KR20080089444A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
KR20080089444A
KR20080089444A KR1020087018298A KR20087018298A KR20080089444A KR 20080089444 A KR20080089444 A KR 20080089444A KR 1020087018298 A KR1020087018298 A KR 1020087018298A KR 20087018298 A KR20087018298 A KR 20087018298A KR 20080089444 A KR20080089444 A KR 20080089444A
Authority
KR
South Korea
Prior art keywords
electrostatic chuck
titanium oxide
weight
alumina
dielectric
Prior art date
Application number
KR1020087018298A
Other languages
Korean (ko)
Other versions
KR100989230B1 (en
Inventor
마사미 안도
준 미야지
오사무 오카모토
Original Assignee
토토 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토토 가부시키가이샤 filed Critical 토토 가부시키가이샤
Publication of KR20080089444A publication Critical patent/KR20080089444A/en
Application granted granted Critical
Publication of KR100989230B1 publication Critical patent/KR100989230B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

[PROBLEMS] To provide an electrostatic chuck that, even after exposure to plasma, can maintain a smooth surface and consequently can suppress contamination of a material to be adsorbed, such as a silicon wafer, with particles, is excellent in adsorption and desorption properties of an adsorbent material, and can easily be prepared by low-temperature firing. [MEANS FOR SOLVING PROBLEMS] An electrostatic chuck comprising a dielectric material for an electrostatic chuck. The dielectric material comprises not less than 99.4% by weight of alumina, more than 0.2% by weight and not more than 0.6% by weight of titanium oxide, has a volume resistivity at room temperature of 108 to 1011 7cm, and has a structure in which titanium oxide is segregated at the boundary of alumina particles.

Description

정전척{Electrostatic chuck}Electrostatic chuck

본 발명은 반도체 웨이퍼 및 FPD용 유리기판 등의 피흡착물을 정전력으로 흡착 고정하는 정전척에 관한 발명이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck for adsorption and fixing of adsorbed materials such as semiconductor wafers and glass substrates for FPD with electrostatic force.

종래의 정전척 세라믹 유전체는 그 전기특성을 제어하는 것을 목적으로서 구성되어 있었다(예를 들면, 특허문헌 1 참조).The conventional electrostatic chuck ceramic dielectric is configured for the purpose of controlling its electrical characteristics (see Patent Document 1, for example).

이와 같은 경우, 플라즈마 환경하에 세라믹 조직이 노출된 경우, 조직이 침식을 받아 표면 거칠기가 나빠지고 그 결과, 정전척 표면과 웨이퍼 사이의 접촉상태가 변화하는 것에 의한 경시변화가 발생하거나, 소결체로부터 입자가 탈립(脫粒)되어 파티클로서 발진(發塵)하여 LSI의 배선간 쇼트를 일으키는 등의 원인이 되는 경우가 있었다.In such a case, when the ceramic structure is exposed in the plasma environment, the structure is eroded and the surface roughness becomes poor, and as a result, changes over time due to a change in the contact state between the surface of the electrostatic chuck and the wafer, or particles from the sintered body The particles may be detached and oscillated as particles to cause short circuits between the LSIs and the like.

또한, 입경이 2 ㎛ 이하, 상대밀도 99.9%로서 내플라즈마성을 향상시킨 알루미나 세라믹 재료로 정전척에 적용한 예도 있다(예를 들면, 특허문헌 2 참조). 그러나, 이 경우도 내플라즈마성은 양호하더라도 그 전기물성에 관한 기재가 없어 커다란 흡착력이 발현되는 이른바 존센 라벡형 정전척(Johnsen-Rahbeck electrostatic chuck)의 기본적인 기능을 발휘시킬 수 없다.In addition, there is an example in which an alumina ceramic material having a particle diameter of 2 µm or less and a relative density of 99.9% has been improved in plasma resistance and applied to an electrostatic chuck (see Patent Document 2, for example). However, even in this case, even if the plasma resistance is good, there is no description on the electrical properties, and thus the basic function of the so-called Johnsen-Rahbeck electrostatic chuck, which exhibits a large adsorption force, cannot be exhibited.

또한, 산화티탄을 0.1~1 중량% 함유하고, 체적 저항률이 100~104 Ω㎝를 나타내는 알루미나 세라믹이 개시되어 있다(예를 들면, 특허문헌 3 참조). 그러나, 이 경우 정전척으로서의 기능을 발휘시키는 전기특성을 얻는 것은 불가능하다.Moreover, the alumina ceramic which contains 0.1-1 weight% of titanium oxide and shows a volume resistivity of 10 <0> -10 <4> ohm-cm is disclosed (for example, refer patent document 3). In this case, however, it is impossible to obtain an electrical characteristic that serves as an electrostatic chuck.

또한, 알루미나 세라믹에 산화티탄을 0.5~2 중량% 첨가함으로써 유전체의 체적 저항률을 낮게 한 정전척이 개시되어 있다(예를 들면, 특허문헌 4 참조). 이 경우, 0.5 중량%보다 낮으면 저항이 내려가지 않고, 2 중량% 이상 첨가하면 전류가 지나치게 흐르는 것이 개시되어 있다. 또한 산화티탄은 알루미나 세라믹의 입계에 석출(析出)되는 것이 개시되어 있다. 즉 체적 저항률을 낮추기 위해서는 적어도 0.5 중량% 이상의 첨가물이 필요하여, 피흡착물에 대한 불순물의 혼입에 엄격한 제약이 있는 정전척으로서는 첨가물의 양이 많다.Moreover, the electrostatic chuck which lowered the volume resistivity of a dielectric by adding 0.5-2 weight% of titanium oxide to an alumina ceramic is disclosed (for example, refer patent document 4). In this case, when it is lower than 0.5 weight%, resistance does not fall, but when 2 weight% or more is added, it turns out that an electric current flows too much. In addition, it is disclosed that titanium oxide is precipitated at grain boundaries of alumina ceramics. That is, at least 0.5 wt% or more of additives are required to lower the volume resistivity, and the amount of the additives is large as an electrostatic chuck having strict restrictions on the incorporation of impurities into the substance to be adsorbed.

또한, 알루미나가 99% 이상, 평균입경이 1~3 ㎛이고, 300~500℃에서 그 체적 저항률이 108~1011 Ω㎝가 되는 정전척이 개시되어 있다(예를 들면, 특허문헌 5). 그러나, 그 이외의 온도, 예를 들면 100℃ 이하의 비교적 저온에서 사용되는 정전척에 필요한 유전체의 물성에 관한 기재는 없다.Moreover, the electrostatic chuck which has 99% or more of alumina, an average particle diameter of 1-3 micrometers, and whose volume resistivity becomes 10 8-10 11 ohm-cm at 300-500 degreeC is disclosed (for example, patent document 5). . However, there is no description regarding the physical properties of the dielectric required for the electrostatic chuck used at other temperatures, for example, at relatively low temperatures of 100 ° C or lower.

특허문헌 1: 일본국 특허 제3084869호 공보Patent Document 1: Japanese Patent No. 3084869

특허문헌 2: 일본국 특허공개 평10-279349호 공보Patent Document 2: Japanese Patent Application Laid-Open No. 10-279349

특허문헌 3: 일본국 특허공개 평2004-18296호 공보Patent Document 3: Japanese Patent Application Laid-Open No. 2004-18296

특허문헌 4: 일본국 특허공고 평6-97675호 공보Patent Document 4: Japanese Patent Publication No. Hei 6-97675

특허문헌 5: 일본국 특허공개 평11-312729호 공보Patent Document 5: Japanese Patent Application Laid-Open No. 11-312729

발명의 개시Disclosure of the Invention

발명이 해결하고자 하는 과제Problems to be Solved by the Invention

본 발명은 플라즈마에 노출된 후에도 평활한 면을 유지할 수 있어 그 결과, 실리콘 웨이퍼 등의 피흡착물에 대한 파티클 오염을 억제할 수 있고, 또한 피흡착체의 흡착, 이탈 특성이 우수하여, 저온소성으로 제작하는 것이 용이한 정전척을 제공하는 것을 과제로 한다.The present invention can maintain a smooth surface even after being exposed to plasma, and as a result, it is possible to suppress particle contamination on adsorbed materials such as silicon wafers, and also has excellent adsorption and desorption characteristics of the adsorbed materials. An object of the present invention is to provide an electrostatic chuck that is easy to do.

과제를 해결하기 위한 수단Means to solve the problem

상기 목적을 달성하기 위해 본 발명에 있어서는 알루미나가 99.4 중량% 이상, 산화티탄이 0.2 중량%보다 크고 0.6 중량% 이하, 체적 저항률이 실온에서 108~1011 Ω㎝, 또한 알루미나 입자의 입계에 산화티탄이 편석(偏析)된 구조의 정전척용 유전체를 구비한 정전척을 개시하였다. 그 결과 정전척 유전체의 내플라즈마성의 향상과 정전척의 기본기능의 고도한 양립을 가능하게 하는 동시에, 저렴하게 제조할 수 있도록 하였다.In order to achieve the above object, in the present invention, alumina is 99.4% by weight or more, titanium oxide is greater than 0.2% by weight and 0.6% by weight or less, and the volume resistivity is 10 8 to 10 11 Ωcm at room temperature, and also oxidized to grain boundaries of the alumina particles. An electrostatic chuck having an electrostatic chuck dielectric having a structure in which titanium is segregated is disclosed. As a result, the plasma resistance of the electrostatic chuck dielectric can be improved and the basic functions of the electrostatic chuck can be achieved at the same time.

체적 저항률을 108~1011 Ω㎝로 할 필요가 있는 것은, 정전척의 흡착력으로서 존센 라벡 효과를 사용하기 때문이다. 존센 라벡 효과를 사용함으로써 매우 커다란 흡착력이 발생하여 그 결과로서 정전척의 표면에 볼록부를 설치함으로써 피흡착물과의 접촉면적을 흡착면의 면적에 대해 1~10%로 적게 할 수 있다.The volume resistivity needs to be 10 8 to 10 11 Ωcm because the Johnsen Lavec effect is used as the adsorption force of the electrostatic chuck. By using the Johnsen Lavec effect, a very large adsorption force is generated, and consequently, convex portions are provided on the surface of the electrostatic chuck, so that the contact area with the adsorbed material can be reduced to 1 to 10% of the area of the adsorption surface.

또한, 표면에 설치한 볼록부의 높이를 5~15 ㎛로 함으로써 피접촉부에서도 흡착력을 작용시킬 수 있다. 그 결과 볼록부의 면적을 흡착면의 면적에 대해 0.001% 이상 0.5% 미만으로 할 수 있다. 피흡착물의 온도는 볼록부의 접촉면적이 작아짐에 따라 접촉부를 매개로 전열(傳熱)이 이루어지기 때문에, 설령 볼록부의 조직이 플라즈마에 의한 침식을 받아도 그 영향은 작아진다. 따라서, 플라즈마 내성을 높이는 것과, 피흡착물과의 접촉을 최대한 적게 함으로써 결과적으로 경시변화가 적은 정전척을 실현할 수 있다.Moreover, by making the height of the convex part provided in the surface into 5-15 micrometers, adsorption force can be made to work also in a to-be-contacted part. As a result, the area of the convex portion can be made 0.001% or more and less than 0.5% with respect to the area of the adsorption surface. Since the temperature of the object to be adsorbed is heat-transferred through the contact portion as the contact area of the convex portion becomes smaller, even if the structure of the convex portion is subjected to erosion by plasma, the effect is reduced. Therefore, the electrostatic chuck with little change over time can be realized by increasing plasma resistance and making contact with the to-be-adsorbed object as possible as possible.

또한, 상기 흡착력의 응답특성을 좋게 하기 위해서는 이하의 식의 값을 작게 할 필요가 있다.In addition, in order to improve the response characteristic of the said adsorption force, it is necessary to make the value of the following formula small.

ts=1.731×10-11×ρ(εr+d/h)(초)ts = 1.731 × 10 -11 × ρ (εr + d / h) (sec)

여기서, ts는 초기 흡착력을 100%로 하여 그것이 2%까지 붕괴되기까지의 시간(초), ρ는 유전층의 체적 저항률(Ωm), εr은 유전층의 비유전율, d는 유전층의 두께(m), h는 볼록부의 높이(m)이다. 이 식의 값이 0.001에서 0.6이고 또한 볼록부의 높이가 5~15 ㎛이면 볼록부의 면적을 흡착면에 대해 0.001~0.5%까지 할 수 있고 또한 흡착력의 전압 인가, 제하(除荷, removing voltage)에 대한 응답성이 좋은 정전척으로 할 수 있다.Where ts is the initial adsorption force at 100% and time until it collapses to 2%, ρ is the volume resistivity of the dielectric layer (Ωm), εr is the dielectric constant of the dielectric layer, d is the thickness of the dielectric layer (m), h is the height m of the convex part. If the value of this equation is 0.001 to 0.6 and the height of the convex part is 5 to 15 µm, the area of the convex part can be made to 0.001 to 0.5% with respect to the adsorption surface, and the voltage of the adsorption force can be reduced or removed. It can be made into electrostatic chuck with good response.

상기 식은 도 1의 등가회로로부터 해석적으로 계산하여 [수학식 1]~[수학식 4]를 도출하여 얻어지는 것이다. 여기서 q1은 전하밀도, S는 전극면적, C는 정전용량, G는 컨덕턴스, V는 인가전압, t는 시간(변수), T는 전압 인가시간이다.The above equation is obtained by analytically calculating from the equivalent circuit of FIG. 1 to derive [Equation 1] to [Equation 4]. Where q1 is charge density, S is electrode area, C is capacitance, G is conductance, V is applied voltage, t is time (variable), and T is voltage application time.

Figure 112008053482600-PCT00001
Figure 112008053482600-PCT00001

Figure 112008053482600-PCT00002
Figure 112008053482600-PCT00002

Figure 112008053482600-PCT00003
Figure 112008053482600-PCT00003

Figure 112008053482600-PCT00004
Figure 112008053482600-PCT00004

또한, 본 발명의 다른 실시형태에 있어서는 알루미나가 99.4 중량% 이상, 산화티탄이 0.2 중량%보다 크고 0.6 중량% 이하, 부피밀도가 3.97 g/㎤ 이상, 체적 저항률이 실온에서 108~1011 Ω㎝, 또한 알루미나 입자의 입계에 산화티탄이 편석된 구조의 정전척용 유전체를 구비한 정전척을 개시하였다. 그 결과, 이 정전척은 그 조직의 기공률(porosity)이 적고 또한 내플라즈마성의 향상과 정전척의 기본기능의 고도한 양립을 가능하게 하는 동시에, 저렴하게 제조할 수 있도록 하였다.In another embodiment of the present invention, alumina is at least 99.4% by weight, titanium oxide is greater than 0.2% by weight, 0.6% by weight or less, bulk density is at least 3.97 g / cm 3, and the volume resistivity is 10 8 to 10 11 Ω at room temperature. An electrostatic chuck having an electrostatic chuck dielectric having a structure in which titanium oxide is segregated at grain boundaries of alumina particles is disclosed. As a result, the electrostatic chuck has a low porosity of the tissue, enables improved plasma resistance, high compatibility of the basic functions of the electrostatic chuck, and can be manufactured at low cost.

본 발명의 바람직한 형태에서는, 100℃ 이하의 저온에서 사용되는 정전척으로 하였다.In a preferable embodiment of the present invention, the electrostatic chuck is used at a low temperature of 100 ° C. or lower.

본 발명의 바람직한 형태에서는, 복수의 볼록부가 형성되어 피흡착체를 이 볼록부 윗면에 올려놓는 평활한 표면을 갖는 유전체로 구성되고, 상기 복수의 볼록부 윗면의 합계 면적과 상기 유전체 표면 면적의 비율이 0.001% 이상 0.5% 미만이며, 또한 볼록부의 높이가 5~15 ㎛인 것을 특징으로 하는 청구항 1 내지 4 중 어느 하나에 기재된 정전척을 개시하였다. 그 결과, 피흡착물과의 접촉부분의 플라즈마에 의한 침식에 의한 표면의 거칠어짐의 영향에 의한 피흡착물로의 흡착상태의 변화의 영향을 최소한으로 할 수 있다. 이 때 접촉면적의 비율이 0.001% 이하가 되면 볼록부 1개당 치수가 지나치게 미세해져 가공이 곤란해진다. 또한 1%보다 커지면 피흡착체와 접촉하는 볼록부 면의 플라즈마에 대한 침식의 영향을 무시할 수 없게 된다.In a preferred embodiment of the present invention, a plurality of convex portions are formed and are composed of a dielectric having a smooth surface on which the adsorbed body is placed on the upper surface of the convex portion, and the ratio of the total area of the upper surfaces of the plurality of convex portions to the dielectric surface area is The electrostatic chuck in any one of Claims 1-4 characterized by the above-mentioned being 0.001% or more and less than 0.5%, and the height of a convex part is 5-15 micrometers. As a result, the influence of the change of the adsorption state to the to-be-adsorbed object by the influence of the roughness of the surface by the erosion by the plasma of the contact part with a to-be-adsorbed object can be minimized. At this time, when the ratio of the contact area becomes 0.001% or less, the dimension per one convex part becomes too fine and processing becomes difficult. Also, if it is greater than 1%, the influence of erosion on the plasma of the convex surface in contact with the adsorbed body cannot be ignored.

발명의 효과Effects of the Invention

본 발명에 의하면, 플라즈마에 노출된 후에도 평활한 면을 유지할 수 있어 그 결과, 실리콘 웨이퍼 등의 피흡착물에 대한 파티클 오염을 억제할 수 있고, 또 한 피흡착체의 흡착, 이탈 특성이 우수하여, 저온소성으로 제작하는 것이 용이한 정전척을 제작할 수 있다는 효과가 있다.According to the present invention, a smooth surface can be maintained even after being exposed to plasma, and as a result, particle contamination on adsorbed substances such as silicon wafers can be suppressed, and adsorption and detachment characteristics of the adsorbed substance are excellent, and There is an effect that an electrostatic chuck which can be easily manufactured by firing can be manufactured.

도 1은 본 발명의 정전척을 나타내는 도면이다.1 is a view showing an electrostatic chuck of the present invention.

도 2는 본 발명의 정전척의 등가회로를 나타내는 도면이다.2 is a view showing an equivalent circuit of the electrostatic chuck of the present invention.

도 3은 본 발명의 정전척의 표면 패턴의 확대도이다.3 is an enlarged view of the surface pattern of the electrostatic chuck of the present invention.

도 4는 본 발명의 정전척용 유전체의 구조를 나타내는 전자현미경 사진이다.Figure 4 is an electron micrograph showing the structure of the dielectric for electrostatic chuck of the present invention.

발명을 실시하기Implement the invention 위한 최선의 형태 Best form for

원료로서 알루미나, 산화티탄, 기타 전이금속 산화물을 표 1에 나타내는 배합비로 조립(造粒)하였다. 알루미나는 평균입경 0.1 ㎛, 순도 99.99% 이상의 것을 준비하였다. 산화티탄은 순도 98% 이상의 것을 사용하였다.Alumina, titanium oxide, and other transition metal oxides were granulated at the blending ratios shown in Table 1 as raw materials. The alumina prepared the thing of average particle diameter 0.1 micrometer, purity 99.99% or more. As the titanium oxide, a purity of 98% or more was used.

(슬러리 조정, 조립, 생가공)(Slurry adjustment, assembly, raw processing)

상기 원료를 표 1에 나타내는 배합비로 혼합 분쇄하고, 아크릴계 바인더를 첨가하여, 조정한 후, 스프레이 드라이어로 조립하여 과립분말을 제작하였다. 과립분말은 고무몰드에 채운 후 CIP(압력 1 ton/㎠)를 실시하여 잉곳(ingot)을 제작한 후, 소정 형상으로 가공하여 생성형체를 제작하였다. 혼합에는 이온 교환수 등을 사용하여 가능한 불순물이 혼입되지 않도록 하였다.The raw materials were mixed and pulverized at the compounding ratio shown in Table 1, an acrylic binder was added and adjusted, and then granulated powder was prepared by granulating with a spray dryer. The granulated powder was filled in a rubber mold, and then subjected to CIP (pressure 1 ton / cm 2) to produce an ingot, and then processed into a predetermined shape to produce a product body. In the mixing, ion exchange water or the like was used to prevent possible impurities from mixing.

(소성)(Firing)

상기 생가공체를 질소, 수소가스 환원 분위기하에서 소성하였다. 소성온도는 1150~1350℃, 소성시간은 1~8시간으로 하여, 가장 부피밀도가 높은 조건을 선택하였다. 이 때 탈지를 위해 가습 가스를 사용하고 있다. 환원소성을 행하는 것은 산화티탄의 비화학량론 조성물을 목표로, 체적 저항률의 조절을 꾀하기 위함이다.The raw green body was calcined under nitrogen and hydrogen gas reducing atmosphere. The baking temperature was 1150-1350 degreeC, and the baking time was 1-8 hours, and the conditions with the highest bulk density were selected. At this time, humidifying gas is used for degreasing. Reducing firing is aimed at controlling the volume resistivity of a non-stoichiometric composition of titanium oxide.

(HIP 처리)(HIP processing)

추가적으로 HIP 처리를 행하였다. HIP 조건은 Ar가스 1500 기압으로 하고, 온도는 소성온도와 동일 또는 30℃ 낮춘 온도로 하였다.Further HIP treatment was performed. The HIP conditions were set to 1500 atm of Ar gas, and the temperature was the same as the firing temperature or lowered by 30 ° C.

(물성측정)(Property measurement)

상기 HIP 처리에 의해 얻어진 것은 소성 부피밀도, 소성체 조직 SEM 관찰에 의한 평균입경 측정, 체적 저항률 측정, 진공 중에서의 마찰력 측정, 잔류시간 측정을 행하였다. 마찰력 측정 및 잔류시간 측정에는 세라믹 유전층의 두께를 1 ㎜로 하였다. 흡착전압은 200V 인가로 하고, 또한 잔류시간 측정에는 1분간 접압 인가 후에 전원을 오프하여, 잔류하는 마찰력의 감쇠를 측정하였다. 피흡착물은 실리콘 웨이퍼 미러면으로 하였다. 잔류시간은 전원 오프 후 마찰력이 2%까지 감쇠하는 시간을 잔류시간으로 하였다.The thing obtained by the said HIP process performed the measurement of the bulk volume density, the average particle diameter by SEM observation, the volume resistivity measurement, the frictional force measurement in vacuum, and the residence time measurement. In the friction force measurement and the residence time measurement, the thickness of the ceramic dielectric layer was 1 mm. The adsorption voltage was set at 200 V, and the residual time was measured, and the power was turned off after 1 minute of contact pressure was applied to measure the attenuation of the remaining frictional force. The object to be adsorbed was a silicon wafer mirror surface. As the residence time, the time during which the frictional force attenuates to 2% after the power-off is taken as the residence time.

또한, 실제로 플라즈마를 조사한 세라믹의 표면 거칠기(중심선 평균 거칠기 Ra) 변화를 측정하였다. 초기상태에서는 표면 거칠기는 Ra 0.05 ㎛ 이하로 하였다. 플라즈마는 리액티브 이온 에칭 장치(reactive ion etching apparatus), 에칭가스는 CF4+O2로 1000W에서 5시간 플라즈마 방전시켰다.In addition, the change of the surface roughness (center line average roughness Ra) of the ceramic which actually irradiated the plasma was measured. In the initial state, surface roughness was Ra 0.05 micrometer or less. The plasma was a reactive ion etching apparatus, and the etching gas was plasma discharged at 1000 W for 5 hours with CF 4 + O 2 .

또한, 샘플의 일부에 대해 정전척의 실용적인 흡착력의 평가로서 흡착되어 있는 피흡착체와의 사이에 He 가스의 압력을 부하하여 피흡착체가 박리될 때의 압력(POPOFF 흡착력)을 기록하였다. 이 때의 흡착전압은 1000V이다.Moreover, the pressure (POPOFF adsorption force) when the to-be-adsorbed body peeled was recorded by loading the pressure of He gas with the to-be-adsorbed body adsorb | sucked to a part of sample as a practical evaluation of the adsorption force of an electrostatic chuck. At this time, the adsorption voltage is 1000V.

(비교품)(Comparative goods)

또한 비교를 위해 종래의 제법에 의한 알루미나 세라믹을 예시하였다. 그 배합은 비교품 1이 평균입경 0.5 ㎛의 알루미나 98 중량%, 산화티탄 2 중량%이고, 비교품 2가 알루미나 99 중량%, 산화티탄 1 중량%이며, 소성온도는 1580℃이다. 또한, 비교품 1의 표면 거칠기는 초기상태에서 Ra 0.23 ㎛였다. 비교품 2의 표면 거칠기는 초기상태에서 Ra 0.2 ㎛였다. 비교품은 HIP 처리는 하지 않았다.Moreover, the alumina ceramic by a conventional manufacturing method was illustrated for comparison. In the formulation, Comparative Product 1 was 98% by weight of alumina having an average particle diameter of 0.5 µm, 2% by weight of titanium oxide, Comparative Product 2 was 99% by weight of alumina, 1% by weight of titanium oxide, and the firing temperature was 1580 ° C. In addition, the surface roughness of the comparative product 1 was Ra 0.23 µm in the initial state. The surface roughness of Comparative Product 2 was Ra 0.2 μm in the initial state. The comparative product was not HIP treated.

상기 시험의 결과를 표 1, 표 2에 나타낸다. 소성온도를 조절하면 산화티탄 0.2 중량%보다 크고, 0.6 중량% 이하의 첨가량으로, 부피밀도가 3.97 g/㎤ 이상에서 정전척으로서 기능하는 체적 저항률이 얻어지는 것을 알 수 있었다. 종래, 입경이 50 ㎛ 이상 되는 경우에 첨가하던 양에 비해 매우 적은 첨가량으로 동등한 효과가 얻어지는 것을 알 수 있었다. 종래의 제법으로는 소성온도가 1580℃로 높기 때문에, 첨가한 산화티탄은 알루미나와 반응하여 티탄산알루미늄(Al2TiO5) 등의 화합물이 되어 있는 것에 대해, 본 발명에서는 평균입경 0.2 ㎛ 미만, 순도 99.9% 이상의 고순도로 미립(微粒)의 알루미나 원료를 사용함으로써 소성온도가 1300℃ 이하로 낮아져 있기 때문에, 첨가한 산화티탄은 알루미나와 반응하지 않고 산화티탄인 채로 존재하고 있는 것이 X선 회절로부터 확인되었다. 티탄산알루미늄은 체적 저항률이 비교적 높은 것이 알려져 있고, 알루미나의 체적 저항률을 낮추기 위해서는 산화티탄보다도 효율이 나빠, 보다 많은 첨가량이 필요해질 것으로 생각된다. 다음으로, 본 발명의 정전척용 유전체의 미세구조로서, 소성온도에 대해 80~150℃ 정도 낮은 온도에서 서멀 에칭(thermal etching)을 행한 샘플의 SEM 사진을 도 4에 나타낸다. 평균입경 2 ㎛ 이하의 알루미나 입자(사진의 검은 부분)의 입계에 산화티탄(사진의 흰 부분)이 편석되어 연속적으로 연결된 구조로 되어 있는 것을 알 수 있었다. 이 산화티탄이 형성하는 네트워크에 의해 효율적으로 체적 저항률을 낮출 수 있었던 것으로 생각된다. 이상의 결과로부터, 본 발명의 정전척용 유전체가 종래의 것과 비교하여 미량의 산화티탄의 첨가에 의해 체적 저항률을 낮출 수 있었던 것은, 첨가한 산화티탄이 알루미나와 반응하지 않고 산화티탄인 채로 존재하고 있는 것, 및 산화티탄이 알루미나 입자의 입계에 편석되어, 연속적으로 연결된 구조를 형성하는 것에 의한 것이다. 또한, 산화티탄은 환원소성에 의해 비화학량론 조성이 됨으로써, 더욱 도전성이 좋아진 것이라고 생각된다. 이와 같이 미량의 산화티탄에 의해 체적 저향률의 제어가 가능해지고, 실리콘 웨이퍼 등에 대한 화학 오염도 종래에 비해 현격히 억제할 수 있었던 것이라고 생각되었다.The results of the test are shown in Table 1 and Table 2. When the firing temperature was adjusted, it was found that a volume resistivity functioning as an electrostatic chuck at a bulk density of 3.97 g / cm 3 or more was obtained with an added amount of more than 0.2 wt% of titanium oxide and 0.6 wt% or less. Conventionally, it turned out that the equivalent effect is acquired by the addition amount very small compared with the quantity added when the particle diameter becomes 50 micrometers or more. In the conventional manufacturing method, since the firing temperature is high at 1580 ° C., the added titanium oxide reacts with alumina to form a compound such as aluminum titanate (Al 2 TiO 5 ). Since the firing temperature was lowered to 1300 ° C. or lower by using fine alumina raw materials with high purity of 99.9% or more, it was confirmed from X-ray diffraction that the added titanium oxide remained as titanium oxide without reacting with alumina. . It is known that aluminum titanate has a relatively high volume resistivity, and in order to lower the volume resistivity of alumina, efficiency is worse than that of titanium oxide, and it is considered that a larger amount of addition is required. Next, as a microstructure of the dielectric for electrostatic chuck of the present invention, an SEM photograph of a sample subjected to thermal etching at a temperature as low as 80 to 150 ° C with respect to the firing temperature is shown in FIG. 4. It was found that titanium oxide (white portion in the photo) segregated to the grain boundaries of the alumina particles (black portion in the photo) having an average particle diameter of 2 µm or less, and thus had a continuous structure. It is thought that the volume resistivity could be reduced efficiently by the network which this titanium oxide forms. The above results indicate that the volume resistivity of the electrostatic chuck dielectric of the present invention can be lowered by adding a small amount of titanium oxide as compared with the conventional one, in which the added titanium oxide exists as titanium oxide without reacting with alumina. And titanium oxide segregate at the grain boundaries of the alumina particles to form a continuously connected structure. In addition, since titanium oxide becomes nonstoichiometric composition by reducing baking, it is thought that electroconductivity improved further. Thus, it was thought that the trace amount of titanium oxide can be controlled by the small amount of titanium oxide, and chemical contamination on silicon wafers and the like can be significantly suppressed as compared with the prior art.

Figure 112008053482600-PCT00005
Figure 112008053482600-PCT00005

Figure 112008053482600-PCT00006
Figure 112008053482600-PCT00006

전기특성의 평가결과, 산화티탄 단독 또는 산화티탄 + 전이금속 산화물의 첨가비율에 따라서 108~1016 Ω㎝의 광범위에서 제어할 수 있는 것을 알 수 있었다.As a result of the evaluation of the electrical properties, it was found that control was possible over a wide range of 10 8 to 10 16 Ωcm depending on the addition ratio of titanium oxide alone or titanium oxide + transition metal oxide.

레지스트를 사용하는 경우에는 그 내열온도를 고려하면, 정전척은 100℃ 이하에서 사용되는 것이 바람직하다.In the case of using a resist, considering the heat resistance temperature, the electrostatic chuck is preferably used at 100 ° C or lower.

정전척용 유전체에 요구되는 전기특성은 정전척을 사용하는 온도에서 체적 저항률이 108~1011 Ω㎝가 바람직하다. 하한값인 108 Ω㎝ 미만에서는 웨이퍼로 흘러들어가는 전류가 지나치게 과대해져 디바이스 손상의 우려가 있고, 상한값인 1011 Ω㎝보다 크면, 웨이퍼의 흡착, 이탈의 전압 인가에 대한 리스폰스가 저하된다. 예를 들면 100℃ 이하의 프로세스 에칭과 같은 프로세스에서는 하한값이 109~1011 Ω㎝ 정도인 것이 바람직하다.The electrical characteristics required for the electrostatic chuck dielectric are preferably 10 8 to 10 11 Ωcm in volume resistivity at the temperature using the electrostatic chuck. If the lower limit is less than 10 8 Ωcm, the current flowing into the wafer may be excessively excessive, resulting in damage to the device. If the upper limit is greater than 10 11 Ωcm, the response to the application of the wafers to the adsorption and release of the wafer is reduced. For example, in a process such as process etching at 100 ° C or lower, the lower limit is preferably about 10 9 to 10 11 Ωcm.

산화티탄이 0.6 중량%보다 많으면 체적 저항률이 108 Ω㎝ 미만이 되어, 웨이퍼로 흘러들어가는 전류가 지나치게 과대해져 디바이스 손상의 우려가 있다. 또한, 0.2 중량% 이하이면 산화티탄 첨가에 의한 체적 저항률의 저하효과가 작아진다.If the titanium oxide is more than 0.6% by weight, the volume resistivity is less than 10 8 Ωcm, and the current flowing into the wafer becomes excessively excessive, which may cause device damage. Moreover, when it is 0.2 weight% or less, the fall effect of the volume resistivity by addition of a titanium oxide will become small.

내플라즈마성은 플라즈마 중 이온의 에너지가 과대하면 어떠한 물질도 에칭되어 버리기 때문에 표면 거칠기의 변화로 평가하였다.Plasma resistance was evaluated as a change in surface roughness because any substance was etched when the energy of ions in the plasma was excessive.

그 결과, 본 발명에 의한 세라믹 유전체는 표면 거칠기의 변화가 종래의 것에 비해 현저하게 작았다. 이 사실은 발진하는 파티클의 크기가 작은 것이라고 추정되었다.As a result, the change in surface roughness of the ceramic dielectric material according to the present invention was remarkably small compared with the conventional one. This fact was assumed to be small in size.

복수의 볼록부가 형성되어 피흡착체를 이 볼록부 윗면에 올려놓는 평활한 표면을 가지고, 체적 저항률이 109.3 Ω㎝인 정전척용 유전체를 포함하는 정전척의 볼록부 윗면의 합계 면적과 상기 유전체 표면 면적의 비율이 0.089%인 정전척을 제작하였다. 이 때 표면에는 ø0.25 ㎜의 볼록부를 한변이 8 ㎜인 정삼각형의 각 꼭지점에 연속하여 배치하고 있다. 볼록부의 높이는 10 ㎛이다.A plurality of convex portions are formed to have a smooth surface on which the adsorbed body is placed on the upper surface of the convex portion, and the total area of the upper surface of the convex portion of the electrostatic chuck comprising an electrostatic chuck dielectric having a volume resistivity of 10 9.3 Ωcm An electrostatic chuck having a ratio of 0.089% was produced. At this time, the convex part of ø0.25 mm is arrange | positioned on the surface continuously in each vertex of the equilateral triangle whose one side is 8 mm. The height of the convex part is 10 micrometers.

그 결과, 플라즈마 조사 후의 표면 거칠기의 변화가 적었던 것, 및 피흡착물과의 접촉면적이 매우 적은 것이 겹쳐, 피흡착물인 실리콘 웨이퍼의 프로세스시의 온도변화의 경시변화를 매우 적게 할 수 있었다.As a result, the change of the surface roughness after plasma irradiation and the thing with very small contact area with the to-be-adsorbed object overlapped, and the time-dependent change of the temperature change at the time of the process of the silicon wafer which is an to-be-adsorbed material was very small.

POPOFF 흡착력은 전체 샘플에 있어서 100 torr 이상을 기록하였다. 즉 실리콘 웨이퍼 등의 피흡착체를 흡착하기 위해서는 충분히 실용적인 힘이 얻어지고 있는 것을 알 수 있었다.POPOFF adsorption force recorded more than 100 torr for the whole sample. That is, it turned out that sufficient practical force is acquired in order to adsorb | suck adsorption bodies, such as a silicon wafer.

Claims (5)

알루미나가 99.4 중량% 이상, 산화티탄이 0.2 중량%보다 크고 0.6 중량% 이하, 체적 저항률이 실온에서 108~1011 Ω㎝, 또한 알루미나 입자의 입계에 산화티탄이 편석된 구조의 정전척용 유전체를 구비한 것을 특징으로 하는 정전척.An electrostatic chuck dielectric with alumina of at least 99.4% by weight, titanium oxide at greater than 0.2% by weight and below 0.6% by weight, volume resistivity of 10 8 to 10 11 Ωcm at room temperature, and titanium oxide segregated at the grain boundaries of the alumina particles. Electrostatic chuck characterized in that provided. 알루미나가 99.4 중량% 이상, 산화티탄이 0.2 중량%보다 크고 0.6 중량% 이하, 부피밀도가 3.97 g/㎤ 이상, 체적 저항률이 실온에서 108~1011 Ω㎝, 또한 알루미나 입자의 입계에 산화티탄이 편석된 구조의 정전척용 유전체를 구비한 것을 특징으로 하는 정전척.Alumina is not less than 99.4% by weight, titanium oxide is greater than 0.2% by weight and not more than 0.6% by weight, bulk density is not less than 3.97 g / cm 3, volume resistivity is 10 8 to 10 11 Ωcm at room temperature, and titanium oxide at grain boundaries of alumina particles An electrostatic chuck comprising the dielectric for electrostatic chuck of this segregated structure. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 알루미나 입자의 입내 및 입계에 티탄산알루미늄(Al2TiO5)이 존재하지 않는 것을 특징으로 하는 정전척.Electrostatic chuck characterized in that the aluminum titanate (Al 2 TiO 5 ) is not present in the grains and grain boundaries of the alumina particles. 제1항 내지 제3항 중 어느 한 항의 정전척으로서, As the electrostatic chuck of any one of claims 1 to 3, 100℃ 이하의 저온에서 사용되는 것을 특징으로 하는 정전척.Electrostatic chuck, characterized in that used at low temperatures below 100 ℃. 제1항 내지 제4항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 4, 복수의 볼록부가 형성되어 피흡착체를 이 볼록부 윗면에 올려놓는 평활한 표면을 갖는 유전체로 구성되고, 상기 복수의 볼록부 윗면의 합계 면적과 상기 유전체 표면 면적의 비율이 0.001% 이상 0.5% 미만이고 또한 볼록부의 높이가 5~15 ㎛인 것을 특징으로 하는 정전척.A plurality of convex portions are formed, and a dielectric having a smooth surface on which the adsorbed body is placed on the upper surface of the convex portion, and the ratio of the total area of the upper surfaces of the plurality of convex portions to the dielectric surface area is not less than 0.001% and less than 0.5%. In addition, the height of the convex portion of the electrostatic chuck, characterized in that 5 ~ 15 ㎛.
KR1020087018298A 2006-02-08 2007-02-08 Electrostatic chuck KR100989230B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00031545 2006-02-08
JP2006031545A JP4244229B2 (en) 2006-02-08 2006-02-08 Electrostatic chuck

Publications (2)

Publication Number Publication Date
KR20080089444A true KR20080089444A (en) 2008-10-06
KR100989230B1 KR100989230B1 (en) 2010-10-20

Family

ID=38345213

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087018298A KR100989230B1 (en) 2006-02-08 2007-02-08 Electrostatic chuck

Country Status (5)

Country Link
JP (1) JP4244229B2 (en)
KR (1) KR100989230B1 (en)
CN (1) CN101379607B (en)
TW (1) TWI342059B (en)
WO (1) WO2007091619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045670A (en) * 2013-10-21 2015-04-29 주식회사 미코 Electrostatic chuck

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004752A (en) * 2007-05-18 2009-01-08 Toto Ltd Electrostatic chuck
JP4786693B2 (en) 2008-09-30 2011-10-05 三菱重工業株式会社 Wafer bonding apparatus and wafer bonding method
JP5872998B2 (en) 2012-04-26 2016-03-01 日本特殊陶業株式会社 Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
CN107663080B (en) * 2016-07-27 2020-05-08 北京华卓精科科技股份有限公司 Alumina ceramic applied to J-R type electrostatic chuck and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204924A (en) * 1989-10-30 1991-09-06 Sumitomo Metal Ind Ltd Specimen holder
JPH09330974A (en) * 1996-06-12 1997-12-22 Hitachi Ltd Electrostatic chuck electrode
JP4201502B2 (en) * 2000-10-11 2008-12-24 独立行政法人産業技術総合研究所 Electrostatic chuck and manufacturing method thereof
US6483690B1 (en) * 2001-06-28 2002-11-19 Lam Research Corporation Ceramic electrostatic chuck assembly and method of making
JP2004352572A (en) * 2003-05-29 2004-12-16 Kyocera Corp Alumina ceramics and method for producing the same
CN100481366C (en) * 2003-11-14 2009-04-22 爱德牌工程有限公司 Electrostatic chuck, substrate support, clamp and electrode structure and producing method thereof
JP4722463B2 (en) * 2004-12-03 2011-07-13 黒崎播磨株式会社 Dielectric ceramics for electrostatic chuck and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150045670A (en) * 2013-10-21 2015-04-29 주식회사 미코 Electrostatic chuck

Also Published As

Publication number Publication date
CN101379607A (en) 2009-03-04
TWI342059B (en) 2011-05-11
JP4244229B2 (en) 2009-03-25
TW200737398A (en) 2007-10-01
WO2007091619A1 (en) 2007-08-16
JP2007214287A (en) 2007-08-23
CN101379607B (en) 2010-04-21
KR100989230B1 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
US7248457B2 (en) Electrostatic chuck
KR101485438B1 (en) Electrostatic chuck
EP1193233A1 (en) Ceramic substrate for semiconductor production/inspection device
KR100989230B1 (en) Electrostatic chuck
JP5510411B2 (en) Electrostatic chuck and method for manufacturing electrostatic chuck
JP2012060108A (en) Electrostatic chuck
JP4623159B2 (en) Electrostatic chuck
JP2006049356A (en) Electrostatic chuck
JP5998787B2 (en) Semiconductive ceramic sintered body
JP2009302518A (en) Electrostatic chuck
JP2008288428A (en) Electrostatic chuck
TWI386383B (en) Aluminum nitride sintered body
KR20200106180A (en) Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
US7907383B2 (en) Electrostatic chuck
WO2007055006A1 (en) Electrostatic zipper
JP5192221B2 (en) Ceramic sintered body and electrostatic chuck using the same
JP2009004752A (en) Electrostatic chuck
JP4585129B2 (en) Electrostatic chuck
KR101629149B1 (en) Semiconducting ceramics composition for electrostatic dissipation and manufacturing method thereof
KR20220102183A (en) Dissipative Ceramic Composition Of Electro Static Discharge And Method For Manufacturing The Same
JP6056312B2 (en) Semiconductive ceramic sintered body
JP2001089243A (en) Aluminum nitride ceramics
JPH07135246A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150918

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190917

Year of fee payment: 10