WO2007089136A2 - Amortissement des vibrations du pylone d'une éolienne - Google Patents

Amortissement des vibrations du pylone d'une éolienne Download PDF

Info

Publication number
WO2007089136A2
WO2007089136A2 PCT/NL2007/000030 NL2007000030W WO2007089136A2 WO 2007089136 A2 WO2007089136 A2 WO 2007089136A2 NL 2007000030 W NL2007000030 W NL 2007000030W WO 2007089136 A2 WO2007089136 A2 WO 2007089136A2
Authority
WO
WIPO (PCT)
Prior art keywords
tower
pitch
changed
wind turbine
blade
Prior art date
Application number
PCT/NL2007/000030
Other languages
English (en)
Other versions
WO2007089136A3 (fr
Inventor
Luc Joseph Charles SCHÜRMANN
Herman Meier Drees
Original Assignee
Pantheon Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pantheon Bv filed Critical Pantheon Bv
Publication of WO2007089136A2 publication Critical patent/WO2007089136A2/fr
Publication of WO2007089136A3 publication Critical patent/WO2007089136A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/33Proximity of blade to tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention is concerned with protecting a wind turbine and its supporting structure against harmful vibrations and deflections caused ' by wind loading.
  • the phenomenon of harmful vibrations has been illustrated in the past by- bridges with large spans that eventually collapsed since they experienced a wind load at their natural bending frequency, resulting in very excessive ' and destructive deflections of the structure.
  • the invention is concerned with ' protecting a wind turbine of the horizontal type, i.e. with a horizontal or almost horizontal rotor shaft carrying one or more (e.g. four equally circumferentially spaced) radially extending rotor blades .
  • the substantially straight rotor blades which obviously revolve in a vertical or almost vertical plane, have a suitable airfoil and pitch to generate sufficient lift from the passing wind to generate a, tangential force to revolve the rotor shaft.
  • the rotor shaft is drivingly connected to an electrical generator, such that electrical energy is generated from the wind.
  • the rotor shaft, its bearings, the electrical generator and gearbox, if any, ' are typically housed in a nacelle.
  • the rotor shaft can swivel around a vertical or almost vertical axis such that the rotor blades can be oriented relative to the prevailing wind direction. . ⁇
  • this type of wind turbine is supported on top of a slender tower, e.g. a thin walled vertical steel tube. Typical dimensions range up to and above 80 meters height for the tower and 80 meters diameter for the rotor. Due to their large dimensions and elastic nature, such structures typically deflect back and forth in the wind, like the trunk of a tree.
  • the present invention proposes to change the aerodynamic drag at the top part of the tower, as soon as this phenomenon arises.
  • This can e.g. be done by changing the resultant of the collection of aerodynamic forces acting on or near the top of the tower, from e.g. one or more of the rotor blades.
  • the aerodynamic drag in the direction substantially upstream or downstream the prevailing wind direction is changed. Since this change is preferably actively changed, the inventors call the invention "Active Aerodynamic Damping", abbreviated to AM).
  • AAD can brake deflecting motion of the tower.
  • the invention will be further elaborated by the application of AAD to the rotor blades.
  • the pitch of one or a few or all of the rotor blades is changed in just the right way and at just the right time, e.g. during a tower deflection cycle.
  • the change in rotor thrust resulting from such pitch control can be used to damp and/or arrest the tower vibration.
  • the pitch of all rotor blades is substantially simultaneously (i.e. collectively) changed, preferably substantially over the same pitch angle, for the purpose of this ' invention.
  • the pitch of the rotor blade is changed towards stall.
  • the pitch of the rotor blade is changed as the tower deflects forward, i.e. in upstream direction compared to the prevailing wind direction.
  • the pitch of the rotor blade is changed temporarily for the purpose of this invention, e.g. only during a part of or one complete or a few revolutions of the rotor shaft.
  • This pitch control will be superimposed on the pitch control for regulating the maximum power output of the turbine (if present) .
  • the pitch control for regulating the maximum power output will be disabled when the pitch control for damping the tower vibration is triggered.
  • the pitch control according to the invention for damping the tower vibration will be called damping pitch control.
  • the damping pitch control will generally be caried out by some automatic control system, e.g. comprising a suitably programmed processing unit like a computer.
  • a control system ⁇ communicates with one or more sensors or detectors or other (input) means to be able to monitor the vibrating behaviour of the tower and/or obtain other parameters that are required for the damping pitch control.
  • the control- system can trigger the damping by a temporary blade pitch change.
  • use can be made of one or more accelerometers suitably mounted to e.g. the tower or nacelle or other part of the wind turbine and remotely or wired connected to the control system to provide the desired information about tower vibration/deflection.
  • strain gauges, inclination meters, speed sensors or acoustical or optical scanners e.g. a laser beam
  • the control system is designed such that damping pitch control is triggered when the monitored movement (vibration/deflection) of the tower exceeds a pre-determined level.
  • the control system can be designed to apply a time delay after receival of the triggering signal from such means, such that the damping pitch change takes place at just the right time.
  • Such time delay can be pre-determined or real-time calculated by the control system on the basis of e.g. actual rotor speed (for which the control system is connected to an input means for the rotor speed) .
  • Changing the blade pitch towards stall generally means that its angle of attack relative to the direction of the wind is increased. In other words, the inclination relative to the wind is increased. Thereby, the aerodynamic force from the wind on the blade is increased.
  • changing blade pitch towards stall thus will provide a braking force to the tower movement.
  • changing the blade pitch away from stall decreases the aerodynamic force from the wind on the blade.
  • changing blade pitch away from stall thus will lessen the contribution of the wind thrust to the tower movement.
  • damping pitch control starts with changing the blade pitch towards stall, preferably as soon as the tower starts deflecting upstream or thereafter, but before the tower starts deflecting downstream.
  • the blade pitch is preferably changed away from stall, preferably before the tower starts deflecting upstream agian (i.e. after having deflected downstream).
  • Changing the blade pitch away from stall is preferably such that the blade pitch is smaller compared to the blade pitch just before damping pitch control is triggered.
  • a presently preferred, non-limiting, example of the damping pitch control is as follows: While the wind turbine is operative, the tower is deflecting back and forth in a direction substantially parallel to the wind direction.
  • General blade pitch control may or may not be active to regulate the maximum power output of the wind generator.
  • Damping blade pitch control is inactive.
  • the accelerometer senses a maximum acceleration at maximum downstream tower deflection, exceeding the pre-determined level. This event triggers the damping pitch control (or other AAD) and disables or overrides the pitch control for regulating the maximum power output (if active) .
  • the rotor blades are rapidly controlled towards stall, increasing their pitch by 1.5 degrees, such that they brake the upstream deflection of the tower.
  • the rotor blades are controlled away from stall, decreasing their pitch by 3 degrees (thus 1.5 degrees compared to their pitch before damping pitch control was triggered) , such that the aerodynamic wind force on the rotor decreases.
  • This process of using increased blade pitch (increased aerodynamic drag) while deflecting upstream and decreased blade pitch . (decreased aerodynamic drag) while deflecting downstream is repeated as desired to reduce the tower vibration or deflection acceleration to an acceptable level . Then damping pitch control is disabeled and the pitch control 5 for ' regulating the maximum power output is enabled.
  • the accelerometer monitors the tower.
  • damping pitch control is only temporarily active, e.g. no longer than 5 minutes each time ' (or another predetermined time or number of deflection cycles of the tower) and preferably at a frequency of not more
  • the invention is applicable to all wind turbine types,
  • Invented are thus, i.a., .a method to control blade pitch to damp the tower deflection/vibration; a wind turbine provided with a system to control blade pitch to damp the tower deflection/vibration; and such a system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention porte sur un procédé d'amortissement du mât d'une éolienne pendant son fonctionnement normal, qui, alors qu'on détecte que la flexion du mât atteint ou dépasse un niveau prédéterminé de sûreté modifie la traînée du sommet du mât. À cet effet on modifie le pas des pales, de préférence simultanément, et d'un même angle. Lorsque le mât fléchit vers l'amont, le pas tend vers la mise en drapeau. Lorsque le mât fléchit vers l'aval le pas s'écarte de la position en drapeau. L'éolienne est munie d'accéléromètres, de jauges de contrainte, d'inclinomètres, de détecteurs de vitesse, et de détecteurs acoustiques ou optiques qui communiquent avec un système automatique de commande pour mettre en œuvre le procédé d'amortissement.
PCT/NL2007/000030 2006-02-03 2007-02-02 Amortissement des vibrations du pylone d'une éolienne WO2007089136A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1031063 2006-02-03
NL1031063 2006-02-03

Publications (2)

Publication Number Publication Date
WO2007089136A2 true WO2007089136A2 (fr) 2007-08-09
WO2007089136A3 WO2007089136A3 (fr) 2007-09-27

Family

ID=38212247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2007/000030 WO2007089136A2 (fr) 2006-02-03 2007-02-02 Amortissement des vibrations du pylone d'une éolienne

Country Status (1)

Country Link
WO (1) WO2007089136A2 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081232A1 (fr) * 2006-12-28 2008-07-10 Clipper Windpower Technology, Inc. Amortissement pour éolienne de mouvement de résonance de tour et de mouvement symétrique de pales utilisant des procédés d'estimation
EP2063110A1 (fr) 2007-11-26 2009-05-27 Siemens Aktiengesellschaft Procédé d'amortissement des vibrations de puissance d'une éolienne et système de commande d'inclinaison
EP2075462A2 (fr) * 2007-12-28 2009-07-01 General Electric Company Systèmes, procédés et appareils pour un contrôleur de turbine éolienne
WO2009083085A1 (fr) * 2007-12-21 2009-07-09 Repower Systems Ag Procédé permettant de faire fontionner une éolienne
EP2107236A1 (fr) 2008-04-02 2009-10-07 Siemens Aktiengesellschaft Procédé d'amortissement de vibrations de tour d'une éolienne et système de contrôle pour éoliennes
WO2010060772A2 (fr) * 2008-11-28 2010-06-03 Vestas Wind Systems A/S Stratégie de gestion pour éolienne
WO2010090593A1 (fr) * 2009-02-09 2010-08-12 Morphic Technologies Aktiebolag (Publ.) Dispositif et procédé de commande d'une éolienne
WO2009109467A3 (fr) * 2008-03-07 2010-09-10 Vestas Wind Systems A/S Système de commande et procédé de commande redondant pour éolienne
EP2306007A1 (fr) * 2009-09-30 2011-04-06 General Electric Company Procédé et Système pour la régulation d'une Éolienne
GB2479923A (en) * 2010-04-29 2011-11-02 Vestas Wind Sys As A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components
EP2463517A1 (fr) * 2010-12-08 2012-06-13 Siemens Aktiengesellschaft Méthode et système de contrôle pour la réduction des vibrations d'une éolienne
CN103321854A (zh) * 2013-05-29 2013-09-25 国家电网公司 一种风力发电机组塔架振动控制方法
ES2429238R1 (es) * 2010-05-26 2013-11-28 Bosch Gmbh Robert Metodo y dispositivo para la determinacion de una desviacion de una torre.
EP2426352A3 (fr) * 2010-09-06 2013-12-18 Nordex Energy GmbH Méthode de régulation de la vitesse de rotation d'une éolienne
DE102012218484A1 (de) * 2012-10-10 2014-04-10 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
EP2400153A3 (fr) * 2010-06-23 2014-06-11 General Electric Company Procédés et systèmes pour faire fonctionner une éolienne
US20140316740A1 (en) * 2011-09-06 2014-10-23 GR Garrad Hassan Deutschland GmbH Method for determining the inclination of a tower
US20140356164A1 (en) * 2013-05-28 2014-12-04 Michael J. Asheim Apparatus to detect aerodynamic conditions of blades of wind turbines
WO2014191001A1 (fr) * 2013-05-30 2014-12-04 Mhi Vestas Offshore Wind A/S Limitation de l'humidité d'une éolienne flottante
WO2015086024A1 (fr) * 2013-12-09 2015-06-18 Vestas Wind Systems A/S Procédé de fonctionnement pour une turbine éolienne
DK178157B1 (en) * 2010-08-16 2015-07-06 Gen Electric Device and method for operating a wind turbine
WO2016004950A1 (fr) * 2014-07-09 2016-01-14 Vestas Wind Systems A/S Promotion active d'oscillations de tour d'éolienne
US9587629B2 (en) 2014-06-30 2017-03-07 General Electric Company Methods and systems to operate a wind turbine system using a non-linear damping model
EP2535567A3 (fr) * 2011-05-16 2017-04-19 Siemens Aktiengesellschaft Procédé de commande du réglage d'angle de pas d'une pale de rotor d'une éolienne

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821128A (ja) * 1994-07-05 1996-01-23 Mitsubishi Heavy Ind Ltd 塔状構造物用制振装置
WO1997001709A1 (fr) * 1995-06-27 1997-01-16 Bonus Energy A/S Procede et dispositif pour diminuer les vibrations dans une pale d'eolienne
EP0947693A2 (fr) * 1998-03-31 1999-10-06 Tacke Windenergie GmbH Profil de pale pour éolienne
WO1999057435A1 (fr) * 1998-04-30 1999-11-11 Lm Glasfiber A/S Eolienne avec indicateur de contraintes
WO2001077524A1 (fr) * 2000-04-05 2001-10-18 Aerodyn Engineering Gmbh Procede pour faire fonctionner des eoliennes offshore en fonction de la frequence de resonance de la tour
US20060033338A1 (en) * 2004-05-11 2006-02-16 Wilson Kitchener C Wind flow estimation and tracking using tower dynamics
EP1719910A1 (fr) * 2004-02-27 2006-11-08 Mitsubishi Heavy Industries, Ltd. AEROGENERATEUR, SON PROCEDE D’AMORTISSEMENT ACTIF DES VIBRATIONS ET TOUR DE TURBINE EOLIENNE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0821128A (ja) * 1994-07-05 1996-01-23 Mitsubishi Heavy Ind Ltd 塔状構造物用制振装置
WO1997001709A1 (fr) * 1995-06-27 1997-01-16 Bonus Energy A/S Procede et dispositif pour diminuer les vibrations dans une pale d'eolienne
EP0947693A2 (fr) * 1998-03-31 1999-10-06 Tacke Windenergie GmbH Profil de pale pour éolienne
WO1999057435A1 (fr) * 1998-04-30 1999-11-11 Lm Glasfiber A/S Eolienne avec indicateur de contraintes
WO2001077524A1 (fr) * 2000-04-05 2001-10-18 Aerodyn Engineering Gmbh Procede pour faire fonctionner des eoliennes offshore en fonction de la frequence de resonance de la tour
EP1719910A1 (fr) * 2004-02-27 2006-11-08 Mitsubishi Heavy Industries, Ltd. AEROGENERATEUR, SON PROCEDE D’AMORTISSEMENT ACTIF DES VIBRATIONS ET TOUR DE TURBINE EOLIENNE
US20060033338A1 (en) * 2004-05-11 2006-02-16 Wilson Kitchener C Wind flow estimation and tracking using tower dynamics

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081232A1 (fr) * 2006-12-28 2008-07-10 Clipper Windpower Technology, Inc. Amortissement pour éolienne de mouvement de résonance de tour et de mouvement symétrique de pales utilisant des procédés d'estimation
EP2063110A1 (fr) 2007-11-26 2009-05-27 Siemens Aktiengesellschaft Procédé d'amortissement des vibrations de puissance d'une éolienne et système de commande d'inclinaison
WO2009083085A1 (fr) * 2007-12-21 2009-07-09 Repower Systems Ag Procédé permettant de faire fontionner une éolienne
EP2075462A2 (fr) * 2007-12-28 2009-07-01 General Electric Company Systèmes, procédés et appareils pour un contrôleur de turbine éolienne
EP2075462A3 (fr) * 2007-12-28 2012-08-08 General Electric Company Systèmes, procédés et appareils pour un contrôleur de turbine éolienne
WO2009109467A3 (fr) * 2008-03-07 2010-09-10 Vestas Wind Systems A/S Système de commande et procédé de commande redondant pour éolienne
US8736092B2 (en) 2008-03-07 2014-05-27 Vestas Wind Systems A/S Control system and a method for redundant control of a wind turbine
US8044529B2 (en) 2008-04-02 2011-10-25 Siemens Aktiegesellschaft Method of damping tower vibrations of a wind turbine and control system for wind turbines
EP2107236A1 (fr) 2008-04-02 2009-10-07 Siemens Aktiengesellschaft Procédé d'amortissement de vibrations de tour d'une éolienne et système de contrôle pour éoliennes
WO2010060772A2 (fr) * 2008-11-28 2010-06-03 Vestas Wind Systems A/S Stratégie de gestion pour éolienne
WO2010060772A3 (fr) * 2008-11-28 2011-04-14 Vestas Wind Systems A/S Stratégie de gestion pour éolienne
WO2010090593A1 (fr) * 2009-02-09 2010-08-12 Morphic Technologies Aktiebolag (Publ.) Dispositif et procédé de commande d'une éolienne
CN102124217B (zh) * 2009-02-09 2013-05-01 湘电集团有限公司 风力涡轮机的控制装置和控制方法
EP2306007A1 (fr) * 2009-09-30 2011-04-06 General Electric Company Procédé et Système pour la régulation d'une Éolienne
CN102032108B (zh) * 2009-09-30 2013-12-18 通用电气公司 用于控制风力涡轮的方法和系统
CN102032108A (zh) * 2009-09-30 2011-04-27 通用电气公司 用于控制风力涡轮的方法和系统
GB2479923A (en) * 2010-04-29 2011-11-02 Vestas Wind Sys As A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components
ES2429238R1 (es) * 2010-05-26 2013-11-28 Bosch Gmbh Robert Metodo y dispositivo para la determinacion de una desviacion de una torre.
EP2400153A3 (fr) * 2010-06-23 2014-06-11 General Electric Company Procédés et systèmes pour faire fonctionner une éolienne
DK178157B1 (en) * 2010-08-16 2015-07-06 Gen Electric Device and method for operating a wind turbine
EP2426352A3 (fr) * 2010-09-06 2013-12-18 Nordex Energy GmbH Méthode de régulation de la vitesse de rotation d'une éolienne
US8779617B2 (en) 2010-12-08 2014-07-15 Siemens Aktiengesellschaft Method for reducing vibrations of a wind turbine and control system for reducing vibrations
US9261080B2 (en) 2010-12-08 2016-02-16 Siemens Aktiengesellschaft Method for reducing vibrations of a wind turbine and control system for reducing vibrations
EP2463517A1 (fr) * 2010-12-08 2012-06-13 Siemens Aktiengesellschaft Méthode et système de contrôle pour la réduction des vibrations d'une éolienne
EP2535567A3 (fr) * 2011-05-16 2017-04-19 Siemens Aktiengesellschaft Procédé de commande du réglage d'angle de pas d'une pale de rotor d'une éolienne
US20140316740A1 (en) * 2011-09-06 2014-10-23 GR Garrad Hassan Deutschland GmbH Method for determining the inclination of a tower
US9869548B2 (en) * 2011-09-06 2018-01-16 GL Garrad Hassan Deutschland GmbH Method for determining the inclination of a tower
DE102012218484A1 (de) * 2012-10-10 2014-04-10 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage
US10006438B2 (en) 2012-10-10 2018-06-26 Wobben Properties Gmbh Method for operating a wind turbine
KR101904593B1 (ko) * 2012-10-10 2018-10-04 보벤 프로퍼티즈 게엠베하 풍력 발전 설비의 운전 방법
CN104781548A (zh) * 2012-10-10 2015-07-15 乌本产权有限公司 用于运行风能设备的方法
JP2015532386A (ja) * 2012-10-10 2015-11-09 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 風力発電装置の運転方法
TWI607148B (zh) * 2012-10-10 2017-12-01 渥班資產公司 用以操作一風力渦輪機之方法
WO2014056725A1 (fr) 2012-10-10 2014-04-17 Wobben Properties Gmbh Procédé pour faire fonctionner une éolienne
RU2617312C2 (ru) * 2012-10-10 2017-04-24 Воббен Пропертиз Гмбх Способ эксплуатации ветроэнергетической установки
US20140356164A1 (en) * 2013-05-28 2014-12-04 Michael J. Asheim Apparatus to detect aerodynamic conditions of blades of wind turbines
US9528493B2 (en) * 2013-05-28 2016-12-27 Siemens Aktiengesellschaft Apparatus to detect aerodynamic conditions of blades of wind turbines
CN103321854A (zh) * 2013-05-29 2013-09-25 国家电网公司 一种风力发电机组塔架振动控制方法
WO2014191001A1 (fr) * 2013-05-30 2014-12-04 Mhi Vestas Offshore Wind A/S Limitation de l'humidité d'une éolienne flottante
US10030631B2 (en) 2013-05-30 2018-07-24 Vestas Wind Systems A/S Tilt damping of a floating wind turbine
CN105980703A (zh) * 2013-12-09 2016-09-28 维斯塔斯风力系统集团公司 用于风力涡轮机的操作方法
WO2015086024A1 (fr) * 2013-12-09 2015-06-18 Vestas Wind Systems A/S Procédé de fonctionnement pour une turbine éolienne
US10619623B2 (en) 2013-12-09 2020-04-14 Verstas Wind Systems A/S Selective wind turbine damping using active damping system
US9587629B2 (en) 2014-06-30 2017-03-07 General Electric Company Methods and systems to operate a wind turbine system using a non-linear damping model
CN106574605A (zh) * 2014-07-09 2017-04-19 维斯塔斯风力系统集团公司 风力涡轮机塔架振荡的主动提升
WO2016004950A1 (fr) * 2014-07-09 2016-01-14 Vestas Wind Systems A/S Promotion active d'oscillations de tour d'éolienne
US10415548B2 (en) 2014-07-09 2019-09-17 Vestas Wind Systems A/S Active promotion of wind turbine tower oscillations

Also Published As

Publication number Publication date
WO2007089136A3 (fr) 2007-09-27

Similar Documents

Publication Publication Date Title
WO2007089136A2 (fr) Amortissement des vibrations du pylone d'une éolienne
EP2097642B1 (fr) Procédé pour amortir des oscillations dans le sens de la traînée d'une ou de plusieurs pales d'une éolienne, éolienne à régulation active par décrochage aérodynamique et utilisation de celle-ci
EP3101273B1 (fr) Système et procédé pour réduire un mouvement de torsion dans une tour de turbine éolienne
EP3601789B1 (fr) Système et méthode pour gérer des oscillations de torsion d'une tour d'éolienne
EP2084400B1 (fr) Éolienne et procédé destiné à amortir des oscillations dans le sens de la traînée d'une ou plusieurs pales d'une éolienne par modification de l'angle de la pale
US20210372369A1 (en) Damping of edgewise wind turbine blade vibrations
EP2167814B1 (fr) Commande d'un rotor pendant un processus d'arrêt d'une éolienne
CN1900513B (zh) 一种操作风轮机的方法
AU2004316333B2 (en) Wind turbine generator, active damping method thereof, and windmill tower
EP2370694B1 (fr) Régulation du pas des pâles dans une installation d'éolienne
KR910004005B1 (ko) 풍력터빈 발전장치
KR102159848B1 (ko) 부유식 풍력 터빈의 운동 제어
CA2566376A1 (fr) Eolienne
EP2232063A2 (fr) Eolienne, procede pour commander une eolienne et utilisation de celle-ci
CN106574605A (zh) 风力涡轮机塔架振荡的主动提升
JP6462388B2 (ja) 風力発電装置
Berg et al. Field test results from the Sandia SMART rotor
WAKUI et al. ICOPE-15-1099 Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System
WAKUI et al. Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715830

Country of ref document: EP

Kind code of ref document: A2