WO2007091619A1 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
WO2007091619A1
WO2007091619A1 PCT/JP2007/052175 JP2007052175W WO2007091619A1 WO 2007091619 A1 WO2007091619 A1 WO 2007091619A1 JP 2007052175 W JP2007052175 W JP 2007052175W WO 2007091619 A1 WO2007091619 A1 WO 2007091619A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
titanium oxide
alumina
dielectric
volume resistivity
Prior art date
Application number
PCT/JP2007/052175
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Ando
Jun Miyaji
Osamu Okamoto
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US12/086,967 priority Critical patent/US7907383B2/en
Priority to CN2007800045852A priority patent/CN101379607B/en
Publication of WO2007091619A1 publication Critical patent/WO2007091619A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Definitions

  • the present invention relates to an electrostatic chuck for adsorbing and fixing an object to be adsorbed such as a semiconductor wafer and a glass substrate for FPD with an electrostatic force.
  • an electrostatic chuck in which the volume resistivity of the dielectric is lowered by adding 0.5 to 2 wt% of titanium oxide to alumina ceramic.
  • the resistance does not decrease when the content is lower than 0.5 wt%, and that the current flows too much when 2 wt% or more is added.
  • titanium oxide precipitates at the grain boundaries of alumina ceramics.
  • an additive of at least 0.5% or more is required to lower the volume resistivity, and the amount of additive is large as an electrostatic chuck with severe restrictions on the mixing of impurities into the adsorbed substance.
  • Patent Document 1 Japanese Patent No. 3084869
  • Patent Document 2 Japanese Patent Laid-Open No. 10-279349
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-18296
  • Patent Document 4 Japanese Patent Publication No. 6-97675
  • Patent Document 5 Japanese Patent Laid-Open No. 11 312729
  • the present invention can maintain a smooth surface even after being exposed to plasma. As a result, it is possible to suppress particle contamination with respect to an adsorbent such as a silicon wafer and to have excellent adsorption and desorption characteristics of the adsorbent.
  • An electrostatic chuck that can be easily manufactured by low-temperature firing is provided. Means for solving the problem
  • alumina 99. 4 wt% or more, Sani ⁇ titanium is greater than 0. 2wt% 0. 6wt% or less, lC lO 11 Q volume resistivity at room temperature
  • An electrostatic chuck comprising a dielectric for an electrostatic chuck having a structure in which titanium oxide is impregnated at the grain boundary of cm and alumina particles has been disclosed. As a result, it has become possible to improve the plasma resistance of the electrostatic chuck dielectric and the basic functions of the electrostatic chuck at a high level, and to be manufactured at low cost.
  • the reason why the volume resistivity needs to be 10 8 ⁇ : ⁇ ⁇ cm is that the Johnsen-Rahbek effect is used as the attractive force of the electrostatic chuck.
  • the Johnsen-Rahbek effect By using the Johnsen-Rahbek effect, a very large attracting force is generated, and as a result, the surface of the electrostatic chuck is provided with a convex portion so that the contact area with the object to be attracted is 1-10. % Can be reduced.
  • the attracting force can be exerted even in the contacted portion.
  • the area of the convex part is 0.00 with respect to the area of the suction surface. It can be 1% or more and less than 0.5%. Since the temperature of the object to be adsorbed is transferred through the contact portion as the contact area of the convex portion becomes smaller, even if the texture of the convex portion is eroded by plasma, the influence is reduced. Therefore, an electrostatic chuck with little change with time can be realized as a result of increasing plasma resistance and minimizing contact with the object to be adsorbed.
  • ts is the time (seconds) until the initial attractive force is 100% and collapses to 2%
  • ⁇ r is the relative dielectric constant of the dielectric layer
  • d is the thickness (m) of the dielectric layer
  • h is the height (m) of the protrusion. If the value of this formula is 0.001 force 0.6 and the height of the convex part is 5 to 15 / zm, the area of the convex part should be 0.001 to 0.5% with respect to the adsorption surface. It is possible to provide an electrostatic chuck that can respond to the voltage marking of the attractive force and has good response to unloading.
  • alumina 99. 4 wt% or more, significantly 0. 6 wt% of titanium oxide than 0. 2 wt% or less, Ca ⁇ bulk density is 3. 97 g / cm 3 or more
  • An electrostatic chuck including a dielectric for electrostatic chuck having a structure in which volume resistivity is lC lO 11 ⁇ cm at room temperature and titanium oxide is biased at the grain boundary of alumina particles is disclosed.
  • this electrostatic chuck has a low porosity of the tissue, and further enables improvement in plasma resistance and a high degree of compatibility between the basic functions of the electrostatic chuck, and can be manufactured at low cost.
  • the electrostatic chuck is used at a low temperature of 100 ° C or lower.
  • a plurality of convex portions are formed and a dielectric having a smooth surface on which the object to be attracted is placed on the upper surface of the convex portions.
  • the ratio of the total area and the area of the dielectric surface is 0.001% or more and less than 0.5%, and the height of the convex part is 5 to 15 m.
  • the ratio of the contact area is 0.001% or less, the size per convex portion becomes too fine, and processing becomes difficult. On the other hand, if it exceeds 1%, the influence of erosion on the plasma on the surface of the convex part that comes into contact with the adsorbent cannot be ignored.
  • the invention's effect [0019] According to the present invention, a smooth surface can be maintained even after being exposed to plasma. As a result, particle contamination of an adsorbed object such as a silicon wafer can be suppressed, and the adsorbed object can be adsorbed and separated. If an electrostatic chuck that can be easily manufactured by low-temperature firing can be manufactured, there is an effect.
  • FIG. 1 is a diagram showing an electrostatic chuck of the present invention.
  • FIG. 2 is a diagram showing an equivalent circuit of the electrostatic chuck of the present invention.
  • FIG. 3 is an enlarged view of the surface pattern of the electrostatic chuck of the present invention.
  • FIG. 4 is an electron micrograph showing the structure of an electrostatic chuck dielectric according to the present invention.
  • alumina, titanium oxide, and other transition metal oxides were granulated at a blending ratio shown in Table 1.
  • Alumina having an average particle diameter of 0.1 l ⁇ m and a purity of 99.99% or more was prepared. Titanium oxide having a purity of 98% or more was used.
  • the above raw materials were mixed and pulverized at a blending ratio shown in Table 1, an acrylic binder was added, and after adjustment, the mixture was granulated with a spray dryer to produce granulated powder.
  • the granulated powder was packed into a rubber mold, and then CIP (pressure ltonZcm 2 ) was performed to produce an ingot, which was then processed into a predetermined shape to produce a formed shape. Ion exchange water etc. was used for mixing so that no impurities were mixed.
  • the raw processed body was fired in a nitrogen and hydrogen gas reducing atmosphere.
  • the firing temperature was 1150 to 1350 ° C.
  • the firing time was 1 to 8 hours, and the conditions with the highest bulk density were selected.
  • the purpose of reducing firing is to adjust the volume resistivity in order to make the non-stoichiometric composition of titanium oxide.
  • the HIP condition was Ar gas 1500 atm, and the temperature was the same as the firing temperature or 30 ° C lower.
  • the surface roughness of the ceramics was measured by actually irradiating the plasma. In the initial state, the surface roughness was RaO. 05 m or less.
  • Plasma is a reactive ion etching system, etching gas is CF +0, 1000W, plasma discharge for 5 hours
  • alumina ceramics produced by a conventional manufacturing method is illustrated.
  • the compound 1 is 98 wt% alumina with an average particle size of 0. 0%, titanium oxide 2 wt%, comparative product 2 is alumina 99 wt%, titanium oxide 1 wt%, and the firing temperature is 1580 ° C.
  • the surface roughness of Comparative Product 1 was RaO. 23 m in the initial state.
  • the surface roughness of Comparative Product 2 was RaO. 2 ⁇ m in the initial state.
  • the comparative product is not HIP treated.
  • the use of a high-purity, fine-grained alumina raw material having an average particle size of less than 0 and a purity of 99.9% or more lowers the firing temperature to 1300 ° C or lower.
  • Titanium oxide titanium does not react with alumina and exists as titanium oxide.
  • Aluminum titanate is known to have a relatively high volume resistivity, and in order to reduce the volume resistivity of alumina, the efficiency is worse than that of titanium oxide. Conceivable.
  • FIG. 4 shows a SEM photograph of a sample subjected to thermal etching at a temperature lower by about 80 to 150 ° C. than the firing temperature. It can be seen that the structure is such that the titanium oxide (white part of the photograph) is connected to the grain boundary of the alumina particles (black part of the photograph) with an average particle diameter of 2 ⁇ m or less and connected continuously. I helped. It is considered that the volume resistivity can be efficiently reduced by the network formed by this titanium oxide. From the above results, the dielectric resistivity for the electrostatic chuck of the present invention was able to lower the volume resistivity by adding a small amount of acid titanium as compared with the conventional one.
  • Titanium oxide is considered to have further improved conductivity because it becomes non-stoichiometrically formed by reduction firing. Thus, it was thought that the volume resistivity could be controlled by a small amount of titanium oxide, and that chemical contamination of silicon wafers and the like could be remarkably suppressed compared to the conventional case.
  • the electrostatic chuck When using resist, the electrostatic chuck is 100 considering its heat resistance temperature. It is desirable to use below C.
  • the electrical characteristics required for the dielectric material for the electrostatic chuck are desired to be the temperature at which the electrostatic chuck is used, and the volume resistivity is 8 ) 11 ⁇ cm.
  • the 10 less than 8 Omega cm lower limit may cause damage to the device too excessive current flowing into ⁇ E c, the upper limit 10 11
  • the response to voltage application for wafer adsorption and desorption will decrease.
  • the lower limit is desired to be about ⁇ ⁇ ⁇ ⁇ cm.
  • the amount of titanium oxide is more than 0.6 wt%, the volume resistivity becomes less than 10 8 ⁇ « ⁇ , and the current flowing into the wafer becomes excessive, which may damage the device. On the other hand, if it is 0.2 wt% or less, the effect S of reducing the volume resistivity due to the titanium oxide additive S becomes small.
  • Plasma resistance was evaluated by the change in surface roughness because any substance is etched if the energy of ions in the plasma is excessive.
  • the ceramic dielectric according to the present invention has a significantly smaller change in surface roughness than the conventional one. This is presumed that the size of particles that generate dust is small!
  • a dielectric for an electrostatic chuck having a smooth surface on which a plurality of convex portions are formed and an object to be adsorbed is placed on the upper surface of the convex portion and having a volume resistivity of 10 9 ⁇ 3 ⁇ cm
  • An electrostatic chuck in which the ratio of the total area of the upper surfaces of the convex portions of the electrostatic chuck to the area of the dielectric surface was 0.089% was produced.
  • a convex part of ⁇ ⁇ . 25 mm is continuously arranged on each surface of each apex of an equilateral triangle with a side of 8 mm.
  • the height of the convex part is 10 m.
  • the POPOFF adsorption force was recorded as lOOtorr or more in all samples. In other words, it was found that a practical force was sufficiently obtained to adsorb an adsorbent such as a silicon wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

[PROBLEMS] To provide an electrostatic chuck that, even after exposure to plasma, can maintain a smooth surface and consequently can suppress contamination of a material to be adsorbed, such as a silicon wafer, with particles, is excellent in adsorption and desorption properties of an adsorbent material, and can easily be prepared by low-temperature firing. [MEANS FOR SOLVING PROBLEMS] An electrostatic chuck comprising a dielectric material for an electrostatic chuck. The dielectric material comprises not less than 99.4% by weight of alumina, more than 0.2% by weight and not more than 0.6% by weight of titanium oxide, has a volume resistivity at room temperature of 108 to 1011 Ωcm, and has a structure in which titanium oxide is segregated at the boundary of alumina particles.

Description

明 細 書  Specification
静電チャック  Electrostatic chuck
技術分野  Technical field
[0001] 本発明は半導体ウェハおよび FPD用ガラス基板等の被吸着物を静電力で吸着固 定する静電チャックに関する発明である。  The present invention relates to an electrostatic chuck for adsorbing and fixing an object to be adsorbed such as a semiconductor wafer and a glass substrate for FPD with an electrostatic force.
背景技術  Background art
[0002] 従来の静電チャックセラミック誘電体は、その電気特性を制御することを目的として 構成されていた (例えば、特許文献 1参照)。  Conventional electrostatic chuck ceramic dielectrics have been configured for the purpose of controlling their electrical characteristics (see, for example, Patent Document 1).
このような場合、プラズマ環境下にセラミック組織がさらされた場合、組織が侵食を受 け表面粗さが悪くなりその結果、静電チャック表面とウェハ間の接触状態が変化する ことによる経時変化が生じたり、焼結体から粒子が脱粒しパーティクルとして発塵し L SIの配線間ショートを引き起こすなどの原因となる場合があった。  In such a case, when the ceramic structure is exposed to a plasma environment, the structure is eroded and the surface roughness is deteriorated. As a result, a change with time due to a change in the contact state between the electrostatic chuck surface and the wafer is caused. In some cases, this may cause the particles to fall out of the sintered body to generate particles and cause a short circuit between the LSI wires.
[0003] また、粒子径が 2 m以下、相対密度 99. 9%であって耐プラズマ性を向上させた アルミナセラミック材料で静電チャックに適用した例もある(例えば、特許文献 2参照。 )。しかし、この場合も耐プラズマ性は良好であってもその電気物性に関しての記載 がなく大きな吸着力が発現するいわゆるジョンセン'ラーベック型静電チャックの基本 的な機能を発揮させられな ヽ。  [0003] Further, there is an example in which an alumina ceramic material having a particle size of 2 m or less and a relative density of 99.9% and improved plasma resistance is applied to an electrostatic chuck (for example, see Patent Document 2). . However, even in this case, even though the plasma resistance is good, there is no description about the electrical physical properties, and the basic function of the so-called Johnsen Rahbek type electrostatic chuck that expresses a large adsorption force cannot be exhibited.
[0004] また、酸ィ匕チタンが 0. 1〜1 %含有し、体積抵抗率を10°〜1040 «!1を示すァ ルミナセラミックが開示されている(例えば、特許文献 3参照。 )0しかし、この場合静 電チャックとしての機能を発揮させるような電気特性を得ることができない。 [0004] Further, an alumina ceramic containing 0.1 to 1% titanium oxide and having a volume resistivity of 10 ° to 10 40 «! 1 is disclosed (for example, see Patent Document 3). ) 0 However, it is impossible to obtain electrical characteristics as to function as the case electrostatic chuck.
[0005] また、アルミナセラミックに酸化チタンを 0. 5〜2wt%添加することにより誘電体の 体積抵抗率を低くした静電チャックが開示されている。(例えば、特許文献 4参照。 ) この場合、 0. 5wt%より低いと抵抗が下がらず、 2wt%以上添加すると電流が流れ すぎることが開示されている。さらに酸ィ匕チタンはアルミナセラミックスの粒界に析出 することが開示されている。すなわち体積抵抗率を下げるには少なくとも 0. 5 %以 上の添加物が必要であり、被吸着物に対する不純物の混入に厳しい制約のある静 電チャックとしては添加物の量が多 、。 [0006] また、アルミナが 99%以上、平均粒子径が 1〜3 μ mであり、 300〜500°Cにおい てその体積抵抗率が 108〜: ίΟ^ Ω cmとなるような静電チャックが開示されている。 ( 例えば、特許文献 5)しかし、それ以外の温度例えば 100°C以下の比較的低温で使 用される静電チャックに必要な誘電体の物性に関する記載はない。 [0005] Further, an electrostatic chuck is disclosed in which the volume resistivity of the dielectric is lowered by adding 0.5 to 2 wt% of titanium oxide to alumina ceramic. (For example, refer to Patent Document 4.) In this case, it is disclosed that the resistance does not decrease when the content is lower than 0.5 wt%, and that the current flows too much when 2 wt% or more is added. Furthermore, it is disclosed that titanium oxide precipitates at the grain boundaries of alumina ceramics. In other words, an additive of at least 0.5% or more is required to lower the volume resistivity, and the amount of additive is large as an electrostatic chuck with severe restrictions on the mixing of impurities into the adsorbed substance. [0006] In addition, an electrostatic chuck in which alumina is 99% or more, an average particle diameter is 1 to 3 μm, and a volume resistivity is 10 8 to: ίΟ ^ Ωcm at 300 to 500 ° C Is disclosed. (For example, Patent Document 5) However, there is no description regarding the physical properties of the dielectric necessary for the electrostatic chuck used at other temperatures, for example, at a relatively low temperature of 100 ° C or lower.
特許文献 1:特許第 3084869号公報  Patent Document 1: Japanese Patent No. 3084869
特許文献 2:特開平 10— 279349号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-279349
特許文献 3 :特開平 2004— 18296号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-18296
特許文献 4:特公平 6— 97675号公報  Patent Document 4: Japanese Patent Publication No. 6-97675
特許文献 5 :特開平 11 312729号公報  Patent Document 5: Japanese Patent Laid-Open No. 11 312729
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、プラズマにさらされた後も平滑な面が維持できその結果、シリコンウェハ 等の被吸着物に対するパーティクル汚染を抑制でき、かつ被吸着体の吸着、離脱特 性の優れ、低温焼成で作製することが容易な静電チャックを提供することである。 課題を解決するための手段 [0007] The present invention can maintain a smooth surface even after being exposed to plasma. As a result, it is possible to suppress particle contamination with respect to an adsorbent such as a silicon wafer and to have excellent adsorption and desorption characteristics of the adsorbent. An electrostatic chuck that can be easily manufactured by low-temperature firing is provided. Means for solving the problem
[0008] 上記目的を達成するために本発明においては、アルミナが 99. 4wt%以上、酸ィ匕 チタンが 0. 2wt%より大きく 0. 6wt%以下、体積抵抗率が室温において lC lO11 Q cmかつアルミナ粒子の粒界に酸ィ匕チタンが偏祈した構造の静電チャック用誘電 体を備えた静電チャックを開示した。その結果静電チャック誘電体の耐プラズマ性の 向上と静電チャックの基本機能の高度な両立を可能とするとともに、安価に製造でき るよつにした。 [0008] In the present invention in order to achieve the above object, alumina 99. 4 wt% or more, Sani匕titanium is greater than 0. 2wt% 0. 6wt% or less, lC lO 11 Q volume resistivity at room temperature An electrostatic chuck comprising a dielectric for an electrostatic chuck having a structure in which titanium oxide is impregnated at the grain boundary of cm and alumina particles has been disclosed. As a result, it has become possible to improve the plasma resistance of the electrostatic chuck dielectric and the basic functions of the electrostatic chuck at a high level, and to be manufactured at low cost.
[0009] 体積抵抗率を 108〜: ίΟ^ Ω cmにする必要があるのは、静電チャックの吸着力とし てジョンセン ·ラーベック効果を用いるためである。ジョンセン ·ラーベック効果を用い ることにより非常に大きな吸着力が発生しその結果として静電チャックの表面に凸部 を設けることにより被吸着物との接触面積を吸着面の面積に対して 1〜10%と少なく することができる。 [0009] The reason why the volume resistivity needs to be 10 8 ~: ΟΟ Ω cm is that the Johnsen-Rahbek effect is used as the attractive force of the electrostatic chuck. By using the Johnsen-Rahbek effect, a very large attracting force is generated, and as a result, the surface of the electrostatic chuck is provided with a convex portion so that the contact area with the object to be attracted is 1-10. % Can be reduced.
[0010] 更に、表面に設けた凸部の高さを 5〜15 mにすることによって被接触部でも吸着 力がはたら力せることができる。その結果凸部の面積を吸着面の面積に対して 0. 00 1%以上 0. 5%未満にすることができる。被吸着物の温度は凸部の接触面積が小さ くなるにつれ接触部を介して伝熱がなされるため、例え凸部の組織がプラズマによる 侵食を受けてもその影響は小さくなる。従って、プラズマ耐性をあげることと、被吸着 物との接触を極力少なくすることで結果的に経時変化の少ない静電チャックが実現 できる。 [0010] Further, by making the height of the convex portion provided on the surface 5 to 15 m, the attracting force can be exerted even in the contacted portion. As a result, the area of the convex part is 0.00 with respect to the area of the suction surface. It can be 1% or more and less than 0.5%. Since the temperature of the object to be adsorbed is transferred through the contact portion as the contact area of the convex portion becomes smaller, even if the texture of the convex portion is eroded by plasma, the influence is reduced. Therefore, an electrostatic chuck with little change with time can be realized as a result of increasing plasma resistance and minimizing contact with the object to be adsorbed.
[0011] また、上記の吸着力の応答特性をよくするためには以下の式の値を小さくする必要 がある。  [0011] Further, in order to improve the response characteristic of the above attractive force, it is necessary to reduce the value of the following equation.
ts=l. 731 X 10" X p ( ε r+d/h) (秒)  ts = l. 731 X 10 "X p (ε r + d / h) (seconds)
ここで、 tsは初期の吸着力を 100%としてそれが 2%まで崩壊するまでの時間(秒)、 は誘電層の体積抵抗率( Ω m)、 ε rは誘電層の比誘電率、 dは誘電層の厚み (m) 、 hは凸部の高さ(m)である。この式の値が 0. 001力 0. 6でかつ凸部の高さが 5〜 15 /z mであれば凸部の面積を吸着面に対して 0. 001-0. 5%にまですることがで きかつ吸着力の電圧印カロ、除荷に対する応答性の良い静電チャックとすることができ る。  Where ts is the time (seconds) until the initial attractive force is 100% and collapses to 2%, is the volume resistivity (Ωm) of the dielectric layer, εr is the relative dielectric constant of the dielectric layer, d Is the thickness (m) of the dielectric layer, and h is the height (m) of the protrusion. If the value of this formula is 0.001 force 0.6 and the height of the convex part is 5 to 15 / zm, the area of the convex part should be 0.001 to 0.5% with respect to the adsorption surface. It is possible to provide an electrostatic chuck that can respond to the voltage marking of the attractive force and has good response to unloading.
上記の式は図 1の等価回路より解析的に計算し〔数 1〕から〔数 4〕を導出して得られる ものである。ここで qlは電荷密度、 Sは電極面積、 Cは静電容量、 Gはコンダクタンス 、 Vは印加電圧、 tは時間(変数)、 Tは電圧印加時間である。  The above equation is obtained analytically from the equivalent circuit in Fig. 1 and derived from [Equation 1] to [Equation 4]. Where ql is the charge density, S is the electrode area, C is the capacitance, G is the conductance, V is the applied voltage, t is the time (variable), and T is the voltage application time.
[0012] [数 1] [0012] [Equation 1]
Figure imgf000005_0001
ql { t - T))
Figure imgf000005_0001
q l (t-T))
[0013] [数 2] [0013] [Equation 2]
2(C, + C , ) 2 (C, + C,)
G2 [0014] [数 3] G 2 [0014] [Equation 3]
2 0 r h 2 0 r h
- 丄 R2 =丄 pd -丄 R 2 = 丄 pd
[0015] [数 4]  [0015] [Equation 4]
t > T  t> T
- V - exp (t - T)  -V-exp (t-T)
c, + c, C, + C-,  c, + c, C, + C-,
[0016] また、本発明の他の実施形態においては、アルミナが 99. 4wt%以上、酸化チタン が 0. 2wt%より大きく 0. 6wt%以下、カゝさ密度が 3. 97g/cm3以上、体積抵抗率が 室温において lC lO11 Ω cmかつアルミナ粒子の粒界に酸ィ匕チタンが偏祈した構 造の静電チャック用誘電体を備えた静電チャックを開示した。その結果、この静電チ ャックはその組織の気孔率が少なく更に耐プラズマ性の向上と静電チャックの基本機 能の高度な両立を可能とするとともに、安価に製造できるようにした。 [0016] Further, in another embodiment of the present invention, alumina 99. 4 wt% or more, significantly 0. 6 wt% of titanium oxide than 0. 2 wt% or less, Caゝbulk density is 3. 97 g / cm 3 or more An electrostatic chuck including a dielectric for electrostatic chuck having a structure in which volume resistivity is lC lO 11 Ωcm at room temperature and titanium oxide is biased at the grain boundary of alumina particles is disclosed. As a result, this electrostatic chuck has a low porosity of the tissue, and further enables improvement in plasma resistance and a high degree of compatibility between the basic functions of the electrostatic chuck, and can be manufactured at low cost.
[0017] 本発明の好ましい形態においては、 100°C以下の低温で使用される静電チャックと した。  [0017] In a preferred embodiment of the present invention, the electrostatic chuck is used at a low temperature of 100 ° C or lower.
[0018] 本発明の好ましい形態においては、複数の凸部が形成され被吸着体を該凸部上 面に載置する平滑な表面を有する誘電体から構成され、前記複数の凸部上面の合 計の面積と前記誘電体表面の面積との比率が 0. 001%以上 0. 5%未満でありかつ 凸部の高さが 5〜15 mであることを特徴とする請求項 1乃至 4のいずれかに記載の 静電チャックを開示した。その結果、被吸着物との接触部分のプラズマによる侵食に よる表面の荒れの影響による被吸着物への吸着状態の変化の影響を最小限にする ことができる。このとき接触面積の比率が 0. 001%以下になると凸部 1ケあたりの寸 法が微細になりすぎ加工が困難になる。また 1%より大きくなると被吸着体と接触する 凸部の面のプラズマに対する浸食の影響が無視できなくなってくる。  [0018] In a preferred embodiment of the present invention, a plurality of convex portions are formed and a dielectric having a smooth surface on which the object to be attracted is placed on the upper surface of the convex portions. The ratio of the total area and the area of the dielectric surface is 0.001% or more and less than 0.5%, and the height of the convex part is 5 to 15 m. An electrostatic chuck according to any one of the above has been disclosed. As a result, it is possible to minimize the influence of the change in the adsorption state on the adsorbent due to the influence of the surface roughness due to the plasma erosion at the contact portion with the adsorbent. At this time, if the ratio of the contact area is 0.001% or less, the size per convex portion becomes too fine, and processing becomes difficult. On the other hand, if it exceeds 1%, the influence of erosion on the plasma on the surface of the convex part that comes into contact with the adsorbent cannot be ignored.
発明の効果 [0019] 本発明によれば、プラズマにさらされた後も平滑な面が維持できその結果、シリコン ウェハ等の被吸着物に対するパーティクル汚染を抑制でき、かつ被吸着体の吸着、 離脱特性の優れ、低温焼成で作製することが容易な静電チャックを製作できると!ヽぅ 効果がある。 The invention's effect [0019] According to the present invention, a smooth surface can be maintained even after being exposed to plasma. As a result, particle contamination of an adsorbed object such as a silicon wafer can be suppressed, and the adsorbed object can be adsorbed and separated. If an electrostatic chuck that can be easily manufactured by low-temperature firing can be manufactured, there is an effect.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の静電チャックを表す図である。 FIG. 1 is a diagram showing an electrostatic chuck of the present invention.
[図 2]本発明の静電チャックの等価回路を表す図である。  FIG. 2 is a diagram showing an equivalent circuit of the electrostatic chuck of the present invention.
[図 3]本発明の静電チャックの表面パターンの拡大図である。  FIG. 3 is an enlarged view of the surface pattern of the electrostatic chuck of the present invention.
[図 4]本発明の静電チャック用誘電体の構造を示す電子顕微鏡写真である。  FIG. 4 is an electron micrograph showing the structure of an electrostatic chuck dielectric according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 原料としてアルミナ、酸化チタン、その他遷移金属酸化物を表 1に示す配合比で造 粒した。アルミナは平均粒子径 0. l ^ m,純度 99. 99%以上のものを準備した。酸 化チタンは、純度 98%以上のものを用いた。  [0021] As raw materials, alumina, titanium oxide, and other transition metal oxides were granulated at a blending ratio shown in Table 1. Alumina having an average particle diameter of 0.1 l ^ m and a purity of 99.99% or more was prepared. Titanium oxide having a purity of 98% or more was used.
[0022] (スラリー調整、造粒、生加工)  [0022] (Slurry adjustment, granulation, raw processing)
上記原料を表 1に示す配合比で混合粉砕し、アクリル系バインダーを添加、調整後 スプレードライヤーで造粒し顆粒粉を作製した。顆粒粉はゴム型に詰めた後 CIP (圧 力 ltonZcm2)を実施してインゴットを作製し、その後所定の形状に加工し生成形体 を作製した。混合にはイオン交換水等を用いなるベく不純物が混入しな ヽようにした The above raw materials were mixed and pulverized at a blending ratio shown in Table 1, an acrylic binder was added, and after adjustment, the mixture was granulated with a spray dryer to produce granulated powder. The granulated powder was packed into a rubber mold, and then CIP (pressure ltonZcm 2 ) was performed to produce an ingot, which was then processed into a predetermined shape to produce a formed shape. Ion exchange water etc. was used for mixing so that no impurities were mixed.
(焼成) (Baking)
上記生加工体を窒素、水素ガス還元雰囲気下で焼成した。焼成温度は 1150〜 13 50°C、焼成時間は 1〜8時間とし、もっともかさ密度が高い条件を選択した。このとき 脱脂のために加湿ガスを使用して 、る。還元焼成を行うのは酸ィ匕チタンの非化学量 論組成化をねら 、、体積抵抗率の調節をねらうためである。  The raw processed body was fired in a nitrogen and hydrogen gas reducing atmosphere. The firing temperature was 1150 to 1350 ° C., the firing time was 1 to 8 hours, and the conditions with the highest bulk density were selected. At this time, use humidified gas for degreasing. The purpose of reducing firing is to adjust the volume resistivity in order to make the non-stoichiometric composition of titanium oxide.
(HIP処理)  (HIP processing)
さらに HIP処理をおこなった。 HIP条件は Arガス 1500気圧とし、温度は焼成温度 と同一または 30°C下げた温度とした。  Further HIP processing was performed. The HIP condition was Ar gas 1500 atm, and the temperature was the same as the firing temperature or 30 ° C lower.
(物性測定) 上記 HIP処理により得られたものは焼成力さ密度、焼成体組織 SEM観察による平 均粒子径測定、体積抵抗率測定、真空中での摩擦力測定、残留時間測定を行った 。摩擦力測定および残留時間測定にはセラミックス誘電層の厚みを lmmとした。吸 着電圧は 200V印加とし、さらに残留時間測定には 1分間電圧印可後に電源をオフ し、残留する摩擦力の減衰を測定した。被吸着物はシリコンウェハミラー面とした。残 留時間は電源オフ後摩擦力が 2%にまで減衰する時間を残留時間とした。 (Physical property measurement) What was obtained by the above HIP treatment was subjected to firing force density density, average particle size measurement by SEM observation, volume resistivity measurement, friction force measurement in vacuum, and residual time measurement. For frictional force measurement and residual time measurement, the thickness of the ceramic dielectric layer was lmm. The adsorption voltage was 200V, and the remaining time was measured by turning off the power after applying the voltage for 1 minute and measuring the attenuation of the remaining frictional force. The object to be adsorbed was a silicon wafer mirror surface. The remaining time was defined as the time for the frictional force to decay to 2% after the power was turned off.
また、実際にプラズマを照射しセラミックスの表面粗さ(中心線平均粗さ Ra)変化を 測定した。初期状態では表面粗さは RaO. 05 m以下にした。プラズマはリアタティ ブイオンエッチング装置、エッチングガスは CF +0で 1000W、 5時間プラズマ放電  In addition, the surface roughness of the ceramics (centerline average roughness Ra) was measured by actually irradiating the plasma. In the initial state, the surface roughness was RaO. 05 m or less. Plasma is a reactive ion etching system, etching gas is CF +0, 1000W, plasma discharge for 5 hours
4 2  4 2
させた。 I let you.
また、サンプルの一部につき静電チャックの実用的な吸着力の評価として吸着して いる被吸着体との間に Heガスの圧力を負荷して被吸着体がはがれるときの圧力(PO POFF吸着力)を記録した。このときの吸着電圧は 1000Vである。  In addition, as an evaluation of the practical chucking force of the electrostatic chuck for a part of the sample, the pressure (PO POFF Power) was recorded. The adsorption voltage at this time is 1000V.
(比較品) (Comparative product)
また比較のため従来の製法によるアルミナセラミックスを例示した。その配合は比較 品 1が平均粒子径 0. のアルミナ 98wt%、酸化チタン 2wt%、比較品 2がアル ミナ 99wt%、酸ィ匕チタン lwt%で、焼成温度は 1580°Cである。尚、比較品 1の表面 粗さは初期状態で RaO. 23 mであった。比較品 2の表面粗さは初期状態で RaO. 2 μ mであった。比較品は HIP処理はしていない。  For comparison, alumina ceramics produced by a conventional manufacturing method is illustrated. The compound 1 is 98 wt% alumina with an average particle size of 0. 0%, titanium oxide 2 wt%, comparative product 2 is alumina 99 wt%, titanium oxide 1 wt%, and the firing temperature is 1580 ° C. The surface roughness of Comparative Product 1 was RaO. 23 m in the initial state. The surface roughness of Comparative Product 2 was RaO. 2 μm in the initial state. The comparative product is not HIP treated.
上記試験の結果を表 1、表 2に示す。焼成温度をコントロールすれば酸化チタン 0. 2wt%より大きぐ 0. 6wt%以下の添加量で、力さ密度が 3. 97gZcm3以上で静電 チャックとして機能する体積抵抗率が得られることがわ力つた。従来、粒子径が 50 m以上ある場合に添加していた量に比べ非常に少ない添加量で同等の効果が得ら れることがわ力つた。従来の製法では焼成温度が 1580°Cと高いために添加した酸ィ匕 チタンはアルミナと反応してチタン酸アルミニウム (Al TiO )等の化合物になってい The results of the above test are shown in Tables 1 and 2. It can be seen that by controlling the firing temperature, a volume resistivity that functions as an electrostatic chuck can be obtained with a force density of 3.97 gZcm 3 or more with an addition amount of titanium oxide greater than 0.2 wt% and less than 0.6 wt%. I helped. In the past, it was proved that the same effect can be obtained with a very small addition amount compared to the amount added conventionally when the particle size is 50 m or more. In the conventional manufacturing method, since the firing temperature is as high as 1580 ° C, titanium oxide added reacts with alumina to become a compound such as aluminum titanate (Al TiO).
2 5  twenty five
るのに対して、本発明では平均粒子径 0. 未満、純度 99. 9%以上の高純度で 微粒のアルミナ原料を用いることにより焼成温度が 1300°C以下と低くなつているため に、添加した酸ィ匕チタンはアルミナと反応せずに酸ィ匕チタンのまま存在して 、ること が X線回折より確認された。チタン酸アルミニウムは体積抵抗率が比較的高 、ことが 知られており、アルミナの体積抵抗率を下げるためには酸ィ匕チタンよりも効率が悪ぐ より多くの添加量が必要になるものと考えられる。次に、本発明の静電チャック用誘電 体の微構造として、焼成温度に対して 80〜150°C程度低!、温度でサーマルエッチ ングを行なったサンプルの SEM写真を図 4に示す。平均粒子径 2 μ m以下のアルミ ナ粒子 (写真の黒 、部分)の粒界に酸ィ匕チタン (写真の白い部分)が偏祈し連続的 につながった構造になって 、ることがわ力つた。この酸ィ匕チタンが形成するネットヮー クにより効率的に体積抵抗率を下げることができたものと考えられる。以上の結果より 、本発明の静電チャック用誘電体が従来のものと比較して微量の酸ィ匕チタンの添カロ により体積抵抗率を下げることができたのは、添加した酸ィ匕チタンがアルミナと反応 せずに酸ィ匕チタンのまま存在して 、ること、および酸ィ匕チタンがアルミナ粒子の粒界 に偏祈し、連続的につながった構造を形成することによるものである。なお、酸化チタ ンは還元焼成により非化学量論糸且成になることで、さらに導電性が良くなつているも のと考えられる。このように微量の酸ィ匕チタンにより体積抵抗率の制御が可能になり、 シリコンウェハ等に対するケミカル汚染も従来に比べ格段に抑制することができたと 考えられた。 In contrast, in the present invention, the use of a high-purity, fine-grained alumina raw material having an average particle size of less than 0 and a purity of 99.9% or more lowers the firing temperature to 1300 ° C or lower. Titanium oxide titanium does not react with alumina and exists as titanium oxide. Was confirmed by X-ray diffraction. Aluminum titanate is known to have a relatively high volume resistivity, and in order to reduce the volume resistivity of alumina, the efficiency is worse than that of titanium oxide. Conceivable. Next, as a microstructure of the dielectric material for electrostatic chucks of the present invention, FIG. 4 shows a SEM photograph of a sample subjected to thermal etching at a temperature lower by about 80 to 150 ° C. than the firing temperature. It can be seen that the structure is such that the titanium oxide (white part of the photograph) is connected to the grain boundary of the alumina particles (black part of the photograph) with an average particle diameter of 2 μm or less and connected continuously. I helped. It is considered that the volume resistivity can be efficiently reduced by the network formed by this titanium oxide. From the above results, the dielectric resistivity for the electrostatic chuck of the present invention was able to lower the volume resistivity by adding a small amount of acid titanium as compared with the conventional one. This is because there is no reaction with alumina and it remains in the form of a titanium oxide, and the titanium oxide is prejudiced to the grain boundaries of the alumina particles to form a continuously connected structure. . Titanium oxide is considered to have further improved conductivity because it becomes non-stoichiometrically formed by reduction firing. Thus, it was thought that the volume resistivity could be controlled by a small amount of titanium oxide, and that chemical contamination of silicon wafers and the like could be remarkably suppressed compared to the conventional case.
[表 1] [table 1]
NO. アルミナ 酸化チタン 焼成温度 焼成体かさ密度NO. Alumina Titanium oxide Firing temperature Firing body bulk density
。C g/cm3 . C g / cm 3
1 100 t% 0wt% 1240 3.791 100 t% 0wt% 1240 3.79
2 100wt% 0wt% 1270 3.882 100wt% 0wt% 1270 3.88
3 99.9wt% 0.1 wt% 1300 3783 99.9wt% 0.1 wt% 1300 378
4 99.9wt% 0.1 wt% 1240 3.894 99.9wt% 0.1 wt% 1240 3.89
5 99.8wt% 0.2wt% 1210 3.745 99.8wt% 0.2wt% 1210 3.74
6 99.8wt% 0.2wt% 1240 3.896 99.8wt% 0.2wt% 1240 3.89
7 99.7wt 0.3wt% 1180 3.237 99.7wt 0.3wt% 1180 3.23
8 99Jwt 0.3wt 1210 3.918 99Jwt 0.3wt 1210 3.91
9 99.6wt% 0.4wt% 1180 3.609 99.6wt% 0.4wt% 1180 3.60
1 0 99.6wt% 0.4wt 1210 3.921 0 99.6wt% 0.4wt 1210 3.92
1 1 99.5wt% 0.5wt% 1 150 3.601 1 99.5wt% 0.5wt% 1 150 3.60
1 2 99.5wt% 0.5wt% 1180 3.921 2 99.5wt% 0.5wt% 1180 3.92
1 3 99.4wt 0.6wt% 1 150 3.921 3 99.4wt 0.6wt% 1 150 3.92
1 4 99.4wt 0.6wt% 1 180 3.92 比較物 1 98wt% 2wt% 1580 3.75 比較物 2 99wt% 1 wt% 1580 3-7 [表 2] 1 4 99.4wt 0.6wt% 1 180 3.92 Comparative product 1 98wt% 2wt% 1580 3.75 Comparative product 2 99wt% 1 wt% 1580 3- 7 [ Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
電気特性の評価の結果、酸ィ匕チタン単独または酸ィ匕チタン +遷移金属酸ィ匕物の 添加割合によつて 108〜: 1016 Q cmの広範囲で制御できることがわ力 た。 As a result of the evaluation of electrical characteristics, it was found that it can be controlled in a wide range from 10 8 to: 10 16 Q cm depending on the addition ratio of titanium oxide alone or titanium oxide + transition metal oxide.
レジストを使用する場合には、その耐熱温度を考えると、静電チャックは 100。C以下 で使用されるのが望ましい。 静電チャック用の誘電体に要求される電気特性は、静電チャックを使用する温度に ぉ 、て体積抵抗率が ΙΟ8 ^)11 Ω cmが望まし 、。下限値の 108 Ω cm未満ではゥェ ハへ流れ込む電流が過大になりすぎデバイスの損傷のおそれがあり、上限値の 1011 When using resist, the electrostatic chuck is 100 considering its heat resistance temperature. It is desirable to use below C. The electrical characteristics required for the dielectric material for the electrostatic chuck are desired to be the temperature at which the electrostatic chuck is used, and the volume resistivity is 8 ) 11 Ωcm. The 10 less than 8 Omega cm lower limit may cause damage to the device too excessive current flowing into © E c, the upper limit 10 11
Ω cmより大きいと、ウェハの吸着、脱離の電圧印加に対するレスポンスが低下する。 例えば 100°C以下のプロセスエッチングのようなプロセスでは下限値が Κ^ ΙΟ^ Ω cm程度であることが望まし 、。 If it is larger than Ωcm, the response to voltage application for wafer adsorption and desorption will decrease. For example, in processes such as process etching below 100 ° C, the lower limit is desired to be about Κ ^ ΙΟ ^ Ω cm.
[0027] 酸化チタンが 0. 6wt%より多いと体積抵抗率が 108 Ω «η未満となり、ウェハへ流れ 込む電流が過大になりすぎデバイスの損傷のおそれがある。また、 0. 2wt%以下だ と酸ィ匕チタン添カ卩による体積抵抗率の低下の効果力 S小さくなる。 [0027] If the amount of titanium oxide is more than 0.6 wt%, the volume resistivity becomes less than 10 8 Ω «η, and the current flowing into the wafer becomes excessive, which may damage the device. On the other hand, if it is 0.2 wt% or less, the effect S of reducing the volume resistivity due to the titanium oxide additive S becomes small.
[0028] 耐プラズマ性はプラズマ中のイオンのエネルギーが過大であればどのような物質で あってもエッチングされてしまうため表面粗さの変化で評価した。  [0028] Plasma resistance was evaluated by the change in surface roughness because any substance is etched if the energy of ions in the plasma is excessive.
その結果、本発明によるセラミック誘電体は表面粗さの変化が従来のものに比べ顕 著に小さ力つた。このことは発塵するパーティクルの大きさが小さ!/、ことと推定された。  As a result, the ceramic dielectric according to the present invention has a significantly smaller change in surface roughness than the conventional one. This is presumed that the size of particles that generate dust is small!
[0029] 複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有し、体 積抵抗率が 109· 3 Ω cmである静電チャック用誘電体を含む静電チャックの凸部上面 の合計の面積と前記誘電体表面の面積との比率が 0. 089%である静電チャックを 作製した。このとき表面には φ θ. 25mmの凸部を一辺が 8mmの正三角形の各頂点 に連続して配置している。凸部の高さは 10 mである。 [0029] Including a dielectric for an electrostatic chuck having a smooth surface on which a plurality of convex portions are formed and an object to be adsorbed is placed on the upper surface of the convex portion and having a volume resistivity of 10 9 · 3 Ωcm An electrostatic chuck in which the ratio of the total area of the upper surfaces of the convex portions of the electrostatic chuck to the area of the dielectric surface was 0.089% was produced. At this time, a convex part of φ θ. 25 mm is continuously arranged on each surface of each apex of an equilateral triangle with a side of 8 mm. The height of the convex part is 10 m.
[0030] その結果、プラズマ照射後の表面粗さの変化が少な力つたことおよび、被吸着物と の接触面積が非常に少ないことが重畳し、被吸着物であるシリコンウェハのプロセス 時の温度変化の経時変化がきわめて少なくすることができた。 [0030] As a result, the change in the surface roughness after plasma irradiation and the fact that the contact area with the object to be adsorbed are extremely small are superimposed on each other. The change over time of the change could be extremely reduced.
[0031] POPOFF吸着力は全てのサンプルにおいて lOOtorr以上を記録した。すなわちシ リコンウェハ等の被吸着体を吸着するには十分に実用的な力が得られていることがわ かった。 [0031] The POPOFF adsorption force was recorded as lOOtorr or more in all samples. In other words, it was found that a practical force was sufficiently obtained to adsorb an adsorbent such as a silicon wafer.

Claims

請求の範囲 The scope of the claims
[1] アルミナが 99. 4wt%以上、酸ィ匕チタンが 0. 2wt%より大きく 0. 6wt%以下、体積抵 抗率が室温にぉぃて^)8〜^)1^ ^!!、かつアルミナ粒子の粒界に酸ィ匕チタンが偏 祈した構造の静電チャック用誘電体を備えたことを特徴とする静電チャック。 [1] Alumina is more than 99.4 wt%, titanium oxide is more than 0.2 wt% and less than 0.6 wt%, and volume resistivity is at room temperature ^) 8 〜 ^) 1 ^ ^ !! An electrostatic chuck comprising a dielectric for an electrostatic chuck having a structure in which titanium oxide is biased at the grain boundary of alumina particles.
[2] アルミナが 99. 4wt%以上、酸ィ匕チタンが 0. 2wt%より大きく 0. 6wt%以下、力ゝさ密 度が 3. 97g/cm3以上、体積抵抗率が室温にぉぃて^)8〜^)1^ ^!!、かつアルミ ナ粒子の粒界に酸ィ匕チタンが偏祈した構造の静電チャック用誘電体を備えたことを 特徴とする静電チャック。 [2] alumina 99. 4 wt% or more, Sani匕titanium is greater than 0. 2wt% 0. 6wt% or less, the forceゝIs density is 3. 97 g / cm 3 or more, a volume resistivity of the room temperature Oi Te ^) 8 - ^) 1 ^ ^ !!, and an electrostatic chuck, wherein the Sani匕titanium with an electrostatic chuck dielectric structure Hen'ino the grain boundary of alumina particles.
[3] 前記アルミナ粒子の粒内および粒界にチタン酸アルミニウム (Al TiO )が存在しな  [3] No aluminum titanate (Al TiO) is present in the grain or boundary of the alumina particles.
2 5  twenty five
いことを特徴とする請求項 1または 2に記載の静電チャック。  The electrostatic chuck according to claim 1 or 2, wherein
[4] 請求項 1乃至 3のいずれかに記載の静電チャックであって、 100°C以下の低温で使 用されることを特徴とする静電チャック。 [4] The electrostatic chuck according to any one of claims 1 to 3, wherein the electrostatic chuck is used at a low temperature of 100 ° C or lower.
[5] 複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有する誘電 体から構成され、前記複数の凸部上面の合計の面積と前記誘電体表面の面積との 比率が 0. 001%以上 0. 5%未満でありかつ凸部の高さが 5〜15 mであることを特 徴とする請求項 1乃至 4のいずれかに記載の静電チャック。 [5] It is composed of a dielectric having a smooth surface on which a plurality of convex portions are formed and an object to be adsorbed is placed on the upper surface of the convex portion, and the total area of the upper surfaces of the plurality of convex portions and the area of the dielectric surface 5. The electrostatic chuck according to claim 1, wherein the ratio of the height of the convex portion is 0.001% or more and less than 0.5%, and the height of the convex portion is 5 to 15 m.
PCT/JP2007/052175 2005-11-15 2007-02-08 Electrostatic chuck WO2007091619A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/086,967 US7907383B2 (en) 2005-11-15 2007-02-08 Electrostatic chuck
CN2007800045852A CN101379607B (en) 2006-02-08 2007-02-08 Electrostatic chuck

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-031545 2006-02-08
JP2006031545A JP4244229B2 (en) 2006-02-08 2006-02-08 Electrostatic chuck

Publications (1)

Publication Number Publication Date
WO2007091619A1 true WO2007091619A1 (en) 2007-08-16

Family

ID=38345213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052175 WO2007091619A1 (en) 2005-11-15 2007-02-08 Electrostatic chuck

Country Status (5)

Country Link
JP (1) JP4244229B2 (en)
KR (1) KR100989230B1 (en)
CN (1) CN101379607B (en)
TW (1) TWI342059B (en)
WO (1) WO2007091619A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004752A (en) * 2007-05-18 2009-01-08 Toto Ltd Electrostatic chuck
JP4786693B2 (en) 2008-09-30 2011-10-05 三菱重工業株式会社 Wafer bonding apparatus and wafer bonding method
JP5872998B2 (en) 2012-04-26 2016-03-01 日本特殊陶業株式会社 Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
KR102119867B1 (en) * 2013-10-21 2020-06-09 주식회사 미코세라믹스 Electrostatic chuck
CN107663080B (en) * 2016-07-27 2020-05-08 北京华卓精科科技股份有限公司 Alumina ceramic applied to J-R type electrostatic chuck and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204924A (en) * 1989-10-30 1991-09-06 Sumitomo Metal Ind Ltd Specimen holder
JPH09330974A (en) * 1996-06-12 1997-12-22 Hitachi Ltd Electrostatic chuck electrode
JP2004352572A (en) * 2003-05-29 2004-12-16 Kyocera Corp Alumina ceramics and method for producing the same
JP2006165107A (en) * 2004-12-03 2006-06-22 Nippon Steel Corp Dielectric ceramics for electrostatic chuck, and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201502B2 (en) * 2000-10-11 2008-12-24 独立行政法人産業技術総合研究所 Electrostatic chuck and manufacturing method thereof
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making
TWI274394B (en) * 2003-11-14 2007-02-21 Advanced Display Proc Eng Co Electrostatic chuck with support balls as contact plane, substrate support, clamp for substrate fixation, and electrode structure, and fabrication method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204924A (en) * 1989-10-30 1991-09-06 Sumitomo Metal Ind Ltd Specimen holder
JPH09330974A (en) * 1996-06-12 1997-12-22 Hitachi Ltd Electrostatic chuck electrode
JP2004352572A (en) * 2003-05-29 2004-12-16 Kyocera Corp Alumina ceramics and method for producing the same
JP2006165107A (en) * 2004-12-03 2006-06-22 Nippon Steel Corp Dielectric ceramics for electrostatic chuck, and its manufacturing method

Also Published As

Publication number Publication date
KR20080089444A (en) 2008-10-06
KR100989230B1 (en) 2010-10-20
JP4244229B2 (en) 2009-03-25
CN101379607A (en) 2009-03-04
CN101379607B (en) 2010-04-21
JP2007214287A (en) 2007-08-23
TWI342059B (en) 2011-05-11
TW200737398A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
KR100978996B1 (en) Process of producing electrostatic chuck
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP6496092B1 (en) Aluminum nitride sintered body and semiconductor holding device
US7248457B2 (en) Electrostatic chuck
WO2007091619A1 (en) Electrostatic chuck
JP5159625B2 (en) Aluminum nitride sintered body and method for producing the same
WO2020214494A1 (en) High density corrosion resistant layer arrangement for electrostatic chucks
JP4623159B2 (en) Electrostatic chuck
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
JP2006049356A (en) Electrostatic chuck
JP6052976B2 (en) Electrostatic chuck dielectric layer and electrostatic chuck
JP2009302518A (en) Electrostatic chuck
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
JP2008288428A (en) Electrostatic chuck
JP4043219B2 (en) Electrostatic chuck
WO2007055006A1 (en) Electrostatic zipper
JP4585129B2 (en) Electrostatic chuck
JP5192221B2 (en) Ceramic sintered body and electrostatic chuck using the same
US7907383B2 (en) Electrostatic chuck
JP2007326744A (en) Plasma resistant ceramic member
JP3667077B2 (en) Electrostatic chuck
JP2009004752A (en) Electrostatic chuck
KR20000067819A (en) Electrically conductive ceramics, a process of producing same, and an electrostatic chuck
JP2004051445A (en) Sintered compact of aluminum nitride and electrostatic chuck using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12086967

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087018298

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780004585.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708199

Country of ref document: EP

Kind code of ref document: A1