WO2007091422A1 - 信号処理装置 - Google Patents

信号処理装置 Download PDF

Info

Publication number
WO2007091422A1
WO2007091422A1 PCT/JP2007/051033 JP2007051033W WO2007091422A1 WO 2007091422 A1 WO2007091422 A1 WO 2007091422A1 JP 2007051033 W JP2007051033 W JP 2007051033W WO 2007091422 A1 WO2007091422 A1 WO 2007091422A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
energy
change
data area
restored
Prior art date
Application number
PCT/JP2007/051033
Other languages
English (en)
French (fr)
Inventor
Fuminori Takahashi
Original Assignee
Nittoh Kogaku K.K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoh Kogaku K.K filed Critical Nittoh Kogaku K.K
Priority to JP2007557779A priority Critical patent/JP5133070B2/ja
Priority to US12/278,340 priority patent/US7864214B2/en
Publication of WO2007091422A1 publication Critical patent/WO2007091422A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to a signal processing device.
  • a method of moving a lens and a method of circuit processing are known.
  • a method for moving a lens a method in which camera shake is detected and correction is performed by moving a predetermined lens in accordance with the detected camera shake (see Patent Document 1).
  • a circuit processing method a change in the optical axis of the camera is detected by an angular acceleration sensor, and a transfer function representing a blurring state at the time of photographing the detected angular velocity is taken. It is known that an image is restored by performing inverse transformation of a function (see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 6-317824 (see abstract)
  • Patent Document 2 JP-A-11 24122 (see abstract)
  • an object of the present invention is to provide a signal processing device that prevents a device from becoming large and restores a signal and has a realistic circuit processing method.
  • the signal processing apparatus of the present invention should acquire the signal before the change or the original signal data from the original signal data (hereinafter referred to as change data) in which a change such as deterioration has occurred.
  • a restoration data area for storing the restored signal data (hereinafter referred to as restoration data) is provided, and the processing unit uses the energy of the change data and the change factor information data that causes the change.
  • the transition is made from the changed data area to the restored data area, the restored data is generated, the remaining data of the changed data area remaining by the migration is replaced with the changed data, and the same process is repeated, and the process is completed.
  • the data formed in the restored data area at the end of time is used as the original signal data.
  • the change factor information data used as the same filter is used.
  • the change data stored in the change data area may be data obtained by applying a check to the change data while leaving the state of energy constituting the change data as it is.
  • the restoration data stored in the restoration data area may be data obtained by applying a check to the restoration data while keeping the energy state of the restoration data as it is.
  • migration means moving the energy value literally from the changed data area to the restored data area, and removing the energy from the changed data area and generating new energy in the restored data area.
  • change data area and the restored data area include both temporarily formed areas and permanently formed areas (the same applies hereinafter).
  • another invention performs a process of adding the energy transferred to the restoration data area to the restoration data area already stored in the restoration data area at the time of repetition processing, and the remaining data Is being processed to approach zero.
  • the remaining data approaches zero, most of the energy in the change data area is transferred to the restoration data area, and the restoration data approaches the original signal data.
  • the signal processing device of the present invention includes a processing unit that restores original signal data having a plurality of element forces from change data having a plurality of element forces.
  • a change data area in which is stored and a restoration data area in which restoration data is stored for each restoration process are provided, and the processing unit changes the element energy in one element of the change data to cause changes.
  • the change data area is transferred to the restoration data area, and the element energy corresponding to the transferred element energy is changed to the change data area force change factor information data. Use this to perform exclusion processing, and sequentially perform processing for this one element for the other elements to generate restoration data in the restoration data area.
  • the remaining data is replaced with change data, and the same process is repeated for each element.Each repetition, the element energy that moves to the restored data area is added to the restored data, and the remaining data is made closer to zero.
  • the data formed in the restored data area at the end of processing is read as the original signal data.
  • the centroid value of the response characteristic function which is the change factor information data serving as the same filter. By using the reciprocal of (the value where the energy is most concentrated), most of the energy of the changed data is transferred to the restored data area, and the element energy corresponding to the transferred energy is also changed.
  • the change data stored in the change data area may be data obtained by processing the change data while leaving the energy state of each element constituting the change data as it is.
  • the restoration data stored in the restoration data area may be data obtained by performing an addition to the restoration data while leaving the energy state of each element constituting the restoration data as it is.
  • “migration” literally moves energy from the changed data area to the restored data area, removes that energy from the changed data area, and newly corresponds to that energy in the restored data area. This includes generating energy to be used.
  • the response characteristic function includes an impulse response function and a unit response function. When the signal data is image data, the impulse response function is a point spread function.
  • a signal processing device is based on the above-described invention, and the processing unit is stopped when the remaining energy amount is equal to or less than a predetermined value or smaller than a predetermined value during repeated processing.
  • the process to make it When this configuration is adopted, the processing is stopped even if the remaining energy amount does not become “0”, so that the processing can be prevented from being prolonged.
  • the restored data to be approximated is closer to the original signal data before the change (before deterioration, etc.) that is the source of the change data.
  • a signal processing device is based on the above-described invention, and the processing unit performs a process of stopping when the number of repetitions reaches a predetermined number during the repetition processing.
  • the process is stopped regardless of whether the remaining energy amount is “0” or not. Therefore, it is possible to prevent the processing from taking a long time.
  • the restored data to be approximated is closer to the original signal data before the deterioration that is the source of the change data. Furthermore, when there is noise, the remaining energy amount is "
  • a force that is not likely to be “0” is likely to occur in reality. Even in such a case, the process is terminated in a predetermined number of times, and the process is not repeated infinitely.
  • a signal processing device is based on the above-described invention, and the processing unit has a remaining energy amount that is less than or equal to a predetermined value when the number of repetitions reaches a predetermined number. If it is below or below the predetermined value, the process is stopped. If it exceeds the predetermined value or exceeds the predetermined value, the process is repeated a predetermined number of times. In the present invention, since the number of times of processing and the remaining energy amount are combined, the restoration accuracy is higher than when the number of times of processing is simply limited or the remaining energy amount is limited. Processing that balances goodness and short processing time can be achieved.
  • the signal processing device of the present invention includes a processing unit that restores original signal data having a plurality of elemental forces from change data having a plurality of elemental forces. Is provided for each change process, and a restore data area for storing the restore data for each restore process.
  • the processing unit uses the energy in one element of the change data as a change factor.
  • the process for one element is also sequentially performed for the other elements to generate restoration data in the restoration data area, and the value of the remaining data in the change data area remaining by the migration is less than a predetermined value or If it is smaller than the specified value, the process is stopped and the restored data is treated as original signal data. If the remaining data amount is greater than or equal to the specified value, the remaining data is replaced with change data and the same processing is performed. Each time, the energy to move to the restoration data area is added to the restoration data.
  • the change factor information data using the same filter is used to change the data. If you can transfer the energy of the data to the recovery data area, The original signal data is reliably restored in the data area.
  • energy is transferred from the change data area to the restoration data area, and only when the remaining energy amount in each element of the change data area exceeds or exceeds the specified value. Since the remaining data is replaced with change data and the same process is repeated, the restoration process can be performed quickly.
  • the restoration process is performed by transferring energy from the change data area to the restoration data area, so that there is almost no increase in hardware, and the device does not increase in size. For this reason, a signal processing apparatus having a realistic circuit processing method can be provided for signal restoration.
  • a signal processing device is based on the above-described invention, and the processing unit performs a process of stopping when the number of repetitions reaches a predetermined number during the repetition processing.
  • the processing is stopped regardless of whether the remaining energy amount becomes “0”, so that it is possible to prevent the processing from taking a long time.
  • the restored data becomes closer to the original signal data.
  • the process will be repeated indefinitely. If adopted, such a problem will not occur.
  • the signal processing device is one of the maximum value, the average value, or the total value of the remaining data values of each element in the repetition processing. Comparison with a predetermined value is performed for a plurality. When this configuration is adopted, the remaining energy amount in the elements constituting the change data can be brought close to zero, so that the degree of approximation between the restored data and the original signal data can be further increased.
  • the processing unit may transmit an element energy value in any element of the remaining data when the element energy is transferred at any one of the repetitions. If is less than zero, the process for the next time is performed without performing the transition, or the process for correcting the transition value for that time is performed. When this configuration is adopted, the image restoration accuracy is improved because it is possible to avoid a theoretically impossible situation where the energy value in any element of the remaining data becomes less than zero as a result of the energy transfer. Can be made.
  • a signal processing device uses signal data as image data. As a result, even if image degradation occurs due to camera shake, the original image that has undergone degradation, the image before the change, the image that should have been taken, or an approximate image thereof (hereinafter referred to as the original image). Can be restored.
  • FIG. 1 is a block diagram showing a main configuration of a signal processing apparatus of the present invention.
  • FIG. 2 is an external perspective view showing an outline of the signal processing device shown in FIG. 1, and is a view for explaining the arrangement position of the angular velocity sensor.
  • FIG. 3 is a processing flow diagram for explaining a processing routine relating to an image restoration processing method (repetitive processing) performed by a processing unit of the image processing apparatus shown in FIG. 1.
  • FIG. 3 is a processing flow diagram for explaining a processing routine relating to an image restoration processing method (repetitive processing) performed by a processing unit of the image processing apparatus shown in FIG. 1.
  • FIG. 4 is a diagram for explaining the concept of a processing method performed by a processing unit of the signal processing device shown in FIG. 1.
  • FIG. 5 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a table showing the concentration of pixel energy when there is no camera shake.
  • FIG. 6 is a diagram for specifically explaining the processing method shown in FIG. 3 using camera shake as an example, and is a diagram showing image data when there is no camera shake.
  • FIG. 7 is a diagram for specifically explaining the processing method shown in FIG. 3 with an example of camera shake, and a diagram showing dispersion of pixel energy when camera shake occurs.
  • FIG. 8 is a diagram for explaining an example of a camera shake situation when the pixel energy dispersion shown in FIG. 7 occurs.
  • FIG. 9 is a diagram illustrating the processing method shown in FIG. 3 using the image data shown in FIG. 8 degraded by camera shake as an example.
  • FIG. 10 is a conceptual diagram showing a concept of a method for reviewing transition values in transition processing when the processing method shown in FIG. 3 is executed.
  • the signal processing device 1 is an image processing device, which is used as a consumer camera, such as a force monitoring camera, a television camera, a handy type video camera, an endoscope camera, etc. It can be applied to devices other than cameras, such as cameras for applications, microscopes, binoculars, and diagnostic imaging equipment such as NMR imaging.
  • a consumer camera such as a force monitoring camera, a television camera, a handy type video camera, an endoscope camera, etc. It can be applied to devices other than cameras, such as cameras for applications, microscopes, binoculars, and diagnostic imaging equipment such as NMR imaging.
  • FIG. 1 shows an outline of the configuration of the signal processing device 1.
  • the signal processing apparatus 1 includes a photographing unit 2 that captures an image of a person or the like, a control system unit 3 that drives the photographing unit 2, and a processing unit 4 that processes an image captured by the capturing unit 2. ing.
  • the processing device 1 further includes a recording unit 5 that records the image processed by the processing unit 4, a detection unit 6 that detects change factor information that is a factor of change such as image degradation due to an angular velocity sensor, and image degradation.
  • the photographing unit 2 is a receiving unit 2 that receives various input signals such as an audio signal (hereinafter, the photographing unit 2 and the receiving unit are appropriately described). 2).
  • the imaging unit 2 is a part that includes an imaging optical system having a lens and an imaging element such as a CCD or C-MOS that converts light that has passed through the lens into an electrical signal.
  • the control system unit 3 controls each unit in the signal processing device 1 such as the imaging unit 2, the processing unit 4, the recording unit 5, the detection unit 6, and the factor information storage unit 7.
  • the processing unit 4 is composed of an image processing processor, and is composed of hardware such as an ASIC (Application Specific Integrated Circuit).
  • the processing unit 4 generates a sampling frequency for detecting vibrations such as camera shake to be detected, and supplies the sampling frequency to the detection unit 6.
  • the processing unit 4 controls the start and end of vibration detection.
  • the signal processing device 1 is applied as a device other than the image processing device, the receiving sensitivity of the receiving unit 2 can be changed depending on the magnitude of the input signal or the like.
  • the processing unit 4 may be configured to perform processing by software rather than being configured as hardware such as an ASIC.
  • an original image data area serving as a change data area and a restored image data area serving as a restored data area are permanently arranged.
  • the processing unit 4 also stores a maximum value “E” of the remaining energy amount of each pixel described later.
  • the recording unit 5 may employ magnetic recording means such as a force hard disk drive constituted by a semiconductor memory, or optical recording means using a DVD or the like. It should be noted that a change data area and a restoration data area may be provided in the recording unit 5, or the maximum value “E” of the remaining energy amount may be stored.
  • the detection unit 6 includes two angular velocity sensors that detect the speeds around the X and Y axes that are perpendicular to the Z axis that is the optical axis of the signal processing device 1. Is provided.
  • the camera shake when shooting with the camera is the movement that moves in the X, Y, and Z directions, and the force that also rotates around the Z axis. Rotation and rotation around the X axis.
  • These two variations are only a slight variation, and the captured image is greatly blurred. Therefore, in this embodiment, only two angular velocity sensors around the X axis and the Y axis in FIG. 2 are arranged.
  • an additional angular velocity sensor around the Z axis may be added, or a sensor that detects movement in the X and Y directions may be added.
  • the sensor used may be an angular acceleration sensor that is not an angular velocity sensor.
  • the factor information storage unit 7 stores a change factor information such as known deterioration factor information, for example, a point spread function calculated based on the aberration of the optical system and Z or the detected vibration. It is.
  • the point spread function recorded by the factor information storage unit 7 is used by the processing unit 4 when restoring the original image, which is an image that has undergone changes such as degradation that was taken immediately after the calculation, for example. .
  • the original image restoration process when executed, the original image is taken when the imaging power is turned off, when the processing unit 4 is not operating, or when the operating rate of the processing unit 4 is low.
  • the original image data stored in the recording unit 5 and the change factor information such as the point spread function for the original image stored in the factor information storage unit 7 are associated with each other. Stored for a long time.
  • the advantage of delaying the timing of executing the restoration processing of the original image from the timing of shooting the original image is that the burden of the processing unit 4 at the time of shooting involving various processes can be reduced.
  • the signal processing device 1 is applied as a device other than an image processing device, the temperature, humidity, etc. detected by the detection unit 6 may change the reception characteristics of the reception unit 2 or the characteristics of the entire system. Therefore, they can be recorded and used as change factor information.
  • the response characteristic function of the system that is already working such as the impulse response of the system, can be stored in the factor information storage unit 7.
  • E represents light energy (original image pixel energy) of each pixel of original image data Img ′ (details will be described later) in which changes such as deterioration have occurred.
  • F is the pixel energy transferred from the original image data area to be the nth change area to the restored image data area to be the restored data area. (Hereinafter referred to as transition pixel energy).
  • E n is the remaining energy amount remaining in the original image data area which is the changed data area due to the transition of the transition energy F for the first time and the nth time until the nth time, and is the energy to be processed.
  • “R” is restored data stored in the restored image data area, which is the restored data area, and becomes approximate data of the original image data “Img” by performing the image restoration process shown in FIG. “X” is a predetermined value of the remaining energy amount E.
  • “Img” is data of an original image, that is, an image that should have been originally taken, and is original signal data.
  • Original image data Img ' refers to the data of a captured image, that is, a deteriorated image.
  • the relationship between Img and Img ' is expressed by the following equation (1).
  • T shown in FIG. 3 is a pixel energy amount for removing pixel energy corresponding to the transition pixel energy F from the original image data area, and is the same amount as the transition pixel energy F.
  • is the maximum value of the remaining energy of each pixel in the original image data area.
  • the relationship between the remaining energy amount E of each pixel in the original image data area and the transition pixel energy F is expressed by the following equation (2).
  • the transition pixel energy F uses the reciprocal of the centroid value Ga of the point spread function, which is the data G of the change factor, for the remaining energy amount E (energy to be processed) of each pixel in the original image data area. It can be obtained by.
  • the processing routine of the processing unit 4 in Fig. 3 also begins to extract the pixel energy of one element constituting the original image data Img 'as the original image pixel energy E (step S101).
  • E original image data
  • Restoration data in the data area R 0.
  • Lugi E E is the inverse of the center of gravity Ga of the point spread function Ga (the largest value of the change factor information data G)
  • step S102 Multiply the number to obtain the transition pixel energy F (step S102).
  • the transfer pixel energy F is transferred to the restored data R in the restored image data area. That is, the transition pixel energy F is added to the restored data R in the restored image data area to
  • the restored data is R (step S103).
  • the original image data region force is removed from the pixel energy F corresponding to the transition pixel energy F transferred to the restored image data region.
  • the point spread function which is the change factor information data G is used. This is because the deterioration of the data is caused by passing through a filter called change factor information data G, and the transition pixel energy 1 F can be removed from the original image data area force so that there is no contradiction before and after the deterioration. Because. Therefore, the pixel energy amount T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and the residual energy in the original image data area is removed. The remaining energy amount E is obtained (step S 105).
  • step S102, S103, S104 and S105 are sequentially performed for all the remaining pixels constituting the original image data Img in the original image data area.
  • the energy E to be processed in step S102 is the energy transfer of surrounding pixels.
  • step S102 When the transition pixel energy F is removed from the original image data area in the row processing, the value corresponding to the pixel obtained by the overlap integration is removed. Then, after all the steps S102, S103, S104, and S105 have been performed on all the pixels, the maximum value E of the remaining energy amount E in the original image data area is stored (step S102).
  • the maximum value E of the remaining energy E is less than a predetermined value X, that is, the initial value.
  • the predetermined value X is set to a value close to “0” other than “0”, and it is determined whether E is less than the predetermined value X.
  • Steps S102, S103, S104, S1 05, S106 and S107 are performed again.
  • the number of processes for the entire image is expressed as n.
  • step S107 may be a step of determining how many pixels of the remaining energy amount E are equal to or greater than the predetermined value X. In this case, even if there are some pixels with the remaining energy amount E that are equal to or greater than the predetermined value X, the restored data R can be regarded as being sufficiently approximate to the original image data Img if the number is small.
  • step S107 when the maximum value E of the remaining energy amount is equal to or greater than a predetermined value X
  • steps S102, S103, S104, S105, S106 and S107 are performed.
  • the transition pixel energy F is obtained by multiplying the reciprocal of the remaining energy E ⁇ , the barycentric value Ga of the point spread function (the largest value of the change factor information data G) (step S102).
  • the transfer pixel energy F is transferred to the restored image data area, and new restored data R is obtained. That is, the current transition pixel energy F is added to the restored data R of the restored image data area restored up to the previous (n ⁇ 1) to obtain new restored data R.
  • the pixel energy T obtained by the superposition integration (step S104) of the transition pixel energy F and the change factor information data G is removed from the original image data area, and a new remaining energy E is obtained (step S105).
  • step S106 the remaining energy maximum value “E” in each pixel is stored (step S106). Then, it is determined whether or not the remaining energy amount maximum value E force S max max is less than a predetermined value X (step S107). If E is greater than or equal to the predetermined value X,
  • FIGS. 3 and 4 details of the camera shake restoration processing method shown in FIGS. 3 and 4 (repeated processing of steps S102, S103, S104, S1 05, S106, and S107) are shown in FIGS. This will be described with reference to FIGS.
  • the pixels are designated as S—1, S, S + 1, S + 2, S + 3,.
  • S—1, S, S + 1, S + 2, S + 3, When there is no image degradation due to blurring, etc., the pixel energy during the exposure time is concentrated on that pixel, so the pixel energy concentration is “1.0”. This state is shown in Fig. 5.
  • An example of the imaging results at this time is shown in the table of FIG.
  • the force shown in Fig. 6 The correct image data Img when the force does not deteriorate.
  • Each data is represented by 8-bit (0 to 255) data.
  • the blurring is uniform for all pixels, and the upper blurring (vertical blurring) is not blurred.
  • the blurring situation that is, the pixel energy of each pixel.
  • “60” is distributed to the “S-3” pixel, “36” to the “S-2” pixel, and “24” to the “S-1” pixel.
  • “60” which is the pixel energy of “S-2” is distributed as “30” in “S-2”, “18” in “S-1”, and “12” in “S”.
  • the pixel energy is distributed to other pixels.
  • the data G of the change factor information is removed.
  • the pixel energy to be removed from the pixel “S” in the original image data area is “k”.
  • ⁇ '/ ⁇ ” the pixel energy to be removed from the pixel“ S + 1 ”in the original image data area is“ kXA'Z a X j8 ”, the pixel to be removed from the pixel“ S + 2 ”in the original image data area
  • the energy becomes “k XA'Z a X ⁇ ”.
  • the sum of these removed pixel energies becomes the pixel energy amount “A” transferred to the pixel “S” in the restored image data area.
  • FIG. 8 and FIG. 9 show the original image pixel energy “E” shown in step S101 of the first iteration process.
  • this original image pixel energy E is the energy E to be processed.
  • the remaining energy amount E of each pixel in the original image data area is removed, and the pixel “S-3” is “30”, the pixel “S-2” is “48”, and the pixel “S” — 1 ”becomes“ 70 ”, so“ E (S—3) ”).
  • the pixel energy of “48” is transferred from the original image data area to the pixel “S-2” in the restored image data area (F (S—2) in FIG. 9), and the pixel “S” in the restored image data area is transferred.
  • Restored data R of “2” becomes “48”
  • restored image data (R (S—2) in FIG. 9) is “60” “48” “0”. It becomes.
  • the pixels “S-2” to “24”, “14.4” from the pixel “S-1”, and “9.6” from the pixel “S” are removed from the original image data area.
  • the captured data that is, the remaining energy amount E of each pixel in the original image data area is removed from the transition (“T (S-2)” in FIG.
  • the pixel energy of “55.6” is transferred from the original image data area to the pixel “S-1” in the restored image data area (F (S—1) in FIG. 9), and the pixel “
  • the restored data R of “S 1” is “55.6”
  • the restored image data (R (S ⁇ 1) in FIG. 9) is “6 0” “48” “55.6” “0”.
  • “27.8” from the pixels “S ⁇ 1”, “16.68” from the pixel “S”, and “11.12” from the pixel “S + 1” are removed from the original image data area.
  • the transition energy is removed from the imaging data, that is, the remaining energy amount D of each pixel in the original image data area ("T (S-1)" in Fig. 9), and the pixel "S-3" ⁇ 30 '', pixel ⁇ S-2 '' is ⁇ 2 4 '', pixel ⁇ S-1 '' is ⁇ 27.8 '', pixel ⁇ S '' is ⁇ 59.72 '', pixel ⁇ S + 1 '' is ⁇ 109.
  • the other pixels are “105”, “114”, and “142” as originally (“E (S-1)” in FIG. 9).
  • the pixel energy is sequentially shifted for all the pixels.
  • the original image pixel energy E of all pixels “S-3”, “S-2”, “S-1”... “S + 4” is moved to the restored image data area. Without this, the residual energy amount E of each pixel in the original image data area remains as a large value.
  • the remaining energy maximum value “E” (“53.06” in n max pixel “S + 4”) is stored in the memory of the control unit 4 (step S106).
  • the remaining energy maximum value E is less than a predetermined value X (for example, “5” in this example) or max
  • step S107 It is determined whether or not (step S107). As a result of the above processing, since E> X, the remaining max
  • Pixels with a negative residual energy amount are removed at that time by using the value of the previous process as it is without transferring the transition pixel energy F that should be moved to the restored image data area.
  • the pixel energy will not be an inappropriate value.
  • the remaining energy amount of the surrounding pixels will decrease, and the pixel energy value to be removed from the pixels that would otherwise be negative, that is, the pixel energy value to be extracted will be smaller than this time, so the remaining energy amount will be smaller.
  • the remaining energy amount of the processed pixel such as the pixels “S-2” and “S-1” is set to “0”. If it is approaching, it will never be restored and will not converge. Therefore, in this case, it is desirable to review the restoration values of the pixels “S-2” and “S-1”.
  • correction energy equal to cE the remaining energy amount E is set to 0 or more.
  • the correction energy cE is superimposed and integrated with the data G of the change factor information and returned to the original image data area. Then, the transition value can be reviewed without any contradiction as a whole.
  • the number of processing times and the criterion value for determining whether or not the remaining energy E force has been approximated to "0" in advance can be set.
  • the number of processing can be set to any number, such as 20 or 50 times.
  • the remaining energy E that stops processing is set to “5” in 8 bits (0 to 255) as to whether or not the remaining energy E has approximated “0”, the processing ends when it becomes 5 or less.
  • “0.5” can be set and the processing can be terminated when the value falls below “0.5”. This set value can be set arbitrarily.
  • the determination reference value may be prioritized, and if the predetermined number of processes does not fall within the determination reference value, the predetermined number of processes may be repeated.
  • the information stored in the recording unit of the processing unit 4 without using the information stored in the factor information storage unit 7 is stored here.
  • Known degradation factors such as optical aberrations and lens distortions may be used.
  • restoration processing with information on optical aberration may be performed.
  • the factor information storage unit 7 may not be installed, and the image may be corrected or restored only by dynamic factors at the time of shooting, such as blurring, recorded in the processing unit 4.
  • the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed over many pixels due to blurring, the number of repetitions may be increased, and when the dispersion is small, the number of repetitions may be decreased.
  • the restoration algorithm of this embodiment has an advantage that the data area of the signal processing device 1 can be reduced. The reason is that the necessary data area for the restoration process is the original image. This is because only the data area and the restored image data area are sufficient. Further, in the restoration process, the restoration algorithm of this embodiment only repeats the movement of the pixel energy using the data G of the known change factor information, so that a rapid process is possible. Also, the data area may be processed after setting a temporary data area that is not permanent.
  • the processing performed by the processing unit 4 may be configured by hardware that also has a component power that is configured to share a part of processing for each of the power configured by software.
  • the change factor information data G includes not only deterioration factor information data but also information that simply changes the image, and information that improves the image as opposed to deterioration. Further, in the repeated processing, the maximum value E of the remaining energy amount E that each pixel has is not compared with the predetermined value (X), and the comparison is made.
  • the remaining energy amount E can be compared with the average value or the total value. By doing so, the processing speed is improved. Furthermore, the maximum value E, the average value, or the total value of the remaining energy amount E that each pixel has, and each of these values.
  • Comparison with a plurality of corresponding predetermined values can also be performed.
  • the set number of times may be changed by the data G of the change factor information. good. For example, when the data of a certain pixel is distributed to a large number of pixels due to blurring, the number of iterations may be increased, and when the variance is small, the number of iterations may be reduced.
  • the restoration target is stored as image data.
  • these restore process concepts and techniques can be applied to any data restore process. For example, it can be applied to restoration of audio data and earthquake wave data. Further, in the above-described embodiment, these are also applied to non-linear data such as image data and gamma correction that vary depending on the position of the power pixel shown in the example where the image data is blurred in each place. Ideas and methods can be applied.
  • Each processing method described above may be programmed. Also programmed Things may be stored in a storage medium, such as a CD (Compact Disc) DVD or USB (Universal Serial Bus) memory, and readable by a computer.
  • the signal processing device 1 has means for reading a program in the storage medium.
  • the program may be stored in an external server of the signal processing apparatus 1 and downloaded and used as necessary.
  • the signal processing device 1 has communication means for downloading the program in the storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

 劣化等変化した信号を復元するに当たり、装置の大型化を防止できると共に、現実性のある信号処理装置を提供する。  この信号処理装置1は、劣化等の変化が生じた原信号のデータから、変化する前の信号もしくは本来取得されるべきであった信号またはそれらの近似信号のデータの復元をする処理部4を有する。そして、変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処理された信号のデータが格納される復元データ領域とを設け、処理部4が、変化データのエネルギーを、変化の要因となる変化要因情報データを利用して、変化データ領域から復元データ領域へと移行させ、復元データを生成し、その移行により残存する変化データ領域の残部データを、変化データに置き換えて同様の処理を繰り返し、処理終了時の復元データ領域に形成されるデータを元信号データとする。

Description

明 細 書
信号処理装置
技術分野
[0001] 本発明は、信号処理装置に関する。
背景技術
[0002] 従来から、カメラ等の画像処理装置で撮影した際には、画像には時々劣化が生ず ることが知られている。画像劣化の要因としては撮影時の手ぶれ、光学系の各種の 収差、レンズの歪み等がある。
[0003] 撮影時の手ぶれを補正するには、レンズを動かす方式と、回路処理する方式とが 知られている。たとえば、レンズを動かす方式としては、カメラの手ぶれを検出し、所 定のレンズを、その検出した手ぶれに合わせて動かすことで補正する方式が知られ ている(特許文献 1参照)。また、回路処理する方式としては、カメラの光軸の変動を 角加速度センサで検出し、検出した角速度等力 撮影時のぼけ状態を表す伝達関 数を取得し、撮影画像に対し、取得した伝達関数の逆変換を行い、画像を復元する ものが知られて 、る (特許文献 2参照)。
[0004] また、一般の撮影画像以外にも、音声、 X線写真、顕微鏡画像、地震波形等、種々 の信号がぶれやその他の原因によって劣化したり、変化したりすることが知られてい る。
[0005] 特許文献 1:特開平 6— 317824号公報 (要約書参照)
特許文献 2:特開平 11 24122号公報 (要約書参照)
発明の開示
発明が解決しょうとする課題
[0006] 特許文献 1記載の手ぶれ補正を採用したカメラは、モータ等、レンズを駆動するハ 一ドウエアのスペースが必要となり大型化してしまう。また、そのようなハードウェア自 体やそのハードウェアを動かす駆動回路が必要となり、コストアップとなってしまう。ま た特許文献 2記載の手ぶれ補正の場合は、上述した問題点はなくなるものの、次の ような問題を有する。すなわち取得した伝達関数の逆変換で画像復元がなされること は理論上成り立つが、実際問題として、以下の 2つの理由で、画像復元が困難である
[0007] 第 1に、取得する伝達関数は、ノイズやぶれ情報誤差等に非常に弱ぐこれらのわ ずかな変動により、値が大きく変動する。このため、逆変換で得られる補正画像は、 手ぶれがな 、状態で撮影した画像とはほど遠 、ものとなり、実際上は利用できな 、。 第 2に、ノイズ等を考慮した逆変換を行う場合、連立方程式の解の特異値分解等で 解を推定する方法も採用できるが、その推定のための計算値が天文学的な大きさに なり、実際的には解くことができなくなるリスクが高い。
[0008] 画像に生ずる上述した問題は、一般の種々のデータにも現れ、伝達関数の逆変換 で信号の復元を行うことは、取得した伝達関数が不正確な場合はもちろんのこと、正 確であったとしても、困難となっている。し力も、 100%正確な伝達関数を得ることは、 自然界を対象とする場合は、あり得ない状況である。
[0009] 上述したように、本発明の課題は、信号を復元するに当たり、装置の大型化を防止 すると共に、現実性のある回路処理方式を有する信号処理装置を提供することであ る。
課題を解決するための手段
[0010] 上記課題を解決するため、本発明の信号処理装置は、劣化等の変化が生じた原 信号のデータ (以下、変化データという。)から、変化する前の信号もしくは本来取得 されるべきであった信号またはそれらの近似信号のデータ(以下、元信号データと!/、 う)の復元をする処理部を有し、変化データが格納される変化データ領域と、毎回の 復元処理毎にその復元処理された信号のデータ(以下、復元データという。)が格納 される復元データ領域とを設け、処理部が、変化データのエネルギーを、変化の要 因となる変化要因情報データを利用して、変化データ領域から復元データ領域へと 移行させ、復元データを生成し、その移行により残存する変化データ領域の残部デ ータを、変化データに置き換えて同様の処理を繰り返し、処理終了時の復元データ 領域に形成されるデータを元信号データとして ヽる。
[0011] この発明によれば、元信号データが、変化要因情報データに従って変化データへ と変化したことを前提とするので、同一のフィルタとなる変化要因情報データ利用する ことにより、変化データのエネルギーを復元データ領域に移行すれば、復元データ 領域において元信号データが確実に復元される。ここで、変化データ領域に格納さ れる変化データは、変化データを構成するエネルギーの状態をそのままにした上で、 変化データにカ卩ェ等が施されたものであっても良い。また、復元データ領域に格納さ れる復元データは、復元データを構成するエネルギーの状態をそのままにした上で、 復元データにカ卩ェ等が施されたものであっても良い。さらに、「移行」は、変化データ 領域から復元データ領域への、字義通りエネルギー値を移動すること、および、変化 データ領域力 そのエネルギーを除去し、復元データ領域に新たにそのエネルギー を生成することも含む。さらに、変化データ領域および復元データ領域は、一時的に 形成されるものまたは恒久的に形成されるものの両者を含む(以下同じ)。
[0012] 他の発明は、上述の発明に加え、繰返し処理の際、その繰返しの都度復元データ 領域へ移行するエネルギーを既に復元データ領域に格納された復元データに加算 する処理をし、残部データを零に近づける処理を行っている。残部データが零に近 づけば、変化データ領域のエネルギーの殆どが復元データ領域へと移行することと なるため、復元データが元信号データへと近づく。
[0013] 上記課題を解決するため、本発明の信号処理装置は、複数の要素力 なる変化デ ータから、複数の要素力 なる元信号データの復元をする処理部を有し、変化デー タが格納される変化データ領域と、毎回の復元処理毎に復元データが格納される復 元データ領域とを設け、処理部が、変化データの一の要素における要素エネルギー を、変化の要因となる変化要因情報データが有する応答特性関数の重心値を利用 して、変化データ領域から復元データ領域へと移行させ、移行させた要素エネルギ 一に相当する要素エネルギーを、変化データ領域力 変化要因情報データを利用し て除外する処理を行い、またこの一の要素に対する処理を他の要素についても順次 行い、復元データ領域に復元データを生成し、除外により残存する変化データ領域 の残部データを、変化データに置き換えて同様の処理を各要素毎に繰り返し、その 繰り返しの都度復元データ領域へ移行する要素エネルギーを復元データに加算す る処理をし、残部データを零に近づける処理を行い、処理終了時の復元データ領域 に形成されるデータを元信号データとして ヽる。 [0014] この発明によれば、元信号のデータが、変化要因情報データに従って変化データ へと変化したことを前提とするので、同一のフィルタとなる変化要因情報データである 応答特性関数の重心値 (エネルギーが最も集中して 、る部分の値)の逆数を用いる ことにより、変化データのエネルギーの多くを復元データ領域に移行し、移行させた エネルギーに相当する要素エネルギーを、変化データ領域力も変化要因情報デー タを利用して除外して、残部データのエネルギー値 (以下、残部エネルギー量という) を、零に近づけることができれば、復元データ領域において元信号データが確実に 復元される。ここで、変化データ領域に格納される変化データは、変化データを構成 する各要素のエネルギーの状態をそのままにした上で、変化データに加工等が施さ れたものであっても良い。また、復元データ領域に格納される復元データは、復元デ ータを構成する各要素のエネルギーの状態をそのままにした上で、復元データに加 ェ等が施されたものであっても良い。さらに、「移行」は、変化データ領域から復元デ ータ領域への、字義通りエネルギーを移動すること、および、変化データ領域からそ のエネルギーを除去し、復元データ領域に新たにそのエネルギーに相当するェネル ギーを生成することも含む。さらに、応答特性関数には、インパルス応答関数および ユニット応答関数等を含む。そして信号のデータを画像のデータとした場合には、ィ ンパルス応答関数は点像関数となる。
[0015] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、繰り返しの処 理の際、残部エネルギー量が、所定値以下または所定値より小さくなつたら、停止さ せる処理を行っている。この構成を採用した場合、残部エネルギー量が「0」にならな くても処理を停止させるので、処理の長時間化を防止することができる。また、所定値 以下としているので、近似する復元データは変化データの元となる変化前 (劣化等す る前)の元信号データにより近いものとなる。さらに、ノイズなどがあった場合、残部ェ ネルギー量が「0」になることが現実的にはあり得ない状況が生じがちである力 その ような場合であっても無限に処理を繰り返すことにはならない。
[0016] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、繰り返しの処 理の際、繰り返しの回数が所定回数となったら停止させる処理を行っている。この構 成を採用した場合、残部エネルギー量が「0」になってもならなくても処理を停止させ るので、処理の長時間化を防止することができる。また、所定回数まで処理を継続さ せているので、近似する復元データは変化データの元となる劣化等する前の元信号 データにより近いものとなる。さらに、ノイズなどがあった場合、残部エネルギー量が「
0」にならない状況が現実的には生じがちである力 そのような場合であっても所定回 数で終了させているので、無限に処理を繰り返すことにはならない。
[0017] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、繰り返しの処 理の際、繰り返しの回数が所定回数に到達したときの残部エネルギー量が所定値以 下または所定値より小さい場合は停止し、所定値より超えるまたは所定値以上の場 合は、さらに所定回数繰り返す処理を行っている。この発明では、処理の回数と、残 部エネルギー量とを組み合わせて行うようにしているので、単に処理回数に制限を加 えたり、残部エネルギー量に制限を行う場合に比較して、復元精度の良さと処理時 間の短さのバランスが取れた処理とすることができる。
[0018] 上記課題を解決するため、本発明の信号処理装置は、複数の要素力 なる変化デ ータから、複数の要素力 なる元信号データの復元をする処理部を有し、変化デー タが格納される変化データ領域と、毎回の復元処理毎にその復元データが格納され る復元データ領域とを設け、処理部が、変化データの一の要素におけるエネルギー を、変化の要因となる変化要因情報データを利用して、変化データ領域から復元デ ータ領域へと移行させ、移行させたエネルギーに相当するエネルギーを、変化デー タ領域力 変化要因情報データを利用して除外する処理を行い、また一の要素に対 する処理を他の要素についても順次行い、復元データ領域に復元データを生成し、 その移行により残存する変化データ領域の残部データの値が、所定値以下または所 定値より小さい場合は処理を停止し、復元データを元信号データとして扱い、残部デ ータ量が、所定値より大きいまたは所定値以上の場合は、残部データを変化データ に置き換えて同様の処理を繰り返し、その繰り返しの都度復元データ領域へ移行す るエネルギーを復元データに加算する処理を行っている。
[0019] この発明によれば、元信号のデータが、変化要因情報データに従って変化データ へと変化したことを前提とするので、同一のフィルタとなる変化要因情報データを利 用することにより、変化データのエネルギーを復元データ領域に移行できれば、復元 データ領域において元信号データが確実に復元される。また、変化要因情報を利用 して、変化データ領域から復元データ領域へとエネルギーを移行し、変化データ領 域の各要素における残部エネルギー量の値が所定値を超える、または所定値以上 のときのみ残部データを変化データに置き換えて、同様の処理を繰り返すため、復 元処理を迅速にできる。さらに、変化データ領域から復元データ領域へとエネルギー を移行することで復元処理が行われるため、ハードウェア的な増加はほとんど無ぐ 装置が大型化しない。このため、信号の復元に当たって、現実性のある回路処理方 式を有する信号処理装置とすることができる。
[0020] 他の発明に係る信号処理装置は、上述した発明にカ卩え、処理部は、繰り返しの処 理の際、繰り返しの回数が所定回数となったら停止させる処理を行っている。この構 成を採用した場合、残部エネルギー量が「0」になってもならなくても処理を停止させ るので、処理の長時間化を防止することができる。また、所定回数まで処理を継続さ せているので、復元データは元信号データにより近いものとなる。さらに、ノイズなど があった場合、残部エネルギー量が「0」にならない状況が現実的には生じがちであ る力 そのような場合、無限に処理を繰り返すことになつてしまうが、この構成を採用 すると、そのような問題が生じない。
[0021] 他の発明に係る信号処理装置は、上述した発明に加え、繰り返しの処理の際、各 要素が各々有する残部データの値の最大値、平均値または総和値のうちの一つまた は複数について、所定値との比較を行っている。この構成を採用した場合、変化デ ータを構成する要素における残部エネルギー量を零に近づけることができるため、復 元データと元信号データとの近似度をより高めることができる。
[0022] 他の発明に係る信号処理装置は、上述した発明に加え、処理部は、繰り返しのい ずれかの回における要素エネルギーの移行の際、残部データのいずれかの要素に おける要素エネルギー値が零未満となる場合には、その回の要素については移行を 行わずに次回以降に移行を行う処理、またはその回の移行値を補正する処理を行つ ている。この構成を採用した場合、エネルギーの移行の結果、残部データのいずれ かの要素におけるエネルギー値が零未満となるという、理論的には起こり得ない事態 を回避し得るため、画像の復元精度を向上させることができる。 [0023] 他の発明に係る信号処理装置は、上述した発明に加え、信号のデータを画像のデ ータとしている。これにより、カメラの手ぶれによる画像劣化が生じても、劣化等の生じ た原画像から、変化する前の画像もしくは本来撮影されるべきであった画像またはそ れらの近似画像 (以下、元画像という。)の復元をすることができる。
発明の効果
[0024] 本発明では、劣化等変化した信号を復元するに当たり、装置の大型化を防止でき ると共に、現実性のある信号処理装置を提供することができる。
図面の簡単な説明
[0025] [図 1]本発明の信号処理装置の主要構成を示すブロック図である。
[図 2]図 1に示す信号処理装置の概要を示す外観斜視図で、角速度センサの配置位 置を説明するための図である。
[図 3]図 1に示す画像処理装置の処理部で行う画像復元処理方法 (繰返しの処理)に 係る処理ルーチンを説明するための処理フロー図である。
[図 4]図 1に示す信号処理装置の処理部で行う処理方法の概念を説明するための図 である。
[図 5]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れのないときの画素エネルギーの集中を示す表である。
[図 6]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れのな 、ときの画像データを示す図である。
[図 7]図 3に示す処理方法を、手ぶれを例にして具体的に説明するための図で、手ぶ れが生じたときの画素エネルギーの分散を示す図である。
[図 8]図 7に示す画素エネルギーの分散があつたときの手ぶれの状況の一例を説明 するための図である。
[図 9]図 3に示す処理方法を、手ぶれで劣化した図 8に示す画像データを例にして説 明している図である。
[図 10]図 3に示す処理方法を実行した際の移行処理における移行値の見直し方法 の考え方を示す概念図である。
符号の説明 [0026] 1 信号処理装置
2 受信部 (撮影部)
3 制御系部
4 処理部
5 記録部
6 検出部
7 要因情報保存部
G 変化要因情報のデータ (劣化要因情報のデータ)
Ga 点像関数の重心値
Img ' 原画像のデータ (撮影された画像)
Img 劣化のな!、本来の正し!/、画像のデータ(元画像)
E 原画像画素エネルギー
F 移行画素エネルギー
R 復元データ
cE 補正エネルギー
E 残部エネルギー量 (処理対象となるエネルギー)
E 残部エネルギー量最大値
max
X 残部エネルギー量の所定値
τ 原画像データ領域から除去する画素エネルギー量
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態に係る信号処理装置 1について図を参照しながら説明 する。なお、この信号処理装置 1は画像処理装置になっており、民生用のカメラとして 用いられるものである力 監視用カメラ、テレビ用カメラ、ハンディタイプのビデオカメ ラ、内視鏡カメラ、等他の用途のカメラとしたり、顕微鏡、双眼鏡、さらには NMR撮影 等の画像診断装置等、カメラ以外の機器にも適用できる。
[0028] 図 1には信号処理装置 1の構成の概要を示している。信号処理装置 1は、人物等の 画像を撮影する撮影部 2と、その撮影部 2を駆動する制御系部 3と、撮影部 2で撮影 された画像を処理する処理部 4と、を有している。また、この実施の形態に係る信号 処理装置 1は、さらに処理部 4で処理された画像を記録する記録部 5と、角速度セン サ等力 なり、画像劣化など変化の要因となる変化要因情報を検知する検出部 6と、 画像劣化等を生じさせる既知の変化要因情報を保存する要因情報保存部 7を有す る。なお、信号処理装置 1が画像処理装置以外のものとして適用される場合、撮影部 2は、音声信号等の種々の入力信号を受信する受信部 2 (以下では、適宜、撮影部 2 と受信部 2とを使い分けることとする。)となる。
[0029] 撮影部 2は、レンズを有する撮影光学系やレンズを通過した光を電気信号に変換 する CCDや C— MOS等の撮影素子を備える部分である。制御系部 3は、撮影部 2、 処理部 4、記録部 5、検出部 6及び要因情報保存部 7等、信号処理装置 1内の各部を 制御するものである。
[0030] 処理部 4は、画像処理プロセサで構成されており、 ASIC(Application Specific Integ rated Circuit)のようなハードウェアで構成されている。処理部 4は、検出する手ぶれ 等の振動検出のためのサンプリング周波数を発生させていると共にそのサンプリング 周波数を検出部 6に供給している。また処理部 4は、振動検出の開始と終了を制御し ている。なお、信号処理装置 1が画像処理装置以外のものとして適用される場合、受 信部 2の受信感度を入力信号の大きさ等によって変えることができる。
[0031] また、この処理部 4は、 ASICのようなハードウェアとして構成されるのではなぐソフ トウエアで処理する構成としても良い。この処理部 4には、変化データ領域となる原画 像データ領域と復元データ領域となる復元画像データ領域が恒久的に配置されて 、 る。また処理部 4は、後述する各画素の残部エネルギー量の最大値「E 」を記憶す
max
る。また記録部 5は、半導体メモリで構成されている力 ハードディスクドライブ等の磁 気記録手段、または DVD等を使用する光記録手段等を採用しても良い。なお、この 記録部 5に変化データ領域や復元データ領域を設けるようにしても良ぐまた残部ェ ネルギー量の最大値「E 」を記憶させるようにしてもよ!、。
max
[0032] 検出部 6は、図 2に示すように、信号処理装置 1の光軸である Z軸に対して垂直方 向となる X軸、 Y軸の回りの速度を検出する 2つの角速度センサを備えるものである。 ところで、カメラで撮影する際の手ぶれは、 X方向、 Y方向、 Z方向の各方向への移動 、 Z軸回りの回動も生ずる力 各変動により最も大きな影響を受けるのは、 Y軸回りの 回転と X軸回りの回転である。これら 2つの変動は、ほんのわずかに変動しただけで、 その撮影された画像は大きくぼける。このため、この実施の形態では、図 2の X軸回り と Y軸回りの 2つの角速度センサのみを配置している。し力し、より完全を期すため Z 軸回りの角速度センサをさらに付加したり、 X方向や Y方向への移動を検出するセン サを付加しても良い。また、使用するセンサとしては、角速度センサではなぐ角加速 度センサとしても良い。
[0033] 要因情報保存部 7は、既知の劣化要因情報などの変化要因情報、たとえば光学系 の収差および Zまたは検出された振動に基づいて算出された点像関数等を保存し ておく記録部である。要因情報保存部 7で記録された点像関数は、たとえばその算 出後の直近に撮影された劣化等の変化が生じた画像である原画像の復元処理の際 に、処理部 4で用いられる。ここで、原画像の復元処理を実行する時期は、撮影用の 電源がオフされている時、処理部 4が稼働していない時、処理部 4の稼働率が低い 時等、原画像を撮影した時期から遅らせた時期とすることができる。その場合には、 記録部 5に保存された原画像のデータおよび、要因情報保存部 7に保存された、そ の原画像についての点像関数等の変化要因情報が、それぞれが関連づけられた状 態で長期間に渡り保存される。このように、原画像の復元処理を実行する時期を、原 画像を撮影した時期から遅らせる利点は、種々の処理を伴う撮影時の処理部 4の負 担を軽減できることである。なお、信号処理装置 1が画像処理装置以外のものとして 適用される場合は、検出部 6で検出される温度、湿度等が受信部 2の受信特性ゃシ ステム全体の特性を変化させることもあるので、それらを記録し、変化要因情報として 用いることができる。また、システムのインパルス応答等、予めわ力つているシステム の応答特性関数等を要因情報保存部 7に保存することもできる。
[0034] 次に、以上のように構成された信号処理装置 1の処理部 4により行われる画像復元 処理方法の一例の概要を、図 3に基づいて説明する。
[0035] 図 3中、「E」は、劣化等の変化が生じた原画像データ Img' (詳細は後述する。 )の 各画素各々が有する光エネルギー (原画像画素エネルギー)であり、変化データ領 域となる原画像データ領域に格納される。「F」は、 n回目の変化領域となる原画像デ ータ領域から復元データ領域となる復元画像データ領域に移された画素エネルギー (以下、移行画素エネルギーという)である。「En」は、 1回目力も n回目までの n回に渡 る移行エネルギー Fの移行により変化データ領域である原画像データ領域に残存 する残部エネルギー量であり、処理対象となるエネルギーである。「R」は、復元デー タ領域となる復元画像データ領域に格納される復元データであり、図 3に示す画像復 元処理の遂行により、元画像データ「Img」の近似データとなる。「X」は、残部エネル ギー量 Eの所定の値である。「G」は、検出部 6で検出された変化要因情報(=劣化 要因情報(点像関数))のデータで、処理部 4の記録部に保存されるものである。「Ga 」は、検出部 6で検出された変化要因情報 G (=劣化要因情報 (点像関数) )のデータ の点像関数の重心値である。「Img」は、元画像、すなわち、本来撮影されるべきであ つた画像のデータであり、元信号データである。なお、元信号データは、この元画像 I mg (本来取得されるべきであった信号)以外に、変化する前の信号やそれらの近似 信号のデータを含むものとして、この明細書では定義される。原画像データ Img'は、 撮影された画像、すなわち劣化した画像のデータを指す。ここで、 Imgと Img'との関 係は、次の(1)式で現されるとする。
Img,=Img水 G (1)
ここで、「*」は、重畳積分を表す演算子である。
[0036] また図 3に示す「T」は、移行画素エネルギー Fに相当する画素エネルギーを原画 像データ領域から除去する画素エネルギー量であり、移行画素エネルギー Fと同量 となる。「Ε 」は、原画像データ領域における各画素の残部エネルギー量の最大値
max
である。ここで、原画像データ領域における各画素の残部エネルギー量 Eと移行画 素エネルギー Fとの関係は、次の(2)式で現されるとする。すなわち移行画素ェネル ギー Fは、原画像データ領域における各画素の残部エネルギー量 E (処理対象とな るエネルギー)を変化要因情報のデータ Gである点像関数の重心値 Gaの逆数を用 いることにより得ることがでさる。
F =E /Ga…… (2)
[0037] 図 3の処理部 4の処理ルーチンは、まず、原画像データ Img'を構成する一の要素 の画素エネルギーを原画像画素エネルギー Eとして抽出すること力も始まる (ステップ S101)。ここで、現段階 (n=0)では、 E =E (原画像データ)であり、復元画像デー タ領域の復元データ R =0である。 1回目の処理 (n= l)では、まず原画像画素エネ
0
ルギー E = Eに点像関数の重心値 Ga (変化要因情報データ Gの最も大きな値)の逆
0
数をかけることにより、移行画素エネルギー Fを得る(ステップ S 102)。次いで、移行 画素エネルギー Fを復元画像データ領域の復元データ Rへ移行する。すなわち、 移行画素エネルギー Fを復元画像データ領域の復元データ Rへ加算して 1回目の
1 0
復元データ Rとする(ステップ S 103)。
[0038] 次に、復元画像データ領域へ移行させた移行画素エネルギー F分の画素エネル ギーを原画像データ領域力も除去する。その際には、変化要因情報データ Gである 点像関数を利用する。何故ならば、データの劣化は、変化要因情報データ Gというフ ィルタを通ることによるものであり、劣化の前後で矛盾が無いように移行画素エネルギ 一 Fを原画像データ領域力も除去することができるためである。そこで、移行画素ェ ネルギー Fと変化要因情報データ Gとの重畳積分 (ステップ S 104)で得られた画素 エネルギー量 Tを原画像データ領域から除去し、残存エネルギーである原画像デ ータ領域の残部ネルギー量 Eを得る(ステップ S 105)。
[0039] 以上のステップ S102, S103, S104および S105の過程を、原画像データ領域に ある原画像データ Img,を構成する残りの全ての画素について順次行う。このとき、ス テツプ S102における処理対象となるエネルギー Eは、周囲の画素のエネルギー移
0
行処理における原画像データ領域から移行画素エネルギー Fを除去する際に、重 畳積分によって得られる当該画素に対応する量が除去された値となっている。そして 、全ての画素につ!ヽて、以上のステップ S102, S103, S104および S105力行われ た後、原画像データ領域の残部エネルギー量 Eの最大値 E を記憶する (ステップ
1 max
S106)。
[0040] 次いで残部エネルギー量 Eの最大値 E が所定値 X未満カゝ否カゝ、すなわち当初
1 max
原画像データ領域に存した原画像画素エネルギー E = Eの多くが、復元画像データ
0
領域に移され、復元画像データ領域の復元データ Rが元画像データ Imgとみなすこ とができるかの判断を行う(ステップ S107)。本例では、所定値 Xを「0」以外の「0」に 近い値としておき、 E が所定値 X未満になるかどうかを判断し、所定値 X以上のとき max
は、「n=n+ l」= 2として、全ての画素につ!ヽて、ステップ S102, S103, S104, S1 05, S106および S107の処理を再度行う。図 3の処理手順で、「n=n+ l」は、全て の画素【こつ!ヽてステップ S102, S103, S104および S105の処理を終えて、 S106 および S 107を行ったときに行う。すなわち画像全体の処理回数を nとして現している 。なお、ステップ S107は、所定値 X以上となる残部エネルギー量 Eの画素がいくつ あるかの判断を行うステップとしても良い。この場合、所定値 X以上となる残部エネル ギー量 Eとなっている画素がいくつか存在しても、その数が少なければ復元データ R は元画像データ Imgに十分近似されたとみなすことができる。
[0041] ステップ S107において、残部エネルギー量の最大値 E が所定値 X以上のときの
max
処理を説明する。 E は、所定値 X以上であるため、 n=n+ 1として、全ての画素に
max
ついて、ステップ S102, S103, S104, S105, S106および S107の処理を行う。す なわち、残部エネルギー E 〖こ、点像関数の重心値 Ga (変化要因情報データ Gの 最も大きな値)の逆数をかけることにより、移行画素エネルギー Fを得る (ステップ S1 02)。次いで、移行画素エネルギー Fを復元画像データ領域へ移行し、新たな復元 データ Rを得る。すなわち、前回 (n— 1)までに復元された復元画像データ領域の復 元データ R へ今回の移行画素エネルギー Fを加算して新たな復元データ Rとす る。次いで、移行画素エネルギー Fと変化要因情報データ Gとの重畳積分 (ステップ S 104)で得られた画素エネルギー Tを原画像データ領域から除去し、新たな残部 エネルギー Eを得る(ステップ S 105)。
[0042] 以上のステップ S102, S103, S104および S105の過程を、原画像データ領域に ある残りの全ての画素について順次行う。そして、各画素における残部エネルギー量 最大値「E 」を記憶する (ステップ S 106)。そして残部エネルギー量最大値 E 力 S max max 所定値 X未満か否かの判断を行う(ステップ S 107)。 E が所定値 X以上であれば、
max
「n=n+ l」として、ステップ S102, S103, S104, S105, S106および S107の処 理を繰り返す。 E が所定値 X未満となったら、復元データ Rは、元画像データ Img
max n
と十分に近似できたと判断し、復元処理は終了する (ステップ S 108)。
[0043] 図 4に基づき、この実施の形態に係る手ぶれの復元処理の考え方を以下述べる。
元画像のデータ Img力 変化要因情報のデータ Gにより原画像データ Img'へと変化 したのなら、同一のフィルタとなる変化要因情報のデータ Gを利用して、原画像デー タ Img 'を構成する全ての画素における原画像画素エネルギー Eの全てを復元画像 データ領域に移行すれば、復元画像データ領域の復元データ Rnは、元画像のデー タ Imgへと理論上近づくはずである。
[0044] 次に、図 3,図 4に示す手ぶれの復元処理方法 (ステップ S102, S103, S104, S1 05, S106および S107の繰返しの処理)の詳細を、図 5,図 6,図 7,図 8および図 9 に基づいて説明する。
[0045] (復元アルゴリズム)
手ぶれ等による画像劣化が無いとき、所定の画素に対応する光エネルギー(画素 エネルギー)は、露光時間中、その画素に集中する。また、手ぶれがある場合、画素 エネルギーは、露光時間中にぶれた画素に分散する。さらに、露光時間中のぶれが わかれば、露光時間中の画素エネルギーの分散の仕方がわ力るため、ぶれた画像 からぶれの無 、画像を作ることが可能となる。
[0046] 以下、簡単のため、横一次元で説明する。画素を左から順に S— 1, S, S + l, S + 2, S + 3, ···,とし、ある画素 Sに注目する。ぶれ等による画像劣化が無いとき、露光 時間中の画素エネルギーは、その画素に集中するため、画素エネルギーの集中度 は「1. 0」である。この状態を図 5に示す。このときの撮影結果の一例を、図 6の表に 示す。図 6に示すもの力 劣化しな力つた場合の正しい画像データ Imgとなる。なお、 各データは、 8ビット(0〜255)のデータで表している。
[0047] 露光時間中にぶれ等による画像劣化があり、露光時間中の 50%の時間は S番目 の画素に、 30%の時間は S + 1番目の画素に、 20%の時間は S + 2番目の画素にそ れぞれぶれていたとする。画素エネルギーの分散の仕方は、図 7に示す表のとおりと なる。これが変化要因情報のデータ Gとなる。また、点像関数の重心値 Gaは、ェネル ギ一が最も集中している部分の値であるから、露光時間中の 50%の時間ぶれていた 部分の値「0. 5」である。
[0048] ぶれは、全ての画素で一様であり、上ぶれ (縦ぶれ)が無ぐぶれが図 7に示すよう に三画素分の範囲とすると、ぶれの状況、すなわち各画素の画素エネルギー分散状 況は、具体的には、たとえば図 8に示すように、「S— 3」の画素の「120」は、ぶれ情 報である変化要因情報のデータ Gの「 α =0. 5」「 j8 =0. 3」「 γ =0. 2」(図 7)の分 散比に従い、「S— 3」の画素に「60」、「S— 2]の画素に「36」、「S— 1」の画素に「24 」というように分散する。同様に、「S— 2」の画素エネルギーである「60」は、「S— 2」に 「30」、「S— 1」に「18」、「S」に「12」として分散する。他の画素も同様に画素エネル ギ一が分散する。
[0049] 元画像データ Imgの特定の画素のエネルギーである「A」と、撮影された原画像 Im g'におけるその特定の画素に相当する画素のエネルギー「A'」との関係は、一般的 に、以下の(3)式で現される。
A X Ga=k XA,…(3)
ここで、「k」は、画素エネルギー「A,」に含まれる画素エネルギー「A」の成分比であ る。この「k」の値は、未知であるため「0<k≤l」の範囲で任意に設定できる。点像関 数の重心値「Ga」は、エネルギーが最も集中している部分の値であるから、本例では 、図 7に示すように、「α =0. 5」である。この「α」は、元画像データ Imgの特定の画 素のエネルギー「A」が、ぶれにより、撮影された原画像 Img,におけるその特定の画 素に相当する画素のエネルギー「A,」へと分散したエネルギー分散比である。この( 3)式は、「《=0. 5」(図 7)以外の α値であっても適用できることは言うまでもない。 また(3)式は、図 7に示すような三画素分の範囲未満またはその範囲を超える範囲に 渡り、ぶれが生じた場合にも適用できる。さらに、仮に、点像関数の重心値 Gaが、図 7に示す「 |8」または「γ」等の部分にある場合でも、(3)式は適用できる。
[0050] 次に、原画像データ領域から復元画像データ領域の特定の画素へ、どのように画 素エネルギーを移行させるべきかを考える。ここで、復元画像データ領域に元画像デ ータ Imgを復元するのだから、元画像データ Imgの特定の画素のエネルギー「A」を 求めるために、原画像データ領域から復元画像データ領域の「A」に相当する特定の 画素へと移行するべきである。よって、(3)式より、「A=k XA' Z a」を原画像データ 領域から復元画像データ領域の「A」に相当する特定の画素へと移行する。そして、「 AJに相当する画素エネルギーを原画像データ領域から除去する。このとき、全体とし て矛盾のな 、ように原画像データ領域力 画素エネルギーを除去するため、変化要 因情報のデータ Gを利用する。たとえば、「A」に相当する特定の画素を図 7に示す画 素「S」とすると、原画像データ領域の画素「S」から除去すべき画素エネルギーは「k ΧΑ' / α α」、原画像データ領域の画素「S + 1」から除去すべき画素エネルギー は「kXA'Z a X j8」、原画像データ領域の画素「S + 2」から除去すべき画素エネル ギ一は「k XA'Z a X γ」となる。すると、これら除去した画素エネルギーの和が復元 画像データ領域の画素「S」へと移行させた画素エネルギー量「A」となる。本例では 、「k=0. 5」と設定して、具体的な画素エネルギーの移行の様子を以下に述べる。
[0051] 繰り返し処理の 1回目のステップ S101に示す原画像画素エネルギー「E」が、図 8, 図 9に示されている。最初に処理する画素では、この原画像画素エネルギー Eが処 理対象のエネルギー Eであり、それに対し、ステップ S 102で点像関数の重心値 Ga
0
の逆数をかけて、移行画素エネルギー Fを得る。たとえば、画素「S— 3」に注目した 場合、原画像データ (撮影データ)(図 9で「E」)の点像関数の重心値 Gaは「0. 5」だ 力 、(3)式より、「0. 5 X 60/0. 5 = 60」を原画像データ領域から復元画像データ 領域の画素「S— 3」へと移行する(ステップ S 103) (図 9では F (S— 3) )。そして、原 画像データ領域から「60」の画素エネルギーを除去する。すると、復元画像データ( 図 9では R (S— 3) )は「60」、「0」…となる。ここで、変化要因情報のデータ Gは、上 述のように「0. 5」「0. 3」「0. 2」であるので、原画像データ領域の画素「S— 3」からは 「0. 5 X 60/0. 5 X 0. 5 = 30」、画素「S— 2」力らは「0. 5 X 60/0. 5 X 0. 3 = 18 」、画素「S— 1」からは「0. 5 X 60/0. 5 X 0. 2= 12」が除去されるべきである(図 9 では T (S— 3) )。よって、原画像データ領域の画素「S— 3」から「30」、画素「S— 2」 力 「18」、画素「S— 1」から「12」のエネルギーを取り去る(ステップ S104)。このとき 、原画像データ領域の各画素の残部エネルギー量 Eは、それぞれ移行分が取り去 られ、画素「S— 3」が「30」、画素「S— 2」が「48」、画素「S— 1」が「70」となり、その で「E (S— 3)」)。
[0052] 次に、画素「S— 2」に注目すると、現在は「48」( = 66— 18)のエネルギーが処理 対象のエネルギー Eとして残っている。上述した画素「S— 3」と同様の処理をすると
0
、原画像データ領域から復元画像データ領域の画素「S— 2」へ「48」の画素エネル ギ一が移行して(図 9では F (S— 2) )、復元画像データ領域の画素「S— 2」の復元 データ Rは、「48」となり、復元画像データ(図 9では R (S— 2) )は「60」「48」「0」· ·· となる。そして、原画像データ領域の画素「S— 2」から「24」、画素「S— 1」からは「14 . 4」、画素「S」からは「9. 6」を取り去る。この結果、撮影データ、すなわち原画像デ ータ領域の各画素の残部エネルギー量 Eは、それぞれ移行分が取り去られ(図 9で「 T (S— 2)」)、画素「S— 3」が「30」、画素「S— 2」が「24」、画素「S— 1」が「55. 6」、 画素「S」が「76. 4」となり、その他の画素は元のとおり「121」「105」「114」「142」と なる(図 9で「E (S - 2) J ) 0
[0053] 次に、画素「S— 1」に着目し、上述した画素「S - 3」と同様の処理をする。現在は「 55. 6」( = 82— 12— 14. 4)のエネノレギ一が処理対象のエネノレギー Eとして残って
0
いる。そして、原画像データ領域から復元画像データ領域の画素「S— 1」へ「55. 6」 の画素エネルギーが移行して(図 9では F (S— 1) )、復元画像データ領域の画素「S 1」の復元データ Rは、「55. 6」となり、復元画像データ(図 9では R (S— 1) )は「6 0」「48」「55. 6」「0」…となる。そして、原画像データ領域の画素「S— 1」から「27. 8 」、画素「S」からは「16. 68」、画素「S + 1」からは「11. 12」を取り去る。この結果、撮 影データ、すなわち原画像データ領域の各画素の残部エネルギー量 Dは、それぞれ 移行分が取り去られ(図 9で「T (S— 1)」)、画素「S— 3」が「30」、画素「S— 2」が「2 4」、画素「S— 1」が「27. 8」、画素「S」が「59. 72」、画素「S + 1」が「109. 88」となり 、その他の画素は元のとおり「105」「114」「142」となる(図 9で「E (S— 1)」)。
[0054] このように、すべての画素につ 、て順次画素エネルギーを移行して 、く。そして 1回 目(n= 1)の処理では、全ての画素「S— 3」「S— 2」「S— 1」…「S +4」の原画像画素 エネルギー Eが復元画像データ領域に移動せず、原画像データ領域の各画素の残 部エネルギー量 Eが大きな値として残る。ここでの残部エネルギー量最大値「E 」( n max 画素「S +4」における「53. 06」)を制御部 4のメモリに記憶する (ステップ S 106)。そ して残部エネルギー量最大値 E が所定値 X(たとえば本例では「5」とする)未満か max
否かの判断を行う(ステップ S 107)。以上の処理の結果、 E >Xであるから、残部 max
エネルギー(図 9で「E (S +4)」)を処理対象として、同様の画素エネルギー移行処 理を第 2回目(n= 2)として行う。そしてその後、 E >Xを満足するまで (全ての画素 max
における残部エネルギー量 E力 「0」に近づくまで)、同様の移行処理を繰り返す。
[0055] ここで、図 9の特定の画素が、この移行処理をした結果、移行画素エネルギー Fを 移行した結果、復元データ Rnが所定の上限値を上回ってしまったり、残部エネルギ 一量 Eがマイナスの値となることがある。この状態が発生することは、移行画素エネ ルギー Fを不適切な値に設定してしまっていることを意味する。そこで、以下にこのよ うな場合であっても、全体として矛盾無く移行値を見直す方法を説明する
[0056] (移行値の見直し方法)
残部エネルギー量がマイナスとなる画素については復元画像データ領域に移動す べき移行画素エネルギー Fを移行せず、前回の処理の値をそのまま使用し、次回の 移行処理に供することで、その際に除去する画素エネルギーが不適切な値にならな くなることを期待する。次回は、周囲の画素の残部エネルギー量が少なくなり、本来 ならばマイナスとなった画素からの除去する画素エネルギー値、すなわち抜き去られ る画素エネルギー値が今回よりも小さくなるため、残部エネルギー量が「0」以上とな る可能性が大きい。しかし、たとえば画素「S」がマイナスとなったときに前の値をその まま使用した場合、画素「S— 2」「S— 1」等、処理済みの画素の残部エネルギー量が 「0」に近づいている場合は、いつまでたっても復元されないままで収束しない。よって 、この場合には、画素「S— 2」「S— 1」等の復元値の見直しを行うことが望ましい。
[0057] 移行後の見直し方法の考え方を図 10に示す概念図に基づいて説明する。既に復 元画像データ領域に移行した画素エネルギーの一部を補正分 (以下、補正エネルギ 一 cEという)を原画像データ領域に戻し、残部エネルギー量 Eを 0以上にする。この とき、補正エネルギー cEは、変化要因情報のデータ Gで重畳積分して原画像データ 領域に戻す。すると全体として矛盾無く移行値を見直すことができる。
[0058] 上述した本実施の形態に係る信号処理装置 1では、処理するに当たり、ステップ S1 04、 S107において、事前に処理回数と、残部エネルギー E力「0」に近似してきたか どうかの判断基準値のいずれか一方または両者を設定できる。たとえば処理回数とし て 20回、 50回等任意の回数を設定できる。また、処理を停止させる残部エネルギー Eが「0」に近似してきたかどうかの近似値の値を 8ビット(0〜255)中の「5」と設定し 、 5以下になったら処理を終了させたり、「0. 5」と設定し「0. 5」以下になったら処理 を終了させることができる。この設定値を任意に設定できる。処理回数と判断基準値 の両者を入力する構成とした場合、いずれか一方が満足されたときに処理は停止さ れるようにするのが好ましい。なお、両者の設定を可能としたとき、判断基準値を優先 し、所定の回数の処理では判断基準値内に入らな力つた場合、更に所定回数の処 理を繰り返すようにしても良い。
[0059] 本実施の形態の説明の中では、要因情報保存部 7に保存されている情報を利用せ ず、処理部 4の記録部に保存されているデータを使用した力 ここに保存されている 既知の劣化要因、たとえば光学収差やレンズのひずみなどのデータを使用するよう にしても良い。その場合、たとえば、先の例(図 3)の処理方法 (繰返しの処理)では、 ぶれの情報と光学収差の情報を合わせて 1つの劣化要因として捉えて処理を行うの が好ましいが、ぶれの情報での処理を終了した後に光学収差の情報での復元処理 を行うようにしても良い。また、この要因情報保存部 7を設置しないようにして、処理部 4に記録されて 、る撮影時の動的要因、たとえばぶれのみで画像を修正したり復元し たりしても良い。
[0060] また、処理の繰返しの回数が信号処理装置 1側で自動的にまたは固定的に設定さ れている場合、その設定された回数を変化要因情報のデータ Gによって変更するよう にしても良い。たとえば、ある画素のデータがぶれにより多数の画素に分散している 場合は、繰返しの回数を多くし、分散が少ない場合は繰返しの回数を少なくするよう にしても良い。
[0061] また、出力画像となる復元データ Rを生成する際、変化要因情報のデータ Gによつ ては、復元させようとする画像の領域外へ出てしまうようなデータが発生する場合があ る。このような場合、領域外へはみ出るデータは反対側へ入れる。また、領域外から 入ってくるべきデータがある場合は、そのデータは反対側から持ってくるようにしても 良い。たとえば、領域内の最も下に位置する画素 XN1のデータから、さらに下の画素 に割り振られるデータが発生した場合、その位置は領域外になる。そこで、そのデー タは画素 XN1の真上で最も上に位置する画素 XI Iに割り振られる処理をする。画素 XN1の隣の画素 N2についても同様に真上で最上覧の画素 X12 ( =画素 XI Iの隣 り)に割り振ることとなる。
[0062] この実施の形態の復元アルゴリズムでは、信号処理装置 1が有するデータ領域を小 さくできる利点がある。その理由は、復元処理に際し、必要なデータ領域は、原画像 データ領域および復元画像データ領域のみで足りるためである。また、復元処理に 際し、この実施の形態の復元アルゴリズムでは、既知の変化要因情報のデータ Gを 利用して画素エネルギーの移動を繰り返すだけだから、迅速な処理が可能となる。ま た、データ領域は、恒久的なものではなぐ一時的なデータ領域を設定した上で処理 を行っても良い。
[0063] 以上、この実施の形態における信号処理装置 1について説明したが、本発明の要 旨を逸脱しない限り種々変更実施可能である。たとえば、処理部 4で行った処理は、 ソフトウェアで構成している力 それぞれ、一部の処理を分担して行うようにした部品 力もなるハードウェアで構成しても良い。また、変化要因情報のデータ Gとしては、劣 化要因情報のデータのみではなぐ単に画像を変化させる情報や、劣化とは逆に、 画像を良くする情報を含むものとする。さらに、繰り返しの処理の際、各画素が各々 有する残部エネルギー量 Eの値の最大値 E と所定値 (X)との比較を行わずに、そ
n max
の残部エネルギー量 Eの平均値または総和値との比較を行うことができる。そうする ことにより、処理速度が向上する。さらに、各画素が各々有する残部エネルギー量 E の値の最大値 E 、平均値または総和値のうちの複数と、これらの値それぞれに対
max
応する複数の所定値との比較を行うこともできる。
[0064] また、繰返しの処理の回数が信号処理装置 1側で自動的にまたは固定的に設定さ れている場合、その設定された回数を変化要因情報のデータ Gによって変更するよう にしても良い。たとえば、ある画素のデータがぶれにより多数の画素に分散している 場合は、繰り返しの処理回数を多くし、分散が少ない場合は繰り返しの処理回数を少 なくするようにしても良い。
[0065] 上述の実施の形態では、復元対象を画像データとして ヽる。しかし、これらの復元 処理の考え方および手法は、あらゆるデータの復元処理に適用できる。たとえば、音 声データの復元、地震波データの復元等への適用が可能である。また、上述の実施 の形態では、画像データの各場所で同じようにぶれる例を示した力 画素の位置によ つて異なるぶれとなる画像データやガンマ補正のように非線形なものにも、これらの 考え方や手法を適用することができる。
[0066] また、上述した各処理方法は、プログラム化されても良 ヽ。また、プログラム化された ものが記憶媒体、たとえば CD (Compact Disc) DVD, USB (Universal Serial Bus)メ モリに入れられ、コンピュータによって読みとり可能とされても良い。この場合、信号処 理装置 1は、その記憶媒体内のプログラムを読み込む手段を持つこととなる。さらに は、そのプログラム化されたものが信号処理装置 1の外部のサーバに入れられ、必要 によりダウンロードされ、使用されるようにしても良い。この場合、信号処理装置 1は、 その記憶媒体内のプログラムをダウンロードする通信手段を持つこととなる。

Claims

請求の範囲
[1] 劣化等の変化が生じた原信号のデータ (以下、変化データと 、う。)から、変化する 前の信号もしくは本来取得されるべきであった信号またはそれらの近似信号のデー タ(以下、元信号データと 、う)の復元をする処理部を有する信号処理装置にぉ 、て 上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データのエネルギーを、変化の要因となる変化要因 情報データを利用して、上記変化データ領域から上記復元データ領域へと移行させ 、上記復元データを生成し、その移行により残存する上記変化データ領域の残部デ ータを、上記変化データに置き換えて同様の処理を繰り返し、処理終了時の上記復 元データ領域に形成されるデータを上記元信号データとすることを特徴とする信号 処理装置。
[2] 前記繰返し処理の際、その繰返しの都度前記復元データ領域へ移行する前記ェ ネルギーを既に前記復元データ領域に格納された前記復元データに加算する処理 をし、前記残部データを零に近づける処理を行うことを特徴とする請求項 1記載の信 号処理装置。
[3] 複数の要素力 なる変化データから、複数の要素力 なる元信号データの復元を する処理部を有する信号処理装置にお!ヽて、
上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データの一の要素における要素エネルギーを、変化 の要因となる変化要因情報データが有する応答特性関数の重心値を利用して、上 記変化データ領域から上記復元データ領域へと移行させ、上記移行させた上記要 素エネルギーに相当する要素エネルギーを、上記変化データ領域から変化要因情 報データを利用して除外する処理を行い、またこの一の要素に対する処理を他の要 素についても順次行い、上記復元データ領域に上記復元データを生成し、上記除 外により残存する上記変化データ領域の残部データを、上記変化データに置き換え て同様の処理を各要素毎に繰り返し、その繰り返しの都度上記復元データ領域へ移 行する上記要素エネルギーを上記復元データに加算する処理をし、上記残部デー タを零に近づける処理を行 ヽ、処理終了時の上記復元データ領域に形成されるデ ータを上記元信号データとすることを特徴とする信号処理装置。
[4] 前記処理部は、前記繰り返しの処理の際、前記残部データのエネルギー値力 所 定値以下または所定値より小さくなつたら、停止させる処理を行うことを特徴とする請 求項 1から 3のいずれか 1項に記載の信号処理装置。
[5] 前記処理部は、前記繰り返しの処理の際、前記繰り返しの回数が所定回数となった ら停止させる処理を行うことを特徴とする請求項 1から 3のいずれか 1項に記載の信号 処理装置。
[6] 前記処理部は、前記繰り返しの処理の際、前記繰り返しの回数が所定回数に到達 したときの前記残部データのエネルギー値が所定値以下または所定値より小さい場 合は停止し、所定値より超えるまたは所定値以上の場合は、さらに所定回数繰り返す 処理を行うことを特徴とする請求項 1から 3のいずれか 1項に記載の信号処理装置。
[7] 複数の要素力 なる変化データから、複数の要素力 なる元信号データの復元を する処理部を有する信号処理装置にお!ヽて、
上記変化データが格納される変化データ領域と、毎回の復元処理毎にその復元処 理された信号のデータ(以下、復元データという。)が格納される復元データ領域とを 設け、上記処理部が、上記変化データの一の要素におけるエネルギーを、変化の要 因となる変化要因情報データを利用して、上記変化データ領域から上記復元データ 領域へと移行させ、上記移行させた上記エネルギーに相当するエネルギーを、上記 変化データ領域力 上記変化要因情報データを利用して除外する処理を行い、また 上記一の要素に対する処理を他の要素についても順次行い、上記復元データ領域 に上記復元データを生成し、その移行により残存する上記変化データ領域の残部デ ータの値が、所定値以下または所定値より小さい場合は処理を停止し、上記復元デ ータを上記元信号データとして扱い、上記残部データの値が、所定値より大きいまた は所定値以上の場合は、上記残部データを上記変化データに置き換えて同様の処 理を繰り返し、その繰り返しの都度上記復元データ領域へ移行する上記要素エネル ギーを上記復元データに加算する処理を行うことを特徴とする信号処理装置。
[8] 前記処理部は、前記繰り返しの処理の際、前記繰り返しの回数が所定回数となった ら停止させる処理を行うことを特徴とする請求項 7記載の信号処理装置。
[9] 前記処理部は、前記繰り返しの処理の際、各要素が各々有する前記残部データの 値の最大値、平均値または総和値のうちの一つまたは複数について、前記所定値と の比較を行うことを特徴とする請求項 7記載の信号処理装置。
[10] 前記処理部は、前記繰り返しのいずれかの回における前記要素エネルギーの移行 の際、前記残部データの!/、ずれかの要素における前記要素エネルギー値が零未満 となる場合には、その回の当該要素については前記移行を行わずに次回以降に前 記移行を行う処理、またはその回の移行値を補正する処理を行うことを特徴とする請 求項 1から 9のいずれか 1項に記載の信号処理装置。
[11] 前記信号のデータを画像のデータとしたことを特徴とする請求項 1から 10のいずれ 力 1項に記載の信号処理装置。
PCT/JP2007/051033 2006-02-06 2007-01-24 信号処理装置 WO2007091422A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007557779A JP5133070B2 (ja) 2006-02-06 2007-01-24 信号処理装置
US12/278,340 US7864214B2 (en) 2006-02-06 2007-04-24 Signal processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-028006 2006-02-06
JP2006028006 2006-02-06

Publications (1)

Publication Number Publication Date
WO2007091422A1 true WO2007091422A1 (ja) 2007-08-16

Family

ID=38345028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051033 WO2007091422A1 (ja) 2006-02-06 2007-01-24 信号処理装置

Country Status (3)

Country Link
US (1) US7864214B2 (ja)
JP (1) JP5133070B2 (ja)
WO (1) WO2007091422A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901474A (zh) * 2014-04-18 2014-07-02 成都新核中创信息科技有限公司 一种基于折中小波阈值分析的微地震弱信号提取方法
US11096947B2 (en) 2012-04-03 2021-08-24 Novartis Ag Combination products with tyrosine kinase inhibitors and their use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562808B2 (ja) * 2010-11-11 2014-07-30 オリンパス株式会社 内視鏡装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124122A (ja) * 1997-07-03 1999-01-29 Ricoh Co Ltd 手ぶれ画像補正方法および手ぶれ画像補正装置並びにその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2002300459A (ja) * 2001-03-30 2002-10-11 Minolta Co Ltd 反復法による画像復元装置、画像復元方法、プログラム及び記録媒体
JP2003060916A (ja) * 2001-08-16 2003-02-28 Minolta Co Ltd 画像処理装置、画像処理方法、プログラム及び記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348461B2 (ja) 1993-05-06 2002-11-20 株式会社ニコン 手ぶれ補正カメラ
CN101431685B (zh) * 2003-06-23 2011-05-25 索尼株式会社 处理图像的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124122A (ja) * 1997-07-03 1999-01-29 Ricoh Co Ltd 手ぶれ画像補正方法および手ぶれ画像補正装置並びにその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2002300459A (ja) * 2001-03-30 2002-10-11 Minolta Co Ltd 反復法による画像復元装置、画像復元方法、プログラム及び記録媒体
JP2003060916A (ja) * 2001-08-16 2003-02-28 Minolta Co Ltd 画像処理装置、画像処理方法、プログラム及び記録媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11096947B2 (en) 2012-04-03 2021-08-24 Novartis Ag Combination products with tyrosine kinase inhibitors and their use
CN103901474A (zh) * 2014-04-18 2014-07-02 成都新核中创信息科技有限公司 一种基于折中小波阈值分析的微地震弱信号提取方法

Also Published As

Publication number Publication date
US20090051775A1 (en) 2009-02-26
JPWO2007091422A1 (ja) 2009-07-02
JP5133070B2 (ja) 2013-01-30
US7864214B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
JP5007241B2 (ja) 画像処理装置
JP3895357B2 (ja) 信号処理装置
US7903897B2 (en) Image processing apparatus
JP5133070B2 (ja) 信号処理装置
JP4885150B2 (ja) 画像処理装置
JP4926450B2 (ja) 画像処理装置
JP4602860B2 (ja) 画像処理装置
JP4982484B2 (ja) 信号処理装置
JP4598623B2 (ja) 画像処理装置
JP4606976B2 (ja) 画像処理装置
JP5005319B2 (ja) 信号処理装置および信号処理方法
JP4629537B2 (ja) 画像処理装置
WO2007032148A1 (ja) 画像処理装置
JP5007234B2 (ja) 画像処理装置
JP4718618B2 (ja) 信号処理装置
JP4763419B2 (ja) 画像処理装置
JP4809190B2 (ja) 信号処理装置および変化情報の生成方法
JP5007245B2 (ja) 信号処理装置
JP2007116332A (ja) 画像処理装置
JP5005553B2 (ja) 信号処理装置
JP4629622B2 (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007557779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12278340

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707284

Country of ref document: EP

Kind code of ref document: A1