WO2007089136A2 - Amortissement des vibrations du pylone d'une éolienne - Google Patents
Amortissement des vibrations du pylone d'une éolienne Download PDFInfo
- Publication number
- WO2007089136A2 WO2007089136A2 PCT/NL2007/000030 NL2007000030W WO2007089136A2 WO 2007089136 A2 WO2007089136 A2 WO 2007089136A2 NL 2007000030 W NL2007000030 W NL 2007000030W WO 2007089136 A2 WO2007089136 A2 WO 2007089136A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tower
- pitch
- changed
- wind turbine
- blade
- Prior art date
Links
- 238000013016 damping Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 230000003287 optical effect Effects 0.000 claims abstract description 3
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 230000001960 triggered effect Effects 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 230000033001 locomotion Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 241001250507 Nacella Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0296—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/33—Proximity of blade to tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/334—Vibration measurements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the invention is concerned with protecting a wind turbine and its supporting structure against harmful vibrations and deflections caused ' by wind loading.
- the phenomenon of harmful vibrations has been illustrated in the past by- bridges with large spans that eventually collapsed since they experienced a wind load at their natural bending frequency, resulting in very excessive ' and destructive deflections of the structure.
- the invention is concerned with ' protecting a wind turbine of the horizontal type, i.e. with a horizontal or almost horizontal rotor shaft carrying one or more (e.g. four equally circumferentially spaced) radially extending rotor blades .
- the substantially straight rotor blades which obviously revolve in a vertical or almost vertical plane, have a suitable airfoil and pitch to generate sufficient lift from the passing wind to generate a, tangential force to revolve the rotor shaft.
- the rotor shaft is drivingly connected to an electrical generator, such that electrical energy is generated from the wind.
- the rotor shaft, its bearings, the electrical generator and gearbox, if any, ' are typically housed in a nacelle.
- the rotor shaft can swivel around a vertical or almost vertical axis such that the rotor blades can be oriented relative to the prevailing wind direction. . ⁇
- this type of wind turbine is supported on top of a slender tower, e.g. a thin walled vertical steel tube. Typical dimensions range up to and above 80 meters height for the tower and 80 meters diameter for the rotor. Due to their large dimensions and elastic nature, such structures typically deflect back and forth in the wind, like the trunk of a tree.
- the present invention proposes to change the aerodynamic drag at the top part of the tower, as soon as this phenomenon arises.
- This can e.g. be done by changing the resultant of the collection of aerodynamic forces acting on or near the top of the tower, from e.g. one or more of the rotor blades.
- the aerodynamic drag in the direction substantially upstream or downstream the prevailing wind direction is changed. Since this change is preferably actively changed, the inventors call the invention "Active Aerodynamic Damping", abbreviated to AM).
- AAD can brake deflecting motion of the tower.
- the invention will be further elaborated by the application of AAD to the rotor blades.
- the pitch of one or a few or all of the rotor blades is changed in just the right way and at just the right time, e.g. during a tower deflection cycle.
- the change in rotor thrust resulting from such pitch control can be used to damp and/or arrest the tower vibration.
- the pitch of all rotor blades is substantially simultaneously (i.e. collectively) changed, preferably substantially over the same pitch angle, for the purpose of this ' invention.
- the pitch of the rotor blade is changed towards stall.
- the pitch of the rotor blade is changed as the tower deflects forward, i.e. in upstream direction compared to the prevailing wind direction.
- the pitch of the rotor blade is changed temporarily for the purpose of this invention, e.g. only during a part of or one complete or a few revolutions of the rotor shaft.
- This pitch control will be superimposed on the pitch control for regulating the maximum power output of the turbine (if present) .
- the pitch control for regulating the maximum power output will be disabled when the pitch control for damping the tower vibration is triggered.
- the pitch control according to the invention for damping the tower vibration will be called damping pitch control.
- the damping pitch control will generally be caried out by some automatic control system, e.g. comprising a suitably programmed processing unit like a computer.
- a control system ⁇ communicates with one or more sensors or detectors or other (input) means to be able to monitor the vibrating behaviour of the tower and/or obtain other parameters that are required for the damping pitch control.
- the control- system can trigger the damping by a temporary blade pitch change.
- use can be made of one or more accelerometers suitably mounted to e.g. the tower or nacelle or other part of the wind turbine and remotely or wired connected to the control system to provide the desired information about tower vibration/deflection.
- strain gauges, inclination meters, speed sensors or acoustical or optical scanners e.g. a laser beam
- the control system is designed such that damping pitch control is triggered when the monitored movement (vibration/deflection) of the tower exceeds a pre-determined level.
- the control system can be designed to apply a time delay after receival of the triggering signal from such means, such that the damping pitch change takes place at just the right time.
- Such time delay can be pre-determined or real-time calculated by the control system on the basis of e.g. actual rotor speed (for which the control system is connected to an input means for the rotor speed) .
- Changing the blade pitch towards stall generally means that its angle of attack relative to the direction of the wind is increased. In other words, the inclination relative to the wind is increased. Thereby, the aerodynamic force from the wind on the blade is increased.
- changing blade pitch towards stall thus will provide a braking force to the tower movement.
- changing the blade pitch away from stall decreases the aerodynamic force from the wind on the blade.
- changing blade pitch away from stall thus will lessen the contribution of the wind thrust to the tower movement.
- damping pitch control starts with changing the blade pitch towards stall, preferably as soon as the tower starts deflecting upstream or thereafter, but before the tower starts deflecting downstream.
- the blade pitch is preferably changed away from stall, preferably before the tower starts deflecting upstream agian (i.e. after having deflected downstream).
- Changing the blade pitch away from stall is preferably such that the blade pitch is smaller compared to the blade pitch just before damping pitch control is triggered.
- a presently preferred, non-limiting, example of the damping pitch control is as follows: While the wind turbine is operative, the tower is deflecting back and forth in a direction substantially parallel to the wind direction.
- General blade pitch control may or may not be active to regulate the maximum power output of the wind generator.
- Damping blade pitch control is inactive.
- the accelerometer senses a maximum acceleration at maximum downstream tower deflection, exceeding the pre-determined level. This event triggers the damping pitch control (or other AAD) and disables or overrides the pitch control for regulating the maximum power output (if active) .
- the rotor blades are rapidly controlled towards stall, increasing their pitch by 1.5 degrees, such that they brake the upstream deflection of the tower.
- the rotor blades are controlled away from stall, decreasing their pitch by 3 degrees (thus 1.5 degrees compared to their pitch before damping pitch control was triggered) , such that the aerodynamic wind force on the rotor decreases.
- This process of using increased blade pitch (increased aerodynamic drag) while deflecting upstream and decreased blade pitch . (decreased aerodynamic drag) while deflecting downstream is repeated as desired to reduce the tower vibration or deflection acceleration to an acceptable level . Then damping pitch control is disabeled and the pitch control 5 for ' regulating the maximum power output is enabled.
- the accelerometer monitors the tower.
- damping pitch control is only temporarily active, e.g. no longer than 5 minutes each time ' (or another predetermined time or number of deflection cycles of the tower) and preferably at a frequency of not more
- the invention is applicable to all wind turbine types,
- Invented are thus, i.a., .a method to control blade pitch to damp the tower deflection/vibration; a wind turbine provided with a system to control blade pitch to damp the tower deflection/vibration; and such a system.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
L'invention porte sur un procédé d'amortissement du mât d'une éolienne pendant son fonctionnement normal, qui, alors qu'on détecte que la flexion du mât atteint ou dépasse un niveau prédéterminé de sûreté modifie la traînée du sommet du mât. À cet effet on modifie le pas des pales, de préférence simultanément, et d'un même angle. Lorsque le mât fléchit vers l'amont, le pas tend vers la mise en drapeau. Lorsque le mât fléchit vers l'aval le pas s'écarte de la position en drapeau. L'éolienne est munie d'accéléromètres, de jauges de contrainte, d'inclinomètres, de détecteurs de vitesse, et de détecteurs acoustiques ou optiques qui communiquent avec un système automatique de commande pour mettre en œuvre le procédé d'amortissement.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1031063 | 2006-02-03 | ||
NL1031063 | 2006-02-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007089136A2 true WO2007089136A2 (fr) | 2007-08-09 |
WO2007089136A3 WO2007089136A3 (fr) | 2007-09-27 |
Family
ID=38212247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL2007/000030 WO2007089136A2 (fr) | 2006-02-03 | 2007-02-02 | Amortissement des vibrations du pylone d'une éolienne |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007089136A2 (fr) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008081232A1 (fr) * | 2006-12-28 | 2008-07-10 | Clipper Windpower Technology, Inc. | Amortissement pour éolienne de mouvement de résonance de tour et de mouvement symétrique de pales utilisant des procédés d'estimation |
EP2063110A1 (fr) | 2007-11-26 | 2009-05-27 | Siemens Aktiengesellschaft | Procédé d'amortissement des vibrations de puissance d'une éolienne et système de commande d'inclinaison |
EP2075462A2 (fr) * | 2007-12-28 | 2009-07-01 | General Electric Company | Systèmes, procédés et appareils pour un contrôleur de turbine éolienne |
WO2009083085A1 (fr) * | 2007-12-21 | 2009-07-09 | Repower Systems Ag | Procédé permettant de faire fontionner une éolienne |
EP2107236A1 (fr) | 2008-04-02 | 2009-10-07 | Siemens Aktiengesellschaft | Procédé d'amortissement de vibrations de tour d'une éolienne et système de contrôle pour éoliennes |
WO2010060772A2 (fr) * | 2008-11-28 | 2010-06-03 | Vestas Wind Systems A/S | Stratégie de gestion pour éolienne |
WO2010090593A1 (fr) * | 2009-02-09 | 2010-08-12 | Morphic Technologies Aktiebolag (Publ.) | Dispositif et procédé de commande d'une éolienne |
WO2009109467A3 (fr) * | 2008-03-07 | 2010-09-10 | Vestas Wind Systems A/S | Système de commande et procédé de commande redondant pour éolienne |
EP2306007A1 (fr) * | 2009-09-30 | 2011-04-06 | General Electric Company | Procédé et Système pour la régulation d'une Éolienne |
GB2479923A (en) * | 2010-04-29 | 2011-11-02 | Vestas Wind Sys As | A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components |
EP2463517A1 (fr) * | 2010-12-08 | 2012-06-13 | Siemens Aktiengesellschaft | Méthode et système de contrôle pour la réduction des vibrations d'une éolienne |
CN103321854A (zh) * | 2013-05-29 | 2013-09-25 | 国家电网公司 | 一种风力发电机组塔架振动控制方法 |
ES2429238R1 (es) * | 2010-05-26 | 2013-11-28 | Bosch Gmbh Robert | Metodo y dispositivo para la determinacion de una desviacion de una torre. |
EP2426352A3 (fr) * | 2010-09-06 | 2013-12-18 | Nordex Energy GmbH | Méthode de régulation de la vitesse de rotation d'une éolienne |
DE102012218484A1 (de) * | 2012-10-10 | 2014-04-10 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage |
EP2400153A3 (fr) * | 2010-06-23 | 2014-06-11 | General Electric Company | Procédés et systèmes pour faire fonctionner une éolienne |
US20140316740A1 (en) * | 2011-09-06 | 2014-10-23 | GR Garrad Hassan Deutschland GmbH | Method for determining the inclination of a tower |
US20140356164A1 (en) * | 2013-05-28 | 2014-12-04 | Michael J. Asheim | Apparatus to detect aerodynamic conditions of blades of wind turbines |
WO2014191001A1 (fr) * | 2013-05-30 | 2014-12-04 | Mhi Vestas Offshore Wind A/S | Limitation de l'humidité d'une éolienne flottante |
WO2015086024A1 (fr) * | 2013-12-09 | 2015-06-18 | Vestas Wind Systems A/S | Procédé de fonctionnement pour une turbine éolienne |
DK178157B1 (en) * | 2010-08-16 | 2015-07-06 | Gen Electric | Device and method for operating a wind turbine |
WO2016004950A1 (fr) * | 2014-07-09 | 2016-01-14 | Vestas Wind Systems A/S | Promotion active d'oscillations de tour d'éolienne |
US9587629B2 (en) | 2014-06-30 | 2017-03-07 | General Electric Company | Methods and systems to operate a wind turbine system using a non-linear damping model |
EP2535567A3 (fr) * | 2011-05-16 | 2017-04-19 | Siemens Aktiengesellschaft | Procédé de commande du réglage d'angle de pas d'une pale de rotor d'une éolienne |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821128A (ja) * | 1994-07-05 | 1996-01-23 | Mitsubishi Heavy Ind Ltd | 塔状構造物用制振装置 |
WO1997001709A1 (fr) * | 1995-06-27 | 1997-01-16 | Bonus Energy A/S | Procede et dispositif pour diminuer les vibrations dans une pale d'eolienne |
EP0947693A2 (fr) * | 1998-03-31 | 1999-10-06 | Tacke Windenergie GmbH | Profil de pale pour éolienne |
WO1999057435A1 (fr) * | 1998-04-30 | 1999-11-11 | Lm Glasfiber A/S | Eolienne avec indicateur de contraintes |
WO2001077524A1 (fr) * | 2000-04-05 | 2001-10-18 | Aerodyn Engineering Gmbh | Procede pour faire fonctionner des eoliennes offshore en fonction de la frequence de resonance de la tour |
US20060033338A1 (en) * | 2004-05-11 | 2006-02-16 | Wilson Kitchener C | Wind flow estimation and tracking using tower dynamics |
EP1719910A1 (fr) * | 2004-02-27 | 2006-11-08 | Mitsubishi Heavy Industries, Ltd. | AEROGENERATEUR, SON PROCEDE D’AMORTISSEMENT ACTIF DES VIBRATIONS ET TOUR DE TURBINE EOLIENNE |
-
2007
- 2007-02-02 WO PCT/NL2007/000030 patent/WO2007089136A2/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0821128A (ja) * | 1994-07-05 | 1996-01-23 | Mitsubishi Heavy Ind Ltd | 塔状構造物用制振装置 |
WO1997001709A1 (fr) * | 1995-06-27 | 1997-01-16 | Bonus Energy A/S | Procede et dispositif pour diminuer les vibrations dans une pale d'eolienne |
EP0947693A2 (fr) * | 1998-03-31 | 1999-10-06 | Tacke Windenergie GmbH | Profil de pale pour éolienne |
WO1999057435A1 (fr) * | 1998-04-30 | 1999-11-11 | Lm Glasfiber A/S | Eolienne avec indicateur de contraintes |
WO2001077524A1 (fr) * | 2000-04-05 | 2001-10-18 | Aerodyn Engineering Gmbh | Procede pour faire fonctionner des eoliennes offshore en fonction de la frequence de resonance de la tour |
EP1719910A1 (fr) * | 2004-02-27 | 2006-11-08 | Mitsubishi Heavy Industries, Ltd. | AEROGENERATEUR, SON PROCEDE D’AMORTISSEMENT ACTIF DES VIBRATIONS ET TOUR DE TURBINE EOLIENNE |
US20060033338A1 (en) * | 2004-05-11 | 2006-02-16 | Wilson Kitchener C | Wind flow estimation and tracking using tower dynamics |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008081232A1 (fr) * | 2006-12-28 | 2008-07-10 | Clipper Windpower Technology, Inc. | Amortissement pour éolienne de mouvement de résonance de tour et de mouvement symétrique de pales utilisant des procédés d'estimation |
EP2063110A1 (fr) | 2007-11-26 | 2009-05-27 | Siemens Aktiengesellschaft | Procédé d'amortissement des vibrations de puissance d'une éolienne et système de commande d'inclinaison |
WO2009083085A1 (fr) * | 2007-12-21 | 2009-07-09 | Repower Systems Ag | Procédé permettant de faire fontionner une éolienne |
EP2075462A2 (fr) * | 2007-12-28 | 2009-07-01 | General Electric Company | Systèmes, procédés et appareils pour un contrôleur de turbine éolienne |
EP2075462A3 (fr) * | 2007-12-28 | 2012-08-08 | General Electric Company | Systèmes, procédés et appareils pour un contrôleur de turbine éolienne |
WO2009109467A3 (fr) * | 2008-03-07 | 2010-09-10 | Vestas Wind Systems A/S | Système de commande et procédé de commande redondant pour éolienne |
US8736092B2 (en) | 2008-03-07 | 2014-05-27 | Vestas Wind Systems A/S | Control system and a method for redundant control of a wind turbine |
US8044529B2 (en) | 2008-04-02 | 2011-10-25 | Siemens Aktiegesellschaft | Method of damping tower vibrations of a wind turbine and control system for wind turbines |
EP2107236A1 (fr) | 2008-04-02 | 2009-10-07 | Siemens Aktiengesellschaft | Procédé d'amortissement de vibrations de tour d'une éolienne et système de contrôle pour éoliennes |
WO2010060772A2 (fr) * | 2008-11-28 | 2010-06-03 | Vestas Wind Systems A/S | Stratégie de gestion pour éolienne |
WO2010060772A3 (fr) * | 2008-11-28 | 2011-04-14 | Vestas Wind Systems A/S | Stratégie de gestion pour éolienne |
WO2010090593A1 (fr) * | 2009-02-09 | 2010-08-12 | Morphic Technologies Aktiebolag (Publ.) | Dispositif et procédé de commande d'une éolienne |
CN102124217B (zh) * | 2009-02-09 | 2013-05-01 | 湘电集团有限公司 | 风力涡轮机的控制装置和控制方法 |
EP2306007A1 (fr) * | 2009-09-30 | 2011-04-06 | General Electric Company | Procédé et Système pour la régulation d'une Éolienne |
CN102032108B (zh) * | 2009-09-30 | 2013-12-18 | 通用电气公司 | 用于控制风力涡轮的方法和系统 |
CN102032108A (zh) * | 2009-09-30 | 2011-04-27 | 通用电气公司 | 用于控制风力涡轮的方法和系统 |
GB2479923A (en) * | 2010-04-29 | 2011-11-02 | Vestas Wind Sys As | A method and system for detecting angular deflection in a wind turbine blade, or component, or between wind turbine components |
ES2429238R1 (es) * | 2010-05-26 | 2013-11-28 | Bosch Gmbh Robert | Metodo y dispositivo para la determinacion de una desviacion de una torre. |
EP2400153A3 (fr) * | 2010-06-23 | 2014-06-11 | General Electric Company | Procédés et systèmes pour faire fonctionner une éolienne |
DK178157B1 (en) * | 2010-08-16 | 2015-07-06 | Gen Electric | Device and method for operating a wind turbine |
EP2426352A3 (fr) * | 2010-09-06 | 2013-12-18 | Nordex Energy GmbH | Méthode de régulation de la vitesse de rotation d'une éolienne |
US8779617B2 (en) | 2010-12-08 | 2014-07-15 | Siemens Aktiengesellschaft | Method for reducing vibrations of a wind turbine and control system for reducing vibrations |
US9261080B2 (en) | 2010-12-08 | 2016-02-16 | Siemens Aktiengesellschaft | Method for reducing vibrations of a wind turbine and control system for reducing vibrations |
EP2463517A1 (fr) * | 2010-12-08 | 2012-06-13 | Siemens Aktiengesellschaft | Méthode et système de contrôle pour la réduction des vibrations d'une éolienne |
EP2535567A3 (fr) * | 2011-05-16 | 2017-04-19 | Siemens Aktiengesellschaft | Procédé de commande du réglage d'angle de pas d'une pale de rotor d'une éolienne |
US20140316740A1 (en) * | 2011-09-06 | 2014-10-23 | GR Garrad Hassan Deutschland GmbH | Method for determining the inclination of a tower |
US9869548B2 (en) * | 2011-09-06 | 2018-01-16 | GL Garrad Hassan Deutschland GmbH | Method for determining the inclination of a tower |
DE102012218484A1 (de) * | 2012-10-10 | 2014-04-10 | Wobben Properties Gmbh | Verfahren zum Betreiben einer Windenergieanlage |
US10006438B2 (en) | 2012-10-10 | 2018-06-26 | Wobben Properties Gmbh | Method for operating a wind turbine |
KR101904593B1 (ko) * | 2012-10-10 | 2018-10-04 | 보벤 프로퍼티즈 게엠베하 | 풍력 발전 설비의 운전 방법 |
CN104781548A (zh) * | 2012-10-10 | 2015-07-15 | 乌本产权有限公司 | 用于运行风能设备的方法 |
JP2015532386A (ja) * | 2012-10-10 | 2015-11-09 | ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh | 風力発電装置の運転方法 |
TWI607148B (zh) * | 2012-10-10 | 2017-12-01 | 渥班資產公司 | 用以操作一風力渦輪機之方法 |
WO2014056725A1 (fr) | 2012-10-10 | 2014-04-17 | Wobben Properties Gmbh | Procédé pour faire fonctionner une éolienne |
RU2617312C2 (ru) * | 2012-10-10 | 2017-04-24 | Воббен Пропертиз Гмбх | Способ эксплуатации ветроэнергетической установки |
US20140356164A1 (en) * | 2013-05-28 | 2014-12-04 | Michael J. Asheim | Apparatus to detect aerodynamic conditions of blades of wind turbines |
US9528493B2 (en) * | 2013-05-28 | 2016-12-27 | Siemens Aktiengesellschaft | Apparatus to detect aerodynamic conditions of blades of wind turbines |
CN103321854A (zh) * | 2013-05-29 | 2013-09-25 | 国家电网公司 | 一种风力发电机组塔架振动控制方法 |
WO2014191001A1 (fr) * | 2013-05-30 | 2014-12-04 | Mhi Vestas Offshore Wind A/S | Limitation de l'humidité d'une éolienne flottante |
US10030631B2 (en) | 2013-05-30 | 2018-07-24 | Vestas Wind Systems A/S | Tilt damping of a floating wind turbine |
CN105980703A (zh) * | 2013-12-09 | 2016-09-28 | 维斯塔斯风力系统集团公司 | 用于风力涡轮机的操作方法 |
WO2015086024A1 (fr) * | 2013-12-09 | 2015-06-18 | Vestas Wind Systems A/S | Procédé de fonctionnement pour une turbine éolienne |
US10619623B2 (en) | 2013-12-09 | 2020-04-14 | Verstas Wind Systems A/S | Selective wind turbine damping using active damping system |
US9587629B2 (en) | 2014-06-30 | 2017-03-07 | General Electric Company | Methods and systems to operate a wind turbine system using a non-linear damping model |
CN106574605A (zh) * | 2014-07-09 | 2017-04-19 | 维斯塔斯风力系统集团公司 | 风力涡轮机塔架振荡的主动提升 |
WO2016004950A1 (fr) * | 2014-07-09 | 2016-01-14 | Vestas Wind Systems A/S | Promotion active d'oscillations de tour d'éolienne |
US10415548B2 (en) | 2014-07-09 | 2019-09-17 | Vestas Wind Systems A/S | Active promotion of wind turbine tower oscillations |
Also Published As
Publication number | Publication date |
---|---|
WO2007089136A3 (fr) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007089136A2 (fr) | Amortissement des vibrations du pylone d'une éolienne | |
EP2097642B1 (fr) | Procédé pour amortir des oscillations dans le sens de la traînée d'une ou de plusieurs pales d'une éolienne, éolienne à régulation active par décrochage aérodynamique et utilisation de celle-ci | |
EP3101273B1 (fr) | Système et procédé pour réduire un mouvement de torsion dans une tour de turbine éolienne | |
EP3601789B1 (fr) | Système et méthode pour gérer des oscillations de torsion d'une tour d'éolienne | |
EP2084400B1 (fr) | Éolienne et procédé destiné à amortir des oscillations dans le sens de la traînée d'une ou plusieurs pales d'une éolienne par modification de l'angle de la pale | |
US20210372369A1 (en) | Damping of edgewise wind turbine blade vibrations | |
EP2167814B1 (fr) | Commande d'un rotor pendant un processus d'arrêt d'une éolienne | |
CN1900513B (zh) | 一种操作风轮机的方法 | |
AU2004316333B2 (en) | Wind turbine generator, active damping method thereof, and windmill tower | |
EP2370694B1 (fr) | Régulation du pas des pâles dans une installation d'éolienne | |
KR910004005B1 (ko) | 풍력터빈 발전장치 | |
KR102159848B1 (ko) | 부유식 풍력 터빈의 운동 제어 | |
CA2566376A1 (fr) | Eolienne | |
EP2232063A2 (fr) | Eolienne, procede pour commander une eolienne et utilisation de celle-ci | |
CN106574605A (zh) | 风力涡轮机塔架振荡的主动提升 | |
JP6462388B2 (ja) | 風力発電装置 | |
Berg et al. | Field test results from the Sandia SMART rotor | |
WAKUI et al. | ICOPE-15-1099 Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System | |
WAKUI et al. | Power and Platform Motion Controls Based on Combined Manipulation of Blade Pitch and Generator Torque in a Floating Offshore Wind Turbine-Generator System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07715830 Country of ref document: EP Kind code of ref document: A2 |