WO2007091566A1 - Refrigerant heating device - Google Patents

Refrigerant heating device Download PDF

Info

Publication number
WO2007091566A1
WO2007091566A1 PCT/JP2007/052045 JP2007052045W WO2007091566A1 WO 2007091566 A1 WO2007091566 A1 WO 2007091566A1 JP 2007052045 W JP2007052045 W JP 2007052045W WO 2007091566 A1 WO2007091566 A1 WO 2007091566A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heater
heating device
temperature sensor
Prior art date
Application number
PCT/JP2007/052045
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Yabu
Atsushi Yoshimi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007091566A1 publication Critical patent/WO2007091566A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • the present invention relates to a refrigerant heating apparatus for heating a refrigerant flowing in a refrigerant circuit.
  • a refrigerant heating apparatus using an induction heater for heating a liquid refrigerant flowing through a refrigerant circuit of an air conditioner to improve heating capacity and defrosting capacity is disclosed.
  • This refrigerant heating device is installed between the outdoor unit and the indoor unit of the air conditioner.
  • the outdoor unit has an outdoor heat exchanger, an expansion valve, a compressor, and a four-way switching valve.
  • the indoor unit has indoor heat exchange. The refrigerant that has passed through the indoor heat exchange of the indoor unit is heated by the induction heater of the refrigerant heating device, and then is expanded by the expansion valve of the outdoor unit and flows into the outdoor heat exchanger.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-5537
  • the refrigerant heating device described in Patent Document 1 is a force that uses information related to the temperature of the refrigerant that is necessary for controlling the operation of the induction heater. It depends on various temperature sensors outside the apparatus, for example, an outdoor unit or an outdoor temperature sensor provided in the indoor unit, an indoor temperature sensor, a refrigerant temperature sensor, or the like. Therefore, it is difficult to accurately measure the temperature of the refrigerant flowing in the vicinity of the refrigerant heating device, and it is difficult to suppress overheating of the refrigerant.
  • An object of the present invention is to provide a refrigerant heating apparatus that can effectively suppress overheating of the refrigerant and that can independently control the temperature of the refrigerant without depending on an external temperature sensor.
  • the refrigerant heating device of the first invention includes at least one connecting pipe, a heater, and at least one temperature sensor. At least one connecting pipe is connected in the middle of the refrigerant circuit. The refrigerant circulates in the refrigerant circuit. The heater heats the refrigerant flowing in the first connecting pipe among the connecting pipes. At least one temperature sensor detects the temperature of the refrigerant flowing through the connecting pipe.
  • the temperature of the refrigerant is not dependent on the temperature sensor of an external outdoor unit or the like. It is possible to detect accurately and suppress overheating of the refrigerant.
  • a refrigerant heating device is the refrigerant heating device according to the first invention, and the temperature sensor includes a first temperature sensor and a second temperature sensor.
  • the first temperature sensor is provided on the upstream side of the heater in the direction in which the refrigerant flows during heating.
  • the second temperature sensor is provided on the downstream side of the heater in the direction in which the refrigerant flows during heating.
  • the temperature sensor since the temperature sensor has the first temperature sensor and the second temperature sensor respectively provided on the upstream side and the downstream side of the heater, immediately after passing through the heater regardless of whether the refrigerant flows in the forward or reverse direction. It is possible to directly detect the temperature of the refrigerant. It is also possible to accurately detect the temperature difference of the refrigerant near the heater inlet / outlet.
  • the refrigerant heating device of the fourth invention is the refrigerant heating device of any one of the first to third inventions, wherein the second connection pipe of the connection pipe is a refrigerant at a position different from the first connection pipe. Connected in the middle of the circuit. A gas refrigerant flows through the second connection pipe.
  • the temperature sensor further includes a fourth temperature sensor. The fourth temperature sensor is provided in the second connection pipe. Here, the temperature of the gaseous refrigerant flowing through the second connecting pipe is measured by the fourth temperature sensor. It is possible to detect. As a result, the control unit can control the operation of the heater without receiving temperature information from the outside.
  • a refrigerant heating device is the refrigerant heating device according to the first invention, further comprising a bridge circuit.
  • the bridge circuit is connected to the first connecting pipe among the connecting pipes.
  • the temperature sensor is provided either on the upstream side or the downstream side of the heater in the direction in which the refrigerant flows during heating.
  • a refrigerant heating device is the refrigerant heating device according to any one of the first to fifth aspects, wherein the temperature sensor is provided on the surface of the connecting pipe.
  • the temperature sensor is provided on the surface of the first connecting pipe, the temperature of the refrigerant can be detected via the first connecting pipe.
  • the temperature sensor is provided inside the first connection pipe, the temperature of the refrigerant can be accurately detected by the temperature sensor being in direct contact with the refrigerant.
  • the refrigerant heating device of the ninth invention is the refrigerant heating device of the eighth invention, and the control unit controls the output of the heater based on the temperature of the refrigerant detected by the temperature sensor.
  • the control unit controls the output of the heater based on the temperature of the refrigerant detected by the temperature sensor, the output of the heater can be reduced before the refrigerant approaches its destruction temperature.
  • the heater is an induction heater, the refrigerant can be rapidly heated.
  • the refrigerant heating device of the eleventh invention is the refrigerant heating device of the tenth invention, wherein the heater has a coil.
  • the temperature sensor is installed outside the coil.
  • the temperature sensor is installed outside the coil of the heater, it is possible to avoid the generation of noise in the temperature sensor and its signal line due to the influence of electromagnetic waves generated by the coil force.
  • the output of the heater is reduced when the control unit detects a temperature equal to or higher than the predetermined first temperature by at least one temperature sensor, the output of the heater is reduced until the refrigerant approaches its destruction temperature. It is possible to reduce.
  • the refrigerant heating device of the thirteenth aspect of the invention is the refrigerant heating device of the twelfth aspect of the invention, wherein the control unit is configured when any one of the plurality of temperature sensors becomes a predetermined first temperature or higher. Reduce the heater output.
  • the refrigerant heating device of the fourteenth invention is the refrigerant heating device of the twelfth invention, wherein the first temperature is 8 0 to 100 ° C.
  • the control unit can accurately perform control to reduce the output of the heater when the temperature of the refrigerant approaches its destruction temperature.
  • the refrigerant heating device of the fifteenth invention is the refrigerant heating device of the twelfth invention, wherein the first temperature is a temperature obtained by adding 20 to 40 ° C to the temperature of the refrigerant before heating by the heater. .
  • the refrigerant heating device of the sixteenth aspect of the invention is the refrigerant heating device of the twelfth aspect of the invention, wherein the first temperature is a temperature obtained by adding 20 to 40 ° C to the amount of change of the refrigerant temperature per predetermined time. is there.
  • the first temperature is a temperature obtained by adding 20 to 40 ° C to the amount of change in the refrigerant temperature every predetermined time, control to reduce the heater output based on the refrigerant temperature is accurately performed. It is possible.
  • the controller stops the heater when any one of the plurality of temperature sensors reaches a predetermined second temperature or higher, so that the heater is stopped before the refrigerant approaches its destruction temperature. Is possible. In particular, by using a plurality of temperature sensors, the reliability of temperature detection can be improved and local overheating of the refrigerant can be reliably suppressed.
  • the refrigerant heating device of the nineteenth invention is the refrigerant heating device of the seventeenth invention, wherein the second temperature is 140-160. C.
  • the control unit can accurately perform control to stop the output of the heater when the temperature of the refrigerant approaches its destruction temperature.
  • a refrigerant heating device is the refrigerant heating device according to the eighth aspect of the invention, wherein the control unit detects the temperature when at least one temperature sensor detects a temperature equal to or higher than a predetermined first temperature.
  • the output is controlled in a stepwise manner so that the heater is stopped when a temperature equal to or higher than a predetermined second temperature is detected.
  • control unit lowers the output of the heater when at least one temperature sensor detects a temperature equal to or higher than a predetermined first temperature, and the control unit detects when a temperature equal to or higher than a predetermined second temperature is detected. Since the heater is controlled step by step so as to stop the heater, it is possible to reliably suppress overheating of the refrigerant.
  • the refrigerant heating device of the twenty-first invention is the refrigerant heating device of the eighth invention, wherein the control unit detects that at least one temperature sensor detects a transient increase of 40 to 60 ° C. Stop the heater.
  • control unit stops the heater when at least one temperature sensor detects a transient rise of 40 to 60 ° C, so the control to stop the heater based on the refrigerant temperature is ensured. Can be done.
  • a refrigerant heating device is the refrigerant heating device according to the eighth invention, wherein the control unit determines that the temperature of the refrigerant circuit has increased by 40 to 60 ° C when the defrost operation is performed. Stops the heater when the sensor detects it.
  • the controller stops the heater when at least one temperature sensor detects that the refrigerant circuit has risen by 40 to 60 ° C during defrost operation, so the refrigerant is overheated during defrost operation. Can be reliably suppressed.
  • a refrigerant heating device is the refrigerant heating device according to the eighth invention, in which the control unit is based on the temperature of the refrigerant flowing in the connection pipe detected by one or more temperature sensors. Switching between start and stop.
  • the control unit can switch and control the start and stop of the heater based on the temperature of the refrigerant flowing in the first connection pipe detected by the plurality of temperature sensors, the refrigerant heating device is externally connected. It is possible to control the starting and stopping of the heater independently without receiving the temperature information.
  • the temperature of the refrigerant can be accurately detected without depending on a temperature sensor such as an external outdoor unit, and overheating of the refrigerant can be suppressed.
  • the second invention it is possible to directly detect the temperature of the refrigerant immediately after passing through the heater, regardless of whether the refrigerant flows in the forward or reverse direction. In addition, it is possible to accurately detect the temperature difference of the refrigerant in the vicinity of the heater entrance.
  • the third invention local overheating of the refrigerant in the vicinity of the middle of the heater can be detected. Thereby, the overheating of a refrigerant
  • coolant can be suppressed effectively.
  • the temperature of the gaseous refrigerant flowing through the second connecting pipe can be detected by the fourth temperature sensor. Therefore, the operation control of the heater can be performed without the control unit receiving temperature information from the outside.
  • the temperature of the refrigerant immediately before or just after passing through the heater is measured both during cooling and during heating by one temperature sensor provided on either the upstream side or the downstream side of the heater. Can be measured.
  • the temperature of the refrigerant can be detected via the first connection pipe.
  • the temperature of the refrigerant can be accurately detected by the temperature sensor directly contacting the refrigerant.
  • the risk of the refrigerant being destroyed can be reduced by controlling the operation of the heater so as to suppress overheating of the refrigerant.
  • the output of the heater can be reduced until the refrigerant approaches its destruction temperature.
  • the refrigerant can be heated quickly.
  • the eleventh aspect it is possible to avoid the generation of noise in the temperature sensor and its signal line due to the influence of the electromagnetic wave generated by the coil force.
  • the output of the heater can be reduced until the refrigerant approaches its destruction temperature.
  • the output of the heater can be reduced before the refrigerant approaches its destruction temperature.
  • the reliability of temperature detection is improved and local overheating of the refrigerant can be reliably suppressed.
  • the control unit when the temperature of the refrigerant approaches its destruction temperature, the control unit can accurately perform control to reduce the output of the heater.
  • the heater can be reliably stopped before the refrigerant approaches its destruction temperature.
  • the eighteenth invention it is possible to stop the heater S before the refrigerant approaches its destruction temperature.
  • the reliability of temperature detection is improved and local overheating of the refrigerant can be reliably suppressed.
  • the control unit when the temperature of the refrigerant approaches the destruction temperature, the control unit can accurately perform control to stop the output of the heater.
  • FIG. 1 is a configuration diagram of an air conditioner including a refrigerant heating device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a refrigerant circuit of the air conditioner of FIG.
  • FIG. 3 is an internal configuration diagram of the refrigerant heating device of FIG.
  • FIG. 4 (a) Arrangement of first temperature sensor and second temperature sensor in FIG. 2, (b) Graph of refrigerant temperature during heating, and (c) Graph of refrigerant temperature during defrost.
  • FIG. 5 (a) Arrangement of the third temperature sensor of FIG. 2, (b) A graph showing the distribution of heat generation density of the IH heater, and (c) A graph of the refrigerant temperature during heating.
  • the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, and a refrigerant calorie heat device 4.
  • the outdoor unit 2 is connected to the refrigerant heating device 4 and the indoor unit 3 installed inside the indoor space R via the refrigerant pipe 5 and the refrigerant pipe 6.
  • the refrigerant in the liquid state flows through the refrigerant pipe 5, and the refrigerant in the gas state flows through the refrigerant pipe 6.
  • the refrigerant circuit 10 includes refrigerant pipes 5 and 6, an outdoor unit 2 (specifically, an electromagnetic expansion valve 26, an outdoor heat exchanger 23, a compressor 22 and a four-way switching valve 25), and an indoor unit 3 (components).
  • FIG. 2 shows the refrigerant circuit 10 in the heating operation state. The heating operation will be described in detail later.
  • the refrigerant heating device 4 includes a first connection pipe 11, an IH heater 12, a second connection pipe 16, a first temperature sensor 13, a second temperature sensor 14,
  • the third temperature sensor 15 includes an ff3 ⁇ 4 control, an AC power source 18, a switch 19, and four connection rods 20a, 20b, 20c, and 20d.
  • the first connection pipe 11 is connected in the middle of the refrigerant circuit 10. Specifically, the first connecting pipe 11 is closer to the indoor heat exchange than the outdoor heat exchange in the refrigerant pipe 5 through which the liquid refrigerant flows between the outdoor heat exchanger 23 and the indoor heat exchanger 27. Get connected!
  • the eaves heater 12 is a heater that heats the refrigerant flowing inside the first connection pipe 11.
  • Coffee The coil 12 has a coil 12a and a cylindrical member 12b.
  • the coil 12a is wound around the outer surface of the cylindrical member 12b made of a heat insulating material.
  • the IH heater 12 uses induction heating to heat an iron core (not shown) inside the first connection pipe 11, thereby heating the refrigerant flowing inside the first connection pipe 11.
  • the IH heater 12 can quickly heat the refrigerant, and can improve the heating capacity and the defrosting capacity.
  • the AC power supply 18 is an AC power supply for the IH heater 12 and is a so-called inverter power supply that performs inverter control.
  • the second connection pipe 16 is connected to the refrigerant pipe 6 (liquid refrigerant side) opposite to the refrigerant pipe 5 (liquid refrigerant side) to which the first connection pipe 11 in indoor heat exchange is connected. .
  • the first connection part 20a and the second connection part 20b are provided at both ends of the first connection pipe 11, and connect the first connection pipe 11 and the refrigerant pipe 5.
  • the third connection part 20c and the fourth connection part 20d are provided at both ends of the second connection pipe 16, and connect the second connection pipe 16 and the refrigerant pipe 6.
  • the first to fourth connection parts 20a to 20d also have a force such as a combination of a male screw part formed on the end of the refrigerant pipe 5 or 6 and a flare nut.
  • the first temperature sensor 13, the second temperature sensor 14, and the third temperature sensor 15 detect the temperature of the refrigerant flowing through the first connection pipe 11. This makes it possible to reliably detect the temperature of the refrigerant without depending on a temperature sensor such as the external outdoor unit 2, and to suppress overheating of the refrigerant.
  • the first temperature sensor 13 is provided on the surface of the first connection pipe 11 on the upstream side of the heater 12 by V in the direction in which the refrigerant flows during heating (see the flow direction F1 in FIG. 3). .
  • the second temperature sensor 14 is provided on the surface of the first connection pipe 11 on the downstream side of the heater 12 in the direction in which the refrigerant flows during heating.
  • the first temperature sensor 13 and the second temperature sensor 14 can directly detect the temperature of the refrigerant immediately after passing through the IH heater 12, and the temperature difference of the refrigerant in the vicinity of the inlet / outlet of the IH heater 12 can be assured. Can be detected.
  • the first temperature sensor 13 and the second temperature sensor 14 provided in the vicinity of the inlet / outlet of the IH heater 12 shown in FIG. 4 (a) flow in the first connection pipe 11 as follows.
  • the temperature of the refrigerant can be detected.
  • the refrigerant temperature near the inlet of the IH heater 12 can be detected by the first temperature sensor 13, and the IH can be detected by the second temperature sensor 14.
  • the refrigerant temperature (about 40 ° C) near the outlet of the heater 12 can be detected.
  • the second temperature sensor 14 can detect the refrigerant temperature near the inlet of the IH heater 12 and the first temperature.
  • Sensor 13 can detect the refrigerant temperature (around 40 ° C) near the outlet of IH heater 12.
  • the third temperature sensor 15 is provided near the intermediate position in the axial direction of the IH heater 12.
  • the third temperature sensor 15 can reliably detect that the refrigerant is locally overheated near the middle of the IH heater 12, and can effectively suppress overheating of the refrigerant. Become.
  • the temperature of the refrigerant flowing inside the first connecting pipe 11 can be detected by the third temperature sensor 15 provided near the middle of the IH heater 12 shown in FIG. 5 (a) as follows.
  • the IH heater 12 has a high heat generation density near the middle.
  • the temperature of the refrigerant is locally high near the middle. Therefore, the third temperature sensor 15 provided near the middle position of the IH heater 12 detects the refrigerant temperature near the middle of the IH heater 12, thereby reliably detecting that the refrigerant is locally overheated. It becomes possible to do.
  • the third temperature sensor 15 causes the refrigerant to locally approach 140 ° C. It is possible to reliably detect that In addition, when the refrigerant locally rises to near 140 ° C, the surface of the first connection pipe 11 is near 160 ° C, so the third temperature sensor 15 is connected to the first connection using this correspondence. Detect the temperature force of the surface of the tube 11 near S160 ° C This makes it possible to detect that the refrigerant has locally reached 140 ° C.
  • the first temperature sensor 13, the second temperature sensor 14, and the third temperature sensor 15 described above are provided on the surface of the first connection pipe 11. These temperature sensors 13, 14, and 15 measure the surface temperature of the first connecting pipe 11, so that it is possible to indirectly detect the temperature of the refrigerant inside the first connecting pipe 11 corresponding to the surface temperature. It is. Note that the correspondence between the surface temperature of the first connecting pipe 11 and the refrigerant temperature is obtained in advance by experiments or the like, and the map of the correspondence between the surface temperature and the refrigerant temperature is a storage unit of the control unit 17.
  • the control unit 17 controls the operation of the IH heater 12 based on the refrigerant temperature detected by the one or more temperature sensors 13, 14, 15.
  • the operation control of the IH heater 12 is performed by controlling the power supply of 18 AC power and the ONZOFF control of the switch 19. As a result, it is possible to reduce the risk of refrigerant destruction by suppressing overheating of the IH heater 12.
  • the control unit 17 controls the output of the IH heater 12 based on the refrigerant temperature detected by the first to third temperature sensors 13, 14, 15. Specifically, the control unit 17 controls the power supply from the AC power source 18 based on the temperature of the refrigerant detected by the first to third temperature sensors 13, 14, 15, so that the IH heater 12 Control the output of.
  • the outdoor unit 2 includes a compressor 22 that compresses refrigerant, an outdoor heat exchanger 23 that performs heat exchange between the refrigerant and outdoor air, and air that passes through the outdoor heat exchanger 23.
  • An outdoor fan 24 that generates a flow, a four-way switching valve 25 that reverses the circulation direction of the refrigerant, and an electromagnetic expansion valve 26 are provided.
  • the outdoor unit 2 can reverse the refrigerant flow in the refrigerant circuit 10 by switching the four-way switching valve 25.
  • the indoor unit 3 includes an indoor heat exchanger 27 and a cross flow fan 28 that generates an air flow passing through the indoor heat exchanger 27.
  • the indoor heat exchanger 27 can perform both condensation and evaporation of the refrigerant by reversing the flow direction of the refrigerant inside the refrigerant circuit 10 by the four-way switching valve 25. This allows indoor heat exchange Can perform heating and cooling by exchanging heat between the refrigerant supplied from the outdoor unit 2 through the refrigerant pipes 5 and 6 and the room air.
  • the air conditioner 1 configured as described above can perform a cooling operation, a heating operation, a forward cycle differential opening operation, and a reverse cycle defrosting operation.
  • the explanation of the operation in each mode will be described in detail in the subsequent items.
  • the refrigerant heating device 4 operates the IH heater 12 to heat the refrigerant during the heating operation, the forward cycle defrost operation, and the reverse cycle defrost operation.
  • the control unit 17 performs the following temperature control of the refrigerant in order to surely perform the output control and the ON ZOFF control of the IH heater 12 so as to suppress overheating of the refrigerant.
  • the control unit 17 reduces the output of the IH heater 12 when any one of the plurality of temperature sensors 13, 14, and 15 becomes equal to or higher than a predetermined first temperature T1. Note that when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1, the output of the IH heater 12 may be reduced. Therefore, the temperature sensors 13, 14, 15 Only one of these forces may be left and the other temperature sensors may be omitted.
  • the first temperature T1 is 80 to: L00 ° C.
  • the first temperature T1 is set as a 80-100 ° C force first temperature T1, which is a temperature range close to the breakdown temperature of the refrigerant.
  • the second temperature T2 is 140 to 160 ° C.
  • the second temperature T2 is higher than the first temperature T1 and is in a temperature range very close to the breakdown temperature of the refrigerant. 140 to 160 ° C Force Set as the second temperature T2.
  • control unit 17 includes the first connection pipes detected by the plurality of temperature sensors 13, 14, 15. It is also possible to control the start of the IH heater 12 when it is detected based on the temperature of the refrigerant flowing through the refrigerant 11 that the refrigerant temperature has dropped to the second temperature T2 or less just by stopping the IH heater 12. Therefore, the control unit 17 can also switch and control the start and stop of the IH heater 12.
  • the control unit 17 of the first embodiment reduces the output of the IH heater 12 when the at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1, and sets the predetermined second temperature. Step by step to stop the IH heater 12 when a temperature above T2 is detected.
  • the control unit 17 As shown in FIG. 6 (a), when any one of the plurality of temperature sensors 13, 14, 15 detects that the temperature of the refrigerant has reached the first temperature T1, the control unit 17 As shown in FIG. 6B, the output of the IH heater 12 is reduced to a predetermined heater capacity. Further, when the temperature sensors 13, 14, and 15 detect that the refrigerant temperature has reached the second temperature T2, the control unit 17 stops the IH heater 12 as shown in FIG. 6 (b). Then, set the heater capacity to 0. As described above, the output of the IH heater 12 can be controlled in two stages based on the refrigerant temperature. It is also possible to set multiple first temperatures T1, which serve as a reference for reducing the heater output, and perform multi-step control of three or more steps.
  • the four-way selector valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant circulates counterclockwise in the refrigerant circuit 10 shown in FIG.
  • the gas refrigerant is compressed by the compressor 22 and then brought to a high temperature and high pressure state.
  • the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 27 of the indoor unit 3 through the four-way switching valve 25, the second connection pipe 16, and the refrigerant pipe 6, and condenses by exchanging heat with the indoor air. Liquid.
  • the indoor air heated by the condensation of the refrigerant is blown out into the indoor space R by the cross flow fan 28 to heat the indoor space R.
  • the refrigerant that has become liquid in the indoor heat exchange flows into the first connection pipe 11 of the refrigerant heating device 4 through the refrigerant pipe 5 and is heated by the IH heater 12.
  • the refrigerant heated by the IH heater 12 expands by passing through the electromagnetic expansion valve 26 of the outdoor unit 2 and is depressurized to a predetermined low pressure.
  • outdoor heat exchange of outdoor unit 2 In the vessel 23 the expanded refrigerant evaporates by exchanging heat with outdoor air.
  • an air flow passing through the outdoor heat exchanger 23 is generated by the outdoor fan 24.
  • the refrigerant evaporated and evaporated in the outdoor heat exchanger 23 is sucked into the compressor 22 through the four-way switching valve 25.
  • the four-way switching valve 25 is held in a state indicated by a broken line in FIG. 2, and the refrigerant circulates clockwise through the refrigerant circuit 10 shown in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 through the four-way switching valve 25, and exchanges heat with the outdoor air that is forcibly sent to the outdoor heat exchanger by the outdoor fan 24.
  • the liquefied refrigerant is decompressed to a predetermined low pressure by the outdoor expansion valve 13 and flows into the indoor unit 3 through the refrigerant pipe 5 on the liquid refrigerant side.
  • the refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchanger 27. Then, the indoor air cooled by the evaporation of the refrigerant is blown out into the indoor space R by the cross flow fan 28 to cool the indoor space R.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
  • frost may form on the outer surface of the outdoor heat exchanger 23 of the outdoor unit 2.
  • the air conditioner 1 performs a reverse cycle defrost operation for defrosting.
  • the reverse cycle defrost operation basically, as in the cooling operation described above, the four-way switching valve 25 is maintained in the state indicated by the broken line in FIG. 2, and the refrigerant rotates the refrigerant circuit 10 shown in FIG. It circulates to.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 via the four-way switching valve 25 and condenses and liquefies.
  • the frost adhering to the outer surface of the outdoor heat exchanger 23 can be melted by the heat of condensation of the refrigerant.
  • the outdoor fan 24 is stopped.
  • the refrigerant is evaporated by the indoor heat exchanger 27 while the cross flow fan 28 is stopped.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
  • the liquid flowing through the first connection pipe 11 connected to the refrigerant pipe 5 By heating the refrigerant with the IH heater 12, it is possible to improve the defrosting capacity and shorten the defrost time.
  • the control unit 17 stops the IH heater 12 when at least one temperature sensor 13, 14, 15 detects that the refrigerant circuit 10 has risen by 40 to 60 ° C when performing reverse cycle defrost operation. Is pretty.
  • the air conditioner 1 When the outdoor air is at a temperature of 0 ° C or higher, the air conditioner 1 performs a positive cycle defrost operation in which the indoor space R is heated while defrosting.
  • the four-way switching valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant counterclocks the refrigerant circuit 10 shown in FIG. Circulate around.
  • the compressor 22 In the forward cycle defrost operation, the compressor 22 is operated with a reduced capacity.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the indoor heat exchanger 27 through the four-way switching valve 25, and the cross-flow fan 28 is operated while condensing and liquid. Heat space R.
  • the condensed and liquefied refrigerant is heated by the IH heater 12 of the refrigerant heating device 4 and then flows to the outdoor heat exchanger 23.
  • the heated refrigerant flows into the outdoor heat exchanger 23, it is possible to melt frost adhering to the outer surface of the outdoor heat exchanger.
  • the outdoor fan 24 is operating.
  • the control unit 17 stops the IH heater 12 when at least one of the temperature sensors 13, 14, 15 detects that the refrigerant circuit 10 has risen by 40 to 60 ° C when performing the positive cycle defrost operation. Is pretty.
  • the refrigerant heating device 4 of the first embodiment includes, in addition to the IH heater 12 for refrigerant heating, at least one temperature sensor 13 that detects the temperature of the refrigerant flowing through the first connection pipe 11 in the refrigerant circuit 10. Since 14 and 15 are provided, it is possible to reliably detect the temperature of the refrigerant without depending on a temperature sensor of an external outdoor unit or the like, and to suppress overheating of the refrigerant.
  • the temperature sensor has the first temperature sensor 13 and the second temperature sensor 14 provided on the upstream side and the downstream side of the IH heater 12, respectively. It is possible to directly detect the temperature of the refrigerant immediately after passing through the IH heater 12 regardless of whether the direction is forward or reverse, that is, when heating or reverse cycle defrosting. In addition, it is possible to reliably detect the temperature difference of the refrigerant near the entrance / exit of the IH heater 12.
  • the temperature sensor further includes the third temperature sensor 15 provided in the vicinity of the intermediate position in the axial direction of the IH heater 12. It is possible to detect local overheating. Thereby, it is possible to effectively suppress the overheating of the cooling medium.
  • the refrigerant heating device 4 of the first embodiment is a control that controls the operation of the IH heater 12 based on the temperature of the refrigerant detected by one or more temperature sensors 13, 14, 15. Since the portion 17 is further provided, it is possible to reduce the risk of refrigerant destruction by controlling the operation of the IH heater 12 so as to suppress overheating of the refrigerant.
  • the control unit 17 controls the output of the IH heater 12 based on the temperature of the refrigerant detected by the temperature sensors 13, 14, 15, the refrigerant approaches its destruction temperature. By this, the output of the IH heater 12 can be reduced.
  • the IH heater 12 is employed as the heater for heating the refrigerant, the refrigerant can be heated quickly.
  • the first temperature sensor 13 and the second temperature sensor 14 are installed outside the coil 12a of the IH heater 12! Therefore, due to the influence of electromagnetic waves generated from the coil 12a, It is possible to avoid the generation of noise in the temperature sensors 13 and 14 and their signal lines.
  • the control unit 17 detects at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1
  • the output of the IH heater 12 is reduced. Therefore, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature.
  • the control unit 17 reduces the output of the IH heater 12 when any one of the plurality of temperature sensors 13, 14, 15 reaches a predetermined first temperature T1 or higher. Therefore, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature. In particular, the reliability of temperature detection is improved by using multiple temperature sensors 13, 14, and 15, and local overheating of the refrigerant near the middle or downstream side of the IH heater 12 is reliably suppressed. Is possible.
  • the control unit 17 outputs the output of the IH heater 12 when the refrigerant temperature approaches its destruction temperature. It is possible to accurately perform the control to be lowered.
  • the control unit 17 stops the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than a predetermined second temperature T2. Therefore, the IH heater 12 can be accurately stopped before the refrigerant approaches its destruction temperature.
  • the control unit 17 stops the IH heater 12 when any one of the plurality of temperature sensors 13, 14, and 15 becomes equal to or higher than the predetermined second temperature T2. Therefore, the IH heater 12 can be stopped before the refrigerant approaches its destruction temperature.
  • the use of multiple temperature sensors 13, 14, and 15 improves the reliability of temperature detection and reliably suppresses local overheating of the refrigerant near the middle or downstream of the IH heater 12. It is possible.
  • the control unit 17 outputs the output of the IH heater 12 when the temperature of the refrigerant approaches its destruction temperature. It is possible to accurately perform the control to stop.
  • the control unit 17 reduces the output of the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1. Since the IH heater 12 is controlled stepwise when a temperature equal to or higher than the predetermined second temperature T2 is detected, overheating of the refrigerant can be reliably suppressed.
  • control unit 17 indicates that the refrigerant circuit 10 has risen by 40 to 60 ° C. when performing the defrost operation in the forward cycle or the reverse cycle, and at least one temperature sensor 13, Since the IH heater 12 is stopped when 14 and 15 are detected, it is possible to reliably suppress overheating of the refrigerant during the defrost operation.
  • the control unit 17 is based on the temperature of the refrigerant flowing through the first connection pipe 11 detected by the plurality of temperature sensors 13, 14, 15 and! Therefore, the refrigerant heating device 4 can control the start and stop of the IH heater 12 independently without receiving temperature information from the outside. Is possible.
  • the present invention is not limited to this, and the temperature sensors 13, 14, and 15 are connected to the first connection pipe 11 in the first connection. It may be provided inside the tube 11. In this case, the temperature of the refrigerant can be detected with high accuracy by the temperature sensor being in direct contact with the refrigerant.
  • the first temperature T1 is a force that presets a predetermined numerical range based on the type of refrigerant.
  • the present invention is not limited to this, and the first temperature T1 is the IH heater.
  • a temperature obtained by adding a predetermined temperature rise of 20 to 40 ° C to the temperature of the refrigerant before heating by 12 may be adopted, and in this case as well, the output of the IH heater 12 is based on the temperature of the refrigerant. It is possible to accurately control the reduction.
  • a temperature obtained by adding 20 to 40 ° C to the amount of change in the refrigerant temperature every predetermined time may be adopted as the first temperature T1, in this case also based on the refrigerant temperature. Therefore, it is possible to accurately control the output of the IH heater 12 to be lowered.
  • a predetermined numerical range based on the type of refrigerant is set in advance as the second temperature T2 that serves as a reference for stopping the IH heater 12, but the present invention is not limited to this.
  • the control unit 17 may stop the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a transient increase of 40 to 60 ° C. In this case as well, it is possible to accurately perform control to stop the output of the IH heater 12 based on the refrigerant temperature.
  • the control unit 17 controls the output of the IH heater 12 to be reduced by a predetermined heater capacity as shown in FIG. It is also possible to control the IH heater 12 to stop when at least one temperature sensor 13, 14, 15 detects that the second temperature T240-60 ° C has risen transiently.
  • the force provided with the temperature sensors 13, 14, 15 in the first connecting pipe 11 through which the liquid refrigerant flows is not limited to this.
  • the temperature sensor detects the temperature of the refrigerant. The arrangement can be changed as appropriate.
  • the refrigerant heating device 104 of the second embodiment instead of providing the third temperature sensor 15 near the middle of the IH heater 12 as compared to the refrigerant heating device 4 of the first embodiment, The other difference is that the fourth temperature sensor 21 is provided, and other configurations are the same as those of the refrigerant calorie heat device 4 of the first embodiment.
  • the refrigerant heating device 104 includes a first connection pipe 11, an IH heater 12, a second connection pipe 16, a first temperature sensor 13, a second temperature sensor 14, a fourth temperature sensor 21, and a control unit. 17 / AC power supply 18 / Switch 19/4 connections 20a, 20b, 20c and 20d!
  • the fourth temperature sensor 21 is provided on the surface of the second connection pipe 16 through which the gaseous refrigerant flows.
  • the fourth temperature sensor 21 provided on the surface of the second connection pipe 16 can detect the refrigerant evaporation temperature of the refrigerant gas.
  • the fourth temperature sensor 21 can detect the refrigerant evaporation temperature of the refrigerant gas flowing through the second connection pipe 16. As a result, the controller 17 can control the operation of the IH heater 12 without receiving temperature information from the outside.
  • the refrigerant heating device 104 of the second embodiment is similar to the refrigerant heating device 4 of the first embodiment, in addition to the IH heater 12 for refrigerant heating, the first connection pipe 11 and the second Since it has at least one temperature sensor 13, 14, 21 that detects the temperature of the refrigerant flowing through the connecting pipe 16, it can accurately detect the temperature of the refrigerant without depending on the temperature sensor of an external outdoor unit. And overheating of the refrigerant can be suppressed. [0079] (3)
  • the refrigerant heating device 104 of the second embodiment includes the first temperature sensor 13 and the temperature sensor provided on the upstream side and the downstream side of the IH heater 12, respectively. Since the second temperature sensor 14 is provided, it is possible to directly detect the temperature of the refrigerant immediately after passing through the IH heater 12 during both heating and cooling. Further, it is possible to accurately detect the temperature difference of the refrigerant in the vicinity of the inlet / outlet of the IH heater 12.
  • the temperature sensors 13, 14, and 21 are provided on the surface of the first connection pipe 11 or the second connection pipe 16. Therefore, the temperature of the refrigerant can be detected via the first connection pipe 11 or the second connection pipe 16.
  • the refrigerant heating device 104 of the second embodiment is based on the temperature of the refrigerant detected by one or a plurality of temperature sensors 13, 14, 21 in the same manner as the refrigerant heating device 4 of the first embodiment. Since the controller 17 for controlling the operation of the IH heater 12 is further provided, it is possible to reduce the possibility of the refrigerant being destroyed by controlling the operation of the IH heater 12 so as to suppress the overheating of the refrigerant. .
  • the control unit 17 is based on the temperature of the refrigerant detected by the temperature sensors 13, 14, 21. Since the output of the IH heater 12 is controlled, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature.
  • the refrigerant heating device 104 of the second embodiment employs the IH heater 12 as a heater for heating the refrigerant, so that the refrigerant is heated quickly. Is possible.
  • the refrigerant heating device 104 of the second embodiment is installed outside the coil 12a of the first heater 13 and the second temperature sensor 14 as in the refrigerant heater 4 of the first embodiment. Therefore, it is possible to avoid the occurrence of noise in the temperature sensors 13 and 14 and their signal lines due to the influence of electromagnetic waves generated from the coil 12a.
  • the force that the temperature sensors 13, 14, and 21 are provided on the surface of the first connection pipe 11 or the second connection pipe 16 The present invention is not limited to this, and the temperature sensors 13, 14, 15 may be provided inside the first connection pipe 11 or the second connection pipe 16. In this case, the temperature of the refrigerant can be accurately detected by the temperature sensor directly contacting the refrigerant.
  • temperature sensors 13 and 14 are provided on the upstream side and the downstream side of the IH heater 12, respectively. These two temperature sensors 13 and 14 directly detect the temperature of the refrigerant immediately before or after passing through the IH heater 12 even if the direction of the refrigerant flowing through the first connection pipe 11 is switched between heating and cooling.
  • the present invention is not limited to this.
  • the refrigerant heating device 204 shown in FIG. 9 further includes a bridge circuit 30 connected to the first connection pipe 11.
  • the refrigerant heating device 204 includes only one temperature sensor 13 (or 14). The temperature sensor 13 (or 14) is provided on either the upstream side (or the downstream side) of the IH heater 12 in the refrigerant flow direction F1 during heating.
  • the bridge circuit 30 has four check valves.
  • the bridge circuit 30 is connected to the straight pipe portion 11a and the loop portion l ib of the first connection pipe 11 as shown in FIG. Even if the direction of the refrigerant flowing through the straight pipe portion 11a of the first connection pipe 11 is switched by the bridge corridor 30, the direction of the refrigerant flowing through the loop portion l ib of the first connection pipe 11 is changed in one direction (FIG. 9). In the direction of arrow F3).
  • the refrigerant heating device 204 of the third embodiment is the same as that of the first embodiment. Common to refrigerant heating device 4 (except temperature sensor 15 in Fig. 3).
  • the bridge circuit 30 since the bridge circuit 30 is connected to the first connection pipe 11, even if the direction of the refrigerant flowing through the refrigerant pipe 5 is switched, the bridge circuit 30 causes the first connection pipe to be switched.
  • the direction of the refrigerant flowing through 11 lbs of 1 lb is kept in one direction. Therefore, the temperature of the refrigerant immediately before (or immediately after) passing through the IH heater 12 is directly measured by one temperature sensor 13 (or 14) provided upstream (or downstream) of the IH heater 12. It can be detected.
  • the present invention can be applied to a refrigerant heating device for heating the refrigerant of an air conditioner.

Abstract

A refrigerant heating device with which super heat of a refrigerant is effectively suppressed and that can control the temperature of the refrigerant by itself without relying on an external temperature sensor. The refrigerant heating device (4) has at least one connection tube (11, 16), a heater (12), and at least one temperature sensor (13, 14, 15). The at least one connection tube (11, 16) is connected to the middle of a refrigerant circuit (10). The refrigerant circulates in the refrigerant circuit (10). The heater (12) heats the refrigerant flowing in the first connection tube (11) out of the connection tubes. The at least one temperature sensor (13, 14, 15) detects the temperature of the refrigerant flowing in the connection tube.

Description

明 細 書  Specification
冷媒加熱装置  Refrigerant heating device
技術分野  Technical field
[0001] 本発明は、冷媒回路を流れる冷媒を加熱するための冷媒加熱装置に関する。  [0001] The present invention relates to a refrigerant heating apparatus for heating a refrigerant flowing in a refrigerant circuit.
背景技術  Background art
[0002] 空気調和機の冷媒回路を流れる液冷媒を加熱して暖房能力や除霜能力を向上さ せるために、特許文献 1に記載されるように、誘導加熱ヒータを用いた冷媒加熱装置 がある。この冷媒加熱装置は、空気調和機の室外機と室内機との間に設置されてい る。室外機は、室外熱交^^と、膨張弁と、圧縮機と、四路切換弁とを有している。室 内機は、室内熱交翻を有している。室内機の室内熱交翻を通過した冷媒は、冷 媒加熱装置の誘導加熱ヒータによって加熱されたのち、室外機の膨張弁で膨張され て室外熱交^^に流入される。  [0002] As described in Patent Document 1, a refrigerant heating apparatus using an induction heater for heating a liquid refrigerant flowing through a refrigerant circuit of an air conditioner to improve heating capacity and defrosting capacity is disclosed. is there. This refrigerant heating device is installed between the outdoor unit and the indoor unit of the air conditioner. The outdoor unit has an outdoor heat exchanger, an expansion valve, a compressor, and a four-way switching valve. The indoor unit has indoor heat exchange. The refrigerant that has passed through the indoor heat exchange of the indoor unit is heated by the induction heater of the refrigerant heating device, and then is expanded by the expansion valve of the outdoor unit and flows into the outdoor heat exchanger.
特許文献 1:特開 2002— 5537号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-5537
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特許文献 1に記載された冷媒加熱装置は、誘導加熱ヒータの運転を制御す るために必要な冷媒の温度に関する情報を用いている力 この冷媒温度情報の取得 は、冷媒加熱装置の外部の各種温度センサ、例えば、室外機または室内機に設けら れている室外温度センサ、室内温度センサ、冷媒温度センサ等の温度センサに依存 している。したがって、冷媒加熱装置付近を流れている冷媒の温度を正確に測定す ることが困難であるため、冷媒の過熱を抑制することが困難である。 [0003] However, the refrigerant heating device described in Patent Document 1 is a force that uses information related to the temperature of the refrigerant that is necessary for controlling the operation of the induction heater. It depends on various temperature sensors outside the apparatus, for example, an outdoor unit or an outdoor temperature sensor provided in the indoor unit, an indoor temperature sensor, a refrigerant temperature sensor, or the like. Therefore, it is difficult to accurately measure the temperature of the refrigerant flowing in the vicinity of the refrigerant heating device, and it is difficult to suppress overheating of the refrigerant.
また、冷媒加熱装置外部の各種温度センサに依存しているので、冷媒加熱装置が 単独で冷媒の温度制御をすることができな 、と 、う問題もある。  In addition, since it depends on various temperature sensors outside the refrigerant heating device, there is a problem that the refrigerant heating device cannot control the temperature of the refrigerant alone.
本発明の課題は、冷媒の過熱を効果的に抑制することができ、かつ外部の温度セ ンサに依存しないで単独で冷媒の温度制御が可能な冷媒加熱装置を提供すること にある。  An object of the present invention is to provide a refrigerant heating apparatus that can effectively suppress overheating of the refrigerant and that can independently control the temperature of the refrigerant without depending on an external temperature sensor.
課題を解決するための手段 [0004] 第 1発明の冷媒加熱装置は、少なくとも 1本の接続管と、ヒータと、少なくとも 1個の 温度センサとを備えている。少なくとも 1本の接続管は、冷媒回路の途中に接続され る。冷媒回路には、冷媒が循環する。ヒータは、接続管のうちの第 1接続管の内部を 流れる冷媒を加熱する。少なくとも 1個の温度センサは、接続管を流れる冷媒の温度 を検出する。 Means for solving the problem [0004] The refrigerant heating device of the first invention includes at least one connecting pipe, a heater, and at least one temperature sensor. At least one connecting pipe is connected in the middle of the refrigerant circuit. The refrigerant circulates in the refrigerant circuit. The heater heats the refrigerant flowing in the first connecting pipe among the connecting pipes. At least one temperature sensor detects the temperature of the refrigerant flowing through the connecting pipe.
ここでは、冷媒回路途中の第 1接続管を流れる冷媒の温度を検出する少なくとも 1 個の温度センサを備えて 、るので、外部の室外機等の温度センサに依存せずに冷 媒の温度を正確に検出可能であり、かつ、冷媒の過熱を抑制することが可能である。  Here, since at least one temperature sensor for detecting the temperature of the refrigerant flowing through the first connection pipe in the middle of the refrigerant circuit is provided, the temperature of the refrigerant is not dependent on the temperature sensor of an external outdoor unit or the like. It is possible to detect accurately and suppress overheating of the refrigerant.
[0005] 第 2発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、温度センサは、 第 1温度センサと、第 2温度センサとを有している。第 1温度センサは、暖房時の冷媒 の流れる方向においてヒータの上流側に設けられている。第 2温度センサは、暖房時 の冷媒の流れる方向にぉ 、てヒータの下流側に設けられて 、る。  [0005] A refrigerant heating device according to a second invention is the refrigerant heating device according to the first invention, and the temperature sensor includes a first temperature sensor and a second temperature sensor. The first temperature sensor is provided on the upstream side of the heater in the direction in which the refrigerant flows during heating. The second temperature sensor is provided on the downstream side of the heater in the direction in which the refrigerant flows during heating.
ここでは、温度センサがヒータの上流側および下流側にそれぞれ設けられた第 1温 度センサおよび第 2温度センサを有しているので、冷媒の流れる方向が順逆いずれ の場合でもヒータを通過した直後の冷媒の温度を直接検出することが可能である。ま た、ヒータの出入口付近の冷媒の温度差を正確に検出することが可能である。  Here, since the temperature sensor has the first temperature sensor and the second temperature sensor respectively provided on the upstream side and the downstream side of the heater, immediately after passing through the heater regardless of whether the refrigerant flows in the forward or reverse direction. It is possible to directly detect the temperature of the refrigerant. It is also possible to accurately detect the temperature difference of the refrigerant near the heater inlet / outlet.
[0006] 第 3発明の冷媒加熱装置は、第 1発明または第 2発明の冷媒加熱装置であって、 温度センサは、第 3温度センサをさらに有している。第 3温度センサは、ヒータの軸方 向における中間位置付近に設けられて 、る。  [0006] The refrigerant heating device of the third invention is the refrigerant heating device of the first invention or the second invention, and the temperature sensor further includes a third temperature sensor. The third temperature sensor is provided near the middle position in the axial direction of the heater.
ここでは、温度センサがヒータの軸方向における中間位置付近に設けられた第 3温 度センサをさらに有しているので、ヒータの中間付近おける冷媒の局所的な過熱を検 出することが可能である。これにより、冷媒の過熱を効果的に抑制することが可能で ある。  Here, since the temperature sensor further includes a third temperature sensor provided near the intermediate position in the axial direction of the heater, it is possible to detect local overheating of the refrigerant near the middle of the heater. is there. Thereby, it is possible to effectively suppress overheating of the refrigerant.
[0007] 第 4発明の冷媒加熱装置は、第 1発明から第 3発明のいずれかの冷媒加熱装置で あって、接続管のうちの第 2接続管は、第 1接続管と異なる位置で冷媒回路の途中に 接続されている。第 2接続管には、ガス状態の冷媒が流れている。温度センサは、第 4温度センサをさらに有している。第 4温度センサは、第 2接続管に設けられている。 ここでは、第 4温度センサによって、第 2接続管を流れるガス状態の冷媒の温度を 検出することが可能である。これによつて、制御部は、外部からの温度情報等を受け ることなぐヒータの運転制御を行うことが可能である。 [0007] The refrigerant heating device of the fourth invention is the refrigerant heating device of any one of the first to third inventions, wherein the second connection pipe of the connection pipe is a refrigerant at a position different from the first connection pipe. Connected in the middle of the circuit. A gas refrigerant flows through the second connection pipe. The temperature sensor further includes a fourth temperature sensor. The fourth temperature sensor is provided in the second connection pipe. Here, the temperature of the gaseous refrigerant flowing through the second connecting pipe is measured by the fourth temperature sensor. It is possible to detect. As a result, the control unit can control the operation of the heater without receiving temperature information from the outside.
[0008] 第 5発明の冷媒加熱装置は、第 1発明の冷媒加熱装置であって、ブリッジ回路をさ らに備えている。ブリッジ回路は、接続管のうちの第 1接続管に接続されている。温度 センサは、暖房時の冷媒の流れる方向にぉ 、てヒータの上流側または下流側の!、ず れか一方に設けられて!/、る。  [0008] A refrigerant heating device according to a fifth invention is the refrigerant heating device according to the first invention, further comprising a bridge circuit. The bridge circuit is connected to the first connecting pipe among the connecting pipes. The temperature sensor is provided either on the upstream side or the downstream side of the heater in the direction in which the refrigerant flows during heating.
ここでは、ブリッジ回路によって、第 1接続管を流れる冷媒の向きを暖房時および冷 房時に関わらず一方向になるように制御することが可能である。したがって、ヒータの 上流側または下流側のいずれか一方に設けられた 1つの温度センサによって、冷房 時および暖房時の両方においてヒータ通過直前または通過直後の冷媒温度が測定 することが可能である。  Here, the bridge circuit can control the direction of the refrigerant flowing through the first connection pipe so that it is in one direction regardless of heating and cooling. Therefore, it is possible to measure the refrigerant temperature immediately before or just after passing through the heater, both during cooling and during heating, by using a single temperature sensor provided on either the upstream side or the downstream side of the heater.
[0009] 第 6発明の冷媒加熱装置は、第 1発明から第 5発明のいずれかの冷媒加熱装置で あって、温度センサは、接続管の表面に設けられている。  [0009] A refrigerant heating device according to a sixth aspect of the present invention is the refrigerant heating device according to any one of the first to fifth aspects, wherein the temperature sensor is provided on the surface of the connecting pipe.
ここでは、温度センサが第 1接続管の表面に設けられているので、第 1接続管を介 して冷媒の温度を検出することが可能である。  Here, since the temperature sensor is provided on the surface of the first connecting pipe, the temperature of the refrigerant can be detected via the first connecting pipe.
[0010] 第 7発明の冷媒加熱装置は、第 1発明から第 5発明のいずれかの冷媒加熱装置で あって、温度センサは、接続管の内部に設けられている。 [0010] A refrigerant heating device according to a seventh aspect of the present invention is the refrigerant heating device according to any of the first through fifth aspects, wherein the temperature sensor is provided inside the connecting pipe.
ここでは、温度センサが第 1接続管の内部に設けられているので、温度センサが冷 媒に直接接触することによって、冷媒の温度を精度良く検出することが可能である。  Here, since the temperature sensor is provided inside the first connection pipe, the temperature of the refrigerant can be accurately detected by the temperature sensor being in direct contact with the refrigerant.
[0011] 第 8発明の冷媒加熱装置は、第 1発明から第 5発明のいずれかの冷媒加熱装置で あって、制御部をさらに備えている。制御部は、冷媒の温度に基づいて、ヒータの運 転を制御する。冷媒の温度は、 1個又は複数の温度センサによって検出される。 ここでは、 1個又は複数の温度センサによって検出された冷媒の温度に基づいて、 ヒータの運転を制御する制御部をさらに備えているので、冷媒の過熱を抑制するよう にヒータの運転を制御することによって冷媒の破壊のおそれを低減することが可能で ある。  [0011] A refrigerant heating device according to an eighth aspect of the present invention is the refrigerant heating device according to any one of the first through fifth aspects, further comprising a control unit. The control unit controls the operation of the heater based on the temperature of the refrigerant. The temperature of the refrigerant is detected by one or more temperature sensors. Here, since the controller further controls the operation of the heater based on the temperature of the refrigerant detected by one or more temperature sensors, the operation of the heater is controlled so as to suppress the overheating of the refrigerant. This can reduce the risk of refrigerant destruction.
[0012] 第 9発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、温度 センサによって検出された冷媒の温度に基づいて、ヒータの出力を制御する。 ここでは、制御部が温度センサによって検出された冷媒の温度に基づいて、ヒータ の出力を制御するので、冷媒がその破壊温度に近づくまでに、ヒータの出力を低減 することが可能である。 [0012] The refrigerant heating device of the ninth invention is the refrigerant heating device of the eighth invention, and the control unit controls the output of the heater based on the temperature of the refrigerant detected by the temperature sensor. Here, since the control unit controls the output of the heater based on the temperature of the refrigerant detected by the temperature sensor, the output of the heater can be reduced before the refrigerant approaches its destruction temperature.
[0013] 第 10発明の冷媒加熱装置は、第 1発明から第 9発明のいずれかの冷媒加熱装置 であって、ヒータは、誘導カ卩熱ヒータ(induction heating ヒータ)(以下、 IHヒータ という)である。  [0013] The refrigerant heating device of the tenth invention is the refrigerant heating device of any of the first to ninth inventions, wherein the heater is an induction heating heater (hereinafter referred to as an IH heater). It is.
ここでは、ヒータが誘導加熱ヒータであるので、冷媒を迅速に加熱することが可能で ある。  Here, since the heater is an induction heater, the refrigerant can be rapidly heated.
[0014] 第 11発明の冷媒加熱装置は、第 10発明の冷媒加熱装置であって、ヒータは、コィ ルを有している。温度センサは、コイルの外側に設置されている。  [0014] The refrigerant heating device of the eleventh invention is the refrigerant heating device of the tenth invention, wherein the heater has a coil. The temperature sensor is installed outside the coil.
ここでは、温度センサがヒータのコイルの外側に設置されているので、コイル力 発 生する電磁波の影響で温度センサおよびその信号線にノイズ発生することを回避す ることが可能である。  Here, since the temperature sensor is installed outside the coil of the heater, it is possible to avoid the generation of noise in the temperature sensor and its signal line due to the influence of electromagnetic waves generated by the coil force.
[0015] 第 12発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、少な くとも 1個の温度センサが所定の第 1温度以上の温度を検出した場合に、ヒータの出 力を低下させる。  [0015] The refrigerant heating device of the twelfth invention is the refrigerant heating device of the eighth invention, wherein the control unit detects that at least one temperature sensor detects a temperature equal to or higher than a predetermined first temperature. Reduce the heater output.
ここでは、制御部が少なくとも 1個の温度センサが所定の第 1温度以上の温度を検 出した場合に、ヒータの出力を低下させるので、冷媒がその破壊温度に近づくまでに 、ヒータの出力を低減させることが可能である。  Here, since the output of the heater is reduced when the control unit detects a temperature equal to or higher than the predetermined first temperature by at least one temperature sensor, the output of the heater is reduced until the refrigerant approaches its destruction temperature. It is possible to reduce.
[0016] 第 13発明の冷媒加熱装置は、第 12発明の冷媒加熱装置であって、制御部は、複 数の温度センサのうちのいずれか 1つが所定の第 1温度以上になった場合にヒータ の出力を低下させる。  [0016] The refrigerant heating device of the thirteenth aspect of the invention is the refrigerant heating device of the twelfth aspect of the invention, wherein the control unit is configured when any one of the plurality of temperature sensors becomes a predetermined first temperature or higher. Reduce the heater output.
ここでは、制御部が複数の温度センサのうちのいずれか 1つが所定の第 1温度以上 になった場合にヒータの出力を低下させるので、冷媒がその破壊温度に近づくまで に、ヒータの出力を低減することが可能である。とくに、複数の温度センサを用いるこ とによって、温度検出の信頼性が向上するとともに、冷媒の局所的な過熱を確実に 抑制することが可能である。  Here, since the control unit reduces the output of the heater when any one of the plurality of temperature sensors becomes equal to or higher than the predetermined first temperature, the output of the heater is reduced until the refrigerant approaches the breakdown temperature. It is possible to reduce. In particular, by using a plurality of temperature sensors, it is possible to improve the reliability of temperature detection and to reliably suppress local overheating of the refrigerant.
[0017] 第 14発明の冷媒加熱装置は、第 12発明の冷媒加熱装置であって、第 1温度は、 8 0〜100°Cである。 [0017] The refrigerant heating device of the fourteenth invention is the refrigerant heating device of the twelfth invention, wherein the first temperature is 8 0 to 100 ° C.
ここでは、第 1温度が 80〜100°Cであるので、冷媒の温度がその破壊温度に近づ いたときに、制御部は、ヒータの出力を低下させる制御を正確に行うことが可能になる  Here, since the first temperature is 80 to 100 ° C., the control unit can accurately perform control to reduce the output of the heater when the temperature of the refrigerant approaches its destruction temperature.
[0018] 第 15発明の冷媒加熱装置は、第 12発明の冷媒加熱装置であって、第 1温度は、ヒ ータによる加熱前の冷媒の温度に 20〜40°Cを加えた温度である。 [0018] The refrigerant heating device of the fifteenth invention is the refrigerant heating device of the twelfth invention, wherein the first temperature is a temperature obtained by adding 20 to 40 ° C to the temperature of the refrigerant before heating by the heater. .
ここでは、第 1温度がヒータによる加熱前の冷媒の温度に 20〜40°Cをカ卩えた温度 であるので、冷媒の温度に基づいてヒータの出力を低下させる制御を正確に行うこと が可能である。  Here, the first temperature is a temperature obtained by adding 20 to 40 ° C to the temperature of the refrigerant before heating by the heater, so it is possible to accurately control the output of the heater based on the temperature of the refrigerant It is.
[0019] 第 16発明の冷媒加熱装置は、第 12発明の冷媒加熱装置であって、第 1温度は、 冷媒の温度の所定時間ごとの変化量に 20〜40°Cをカ卩えた温度である。  [0019] The refrigerant heating device of the sixteenth aspect of the invention is the refrigerant heating device of the twelfth aspect of the invention, wherein the first temperature is a temperature obtained by adding 20 to 40 ° C to the amount of change of the refrigerant temperature per predetermined time. is there.
ここでは、第 1温度が冷媒の温度の所定時間ごとの変化量に 20〜40°Cをカ卩えた温 度であるので、冷媒の温度に基づいてヒータの出力を低下させる制御を正確に行うこ とが可能である。  Here, since the first temperature is a temperature obtained by adding 20 to 40 ° C to the amount of change in the refrigerant temperature every predetermined time, control to reduce the heater output based on the refrigerant temperature is accurately performed. It is possible.
[0020] 第 17発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、少な くとも 1個の温度センサが所定の第 2温度以上の温度を検出した場合に、ヒータを停 止させる。  [0020] The refrigerant heating device of the seventeenth aspect of the invention is the refrigerant heating device of the eighth aspect of the invention, wherein the control unit detects that at least one temperature sensor detects a temperature equal to or higher than a predetermined second temperature. Stop the heater.
ここでは、制御部が少なくとも 1個の温度センサが所定の第 2温度以上の温度を検 出した場合にヒータを停止させるので、冷媒がその破壊温度に近づくまでに、ヒータ を確実に停止させることが可能である。  Here, since the heater stops when at least one temperature sensor detects a temperature equal to or higher than the predetermined second temperature, the heater is surely stopped before the refrigerant approaches its destruction temperature. Is possible.
[0021] 第 18発明の冷媒加熱装置は、第 17発明の冷媒加熱装置であって、制御部は、複 数の温度センサのうちのいずれか 1つが所定の第 2温度以上になった場合にヒータ を停止させる。 [0021] The refrigerant heating device of the eighteenth aspect of the invention is the refrigerant heating device of the seventeenth aspect of the invention, wherein the control unit is configured when any one of the plurality of temperature sensors becomes equal to or higher than a predetermined second temperature. Stop the heater.
ここでは、制御部が複数の温度センサのうちのいずれか 1つが所定の第 2温度以上 になった場合にヒータを停止させるので、冷媒がその破壊温度に近づくまでに、ヒー タを停止させることが可能である。とくに、複数の温度センサを用いることによって、温 度検出の信頼性が向上するとともに、冷媒の局所的な過熱を確実に抑制することが 可能である。 [0022] 第 19発明の冷媒加熱装置は、第 17発明の冷媒加熱装置であって、第 2温度は、 1 40〜160。Cである。 Here, the controller stops the heater when any one of the plurality of temperature sensors reaches a predetermined second temperature or higher, so that the heater is stopped before the refrigerant approaches its destruction temperature. Is possible. In particular, by using a plurality of temperature sensors, the reliability of temperature detection can be improved and local overheating of the refrigerant can be reliably suppressed. [0022] The refrigerant heating device of the nineteenth invention is the refrigerant heating device of the seventeenth invention, wherein the second temperature is 140-160. C.
ここでは、第 2温度が 140〜160°Cであるので、冷媒の温度がその破壊温度に近づ いたときに、制御部は、ヒータの出力を停止させる制御を正確に行うことが可能である  Here, since the second temperature is 140 to 160 ° C., the control unit can accurately perform control to stop the output of the heater when the temperature of the refrigerant approaches its destruction temperature.
[0023] 第 20発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、少な くとも 1個の温度センサが所定の第 1温度以上の温度を検出した場合にヒータの出力 を低下させ、所定の第 2温度以上の温度を検出した場合にヒータを停止させるように 、段階的に制御する。 [0023] A refrigerant heating device according to a twentieth aspect of the invention is the refrigerant heating device according to the eighth aspect of the invention, wherein the control unit detects the temperature when at least one temperature sensor detects a temperature equal to or higher than a predetermined first temperature. The output is controlled in a stepwise manner so that the heater is stopped when a temperature equal to or higher than a predetermined second temperature is detected.
ここでは、少なくとも 1個の温度センサが所定の第 1温度以上の温度を検出した場 合に制御部がヒータの出力を低下させ、所定の第 2温度以上の温度を検出した場合 に制御部がヒータを停止させるように、段階的に制御するので、冷媒の過熱を確実に 抑制することが可能である。  Here, the control unit lowers the output of the heater when at least one temperature sensor detects a temperature equal to or higher than a predetermined first temperature, and the control unit detects when a temperature equal to or higher than a predetermined second temperature is detected. Since the heater is controlled step by step so as to stop the heater, it is possible to reliably suppress overheating of the refrigerant.
[0024] 第 21発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、過渡 的に 40〜60°C上昇したことを少なくとも 1個の温度センサが検出した場合にヒータを 停止させる。  [0024] The refrigerant heating device of the twenty-first invention is the refrigerant heating device of the eighth invention, wherein the control unit detects that at least one temperature sensor detects a transient increase of 40 to 60 ° C. Stop the heater.
ここでは、過渡的に 40〜60°C上昇したことを少なくとも 1個の温度センサが検出し た場合に制御部がヒータを停止させるので、冷媒の温度に基づいてヒータを停止さ せる制御を確実に行うことが可能である。  Here, the control unit stops the heater when at least one temperature sensor detects a transient rise of 40 to 60 ° C, so the control to stop the heater based on the refrigerant temperature is ensured. Can be done.
[0025] 第 22発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、冷媒 回路がデフロスト運転をするときに 40〜60°C上昇したことを少なくとも 1個の温度セン サが検出した場合にヒータを停止させる。 [0025] A refrigerant heating device according to a twenty-second invention is the refrigerant heating device according to the eighth invention, wherein the control unit determines that the temperature of the refrigerant circuit has increased by 40 to 60 ° C when the defrost operation is performed. Stops the heater when the sensor detects it.
ここでは、冷媒回路がデフロスト運転をするときに 40〜60°C上昇したことを少なくと も 1個の温度センサが検出した場合に制御部がヒータを停止させるので、デフロスト 運転時における冷媒の過熱を確実に抑制することが可能である。  Here, the controller stops the heater when at least one temperature sensor detects that the refrigerant circuit has risen by 40 to 60 ° C during defrost operation, so the refrigerant is overheated during defrost operation. Can be reliably suppressed.
[0026] 第 23発明の冷媒加熱装置は、第 8発明の冷媒加熱装置であって、制御部は、 1個 又は複数の温度センサによって検出された接続管に流れる冷媒の温度に基づいて、 ヒータの始動および停止を切り換える。 ここでは、制御部が複数の温度センサによって検出された第 1接続管に流れる冷媒 の温度に基づいてヒータの始動および停止を切り換え制御することが可能であるの で、冷媒加熱装置は、外部からの温度情報等を受けずに、単独で、ヒータの始動、停 止等の制御を行うことが可能である。 [0026] A refrigerant heating device according to a twenty-third invention is the refrigerant heating device according to the eighth invention, in which the control unit is based on the temperature of the refrigerant flowing in the connection pipe detected by one or more temperature sensors. Switching between start and stop. Here, since the control unit can switch and control the start and stop of the heater based on the temperature of the refrigerant flowing in the first connection pipe detected by the plurality of temperature sensors, the refrigerant heating device is externally connected. It is possible to control the starting and stopping of the heater independently without receiving the temperature information.
発明の効果  The invention's effect
[0027] 第 1発明によれば、外部の室外機等の温度センサに依存せずに冷媒の温度を正 確に検出でき、かつ、冷媒の過熱を抑制することができる。  According to the first invention, the temperature of the refrigerant can be accurately detected without depending on a temperature sensor such as an external outdoor unit, and overheating of the refrigerant can be suppressed.
[0028] 第 2発明によれば、冷媒の流れる方向が順逆いずれの場合でもヒータを通過した直 後の冷媒の温度を直接検出することができる。また、ヒータの出入口付近の冷媒の温 度差を正確に検出することができる。 [0028] According to the second invention, it is possible to directly detect the temperature of the refrigerant immediately after passing through the heater, regardless of whether the refrigerant flows in the forward or reverse direction. In addition, it is possible to accurately detect the temperature difference of the refrigerant in the vicinity of the heater entrance.
[0029] 第 3発明によれば、ヒータの中間付近おける冷媒の局所的な過熱を検出することが できる。これにより、冷媒の過熱を効果的に抑制することができる。 [0029] According to the third invention, local overheating of the refrigerant in the vicinity of the middle of the heater can be detected. Thereby, the overheating of a refrigerant | coolant can be suppressed effectively.
[0030] 第 4発明によれば、第 4温度センサによって、第 2接続管を流れるガス状態の冷媒 の温度を検出することができる。これによつて、制御部が外部からの温度情報等を受 けることなぐヒータの運転制御を行うことができる。 [0030] According to the fourth invention, the temperature of the gaseous refrigerant flowing through the second connecting pipe can be detected by the fourth temperature sensor. Thereby, the operation control of the heater can be performed without the control unit receiving temperature information from the outside.
[0031] 第 5発明によれば、ヒータの上流側または下流側のいずれか一方に設けられた 1つ の温度センサによって、冷房時および暖房時の両方においてヒータ通過直前または 通過直後の冷媒温度が測定することができる。 [0031] According to the fifth aspect of the invention, the temperature of the refrigerant immediately before or just after passing through the heater is measured both during cooling and during heating by one temperature sensor provided on either the upstream side or the downstream side of the heater. Can be measured.
[0032] 第 6発明によれば、第 1接続管を介して冷媒の温度を検出することができる。 [0032] According to the sixth aspect of the invention, the temperature of the refrigerant can be detected via the first connection pipe.
[0033] 第 7発明によれば、温度センサが冷媒に直接接触することによって、冷媒の温度を 精度良く検出することができる。 [0033] According to the seventh invention, the temperature of the refrigerant can be accurately detected by the temperature sensor directly contacting the refrigerant.
[0034] 第 8発明によれば、冷媒の過熱を抑制するようにヒータの運転を制御することによつ て冷媒の破壊のおそれを低減することができる。 [0034] According to the eighth aspect of the present invention, the risk of the refrigerant being destroyed can be reduced by controlling the operation of the heater so as to suppress overheating of the refrigerant.
[0035] 第 9発明によれば、冷媒がその破壊温度に近づくまでに、ヒータの出力を低減する ことができる。 [0035] According to the ninth aspect, the output of the heater can be reduced until the refrigerant approaches its destruction temperature.
[0036] 第 10発明によれば、冷媒を迅速に加熱することができる。  [0036] According to the tenth invention, the refrigerant can be heated quickly.
[0037] 第 11発明によれば、コイル力 発生する電磁波の影響で温度センサおよびその信 号線にノイズ発生することを回避することができる。 [0038] 第 12発明によれば、冷媒がその破壊温度に近づくまでに、ヒータの出力を低減さ せることができる。 [0037] According to the eleventh aspect, it is possible to avoid the generation of noise in the temperature sensor and its signal line due to the influence of the electromagnetic wave generated by the coil force. [0038] According to the twelfth invention, the output of the heater can be reduced until the refrigerant approaches its destruction temperature.
[0039] 第 13発明によれば、冷媒がその破壊温度に近づくまでに、ヒータの出力を低減す ることができる。とくに、複数の温度センサを用いることによって、温度検出の信頼性 が向上するとともに、冷媒の局所的な過熱を確実に抑制することができる。  [0039] According to the thirteenth invention, the output of the heater can be reduced before the refrigerant approaches its destruction temperature. In particular, by using a plurality of temperature sensors, the reliability of temperature detection is improved and local overheating of the refrigerant can be reliably suppressed.
[0040] 第 14発明によれば、冷媒の温度がその破壊温度に近づいたときに、制御部は、ヒ ータの出力を低下させる制御を正確に行うことができる。  [0040] According to the fourteenth aspect, when the temperature of the refrigerant approaches its destruction temperature, the control unit can accurately perform control to reduce the output of the heater.
[0041] 第 15発明によれば、冷媒の温度に基づいてヒータの出力を低下させる制御を正確 に行うことができる。  [0041] According to the fifteenth aspect of the present invention, it is possible to accurately perform control for reducing the output of the heater based on the temperature of the refrigerant.
[0042] 第 16発明によれば、冷媒の温度に基づいてヒータの出力を低下させる制御を正確 に行うことができる。  [0042] According to the sixteenth aspect of the present invention, it is possible to accurately perform control for reducing the output of the heater based on the temperature of the refrigerant.
[0043] 第 17発明によれば、冷媒がその破壊温度に近づくまでに、ヒータを確実に停止さ せることができる。  [0043] According to the seventeenth aspect, the heater can be reliably stopped before the refrigerant approaches its destruction temperature.
[0044] 第 18発明によれば、冷媒がその破壊温度に近づくまでに、ヒータを停止させること 力 Sできる。とくに、複数の温度センサを用いることによって、温度検出の信頼性が向上 するとともに、冷媒の局所的な過熱を確実に抑制することができる。  [0044] According to the eighteenth invention, it is possible to stop the heater S before the refrigerant approaches its destruction temperature. In particular, by using a plurality of temperature sensors, the reliability of temperature detection is improved and local overheating of the refrigerant can be reliably suppressed.
[0045] 第 19発明によれば、冷媒の温度がその破壊温度に近づいたときに、制御部は、ヒ ータの出力を停止させる制御を正確に行うことができる。  [0045] According to the nineteenth invention, when the temperature of the refrigerant approaches the destruction temperature, the control unit can accurately perform control to stop the output of the heater.
[0046] 第 20発明によれば、冷媒の過熱を確実に抑制することができる。  [0046] According to the twentieth invention, overheating of the refrigerant can be reliably suppressed.
[0047] 第 21発明によれば、冷媒の温度に基づいてヒータを停止させる制御を確実に行う ことができる。  [0047] According to the twenty-first aspect, it is possible to reliably perform control to stop the heater based on the temperature of the refrigerant.
[0048] 第 22発明によれば、デフロスト運転時における冷媒の過熱を確実に抑制することが できる。  [0048] According to the twenty-second aspect, overheating of the refrigerant during the defrosting operation can be reliably suppressed.
[0049] 第 23発明によれば、冷媒加熱装置は、外部からの温度情報等を受けずに、単独で 、ヒータの始動、停止等の制御を行うことができる。  [0049] According to the twenty-third aspect, the refrigerant heating device can perform control such as starting and stopping the heater independently without receiving temperature information from the outside.
図面の簡単な説明  Brief Description of Drawings
[0050] [図 1]本発明の第 1実施形態に係わる冷媒加熱装置を備えた空気調和機の構成図。  FIG. 1 is a configuration diagram of an air conditioner including a refrigerant heating device according to a first embodiment of the present invention.
[図 2]図 1の空気調和機の冷媒回路を示す図。 [図 3]図 1の冷媒加熱装置の内部構成図。 FIG. 2 is a diagram showing a refrigerant circuit of the air conditioner of FIG. FIG. 3 is an internal configuration diagram of the refrigerant heating device of FIG.
[図 4] (a)図 2の第 1温度センサおよび第 2温度センサの配置図、(b)暖房時における 冷媒温度のグラフ、および (c)デフロスト時における冷媒温度のグラフ。  [FIG. 4] (a) Arrangement of first temperature sensor and second temperature sensor in FIG. 2, (b) Graph of refrigerant temperature during heating, and (c) Graph of refrigerant temperature during defrost.
[図 5] (a)図 2の第 3温度センサの配置図、(b) IHヒータの発熱密度の分布を示すダラ フ、および (c)暖房時における冷媒温度のグラフ。 [FIG. 5] (a) Arrangement of the third temperature sensor of FIG. 2, (b) A graph showing the distribution of heat generation density of the IH heater, and (c) A graph of the refrigerant temperature during heating.
圆 6]図 2の冷媒加熱装置の 2段階の温度制御における(a)冷媒温度の時間変化の グラフおよび (b)ヒータ容量の時間変化のグラフ。 圆 6] (a) graph of change in refrigerant temperature over time and (b) graph of change in heater capacity over time in the two-stage temperature control of the refrigerant heating device of FIG.
圆 7]第 1実施形態の変形例である多段階の温度制御における (a)冷媒温度の時間 変化のグラフおよび (b)ヒータ容量の時間変化のグラフ。 7) (a) Graph of refrigerant temperature with time and (b) Graph of heater capacity with time in multi-stage temperature control, which is a modification of the first embodiment.
圆 8]本発明の第 2実施形態に係わる冷媒加熱装置の内部構成図。 [8] Internal configuration diagram of the refrigerant heating apparatus according to the second embodiment of the present invention.
圆 9]本発明の第 3実施形態に係わる冷媒加熱装置の内部構成図。 9] Internal configuration diagram of the refrigerant heating apparatus according to the third embodiment of the present invention.
符号の説明 Explanation of symbols
1 空気調和機  1 Air conditioner
2 室外機 2 Outdoor unit
3 室内機 3 Indoor unit
4、 104、 204 冷媒加熱装置  4, 104, 204 Refrigerant heating device
5 冷媒配管  5 Refrigerant piping
6 冷媒配管  6 Refrigerant piping
10 冷媒回路  10 Refrigerant circuit
11 第 1接続管  11 First connection pipe
12 IHヒータ  12 IH heater
13 第 1温度センサ  13 First temperature sensor
14 第 2温度センサ  14 Second temperature sensor
15 第 3温度センサ  15 Third temperature sensor
16 第 2接続管  16 Second connection pipe
17 制御部  17 Control unit
18 交流電源  18 AC power supply
19 スィッチ 21 第 4温度センサ 19 Switch 21 4th temperature sensor
22 圧縮機  22 Compressor
23 室外熱交換器  23 Outdoor heat exchanger
24 ファン  24 fans
25 四路切換弁  25 Four-way selector valve
26 電磁膨張弁  26 Solenoid expansion valve
27 室内熱交換器  27 Indoor heat exchanger
28 クロスフローファン  28 Cross flow fan
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0052] 〔第 1実施形態〕  [First Embodiment]
図 1および図 2に示されるように、空気調和機 1は、室外機 2と、室内機 3と、冷媒カロ 熱装置 4とを備えている。室外機 2は、冷媒配管 5および冷媒配管 6を介して、室内空 間 Rの内部に設置された冷媒加熱装置 4および室内機 3に接続されている。図 2に示 されるように、冷媒配管 5には、液体状態の冷媒が流れ、冷媒配管 6には、ガス状態 の冷媒が流れる。冷媒回路 10は、冷媒配管 5および 6と、室外機 2 (具体的には、電 磁膨張弁 26、室外熱交換器 23、圧縮機 22および四路切換弁 25)と、室内機 3 (具 体的には、室内熱交翻 27)と、冷媒加熱装置 4 (具体的には、第 1接続管 11、 IHヒ ータ 12および第 2接続管 16)とから構成される。図 2には、暖房運転時の状態の冷媒 回路 10が示されている。暖房運転の動作については、後段で詳述する。  As shown in FIGS. 1 and 2, the air conditioner 1 includes an outdoor unit 2, an indoor unit 3, and a refrigerant calorie heat device 4. The outdoor unit 2 is connected to the refrigerant heating device 4 and the indoor unit 3 installed inside the indoor space R via the refrigerant pipe 5 and the refrigerant pipe 6. As shown in FIG. 2, the refrigerant in the liquid state flows through the refrigerant pipe 5, and the refrigerant in the gas state flows through the refrigerant pipe 6. The refrigerant circuit 10 includes refrigerant pipes 5 and 6, an outdoor unit 2 (specifically, an electromagnetic expansion valve 26, an outdoor heat exchanger 23, a compressor 22 and a four-way switching valve 25), and an indoor unit 3 (components). Specifically, it is composed of the indoor heat exchanger 27) and the refrigerant heating device 4 (specifically, the first connecting pipe 11, the IH heater 12, and the second connecting pipe 16). FIG. 2 shows the refrigerant circuit 10 in the heating operation state. The heating operation will be described in detail later.
[0053] <冷媒加熱装置 4の構成 >  <Configuration of Refrigerant Heating Device 4>
冷媒加熱装置 4は、図 2および図 3に示されるように、第 1接続管 11と、 IHヒータ 12 と、第 2接続管 16と、第 1温度センサ 13と、第 2温度センサ 14と、第 3温度センサ 15と 、 ff¾御咅 と、交流電源 18と、スィッチ 19と、 4個の接続咅 20a、 20b、 20c、 20dと を備えている。  2 and 3, the refrigerant heating device 4 includes a first connection pipe 11, an IH heater 12, a second connection pipe 16, a first temperature sensor 13, a second temperature sensor 14, The third temperature sensor 15 includes an ff¾ control, an AC power source 18, a switch 19, and four connection rods 20a, 20b, 20c, and 20d.
第 1接続管 11は、冷媒回路 10の途中に接続されている。具体的には、第 1接続管 11は、室外熱交換器 23と室内熱交換器 27との間の液冷媒が流れる冷媒配管 5にお ける室外熱交 よりも室内熱交 に近 ヽ位置に接続されて!ヽる。  The first connection pipe 11 is connected in the middle of the refrigerant circuit 10. Specifically, the first connecting pipe 11 is closer to the indoor heat exchange than the outdoor heat exchange in the refrigerant pipe 5 through which the liquid refrigerant flows between the outdoor heat exchanger 23 and the indoor heat exchanger 27. Get connected!
ΙΗヒータ 12は、第 1接続管 11の内部を流れる冷媒を加熱するヒータである。 ΙΗヒー タ 12は、コイル 12aと、筒状部材 12bとを有している。コイル 12aは、断熱材からなる 筒状部材 12bの外表面に巻き付いて配置されている。 IHヒータ 12は、誘導加熱を利 用して、第 1接続管 11の内部の鉄心(図示せず)を加熱し、それにより、第 1接続管 1 1の内部を流れる冷媒を加熱する。 IHヒータ 12は、冷媒を迅速に加熱することができ 、暖房能力および除霜能力を向上させることができる。 The eaves heater 12 is a heater that heats the refrigerant flowing inside the first connection pipe 11. Coffee The coil 12 has a coil 12a and a cylindrical member 12b. The coil 12a is wound around the outer surface of the cylindrical member 12b made of a heat insulating material. The IH heater 12 uses induction heating to heat an iron core (not shown) inside the first connection pipe 11, thereby heating the refrigerant flowing inside the first connection pipe 11. The IH heater 12 can quickly heat the refrigerant, and can improve the heating capacity and the defrosting capacity.
[0054] 交流電源 18は、 IHヒータ 12のための交流電源であり、インバータ制御を行ういわ ゆるインバータ電源である。 The AC power supply 18 is an AC power supply for the IH heater 12 and is a so-called inverter power supply that performs inverter control.
第 2接続管 16は、室内熱交 における第 1接続管 11が接続されている冷媒 配管 5 (液状態の冷媒側)と反対側の冷媒配管 6 (ガス状態の冷媒側)に接続されて いる。  The second connection pipe 16 is connected to the refrigerant pipe 6 (liquid refrigerant side) opposite to the refrigerant pipe 5 (liquid refrigerant side) to which the first connection pipe 11 in indoor heat exchange is connected. .
第 1接続部 20aおよび第 2接続部 20bは、第 1接続管 11の両端に設けられ、第 1接 続管 11と冷媒配管 5とを接続する。第 3接続部 20cおよび第 4接続部 20dは、第 2接 続管 16の両端に設けられ、第 2接続管 16と冷媒配管 6とを接続する。第 1〜第 4接続 部 20a〜20dは、たとえば、冷媒配管 5または 6の端部に形成された雄ねじ部とフレア ナットとの組み合わせなど力もなる。  The first connection part 20a and the second connection part 20b are provided at both ends of the first connection pipe 11, and connect the first connection pipe 11 and the refrigerant pipe 5. The third connection part 20c and the fourth connection part 20d are provided at both ends of the second connection pipe 16, and connect the second connection pipe 16 and the refrigerant pipe 6. The first to fourth connection parts 20a to 20d also have a force such as a combination of a male screw part formed on the end of the refrigerant pipe 5 or 6 and a flare nut.
第 1温度センサ 13、第 2温度センサ 14、および第 3温度センサ 15は、第 1接続管 1 1を流れる冷媒の温度を検出する。これにより、外部の室外機 2などの温度センサに 依存せずに冷媒の温度を確実に検出でき、冷媒の過熱を抑制することが可能である  The first temperature sensor 13, the second temperature sensor 14, and the third temperature sensor 15 detect the temperature of the refrigerant flowing through the first connection pipe 11. This makes it possible to reliably detect the temperature of the refrigerant without depending on a temperature sensor such as the external outdoor unit 2, and to suppress overheating of the refrigerant.
[0055] 第 1温度センサ 13は、暖房時の冷媒の流れる方向(図 3の流れ方向 F1参照)にお V、てヒータ 12の上流側の第 1接続管 11の表面に設けられて 、る。 [0055] The first temperature sensor 13 is provided on the surface of the first connection pipe 11 on the upstream side of the heater 12 by V in the direction in which the refrigerant flows during heating (see the flow direction F1 in FIG. 3). .
第 2温度センサ 14は、暖房時の冷媒の流れる方向においてヒータ 12の下流側の 第 1接続管 11の表面に設けられて 、る。  The second temperature sensor 14 is provided on the surface of the first connection pipe 11 on the downstream side of the heater 12 in the direction in which the refrigerant flows during heating.
これらの第 1温度センサ 13および第 2温度センサ 14によって、 IHヒータ 12を通過し た直後の冷媒の温度を直接検出することが可能であり、 IHヒータ 12の出入口付近の 冷媒の温度差を確実に検出することが可能である。  The first temperature sensor 13 and the second temperature sensor 14 can directly detect the temperature of the refrigerant immediately after passing through the IH heater 12, and the temperature difference of the refrigerant in the vicinity of the inlet / outlet of the IH heater 12 can be assured. Can be detected.
具体的には、図 4 (a)に示される IHヒータ 12の出入口付近に設けられた第 1温度セ ンサ 13および第 2温度センサ 14によって、以下のように第 1接続管 11の内部を流れ る冷媒の温度を検出することができる。暖房時の冷媒の流れ方向 F1の場合には図 4 (b)に示されるように、第 1温度センサ 13によって IHヒータ 12の入口付近の冷媒温 度を検出できるとともに第 2温度センサ 14によって IHヒータ 12の出口付近の冷媒温 度 (40°C程度)を検出できる。また、逆サイクルデフロスト時の冷媒の流れ方向 F2の 場合には図 4 (c)に示されるように、第 2温度センサ 14によって IHヒータ 12の入口付 近の冷媒温度を検出できるとともに第 1温度センサ 13によって IHヒータ 12の出口付 近の冷媒温度 (40°C程度)を検出できる。 Specifically, the first temperature sensor 13 and the second temperature sensor 14 provided in the vicinity of the inlet / outlet of the IH heater 12 shown in FIG. 4 (a) flow in the first connection pipe 11 as follows. The temperature of the refrigerant can be detected. In the case of the flow direction F1 of the refrigerant during heating, as shown in FIG. 4 (b), the refrigerant temperature near the inlet of the IH heater 12 can be detected by the first temperature sensor 13, and the IH can be detected by the second temperature sensor 14. The refrigerant temperature (about 40 ° C) near the outlet of the heater 12 can be detected. In the case of the refrigerant flow direction F2 during reverse cycle defrost, as shown in FIG. 4 (c), the second temperature sensor 14 can detect the refrigerant temperature near the inlet of the IH heater 12 and the first temperature. Sensor 13 can detect the refrigerant temperature (around 40 ° C) near the outlet of IH heater 12.
[0056] また、第 1温度センサ 13および第 2温度センサ 14は、 IHヒータ 12のコイル 12aの外 側に設置されている。このため、コイル 12aから発生する電磁波の影響で、第 1温度 センサ 13および第 2温度センサ 14ならびにそれらの信号線にノイズが発生すること を回避することが可能になって 、る。  The first temperature sensor 13 and the second temperature sensor 14 are installed outside the coil 12a of the IH heater 12. For this reason, it is possible to avoid the occurrence of noise in the first temperature sensor 13 and the second temperature sensor 14 and their signal lines due to the influence of the electromagnetic waves generated from the coil 12a.
第 3温度センサ 15は、 IHヒータ 12の軸方向における中間位置付近に設けられて!/ヽ る。この第 3温度センサ 15によって、 IHヒータ 12の中間付近において冷媒が局所的 に過熱状態になることを確実に検出することが可能になり、冷媒の過熱を効果的に抑 制することが可能になる。  The third temperature sensor 15 is provided near the intermediate position in the axial direction of the IH heater 12. The third temperature sensor 15 can reliably detect that the refrigerant is locally overheated near the middle of the IH heater 12, and can effectively suppress overheating of the refrigerant. Become.
すなわち、図 5 (a)に示される IHヒータ 12の中間付近に設けられた第 3温度センサ 15によって、以下のように第 1接続管 11の内部を流れる冷媒の温度を検出すること ができる。例えば、暖房時の冷媒の流れ方向 F1の場合では、図 5 (b)に示されるよう に、 IHヒータ 12は、中間付近において発熱密度が高い特性を有しているので、図 5 ( c)に示されるように、冷媒の温度は、中間付近で局所的に高くなつている。そこで、 I Hヒータ 12の中間位置付近に設けられた第 3温度センサ 15によって、 IHヒータ 12の 中間付近における冷媒の温度を検出することによって、冷媒が局所的に過熱状態に なることを確実に検出することが可能になる。  That is, the temperature of the refrigerant flowing inside the first connecting pipe 11 can be detected by the third temperature sensor 15 provided near the middle of the IH heater 12 shown in FIG. 5 (a) as follows. For example, in the case of the flow direction F1 of the refrigerant during heating, as shown in FIG. 5 (b), the IH heater 12 has a high heat generation density near the middle. As shown in FIG. 4, the temperature of the refrigerant is locally high near the middle. Therefore, the third temperature sensor 15 provided near the middle position of the IH heater 12 detects the refrigerant temperature near the middle of the IH heater 12, thereby reliably detecting that the refrigerant is locally overheated. It becomes possible to do.
[0057] 例えば、冷媒が局所的に 140°Cまで過熱された場合、冷媒の一部が破壊されるお それがあるが、第 3温度センサ 15によって、冷媒が局所的に 140°Cに近づいている ことを確実に検出することが可能である。また、冷媒が局所的に 140°C近くまで上が るときには第 1接続管 11の表面は 160°C付近になるので、この対応関係を利用して、 第 3温度センサ 15は、第 1接続管 11の表面の温度力 S160°C付近であることを検出す ることによって、冷媒が局所的に 140°Cになったことを検出することが可能になってい る。 [0057] For example, if the refrigerant is locally heated to 140 ° C, a part of the refrigerant may be destroyed, but the third temperature sensor 15 causes the refrigerant to locally approach 140 ° C. It is possible to reliably detect that In addition, when the refrigerant locally rises to near 140 ° C, the surface of the first connection pipe 11 is near 160 ° C, so the third temperature sensor 15 is connected to the first connection using this correspondence. Detect the temperature force of the surface of the tube 11 near S160 ° C This makes it possible to detect that the refrigerant has locally reached 140 ° C.
以上の第 1温度センサ 13、第 2温度センサ 14、第 3温度センサ 15は、第 1接続管 1 1の表面に設けられている。これらの温度センサ 13、 14、 15が第 1接続管 11の表面 温度を測定することによって、表面温度に対応する第 1接続管 11の内部の冷媒の温 度を間接的に検出することが可能である。なお、第 1接続管 11の表面温度と冷媒温 度との対応関係は、あらかじめ実験などによって求められ、その表面温度と冷媒温度 との対応関係につ 、てのマップが制御部 17の記憶部にあら力じめ記憶されて!、る。  The first temperature sensor 13, the second temperature sensor 14, and the third temperature sensor 15 described above are provided on the surface of the first connection pipe 11. These temperature sensors 13, 14, and 15 measure the surface temperature of the first connecting pipe 11, so that it is possible to indirectly detect the temperature of the refrigerant inside the first connecting pipe 11 corresponding to the surface temperature. It is. Note that the correspondence between the surface temperature of the first connecting pipe 11 and the refrigerant temperature is obtained in advance by experiments or the like, and the map of the correspondence between the surface temperature and the refrigerant temperature is a storage unit of the control unit 17. Remember me! RU
[0058] 制御部 17は、 1個又は複数の温度センサ 13、 14、 15によって検出された冷媒の温 度に基づいて、 IHヒータ 12の運転を制御する。 IHヒータ 12の運転制御は、交流電 源 18力もの電力供給の制御、およびスィッチ 19の ONZOFF制御によって、行われ る。これによつて、 IHヒータ 12の過熱を抑制することによって冷媒の破壊のおそれを 低減することが可能である。 The control unit 17 controls the operation of the IH heater 12 based on the refrigerant temperature detected by the one or more temperature sensors 13, 14, 15. The operation control of the IH heater 12 is performed by controlling the power supply of 18 AC power and the ONZOFF control of the switch 19. As a result, it is possible to reduce the risk of refrigerant destruction by suppressing overheating of the IH heater 12.
制御部 17は、第 1〜第 3温度センサ 13、 14、 15によって検出された冷媒の温度に 基づいて、 IHヒータ 12の出力を制御する。具体的には、制御部 17は、第 1〜第 3温 度センサ 13、 14、 15によって検出された冷媒の温度に基づいて、交流電源 18から の電力供給を制御することによって、 IHヒータ 12の出力を制御する。  The control unit 17 controls the output of the IH heater 12 based on the refrigerant temperature detected by the first to third temperature sensors 13, 14, 15. Specifically, the control unit 17 controls the power supply from the AC power source 18 based on the temperature of the refrigerant detected by the first to third temperature sensors 13, 14, 15, so that the IH heater 12 Control the output of.
く室外機 2の構成 >  Configuration of outdoor unit 2>
室外機 2は、図 2に示されるように、冷媒を圧縮する圧縮機 22と、冷媒と室外空気と の間の熱交換を行う室外熱交換器 23と、室外熱交換器 23を通過する空気流れを発 生する室外ファン 24と、冷媒の循環方向を反転させる四路切換弁 25と、電磁膨張弁 26とを備えている。室外機 2は、四路切換弁 25を切り換えることによって、冷媒回路 1 0の内部における冷媒の流れを反転させることができる。  As shown in FIG. 2, the outdoor unit 2 includes a compressor 22 that compresses refrigerant, an outdoor heat exchanger 23 that performs heat exchange between the refrigerant and outdoor air, and air that passes through the outdoor heat exchanger 23. An outdoor fan 24 that generates a flow, a four-way switching valve 25 that reverses the circulation direction of the refrigerant, and an electromagnetic expansion valve 26 are provided. The outdoor unit 2 can reverse the refrigerant flow in the refrigerant circuit 10 by switching the four-way switching valve 25.
[0059] <室内機 3の構成 > [0059] <Configuration of indoor unit 3>
室内機 3は、図 2に示されるように、室内熱交換器 27と、室内熱交換器 27を通過す る空気流れを発生させるクロスフローファン 28とを有して 、る。室内熱交^^ 27は、 四路切換弁 25によって冷媒回路 10の内部の冷媒の流れる方向を反転させることに よって、冷媒の凝縮および蒸発の両方を行うことが可能である。これにより、室内熱交 は、冷媒配管 5、 6を通して室外機 2から供給される冷媒と室内空気との間で 熱交換を行うことにより、暖房および冷房を行うことが可能である。 As shown in FIG. 2, the indoor unit 3 includes an indoor heat exchanger 27 and a cross flow fan 28 that generates an air flow passing through the indoor heat exchanger 27. The indoor heat exchanger 27 can perform both condensation and evaporation of the refrigerant by reversing the flow direction of the refrigerant inside the refrigerant circuit 10 by the four-way switching valve 25. This allows indoor heat exchange Can perform heating and cooling by exchanging heat between the refrigerant supplied from the outdoor unit 2 through the refrigerant pipes 5 and 6 and the room air.
<温度制御の説明 >  <Explanation of temperature control>
以上のように構成された空気調和機 1は、冷房運転、暖房運転、正サイクルデフ口 スト運転、ならびに逆サイクルデフロスト運転を行うことが可能である。なお、各モード の運転にっ 、ての説明は、後段の項目で詳述されて 、る。  The air conditioner 1 configured as described above can perform a cooling operation, a heating operation, a forward cycle differential opening operation, and a reverse cycle defrosting operation. The explanation of the operation in each mode will be described in detail in the subsequent items.
[0060] ここで、冷媒加熱装置 4は、暖房運転、正サイクルデフロスト運転、ならびに逆サイク ルデフロスト運転のときに、冷媒を加熱するために IHヒータ 12を作動させる。このとき 、制御部 17は、冷媒の過熱を抑制できるように、 IHヒータ 12の出力制御および ON ZOFF制御を確実に行うために、以下のような冷媒の温度制御を行って 、る。 Here, the refrigerant heating device 4 operates the IH heater 12 to heat the refrigerant during the heating operation, the forward cycle defrost operation, and the reverse cycle defrost operation. At this time, the control unit 17 performs the following temperature control of the refrigerant in order to surely perform the output control and the ON ZOFF control of the IH heater 12 so as to suppress overheating of the refrigerant.
(IHヒータ 12の出力制御について)  (About output control of IH heater 12)
制御部 17は、複数の温度センサ 13、 14、 15のうちのいずれ力 1つが所定の第 1温 度 T1以上になった場合に IHヒータ 12の出力を低下させる。なお、少なくとも 1個の温 度センサ 13、 14、 15が所定の第 1温度 T1以上の温度を検出した場合に、 IHヒータ 12の出力を低下させればよいので、温度センサ 13、 14、 15のうちのいずれ力 1つだ け残し、他の温度センサを省略してもよい。  The control unit 17 reduces the output of the IH heater 12 when any one of the plurality of temperature sensors 13, 14, and 15 becomes equal to or higher than a predetermined first temperature T1. Note that when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1, the output of the IH heater 12 may be reduced. Therefore, the temperature sensors 13, 14, 15 Only one of these forces may be left and the other temperature sensors may be omitted.
[0061] 第 1温度 T1は、 80〜: L00°Cである。第 1温度 T1は、その冷媒の破壊温度に近い温 度範囲である 80〜100°C力 第 1温度 T1として、設定されている。 [0061] The first temperature T1 is 80 to: L00 ° C. The first temperature T1 is set as a 80-100 ° C force first temperature T1, which is a temperature range close to the breakdown temperature of the refrigerant.
(IHヒータ 12の ONZOFF制御につ!/、て)  (On / off control of IH heater 12! /)
制御部 17は、複数の温度センサ(13、 14、 15)のうちのいずれ力 1つが所定の第 2 温度 T2以上になった場合に IHヒータ 12を停止させる。なお、少なくとも 1個の温度セ ンサ 13、 14、 15が所定の第 2温度 T2以上の温度を検出した場合に、 IHヒータ 12停 止させればよいので、温度センサ 13、 14、 15のうちのいずれ力 1つだけ残し、他の 温度センサを省略してもよ!/、。  The control unit 17 stops the IH heater 12 when any one of the plurality of temperature sensors (13, 14, 15) becomes equal to or higher than a predetermined second temperature T2. If at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined second temperature T2, the IH heater 12 may be stopped. You can leave only one of them and omit the other temperature sensor! /.
第 2温度 T2は、 140〜160°Cである、第 2温度 T2は、第 1温度 T1よりも高い温度で あって、その冷媒の破壊温度に非常に近い温度範囲である 140〜160°C力 第 2温 度 T2として、設定されている。  The second temperature T2 is 140 to 160 ° C. The second temperature T2 is higher than the first temperature T1 and is in a temperature range very close to the breakdown temperature of the refrigerant. 140 to 160 ° C Force Set as the second temperature T2.
[0062] また、制御部 17は、複数の温度センサ 13、 14、 15によって検出された第 1接続管 11に流れる冷媒の温度に基づいて、 IHヒータ 12の停止だけでなぐ冷媒の温度第 2 温度 T2以下まで低下したことを検出したときに IHヒータ 12の始動を制御することも可 能である。したがって、制御部 17は、 IHヒータ 12の始動および停止を切り換え制御 することも可會である。 [0062] Further, the control unit 17 includes the first connection pipes detected by the plurality of temperature sensors 13, 14, 15. It is also possible to control the start of the IH heater 12 when it is detected based on the temperature of the refrigerant flowing through the refrigerant 11 that the refrigerant temperature has dropped to the second temperature T2 or less just by stopping the IH heater 12. Therefore, the control unit 17 can also switch and control the start and stop of the IH heater 12.
(IHヒータ 12の 2段階制御につ 、て)  (Two-step control of IH heater 12)
第 1実施形態の制御部 17は、少なくとも 1個の温度センサ 13、 14、 15が所定の第 1温度 T1以上の温度を検出した場合に IHヒータ 12の出力を低下させ、所定の第 2 温度 T2以上の温度を検出した場合に IHヒータ 12を停止させるように、段階的に制 御する。  The control unit 17 of the first embodiment reduces the output of the IH heater 12 when the at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1, and sets the predetermined second temperature. Step by step to stop the IH heater 12 when a temperature above T2 is detected.
例えば、図 6 (a)〖こ示されるように、複数の温度センサ 13、 14、 15のうちのいずれか 1つが冷媒の温度が第 1温度 T1に達したことを検出した場合、制御部 17は、図 6 (b) に示されるように、 IHヒータ 12の出力を所定のヒータ容量まで下げる。さらに、温度セ ンサ 13、 14、 15が冷媒の温度が第 2温度 T2に達したことを検出した場合、制御部 1 7は、図 6 (b)に示されるように、 IHヒータ 12を停止して、ヒータ容量を 0にする。以上 のように、冷媒の温度に基づいて、 IHヒータ 12の出力を 2段階に制御することが可能 である。なお、ヒータ出力を低下させる基準となる第 1温度 T1を複数設定して、 3段階 以上の多段階制御を行うことも可能である。  For example, as shown in FIG. 6 (a), when any one of the plurality of temperature sensors 13, 14, 15 detects that the temperature of the refrigerant has reached the first temperature T1, the control unit 17 As shown in FIG. 6B, the output of the IH heater 12 is reduced to a predetermined heater capacity. Further, when the temperature sensors 13, 14, and 15 detect that the refrigerant temperature has reached the second temperature T2, the control unit 17 stops the IH heater 12 as shown in FIG. 6 (b). Then, set the heater capacity to 0. As described above, the output of the IH heater 12 can be controlled in two stages based on the refrigerant temperature. It is also possible to set multiple first temperatures T1, which serve as a reference for reducing the heater output, and perform multi-step control of three or more steps.
<空気調和機 1の暖房運転 >  <Heating operation of air conditioner 1>
暖房運転時は、四路切換弁 25が図 2において実線で示す状態に保持され、冷媒 は、図 2に示される冷媒回路 10を反時計回りに循環する。まず、圧縮機 22によって ガス冷媒を圧縮してから高温高圧の状態にする。ついで、高温高圧のガス冷媒は、 四路切換弁 25、第 2接続管 16および冷媒配管 6を介して、室内機 3の室内熱交換器 27に流入し、室内空気と熱交換して凝縮'液ィ匕する。このとき、冷媒の凝縮によって 加熱された室内空気は、クロスフローファン 28によって室内空間 Rへと吹き出され、 室内空間 Rを暖房する。ついで、室内熱交 において液ィ匕した冷媒は、冷媒配 管 5を通って冷媒加熱装置 4の第 1接続管 11へ流入し、 IHヒータ 12によって加熱さ れる。 IHヒータ 12によって加熱された冷媒は、室外機 2の電磁膨張弁 26を通過する ことによって膨張し、所定の低圧まで減圧される。そののち、室外機 2の室外熱交換 器 23において、膨張した冷媒は、室外空気と熱交換して蒸発する。このとき、室外フ アン 24よって室外熱交換器 23を通過する空気流れが発生している。そして、室外熱 交換器 23で蒸発して気化した冷媒は、四路切換弁 25を介して圧縮機 22に吸入され る。 During the heating operation, the four-way selector valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant circulates counterclockwise in the refrigerant circuit 10 shown in FIG. First, the gas refrigerant is compressed by the compressor 22 and then brought to a high temperature and high pressure state. Next, the high-temperature and high-pressure gas refrigerant flows into the indoor heat exchanger 27 of the indoor unit 3 through the four-way switching valve 25, the second connection pipe 16, and the refrigerant pipe 6, and condenses by exchanging heat with the indoor air. Liquid. At this time, the indoor air heated by the condensation of the refrigerant is blown out into the indoor space R by the cross flow fan 28 to heat the indoor space R. Next, the refrigerant that has become liquid in the indoor heat exchange flows into the first connection pipe 11 of the refrigerant heating device 4 through the refrigerant pipe 5 and is heated by the IH heater 12. The refrigerant heated by the IH heater 12 expands by passing through the electromagnetic expansion valve 26 of the outdoor unit 2 and is depressurized to a predetermined low pressure. After that, outdoor heat exchange of outdoor unit 2 In the vessel 23, the expanded refrigerant evaporates by exchanging heat with outdoor air. At this time, an air flow passing through the outdoor heat exchanger 23 is generated by the outdoor fan 24. The refrigerant evaporated and evaporated in the outdoor heat exchanger 23 is sucked into the compressor 22 through the four-way switching valve 25.
[0064] <空気調和機 1の冷房運転 >  [0064] <Cooling operation of air conditioner 1>
一方、冷房運転時は、四路切換弁 25が図 2において破線で示す状態に保持され、 冷媒は、図 2に示される冷媒回路 10を時計回りに循環する。圧縮機 22から吐出され た高温高圧のガス冷媒は、四路切換弁 25を介して室外熱交換器 23に流入し、室外 ファン 24によって室外熱交 に強制的に送られた室外空気と熱交換して凝縮- 液化する。液化した冷媒は、室外膨張弁 13で所定の低圧に減圧され、液冷媒側の 冷媒配管 5を通って室内機 3に流入する。室内機 3において、冷媒は、室内熱交換 器 27で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室 内空気は、クロスフローファン 28によって室内空間 Rへと吹き出され、室内空間 Rを 冷房する。また、室内熱交換器 27で蒸発して気化した冷媒は、ガス冷媒側の冷媒配 管 6を通って室外機 2に戻り、圧縮機 22に吸入される。  On the other hand, during the cooling operation, the four-way switching valve 25 is held in a state indicated by a broken line in FIG. 2, and the refrigerant circulates clockwise through the refrigerant circuit 10 shown in FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 through the four-way switching valve 25, and exchanges heat with the outdoor air that is forcibly sent to the outdoor heat exchanger by the outdoor fan 24. To condense and liquefy. The liquefied refrigerant is decompressed to a predetermined low pressure by the outdoor expansion valve 13 and flows into the indoor unit 3 through the refrigerant pipe 5 on the liquid refrigerant side. In the indoor unit 3, the refrigerant evaporates by exchanging heat with indoor air in the indoor heat exchanger 27. Then, the indoor air cooled by the evaporation of the refrigerant is blown out into the indoor space R by the cross flow fan 28 to cool the indoor space R. The refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
[0065] <空気調和機 1の逆サイクルデフロスト運転 >  [0065] <Reverse cycle defrost operation of air conditioner 1>
室外空気が 0°C未満の気温の場合、室外機 2の室外熱交換器 23の外表面に霜が 付くことがある。このような場合、空気調和機 1は、除霜のために逆サイクルデフロスト 運転を行う。逆サイクルデフロスト運転時には、基本的には、上記の冷房運転と同様 に、四路切換弁 25が図 2において破線で示す状態に保持され、冷媒は、図 2に示さ れる冷媒回路 10を時計回りに循環する。圧縮機 22から吐出された高温高圧のガス 冷媒は、四路切換弁 25を介して室外熱交 23に流入し、凝縮'液化する。  When the outdoor air temperature is less than 0 ° C, frost may form on the outer surface of the outdoor heat exchanger 23 of the outdoor unit 2. In such a case, the air conditioner 1 performs a reverse cycle defrost operation for defrosting. During the reverse cycle defrost operation, basically, as in the cooling operation described above, the four-way switching valve 25 is maintained in the state indicated by the broken line in FIG. 2, and the refrigerant rotates the refrigerant circuit 10 shown in FIG. It circulates to. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the outdoor heat exchanger 23 via the four-way switching valve 25 and condenses and liquefies.
この逆サイクルデフロスト運転時では、冷媒の凝縮熱によって、室外熱交換器 23の 外表面に付着する霜を溶かすことが可能である。このとき、室外ファン 24は停止して いる。一方、室内機 3側では、クロスフローファン 28を停止した状態で、室内熱交換 器 27によって冷媒を蒸発させる。室内熱交換器 27で蒸発して気化した冷媒は、ガス 冷媒側の冷媒配管 6を通って室外機 2に戻り、圧縮機 22に吸入される。  During this reverse cycle defrost operation, the frost adhering to the outer surface of the outdoor heat exchanger 23 can be melted by the heat of condensation of the refrigerant. At this time, the outdoor fan 24 is stopped. On the other hand, on the indoor unit 3 side, the refrigerant is evaporated by the indoor heat exchanger 27 while the cross flow fan 28 is stopped. The refrigerant evaporated and vaporized in the indoor heat exchanger 27 returns to the outdoor unit 2 through the refrigerant pipe 6 on the gas refrigerant side, and is sucked into the compressor 22.
[0066] このとき、冷媒加熱装置 4では、冷媒配管 5に接続された第 1接続管 11を流れる液 冷媒を、 IHヒータ 12によって加熱することによって、除霜能力を向上させ、デフロスト 時間を短縮することが可能になる。 At this time, in the refrigerant heating device 4, the liquid flowing through the first connection pipe 11 connected to the refrigerant pipe 5 By heating the refrigerant with the IH heater 12, it is possible to improve the defrosting capacity and shorten the defrost time.
制御部 17は、冷媒回路 10が逆サイクルデフロスト運転をするときに 40〜60°C上昇 したことを少なくとも 1個の温度センサ 13、 14、 15が検出した場合に IHヒータ 12を停 止させることが可會である。  The control unit 17 stops the IH heater 12 when at least one temperature sensor 13, 14, 15 detects that the refrigerant circuit 10 has risen by 40 to 60 ° C when performing reverse cycle defrost operation. Is pretty.
<空気調和機 1の正サイクルデフロスト運転 >  <Direct cycle defrost operation of air conditioner 1>
室外空気が 0°C以上の気温の場合、空気調和機 1は、除霜をしながら室内空間 R の暖房を行なう正サイクルデフロスト運転を行う。正サイクルデフロスト運転時には、 基本的には、上記の暖房運転と同様に、四路切換弁 25が図 2において実線で示す 状態に保持され、冷媒は、図 2に示される冷媒回路 10を反時計回りに循環する。  When the outdoor air is at a temperature of 0 ° C or higher, the air conditioner 1 performs a positive cycle defrost operation in which the indoor space R is heated while defrosting. During the forward cycle defrost operation, basically, as in the heating operation described above, the four-way switching valve 25 is maintained in the state indicated by the solid line in FIG. 2, and the refrigerant counterclocks the refrigerant circuit 10 shown in FIG. Circulate around.
[0067] 正サイクルデフロスト運転では、圧縮機 22は、能力を小さくして運転される。圧縮機 22から吐出された高温高圧のガス冷媒は、四路切換弁 25を介して室内熱交換器 27 に流入し、凝縮 '液ィ匕しながら、クロスフローファン 28を作動することにより、室内空間 Rの暖房を行なう。 [0067] In the forward cycle defrost operation, the compressor 22 is operated with a reduced capacity. The high-temperature and high-pressure gas refrigerant discharged from the compressor 22 flows into the indoor heat exchanger 27 through the four-way switching valve 25, and the cross-flow fan 28 is operated while condensing and liquid. Heat space R.
凝縮'液化された冷媒は、冷媒加熱装置 4の IHヒータ 12により加熱された後、室外 熱交換器 23に流れる。加熱された冷媒が室外熱交換器 23に流入することによって、 室外熱交 の外表面に付着する霜を溶かすことが可能である。このとき、室外 ファン 24は運転している。  The condensed and liquefied refrigerant is heated by the IH heater 12 of the refrigerant heating device 4 and then flows to the outdoor heat exchanger 23. When the heated refrigerant flows into the outdoor heat exchanger 23, it is possible to melt frost adhering to the outer surface of the outdoor heat exchanger. At this time, the outdoor fan 24 is operating.
制御部 17は、冷媒回路 10が正サイクルデフロスト運転をするときに 40〜60°C上昇 したことを少なくとも 1個の温度センサ 13、 14、 15が検出した場合に IHヒータ 12を停 止させることが可會である。  The control unit 17 stops the IH heater 12 when at least one of the temperature sensors 13, 14, 15 detects that the refrigerant circuit 10 has risen by 40 to 60 ° C when performing the positive cycle defrost operation. Is pretty.
[0068] <第 1実施形態の特徴 > <Features of First Embodiment>
(1)  (1)
第 1実施形態の冷媒加熱装置 4は、冷媒加熱用の IHヒータ 12の他に、冷媒回路 1 0途中の第 1接続管 11を流れる冷媒の温度を検出する少なくとも 1個の温度センサ 1 3、 14、 15を備えているので、外部の室外機等の温度センサに依存せずに冷媒の温 度を確実に検出可能であり、かつ、冷媒の過熱を抑制することが可能である。  The refrigerant heating device 4 of the first embodiment includes, in addition to the IH heater 12 for refrigerant heating, at least one temperature sensor 13 that detects the temperature of the refrigerant flowing through the first connection pipe 11 in the refrigerant circuit 10. Since 14 and 15 are provided, it is possible to reliably detect the temperature of the refrigerant without depending on a temperature sensor of an external outdoor unit or the like, and to suppress overheating of the refrigerant.
(2) 第 1実施形態の冷媒加熱装置 4では、温度センサが IHヒータ 12の上流側および下 流側にそれぞれ設けられた第 1温度センサ 13および第 2温度センサ 14を有している ので、冷媒の流れる方向が順逆いずれの場合でも、すなわち、暖房時および逆サイ クルデフロスト運転時のいずれの場合でも IHヒータ 12を通過した直後の冷媒の温度 を直接検出することが可能である。また、 IHヒータ 12の出入口付近の冷媒の温度差 を確実に検出することが可能である。 (2) In the refrigerant heating device 4 of the first embodiment, the temperature sensor has the first temperature sensor 13 and the second temperature sensor 14 provided on the upstream side and the downstream side of the IH heater 12, respectively. It is possible to directly detect the temperature of the refrigerant immediately after passing through the IH heater 12 regardless of whether the direction is forward or reverse, that is, when heating or reverse cycle defrosting. In addition, it is possible to reliably detect the temperature difference of the refrigerant near the entrance / exit of the IH heater 12.
[0069] (3) [0069] (3)
第 1実施形態の冷媒加熱装置 4では、温度センサが IHヒータ 12の軸方向における 中間位置付近に設けられた第 3温度センサ 15をさらに有して 、るので、 IHヒータ 12 の中間付近おける冷媒の局所的な過熱を検出することが可能である。これにより、冷 媒の過熱を効果的に抑制することが可能である。  In the refrigerant heating device 4 of the first embodiment, the temperature sensor further includes the third temperature sensor 15 provided in the vicinity of the intermediate position in the axial direction of the IH heater 12. It is possible to detect local overheating. Thereby, it is possible to effectively suppress the overheating of the cooling medium.
(4)  (Four)
第 1実施形態の冷媒加熱装置 4では、温度センサ 13、 14、 15が第 1接続管 11の 表面に設けられているので、第 1接続管 11を介して冷媒の温度を検出することが可 能である。  In the refrigerant heating device 4 of the first embodiment, since the temperature sensors 13, 14, and 15 are provided on the surface of the first connection pipe 11, it is possible to detect the temperature of the refrigerant through the first connection pipe 11. Noh.
(5)  (Five)
第 1実施形態の冷媒加熱装置 4は、 1個又は複数の温度センサ 13、 14、 15によつ て検出された冷媒の温度に基づ!/、て、 IHヒータ 12の運転を制御する制御部 17をさ らに備えて ヽるので、冷媒の過熱を抑制するように IHヒータ 12の運転を制御すること によって冷媒の破壊のおそれを低減することが可能である。  The refrigerant heating device 4 of the first embodiment is a control that controls the operation of the IH heater 12 based on the temperature of the refrigerant detected by one or more temperature sensors 13, 14, 15. Since the portion 17 is further provided, it is possible to reduce the risk of refrigerant destruction by controlling the operation of the IH heater 12 so as to suppress overheating of the refrigerant.
[0070] (6) [0070] (6)
第 1実施形態の冷媒加熱装置 4では、制御部 17が温度センサ 13、 14、 15によって 検出された冷媒の温度に基づいて、 IHヒータ 12の出力を制御するので、冷媒がその 破壊温度に近づくまでに、 IHヒータ 12の出力を低減することが可能である。  In the refrigerant heating device 4 of the first embodiment, since the control unit 17 controls the output of the IH heater 12 based on the temperature of the refrigerant detected by the temperature sensors 13, 14, 15, the refrigerant approaches its destruction temperature. By this, the output of the IH heater 12 can be reduced.
(7)  (7)
第 1実施形態では、冷媒を加熱するヒータとして、 IHヒータ 12を採用しているので、 冷媒を迅速に加熱することが可能である。  In the first embodiment, since the IH heater 12 is employed as the heater for heating the refrigerant, the refrigerant can be heated quickly.
(8) 第 1実施形態の冷媒加熱装置 4では、第 1温度センサ 13および第 2温度センサ 14 が IHヒータ 12のコイル 12aの外側に設置されて!、るので、コイル 12aから発生する電 磁波の影響で温度センサ 13、 14およびその信号線にノイズ発生することを回避する ことが可能である。 (8) In the refrigerant heating device 4 of the first embodiment, the first temperature sensor 13 and the second temperature sensor 14 are installed outside the coil 12a of the IH heater 12! Therefore, due to the influence of electromagnetic waves generated from the coil 12a, It is possible to avoid the generation of noise in the temperature sensors 13 and 14 and their signal lines.
[0071] (9) [0071] (9)
第 1実施形態の冷媒加熱装置 4では、制御部 17が少なくとも 1個の温度センサ 13、 14、 15が所定の第 1温度 T1以上の温度を検出した場合に、 IHヒータ 12の出力を低 下させるので、冷媒がその破壊温度に近づくまでに、 IHヒータ 12の出力を低減させ ることが可能である。  In the refrigerant heating device 4 of the first embodiment, when the control unit 17 detects at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1, the output of the IH heater 12 is reduced. Therefore, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature.
(10)  (Ten)
第 1実施形態の冷媒加熱装置 4では、制御部 17が複数の温度センサ 13、 14、 15 のうちのいずれか 1つが所定の第 1温度 T1以上になった場合に IHヒータ 12の出力 を低下させるので、冷媒がその破壊温度に近づくまでに、 IHヒータ 12の出力を低減 することが可能である。とくに、複数の温度センサ 13、 14、 15を用いることによって、 温度検出の信頼性が向上するとともに、 IHヒータ 12の中間付近または下流側等に おける冷媒の局所的な過熱を確実に抑制することが可能である。  In the refrigerant heating device 4 of the first embodiment, the control unit 17 reduces the output of the IH heater 12 when any one of the plurality of temperature sensors 13, 14, 15 reaches a predetermined first temperature T1 or higher. Therefore, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature. In particular, the reliability of temperature detection is improved by using multiple temperature sensors 13, 14, and 15, and local overheating of the refrigerant near the middle or downstream side of the IH heater 12 is reliably suppressed. Is possible.
[0072] (10) [0072] (10)
第 1実施形態の冷媒加熱装置 4では、第 1温度 T1が 80〜: LOO°Cであるので、冷媒 の温度がその破壊温度に近づいたときに、制御部 17は、 IHヒータ 12の出力を低下 させる制御を正確に行うことが可能になる。  In the refrigerant heating device 4 of the first embodiment, since the first temperature T1 is 80 to: LOO ° C., the control unit 17 outputs the output of the IH heater 12 when the refrigerant temperature approaches its destruction temperature. It is possible to accurately perform the control to be lowered.
(11)  (11)
第 1実施形態の冷媒加熱装置 4では、制御部 17は、少なくとも 1個の温度センサ 13 、 14、 15が所定の第 2温度 T2以上の温度を検出した場合に、 IHヒータ 12を停止さ せるので、冷媒がその破壊温度に近づくまでに、 IHヒータ 12を正確に停止させること が可能である。  In the refrigerant heating device 4 of the first embodiment, the control unit 17 stops the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than a predetermined second temperature T2. Therefore, the IH heater 12 can be accurately stopped before the refrigerant approaches its destruction temperature.
(12)  (12)
第 1実施形態の冷媒加熱装置 4では、制御部 17が複数の温度センサ 13、 14、 15 のうちのいずれか 1つが所定の第 2温度 T2以上になった場合に IHヒータ 12を停止さ せるので、冷媒がその破壊温度に近づくまでに、 IHヒータ 12を停止させることが可能 である。とくに、複数の温度センサ 13、 14、 15を用いることによって、温度検出の信 頼性が向上するとともに、 IHヒータ 12の中間付近または下流側等における冷媒の局 所的な過熱を確実に抑制することが可能である。 In the refrigerant heating device 4 of the first embodiment, the control unit 17 stops the IH heater 12 when any one of the plurality of temperature sensors 13, 14, and 15 becomes equal to or higher than the predetermined second temperature T2. Therefore, the IH heater 12 can be stopped before the refrigerant approaches its destruction temperature. In particular, the use of multiple temperature sensors 13, 14, and 15 improves the reliability of temperature detection and reliably suppresses local overheating of the refrigerant near the middle or downstream of the IH heater 12. It is possible.
[0073] (13) [0073] (13)
第 1実施形態の冷媒加熱装置 4では、第 2温度 T2が 140〜160°Cであるので、冷 媒の温度がその破壊温度に近づいたときに、制御部 17は、 IHヒータ 12の出力を停 止させる制御を正確に行うことが可能になる。  In the refrigerant heating device 4 of the first embodiment, since the second temperature T2 is 140 to 160 ° C., the control unit 17 outputs the output of the IH heater 12 when the temperature of the refrigerant approaches its destruction temperature. It is possible to accurately perform the control to stop.
(14)  (14)
第 1実施形態の冷媒加熱装置 4では、制御部 17は、少なくとも 1個の温度センサ 13 、 14、 15が所定の第 1温度 T1以上の温度を検出した場合に IHヒータ 12の出力を低 下させ、所定の第 2温度 T2以上の温度を検出した場合に IHヒータ 12を停止させるよ うに、段階的に制御するので、冷媒の過熱を確実に抑制することが可能である。  In the refrigerant heating device 4 of the first embodiment, the control unit 17 reduces the output of the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a temperature equal to or higher than the predetermined first temperature T1. Since the IH heater 12 is controlled stepwise when a temperature equal to or higher than the predetermined second temperature T2 is detected, overheating of the refrigerant can be reliably suppressed.
(15)  (15)
第 1実施形態の冷媒加熱装置 4では、制御部 17は、冷媒回路 10が正サイクルまた は逆サイクルのデフロスト運転をするときに 40〜60°C上昇したことを少なくとも 1個の 温度センサ 13、 14、 15が検出した場合に IHヒータ 12を停止させるので、デフロスト 運転時における冷媒の過熱を確実に抑制することが可能である。  In the refrigerant heating device 4 of the first embodiment, the control unit 17 indicates that the refrigerant circuit 10 has risen by 40 to 60 ° C. when performing the defrost operation in the forward cycle or the reverse cycle, and at least one temperature sensor 13, Since the IH heater 12 is stopped when 14 and 15 are detected, it is possible to reliably suppress overheating of the refrigerant during the defrost operation.
[0074] (16) [0074] (16)
第 1実施形態の冷媒加熱装置 4では、制御部 17は、複数の温度センサ 13、 14、 1 5によって検出された第 1接続管 11に流れる冷媒の温度に基づ!/、て、 IHヒータ 12の 始動および停止を切り換え制御することが可能であるので、冷媒加熱装置 4は、外部 からの温度情報等を受けずに、単独で、 IHヒータ 12の始動、停止等の制御を行うこ とが可能である。  In the refrigerant heating device 4 of the first embodiment, the control unit 17 is based on the temperature of the refrigerant flowing through the first connection pipe 11 detected by the plurality of temperature sensors 13, 14, 15 and! Therefore, the refrigerant heating device 4 can control the start and stop of the IH heater 12 independently without receiving temperature information from the outside. Is possible.
<第 1実施形態の変形例 >  <Modification of the first embodiment>
(A)  (A)
第 1実施形態では、温度センサ 13、 14、 15が第 1接続管 11の表面に設けられてい る力 本発明はこれに限定されるものではなぐ温度センサ 13、 14、 15を、第 1接続 管 11の内部に設けてもよい。この場合、温度センサが冷媒に直接接触することによ つて、冷媒の温度を精度良く検出することが可能である。 In the first embodiment, the force that the temperature sensors 13, 14, and 15 are provided on the surface of the first connection pipe 11. The present invention is not limited to this, and the temperature sensors 13, 14, and 15 are connected to the first connection pipe 11 in the first connection. It may be provided inside the tube 11. In this case, the temperature of the refrigerant can be detected with high accuracy by the temperature sensor being in direct contact with the refrigerant.
[0075] (B)  [0075] (B)
第 1実施形態では、第 1温度 T1として、冷媒の種類の基づく所定の数値範囲を予 め設定している力 本発明はこれに限定されるものではなぐ第 1温度 T1として、 IHヒ ータ 12による加熱前の冷媒の温度に所定の上昇温度である 20〜40°Cをカ卩えた温 度を採用してもよく、この場合も冷媒の温度に基づ 、て IHヒータ 12の出力を低下さ せる制御を正確に行うことが可能である。  In the first embodiment, the first temperature T1 is a force that presets a predetermined numerical range based on the type of refrigerant. The present invention is not limited to this, and the first temperature T1 is the IH heater. A temperature obtained by adding a predetermined temperature rise of 20 to 40 ° C to the temperature of the refrigerant before heating by 12 may be adopted, and in this case as well, the output of the IH heater 12 is based on the temperature of the refrigerant. It is possible to accurately control the reduction.
(C)  (C)
さらに、他の変形例として、第 1温度 T1として、冷媒の温度の所定時間ごとの変化 量に 20〜40°Cをカ卩えた温度を採用してもよぐこの場合も冷媒の温度に基づいて IH ヒータ 12の出力を低下させる制御を正確に行うことが可能である。  Furthermore, as another modification, a temperature obtained by adding 20 to 40 ° C to the amount of change in the refrigerant temperature every predetermined time may be adopted as the first temperature T1, in this case also based on the refrigerant temperature. Therefore, it is possible to accurately control the output of the IH heater 12 to be lowered.
[0076] (D) [0076] (D)
第 1実施形態では、 IHヒータ 12を停止させる基準となる第 2温度 T2として、冷媒の 種類の基づく所定の数値範囲を予め設定しているが、本発明はこれに限定されるも のではなぐ制御部 17は、過渡的に 40〜60°C上昇したことを少なくとも 1個の温度セ ンサ 13、 14、 15が検出した場合に IHヒータ 12を停止させるようにしてもよい。この場 合も冷媒の温度に基づいて IHヒータ 12の出力を停止させる制御を正確に行うことが 可能である。  In the first embodiment, a predetermined numerical range based on the type of refrigerant is set in advance as the second temperature T2 that serves as a reference for stopping the IH heater 12, but the present invention is not limited to this. The control unit 17 may stop the IH heater 12 when at least one temperature sensor 13, 14, 15 detects a transient increase of 40 to 60 ° C. In this case as well, it is possible to accurately perform control to stop the output of the IH heater 12 based on the refrigerant temperature.
例えば、図 7 (a)に示されるように、 IHヒータ 12によって冷媒を加熱している間に、 冷媒の温度が徐々に上昇していくが、所定の温度 ΔΤだけ上昇したことを少なくとも 1 個の温度センサ 13、 14、 15が検出するごとに、制御部 17は、図 7 (b)に示されるよう に IHヒータ 12の出力を所定のヒータ容量分だけ低下させていくように制御し、過渡的 に第 2温度 T240〜60°Cだけ上昇したことを少なくとも 1個の温度センサ 13、 14、 15 が検出した場合に IHヒータ 12を停止させるように制御することも可能である。  For example, as shown in FIG. 7 (a), while the refrigerant is being heated by the IH heater 12, the temperature of the refrigerant gradually rises, but at least one of the facts that it has risen by a predetermined temperature ΔΤ. Each time the temperature sensors 13, 14, and 15 are detected, the control unit 17 controls the output of the IH heater 12 to be reduced by a predetermined heater capacity as shown in FIG. It is also possible to control the IH heater 12 to stop when at least one temperature sensor 13, 14, 15 detects that the second temperature T240-60 ° C has risen transiently.
[0077] (E) [0077] (E)
第 1実施形態では、 IHヒータ 12の上流側および下流側のそれぞれに第 1温度セン サ 13および第 2温度センサ 14が設けられている力 IHヒータ 12の上流側および下 流側うちのいずれか一方に、温度センサを設けておけば、 IHヒータ 12を流れる冷媒 の温度を正確に検出することが可能である。 In the first embodiment, the force at which the first temperature sensor 13 and the second temperature sensor 14 are provided on the upstream side and the downstream side of the IH heater 12, respectively. If a temperature sensor is provided on one of the flow sides, the temperature of the refrigerant flowing through the IH heater 12 can be accurately detected.
〔第 2実施形態〕  [Second Embodiment]
第 1実施形態では、液状態の冷媒が流れる第 1接続管 11に温度センサ 13、 14、 1 5を設けている力 本発明はこれに限定されるものではなぐ冷媒の温度を検出する 温度センサの配置を適宜変更することが可能である。  In the first embodiment, the force provided with the temperature sensors 13, 14, 15 in the first connecting pipe 11 through which the liquid refrigerant flows. The present invention is not limited to this. The temperature sensor detects the temperature of the refrigerant. The arrangement can be changed as appropriate.
第 2実施形態の冷媒加熱装置 104は、図 8に示されるように、第 1実施形態の冷媒 加熱装置 4と比較して、 IHヒータ 12の中間付近の第 3温度センサ 15を設ける代わり に、第 4温度センサ 21を設けた点で異なり、その他の構成は第 1実施形態の冷媒カロ 熱装置 4と共通している。  As shown in FIG. 8, the refrigerant heating device 104 of the second embodiment, instead of providing the third temperature sensor 15 near the middle of the IH heater 12 as compared to the refrigerant heating device 4 of the first embodiment, The other difference is that the fourth temperature sensor 21 is provided, and other configurations are the same as those of the refrigerant calorie heat device 4 of the first embodiment.
すなわち、冷媒加熱装置 104は、第 1接続管 11と、 IHヒータ 12と、第 2接続管 16と 、第 1温度センサ 13と、第 2温度センサ 14と、第 4温度センサ 21と、制御部 17と、交 流電源 18と、スィッチ 19と、 4個の接続咅 20a、 20b、 20c、 20dとを備えて!/ヽる。第 4 温度センサ 21は、ガス状態の冷媒が流れる第 2接続管 16の表面に設けられている。 この第 2接続管 16の表面に設けられた第 4温度センサ 21によって、冷媒ガスの冷 媒蒸発温度を検出することが可能である。  That is, the refrigerant heating device 104 includes a first connection pipe 11, an IH heater 12, a second connection pipe 16, a first temperature sensor 13, a second temperature sensor 14, a fourth temperature sensor 21, and a control unit. 17 / AC power supply 18 / Switch 19/4 connections 20a, 20b, 20c and 20d! The fourth temperature sensor 21 is provided on the surface of the second connection pipe 16 through which the gaseous refrigerant flows. The fourth temperature sensor 21 provided on the surface of the second connection pipe 16 can detect the refrigerant evaporation temperature of the refrigerant gas.
<第 2実施形態の特徴 >  <Features of the second embodiment>
(1)  (1)
第 2実施形態の冷媒加熱装置 104では、第 4温度センサ 21によって、第 2接続管 1 6を流れる冷媒ガスの冷媒蒸発温度を検出することが可能である。これによつて、制 御部 17は、外部からの温度情報等を受けることなぐ IHヒータ 12の運転制御を行うこ とが可能である  In the refrigerant heating device 104 of the second embodiment, the fourth temperature sensor 21 can detect the refrigerant evaporation temperature of the refrigerant gas flowing through the second connection pipe 16. As a result, the controller 17 can control the operation of the IH heater 12 without receiving temperature information from the outside.
(2)  (2)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、冷媒加熱用の IHヒータ 12の他に、冷媒回路 10に第 1接続管 11および第 2接続管 16を流れる冷媒の温度を検出する少なくとも 1個の温度センサ 13、 14、 21 を備えているので、外部の室外機等の温度センサに依存せずに冷媒の温度を正確 に検出可能であり、かつ、冷媒の過熱を抑制することが可能である。 [0079] (3) Further, the refrigerant heating device 104 of the second embodiment is similar to the refrigerant heating device 4 of the first embodiment, in addition to the IH heater 12 for refrigerant heating, the first connection pipe 11 and the second Since it has at least one temperature sensor 13, 14, 21 that detects the temperature of the refrigerant flowing through the connecting pipe 16, it can accurately detect the temperature of the refrigerant without depending on the temperature sensor of an external outdoor unit. And overheating of the refrigerant can be suppressed. [0079] (3)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、温度センサが IHヒータ 12の上流側および下流側にそれぞれ設けられた 第 1温度センサ 13および第 2温度センサ 14を有しているので、暖房時および冷房時 の両方について IHヒータ 12を通過した直後の冷媒の温度を直接検出することが可 能である。また、 IHヒータ 12の出入口付近の冷媒の温度差を正確に検出することが 可能である。  Further, similarly to the refrigerant heating device 4 of the first embodiment, the refrigerant heating device 104 of the second embodiment includes the first temperature sensor 13 and the temperature sensor provided on the upstream side and the downstream side of the IH heater 12, respectively. Since the second temperature sensor 14 is provided, it is possible to directly detect the temperature of the refrigerant immediately after passing through the IH heater 12 during both heating and cooling. Further, it is possible to accurately detect the temperature difference of the refrigerant in the vicinity of the inlet / outlet of the IH heater 12.
(4)  (Four)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、温度センサ 13、 14、 21が第 1接続管 11または第 2接続管 16の表面に設 けられているので、第 1接続管 11または第 2接続管 16を介して冷媒の温度を検出す ることが可能である。  Further, in the refrigerant heating device 104 of the second embodiment, similarly to the refrigerant heating device 4 of the first embodiment, the temperature sensors 13, 14, and 21 are provided on the surface of the first connection pipe 11 or the second connection pipe 16. Therefore, the temperature of the refrigerant can be detected via the first connection pipe 11 or the second connection pipe 16.
[0080] (5) [0080] (5)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、 1個又は複数の温度センサ 13、 14、 21によって検出された冷媒の温度に 基づいて、 IHヒータ 12の運転を制御する制御部 17をさらに備えているので、冷媒の 過熱を抑制するように IHヒータ 12の運転を制御することによって冷媒の破壊のおそ れを低減することが可能である。  Further, the refrigerant heating device 104 of the second embodiment is based on the temperature of the refrigerant detected by one or a plurality of temperature sensors 13, 14, 21 in the same manner as the refrigerant heating device 4 of the first embodiment. Since the controller 17 for controlling the operation of the IH heater 12 is further provided, it is possible to reduce the possibility of the refrigerant being destroyed by controlling the operation of the IH heater 12 so as to suppress the overheating of the refrigerant. .
(6)  (6)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、制御部 17が温度センサ 13、 14、 21によって検出された冷媒の温度に基 づいて、 IHヒータ 12の出力を制御するので、冷媒がその破壊温度に近づくまでに、 I Hヒータ 12の出力を低減することが可能である。  Further, in the refrigerant heating device 104 of the second embodiment, similarly to the refrigerant heating device 4 of the first embodiment, the control unit 17 is based on the temperature of the refrigerant detected by the temperature sensors 13, 14, 21. Since the output of the IH heater 12 is controlled, the output of the IH heater 12 can be reduced before the refrigerant approaches its destruction temperature.
[0081] (7) [0081] (7)
また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、冷媒を加熱するヒータとして、 IHヒータ 12を採用しているので、冷媒を迅 速に加熱することが可能である。  Further, similar to the refrigerant heating device 4 of the first embodiment, the refrigerant heating device 104 of the second embodiment employs the IH heater 12 as a heater for heating the refrigerant, so that the refrigerant is heated quickly. Is possible.
(8) また、第 2実施形態の冷媒加熱装置 104は、上記第 1実施形態の冷媒加熱装置 4 と同様に、第 1温度センサ 13および第 2温度センサ 14力 Hヒータ 12のコイル 12aの 外側に設置されているので、コイル 12aから発生する電磁波の影響で、温度センサ 1 3、 14およびその信号線にノイズ発生することを回避することが可能である。 (8) Further, the refrigerant heating device 104 of the second embodiment is installed outside the coil 12a of the first heater 13 and the second temperature sensor 14 as in the refrigerant heater 4 of the first embodiment. Therefore, it is possible to avoid the occurrence of noise in the temperature sensors 13 and 14 and their signal lines due to the influence of electromagnetic waves generated from the coil 12a.
<第 2実施形態の変形例 >  <Modification of the second embodiment>
(A)  (A)
第 2実施形態では、温度センサ 13、 14、 21が第 1接続管 11または第 2接続管 16 の表面に設けられている力 本発明はこれに限定されるものではなぐ温度センサ 13 、 14、 15を、第 1接続管 11または第 2接続管 16の内部に設けてもよい。この場合、 温度センサが冷媒に直接接触することによって、冷媒の温度を精度良く検出すること が可能である。  In the second embodiment, the force that the temperature sensors 13, 14, and 21 are provided on the surface of the first connection pipe 11 or the second connection pipe 16 The present invention is not limited to this, and the temperature sensors 13, 14, 15 may be provided inside the first connection pipe 11 or the second connection pipe 16. In this case, the temperature of the refrigerant can be accurately detected by the temperature sensor directly contacting the refrigerant.
[0082] 〔第 3実施形態〕 [Third Embodiment]
第 1実施形態では、 IHヒータ 12の上流側および下流側にそれぞれ温度センサ 13、 14を設けられている。これら 2つの温度センサ 13, 14によって、第 1接続管 11を流れ る冷媒の向きが暖房時と冷房時とで切り換えられても IHヒータ 12を通過した直前また は直後の冷媒の温度を直接検出できるようになっているが、本発明はこれに限定さ れるものではない。  In the first embodiment, temperature sensors 13 and 14 are provided on the upstream side and the downstream side of the IH heater 12, respectively. These two temperature sensors 13 and 14 directly detect the temperature of the refrigerant immediately before or after passing through the IH heater 12 even if the direction of the refrigerant flowing through the first connection pipe 11 is switched between heating and cooling. However, the present invention is not limited to this.
さらに他の実施形態として、図 9に示される冷媒加熱装置 204は、第 1接続管 11に 接続されたブリッジ回路 30をさらに備えている。また、冷媒加熱装置 204は、 1つの 温度センサ 13 (または 14)のみを備えている。温度センサ 13 (または 14)は、暖房時 の冷媒の流れる方向 F1において IHヒータ 12の上流側(または下流側)のいずれか 一方に設けられている。  As yet another embodiment, the refrigerant heating device 204 shown in FIG. 9 further includes a bridge circuit 30 connected to the first connection pipe 11. In addition, the refrigerant heating device 204 includes only one temperature sensor 13 (or 14). The temperature sensor 13 (or 14) is provided on either the upstream side (or the downstream side) of the IH heater 12 in the refrigerant flow direction F1 during heating.
[0083] ブリッジ回路 30は、 4個の逆止弁を有している。ブリッジ回路 30は、第 1接続管 11 の直管部分 11aとループ部分 l ibに対して、図 9に示されるように接続されている。こ のブリッジ回廊 30によって、第 1接続管 11の直管部分 11aを流れる冷媒の向きが切 り替わっても、第 1接続管 11のループ部分 l ibを流れる冷媒の向きを一方向(図 9の 矢印 F3の向き)に保つことが可能である。 [0083] The bridge circuit 30 has four check valves. The bridge circuit 30 is connected to the straight pipe portion 11a and the loop portion l ib of the first connection pipe 11 as shown in FIG. Even if the direction of the refrigerant flowing through the straight pipe portion 11a of the first connection pipe 11 is switched by the bridge corridor 30, the direction of the refrigerant flowing through the loop portion l ib of the first connection pipe 11 is changed in one direction (FIG. 9). In the direction of arrow F3).
その他の構成については、第 3実施形態の冷媒加熱装置 204は、第 1実施形態の 冷媒加熱装置 4と共通している(ただし、図 3の温度センサ 15を除く)。 For other configurations, the refrigerant heating device 204 of the third embodiment is the same as that of the first embodiment. Common to refrigerant heating device 4 (except temperature sensor 15 in Fig. 3).
<特徴 >  <Features>
第 3実施形態の冷媒加熱装置 204では、第 1接続管 11にブリッジ回路 30を接続し ているので、冷媒配管 5を流れる冷媒の向きが切り換えられてもブリッジ回路 30によ つて第 1接続管 11のループ部分 1 lbを流れる冷媒の向きが一方向に保たれる。した がって、 IHヒータ 12の上流側(または下流側)に設けられた 1つの温度センサ 13 (ま たは 14)によって、 IHヒータ 12を通過した直前 (または直後)の冷媒の温度を直接検 出することが可能である。  In the refrigerant heating device 204 of the third embodiment, since the bridge circuit 30 is connected to the first connection pipe 11, even if the direction of the refrigerant flowing through the refrigerant pipe 5 is switched, the bridge circuit 30 causes the first connection pipe to be switched. The direction of the refrigerant flowing through 11 lbs of 1 lb is kept in one direction. Therefore, the temperature of the refrigerant immediately before (or immediately after) passing through the IH heater 12 is directly measured by one temperature sensor 13 (or 14) provided upstream (or downstream) of the IH heater 12. It can be detected.
産業上の利用可能性 Industrial applicability
本発明は、空気調和機の冷媒を加熱するための冷媒加熱装置に適用することが可 能である。  The present invention can be applied to a refrigerant heating device for heating the refrigerant of an air conditioner.

Claims

請求の範囲 The scope of the claims
[1] 冷媒が循環する冷媒回路(10)の途中に接続される少なくとも 1本の接続管(11、 1 6)と、  [1] At least one connecting pipe (11, 16) connected in the middle of the refrigerant circuit (10) through which the refrigerant circulates;
前記接続管(11、 16)のうちの第 1接続管(11)の内部を流れる冷媒を加熱するヒ ータ(12)と、  A heater (12) for heating the refrigerant flowing in the first connection pipe (11) of the connection pipes (11, 16);
前記接続管(11、 16)を流れる冷媒の温度を検出する少なくとも 1個の温度センサ( 13、 14、 15、 21)と、  At least one temperature sensor (13, 14, 15, 21) for detecting the temperature of the refrigerant flowing through the connecting pipe (11, 16);
を備えている、  With
冷媒加熱装置 (4, 104、 204)。  Refrigerant heating device (4, 104, 204).
[2] 前記温度センサは、 [2] The temperature sensor is
暖房時の冷媒の流れる方向(F1)において前記ヒータ(12)の上流側に設けられた 第 1温度センサ(13)と、  A first temperature sensor (13) provided upstream of the heater (12) in the direction of refrigerant flow (F1) during heating;
暖房時の冷媒の流れる方向(F1)において前記ヒータ(12)の下流側に設けられた 第 2温度センサ(14)と  A second temperature sensor (14) provided downstream of the heater (12) in the direction of refrigerant flow (F1) during heating;
を有している、  have,
請求項 1に記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to claim 1.
[3] 前記温度センサは、前記ヒータ(12)の軸方向における中間位置付近に設けられた 第 3温度センサ(15)をさらに有している、 [3] The temperature sensor further includes a third temperature sensor (15) provided near an intermediate position in the axial direction of the heater (12).
請求項 1または 2に記載の冷媒加熱装置 (4)。  The refrigerant heating device (4) according to claim 1 or 2.
[4] 前記接続管(11、 16)のうちの第 2接続管(16)は、前記第 1接続管(11)と異なる 位置で前記冷媒回路(10)の途中に接続され、 [4] The second connection pipe (16) of the connection pipes (11, 16) is connected in the middle of the refrigerant circuit (10) at a position different from the first connection pipe (11),
前記第 2接続管(16)には、ガス状態の前記冷媒が流れ、  The refrigerant in the gas state flows through the second connection pipe (16),
前記温度センサは、前記第 2接続管(16)に設けられた第 4温度センサ(21)をさら に有している、  The temperature sensor further includes a fourth temperature sensor (21) provided in the second connection pipe (16).
請求項 1から 3の 、ずれかに記載の冷媒加熱装置(104)。  The refrigerant heating device (104) according to any one of claims 1 to 3.
[5] 前記接続管(11、 16)のうちの第 1接続管(11)に接続されたブリッジ回路 (30)をさ らに備えており、 [5] It further comprises a bridge circuit (30) connected to the first connection pipe (11) of the connection pipes (11, 16),
前記温度センサ(13、 14)は、暖房時の冷媒の流れる方向(F1)において前記ヒー タ(12)の上流側または下流側のいずれか一方に設けられている、 The temperature sensors (13, 14) are arranged in the heat flow direction (F1) during heating. (12) provided on either the upstream side or the downstream side,
請求項 1に記載の冷媒加熱装置(204)。  The refrigerant heating device (204) according to claim 1.
[6] 前記温度センサ(13、 14、 15、 21)は、前記接続管(11、 16)の表面に設けられて いる、 [6] The temperature sensor (13, 14, 15, 21) is provided on the surface of the connection pipe (11, 16).
請求項 1から 5のいずれかに記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to any one of claims 1 to 5.
[7] 前記温度センサ(13、 14、 15、 21)は、前記接続管(11、 16)の内部に設けられて いる、 [7] The temperature sensor (13, 14, 15, 21) is provided inside the connection pipe (11, 16).
請求項 1から 5のいずれかに記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to any one of claims 1 to 5.
[8] 1個又は複数の前記温度センサ(13、 14、 15、 21)によって検出された冷媒の温 度に基づいて、前記ヒータ(12)の運転を制御する制御部(17)をさらに備えている、 請求項 1から 5のいずれかに記載の冷媒加熱装置 (4, 104、 204)。 [8] The apparatus further includes a control unit (17) that controls the operation of the heater (12) based on the temperature of the refrigerant detected by the one or more temperature sensors (13, 14, 15, 21). The refrigerant heating device (4, 104, 204) according to any one of claims 1 to 5.
[9] 前記制御部(17)は、前記温度センサ(13、 14、 15、 21)によって検出された冷媒 の温度に基づ 、て、前記ヒータ( 12)の出力を制御する、 [9] The control unit (17) controls the output of the heater (12) based on the temperature of the refrigerant detected by the temperature sensor (13, 14, 15, 21).
請求項 8に記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to claim 8.
[10] 前記ヒータ(12)は、誘導加熱ヒータである、 [10] The heater (12) is an induction heater.
請求項 1から 9に記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to any one of claims 1 to 9.
[11] 前記ヒータ(12)は、コイル(12a)を有しており、 [11] The heater (12) has a coil (12a),
前記温度センサ(13、 14)は、前記コイル(12a)の外側に設置されている、 請求項 10に記載の冷媒加熱装置 (4, 104、 204)。  The refrigerant heating device (4, 104, 204) according to claim 10, wherein the temperature sensor (13, 14) is installed outside the coil (12a).
[12] 前記制御部(17)は、少なくとも 1個の前記温度センサ(13、 14、 15)が所定の第 1 温度以上の温度を検出した場合に、前記ヒータ(12)の出力を低下させる、 請求項 8に記載の冷媒加熱装置 (4)。 [12] The control unit (17) reduces the output of the heater (12) when at least one of the temperature sensors (13, 14, 15) detects a temperature equal to or higher than a predetermined first temperature. The refrigerant heating device (4) according to claim 8, wherein:
[13] 前記制御部(17)は、複数の前記温度センサ(13、 14、 15)のうちのいずれ力 1つ が所定の第 1温度以上になった場合に前記ヒータ(12)の出力を低下させる、 請求項 12に記載の冷媒加熱装置 (4)。 [13] The control unit (17) outputs the output of the heater (12) when any one of the plurality of temperature sensors (13, 14, 15) becomes a predetermined first temperature or higher. The refrigerant heating device (4) according to claim 12, which is reduced.
[14] 前記第 1温度は、 80〜100°Cである、 [14] The first temperature is 80 to 100 ° C.
請求項 12に記載の冷媒加熱装置 (4)。  The refrigerant heating device (4) according to claim 12, wherein:
[15] 前記第 1温度は、前記ヒータ(12)による加熱前の冷媒の温度に 20〜40°Cを加え た温度である、 [15] The first temperature is obtained by adding 20 to 40 ° C to the temperature of the refrigerant before heating by the heater (12). Temperature
請求項 12に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 12, wherein:
前記第 1温度は、前記冷媒の温度の所定時間ごとの変化量に 20〜40°Cを加えた 温度である、  The first temperature is a temperature obtained by adding 20 to 40 ° C to a change amount of the temperature of the refrigerant every predetermined time.
請求項 12に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 12, wherein:
前記制御部(17)は、少なくとも 1個の前記温度センサ(13、 14、 15)が所定の第 2 温度以上の温度を検出した場合に、前記ヒータ(12)を停止させる、  The controller (17) stops the heater (12) when at least one of the temperature sensors (13, 14, 15) detects a temperature equal to or higher than a predetermined second temperature.
請求項 8に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 8.
前記制御部(17)は、複数の前記温度センサ(13、 14、 15)のうちのいずれ力 1つ が所定の第 2温度以上になった場合に前記ヒータ(12)を停止させる、  The control unit (17) stops the heater (12) when any one of the plurality of temperature sensors (13, 14, 15) reaches a predetermined second temperature or higher.
請求項 17に記載の冷媒加熱装置 (4)。 18. The refrigerant heating device (4) according to claim 17.
前記第 2温度は、 140〜160°Cである、  The second temperature is 140 to 160 ° C.
請求項 17に記載の冷媒加熱装置 (4)。 18. The refrigerant heating device (4) according to claim 17.
前記制御部(17)は、少なくとも 1個の前記温度センサ(13、 14、 15)が所定の第 1 温度以上の温度を検出した場合に前記ヒータ(12)の出力を低下させ、所定の第 2温 度以上の温度を検出した場合に前記ヒータ( 12)を停止させるように、段階的に制御 する、  The controller (17) reduces the output of the heater (12) when a temperature equal to or higher than a predetermined first temperature is detected by at least one of the temperature sensors (13, 14, 15). Control in stages so that the heater (12) is stopped when a temperature of 2 temperatures or more is detected.
請求項 8に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 8.
前記制御部(17)は、過渡的に 40〜60°C上昇したことを少なくとも 1個の前記温度 センサ(13、 14、 15)が検出した場合に前記ヒータ(12)を停止させる、  The controller (17) stops the heater (12) when at least one of the temperature sensors (13, 14, 15) detects a transient rise of 40-60 ° C.
請求項 8に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 8.
前記制御部( 17)は、前記冷媒回路(10)がデフロスト運転をするときに 40〜60°C 上昇したことを少なくとも 1個の前記温度センサ(13、 14、 15)が検出した場合に前記 ヒータ(12)を停止させる、  The control unit (17) is configured to detect the temperature of the refrigerant circuit (10) when at least one of the temperature sensors (13, 14, 15) detects that the refrigerant circuit (10) has risen by 40 to 60 ° C. Stop the heater (12),
請求項 8に記載の冷媒加熱装置 (4)。 The refrigerant heating device (4) according to claim 8.
前記制御部(17)は、 1個又は複数の前記温度センサ(13、 14、 15)によって検出 された前記接続管(11)に流れる前記冷媒の温度に基づいて、前記ヒータ(12)の始 動および停止を切り換える、 請求項 8に記載の冷媒加熱装置 (4)。 The controller (17) starts the heater (12) based on the temperature of the refrigerant flowing in the connection pipe (11) detected by one or more temperature sensors (13, 14, 15). Switching between movement and stop, The refrigerant heating device (4) according to claim 8.
PCT/JP2007/052045 2006-02-08 2007-02-06 Refrigerant heating device WO2007091566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006031541A JP4100432B2 (en) 2006-02-08 2006-02-08 Refrigerant heating device
JP2006-031541 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007091566A1 true WO2007091566A1 (en) 2007-08-16

Family

ID=38345162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052045 WO2007091566A1 (en) 2006-02-08 2007-02-06 Refrigerant heating device

Country Status (2)

Country Link
JP (1) JP4100432B2 (en)
WO (1) WO2007091566A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146807A1 (en) * 2009-06-19 2010-12-23 ダイキン工業株式会社 Refrigeration device
CN109974130A (en) * 2019-04-08 2019-07-05 广东美的暖通设备有限公司 Heater assembly and air-conditioner outdoor unit with it

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333456A1 (en) * 2008-09-17 2011-06-15 Daikin Industries, Ltd. Electromagnetic induction heating unit and air-conditioning apparatus
JP5423083B2 (en) 2009-03-19 2014-02-19 ダイキン工業株式会社 Air conditioner
CN102348940B (en) 2009-03-19 2013-07-31 大金工业株式会社 Air conditioning device
WO2010106817A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
WO2010106807A1 (en) * 2009-03-19 2010-09-23 ダイキン工業株式会社 Air conditioning device
CN102348944B (en) 2009-03-19 2014-06-25 大金工业株式会社 Air conditioner
EP3037744B1 (en) * 2013-09-27 2017-12-13 Panasonic Healthcare Holdings Co., Ltd. Refrigeration device
IT201800002365A1 (en) * 2018-02-02 2019-08-02 Ali Group Srl Carpigiani MACHINE AND METHOD OF TREATMENT OF LIQUID OR SEMIQUID FOOD PRODUCTS.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833069A (en) * 1981-08-20 1983-02-26 大阪瓦斯株式会社 Air conditioner
JPS6383556A (en) * 1986-09-29 1988-04-14 株式会社東芝 Refrigeration cycle
JPH07120093A (en) * 1993-10-29 1995-05-12 Matsushita Electric Ind Co Ltd Refrigerant heating heater/cooler
JP2000213835A (en) * 1998-11-20 2000-08-02 Daikin Ind Ltd Freezer
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833069A (en) * 1981-08-20 1983-02-26 大阪瓦斯株式会社 Air conditioner
JPS6383556A (en) * 1986-09-29 1988-04-14 株式会社東芝 Refrigeration cycle
JPH07120093A (en) * 1993-10-29 1995-05-12 Matsushita Electric Ind Co Ltd Refrigerant heating heater/cooler
JP2000213835A (en) * 1998-11-20 2000-08-02 Daikin Ind Ltd Freezer
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146807A1 (en) * 2009-06-19 2010-12-23 ダイキン工業株式会社 Refrigeration device
CN109974130A (en) * 2019-04-08 2019-07-05 广东美的暖通设备有限公司 Heater assembly and air-conditioner outdoor unit with it

Also Published As

Publication number Publication date
JP4100432B2 (en) 2008-06-11
JP2007212035A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
WO2007091566A1 (en) Refrigerant heating device
JP5446064B2 (en) Heat exchange system
JP4622990B2 (en) Air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
JP2007212036A (en) Refrigerant heating device and its heating capacity control method
KR940020058A (en) Regenerative air conditioning system and defrosting method
JP6538290B1 (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP2007040658A (en) Air conditioner
JP2008116156A (en) Air conditioner
WO2007119414A1 (en) Cooling medium heating apparatus and heating control method
WO2019082372A1 (en) Refrigeration cycle device
JP2001033117A (en) Refrigerating device
JP5293474B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP6636200B2 (en) Air conditioner
JP2007107853A (en) Air conditioner
JP4622901B2 (en) Air conditioner
JP2001255025A (en) Heat pump apparatus
JP4687326B2 (en) Air conditioner
JP4661451B2 (en) Air conditioner
JP4016546B2 (en) Fluid heating device
JP4164960B2 (en) Refrigeration equipment
JP5413594B2 (en) Heat pump type water heater
WO2012127834A1 (en) Refrigeration cycle device
JP2005351588A (en) Heat pump water heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713874

Country of ref document: EP

Kind code of ref document: A1