に従って導入された宿主細胞内で該ポリペプチドを発現し得るものであればいかな るものでもよく、任意の非翻訳領域を含んでいてもよい。該ポリペプチドが取得できれ ば、該ポリペプチドの起源となる微生物より、当業者であれば公知の方法で実施形態 の DNAを取得できる。
[0027] 以下に、実施形態の酵素をコードする DNAを取得する方法の例を記載する力 本 発明はこれに限定されない。
[0028] まず、精製した酵素を適当なエンドべプチダーゼにより消化し、切断された断片を YMC-Pack SIL— 06 (YMC社製)カラムを用いた逆相 HPLCにより精製後、 AB 1492型プロテインシークェンサ一(Applied Biosystems社製)にて部分アミノ酸配列の 一部を決定する。そして、得られた部分アミノ酸配列をもとにして、 PCRプライマーを 合成する。次に、該 DNAの起源となる微生物より、通常の DNA単離法、例えば Here ford法 (Cell, 18, 1261 (1979))により、該微生物の染色体 DNAを調製する。この染色 体 DNAを铸型として、先述の PCRプライマーを用いて PCRを行い、該ポリペプチド をコードする DNAの一部(コア配列)を増幅し、塩基配列の決定を行う。塩基配列の 決定はジデォキシ'チェイン'ターミネーシヨン法等により決定し得る。例えば、 ABI 37 3A DNA Sequencer (Applied Biosystems社製)等を用いて行われ得る。
[0029] コア配列の周辺領域の塩基配列を明らかにするためには、該微生物の染色体 DN Aを、コア配列中にその認識配列が存在しない制限酵素により消化し、生成した DN A断片を T4リガーゼにより自己環化させることにより逆 PCR (Inverse PCR: Nucleic A cids Res., 16, 8186 (1988))用の铸型 DNAを調製する。次に、コア配列をもとに、コア 配列の外側に向カゝぅ DNA合成の開始点となるプライマーを合成し、逆 PCRによりコ ァ配列の周辺領域を増幅する。こうして得られた DNAの塩基配列を明らかにするこ とにより、目的酵素の全コード領域の DNA配列を明らかにし得る。
実施形態の DNAとして、例えば、配列表の配列番号 2に示した塩基配列からなる DNA、又は、配列表の配列番号 2に示した塩基配列と相補的な塩基配列からなる D NAとストリンジェントな条件下でハイブリダィズする DNAをあげることができる。
[0030] ここで、「配列表の配列番号 2に示した塩基配列と相補的な塩基配列力 なる DNA とストリンジェントな条件下でノヽイブリダィズする DNA」とは、配列表の配列番号 2に 示した塩基配列と相補的な塩基配列力 なる DNAをプローブとして、ストリンジェント な条件下にコ口-一'ハイブリダィゼーシヨン法、プラーク 'ハイブリダィゼーシヨン法、 あるいはサザンノヽイブリダィゼーシヨン法等を用いることにより得られる DNAを意味す る。
[0031] ノヽ ゾリタ ゼ ~~ンヨンは、 Molecularし loning, A laboratory manual, second edition
(Cold Spring Harbor Laboratory Press, 1989)等に記載されている方法に準じて行う ことができる。ここで、「ストリンジェントな条件でハイブリダィズする DNA」とは、例えば 、コロニーあるいはプラーク由来の DNAを固定化したフィルターを用いて、 0. 7〜1 . 0Mの NaCl存在下、 65°Cでハイブリダィゼーシヨンを行った後、 2倍濃度の SSC溶 液(1倍濃度の SSC溶液の組成は、 150mM塩ィ匕ナトリウム、 15mMクェン酸ナトリウ ムよりなる)を用い、 65°Cの条件下でフィルターを洗浄することにより取得できる DNA をあげることができる。好ましくは 65°Cで 0. 5倍濃度の SSC溶液で洗浄、より好ましく は 65°Cで 0. 2倍濃度の SSC溶液で洗浄、更に好ましくは 65°Cで 0. 1倍濃度の SS C溶液で洗浄することにより取得できる DN Aである。
[0032] 上記の条件にてハイブリダィズ可能な DNAとしては、配列番号 2に示される DNA と、配列同一性が 60%以上、好ましくは 80%以上、より好ましくは 90%以上、さらに より好ましくは 95%以上、最も好ましくは 99%以上の DNAをあげることができ、コー ドされるポリペプチドが、ラセミ体 3—クロ口— 1, 2—プロパンジオールの(R)配置の 水酸基を選択的に酸化し、(3)—3—クロロー1, 2—プロパンジォールを残存させる 活性を有する限り、上記 DNAに包含される。
[0033] ここで、「配列同一性(%)」とは、対比される 2つの DNAを最適に整列させ、核酸塩 基 (例えば、 A、 T、 C、 G、 U、または I)が両方の配列で一致した位置の数を比較塩基 総数で除し、そして、この結果に 100を乗じた数値で表される。
[0034] 配列同一性は、例えば、以下の配列分析用ツールを用いて算出し得る: GCG Wise onsin Package (Program Manual for The Wisconsin Package, Version8, 1994年 9月 , Genetics Computer Group, 575 Science Drive Madison, Wisconsin, USA 53711; Ric e, P. (1996) Program Manual for EGCG Package, Peter Rice, The Sanger Centre, Hi nxton Hall, Cambridge, CB10 IRQ, England)、及び、 the ExPASy World Wide Web 分子生物学用サ ~~ノ ~~ (Geneva University Hospital and University of Geneva, Gen eva, Switzerland)。
[0035] 4.ベクター
実施形態の酵素の DNAを宿主微生物内に導入し、それをその導入された宿主微 生物内で発現させるために用いられるベクター DNAとしては、適切な宿主微生物内 で該酵素遺伝子を発現できるものであれば 、ずれもが用いられ得る。このようなベタ ター DNAとしては、例えば、プラスミドベクター、ファージベクター、コスミドベクターな どが挙げられる。また、他の宿主株との間での遺伝子交換が可能なシャトルベクター も使用され得る。
[0036] このようなベクターは、作動可能に連結されたプロモーター(lacUV5プロモーター 、 trpプロモーター、 trcプロモーター、 tacプロモーター、 lppプロモーター、 tufBプロ モーター、 recAプロモーター、 pLプロモーター等)の制御因子を含み、実施形態の DNAと作動可能に連結された発現単位を含む発現ベクターとして好適に用いられ 得る。例えば、 pUCNT (国際公開第 WO94Z03613号公報)等が好適に用いられ 得る。
[0037] 本明細書で用いる用語「制御因子」は、機能的プロモーター及び、任意の関連する 転写要素(例えばェンハンサー、 CCAATボックス、 TATAボックス、 SPI部位など) を有する塩基配列をいう。
[0038] 本明細書で用いる用語「作動可能に連結」は、遺伝子が発現するように、 DNAが、 その発現を調節するプロモーター、ェンハンサ一等の種々の調節エレメントが宿主 細胞中で作動し得る状態で連結されることをいう。制御因子のタイプ及び種類が、宿 主に応じて変わり得ることは、当業者に周知の事項である。
[0039] 5.宿主細朐
実施形態の DNAを有するベクターを導入する「宿主細胞」としては、細菌、酵母、 糸状菌、植物細胞、動物細胞などが挙げられるが、導入及び発現効率から細菌が好 ましぐ大腸菌が特に好ましい。実施形態の DNAは定法により宿主細胞に導入し得 る。宿主細胞として大腸菌を用いた場合、例えば塩ィ匕カルシウム法により、実施形態 の DNAを有するベクターを宿主細胞に導入することができる。
[0040] 6.形質転換体 実施形態の「形質転換体」は、上記ポリペプチドをコードする DNAを、前記べクタ 一に組み込み、これを宿主細胞に導入することにより得られる。上記形質転換体の培 養は、それが増殖する限り、通常の、炭素源、窒素源、無機塩類、有機栄養素などを 含む液体栄養培地を用いて実施できる。
[0041] 上記形質転換体の例としては、後述する coli HB101 (pTSOB)が挙げられる 。この形質転換体は、 FERM BP— 10461の受託番号で、平成 17年 11月 30日付 けで独立行政法人産業技術総合研究所特許生物寄託センター ( τ 305-8566 茨城 県つくば巿東 1 1—1 中央第 6)に寄託されている。
[0042] 7.光学活性アルコールの製造方法
実施形態としての酵素もしくは該酵素の生産能を有する形質転換体をラセミ体のァ ルコールに作用させ、どちらか一方の立体を有するアルコールを優先的に酸ィ匕し、も う一方の立体を有するアルコール残存させることにより光学活性アルコールを製造す る方法について詳述する。
[0043] ラセミ体のアルコールに、上記酵素もしくは形質転換体を作用させ、一方の立体を 有するアルコールを優先的に酸ィ匕する場合、補酵素として NAD+が必要となる。反応 系に NAD+を必要な量だけ添加して実施し得る。しかし、還元された該補酵素 (NA DH)を酸化型 (NAD+)に変換する能力(以後、酸化型補酵素再生能力と呼ぶ)を有 する酵素とその基質と共に、つまり、酸化型補酵素再生系を実施形態の酵素と組み 合わせて反応を行うことにより、補酵素の使用量を大幅に削減することができる。
[0044] 酸化型補酵素再生能力を有する酵素としては、例えば NADHォキシダーゼ、 NA DH脱水素酵素等を用いることができる。このような反応は、酸化型補酵素再生系を 不斉酸ィ匕反応系内に添加することによつても行われ得る力 上記酵素をコードする D NA及び NADHォキシダーゼをコードする DNAの両者により形質転換された形質 転換体を触媒とした場合は、酸化型補酵素再生能を有する酵素を別に調製し反応 系内に添加しなくても、効率的に反応を行うことができる。このような形質転換体は、 上記酵素をコードする DNA及び NADHォキシダーゼをコードする DNAを、同一の ベクターに組み込み、これを宿主細胞に導入することにより得られる他、これら 2種類 の DNAを不和合性グループの異なる 2種のベクターにそれぞれ組み込み、それらを 同一の宿主細胞に導入することによつても得られ得る。
[0045] また、実施形態の形質転換体を用いた場合では、菌体内に存在する NAD+により 反応を進行し、また NAD+が還元されて生じる NADHも菌体内で再酸ィ匕されるため
、補酵素や酸化型補酵素再生系を別に添加しなくても実施し得る。
[0046] 実施形態の酵素又は形質転換体の培養物を用いたラセミ体のアルコール力 の光 学活性アルコールの生産は以下のように実施され得る。但し、以下の方法に限定さ れるわけではない。
[0047] まず最初に、適当な溶媒中に基質となるラセミ体のアルコール、 NAD+等の補酵素 、及び該形質転換体の培養物を添加し、 pH調整下、攪拌して反応させる。反応に用 いる溶媒は、水系溶媒を用いてもよいし、水系と有機系の溶媒を混合して用いてもよ い。有機系溶媒としては、例えば、トルエン、酢酸ェチル、酢酸 n—ブチル、へキサン 、イソプロパノール、ジイソプロピルエーテル、メタノール、アセトン、ジメチルスルホキ シド等が挙げられる。この反応は 10〜70°Cの温度で行われ、反応中反応液の pHは 6〜12に維持する。反応はバッチ式あるいは連続方式で行われ得る。バッチ方式の 場合は、反応基質は 0. 1%〜70% (WZV)の仕込み濃度で添加され得る。
[0048] 本明細書で用いられる用語「培養物」は、微生物の菌体、菌体を含む培養液または 菌体の処理物を表す。菌体の処理物としては、例えば、アセトンや五酸化二リンによ る脱水処理またはデシケーターや扇風機を利用した乾燥によって得られる乾燥菌体 、界面活性剤処理物、溶菌酵素処理物、固定化菌体または菌体を破砕した無細胞 抽出標品などをあげることができる。更に、培養物より実施形態の酵素を精製し、これ を使用してもよい。
[0049] また、本反応を行う際、形質転換体として実施形態の酵素と NADHォキシダーゼ の両者を生産するものを用いる場合、反応系に酸素を供給することによって、補酵素 の使用量を大幅に減らすことが可能となる
上記の 、ずれかの方法で得られる光学活性なアルコール類の採取は、特に限定さ れない。例えば、反応液から直接、あるいは菌体等を分離後、酢酸ェチル、トルエン 、 t—ブチルメチルエーテル、へキサン等の溶剤で抽出し、脱水後、蒸留、晶析ある いはシリカゲルカラムクロマトグラフィー等により精製すれば高純度の光学活性なァ ルコール類を容易に得ることが出来る。
次に、実施形態の酵素もしくは該酵素の生産能を有する形質転換体をカルボニル 化合物に作用させることにより光学活性アルコールを製造する方法について詳述す る。
[0050] 上記酵素もしくは形質転換体を用いて、カルボ二ル基を有する化合物を立体選択 的に還元して光学活性アルコールを取得する場合、補酵素として NADHが必要とな る。反応系に NADHを必要な量だけ添加しても実施し得る。しかし、酸化された該補 酵素 (NAD+)を還元型 (NADH)に変換する能力(以後、還元型補酵素再生能力と 呼ぶ)を有する酵素をその基質と共に、つまり、還元型補酵素再生系を実施形態の 酵素と組み合わせて反応を行うことにより、補酵素の使用量を大幅に削減することが できる。
[0051] 還元型補酵素再生能力を有する酵素としては、ヒドロゲナーゼ、ギ酸脱水素酵素、 アルコール脱水素酵素、グルコース 6—リン酸脱水素酵素及びグルコース脱水素 酵素等を用いることができる。好適には、グルコース脱水素酵素、ギ酸脱水素酵素が 用いられる。このような反応は、還元型補酵素再生系を不斉還元反応系内に添加す ることによつても行われ得るが、上記酵素をコードする DNA及びグルコース脱水素酵 素をコードする DNAの両者により形質転換された形質転換体を触媒とした場合は、 還元型補酵素再生能を有する酵素を別に調製し反応系内に添加しなくても、効率的 に反応を行うことができる。このような形質転換体は、上記酵素をコードする DNA及 びグルコース脱水素酵素をコードする DNAを、同一のベクターに組み込み、これを 宿主細胞に導入することにより得られる他、これら 2種類の DNAを不和合性グルー プの異なる 2種のベクターにそれぞれ組み込み、それらを同一の宿主細胞に導入す ること〖こよっても得られ得る。
[0052] 実施形態の酵素又は形質転換体の培養物を用いたカルボ二ル基を有する化合物 力 の光学活性アルコールの生産は以下のように実施され得る。但し、以下の方法 に限定されるわけではない。
[0053] まず最初に、適当な溶媒中に基質となるカルボ二ル基を有する化合物、 NADH等 の補酵素、及び該形質転換体の培養物を添加し、 PH調整下、攪拌して反応させる。 反応に用いる溶媒は、水系溶媒を用いてもよいし、水系と有機系の溶媒を混合して 用いてもよい。有機系溶媒としては、例えば、トルエン、酢酸ェチル、酢酸 n—ブチル 、へキサン、イソプロパノール、ジイソプロピルエーテル、メタノール、アセトン、ジメチ ルスルホキシド等が挙げられる。この反応は 10〜70°Cの温度で行われ、反応中反応 液の pHは 4〜: LOに維持する。反応はバッチ式あるいは連続方式で行われ得る。バッ チ方式の場合は、反応基質は 0. 1%〜70% (WZV)の仕込み濃度で添加され得る
[0054] また、本反応を行う際、形質転換体として実施形態の酵素とグルコース脱水素酵素 の両者を生産するものを用いる場合、反応系に更にグルコースを添加することによつ て、補酵素の使用量を大幅に減らすことが可能となる
上記の 、ずれかの方法で得られる光学活性なアルコール類の採取は、特に限定さ れない。例えば、反応液から直接、あるいは菌体等を分離後、酢酸ェチル、トルエン 、 t—ブチルメチルエーテル、へキサン等の溶剤で抽出し、脱水後、蒸留、晶析ある いはシリカゲルカラムクロマトグラフィー等により精製すれば高純度の光学活性なァ ルコール類を容易に得ることが出来る。 実施例
[0055] 以下、実施例で本発明を詳細に説明するが、本発明はこれらにより限定されるもの ではない。
[0056] (実施例 1) (S. S) ブタンジオール脱水素酵素の精製
以下に説明する各実施例では、 (S, S)—ブタンジオール脱水素酵素の酸ィ匕活性 の 定 ίま、 lOOmMリン酸緩衝液(ρΗ8. 0)に、(2S, 3S)— 2, 3 ブタンジ才ーノレ 100mM、 NAD+ 2mM及び酵素溶液を添カ卩し、 30°Cで波長 340nmの吸光度 の増加を測定することにより行った。この条件において、 1分間に l /z molの NAD+を NADHに還元する酵素活性を lunitと定義した。
[0057] 肉エキス 1%、ポリペプトン 1. 5%、バクト 'イーストエキス 0、 5%、NaCl 0. 3 %の組成からなる液体培地(pH6. 0) 100mlを 500ml容坂ロフラスコに分注し、 12 0°Cで 20分間蒸気殺菌を行った。この液体培地にオタロバクトラム 'スピーシーズ (Q£ hrobactrum sp.)KNKc71— 3株を無菌的に接種し、 30°Cで 40時間振とう培養を行 つた。得られた培養液 3Lについて、遠心分離により菌体を集め、 lOmMリン酸緩衝 液(pH7. 0) 500mlで洗净し、 lOmMジン酸緩衝液(pH7. 0) 200mlに懸淘した。こ の懸濁した菌体を SONFIER250 (BRANSON社製)を用いて超音波破砕し、遠心 分離にて菌体残渣を除去して無細胞抽出液を取得した。
[0058] この無細胞抽出液に 30%飽和となるように硫酸アンモ-ゥムを添カ卩し、 4°Cで 30分 攪拌後、生じた沈殿を遠心分離により除去した。さらに、この上清に 75%飽和となる まで硫酸アンモ-ゥムを添加し、 4°Cで 30分攪拌後、生じた沈殿を遠心分離により取 得し、 lOmMリン酸緩衝液 (pH7. 0)に懸濁し、 lOmMリン酸緩衝液 (pH7. 0)で透 祈した。
[0059] 透析後の酵素液を lOmMリン酸緩衝液 (pH7. 0)であらかじめ平衡化した DEAE
-TOYOPEARL 650M (東ソ一社製)カラム(400ml)に供し、カラムに吸着しな かった(素通りした) (S, S)—ブタンジォール脱水素酵素活性画分を回収した。
[0060] この活性画分に 1Mとなるように硫酸アンモ-ゥムを添カ卩し、 1Mの硫酸アンモ-ゥ ムを含む lOmMリン酸緩衝液 (pH7. 0)であらかじめ平衡化した Phenyl— TO YOP EARL 650M (東ソ一社製)カラム(50ml)に供し、酵素を吸着させ、同一緩衝液で カラムを洗浄後、 1M力も 0Mまでの硫酸アンモ-ゥムのリニアグラジェントにより活性 画分を溶出させた。この活性画分に 1. 2Mとなるように硫酸アンモ-ゥムを添加し、 1 . 2Mの硫酸アンモ-ゥムを含む lOmMリン酸緩衝液 (pH7. 0)であらかじめ平衡ィ匕 した Butyl— TOYOPEARL 650S (東ソ一社製)カラム(25ml)に供し、酵素を吸 着させ、同一緩衝液でカラムを洗浄後、 1. 2M力 OMまでの硫酸アンモ-ゥムのリ 二アグラジェントにより活性画分を溶出させた。この活性画分をドデシル硫酸ナトリウ ム—ポリアクリルアミド電気泳動により解析した結果、単一なバンドであった。
[0061] 精製酵素の比活性は約 119UZmg— proteinであった。以後、本酵素を ROBと呼 ぶ。精製の履歴の要約を表 1に示す。
[0062] [表 1] 蛋白量 総活性 比活性
(mg) CU) (U/mg)
無細胞抽出液 4931 5585 1 .12
硫安分画 3752 4894 1 .30
DEAE TOYOPEARL 650M 1 76 1915 10.9
Phenyl TOYOPEARL 650 6.8 688 101
Butyl TOYOPEARL 650S 5.1 610 1 19
[0063] (実施例 2) ROBの分子量測定
実施例 1で得られた精製 ROBのサブユニットの分子量をドデシル硫酸ナトリウム— ポリアクリルアミド電気泳動により求めた結果、約 30, 000であった。また、 Superdex
200HR10/30 (Pharmacia Biotech社製)による ROBのゲル濾過クロマトグラ フィー分析を行った結果、標準タンパク質との相対保持時間から算出した本酵素の 分子量は約 101, 000であった。
[0064] 施例 3)ROBのィ乍 ffl 衡
実施例 1で得られた精製 ROBを用いて、 10〜70°Cにおける(2S, 3S)— 2, 3—ブ タンジオール酸ィ匕活性を測定した。活性測定は、 lOOmMリン酸緩衝液 (pH8. 0)に 、 (2S, 3S)— 2, 3—ブタンジオール 0. 1M、NAD+ 2mM及び酵素溶液を添カロ し、 10〜70°Cで 1分間反応させ、波長 340nmの吸光度の増加を測定することにより 行った。その結果、作用至適温度は 70°Cであった。
[0065] (実施例 4) ROBの還元反応における至谪 ΌΗ
実施例 1で得られた精製 ROBを用いて、 pH4〜9における 2, 3—ブタンジオン還 元活性を測定した。酵素活性の測定は、緩衝液に 2, 3—ブタンジオン 10mM、 N ADH 0. 167mM及び酵素溶液を添カ卩し、 30°Cで 3分間反応させ、波長 340nm の吸光度の減少を測定することにより行った。緩衝液として lOOmMクェン酸緩衝液 (pH4〜6)、 lOOmMリン酸緩衝液(pH5〜8)、及び lOOmMトリス— HC1緩衝液(p H8〜9)を用いて、 pH4〜9の範囲で還元活性を測定した。その結果、還元至適 PH は 5. 0〜5. 5であった。
[0066] (実施例 5) ROBの酸化反応における至谪 ΌΗ
実施例 1で得られた精製 ROBを用いて、 pH6〜12における(2S, 3S)— 2, 3—ブ タンジオール酸ィ匕活性を測定した。酵素活性の測定は、緩衝液に(2S, 3S) - 2, 3 ブタンジオール 0. 1M、 NAD+ 2mM及び酵素溶液を添カ卩し、 30°Cで 1分間反 応させ、波長 340nmの吸光度の増加を測定することにより行った。緩衝液として 100 mMリン酸緩衝液(pH6〜8)、 lOOmMトリス塩酸緩衝液(pH8〜9)、 lOOmM炭酸 緩衝液(ρΗ9〜: L 1 )、及び 1 OOmMグリシン NaOH緩衝液(pH 10〜 12)を用いて 、 pH6〜 12の範囲で酸ィ匕活性を測定した。その結果、酸ィ匕至適 pHは 10. 0〜12. 0であった。
[0067] (実施例 6) ROBの某晳特異性
実施例 1で得られた精製 ROBを用いて、 1 OOmMリン酸緩衝液 (pH8. 0)に NAD+ 2mM、表 2に示した各化合物 10mM及び酵素溶液を添加し、 30°Cで 1分間反応 させ波長 340nmの吸光度の増加を測定することにより酸ィ匕活性の測定を行った。表 2に 2, 3 ブタンジオールに対する活性を 100とした場合の相対活性をまとめた。
[0068] 実施例 1で得られた精製 ROBを用いて、 lOOmMリン酸緩衝液 (pH5. 5)に NAD H 0. 167mM、表 3に示した化合物 ImM及び酵素溶液を添加し、 30°Cで 3分間 反応させ波長 340nmの吸光度の減少を測定することにより還元活性の測定を行つ た。表 3に 2, 3 ブタンジオンに対する活性を 100とした場合の相対活性をまとめた
[0069] [表 2]
基質 相対活性 6)
2,3 -ブタンジオール 100
1,2-プロパンジォ一ル 57.9
1,2-ブタンジォ一ル 8.2
1,2-ペンタンジォ一ル 4.4
1,3-ブタンジォ一ル 0.5
1,4-ペンタンジォ一ル 3.3
3-クロ口- 1,2-プロパンジオール 3.9
メタノール 0
エタノール 0
1-プロパノール 0
1-ブタノール 0
2-プロパノ一ル 5.1
2-ブタノ一ル 40.4
2-ペンタノ一ル 58.8
3-ペンタノ一ル 3.3
2-ォクタノール 59.6
ァセ卜イン 0.4
1-クロ口- 2-プロパノール 7.7
1-フエニルエタノール 6.8
1-フエニル -2-プロパノ一ル 43.0
乳酸メチル 0.9
乳酸ェチル 1.6
[0070] [表 3] 基質 相対活性 (%)
2,3-ブタンジオン 100
1-クロ口- 3-ヒドロキシアセトン 94.3
クロ口アセトン 60.4
ヒドロキシアセトン 17.9
2-ブタノン 0.9
2-ペンタノン 2.8
2-へキサノン 2.8
2-ヘプタノン 3.8
2-ォクタノン 2.8
ピルビン酸メチル 136
ピルビン酸ェチル 176
ァセト酢酸メチル 65.1
2-クロロアセト酢酸ェチル 58.5
4-クロロアセト酢酸ェチル 21.7
[0071] (実施例 7) ROBの立体撰択性
実施例 1で得られた精製 ROBを用いて、 2—ブタノール、 2—ペンタノール、 1, 2- プロパンジォーノレ、 2, 3—ブタンジォーノレ、及び 3—クロロー 1, 2—プロパンジォー ルのそれぞれの光学異性体を基質として酸化活性を測定した。 lOOmMリン酸緩衝 液 (pH8. 0)に NAD+ 2mM、上記化合物 10mM及び酵素溶液を添カ卩し、 30°Cで 1分間反応させ波長 340nmの吸光度の増加を測定した。表 4に(2S, 3S)— 23—ブ タンジオールに対する活性を 100とした場合の相対活性をまとめた。
[0072] [表 4] 基質 相対活性 (%)
(2S,3S)-2,3_ブタンジオール 100
(2R,3R)-2,3-ブタンジオール 0.6
meso-2,3-ブタンジオール 38.9
(S)-2-ブタノール 44.2
(R)-2 -ブタノール 3.2
(S)-2-ペンタノ一ル 58.9
(R)-2-ペンタノ一ル 2.9
(SH , 2-プロパンジオール 16.7
(RH , 2-プロパンジオール 8.0
(S)- 3-クロ口- 1,2-プロノ ンジオール 0.1
(R)-3-クロロー 1 ,2-プロパンジオール 3.5
[0073] ( ms) ROBの試靠に針する挙動
表 5に示す種々の試薬共存下で、(2S, 3S) - 2, 3—ブタンジォール酸ィ匕活性を 測定した。 lOOmMリン酸緩衝液(pH8. 0)に NAD+ 2mM、 (2S, 3S)— 2, 3—ブ タンジオール 0. 1M及び酵素溶液を添カ卩し、 30°Cで 1分間反応させ波長 340nm の吸光度の増加を測定した。表 5に、試薬を含まない条件での活性を 100とした相対 活'性をまとめた。
[0074] [表 5]
Figure imgf000023_0001
(実施例 9) ROBのクローニング
実施例 1で得られた精製 ROBを用いて、 ABI492型プロテインシーケンサー(Appl led Biosystems社製)により N末端アミノ酸配列を解析した。また、精製 ROBを 8M 尿素存在下で変性させた後、ァクロモパクター由来のリジルエンドべプチダーゼで消 化し、得られたペプチド断片のアミノ酸配列を解析した。これらのアミノ酸配列から予 想される DNA配列を考慮し、プライマー 1 (5, - AARG AYGGNTTYG AYATHG C— 3 ':配列番号 3)及びプライマー 2 (5,— GCYTGNCCYGTDATRTARTC - 3':配列番号 4)を合成した。プライマー 2種(プライマー 1及びプライマー 2)各 50pm ol、ォクロバクトラム ·スピーシーズ(Ochrobactrum sp.)KNKc71— 3株の染色体 DN A14ng、 dNTP各 10nmol、 ExTaq (宝酒造社製) 2. 5Uを含む ExTaq用緩衝液 5 0 1を調製し、熱変性 (95°C、 1分)、アニーリング (65°C、 1分)、伸長反応(72°C、 1 分)を 30サイクル行い、 4°Cまで冷却後、ァガロースゲル電気泳動により増幅 DNAを 確認した。本反^に用いたォクロバクトラム*スピーシーズ(Ochrobactrum sp.)KNK c71— 3株の染色体 DNAの調製は、分子生物学実験プロトコール 1 (丸善) P. 36に 記載されている細菌ゲノム DNAの少量調製法により行った。 [0076] 増幅 DNAを pT7Blue Vector (Novagen社製)にサブクローユングし、その塩基 配列を決定した。その結果、増幅 DNAはプライマー配列を除いて 628塩基力もなつ ていた。その配列を配列番号 5に示す。以後この配列を「コア配列」と記す。
[0077] コア配列の 5'側に近い部分の塩基配列をもとに、その相補配列となるプライマー 3
(5, - ATCGGCTGAGAATGTGGACGCCTT- 3 ':配列番号 6)を作成し、更 に 3'側に近い部分の塩基配列をもとに、プライマー 4 (5' -TATGTCGACGGCA TTGCGCTTGGT- 3 ':配列番号 7)を作製した。逆 PCRの铸型として、まずォクロ バクトラム 'スピーシーズ (Ochrobactrum sp.) KNKc71— 3株の染色体 DNAを制限 酵素 ApaLIにより消化し、その消化物を T4DNAリガーゼを用いて自己閉環した。こ の自己閉環物 100ng、プライマー 2種(プライマー 3及びプライマー 4)各 50pmol、 d NTP各 10nmol、 ExTaq (宝酒造社製) 2. 5Uを含む ExTaq用緩衝液 50 μ 1を調 製し、熱変性 (95°C、 1分)、アニーリング (65°C、 1分)、伸長反応(72°C、 5分)を 30 サイクル行い、 4°Cまで冷却後、ァガロースゲル電気泳動により増幅 DNAを確認した
[0078] 増幅 DNAを pT7Blue Vector (Novagen社製)にサブクローユングし、その塩基 配列を決定した。この結果とコア配列の結果より、オタロバクトラム 'スピーシーズ (Qdi robactrum sp.) KNKc71— 3株由来の ROBをコードする遺伝子の全塩基配列を決 定した。 ROBをコードする遺伝子の全塩基配列を配列番号 2に、また該遺伝子がコ ードする推定アミノ酸配列を配列番号 1に示した。
[0079] (実施例 10) ROB遣伝子を含む組換えベクターの作製
大腸菌において ROBを発現させるために、形質転換に用いる組換えベクターを作製 した。まず、 ROB遺伝子の開始コドン部分に Ndel部位を付加し、かつ終始コドンの 直後に新たな終始コドンと EcoRI部位を付加した二本鎖 DNAを以下の方法により取 得した。
[0080] 実施例 9で決定した塩基配列に基づき、 ROB遺伝子の開始コドン部分に Ndel部 位を付カロしたプライマー 5 (5, - AGGAAAGGATGACATATGTCGGCTAAC ACCAAGGT- 3':配列番号 8)、及び ROB遺伝子の終始コドンの直後に EcoRI 部位を付カロしたプライマー 6 (5, - GCGGAATTCTCAGCGGTAAACGATAC CGC— 3,:配列番号 9)を合成した。プライマー 2種(プライマー 5及びプライマー 6) 各 50pmol、ォクロバクトラム 'スピーシーズ(Ochrobactrum sp.)KNKc71— 3株の染 色体 DNA14ng、 dNTP各 10nmol、 ExTaq (宝酒造社製) 2. 5Uを含む ExTaq用 緩衝液 50 1を調製し、熱変性 (95°C、 1分)、アニーリング (65°C、 1分)、伸長反応( 72°C、 1分)を 30サイクル行い、 4°Cまで冷却後、ァガロースゲル電気泳動により増幅 DNAを確認した。この増幅断片を Ndel及び EcoRIで消化し、国際公開第 W094Z 03613号に開示の方法によって当業者が作製可能なプラスミド pUCNTの lacプロモ 一ターの下流の Ndel、 EcoRI部位に挿入することにより、組換えベクター pNTOBを 得た。
[0081] (実施例 11) ROB遣伝子卜.流への Shine— Dalgarno配列の付加
ROB遺伝子を大腸菌内で高発現させるため、実施例 10で調製したプラスミド pNT OB中の同遺伝子の開始コドンの上流に大腸菌の Shine— Dalgarno配列(9塩基) を新たに付加したプラスミドを以下の方法により取得した。
[0082] まず、 PCR法により実施例 10で使用した大腸菌発現ベクター pUCNTの Ndel部 位中の Gを Tに変換し、プラスミド pUCTを構築した。次に、実施例 9で決定した塩基 配列に基づき、 ROB遺伝子の開始コドンから 5塩基上流〖こ大腸菌の Shine— Dalga rno配列(9塩基)を、さらにその直前に EcoRI部位を付カ卩したプライマー 7 (5'— GC 配列番号 10)、及び ROB遺伝子の終始コドンの直後に BamHI部位を付加したブラ イマ一 8 (5' - GCGGGATCCTCAGCGGTAAACGATACCGC 3,:配列番 号 11)を合成した。
[0083] プライマー 2種(プライマー 7及びプライマー 8)各 50pmol、オタロバクトラム'スピー シーズ(Ochrobactrum sp.)KNKc71— 3株の染色体 DNA14ng、 dNTP各 lOnmo 1、 ExTaq (宝酒造社製) 2. 5Uを含む ExTaq用緩衝液 50 1を調製し、熱変性(95 °C、 1分)、アニーリング (65°C、 1分)、伸長反応(72°C、 1分)を 30サイクル行い、 4 °Cまで冷却後、ァガロースゲル電気泳動により増幅 DNAを確認した。この増幅断片 を EcoRI及び BamHIで消化し、上記プラスミド pUCTの lacプロモーターの下流の E coRI、 BamHI部位に挿入することにより、組換えベクター pTSOBを得た。 pTSOB の作製法及び構造を図 1に示す。
[0084] (実施例 12) ROB遣伝子及びグルコース脱水素酵素遣伝子の両者を同時に含む 組換えベクターの作製
バシラス ·メガテリゥム (Bacillus megaterium) IAM 1030株由来のグノレコース脱水素 酵素(以後 GDHと記す)の遺伝子の開始コドンから 5塩基上流に大腸菌の Shine— Dalgarno配列(9塩基)を、更にその直前に BamHI部位を、また、終始コドンの直後 に Pstl部位を付加した二本鎖 DNAを、以下の方法により取得した。
[0085] GDH遺伝子の塩基配列情報を基に、 GDHの構造遺伝子の開始コドンから 5塩基 上流に大腸菌の Shine— Dalgarno配列(9塩基)を、更にその直前に BamHI部位 を付カロしたプライマー 9 (5' - GCCGGATCCTAAGGAGGTTAACAATGTAT AAADATTTAGAAGG - 3 ':配列番号 12)と、終始コドンの直後に Pstl部位を付 加したプライマー 10 (5,— GCGCTGC AGTTATCCGCGTCCTGCTTGG A - 3 ':配列番号 13)を常法に従って合成した。
[0086] これら 2つのプライマーを用いて、プラスミド pGDKl (Eur. J. Biochem., 186, 389 (1 989))を铸型として PCRによる二本鎖 DNAを合成した。得られた DNA断片を BamH I及び Pstlで消化し、実施例 11において構築した pTSOBの BamHI、 Pstl部位に揷 入し、組換えベクター pTSOBGlを得た。 pTSOBGlの作製法及び構造を図 1に示 す。
[0087] mi3)組橼 大腸菌の作製
実施例 11で得た組換えベクター pTSOB及び実施例 12で得た組換えベクター pT SOBG1のそれぞれを用いて大腸菌 HB101 (宝酒造社製)を形質転換し、組換え大 腸菌 HB101 (pTSOB)及び HB101 (pTSOBGl)を得た。こうして得られた形質転 換体である大腸菌 HB101 (pTSOB)は、受託番号 FERM BP— 10461として 200 5年 11月 30日に独立行政法人産業技術総合研究所特許生物寄託センター (IPOD: 郵便番号 305-8566 茨城県つくば巿東 1 1 1 中央第 6)に寄託されて!、る。
[0088] (実施例 14)組換え大腸菌における ROBの発現
実施例 13で得た組換え大腸菌 HB 101 (pTSOB)、 HB101 (pTSOBGl)、及び ベクタープラスミドのみの形質転換体である大腸菌 HB101 (pUCT)のそれぞれを、 100 /z g/mlのアンピシリンを含む 2 XYT培地(バタト 'トリプトン 1. 6%、バクト 'ィ ース卜エキス 1. 0%, NaCl 0. 5%、pH7. 0)で培養し、集菌後、 lOOmMジン酸 緩衝液 (pH6. 5)に懸濁し、 UH— 50型超音波ホモゲナイザー(SMT社製)を用い て超音波破砕し無細胞抽出液を得た。これらの無細胞抽出液の(2S, 3S)— 2, 3— ブタンジオール酸ィ匕活性を表 6に、 2, 3 ブタンジオン還元活性及び GDH活性を 7に した。
[0089] 2, 3 ブタンジオンの還元活性の測定は、 lOOmMリン酸緩衝液 (pH5. 5)に、 2, 3 ブタンジオン 10mM、NADH 0. 167mM及び酵素溶液を添カ卩し、 30°Cで 3 分間反応させ、波長 340nmの吸光度の減少を測定することにより行った。また GDH 活性の測定は、 1Mトリス塩酸緩衝液(pH8. 0)に、グルコース 0. 1M、NADP+ 2 mM及び酵素を添カ卩し、 25°Cで波長 340nmの吸光度の増加を測定することにより 行った。
[0090] [表 6]
Figure imgf000027_0001
[0091] [表 7]
Figure imgf000027_0002
[0092] 列 i5)ROB遣伝早 人した ¾ ^大腸菌による (R) _ i. 3 ブタンジォー ルの合成
実施例 14で得た組換え大腸菌 HB101 (pTSOB)の無細胞抽出液 lmlに、ラセミ 体 1, 3 ブタンジォール 10mg、NAD+ 50mgを添加し、 30。Cで 20時間振とうし た。反応終了後、反応液を硫安飽和にし、酢酸ェチルを加えて抽出を行い、残存す る 1 , 3 ブタンジオール及び生成した 4 ヒドロキシ 2 ブタノンをキヤビラリ一ガス クロマトグラフィー(カラム: HP— 5 30m X O. 32mml. D.、検出: FID、カラム温度 : 60°C、注入温度: 150°C、検出温度: 150°C、キャリアーガス:ヘリウム(150kPa)、 スプリット比: lOOZl)により分析した。また、残存する 1, 3 ブタンジオールの光学 純度は、 1, 3 ブタンジオールの水酸基をトリフルォロアセチル化し、ガスクロマトグ ラフィー (カラム: G— PN 30m X O. 32mml. D. (東京化成工業社製)、検出: FID 、カラム温度: 70°C、注入温度: 150°C、検出温度: 150°C、キャリアーガス:ヘリウム( 60kPa)、スプリット比: 100Z1)により分析した。
[0093] その結果、 4ーヒドロキシ 2 ブタノンが 6. Omg生成し、残存する 1, 3 ブタンジ オールは 3. 9mg、残存する 1, 3 ブタンジオールの光学純度は 100%e. e.の R体 であった。
[0094] 列 i6)ROB遣伝早 人した糸 ¾ ^大腸菌による (S)— 3 クロ口 ί. 2— プロパンジオールの合成
実施例 14で得た組換え大腸菌 HB101 (pTSOB)の無細胞抽出液 lmlに、ラセミ 体 3 クロロー 1,2 プロパンジオール 5mg、 NADHォキシダーゼ (Streptococcus mutans NCIMB11723¾¾) 10U、 NAD+ lmgを添カ卩し、 20°Cで 5時間振とうし た。反応終了後、反応液を硫安飽和にし、酢酸ェチルを加えて抽出を行い、残存す る 3 クロロー 1,2 プロパンジオールをキヤビラリ一ガスクロマトグラフィー(カラム: H P- 5 30m X O. 32mml. D.、検出: FID、カラム温度: 90°C、注入温度: 150°C、 検出温度: 150°C、キャリアーガス:ヘリウム(150kPa)、スプリット比: 100/1)により 分析した。また、残存する 3 クロロー 1,2 プロパンジオールの光学純度は、 3 ク ロロ 1,2—プロパンジオールの水酸基をトリフルォロアセチル化し、ガスクロマトグラ フィー(カラム: G— PN 30mX 0. 32mml. D. (東京化成工業社製)、検出: FID、 カラム温度: 90°C、注入温度: 150°C、検出温度: 150°C、キャリアーガス:ヘリウム(6 OkPa)、スプリット比: 100Z1)により分析した。その結果、 3—クロ口一 1,2—プロパ ンジオールが 2. lmg残存し、その光学純度は 100%e. e.の S体であった。
[0095] (実施例 17)ROB及びグルコース脱水素酵素を同時発現させた組換え大腸菌によ る(S)— 1. 3 ブタンジオールの合成
実施例 14で得た組換え大腸菌 HB101 (pTSOBGl)の無細胞抽出液 lmlに、グ ルコース 40mg、 NAD+ lmg、 4 ヒドロキシ一 2 ブタノン 10mgを添加し、 30 °Cで 10時間振とうした。反応終了後、反応液を硫安飽和にし、酢酸ェチルを加えて 抽出を行い、生成した 1, 3 ブタンジオールを実施例 15と同様の条件で分析した。 その結果、 1, 3 ブタンジオールが 9. 3mg生成し、その光学純度は 100%e. e.の S体であった。
[0096] (実施例 18) ROB及びグルコース脱水素酵素を同時発現させた組換え大腸菌によ る(S)— 2—ペンタノールの合成
実施例 14で得た組換え大腸菌 HB101 (pTSOBGl)の無細胞抽出液 lmlに、グ ルコース 40mg、NAD+ lmg、 2 ペンタノン 10mgを添カ卩し、 30°Cで 10時間振 とうした。反応終了後、反応液を硫安飽和にし、酢酸ェチルを加えて抽出を行い、生 成した 2 ペンタノールをキヤビラリ一ガスクロマトグラフィー(カラム: HP 5 30m X 0. 32mml. D.、検出: FID、カラム温度: 30°C、注入温度: 150°C、検出温度: 150 。C、キャリアーガス:ヘリウム(150kPa)、スプリット比: 100Z1)により分析した。また、 得られた 2—ペンタノールの光学純度は、 2 ペンタノールの水酸基をトリフルォロア セチル化し、ガスクロマトグラフィー(カラム: G— PN 30m X O. 32mml. D.、検出: FID、カラム温度: 30°C、注入温度: 150°C、検出温度: 150°C、キャリアーガス:ヘリ ゥム(130kPa)、スプリット比: 100Z1)により分析した。
[0097] その結果、 2 ペンタノールが 9. 9mg生成し、その光学純度は 98. 7%e. e.の S 体であった。

Claims

請求の範囲 [1] 次の(1)から(2)に示す理ィ匕学的性質を有するポリペプチド。
(1)作用:
(a)酸ィ匕型ニコチンアミドアデニンジヌクレオチド (以後、 NAD+と略す)を補酵素とし て、(2S, 3S)— 2, 3 ブタンジオールに作用して、(S) ァセトインを生成する。
(b)還元型ニコチンアミドアデニンジヌクレオチド (以後、 NADHと略す)を補酵素とし て、 2, 3 ブタンジオンを還元し、 (2S, 3S)— 2, 3 ブタンジオールを生成する。
(2)基質特異性:
(a)酸化反応の補酵素として NAD+を利用する。また、還元反応の補酵素として NA DHを利用する。
(b) 2, 3 ブタンジオールの 3種類の異性体のうち、(2S, 3S)— 2, 3 ブタンジォ ールの(S)配置の水酸基を酸化するだけでなぐ meso 2, 3 ブタンジオールの( S)配置の水酸基も酸化する。
[2] (3)に示す理化学的性質を有する請求項 1に記載のポリペプチド。
(3)基質特異性:ラセミ体 3 クロロー 1 , 2 プロパンジオールの (R)配置の水酸基 を選択的に酸化し、(S)— 3 クロ口 1, 2 プロパンジオールを残存させる。
[3] 更に、(4)から(6)に示す理ィ匕学的性質を有する請求項 1または 2に記載のポリべ プチド。
(4)分子量:ドデシル硫酸ナトリウム ポリアクリルアミドゲル電気泳動分析において 約 30, 000、
(5)酸化至適 pH : 10. 0力ら 12. 0、
(6)還元至適 pH : 5. 0力ら 5. 5。
[4] オタロバクトラム属に属する微生物により産生される請求項 1から 3のいずれかに記 載のポリペプチド。
[5] 前記オタロバクトラム属に属する微生物力 ォクロバクトラム ·スピーシーズ ( Ochroba ctrum sp.)である請求項 4に記載のポリペプチド。
[6] 以下の(a)、(b)又は(c)のポリペプチド:
(a)配列表の配列番号 1で示されるアミノ酸配列力 なるポリペプチド、 (b)配列表の配列番号 1で示されるアミノ酸配列において 1若しくは複数個のアミノ酸 が置換、挿入、欠失及び Zまたは付加されたアミノ酸配列からなり、かつ、ラセミ体 3 クロロー 1, 2 プロパンジオールの(R)配置の水酸基を選択的に酸化し、 (S) - 3 クロロー 1, 2—プロパンジオールを残存させる酵素活性を有するポリペプチド。
(c)配列表の配列番号 1で示されるアミノ酸配列と 80%以上の配列同一性を示すァ ミノ酸配列からなり、かつ、ラセミ体 3 クロ口 1, 2 プロパンジオールの(R)配置 の水酸基を選択的に酸化し、(S)— 3 クロロー 1, 2 プロパンジオールを残存させ る酵素活性を有するポリペプチド。
[7] 請求項 1から 6のいずれかに記載のポリペプチドをコードする DNA。
[8] 以下の(a)、(b)又は(c)の DNA:
(a)配列表の配列番号 2に示した塩基配列力 なる DNA、
(b)配列表の配列番号 2に示した塩基配列と相補的な塩基配列力 なる DNAとストリ ンジェントな条件下でハイブリダィズし、かつ、ラセミ体 3 クロロー 1, 2 プロパンジ オールの(R)配置の水酸基を選択的に酸化し、(S)— 3 クロロー 1, 2 プロパンジ オールを残存させる酵素活性を有するポリペプチドをコードする DNA。
(c)配列表の配列番号 2に示した塩基配列と 80%以上の配列同一性を示す塩基配 列からなり、かつ、ラセミ体 3 クロロー 1, 2 プロパンジオールの(R)配置の水酸基 を選択的に酸化し、(3)—3—クロロー1, 2 プロパンジォールを残存させる酵素活 性を有するポリペプチドをコードする DNA。
[9] 請求項 7または 8に記載の DNAを含む発現ベクター。
[10] 発現ベクターが Escherichia coli HB101 (pTSOB) (FERM BP— 10461)から 分離しうるプラスミド pTSOBである請求項 9に記載の発現ベクター。
[11] 請求項 9または 10に記載の発現ベクターを用いて宿主細胞を形質転換して得られ た形質転換体。
[12] 前記宿主細胞が大腸菌である、請求項 11記載の形質転換体。
[13] Escherichia coli HB101 (pTSOB) (FERM BP— 10461)である請求項 11記載 の形質転換体。
[14] 請求項 1から 6のいずれかに記載のポリペプチド、または、請求項 11から 13のいず れかに記載の形質転換体の培養物を、ラセミ体のアルコールに作用させ一方の立体 を有するアルコールを酸化し、もう一方の立体を有するアルコールを残存させることを 特徴とする光学活性アルコールの製造方法。
請求項 1から 6のいずれかに記載のポリペプチド、または、請求項 11から 13のいず れかに記載の形質転換体の培養物を、カルボニル化合物に作用させることを特徴と する光学活性アルコールの製造方法。
PCT/JP2007/051763 2006-02-14 2007-02-02 新規な(s,s)-ブタンジオール脱水素酵素、その遺伝子、及びその利用法 WO2007094178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/223,319 US20110143406A1 (en) 2006-02-14 2007-02-02 Novel (S,S) -Butanediol Dehydrogenase, Gene for the Same, and Use of the Same
EP07707937A EP1985700A4 (en) 2006-02-14 2007-02-02 NEW (S, S) -BUTANEDIOL DEHYDROGENASE, GENES FOR IT AND USE THEREOF
JP2008500440A JPWO2007094178A1 (ja) 2006-02-14 2007-02-02 新規な(s,s)−ブタンジオール脱水素酵素、その遺伝子、及びその利用法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-037267 2006-02-14
JP2006037267 2006-02-14

Publications (1)

Publication Number Publication Date
WO2007094178A1 true WO2007094178A1 (ja) 2007-08-23

Family

ID=38371364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051763 WO2007094178A1 (ja) 2006-02-14 2007-02-02 新規な(s,s)-ブタンジオール脱水素酵素、その遺伝子、及びその利用法

Country Status (4)

Country Link
US (1) US20110143406A1 (ja)
EP (1) EP1985700A4 (ja)
JP (1) JPWO2007094178A1 (ja)
WO (1) WO2007094178A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054874A1 (ja) 2011-10-14 2013-04-18 東レ株式会社 2,3-ブタンジオールの製造方法
WO2015037556A1 (ja) 2013-09-10 2015-03-19 東レ株式会社 1,3-ブタジエン及び/又は3-ブテン-2-オールの製造方法
WO2015037580A1 (ja) 2013-09-12 2015-03-19 東レ株式会社 ブタジエンの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075266B2 (en) * 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
US9416764B1 (en) 2015-06-30 2016-08-16 Nikhil Dubbaka Fluid flow power switch
CN111718965A (zh) * 2020-06-17 2020-09-29 宁波酶赛生物工程有限公司 一种(2s,3s)-2,3-丁二醇的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003613A1 (en) 1992-08-10 1994-02-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Dna coding for decarbamylase improved in thermostability and use thereof
JP2004357639A (ja) 2003-06-06 2004-12-24 Daicel Chem Ind Ltd (2s,3s)−2,3−ブタンジオール脱水素酵素

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562958B1 (en) * 1998-06-09 2003-05-13 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Acinetobacter baumannii for diagnostics and therapeutics
US6605709B1 (en) * 1999-04-09 2003-08-12 Genome Therapeutics Corporation Nucleic acid and amino acid sequences relating to Proteus mirabilis for diagnostics and therapeutics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994003613A1 (en) 1992-08-10 1994-02-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Dna coding for decarbamylase improved in thermostability and use thereof
JP2004357639A (ja) 2003-06-06 2004-12-24 Daicel Chem Ind Ltd (2s,3s)−2,3−ブタンジオール脱水素酵素

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Bunshi Seibutsugaku Jikken Purotokoru", MARUZEN, pages: 36
"Current Protocols in Molecular Biology", 1989, JOHN WILEY AND SONS, INC.
"Current Protocols in Molecular Biology", GREENE PUBLISHING ASSOCIATES AND WILEY-INTERSCIENCE
"Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
BIOSCI. BIOTECHNOL. BIOCHEM., vol. 65, no. 8, 2001, pages 1876 - 1878
CELL, vol. 18, 1979, pages 1261
EUR. J. BIOCHEM., vol. 186, 1989, pages 389
GIOVANNINI P.P. ET AL: "Properties of Diacetyl (Acetoin) Reductase from Bacillus stearothermophilus", BIOORG. MED. CHEM., vol. 4, no. 8, 1996, pages 1197 - 1201, XP003017028 *
NUCLEIC ACIDS RES., vol. 16, 1988, pages 8186
RICE, P., PROGRAM MANUAL FOR EGCG PACKAGE, 1996
See also references of EP1985700A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054874A1 (ja) 2011-10-14 2013-04-18 東レ株式会社 2,3-ブタンジオールの製造方法
US10584084B2 (en) 2011-10-14 2020-03-10 Toray Industries, Inc. Process for producing 2,3-butanediol
US9452963B2 (en) 2013-09-09 2016-09-27 Toray Industries, Inc. Method for producing 1,3-butadiene and/or 3-buten-2-ol
WO2015037556A1 (ja) 2013-09-10 2015-03-19 東レ株式会社 1,3-ブタジエン及び/又は3-ブテン-2-オールの製造方法
WO2015037580A1 (ja) 2013-09-12 2015-03-19 東レ株式会社 ブタジエンの製造方法
US9790140B2 (en) 2013-09-12 2017-10-17 Toray Industries, Inc. Method for producing butadiene

Also Published As

Publication number Publication date
EP1985700A1 (en) 2008-10-29
US20110143406A1 (en) 2011-06-16
JPWO2007094178A1 (ja) 2009-07-02
EP1985700A4 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4510351B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4757804B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4746548B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
US20090203096A1 (en) Process for Production of Optically Active Alcohol
CN113969269B (zh) D-氨基酸氧化酶突变体及其在制备l-草铵膦中的应用
WO2007094178A1 (ja) 新規な(s,s)-ブタンジオール脱水素酵素、その遺伝子、及びその利用法
KR100998235B1 (ko) 신규 카보닐 환원 효소 및 이것을 코딩하는 유전자, 및이들을 이용한 광학 활성 알콜의 제조 방법
US7524666B2 (en) Reductase gene and use thereof
CN113969268B (zh) Glu/Leu/Phe/Val脱氢酶突变体及其在制备L-草铵膦中的应用
JP5308163B2 (ja) 新規アルコール脱水素酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2004027055A1 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP5005672B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびそれらを利用した光学活性アルコールの製造方法
EP2796548A1 (en) Stereoselective production of (R)-3-quinuclidinol
JP5761641B2 (ja) (r)−3−キヌクリジノールの製造方法
EP2128258B1 (en) Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
JP4880859B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP2003061668A (ja) 新規グリセロール脱水素酵素およびその利用法
JP4796323B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法
JP2008194037A (ja) 生体触媒による4−ハロ−3−ヒドロキシ酪酸エステルの光学分割法
WO2008047819A1 (fr) Nouvelle ester hydrolase, gène codant pour ladite enzyme et utilisation
WO2005044973A2 (ja) 新規アセトアセチルCoA還元酵素および光学活性アルコールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008500440

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007707937

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12223319

Country of ref document: US