WO2007088872A1 - Substrate processing method, substrate processing system, program, and recording medium - Google Patents

Substrate processing method, substrate processing system, program, and recording medium Download PDF

Info

Publication number
WO2007088872A1
WO2007088872A1 PCT/JP2007/051555 JP2007051555W WO2007088872A1 WO 2007088872 A1 WO2007088872 A1 WO 2007088872A1 JP 2007051555 W JP2007051555 W JP 2007051555W WO 2007088872 A1 WO2007088872 A1 WO 2007088872A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
inspection
processing
liquid
foreign matter
Prior art date
Application number
PCT/JP2007/051555
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Okita
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007556878A priority Critical patent/JP4998854B2/en
Publication of WO2007088872A1 publication Critical patent/WO2007088872A1/en
Priority to US12/182,692 priority patent/US7855784B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Substrate processing method substrate processing system, program, and recording medium
  • the present invention relates to a substrate processing method, a substrate processing system, a program, and a recording medium. More specifically, the present invention relates to a substrate processing method, a substrate processing system, and a method for performing a plurality of processes on a substrate using a plurality of processing apparatuses. The present invention relates to a program used for a substrate processing system and a recording medium on which the program is recorded.
  • an exposure apparatus used in a lithographic process for manufacturing an electronic device such as a semiconductor element a liquid is used in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus.
  • An exposure apparatus that exposes a substrate through the above hereinafter also referred to as “immersion exposure apparatus” has been proposed (see, for example, Patent Document 1).
  • the film forming conditions of various films such as a resist film and a top coat film formed on a wafer are individually inspected, and when an abnormality is recognized, the film forming conditions of each film forming apparatus are changed. I was doing. However, in this case, it is only managed for each film. For example, the film formation state of a plurality of films such as a resist film and a top coat film, and the influence of the film formation state of these films on the immersion exposure result. It was a force that could not be considered at all.
  • Patent Document 1 International Publication No. 2004Z053955 Pamphlet
  • Information on at least one of the processing result and the operating state of the at least one processing apparatus is transmitted to the at least one inspection apparatus, and the inspection condition in the at least one inspection apparatus is maximized based on the transmitted information.
  • 1 is a first substrate processing method including an optimization step.
  • information on at least one of the processing result by at least one processing device of the plurality of processing devices and the operating state of the at least one processing device is transmitted to at least one inspection device. Is done. Then, based on the transmitted information, the inspection conditions in at least one inspection apparatus are optimized. This makes it possible to efficiently inspect the substrate. Therefore, as a result, it is possible to efficiently process the substrate.
  • an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate.
  • a substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus that removes at least one of the substrate and inspecting the quality of the substrate using at least one inspection apparatus.
  • a second substrate processing method comprising: step and performing at least one of the removal process again liquid and debris in accordance with the result information of the judgments.
  • an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate.
  • a substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus that removes at least one of the substrate and inspecting the quality of the substrate using at least one inspection apparatus.
  • Determining whether or not at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device; A step of notifying the liquid'foreign matter removing apparatus when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate as a result of the determination; That.
  • the present invention comprises: a plurality of processing apparatuses that respectively perform a plurality of processes on a substrate; and at least one inspection apparatus that inspects the quality of the substrate.
  • Each of the inspection devices receives information on a processing result by at least one processing device of the plurality of processing devices and at least one of operating states of the at least one processing device, and based on the received information. This is the first substrate processing system that optimizes inspection conditions.
  • At least one inspection device receives information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device. Based on the received information, Optimize. For this reason, it is possible to efficiently check the quality of the substrate. Therefore, as a result, it is possible to efficiently process the substrate.
  • an immersion exposure apparatus that performs immersion exposure on a substrate; and a substrate that is provided in at least one of the inside and outside of the immersion exposure apparatus and that has been subjected to the immersion exposure.
  • a liquid / foreign material removal apparatus for removing at least one of liquid and foreign matter on the plate; and an inspection apparatus for detecting a substrate on which at least one of liquid and foreign matter has been removed by the liquid / foreign matter removal apparatus; Based on the inspection result of the device, it is determined whether at least one of the liquid and foreign matter on the substrate may adversely affect the substrate, and the information on the result of the determination is used to remove the liquid / foreign matter.
  • a second substrate processing system for removing at least one of the foreign substances may be used.
  • the determination device determines whether there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the inspection result of the inspection device, Information on the result of the determination is transmitted to the liquid / foreign substance removing apparatus. Then, when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate by the liquid / foreign matter removing apparatus, at least one of the liquid and the foreign matter is again determined according to the transmitted result information of the determination. The removal process is performed. In this case, the product yield can be improved finally. Therefore, as a result, it is possible to efficiently process the substrate.
  • an immersion exposure apparatus for performing immersion exposure on a substrate; and a substrate on which at least one of the inside and the outside of the immersion exposure apparatus is provided and the immersion exposure is performed.
  • a liquid / foreign material removal apparatus for removing at least one of liquid and foreign matter on the plate; and an inspection apparatus for detecting a substrate on which at least one of liquid and foreign matter has been removed by the liquid / foreign matter removal apparatus; Based on the inspection results of the equipment, determine whether there is a possibility that at least one of the liquid and foreign matter on the substrate may adversely affect the substrate, and as a result of the determination, the liquid and foreign matter on the substrate
  • a determination device for notifying the liquid's foreign matter removing device when at least one of them may adversely affect the substrate.
  • a substrate processing system for performing immersion exposure on a substrate; and a substrate on which at least one of the inside and the outside of the immersion exposure apparatus is provided and the immersion exposure is performed.
  • the determination device determines whether or not there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the inspection result of the inspection device. .
  • the determination if at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the fact is notified to the liquid / foreign matter removing apparatus.
  • the processing conditions can be adjusted in the liquid / foreign substance removal processing apparatus. Therefore, as a result, it is possible to efficiently process the substrate.
  • the present invention is used in a substrate processing system including a plurality of processing apparatuses that respectively perform a plurality of processes on a substrate and at least one inspection apparatus that inspects the quality of the substrate.
  • Information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device is transmitted to the at least one inspection device.
  • the first program causes a computer of the substrate processing system to execute a procedure for optimizing the inspection conditions in the at least one inspection apparatus based on the transmitted information.
  • an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate.
  • a program used for a substrate processing system comprising a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus for removing at least one of the above and at least one inspection apparatus for inspecting the quality of the substrate, wherein the inspection apparatus uses the program
  • a procedure for judging whether or not at least one of the liquid and the foreign matter on the substrate has a possibility of adversely affecting the substrate based on the result of detecting the liquid and foreign matter removal processing result;
  • an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of an inside and an outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate.
  • a program used for a substrate processing system comprising a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus for removing at least one of the above and at least one inspection apparatus for inspecting the quality of the substrate, wherein the inspection apparatus uses the program
  • the present invention is a computer-readable recording medium on which any one of the first to third programs of the present invention is recorded.
  • the present invention is a measurement 'inspection apparatus that detects the quality of a substrate processed by a plurality of processing apparatuses, and is at least one processing apparatus of the plurality of processing apparatuses.
  • the measuring apparatus is equipped with a receiving unit that receives information on at least one of the processing result according to the above and the operating state of at least one processing apparatus, and optimizes the inspection conditions based on the received information.
  • the reception unit receives information on at least one of the processing result by at least one processing device of the plurality of processing devices and the operating state of the at least one processing device. Then, the inspection condition is optimized based on the received information. This Therefore, it is possible to efficiently check the quality of the substrate.
  • FIG. 1 is a diagram showing a schematic configuration of a semiconductor manufacturing system according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the exposure apparatus in FIG. 1.
  • FIG. 3 is a view for explaining an exposure apparatus main body in FIG. 2.
  • FIG. 4 is a diagram for explaining the liquid immersion system in FIG. 3.
  • FIG. 5 (A) to FIG. 5 (C) are diagrams for explaining problems inherent to the immersion system, respectively.
  • FIG. 6A and FIG. 6B are diagrams for explaining the liquid immersion monitoring device, respectively.
  • FIG. 7 is a diagram for explaining a CCD sensor module of the immersion monitoring apparatus.
  • FIG. 8 is a diagram for explaining the object plane position of each line sensor in the CCD sensor module of FIG.
  • FIG. 9 is a diagram for explaining the line sensor of FIG. 8.
  • FIG. 10 is a diagram for explaining an immersion monitoring apparatus set in a substrate holder.
  • FIG. 11 is a diagram for explaining the removing device T in FIG. 2.
  • FIG. 12 is a diagram for explaining the generation device in FIG. 11.
  • FIG. 13 is a view for explaining the elastic stator and the vibrating body in FIG. 11.
  • FIG. 14 is a diagram (part 1) for explaining the operation of the generation device of FIG.
  • FIG. 15 is a diagram (No. 2) for explaining the operation of the generation device of FIG. 12;
  • FIG. 16 is a diagram (No. 3) for explaining the operation of the generation device of FIG. 12;
  • FIG. 17 is a diagram (No. 4) for explaining the operation of the generation device of FIG. 12;
  • FIG. 18 (A) and FIG. 18 (B) are views for explaining an elastic stator having a gas outlet, respectively.
  • FIG. 19 (A) and FIG. 19 (B) are views for explaining an elastic stator having a suction port, respectively.
  • FIG. 20 is a flowchart (part 1) for explaining the operation of the semiconductor manufacturing system of FIG.
  • FIG. 21 is a flowchart (part 2) for explaining the operation of the semiconductor manufacturing system of FIG. is there.
  • FIG. 22 is a flowchart (part 3) for explaining the operation of the semiconductor manufacturing system of FIG. 1;
  • FIG. 23 is a flowchart (part 4) for explaining the operation of the semiconductor manufacturing system of FIG.
  • FIG. 24 is a flowchart (No. 5) for explaining the operation of the semiconductor manufacturing system of FIG.
  • FIG. 25 is a diagram for explaining the operation of the semiconductor manufacturing system of FIG. 1.
  • FIG. 26 is a diagram for explaining a wafer on which a CCD sensor module is arranged.
  • FIG. 1 shows a schematic configuration of a semiconductor manufacturing system 100 according to an embodiment of the present invention.
  • a semiconductor manufacturing system 100 shown in FIG. 1 includes an in-plant production management host system 101, a track 102, an exposure process control controller 103, an exposure apparatus 105, an analysis system 107, a CV D apparatus 113, an etching apparatus 115, a CMP. Apparatus 117 and oxidation ion implantation apparatus 119.
  • the track 102 is connected inline to the exposure apparatus 105 via an inline interface unit (not shown) having a wafer transfer system therein.
  • a wafer measurement “inspector 109” and a coater “developer 111” are installed inside the track 102.
  • the above units are connected to each other via a bidirectional communication path, and can transmit and receive information.
  • thin double arrows indicate the flow of signals and information
  • thick double arrows indicate the flow of typical signals and information and the movement path of the wafer. Note that these do not represent all of the connections of each block.
  • the processing target in the semiconductor manufacturing system 100 is a semiconductor wafer W for semiconductor manufacturing (hereinafter abbreviated as “wafer W” for convenience).
  • the CVD apparatus 113 supplies one or several kinds of compound gas consisting of elemental elements constituting the thin film material and a simple substance gas onto Ueno, W, and by a chemical reaction on the gas phase or on the surface of the wafer W. A desired thin film is formed on the wafer W.
  • the etching apparatus 115 is provided on the entire surface of the wafer W or a thin film formed on the surface of the wafer W. Or, the specified location is etched to the required thickness.
  • the CMP apparatus 117 planarizes the wafer W by chemical mechanical polishing.
  • the “oxidation” ion implantation apparatus 119 includes an oxidation apparatus for forming an oxide film on the surface of the wafer W, and an ion implantation apparatus for implanting desired ions into the Ueno and W.
  • the exposure apparatus 105 performs an exposure process on the wafer W. Details of the exposure apparatus 105 will be described later.
  • An exposure process management controller 103 controls the exposure apparatus 105 to manage the exposure process.
  • the coater / developer 111 includes a coating device for applying a photosensitive material (photoresist) or the like to the wafer W, a developing device for developing the exposed wafer W, a baking device for baking the wafer W, It has a measuring device that measures the film formation state, a control device that controls each device, a flash memory that stores various programs used in the control device, a working memory, and the like.
  • Wafer Measurement 'Inspector 109 is an inspection device that performs exposure pattern defect inspection and appearance inspection, a measurement device that performs exposure pattern overlay measurement and line width measurement, and controls each device. It has a controller that optimizes inspection conditions, which will be described later.
  • This control device has a flash memory and a working memory in which various programs used in the control device are stored.
  • the analysis system 107 has an analysis device that analyzes information from the exposure apparatus 105 and information from the wafer measurement / inspector 109.
  • This analyzing apparatus has a flash memory and a working memory in which various programs used in the analyzing apparatus are stored.
  • the factory production management host system 101 controls the entire semiconductor manufacturing system 100.
  • the exposure apparatus 105 includes an exposure apparatus main body S that performs exposure processing on the wafer W, a removal apparatus T that removes liquid and foreign matters attached to the wafer W, and the like.
  • the predetermined direction in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the direction orthogonal to the Y-axis direction, the X-axis direction, and the Y-axis direction.
  • the direction is the z-axis direction.
  • the rotation (inclination) directions around the X, Y, and Z axes are the 0 X direction, 0 Y direction, and 0 Z direction, respectively.
  • the exposure apparatus main body S in the present embodiment is a liquid for improving the resolution by substantially shortening the exposure wavelength and substantially increasing the depth of focus.
  • An exposure apparatus main body S shown in FIG. 3 includes a reticle stage RST that holds a reticle R, a reticle stage driving device 18R that drives the reticle stage RST, and a laser interferometer that measures the position of the reticle stage RST. 17R, wafer stage WST for holding wafer W, wafer stage drive unit 18W for driving wafer stage WST, laser interferometer 17W for measuring the position of wafer stage WST, and reticle stage RST
  • the illumination system IL that illuminates the reticle R with the exposure light EL
  • the projection optical system PL that projects the pattern image of the reticle R illuminated with the exposure light EL onto the wafer W
  • the wafer stage WST are mounted.
  • a base member 20, an immersion system 19, an immersion monitor device 260, and a main controller 42 for controlling each part of the exposure apparatus main body S are provided.
  • the main controller 42 includes a flash memory (not shown) in which various programs used by the main controller 42 are stored, a working memory (not shown), and the like.
  • Exposure light EL includes, for example, bright lines (g-line, h-line, i-line) emitted from mercury lamps, far-ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength Vacuum ultraviolet light (VUV light) such as 193 nm) and F laser light (wavelength 157 nm)
  • Etc. are used.
  • ArF excimer laser light is used as an example.
  • Reticle stage driving device 18R includes an actuator such as a linear motor, and drives reticle stage RST in the X-axis direction, the Y-axis direction, and the 0Z direction.
  • Laser interferometer 17R emits a laser beam toward moving mirror 16R provided on reticle stage RST, receives the reflected light from moving mirror 16R, and measures the position of reticle stage RST. The measurement result of the laser interferometer 17R is notified to the main controller 42. The main controller 42 determines the reticle stay based on the measurement result of the laser interferometer 17R. The drive unit 18R is driven and held on the reticle stage RST !, and the position of the reticle R is controlled.
  • Projection optical system PL has a plurality of optical elements held by a lens barrel, and projects a reticle image of reticle R onto wafer W at a predetermined projection magnification.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8 or the like.
  • the projection optical system PL may be either an equal magnification system or an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form a deviation between the inverted image and the erect image.
  • Wafer stage WST has a holder 43 that holds wafer W and immersion monitoring device 260 by vacuum suction.
  • the holder 43 is disposed on the bottom surface of the recess 44 formed on the + Z side surface of the wafer stage WST.
  • Wafer stage drive unit 18W includes an actuator such as a linear motor. Wafer stage WST is placed on base member 20 in the X axis direction, Y axis direction, Z axis direction, 0 X direction, 0 Y direction, and 0. Drive in Z direction.
  • Laser interferometer 17W emits laser light toward moving mirror 16W provided on wafer stage WST, receives the reflected light from moving mirror 16W, and measures the position of wafer stage WST To do.
  • the measurement result of the laser interferometer 17W is notified to the main controller 42.
  • position information regarding the Z-axis direction, 0 X direction, and 0 Y direction of the wafer W held by the holder 43 is detected by a focus leveling detection system (not shown), and the detection result is the main controller. 42 is notified.
  • the main controller 42 drives the wafer stage driving device 18W based on the measurement result of the laser interferometer 17W and the detection result of the focus' leveling detection system, and controls the position of the wafer W held by the holder 43. I do.
  • the immersion system 19 forms an area (hereinafter also referred to as “immersion area”) filled with the liquid LQ between the projection optical system PL and the wafer W.
  • the immersion system 19 includes a nozzle member 40, a supply tube 13, and an illumination light source 15 (in FIG. Is provided with a recovery pipe 23, a liquid supply device 11, a liquid recovery device 21, and the like.
  • the nozzle member 40 is an annular member provided so as to surround the optical element FL closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL.
  • the supply port 12 for supplying the liquid LQ between the wafer W held by the holder 43 and the optical element FL to form an immersion area, and collecting the liquid LQ in the immersion area It has a collection port 22 for this purpose.
  • a titanium mesh member or a ceramic porous member is disposed in the recovery port 22.
  • a flow path 14 that connects the supply port 12 and one end of the supply pipe 13 and a flow path 24 that connects the recovery port 22 and one end of the recovery pipe 23 are formed inside the nozzle member 40.
  • pure water is used for the liquid LQ as an example.
  • the illumination light source 15 is installed in the periphery of the immersion area, and illuminates the immersion area and the vicinity of the optical element FL while the immersion monitor device 260 is operating.
  • the liquid supply device 11 is connected to the other end of the supply pipe 13.
  • the liquid supply device 11 includes a temperature adjustment device that adjusts the temperature of the supplied liquid LQ, a deaeration device that reduces the gas component in the supplied liquid LQ, and a filter unit that removes foreign matter in the supplied liquid LQ. Deliver clean, temperature-controlled liquid LQ. That is, the liquid LQ delivered from the liquid supply device 11 is supplied to the liquid immersion area via the supply pipe 13, the flow path 14 and the supply port 12.
  • the liquid supply device 11 is controlled by the main controller 42.
  • the liquid recovery device 21 is connected to the other end of the recovery pipe 23.
  • the liquid recovery device 21 has an exhaust system including a vacuum device, and recovers the liquid LQ. That is, the liquid LQ in the liquid immersion region is recovered by the liquid recovery device 21 via the recovery port 22, the flow path 24, and the recovery pipe 23.
  • the liquid recovery device 21 is controlled by the main controller 42.
  • the main controller 42 performs the liquid supply by the liquid supply device 11 and the liquid recovery by the liquid recovery device 21 in parallel during at least the exposure process.
  • the liquid LQ may enter the boundary portion between the resist HRL and the topcoat film TC.
  • the liquid LQ may permeate into the resist and change the resist performance, resulting in poor exposure pattern uniformity.
  • foreign matter IB such as a partition or a watermark may adhere on the top coat film TC. In this case, even if the exposure is successful, it affects the post-exposure PEB processing and development processing, and the pattern formed on the wafer by the exposure (hereinafter abbreviated as “exposure pattern” where appropriate).
  • FIG. 5C May cause defects such as wire breaks, shorts, and variations in line width. Furthermore, as an example, as shown in FIG. 5C, foreign matter such as bubbles BB or particles PT may exist in the immersion area. In this case, there is a possibility that the optical path of the exposure light will change and cause a defect in the exposure pattern. Also, the resist may elute into the liquid LQ and contaminate the optical element FL, which may cause exposure pattern defects. Note that bacteria may be generated in the liquid QL and in members that contact the liquid QL (supply pipe 13, optical element FL, etc.), and these bacteria are also a foreign substance. In FIG. 5 (A) to FIG. 5 (C), the symbol HL is an antireflection film.
  • the immersion monitoring device 260 is for inspecting whether or not a foreign substance is contained in the immersion area and whether or not the optical element FL is contaminated.
  • the liquid immersion monitoring device 260 is embedded in a base material 261 having substantially the same outer shape as the wafer W, and embedded in the base material 261.
  • the analysis device 263 has a flash memory, a working memory, and the like in which various programs used in the analysis device 263 are stored.
  • one CCD sensor module 262 is embedded in the center of the base material 261, and four CCD sensor modules 262 are embedded in the peripheral area of the base material 261 at substantially equal intervals.
  • the analysis result in the analysis device 263 is notified from the analysis device 263 to the main controller 42, the exposure process management controller 103, the analysis system 107, and the like.
  • the material of the base material 261 has little influence on the liquid LQ when it comes into contact with the liquid LQ. Anything is good.
  • the same material as that of the wafer W may be used, or a material containing a metal such as titanium or a fluorine-based resin such as PTFE and PFA may be used.
  • a film having water repellency may be formed on the surface.
  • each CCD sensor module 262 has six one-dimensional line sensors each having the Y-axis direction as the longitudinal direction.
  • the one-dimensional line sensor located at the end on the X side is located on the line sensor 267A
  • the one-dimensional line sensor located on the + X side of the line sensor 267A is located on the + X side of the line sensor 267B
  • the line sensor 267B is located on the line sensor 267B.
  • the one-dimensional line sensor is a line sensor 267C
  • the one-dimensional line sensor located on the + X side of the line sensor 267C is a line sensor 267D
  • the one-dimensional line sensor located on the line sensor 267D is the line sensor 267 ⁇
  • Line sensor 267F is the one-dimensional line sensor located on the + ⁇ side of line sensor 267 ⁇ .
  • Each line sensor is provided with a plurality of microlenses 264 corresponding to the respective light receiving portions.
  • the focal length of the micro lens 264 is different for each line sensor. That is, the distance to the observation target position (object plane position) differs for each line sensor.
  • the offset amount of the object plane position for each line sensor is set in consideration of a substantial depth of focus corresponding to the detection resolution of the foreign matter.
  • the observation target position of the line sensor 267 ⁇ is a position where the surface force of the base material 261 is also a distance dl
  • the observation target position of the line sensor 267B is a distance d2 from the surface of the base material 261.
  • the observation target position of the line sensor 267C is the position of the surface force of the base material 261 and the distance d3 (> d2)
  • the observation target position of the line sensor 267D is the surface cover of the base material 261.
  • the observation target position of the line sensor 267E is the position of the distance d5 (> d4)
  • the observation target position of the line sensor 267F is the surface of the substrate 261.
  • the center thickness t (see FIG. 9) of the micro lens 264 can be set to 2 to 3 m.
  • reference numeral 262A is a CCD pixel
  • reference numeral 262B is a transfer electrode
  • reference numeral 262C is a resin layer
  • reference numeral 262D is an insulating layer.
  • the immersion monitoring device 260 is previously stored in a predetermined position in the exposure apparatus main body S.
  • the conveyance device 210 (see FIG. 3). ) Is set on the holder 43.
  • CCD charge coupled device
  • a frame transfer system that can increase the light receiving area is also preferable.
  • each line sensor may be formed on the base material 261 by using a photolithography technique, and a previously created CCD sensor module is attached to the base material 261. Also good.
  • the removal device T removes the liquid LQ and foreign matter (hereinafter also referred to as “liquid / foreign matter” for convenience) adhering to the wafer W.
  • this removal device T includes a stage device 30, a holder 31 for holding wafers by vacuum suction, a holder 31 for holding W, a rotating device 32 for rotationally driving the holder 31, and a wafer W. It has a generation device 60 that generates a deflection traveling wave for moving foreign matter adhering to the liquid, a chamber 35, a liquid suction device 39, and an observation device (not shown) for observing the surface of the wafer W. .
  • the stage device 30, the holder 31, the rotating device 32, and the generating device 60 are accommodated in the chamber 35.
  • the observation results from the observation device are the main controller 42, wafer measurement
  • the tester 109 and the analysis system 107 are notified.
  • the chamber 35 has an opening 36 formed on the wall surface on the + X side in FIG. 11, and an opening 37 formed on the wall surface on the ⁇ X side.
  • the opening 36 is provided with a shirter 36A for opening and closing the opening 36
  • the opening 37 is provided with a shirter 37A for opening and closing the opening 37.
  • the wafer W that has been subjected to immersion exposure is transferred into the chamber 35 through the opening 36, and the wafer W on which the liquid 'foreign matter has been removed is transferred out of the chamber 35 through the opening 37.
  • the Opening and closing of each shirt is controlled by the main controller 42.
  • the liquid suction device 39 is connected to the chamber 35 via a flow path 38 provided with a valve 38A.
  • the valve 38A When the valve 38A is opened, the liquid in the chamber 35 is discharged out of the chamber 35 by the liquid suction device 39. Note that the valve 38 A is opened during the liquid 'foreign matter removal process.
  • the rotating device 32 has a shaft 33 connected to the holder 31 and a motor that is disposed inside the stage device 30 and drives the shaft 33 to rotate, and rotates the wafer W held by the holder 31.
  • the holder 31 can be driven in the Z-axis direction, ⁇ X direction, and ⁇ Y direction by a holder driving device (not shown) together with the shaft 33.
  • the generation device 60 is disposed opposite to the wafer W held by the holder 31, and generates a flexible traveling wave.
  • a vibrating body 62 including a piezoelectric element that is disposed on the Z-side surface and excites the bending traveling wave, a supporting member 63 that supports the vibrating body 62, and the supporting member 63 in the X-axis direction and the Y-axis direction.
  • the drive mechanism 64 is controlled by the main controller 42.
  • the main controller 42 can adjust the distance between the inertial stator 61 and the wafer W, the inclination angle of the inertial stator 61 with respect to the wafer W, the position of the inertial stator 61 with respect to the wafer W in the XY plane, and the like.
  • the inertial stator 61 is a substantially circular elastic member that is slightly larger than the wafer W, as shown in FIG. 13 as an example.
  • a water repellent coating is applied to the surface of the inertial stator 61 on the —Z side.
  • the piezoelectric element 62A is arranged in a ring shape so as to obtain a desired bending traveling wave.
  • elastic step The data 61 may also be ring-shaped.
  • the piezoelectric element of the vibrating body 62 is uniformly polarized in the thickness direction (here, the Z-axis direction), and there are a plurality of electrodes having a half-wavelength pitch of flexural vibration (hereinafter also referred to as "electrode group"). It is provided.
  • electrode group a half-wavelength pitch of flexural vibration
  • FIG. 14 As an example, a bending traveling wave B is generated, and an acoustic field is generated between the inertial stator 61 and the wafer W by the bending traveling wave B.
  • the generation apparatus 60 can move the liquid / foreign matter adhering to the wafer W in a non-contact state with the wafer W.
  • the liquid / foreign matter adhering to the wafer W can be ejected to the outside of the recess. it can.
  • FIG. 1 As an example, as shown in FIG. 1
  • a bending traveling wave B is generated with the circumferential direction of the inertial stator 61 as the traveling direction. Therefore, the acoustic viscous flow V flows with the circumferential direction of the wafer W as the traveling direction.
  • the centrifugal force is applied, and the liquid / foreign matter adhering to the wafer W can be moved better.
  • FIG. 16 as an example, if the rotational direction PR of the wafer W is made to coincide with the traveling direction of the bending traveling wave ⁇ , the direction of the acoustic viscous flow V and the direction of the centrifugal force substantially coincide. Even if the wafer W is rotated at a relatively low speed, the liquid / foreign matter adhering to the wafer W can be satisfactorily removed.
  • the generation start of the deflection traveling wave B and the rotation start of the wafer W may be performed almost simultaneously with each other, or the generation of the deflection traveling wave B may be started after the rotation of the wafer W is started.
  • the generation of the deflection traveling wave B is started and the rotation of the wafer W is started after a predetermined time has passed. You may do it.
  • the liquid body foreign matter entering the inside of the recess can be removed from the surface of the wafer W by rotating the wafer W after being moved to the outside of the recess by the deflection traveling wave B. it can.
  • the rotation of the wafer W and the inclination of the wafer W may be used in combination. As a result, the liquid / foreign matter adhering to the wafer W can be removed more satisfactorily.
  • the liquid removed from the wafer W is discharged out of the chamber 35 by the liquid suction device 39. Therefore, the humidity in the chamber 35 does not vary greatly. Further, when the shutter 36A and the shirt 37A are opened, the moist gas is not released out of the chamber 35.
  • FIG. 18 (A) and FIG. 18 (B) a rectangular shape in which a plurality of gas outlets 71 are formed on the Z-side surface.
  • An elastic stator 161 A may be used.
  • a gas supply device (not shown) for blowing out the gas k from the plurality of gas blowing ports 71 toward the surface of the wafer W is further provided.
  • a group of gas outlets aligned in the Y-axis direction is defined as one block, and the first block Bal, the second block Ba2, the third block Ba3, and the 17th block Bal7 are defined in the + X direction.
  • the gas blowing from the second block Ba2 is stopped.
  • the gas blowing is stopped. To do.
  • the liquid / foreign matter adhering to the wafer W can be removed in a shorter time.
  • the number of blocks is not limited to 17.
  • the wafer W and the inertial stator 161A may be tilted in the traveling direction of the bending traveling wave B.
  • FIG. 19 (A) and FIG. 19 (B) a rectangular shape in which a plurality of suction ports 81 are formed on the surface on the Z side.
  • the inertia stator 161B may be used.
  • a suction device (not shown) that sucks liquid adhering to the surface of the wafer W from the plurality of suction ports 81 is further provided.
  • a group of suction ports arranged in the Y-axis direction is defined as one block, and the first block Bbl, second block Bb2, third block Bb3,..., And 17th block Bbl7 are defined in the + X direction.
  • the suction in the first block Bbl is started, and then the suction in the second block Bb2 is started. Then, the third block Bb3,. Start suction with 17 blocks Bbl7.
  • the suction in the first block Bbl is stopped.
  • the suction in the second block Bb2 is stopped when a predetermined time elapses after the suction in the second block Bb2 is started. Thereafter, in the same manner, the suction is stopped for a block for which a predetermined time has elapsed after the start of suction.
  • the liquid / foreign matter adhering to the wafer W can be removed in a shorter time.
  • the number of blocks is not limited to 17.
  • the wafer W and the inertia stator 161B may be inclined in the traveling direction of the flexural traveling wave B.
  • a drying device for supplying a dried gas into the chamber 35 may be provided instead of the liquid suction device 39 or together with the liquid suction device 39. Thereby, removal of the liquid LQ adhering to the wafer W can be promoted.
  • a film formation 'resist process for the wafer W is performed in the coater' develeno 111.
  • the process step 701 to step 735) shown in the flowchart of FIG. 23 is performed.
  • the wafer W is transferred to the coater / developer 111, and an antireflection film is formed on the wafer W.
  • the antireflection film on the wafer W is measured by the measuring device of the coater / developer 111.
  • the film formation state including at least one of the film thickness of the antireflection film, the fluctuation state of the film thickness, and the flatness of the film is measured.
  • step 705 based on the measurement result of the film formation state, it is determined whether or not the antireflection film is normal. If the antireflection film is normal, the determination in step 705 is affirmed, and the process proceeds to step 711. On the other hand, if the antireflection film is not normal, the determination in step 705 is denied and the process proceeds to step 707.
  • Step 707 the antireflection film is removed.
  • the film formation condition of the antireflection film is corrected based on the measurement result of the antireflection film. Then, the process returns to step 701.
  • the film formation conditions of the antireflection film include at least one of a film material, a film formation method, a target film thickness, film thickness uniformity, a film formation environment, and a film material application condition.
  • step 701 to step 709 the processing of step 701 to step 709 is repeated until the determination in step 705 is affirmed. If the antireflection film is normal, the determination in step 705 is affirmed and the routine proceeds to step 711.
  • the measurement result and film formation condition of the antireflection film are transmitted to the analysis system 107 and the wafer measurement / inspector 109.
  • information on the operating state including environmental information such as temperature, humidity or pressure during the film formation process!
  • a resist is applied on the antireflection film.
  • the state of the film (antireflection film + resist film) on the wafer W is measured by the measuring device of the coater / developer 111.
  • the film state on the wafer W the film state including at least one of the film thickness fluctuation state and the film flatness is measured.
  • step 717 it is determined whether or not the force on the wafer W is normal based on the measurement result of the film state. If the state of the film is normal, the determination at step 717 is affirmed, and the routine proceeds to step 723. On the other hand, the state of the membrane is positive If not, the determination here is denied and the routine goes to Step 719.
  • step 719 the resist film is removed.
  • step 721 the resist coating condition is corrected based on the measurement result of the film state. Then, the process returns to step 713 above.
  • step 713 the processing from step 713 to step 721 is repeated until the determination in step 717 is affirmed. If the state of the film is normal, the determination at step 717 is affirmed, and the routine proceeds to step 723.
  • Step 723 the measurement result of the film state and the resist application condition force analysis system 107 and the wafer measurement 'inspector 109 are transmitted.
  • operating state information including environmental information such as temperature, humidity, or atmospheric pressure during the resist coating process.
  • a top coat film is applied onto the wafer W to which a resist film has been applied.
  • the state of the film (antireflection film + resist film + topcoat film) on the wafer W is measured by the measuring device of the coater / developer 111.
  • a film state including at least one of the film thickness on the wafer W, the variation state of the film thickness, and the flatness of the film is measured.
  • step 729 based on the measurement result of the film state, it is determined whether or not the force on the wafer is normal. If the state of the film is normal, the determination in step 729 is affirmed, and the process proceeds to step 735. On the other hand, if the state of the film is not normal, the determination in step 729 is denied and the process proceeds to step 731.
  • Step 731 the top coat film is removed.
  • step 733 the topcoat application condition is corrected based on the measurement result of the film state. Then, the process returns to step 725.
  • step 725 to step 733 is repeated until the determination in step 729 is affirmed. If the state of the film is normal, the determination at step 729 is affirmed, and the routine proceeds to step 735.
  • step 735 the measurement result of the film state and the coating condition of the top coat are analyzed. Stem 107 and wafer measurement 'sent to inspector 109 etc. Here, information on the operating state including environmental information such as temperature, humidity, or pressure during the top coat coating process may be transmitted. As a result, the film formation / resist process ends, and the process returns to step 403 of the main routine (FIG. 20).
  • step 403 the immersion monitor condition setting process is performed in the exposure apparatus body S.
  • the process shown in the flowchart of FIG. 24 (steps 801 to 807) is performed.
  • the condition setting process of the immersion monitor may be performed in response to the content displayed on the display device (not shown) by the operator, that is, interactively via an input device (not shown), or the exposure process.
  • the main controller 42 can do it!
  • step 801 an analysis method in the analysis device 263 of the immersion monitoring device 260 is designated.
  • at least one of the following methods (1) to (3) is designated and notified to the analysis device 263 or the like.
  • the Z-axis direction image comparison method is a method of comparing observation results at a plurality of different positions in the Z-axis direction. Specifically, the output signal force of each of the six line sensors (267A to 267F) is also compared with each other, and for example, the output signal force of the line sensor 267C is obtained. If the image information differs from the allowable level by more than the allowable level, it is determined that the surface force of the wafer W is also in the vicinity of the distance d3. This is due to the extremely low probability that foreign matter is simultaneously present at the observation target positions of all line sensors.
  • the six pieces of image information are preferably image information at the same position in the XY plane.
  • the reference image comparison method compares the image information (hereinafter referred to as “reference image information A”) and the observation result obtained in advance by experiments or simulations, etc. It is a method. Specifically, each of the six pieces of image information is compared with the reference image information A. For example, the difference between the obtained image information and the reference image information A of the line sensor 267C is an allowable level. In the above case, the surface force of the wafer W is also the distance d3 It is determined that a foreign object exists in the vicinity of the position.
  • the feature extraction method includes image information when bubbles are present (hereinafter referred to as “reference image information B” t) and image information when particles are present (hereinafter referred to as “ This is a method that compares image information when there is a foreign object such as “reference image information C”) with observation results. Specifically, each of the six pieces of image information is compared with reference image information B, reference image information C, and the like. And, for example, when the image information obtained from the output signal force of the line sensor 267C and the reference image information B are similar within a preset range, the surface force of the wafer W is also close to the position of the distance d3. Judge that bubbles are present. Note that the image information (reference image information B) when there is a bubble is that there is a circular bright part on the outer periphery of the bubble, and there is a different pattern from the periphery on the inner side of the bubble. There are features.
  • the analysis sensitivity of the immersion monitoring device 260 is designated according to the target shape accuracy (target line width accuracy) of the pattern formed on the wafer W.
  • target shape accuracy target line width accuracy
  • the analysis sensitivity of the immersion monitoring device 260 is set high so that even if the foreign matter is minute or small, it is determined to be abnormal.
  • the line width accuracy is acceptable even if it is relatively low
  • the foreign substance having a level equal to or lower than a preset level is set to the analysis sensitivity of the immersion monitoring apparatus 260 so that it is not recognized as a foreign substance.
  • the content specified here is notified to the analysis device 263 or the like.
  • the timing for performing the immersion monitoring process is designated.
  • the timing of performing the immersion monitoring process is as follows: (1) every predetermined number of processed substrates, (2) every predetermined number of lots processed, (3) every predetermined time interval, and (4) new immersion area There is every formation. In addition, you may combine each timing of (1)-(4) suitably.
  • the contents specified here are stored in the work memory of the main controller 42.
  • the contents of the feedback control are: (1) Partial replacement of all the liquid LQ in the liquid immersion area, (2) Change in the waiting time for supplying the liquid LQ to the liquid immersion area, (3) Liquid immersion area Change of liquid LQ stabilization time in (4) Change of supply amount of liquid LQ to the immersion area, (5) Change of supply speed of liquid LQ to the immersion area, (6) Exposure amount, exposure scan Change of exposure conditions such as speed and focus offset, (7) Wafer skip, (8) Interruption of lot processing, (9) Change of processing conditions at coater 'developer 111, (10) Wafer measurement / inspector 109 There are changes in measurement conditions and inspection conditions.
  • the wafer W is transferred to the exposure apparatus body S, and immersion exposure processing is performed on the exposure apparatus body S.
  • the exposure apparatus body S irradiates the wafer W with the exposure light EL that has passed through the reticle R via the projection optical system PL and the liquid LQ in the immersion region, and the pattern image of the reticle R is irradiated onto the wafer. Project to W.
  • step 407 the main controller 42 determines whether or not it is the timing specified in the condition setting process of the immersion monitor. If it is not the designated timing, the determination in step 407 is denied, and the process proceeds to step 417. On the other hand, if it is the designated timing, the judgment in step 407 is affirmed and the routine proceeds to step 409.
  • step 409 immersion monitoring processing is performed by the immersion monitoring device 260.
  • the main controller 42 obtains the position information of the wafer stage WST on which the immersion monitoring device 260 is held so that the image information from which the output signal force of each line sensor can be obtained is the same position in the XY plane.
  • wafer stage WST is moved so that substrate 261 moves in the X-axis direction shown in FIG.
  • the analysis result in the analysis device 263 is transmitted to the main controller 42, the analysis system 107, and the wafer measurement / inspector 109.
  • the analysis system 107 determines whether there is an abnormality based on the analysis result received from the analysis device 263. If there is no abnormality, this step 413 The determination at is affirmed, and the routine goes to Step 417. On the other hand, as shown in FIG. 25 as an example, if a foreign substance NT such as a bubble or particle exists in the immersion area and the analysis result is abnormal, the determination in step 413 is denied and the process proceeds to step 415. To do.
  • step 415 the content of the feedback control set in step 807 is transmitted from the analysis system 107 to the main controller 42. Then, in the exposure apparatus body S, the content of the feedback control received from the analysis system 107 is executed.
  • the wafer W is transferred to the removing device T, and the above-described liquid / foreign substance removing process is performed.
  • the processing conditions and processing results (observation results of the observation apparatus) of the liquid 'foreign matter removal are transmitted from the force removal apparatus T to the analysis system 107, the wafer measurement' inspector 109, and the like.
  • the analysis system 107 performs the measurement results in the film formation resist process, the film formation conditions and the application conditions, the immersion exposure conditions in the exposure apparatus 105, and the immersion monitor process.
  • the inspection result of the wafer W by the wafer measurement / inspector 109 is predicted based on at least one of the monitoring result, the processing condition and the processing result for removing the foreign matter in the removal apparatus T!
  • At least one of the measurement results, film formation conditions, and application conditions in the film formation / resist process acquired in advance and anomaly detection in wafer inspection by the wafer measurement / inspector 109 The wafer measurement based on at least one of the measurement results, the film formation conditions, and the coating conditions in the film forming process, and the wafer W inspection result by the inspector 109 You can predict it.
  • the liquid immersion monitoring process Wafer measurement based on the monitor result of 'Wafer W inspection result by inspector 109 You may predict. Specifically, the type, position, size, shape, and number of foreign matter in the immersion area in a database in which information on correlation is registered (hereinafter referred to as “correlation database” for convenience). Information and information power such as the position of contamination of the optical element FL and the degree of contamination It is possible to derive the influence of the exposure pattern.
  • the defect of the exposure pattern can be predicted from the foreign matter information obtained by the immersion monitoring device 260 and the contamination information of the optical element FL.
  • the foreign matter information on the top coat film and the penetration information power of the liquid LQ into the film can also predict exposure pattern defects.
  • the liquid / foreign matter removal processing result acquired in advance is obtained. Based on the wafer measurement 'inspector 109, the inspection result of wafer W may be predicted.
  • the analysis system 107 determines whether or not the prediction result is “the abnormality of the wafer W is detected in the wafer inspection by the wafer measurement / inspector 109”. If the prediction result is “no abnormality of wafer W is detected by wafer inspection by wafer inspection by inspector 109”, the determination at this step 423 is affirmed and the routine proceeds to step 501. On the other hand, if the prediction result is “Wafer measurement and wafer inspection by inspector 109 detects an abnormality in Weno and W”, the determination in step 423 is denied and the process proceeds to step 425.
  • the analysis system 107 uses the film forming conditions and coating conditions in the coater 'developer 11] _, the immersion exposure conditions in the exposure apparatus 105, and the removal apparatus T so that the abnormality can be avoided. Instruct to adjust at least one of the liquid's foreign matter removal treatment conditions
  • the immersion exposure conditions are the supply conditions for supplying the liquid LQ to the immersion area, the recovery conditions for recovering the liquid LQ from the immersion area, the moving conditions of the wafer W, the conditions for the immersion area. Includes at least one of size and shape of the immersion area.
  • the main controller In order to suppress the generation of bubbles in the liquid LQ that forms the liquid immersion area, La 42 can either (1) increase the degassing capacity of the degassing device of the liquid supply device 11 or (2) supply from the supply port 12 Adjust the amount of liquid LQ supplied per unit time, or (3) adjust the amount recovered per unit time via the recovery port 22.
  • the movement condition of the wafer W described above is that the movement speed, acceleration, deceleration, movement direction, movement trajectory, movement distance, and each position of the wafer W with respect to the liquid LQ in the immersion area are immersed in the liquid LQ. Includes at least one of the current time and focus' leveling conditions.
  • the processing conditions for liquid / foreign matter removal include the on / off condition of the deflection traveling wave, the rotation speed of the wafer W, the inclination angle of the wafer W, and the blowing condition of the gas when the inertial stator 161A is used.
  • the inertial stator 161B When the inertial stator 161B is used, it includes at least one of suction conditions, and when the drying device is used, it includes at least one of drying conditions.
  • the wafer measurement 'inspector 109 inspects the immersion-exposed wafer W based on the information on "at least one wafer processing condition' processing result".
  • Wafer inspection processing 1 Optimize the inspection conditions.
  • the inspection conditions here include at least one of an inspection position and inspection sensitivity on the wafer W.
  • the wafer W is transferred to the wafer measurement / inspection instrument 109, and the wafer inspection process 1 is performed in the wafer measurement / inspection instrument 109.
  • the appearance inspection of the wafer W and the wafer W is performed based on the optimum inspection conditions.
  • the inspection result of the wafer inspection process 1 is transmitted to the analysis system 107 or the like.
  • step 507 the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 1. If there is no abnormality, the determination in step 507 is affirmed, and the routine proceeds to step 515. On the other hand, if there is an abnormality in wafer W, the determination in step 507 is denied, and the process proceeds to step 509.
  • the analysis system 107 determines whether or not the liquid on the wafer and the W.
  • the foreign matter may have a bad influence on the wafer W based on the inspection result of the wafer inspection process 1. to decide.
  • the determination result here is transmitted to the removing device T. If there is no possibility that the liquid on the wafer W has a bad influence on the wafer W, the determination at this step 509 is denied, and the routine proceeds to the step 513. On the other hand, if there is a possibility that the liquid 'foreign matter on the wafer W may adversely affect the wafer W, the determination in step 509 is affirmed, and the routine proceeds to step 511.
  • the wafer W is transferred to the removing device ⁇ , and the liquid 'foreign matter removing process is performed again.
  • the analysis system 107 instructs adjustment of "at least one wafer processing condition" so that the abnormality can be avoided.
  • the wafer W is transferred to the coater / developer 111 and the coater / developer 111 performs the dredging process.
  • the wafer measurement 'inspector 109 performs wafer inspection processing 2 for inspecting the wafer W that has been subjected to the above-described defect processing based on information on "at least one wafer processing condition' processing result".
  • the inspection conditions here include at least one of the inspection position and inspection sensitivity on the wafer W.
  • the wafer W is transferred to the wafer measurement / inspection instrument 109, and the wafer inspection process 2 is performed in the wafer measurement / inspection instrument 109.
  • the wafer inspection process 2 is performed in the wafer measurement / inspection instrument 109.
  • the inspection result of the wafer inspection process 2 is transmitted to the analysis system 107 or the like.
  • step 523 the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 2. If there is no abnormality, the determination in step 523 is affirmed, and the routine proceeds to step 527. On the other hand, if there is an abnormality in wafer W, the determination in step 523 is denied and the process proceeds to step 525.
  • step 525 the analysis system 107 instructs adjustment of “at least one wafer processing condition” so that the abnormality can be avoided.
  • the wafer W is transferred to the coater / developer 111, and development processing is performed in the coater / developer 111.
  • the wafer measurement 'inspector 109 inspects the wafer W that has been subjected to the development processing based on the information related to "at least one wafer processing condition / processing result" 3 Optimize the inspection conditions.
  • the inspection conditions here include at least one of the inspection position and inspection sensitivity on the wafer W.
  • the wafer W is transferred to the wafer measurement / inspection device 109, and the wafer measurement / inspection device 109 performs wafer inspection processing 3.
  • the exposure pattern (resist pattern) on the wafer W is inspected based on the optimum inspection conditions.
  • the inspection result of the wafer inspection process 3 is transmitted to the analysis system 107.
  • step 607 the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 3. If there is no abnormality, the determination in step 607 is affirmed, and the routine proceeds to step 611. On the other hand, if there is an abnormality in wafer W, the determination in step 607 is denied, and the process proceeds to step 609.
  • the analysis system 107 instructs adjustment of “at least one wafer processing condition” so that the abnormality can be avoided.
  • the analysis system 107 registers each measurement result, analysis result, each processing condition, each inspection result, etc. in the correlation database.
  • This correlation database is referred to when the inspection result of the wafer W is predicted. Further, here, based on this correlation database, correlation between at least one of each measurement result, film formation condition, and each coating condition in the above-mentioned film formation'resist process and anomaly detection in the inspection by the inspection apparatus. Correlation, correlation between the monitoring result in the liquid immersion monitoring process and abnormality detection in the inspection by the inspection apparatus, correlation between the processing result of the liquid / foreign matter removal and abnormality detection in the inspection apparatus Is done.
  • next step 613 if necessary, etching processing by the etching apparatus 115, impurity diffusion processing by the acid / ion implantation apparatus 119, wiring processing by the CVD apparatus 113, flatness processing by the CMP apparatus 117, etc. Is done.
  • next step 615 it is determined whether or not the processing process for the wafer W is completed. If the processing step is not completed, the determination here is denied and the step 401 is performed. Return to.
  • step 401 to step 615 is repeated until the determination in step 615 is affirmed.
  • step 615 is affirmed, and the process proceeds to step 617.
  • step 617 a probing process is performed.
  • next step 619 it is determined whether or not a force has been detected. If no defect is detected, the determination at step 619 is denied, and the routine proceeds to step 623. On the other hand, if a defect is detected, the determination at step 619 is affirmed and the routine proceeds to step 621.
  • a repair process is performed. Specifically, replacement processing with a redundant circuit is performed.
  • next step 625 a packaging process and a bonding process are performed. Then, the operation of the semiconductor manufacturing system 100 ends.
  • examples of the first to third programs of the present invention are executed in the program corresponding to the flowcharts of Figs.
  • An example of the recording medium of the present invention is realized by each flash memory storing a program corresponding to the flowchart of FIG.
  • the wafer measurement / inspector 109 is subjected to immersion exposure based on information on “at least one wafer processing condition / processing result”.
  • Wafer Inspection Process 1 for Inspecting Wafer W Inspected Wafer Inspection Process 2 for Inspecting Wafer W that has been PEB Processed, and Wafer Inspection Process 3 for Inspecting Wafer W that has Been Developed are optimized respectively.
  • Wafer Inspection Process 1 for Inspecting Wafer W Inspected Wafer Inspection Process 2 for Inspecting Wafer W that has been PEB Processed
  • Wafer Inspection Process 3 for Inspecting Wafer W that has Been Developed are optimized respectively.
  • the wafer W can be efficiently inspected.
  • the analysis system 107 predicts the inspection result of the wafer W by the wafer measurement / inspector 109 based on “at least one wafer processing condition / processing result”. Then, the analysis system 107 indicates that the predicted result is “wafer measurement” by wafer inspection by the inspector 109. If an abnormality in w is detected, it is instructed to adjust “at least one wafer processing condition” so that the abnormality can be avoided. As a result, the yield can be improved.
  • the analysis system 107 predicts the inspection result of the wafer W by the wafer measurement 'inspector 109 with reference to the correlation acquired in advance. This makes it possible to improve the prediction accuracy.
  • the analysis system 107 determines whether or not the liquid on the wafer W has a possibility of adversely affecting the wafer w based on the inspection result of the wafer inspection process 1, and removes the determination result. Transmitting to device T.
  • the removal device T performs the liquid / foreign matter removal process again if there is a possibility of adversely affecting the liquid foreign matter force s the wafer w on the wafer W. As a result, it is possible to improve the yield, and as a result, it is possible to efficiently perform processing on Ueno and W.
  • the removing apparatus T can adjust the processing conditions for removing the liquid “foreign matter”. Therefore, as a result, it is possible to efficiently process the wafer w.
  • the force described in the case where the reticle R is a transmissive type is not limited to this, and a reflective type may be used.
  • the CCD sensor module 262 may be provided on the wafer W as shown in FIG. 26 as an example.
  • a CCD sensor module 262 is provided before the exposure start shot SS.
  • the immersion state can be monitored during the normal exposure sequence.
  • the CCD sensor module 262 may be provided at a predetermined position on the wafer stage WST. In this case also, it is possible to perform immersion monitoring during exposure.
  • the illumination light source 15 is installed in the periphery of the immersion area in order to illuminate the immersion area.
  • a light emitting element may be provided on the substrate 261 instead of the light source 15 for use.
  • the exposure light EL may be used to illuminate the immersion area.
  • an off-line wafer measurement / inspection device may be used in place of the wafer measurement / inspection device 109.
  • the inspection apparatus that performs the appearance inspection of the wafer W that has been subjected to the immersion exposure the inspection apparatus that performs the appearance inspection of the wafer W that has been subjected to the PEB treatment
  • the inspection apparatuses that perform pattern inspection of the wafer W that has been subjected to the image processing may be different inspection apparatuses.
  • At least a part of the processing performed by the analysis system 107 may be performed by the wafer measurement / inspector 109.
  • an area sensor may be used instead of the one-dimensional line sensor of the immersion monitoring device 260.
  • the area of the CCD sensor taking into account the area of the CCD sensor, processing time, power consumption, etc., it is preferable to perform scanning imaging using a one-dimensional line sensor.
  • the force described in the case where the immersion monitoring apparatus 260 has six one-dimensional line sensors is not limited to this.
  • the object plane position of each one-dimensional line sensor in the above embodiment is an example, and the present invention is not limited to this.
  • the force described in the case where the immersion monitoring apparatus 260 has five CCD sensor modules 26 2 is not limited to this. Further, the arrangement of each CCD sensor module is not limited to the above embodiment.
  • a ring-shaped electrostrictive element is arranged around the microlens, and the drive voltage of the electrostrictive element is adjusted.
  • the object plane position may be set for each line sensor by using a microlens with a focal length adjustment function that can adjust the focal length by using a microlens.
  • the present invention is not limited to this, and the liquid LQ is transmissive to the exposure light EL as much as possible.
  • Optical element FL with low refractive index change due to temperature change with high refractive index and low viscosity can be used.
  • Candidates include glycerol, which has a high refractive index, although it does not have good transparency to exposure light.
  • the force described for the case where the analysis device 263 of the immersion monitor device 260 performs the analysis of the immersion monitor is not limited to this.
  • each line of the immersion monitor device 260 Based on the output signal of the sensor, the main controller 42 may analyze the immersion monitor.
  • the removal apparatus T may use not only the wafer W after the exposure process but also the wafer W before the exposure process. In other words, it may be used to remove foreign matters such as particles adhering to the wafer W before the exposure processing.
  • the force described in the case where the exposure object in the exposure apparatus main body S is a semiconductor wafer for semiconductor manufacturing is not limited to this.
  • the exposure apparatus body S is not limited to an exposure apparatus for manufacturing a semiconductor element, but includes, for example, an exposure apparatus for manufacturing a liquid crystal display element, an exposure apparatus for manufacturing a display, an exposure apparatus for manufacturing a thin film magnetic head, and an imaging device. It may be an exposure apparatus for element manufacture, an exposure apparatus for reticle or mask manufacture, or the like.
  • the shape of the exposure target in the exposure apparatus main body S is not limited to a circular shape, but may be, for example, a rectangular shape.
  • the base material 261 of the immersion monitoring device 260 is also rectangular.
  • the exposure apparatus body S exposes the pattern formed on the reticle R onto the wafer W while moving the reticle R, the wafer, and W synchronously in the scanning direction. It may be a mold exposure apparatus (so-called scanning steno). Further, a step-and-repeat type projection exposure apparatus that collectively exposes the pattern formed on the reticle R while the reticle scale, the wafer, and W are stationary, and sequentially moves the wafer W stepwise may be used. Further, a step 'and' stitch type exposure apparatus may be used. Further, the exposure apparatus main body S includes, for example, JP-A-10-163099 and JP-A-10-214783, and the corresponding US Pat. No. 6,590,634, JP 2000-505958 A. It may be a twin-stage type exposure apparatus provided with a plurality of wafer stages as disclosed in Japanese Patent Publication (and corresponding US Pat. No. 5,969,441).
  • a force using a light transmission mask in which a predetermined light shielding pattern (or phase pattern “dimming pattern”) is formed on a light transmissive substrate instead, as disclosed in, for example, US Pat. No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed ( Alternatively, a variable shaped mask, for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (also called a spatial light modulator) may be used.
  • the exposure apparatus is an exposure apparatus (lithography system) that forms a device pattern on a wafer W by forming interference fringes on the wafer W as disclosed in WO 2001/0 35168. It may be.
  • the exposure apparatus main body S has the entire surface of the wafer W disclosed in, for example, JP-A-6-124873, JP-A-10-303114, US Pat. No. 5825043, and the like. It may be an immersion exposure apparatus that performs exposure in a state where the immersion power is in the liquid.
  • the local immersion type exposure apparatus has been exemplified.
  • a part of the substrate processing method and the substrate processing system of the present invention for example, the formation of a film formed by a film forming apparatus.
  • the substrate processing method and the substrate processing system that optimize the inspection conditions based on at least one of the film condition and the film forming conditions of the film forming apparatus are not immersion type but can also be applied to the exposure apparatus. Therefore, the exposure apparatus is not limited to the immersion type.
  • the immersion monitoring process is specific to the case where the exposure apparatus is of the immersion type, and is not performed in the process using the exposure apparatus, which is not of the immersion type. It is. Therefore, the measurement / inspection result is predicted using the processing result of the immersion monitoring process, and the measurement 'inspection process is optimized only when the exposure apparatus is an immersion type exposure apparatus. It is done.
  • the measurement / inspection result is predicted using the processing result of the immersion monitoring process, and the measurement 'inspection process is optimized only when the exposure apparatus is an immersion type exposure apparatus. It is done.
  • the measurement / inspection result is predicted using the processing result of the immersion monitoring process, and the measurement 'inspection process is optimized only when the exposure apparatus is an immersion type exposure apparatus. It is done.
  • the results of these different types of exposure apparatuses are inspected with a common measurement and inspection apparatus. An operation method is also conceivable.
  • the measurement 'inspection process is changed according to whether or not the exposure apparatus type is a liquid immersion type.
  • You may comprise as follows. For example, for an immersion type process such as an immersion monitor process that is not performed in a process that uses an exposure apparatus, when the measurement / inspection process result is predicted, It suffices to omit the parameters for reflecting the immersion monitoring processing result so that the prediction result can be obtained.
  • the processing content of the liquid / foreign matter removing process differs between when the exposure apparatus is an immersion type exposure apparatus and when the exposure apparatus is a non-immersion type exposure apparatus.
  • information on whether the substrate to be measured / inspected is processed by an immersion type exposure apparatus or a substrate processed by an exposure apparatus that is not an immersion type is received. Measure according to the information 'Parameter settings for predicting the inspection process result can be adjusted.
  • the program according to the present invention is recorded in each flash memory, but other recording media (CD, magneto-optical disk, DVD, memory card, USB memory, flexible disk, etc.) ) May be recorded. Further, the program according to the present invention may be transferred to each flash memory via a network (LAN, intranet, Internet, etc.).
  • a network LAN, intranet, Internet, etc.
  • the substrate processing method and the substrate processing system of the present invention are suitable for efficiently performing processing on a substrate. Further, the program and the storage medium of the present invention are suitable for causing the substrate processing system to efficiently process a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Wafer measurement and inspection equipment receives information on at least one of at least one processing result and operating status of a coater/developer that performs film forming and resist processing on a wafer and of an exposure apparatus that performs liquid immersion exposure on the wafer, and then optimizes wafer inspection conditions based on the received information (step (501) and step (517)). This enables good/no-good inspection of a wafer to be efficiently carried out, so that processing can be effectively performed on the wafer.

Description

基板処理方法、基板処理システム、プログラム及び記録媒体 技術分野  Substrate processing method, substrate processing system, program, and recording medium
[0001] 本発明は、基板処理方法、基板処理システム、プログラム及び記録媒体に係り、更 に詳しくは、複数の処理装置を用いて基板に対する複数の処理を行う基板処理方法 、基板処理システム、該基板処理システムに用いられるプログラム及び該プログラム が記録された記録媒体に関する。  The present invention relates to a substrate processing method, a substrate processing system, a program, and a recording medium. More specifically, the present invention relates to a substrate processing method, a substrate processing system, and a method for performing a plurality of processes on a substrate using a plurality of processing apparatuses. The present invention relates to a program used for a substrate processing system and a recording medium on which the program is recorded.
背景技術  Background art
[0002] 半導体素子などの電子デバイスを製造するリソグラフイエ程で用いられる露光装置 において、露光波長を実質的に短くして解像度を向上するとともに、焦点深度を実質 的に広くするために、液体を介して基板を露光する露光装置 (以下、「液浸露光装置 」ともいう)が提案されている (例えば、特許文献 1参照)。  In an exposure apparatus used in a lithographic process for manufacturing an electronic device such as a semiconductor element, a liquid is used in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus. An exposure apparatus that exposes a substrate through the above (hereinafter also referred to as “immersion exposure apparatus”) has been proposed (see, for example, Patent Document 1).
[0003] この液浸露光装置では、液浸で用いる液体中に気泡、ゴミ及び汚れ (不純物)等が 生じると、露光によってウェハ等の基板 (以下、「ウェハ」と呼ぶ)上に形成されるバタ ーン像が劣化するおそれがある。このため、従来においても、露光処理後のウェハを 検査して、その検査結果に応じて液浸条件を変更するなどの必要な対策を採って 、 た。しかし、この場合、異常の発生後に対策を行うため、歩留まりが低下するおそれ があるなど、必ずしも十分なものでな力つた。  In this immersion exposure apparatus, when bubbles, dust, dirt (impurities), etc. are generated in the liquid used for immersion, they are formed on a substrate such as a wafer (hereinafter referred to as “wafer”) by exposure. The pattern image may be deteriorated. For this reason, conventionally, necessary measures have been taken such as inspecting the wafer after the exposure processing and changing the immersion conditions in accordance with the inspection result. However, in this case, since measures were taken after the occurrence of an abnormality, there was a possibility that the yield would be reduced, and this was not always sufficient.
[0004] また、従来は、ウェハ上に形成されたレジスト膜及びトップコート膜など各種膜の成 膜状態をそれぞれ検査し、異常が認められたときに、各成膜装置の成膜条件を変更 するなどを行っていた。しかし、この場合には、膜毎に管理するのみであり、例えば、 レジスト膜とトップコート膜などの複数の膜の成膜状態、及びこれらの膜の成膜状態 が液浸露光結果に与える影響などについて全く考慮することがな力つた。  [0004] Conventionally, the film forming conditions of various films such as a resist film and a top coat film formed on a wafer are individually inspected, and when an abnormality is recognized, the film forming conditions of each film forming apparatus are changed. I was doing. However, in this case, it is only managed for each film. For example, the film formation state of a plurality of films such as a resist film and a top coat film, and the influence of the film formation state of these films on the immersion exposure result. It was a force that could not be considered at all.
[0005] 特許文献 1:国際公開第 2004Z053955号パンフレット  [0005] Patent Document 1: International Publication No. 2004Z053955 Pamphlet
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、上述の事情の下になされたもので、第 1の観点力 すると、複数の処理 装置を用いて基板に対する複数の処理を行!、、少なくとも 1つの検査装置を用いて 前記基板の良否を検査する基板処理方法であって、前記複数の処理装置のうちの 少なくとも 1つの処理装置による処理結果及び該少なくとも 1つの処理装置の稼動状 態の、少なくとも一方に関する情報を前記少なくとも 1つの検査装置へ送信し、送信 された前記情報に基づいて、前記少なくとも 1つの検査装置における検査条件を最 適化する工程を含む第 1の基板処理方法である。 [0006] The present invention has been made under the circumstances described above. From the first viewpoint, a plurality of processes are performed. A substrate processing method for performing a plurality of processes on a substrate using an apparatus and inspecting the quality of the substrate using at least one inspection apparatus, wherein the substrate is processed by at least one of the plurality of processing apparatuses. Information on at least one of the processing result and the operating state of the at least one processing apparatus is transmitted to the at least one inspection apparatus, and the inspection condition in the at least one inspection apparatus is maximized based on the transmitted information. 1 is a first substrate processing method including an optimization step.
[0007] これによれば、複数の処理装置のうちの少なくとも 1つの処理装置による処理結果 及び該少なくとも 1つの処理装置の稼動状態の、少なくとも一方に関する情報が、少 なくとも 1つの検査装置へ送信される。そして、送信された情報に基づいて、少なくと も 1つの検査装置における検査条件が最適化される。このため、効率的な基板の良 否検査が可能となる。従って、結果として基板に対する処理を効率良く行うことが可 能となる。 [0007] According to this, information on at least one of the processing result by at least one processing device of the plurality of processing devices and the operating state of the at least one processing device is transmitted to at least one inspection device. Is done. Then, based on the transmitted information, the inspection conditions in at least one inspection apparatus are optimized. This makes it possible to efficiently inspect the substrate. Therefore, as a result, it is possible to efficiently process the substrate.
[0008] 本発明は、第 2の観点からすると、基板を液浸露光する液浸露光装置と、前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体及び異 物の少なくとも一方を除去する液体'異物除去装置とを含む複数の処理装置を用い て前記基板に対する複数の処理を行い、少なくとも 1つの検査装置を用いて前記基 板の良否を検査する基板処理方法であって、前記検査装置で前記液体及び異物の 除去処理結果を検査した結果に基づいて基板上の液体及び異物の少なくとも一方 が該基板に悪影響を及ぼすおそれがあるカゝ否かを判断する工程と;前記判断の結果 情報を前記液体'異物除去装置へ送信する工程と;前記判断の結果、基板上の液体 及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがある場合に、送信さ れた判断の結果情報に応じて再度液体及び異物の少なくとも一方の除去処理を行う 工程と;を含む第 2の基板処理方法である。  According to a second aspect of the present invention, there is provided an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate. A substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus that removes at least one of the substrate and inspecting the quality of the substrate using at least one inspection apparatus. Determining whether or not at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device; A step of transmitting the result of the determination to the liquid 'foreign matter removing apparatus; and a case where at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate as a result of the determination. A second substrate processing method comprising: step and performing at least one of the removal process again liquid and debris in accordance with the result information of the judgments.
[0009] これによれば、検査装置で液体及び異物の除去処理結果を検査した結果に基づ いて基板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれが ある力否かが判断され、その判断の結果情報が液体'異物除去装置へ送信される。 そして、判断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を 及ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液体及び異 物の少なくとも一方の除去処理が行われる。この場合には、最終的に製品の歩留まり を向上させることができる。従って、結果として基板に対する処理を効率良く行うこと が可能となる。 [0009] According to this, based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device, it is determined whether or not there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate. Then, information on the result of the determination is transmitted to the liquid / foreign substance removing apparatus. As a result of the determination, when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the liquid and the foreign object are again determined according to the transmitted determination result information. At least one of the objects is removed. In this case, the product yield can be improved finally. Therefore, as a result, it is possible to efficiently process the substrate.
[0010] 本発明は、第 3の観点からすると、基板を液浸露光する液浸露光装置と、前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体及び異 物の少なくとも一方を除去する液体'異物除去装置とを含む複数の処理装置を用い て前記基板に対する複数の処理を行い、少なくとも 1つの検査装置を用いて前記基 板の良否を検査する基板処理方法であって、前記検査装置で前記液体及び異物の 除去処理結果を検査した結果に基づいて基板上の液体及び異物の少なくとも一方 が該基板に悪影響を及ぼすおそれがあるカゝ否かを判断する工程と;前記判断の結果 、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがある 場合に、前記液体'異物除去装置に通知する工程と;を含む第 3の基板処理方法で ある。  According to a third aspect of the present invention, there is provided an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate. A substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus that removes at least one of the substrate and inspecting the quality of the substrate using at least one inspection apparatus. Determining whether or not at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device; A step of notifying the liquid'foreign matter removing apparatus when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate as a result of the determination; That.
[0011] これによれば、検査装置で液体及び異物の除去処理結果を検査した結果に基づ いて基板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれが ある力否かが判断される。そして、その判断の結果、基板上の液体及び異物の少なく とも一方が該基板に悪影響を及ぼすおそれがある場合に、その旨が液体'異物除去 装置に通知される。この場合には、液体'異物除去処理装置で処理条件を調整する ことができる。従って、結果として基板に対する処理を効率良く行うことが可能となる。  [0011] According to this, it is determined whether at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of the inspection of the liquid and foreign matter removal processing result by the inspection device. Is done. As a result of the determination, when at least one of the liquid and the foreign matter on the substrate is likely to adversely affect the substrate, the fact is notified to the liquid / foreign matter removing apparatus. In this case, the processing conditions can be adjusted by the liquid / foreign matter removal processing apparatus. Therefore, as a result, it is possible to efficiently process the substrate.
[0012] 本発明は、第 4の観点からすると、基板に対して複数の処理をそれぞれ行う複数の 処理装置と;前記基板の良否を検査する少なくとも 1つの検査装置と;を備え、前記 少なくとも 1つの検査装置は、前記複数の処理装置のうちの少なくとも 1つの処理装 置による処理結果及び該少なくとも 1つの処理装置の稼動状態の少なくとも一方に関 する情報を受信し、受信した前記情報に基づ!、て検査条件を最適化する第 1の基板 処理システムである。  [0012] According to a fourth aspect, the present invention comprises: a plurality of processing apparatuses that respectively perform a plurality of processes on a substrate; and at least one inspection apparatus that inspects the quality of the substrate. Each of the inspection devices receives information on a processing result by at least one processing device of the plurality of processing devices and at least one of operating states of the at least one processing device, and based on the received information. This is the first substrate processing system that optimizes inspection conditions.
[0013] これによれば、少なくとも 1つの検査装置は、複数の処理装置のうちの少なくとも 1 つの処理装置による処理結果及び該少なくとも 1つの処理装置の稼動状態の少なく とも一方に関する情報を受信する。そして、受信した情報に基づいて検査条件を最 適化する。このため、効率的な基板の良否検査が可能となる。従って、結果として基 板に対する処理を効率良く行うことが可能となる。 [0013] According to this, at least one inspection device receives information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device. Based on the received information, Optimize. For this reason, it is possible to efficiently check the quality of the substrate. Therefore, as a result, it is possible to efficiently process the substrate.
[0014] 本発明は、第 5の観点からすると、基板を液浸露光する液浸露光装置と;前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記液浸露光がなされた基 板上の液体及び異物の少なくとも一方を除去する液体 ·異物除去装置と;前記液体 · 異物除去装置にて液体及び異物の少なくとも一方の除去処理がなされた基板を検 查する検査装置と;前記検査装置での検査結果に基づ!、て基板上の液体及び異物 の少なくとも一方が該基板に悪影響を及ぼすおそれがあるカゝ否かを判断し、その判 断の結果情報を前記液体 ·異物除去装置に送信する判断装置と;を備え、前記液体 •異物除去装置は、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及 ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液体及び異物 の少なくとも一方の除去処理を行う第 2の基板処理システムである。  According to a fifth aspect of the present invention, there is provided an immersion exposure apparatus that performs immersion exposure on a substrate; and a substrate that is provided in at least one of the inside and outside of the immersion exposure apparatus and that has been subjected to the immersion exposure. A liquid / foreign material removal apparatus for removing at least one of liquid and foreign matter on the plate; and an inspection apparatus for detecting a substrate on which at least one of liquid and foreign matter has been removed by the liquid / foreign matter removal apparatus; Based on the inspection result of the device, it is determined whether at least one of the liquid and foreign matter on the substrate may adversely affect the substrate, and the information on the result of the determination is used to remove the liquid / foreign matter. A determination device that transmits to the apparatus; and the liquid foreign object removal device transmits information on the result of the determination that is transmitted when at least one of the liquid and the foreign material on the substrate may adversely affect the substrate. Again depending on the liquid and And a second substrate processing system for removing at least one of the foreign substances.
[0015] これによれば、判断装置によって、検査装置での検査結果に基づいて基板上の液 体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるカゝ否かが判 断され、その判断の結果情報が液体'異物除去装置に送信される。そして、液体'異 物除去装置によって、基板上の液体及び異物の少なくとも一方が該基板に悪影響を 及ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液体及び異 物の少なくとも一方の除去処理が行われる。この場合には、最終的に製品の歩留まり を向上させることができる。従って、結果として基板に対する処理を効率良く行うこと が可能となる。  [0015] According to this, the determination device determines whether there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the inspection result of the inspection device, Information on the result of the determination is transmitted to the liquid / foreign substance removing apparatus. Then, when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate by the liquid / foreign matter removing apparatus, at least one of the liquid and the foreign matter is again determined according to the transmitted result information of the determination. The removal process is performed. In this case, the product yield can be improved finally. Therefore, as a result, it is possible to efficiently process the substrate.
[0016] 本発明は、第 6の観点からすると、基板を液浸露光する液浸露光装置と;前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記液浸露光がなされた基 板上の液体及び異物の少なくとも一方を除去する液体 ·異物除去装置と;前記液体 · 異物除去装置にて液体及び異物の少なくとも一方の除去処理がなされた基板を検 查する検査装置と;前記検査装置での検査結果に基づ!、て基板上の液体及び異物 の少なくとも一方が該基板に悪影響を及ぼすおそれがあるカゝ否かを判断し、その判 断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすお それがある場合に、前記液体'異物除去装置に通知する判断装置と;を備える第 3の 基板処理システムである。 [0016] According to a sixth aspect of the present invention, there is provided an immersion exposure apparatus for performing immersion exposure on a substrate; and a substrate on which at least one of the inside and the outside of the immersion exposure apparatus is provided and the immersion exposure is performed. A liquid / foreign material removal apparatus for removing at least one of liquid and foreign matter on the plate; and an inspection apparatus for detecting a substrate on which at least one of liquid and foreign matter has been removed by the liquid / foreign matter removal apparatus; Based on the inspection results of the equipment, determine whether there is a possibility that at least one of the liquid and foreign matter on the substrate may adversely affect the substrate, and as a result of the determination, the liquid and foreign matter on the substrate A determination device for notifying the liquid's foreign matter removing device when at least one of them may adversely affect the substrate. A substrate processing system.
[0017] これによれば、判断装置によって、検査装置での検査結果に基づいて基板上の液 体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるカゝ否かが判 断される。そして、その判断の結果、基板上の液体及び異物の少なくとも一方が該基 板に悪影響を及ぼすおそれがある場合に、その旨が液体'異物除去装置に通知され る。この場合には、液体'異物除去処理装置では処理条件を調整することができる。 従って、結果として基板に対する処理を効率良く行うことが可能となる。  [0017] According to this, the determination device determines whether or not there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the inspection result of the inspection device. . As a result of the determination, if at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the fact is notified to the liquid / foreign matter removing apparatus. In this case, the processing conditions can be adjusted in the liquid / foreign substance removal processing apparatus. Therefore, as a result, it is possible to efficiently process the substrate.
[0018] 本発明は、第 7の観点からすると、基板に対して複数の処理をそれぞれ行う複数の 処理装置と前記基板の良否を検査する少なくとも 1つの検査装置とを備える基板処 理システムに用いられるプログラムであって、前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び該少なくとも 1つの処理装置の稼動状態の、少 なくとも一方に関する情報を前記少なくとも 1つの検査装置へ送信し、送信された前 記情報に基づいて、前記少なくとも 1つの検査装置における検査条件を最適化する 手順を、前記基板処理システムのコンピュータに実行させる第 1のプログラムである。  From the seventh viewpoint, the present invention is used in a substrate processing system including a plurality of processing apparatuses that respectively perform a plurality of processes on a substrate and at least one inspection apparatus that inspects the quality of the substrate. Information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device is transmitted to the at least one inspection device. The first program causes a computer of the substrate processing system to execute a procedure for optimizing the inspection conditions in the at least one inspection apparatus based on the transmitted information.
[0019] これによれば、基板処理システムのコンピュータに本発明の第 1の基板処理方法を 実行させることができ、これにより、基板に対する処理を効率良く行うことが可能となる  According to this, it is possible to cause the computer of the substrate processing system to execute the first substrate processing method of the present invention, and thereby it is possible to efficiently process the substrate.
[0020] 本発明は、第 8の観点からすると、基板を液浸露光する液浸露光装置と、前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体及び異 物の少なくとも一方を除去する液体'異物除去装置とを含む複数の処理装置と前記 基板の良否を検査する少なくとも 1つの検査装置とを備える基板処理システムに用い られるプログラムであって、前記検査装置で前記液体及び異物の除去処理結果を検 查した結果に基づいて基板上の液体及び異物の少なくとも一方が該基板に悪影響 を及ぼすおそれがある力否かを判断する手順と;前記判断の結果情報を前記液体- 異物除去装置へ送信する手順と;前記判断の結果、基板上の液体及び異物の少な くとも一方が該基板に悪影響を及ぼすおそれがある場合に、送信された判断の結果 情報に応じて再度液体及び異物の少なくとも一方の除去処理を行う手順と;を前記 基板処理システムのコンピュータに実行させる第 2のプログラムである。 [0021] これによれば、基板処理システムのコンピュータに本発明の第 2の基板処理方法を 実行させることができ、これにより、基板に対する処理を効率良く行うことが可能となる According to an eighth aspect of the present invention, there is provided an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of the inside and outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate. A program used for a substrate processing system comprising a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus for removing at least one of the above and at least one inspection apparatus for inspecting the quality of the substrate, wherein the inspection apparatus uses the program A procedure for judging whether or not at least one of the liquid and the foreign matter on the substrate has a possibility of adversely affecting the substrate based on the result of detecting the liquid and foreign matter removal processing result; A procedure for transmitting to the liquid-foreign material removal apparatus; and a result of the determination transmitted when the result of the determination is that at least one of the liquid and the foreign material on the substrate may adversely affect the substrate. A second program for causing the computer of the substrate processing system to execute a procedure of performing at least one of liquid and foreign matter removal processing again according to information. [0021] According to this, it is possible to cause the computer of the substrate processing system to execute the second substrate processing method of the present invention, and thereby it is possible to efficiently perform the processing on the substrate.
[0022] 本発明は、第 9の観点からすると、基板を液浸露光する液浸露光装置と、前記液浸 露光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体及び異 物の少なくとも一方を除去する液体'異物除去装置とを含む複数の処理装置と前記 基板の良否を検査する少なくとも 1つの検査装置とを備える基板処理システムに用い られるプログラムであって、前記検査装置で前記液体及び異物の除去処理結果を検 查した結果に基づいて基板上の液体及び異物の少なくとも一方が該基板に悪影響 を及ぼすおそれがあるカゝ否かを判断する手順と;前記判断の結果、基板上の液体及 び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがある場合に、前記液体 '異物除去装置に通知する手順と;を前記基板処理システムのコンピュータに実行さ せる第 3のプログラムである。 According to a ninth aspect of the present invention, there is provided an immersion exposure apparatus that performs immersion exposure on a substrate, and at least one of an inside and an outside of the immersion exposure apparatus, and the liquid and foreign substances on the substrate. A program used for a substrate processing system comprising a plurality of processing apparatuses including a liquid 'foreign matter removing apparatus for removing at least one of the above and at least one inspection apparatus for inspecting the quality of the substrate, wherein the inspection apparatus uses the program A procedure for determining whether or not at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of detecting the removal processing result of the liquid and the foreign matter; A procedure for notifying the liquid foreign substance removing device to the computer of the substrate processing system when at least one of the liquid and the foreign substance may adversely affect the substrate. This is the third program to be executed.
[0023] これによれば、基板処理システムのコンピュータに本発明の第 3の基板処理方法を 実行させることができ、これにより、基板に対する処理を効率良く行うことが可能となる  [0023] According to this, it is possible to cause the computer of the substrate processing system to execute the third substrate processing method of the present invention, and thereby it is possible to efficiently perform the processing on the substrate.
[0024] 本発明は、第 10の観点力もすると、本発明の第 1〜第 3のプログラムのいずれかが 記録されたコンピュータ読み取り可能な記録媒体である。 [0024] The present invention is a computer-readable recording medium on which any one of the first to third programs of the present invention is recorded.
[0025] これによれば、コンピュータに本発明の第 1〜第 3のプログラムのいずれかを実行さ せることができ、これにより、基板に対する処理を効率良く行うことが可能となる。  [0025] According to this, it is possible to cause the computer to execute any one of the first to third programs of the present invention, and thereby it is possible to efficiently perform the processing on the substrate.
[0026] 本発明は、第 11の観点力 すると、複数の処理装置で処理された基板の良否を検 查する測定'検査装置であって、前記複数の処理装置のうちの少なくとも 1つの処理 装置による処理結果及び少なくとも 1つの処理装置の稼動状態の、少なくとも一方に 関する情報を受信する受信部を備え、受信した前記情報に基づいて、検査条件を最 適化する測定 '検査装置である。  [0026] According to an eleventh aspect, the present invention is a measurement 'inspection apparatus that detects the quality of a substrate processed by a plurality of processing apparatuses, and is at least one processing apparatus of the plurality of processing apparatuses. The measuring apparatus is equipped with a receiving unit that receives information on at least one of the processing result according to the above and the operating state of at least one processing apparatus, and optimizes the inspection conditions based on the received information.
[0027] これによれば、複数の処理装置のうちの少なくとも 1つの処理装置による処理結果 及び該少なくとも 1つの処理装置の稼動状態の、少なくとも一方に関する情報を受信 部で受信する。そして、その受信した情報に基づいて、検査条件が最適化される。こ のため、効率的な基板の良否検査が可能となる。 [0027] According to this, the reception unit receives information on at least one of the processing result by at least one processing device of the plurality of processing devices and the operating state of the at least one processing device. Then, the inspection condition is optimized based on the received information. This Therefore, it is possible to efficiently check the quality of the substrate.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の一実施形態に係る半導体製造システムの概略構成を示す図である。 1 is a diagram showing a schematic configuration of a semiconductor manufacturing system according to an embodiment of the present invention.
[図 2]図 1における露光装置を説明するための図である。 2 is a diagram for explaining the exposure apparatus in FIG. 1. FIG.
[図 3]図 2における露光装置本体を説明するための図である。 FIG. 3 is a view for explaining an exposure apparatus main body in FIG. 2.
[図 4]図 3における液浸システムを説明するための図である。 FIG. 4 is a diagram for explaining the liquid immersion system in FIG. 3.
[図 5]図 5 (A)〜図 5 (C)は、それぞれ液浸システム固有の問題点を説明するための 図である。  [FIG. 5] FIG. 5 (A) to FIG. 5 (C) are diagrams for explaining problems inherent to the immersion system, respectively.
[図 6]図 6 (A)及び図 6 (B)は、それぞれ液浸モニタ装置を説明するための図である。  FIG. 6A and FIG. 6B are diagrams for explaining the liquid immersion monitoring device, respectively.
[図 7]液浸モニタ装置の CCDセンサモジュールを説明するための図である。 FIG. 7 is a diagram for explaining a CCD sensor module of the immersion monitoring apparatus.
[図 8]図 7の CCDセンサモジュールにおける各ラインセンサの物平面位置を説明する ための図である。 8 is a diagram for explaining the object plane position of each line sensor in the CCD sensor module of FIG.
[図 9]図 8のラインセンサを説明するための図である。  FIG. 9 is a diagram for explaining the line sensor of FIG. 8.
[図 10]基板ホルダにセツチされた液浸モニタ装置を説明するための図である。  FIG. 10 is a diagram for explaining an immersion monitoring apparatus set in a substrate holder.
[図 11]図 2における除去装置 Tを説明するための図である。  FIG. 11 is a diagram for explaining the removing device T in FIG. 2.
[図 12]図 11における生成装置を説明するための図である。  FIG. 12 is a diagram for explaining the generation device in FIG. 11.
[図 13]図 11における弾性ステータ及び振動体を説明するための図である。  13 is a view for explaining the elastic stator and the vibrating body in FIG. 11.
[図 14]図 12の生成装置の作用を説明するための図(その 1)である。  FIG. 14 is a diagram (part 1) for explaining the operation of the generation device of FIG.
[図 15]図 12の生成装置の作用を説明するための図(その 2)である。  FIG. 15 is a diagram (No. 2) for explaining the operation of the generation device of FIG. 12;
[図 16]図 12の生成装置の作用を説明するための図(その 3)である。  FIG. 16 is a diagram (No. 3) for explaining the operation of the generation device of FIG. 12;
[図 17]図 12の生成装置の作用を説明するための図(その 4)である。  FIG. 17 is a diagram (No. 4) for explaining the operation of the generation device of FIG. 12;
[図 18]図 18 (A)及び図 18 (B)は、それぞれ気体吹き出し口を有する弾性ステータを 説明するための図である。  FIG. 18 (A) and FIG. 18 (B) are views for explaining an elastic stator having a gas outlet, respectively.
[図 19]図 19 (A)及び図 19 (B)は、それぞれ吸引口を有する弾性ステータを説明する ための図である。  FIG. 19 (A) and FIG. 19 (B) are views for explaining an elastic stator having a suction port, respectively.
[図 20]図 1の半導体製造システムの動作を説明するためのフローチャート(その 1)で ある。  FIG. 20 is a flowchart (part 1) for explaining the operation of the semiconductor manufacturing system of FIG.
[図 21]図 1の半導体製造システムの動作を説明するためのフローチャート(その 2)で ある。 FIG. 21 is a flowchart (part 2) for explaining the operation of the semiconductor manufacturing system of FIG. is there.
[図 22]図 1の半導体製造システムの動作を説明するためのフローチャート(その 3)で ある。  FIG. 22 is a flowchart (part 3) for explaining the operation of the semiconductor manufacturing system of FIG. 1;
[図 23]図 1の半導体製造システムの動作を説明するためのフローチャート(その 4)で ある。  FIG. 23 is a flowchart (part 4) for explaining the operation of the semiconductor manufacturing system of FIG.
[図 24]図 1の半導体製造システムの動作を説明するためのフローチャート(その 5)で ある。  FIG. 24 is a flowchart (No. 5) for explaining the operation of the semiconductor manufacturing system of FIG.
[図 25]図 1の半導体製造システムの動作を説明するための図である。  FIG. 25 is a diagram for explaining the operation of the semiconductor manufacturing system of FIG. 1.
[図 26]CCDセンサモジュールが配置されたウェハを説明するための図である。  FIG. 26 is a diagram for explaining a wafer on which a CCD sensor module is arranged.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明の一実施形態を図 1〜図 24に基づいて説明する。図 1には、本発明 の一実施形態に係る半導体製造システム 100の概略構成が示されて ヽる。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a semiconductor manufacturing system 100 according to an embodiment of the present invention.
[0030] 図 1に示される半導体製造システム 100は、工場内生産管理ホストシステム 101、ト ラック 102、露光工程管理コントローラ 103、露光装置 105、解析システム 107、 CV D装置 113、エッチング装置 115、 CMP装置 117及び酸化'イオン注入装置 119な どを有している。このうち、トラック 102は、内部にウェハ搬送系を有する不図示のイン ラインインタフェース部を介して露光装置 105にインライン接続されている。トラック 10 2の内部には、ウェハ測定 '検査器 109及びコータ 'デベロツバ 111等が設置されて いる。そして、上記各部は、双方向の通信路で互いに接続され、情報の送受信が可 能となっている。なお、図 1において、細線の両矢印は信号及び情報の流れを示し、 太線の両矢印は、代表的な信号や情報の流れ及びウェハの移動経路を示す。なお 、これらは各ブロックの接続関係の全てを表すものではな 、。  A semiconductor manufacturing system 100 shown in FIG. 1 includes an in-plant production management host system 101, a track 102, an exposure process control controller 103, an exposure apparatus 105, an analysis system 107, a CV D apparatus 113, an etching apparatus 115, a CMP. Apparatus 117 and oxidation ion implantation apparatus 119. Of these, the track 102 is connected inline to the exposure apparatus 105 via an inline interface unit (not shown) having a wafer transfer system therein. Inside the track 102, a wafer measurement “inspector 109” and a coater “developer 111” are installed. The above units are connected to each other via a bidirectional communication path, and can transmit and receive information. In FIG. 1, thin double arrows indicate the flow of signals and information, and thick double arrows indicate the flow of typical signals and information and the movement path of the wafer. Note that these do not represent all of the connections of each block.
[0031] この半導体製造システム 100での処理対象は、半導体製造用の半導体ウェハ W( 以下、便宜上「ウェハ W」と略述する)である。  The processing target in the semiconductor manufacturing system 100 is a semiconductor wafer W for semiconductor manufacturing (hereinafter abbreviated as “wafer W” for convenience).
[0032] CVD装置 113は、薄膜材料を構成する元素カゝらなる 1種又は数種の化合物ガス及 び単体ガスをウエノ、 W上に供給し、気相又はウェハ W表面での化学反応により所望 の薄膜をウェハ W上に形成する。  [0032] The CVD apparatus 113 supplies one or several kinds of compound gas consisting of elemental elements constituting the thin film material and a simple substance gas onto Ueno, W, and by a chemical reaction on the gas phase or on the surface of the wafer W. A desired thin film is formed on the wafer W.
[0033] エッチング装置 115は、ウェハ W又はウェハ W表面上に形成された薄膜の、全面 又は特定した場所を必要な厚さだけ食刻する。 [0033] The etching apparatus 115 is provided on the entire surface of the wafer W or a thin film formed on the surface of the wafer W. Or, the specified location is etched to the required thickness.
[0034] CMP装置 117は、化学機械研磨(chemical mechanical polishing)によりウェハ Wを 平坦化する。 [0034] The CMP apparatus 117 planarizes the wafer W by chemical mechanical polishing.
[0035] 酸化'イオン注入装置 119は、ウェハ Wの表面に酸化膜を形成させる酸化装置及 びウエノ、 Wに所望のイオンを注入するイオン注入装置を有している。  The “oxidation” ion implantation apparatus 119 includes an oxidation apparatus for forming an oxide film on the surface of the wafer W, and an ion implantation apparatus for implanting desired ions into the Ueno and W.
[0036] 露光装置 105は、ウェハ Wに対して露光処理を行う。この露光装置 105の詳細に ついては後述する。  The exposure apparatus 105 performs an exposure process on the wafer W. Details of the exposure apparatus 105 will be described later.
[0037] 露光工程管理コントローラ 103は、露光装置 105を制御し、露光工程の管理を行う  An exposure process management controller 103 controls the exposure apparatus 105 to manage the exposure process.
[0038] コータ 'デベロツバ 111は、ウェハ Wに感光材(フォトレジスト)等を塗布する塗布装 置、露光処理されたウェハ Wを現像する現像装置、ウェハ Wをべ一キングするべ一 キング装置、成膜状態などを計測する計測装置、各装置を制御する制御装置、該制 御装置で用いられる各種プログラムが格納されて 、るフラッシュメモリ及び作業用メモ リなどを有している。 [0038] The coater / developer 111 includes a coating device for applying a photosensitive material (photoresist) or the like to the wafer W, a developing device for developing the exposed wafer W, a baking device for baking the wafer W, It has a measuring device that measures the film formation state, a control device that controls each device, a flash memory that stores various programs used in the control device, a working memory, and the like.
[0039] ウェハ測定 '検査器 109は、露光パターンの欠陥検査及び外観検査などを行う検 查装置、露光パターンの重ね合わせ計測及び線幅計測などを行う測定装置、各装 置を制御するとともに、後述する検査条件の最適化などを行う制御装置などを有して いる。この制御装置は、該制御装置で用いられる各種プログラムが格納されているフ ラッシュメモリ及び作業用メモリを有して 、る。  [0039] Wafer Measurement 'Inspector 109 is an inspection device that performs exposure pattern defect inspection and appearance inspection, a measurement device that performs exposure pattern overlay measurement and line width measurement, and controls each device. It has a controller that optimizes inspection conditions, which will be described later. This control device has a flash memory and a working memory in which various programs used in the control device are stored.
[0040] 解析システム 107は、露光装置 105からの情報及びウェハ測定 '検査器 109からの 情報などを解析する解析装置を有している。この解析装置は、該解析装置で用いら れる各種プログラムが格納されて 、るフラッシュメモリ及び作業用メモリを有して 、る。  The analysis system 107 has an analysis device that analyzes information from the exposure apparatus 105 and information from the wafer measurement / inspector 109. This analyzing apparatus has a flash memory and a working memory in which various programs used in the analyzing apparatus are stored.
[0041] 工場内生産管理ホストシステム 101は、半導体製造システム 100全体を制御する。  The factory production management host system 101 controls the entire semiconductor manufacturing system 100.
[0042] 次に、前記露光装置 105について説明する。  Next, the exposure apparatus 105 will be described.
[0043] 露光装置 105は、一例として図 2に示されるように、ウェハ Wを露光処理する露光 装置本体 S及びウェハ Wに付着した液体及び異物などを除去する除去装置 Tなどを 備えている。ここでは、水平面内における所定方向を X軸方向、水平面内において X 軸方向と直交する方向を Y軸方向、 X軸方向及び Y軸方向のそれぞれに直交する方 向を z軸方向とする。また、 X軸、 Y軸及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X方向、 0 Y方向及び 0 Z方向とする。 As shown in FIG. 2 as an example, the exposure apparatus 105 includes an exposure apparatus main body S that performs exposure processing on the wafer W, a removal apparatus T that removes liquid and foreign matters attached to the wafer W, and the like. Here, the predetermined direction in the horizontal plane is the X-axis direction, and the direction orthogonal to the X-axis direction in the horizontal plane is the direction orthogonal to the Y-axis direction, the X-axis direction, and the Y-axis direction. The direction is the z-axis direction. The rotation (inclination) directions around the X, Y, and Z axes are the 0 X direction, 0 Y direction, and 0 Z direction, respectively.
[0044] 本実施形態における露光装置本体 Sは、一例として図 3に示されるように、露光波 長を実質的に短くして解像度を向上するとともに、焦点深度を実質的に広くするため に液体を介してウェハ wを露光する液浸露光装置である。  As shown in FIG. 3 as an example, the exposure apparatus main body S in the present embodiment is a liquid for improving the resolution by substantially shortening the exposure wavelength and substantially increasing the depth of focus. Is an immersion exposure apparatus that exposes a wafer w via
[0045] 図 3に示される露光装置本体 Sは、レチクル Rを保持するレチクルステージ RSTと、 該レチクルステージ RSTを駆動するレチクルステージ駆動装置 18Rと、レチクルステ ージ RSTの位置を計測するレーザ干渉計 17Rと、ウェハ Wを保持するウェハステー ジ WSTと、該ウェハステージ WSTを駆動するウェハステージ駆動装置 18Wと、ゥェ ハステージ WSTの位置を計測するレーザ干渉計 17Wと、レチクルステージ RSTに 保持されているレチクル Rを露光光 ELで照明する照明系 ILと、露光光 ELで照明さ れたレチクル Rのパターン像をウェハ W上に投影する投影光学系 PLと、ウェハステ ージ WSTが載置されたベース部材 20と、液浸システム 19と、液浸モニタ装置 260と 、露光装置本体 Sの各部を制御するメインコントローラ 42とを備えている。このメインコ ントローラ 42は、該メインコントローラ 42で用いられる各種プログラムが格納されてい るフラッシュメモリ(図示省略)及び作業用メモリ(図示省略)などを有して ヽる。  An exposure apparatus main body S shown in FIG. 3 includes a reticle stage RST that holds a reticle R, a reticle stage driving device 18R that drives the reticle stage RST, and a laser interferometer that measures the position of the reticle stage RST. 17R, wafer stage WST for holding wafer W, wafer stage drive unit 18W for driving wafer stage WST, laser interferometer 17W for measuring the position of wafer stage WST, and reticle stage RST The illumination system IL that illuminates the reticle R with the exposure light EL, the projection optical system PL that projects the pattern image of the reticle R illuminated with the exposure light EL onto the wafer W, and the wafer stage WST are mounted. A base member 20, an immersion system 19, an immersion monitor device 260, and a main controller 42 for controlling each part of the exposure apparatus main body S are provided. The main controller 42 includes a flash memory (not shown) in which various programs used by the main controller 42 are stored, a working memory (not shown), and the like.
[0046] 照明系 ILは、レチクル Rの所定の照明領域 IAを均一な照度分布の露光光 ELで照 明する。露光光 ELとしては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマ レーザ光 (波長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)  The illumination system IL illuminates a predetermined illumination area IA of the reticle R with exposure light EL having a uniform illuminance distribution. Exposure light EL includes, for example, bright lines (g-line, h-line, i-line) emitted from mercury lamps, far-ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength Vacuum ultraviolet light (VUV light) such as 193 nm) and F laser light (wavelength 157 nm)
2  2
などが用いられる。本実施形態では、一例として ArFエキシマレーザ光が用いられる ものとする。  Etc. are used. In this embodiment, ArF excimer laser light is used as an example.
[0047] レチクルステージ駆動装置 18Rは、リニアモータ等のァクチユエータを含み、レチク ルステージ RSTを、 X軸方向、 Y軸方向及び 0 Z方向に駆動する。  Reticle stage driving device 18R includes an actuator such as a linear motor, and drives reticle stage RST in the X-axis direction, the Y-axis direction, and the 0Z direction.
[0048] レーザ干渉計 17Rは、レチクルステージ RST上に設けられた移動鏡 16Rに向けて レーザ光を射出し、移動鏡 16Rからの反射光を受光して、レチクルステージ RSTの 位置を計測する。レーザ干渉計 17Rの計測結果はメインコントローラ 42に通知される 。メインコントローラ 42は、レーザ干渉計 17Rの計測結果に基づいてレチクルステー ジ駆動装置 18Rを駆動し、レチクルステージ RSTに保持されて!、るレチクル Rの位 置制御を行う。 [0048] Laser interferometer 17R emits a laser beam toward moving mirror 16R provided on reticle stage RST, receives the reflected light from moving mirror 16R, and measures the position of reticle stage RST. The measurement result of the laser interferometer 17R is notified to the main controller 42. The main controller 42 determines the reticle stay based on the measurement result of the laser interferometer 17R. The drive unit 18R is driven and held on the reticle stage RST !, and the position of the reticle R is controlled.
[0049] 投影光学系 PLは、鏡筒で保持された複数の光学素子を有し、レチクル Rのノター ン像を所定の投影倍率でウェハ Wに投影する。本実施形態の投影光学系 PLは、そ の投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系である。なお、投影光学系 PL は、等倍系及び拡大系のいずれでも良い。また、投影光学系 PLは、反射光学素子 を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素 子とを含む反射屈折系のいずれであっても良い。さらに、投影光学系 PLは、倒立像 と正立像との 、ずれを形成しても良 、。  Projection optical system PL has a plurality of optical elements held by a lens barrel, and projects a reticle image of reticle R onto wafer W at a predetermined projection magnification. The projection optical system PL of the present embodiment is a reduction system whose projection magnification is 1Z4, 1/5, 1Z8 or the like. Note that the projection optical system PL may be either an equal magnification system or an enlargement system. Further, the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Furthermore, the projection optical system PL may form a deviation between the inverted image and the erect image.
[0050] ウェハステージ WSTは、真空吸着によってウェハ W及び液浸モニタ装置 260を保 持するホルダ 43を有している。このホルダ 43は、ウェハステージ WSTの +Z側の面 に形成された凹部 44の底面上に配置されて 、る。  Wafer stage WST has a holder 43 that holds wafer W and immersion monitoring device 260 by vacuum suction. The holder 43 is disposed on the bottom surface of the recess 44 formed on the + Z side surface of the wafer stage WST.
[0051] ウェハステージ駆動装置 18Wは、リニアモータ等のァクチユエータを含み、ウェハ ステージ WSTを、ベース部材 20上で、 X軸方向、 Y軸方向、 Z軸方向、 0 X方向、 0 Y方向及び 0 Z方向に駆動する。  [0051] Wafer stage drive unit 18W includes an actuator such as a linear motor. Wafer stage WST is placed on base member 20 in the X axis direction, Y axis direction, Z axis direction, 0 X direction, 0 Y direction, and 0. Drive in Z direction.
[0052] レーザ干渉計 17Wは、ウェハステージ WSTに設けられた移動鏡 16Wに向けてレ 一ザ光を射出し、移動鏡 16Wからの反射光を受光して、ウェハステージ WSTの位 置を計測する。レーザ干渉計 17Wの計測結果はメインコントローラ 42に通知される。 また、ホルダ 43に保持されているウェハ Wの Z軸方向、 0 X方向及び 0 Y方向に関 する位置情報は、フォーカス'レベリング検出系(不図示)によって検出され、その検 出結果はメインコントローラ 42に通知される。メインコントローラ 42は、レーザ干渉計 1 7Wの計測結果及びフォーカス'レべリング検出系の検出結果に基づいて、ウェハス テージ駆動装置 18Wを駆動し、ホルダ 43に保持されて 、るウェハ Wの位置制御を 行う。  [0052] Laser interferometer 17W emits laser light toward moving mirror 16W provided on wafer stage WST, receives the reflected light from moving mirror 16W, and measures the position of wafer stage WST To do. The measurement result of the laser interferometer 17W is notified to the main controller 42. In addition, position information regarding the Z-axis direction, 0 X direction, and 0 Y direction of the wafer W held by the holder 43 is detected by a focus leveling detection system (not shown), and the detection result is the main controller. 42 is notified. The main controller 42 drives the wafer stage driving device 18W based on the measurement result of the laser interferometer 17W and the detection result of the focus' leveling detection system, and controls the position of the wafer W held by the holder 43. I do.
[0053] 《液浸システム》  [0053] << Immersion system >>
液浸システム 19は、投影光学系 PLとウェハ Wとの間に液体 LQで満たされた領域( 以下、「液浸領域」ともいう)を形成するものである。ここでは、この液浸システム 19は 、一例として図 3に示されるように、ノズル部材 40、供給管 13、照明用光源 15 (図 3で は図示省略、図 4参照)、回収管 23、液体供給装置 11及び液体回収装置 21などを 備えている。 The immersion system 19 forms an area (hereinafter also referred to as “immersion area”) filled with the liquid LQ between the projection optical system PL and the wafer W. Here, as shown in FIG. 3, as an example, the immersion system 19 includes a nozzle member 40, a supply tube 13, and an illumination light source 15 (in FIG. Is provided with a recovery pipe 23, a liquid supply device 11, a liquid recovery device 21, and the like.
[0054] ノズル部材 40は、投影光学系 PLの複数の光学素子のうち、投影光学系 PLの像面 に最も近い光学素子 FLを、囲むように設けられた環状の部材であり、一例として図 4 に示されるように、ホルダ 43に保持されたウェハ Wと光学素子 FLとの間に液体 LQを 供給して液浸領域を形成するための供給口 12と、液浸領域の液体 LQを回収するた めの回収口 22を有している。この回収口 22には、例えばチタン製のメッシュ部材、あ るいはセラミックス製の多孔質部材が配置されている。また、ノズル部材 40の内部に は、供給口 12と供給管 13の一端とをつなぐ流路 14及び回収口 22と回収管 23の一 端とをつなぐ流路 24が形成されている。なお、本実施形態では、一例として液体 LQ に純水を用いる。  [0054] The nozzle member 40 is an annular member provided so as to surround the optical element FL closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL. As shown in Fig. 4, the supply port 12 for supplying the liquid LQ between the wafer W held by the holder 43 and the optical element FL to form an immersion area, and collecting the liquid LQ in the immersion area It has a collection port 22 for this purpose. For example, a titanium mesh member or a ceramic porous member is disposed in the recovery port 22. In addition, a flow path 14 that connects the supply port 12 and one end of the supply pipe 13 and a flow path 24 that connects the recovery port 22 and one end of the recovery pipe 23 are formed inside the nozzle member 40. In this embodiment, pure water is used for the liquid LQ as an example.
[0055] 従って、本実施形態では、投影光学系 PLの複数の光学素子のうち、投影光学系 P Lの像面に最も近い光学素子 FLのみが液体 LQと接触する。  Therefore, in the present embodiment, among the plurality of optical elements of the projection optical system PL, only the optical element FL closest to the image plane of the projection optical system PL comes into contact with the liquid LQ.
[0056] 照明用光源 15は、液浸領域の周辺部に設置され、液浸モニタ装置 260が作動し ている間、液浸領域及び光学素子 FL近傍を照明する。  The illumination light source 15 is installed in the periphery of the immersion area, and illuminates the immersion area and the vicinity of the optical element FL while the immersion monitor device 260 is operating.
[0057] 液体供給装置 11は、供給管 13の他端と接続されている。この液体供給装置 11は 、供給する液体 LQの温度を調整する温度調整装置、供給する液体 LQ中の気体成 分を低減する脱気装置及び供給する液体 LQ中の異物を取り除くフィルタユニットな どを有しており、清浄で温度調整された液体 LQを送出する。すなわち、液体供給装 置 11から送出された液体 LQは、供給管 13、流路 14及び供給口 12を介して液浸領 域に供給される。なお、液体供給装置 11は、メインコントローラ 42によって制御される  The liquid supply device 11 is connected to the other end of the supply pipe 13. The liquid supply device 11 includes a temperature adjustment device that adjusts the temperature of the supplied liquid LQ, a deaeration device that reduces the gas component in the supplied liquid LQ, and a filter unit that removes foreign matter in the supplied liquid LQ. Deliver clean, temperature-controlled liquid LQ. That is, the liquid LQ delivered from the liquid supply device 11 is supplied to the liquid immersion area via the supply pipe 13, the flow path 14 and the supply port 12. The liquid supply device 11 is controlled by the main controller 42.
[0058] 液体回収装置 21は、回収管 23の他端と接続されている。この液体回収装置 21は 、真空装置を含む排気系を有しており、液体 LQを回収する。すなわち、液浸領域の 液体 LQは、回収口 22、流路 24及び回収管 23を介して液体回収装置 21で回収さ れる。なお、液体回収装置 21は、メインコントローラ 42によって制御される。 The liquid recovery device 21 is connected to the other end of the recovery pipe 23. The liquid recovery device 21 has an exhaust system including a vacuum device, and recovers the liquid LQ. That is, the liquid LQ in the liquid immersion region is recovered by the liquid recovery device 21 via the recovery port 22, the flow path 24, and the recovery pipe 23. The liquid recovery device 21 is controlled by the main controller 42.
[0059] メインコントローラ 42は、少なくとも露光処理が行われている間、液体供給装置 11 による液体供給と液体回収装置 21による液体回収とを並行して行う。 [0060] ところで、一例として図 5 (A)に示されるように、レジスト HRLとトップコート膜 TCとの 境界部に液体 LQが浸入することがある。この場合には、レジスト内部に液体 LQが浸 み込んでレジスト性能を変化させ、その結果、露光パターンの均一性を悪ィヒさせるお それがある。また、一例として図 5 (B)に示されるように、トップコート膜 TC上にパーテ イタル又はウォーターマークなどの異物 IBが付着することがある。この場合には、正 常に露光されていても、露光後の PEB処理及び現像処理に影響を与え、露光によつ てウェハ上に形成されるパターン (以下、適宜、「露光パターン」と略述する)の断線、 ショート、線幅のばらつき等の欠陥を生じさせるおそれがある。さらに、一例として図 5 (C)に示されるように、液浸領域中に気泡 BB又はパーティクル PTなどの異物が存在 することがある。この場合には、露光光の光路が変化し、露光パターンの欠陥を生じ させるおそれがある。また、レジストが液体 LQに溶出して光学素子 FLを汚染させ、 露光パターンの欠陥を生じさせるおそれがある。なお、液体 QL中及び液体 QLに接 触する部材 (供給管 13、光学素子 FLなど)にバクテリアが発生する可能性があり、こ のバクテリアも異物の一つとなる。また、図 5 (A)〜図 5 (C)における符号 HLは反射 防止膜である。 The main controller 42 performs the liquid supply by the liquid supply device 11 and the liquid recovery by the liquid recovery device 21 in parallel during at least the exposure process. As an example, as shown in FIG. 5A, the liquid LQ may enter the boundary portion between the resist HRL and the topcoat film TC. In this case, the liquid LQ may permeate into the resist and change the resist performance, resulting in poor exposure pattern uniformity. As an example, as shown in FIG. 5B, foreign matter IB such as a partition or a watermark may adhere on the top coat film TC. In this case, even if the exposure is successful, it affects the post-exposure PEB processing and development processing, and the pattern formed on the wafer by the exposure (hereinafter abbreviated as “exposure pattern” where appropriate). May cause defects such as wire breaks, shorts, and variations in line width. Furthermore, as an example, as shown in FIG. 5C, foreign matter such as bubbles BB or particles PT may exist in the immersion area. In this case, there is a possibility that the optical path of the exposure light will change and cause a defect in the exposure pattern. Also, the resist may elute into the liquid LQ and contaminate the optical element FL, which may cause exposure pattern defects. Note that bacteria may be generated in the liquid QL and in members that contact the liquid QL (supply pipe 13, optical element FL, etc.), and these bacteria are also a foreign substance. In FIG. 5 (A) to FIG. 5 (C), the symbol HL is an antireflection film.
[0061] 《液浸モニタ装置》  [0061] << Immersion monitoring device >>
液浸モニタ装置 260は、液浸領域に異物が含まれているか否か、及び光学素子 F Lが汚染されている力否かなどを検査するものである。ここでは、この液浸モニタ装置 260は、一例として図 6 (A)及び図 6 (B)に示されるように、ウェハ Wとほぼ同じ外形 の基材 261と、該基材 261上に埋設された複数の CCDセンサモジュール 262と、各 CCDセンサモジュールの出力信号を解析し、解析結果を無線で送信する解析装置 263などを有している。この解析装置 263は、該解析装置 263で用いられる各種プロ グラムが格納されて 、るフラッシュメモリ及び作業用のメモリなどを有して 、る。ここで は、基材 261の中央部に 1個の CCDセンサモジュール 262が埋設され、基材 261の 周縁領域にほぼ等間隔で 4個の CCDセンサモジュール 262が埋設されている。なお 、解析装置 263での解析結果は、解析装置 263からメインコントローラ 42、露光工程 管理コントローラ 103及び解析システム 107などに通知される。  The immersion monitoring device 260 is for inspecting whether or not a foreign substance is contained in the immersion area and whether or not the optical element FL is contaminated. Here, as shown in FIG. 6 (A) and FIG. 6 (B), the liquid immersion monitoring device 260 is embedded in a base material 261 having substantially the same outer shape as the wafer W, and embedded in the base material 261. A plurality of CCD sensor modules 262, and an analysis device 263 for analyzing the output signals of each CCD sensor module and transmitting the analysis results wirelessly. The analysis device 263 has a flash memory, a working memory, and the like in which various programs used in the analysis device 263 are stored. Here, one CCD sensor module 262 is embedded in the center of the base material 261, and four CCD sensor modules 262 are embedded in the peripheral area of the base material 261 at substantially equal intervals. The analysis result in the analysis device 263 is notified from the analysis device 263 to the main controller 42, the exposure process management controller 103, the analysis system 107, and the like.
[0062] 基材 261の材料としては、液体 LQと接触したときに、液体 LQに与える影響が少な いものであれば良い。例えば、ウェハ Wと同じ材料であっても良いし、チタンなどの金 属、又は PTFE及び PFAなどのフッ素系榭脂を含む材料であっても良い。また、基 材 261において、液体 LQと接触する面に撥水性を付与するために、該面上に撥水 性を有する膜を形成しても良 、。 [0062] The material of the base material 261 has little influence on the liquid LQ when it comes into contact with the liquid LQ. Anything is good. For example, the same material as that of the wafer W may be used, or a material containing a metal such as titanium or a fluorine-based resin such as PTFE and PFA may be used. In addition, in order to impart water repellency to the surface of the base material 261 that contacts the liquid LQ, a film having water repellency may be formed on the surface.
[0063] 各 CCDセンサモジュール 262は、一例として図 7に示されるように、それぞれ、 Y軸 方向を長手方向とする一次元ラインセンサを 6個有している。ここでは、 X側端部に 位置する一次元ラインセンサをラインセンサ 267A、該ラインセンサ 267Aの +X側に 位置する一次元ラインセンサをラインセンサ 267B、該ラインセンサ 267Bの +X側に 位置する一次元ラインセンサをラインセンサ 267C、該ラインセンサ 267Cの +X側に 位置する一次元ラインセンサをラインセンサ 267D、該ラインセンサ 267Dの +Χί則に 位置する一次元ラインセンサをラインセンサ 267Ε、該ラインセンサ 267Εの +Χ側に 位置する一次元ラインセンサをラインセンサ 267Fとする。また、各ラインセンサには、 それぞれの受光部に対応して複数のマイクロレンズ 264が設けられて 、る。  As shown in FIG. 7 as an example, each CCD sensor module 262 has six one-dimensional line sensors each having the Y-axis direction as the longitudinal direction. Here, the one-dimensional line sensor located at the end on the X side is located on the line sensor 267A, the one-dimensional line sensor located on the + X side of the line sensor 267A is located on the + X side of the line sensor 267B, and the line sensor 267B. The one-dimensional line sensor is a line sensor 267C, the one-dimensional line sensor located on the + X side of the line sensor 267C is a line sensor 267D, and the one-dimensional line sensor located on the line sensor 267D is the line sensor 267Ε, Line sensor 267F is the one-dimensional line sensor located on the + Χ side of line sensor 267Ε. Each line sensor is provided with a plurality of microlenses 264 corresponding to the respective light receiving portions.
[0064] マイクロレンズ 264の焦点距離は、ラインセンサ毎に異なっている。すなわち、ライン センサ毎に観察対象位置 (物平面位置)までの距離がそれぞれ異なって 、る。そして 、ラインセンサ毎の物平面位置のオフセット量は、異物の検出分解能に応じた実質 的な焦点深度を考慮して設定される。ここでは、一例として図 8に示されるように、ライ ンセンサ 267Αの観察対象位置は基材 261の表面力も距離 dlの位置であり、ライン センサ 267Bの観察対象位置は基材 261の表面から距離 d2 ( >dl)の位置であり、 ラインセンサ 267Cの観察対象位置は基材 261の表面力も距離 d3 ( >d2)の位置で あり、ラインセンサ 267Dの観察対象位置は基材 261の表面カゝら距離 d4 ( > d3)の位 置であり、ラインセンサ 267Eの観察対象位置は基材 261の表面力も距離 d5 ( >d4) の位置であり、ラインセンサ 267Fの観察対象位置は基材 261の表面力も距離 d6 ( > d5)の位置である。そこで、例えば、液浸領域の厚さ(Z軸方向の長さ)が約 3mmのと きに、 dl =0. 25mm, d2 = 0. 75mm, d3 = l. 25mm, d4= l. 75mm, d5 = 2. 25mm, d6 = 2. 75mmに設定することにより、液浸領域のほとんどを検査することが 可能となる。  [0064] The focal length of the micro lens 264 is different for each line sensor. That is, the distance to the observation target position (object plane position) differs for each line sensor. The offset amount of the object plane position for each line sensor is set in consideration of a substantial depth of focus corresponding to the detection resolution of the foreign matter. Here, as shown in FIG. 8 as an example, the observation target position of the line sensor 267Α is a position where the surface force of the base material 261 is also a distance dl, and the observation target position of the line sensor 267B is a distance d2 from the surface of the base material 261. (> dl), the observation target position of the line sensor 267C is the position of the surface force of the base material 261 and the distance d3 (> d2), and the observation target position of the line sensor 267D is the surface cover of the base material 261. The observation target position of the line sensor 267E is the position of the distance d5 (> d4) and the observation target position of the line sensor 267F is the surface of the substrate 261. The force is also at the position of distance d6 (> d5). Therefore, for example, when the thickness of the immersion area (length in the Z-axis direction) is about 3 mm, dl = 0.25 mm, d2 = 0.75 mm, d3 = l. 25 mm, d4 = l. 75 mm, By setting d5 = 2.25mm and d6 = 2.75mm, most of the immersion area can be inspected.
[0065] 例えば、マイクロレンズ 264の直径 Dを 8 μ m、焦点距離 fを 12. 0 μ mとすると、 ナ ンバ一は 1. 5 (=f ZD)となる。照明光源に白色 LED (波長え: 560nm)を使用する と、焦点深度 = ± 0. 61 FZNA= ± 0. 61 1 F2= ± 1. 54 mである。なお、この マイクロレンズ 264の中心厚 t (図 9参照)は、 2〜3 mとすることが可能である。この 図 9における符号 262Aは CCD画素、符号 262Bは転送電極、符号 262Cは榭脂層 、符号 262Dは絶縁層である。 [0065] For example, if the diameter D of the microlens 264 is 8 μm and the focal length f is 12.0 μm, The number is 1.5 (= f ZD). White LED (Hachoe: 560 nm) in the illumination light source With a depth of focus = ± 0. 61 FZNA = ± 0. 61 1 F 2 = ± 1. 54 m. The center thickness t (see FIG. 9) of the micro lens 264 can be set to 2 to 3 m. In FIG. 9, reference numeral 262A is a CCD pixel, reference numeral 262B is a transfer electrode, reference numeral 262C is a resin layer, and reference numeral 262D is an insulating layer.
[0066] 液浸モニタ装置 260は、露光装置本体 S内の所定位置に予め収容されており、液 浸モニタ処理を行うときには、一例として図 10に示されるように、搬送装置 210 (図 3 参照)によってホルダ 43上にセットされる。  The immersion monitoring device 260 is previously stored in a predetermined position in the exposure apparatus main body S. When performing the immersion monitoring process, as shown in FIG. 10, as an example, the conveyance device 210 (see FIG. 3). ) Is set on the holder 43.
[0067] ところで、 CCD (charge coupled device)は、信号電荷を転送する構造によって、ィ ンターライン方式、フレームインターライン方式及びフレームトランスファー方式などが あり、いずれを用いても良いが、受光部が転送部を兼ねていることから受光面積を大 きくとれるフレームトランスファー方式が好ましい。  By the way, CCD (charge coupled device) has an interline method, a frame interline method, a frame transfer method, etc., depending on the structure for transferring signal charges. A frame transfer system that can increase the light receiving area is also preferable.
[0068] また、 CCD画素サイズ Csを 8. 0 m (不感帯 2. 0 μ mを含む)、ラインセンサの有 効画素数 Cpを 4000 (32mm長)、 CCD走査データレート Cdを 25nsecZpixel (=40 MHz)とすると、ラインセンサの 1ライン走査時間 Tcは、 Ορ Χ Ο(1= 100 /ζ 3Θ(;となる。 そして、液浸モニタ時のステージ走査速度 Spは、 CsZTc = 80mmZsecとなる。  [0068] In addition, the CCD pixel size Cs is 8.0 m (including dead zone 2.0 μm), the number of effective pixels Cp is 4000 (32 mm length), and the CCD scanning data rate Cd is 25 nsecZpixel (= 40 Assuming that the MHz is 1 MHz, the line scanning time Tc of the line sensor is Ορ Χ Ο (1 = 100 / ζ 3Θ (;.) and the stage scanning speed Sp during immersion monitoring is CsZTc = 80 mmZsec.
[0069] なお、液浸モニタ装置 260では、各ラインセンサをフォトリソグラフィの手法を用いて 基材 261に形成しても良 、し、予め作成された CCDセンサモジュールを基材 261に 貼り付けても良い。  [0069] In the immersion monitoring apparatus 260, each line sensor may be formed on the base material 261 by using a photolithography technique, and a previously created CCD sensor module is attached to the base material 261. Also good.
[0070] 《除去装置》  [0070] <Removal device>
除去装置 Tは、ウェハ Wに付着している液体 LQ及び異物など(以下、便宜上「液 体 ·異物」とも記述する)を除去するものである。ここでは、この除去装置 Tは、一例と して図 11に示されるように、ステージ装置 30、真空吸着によってウエノ、 Wを保持する ホルダ 31、該ホルダ 31を回転駆動する回転装置 32、ウェハ Wに付着している液体' 異物を動かすためのたわみ進行波を生成する生成装置 60、チャンバ 35、液体吸引 装置 39、及びウェハ Wの表面を観察する観察装置(図示省略)などを有している。ス テージ装置 30、ホルダ 31、回転装置 32及び生成装置 60は、チャンバ 35内に収容 されている。なお、観察装置による観察結果は、メインコントローラ 42、ウェハ測定 · 検査器 109及び解析システム 107などに通知される。 The removal device T removes the liquid LQ and foreign matter (hereinafter also referred to as “liquid / foreign matter” for convenience) adhering to the wafer W. Here, as shown in FIG. 11, as an example, this removal device T includes a stage device 30, a holder 31 for holding wafers by vacuum suction, a holder 31 for holding W, a rotating device 32 for rotationally driving the holder 31, and a wafer W. It has a generation device 60 that generates a deflection traveling wave for moving foreign matter adhering to the liquid, a chamber 35, a liquid suction device 39, and an observation device (not shown) for observing the surface of the wafer W. . The stage device 30, the holder 31, the rotating device 32, and the generating device 60 are accommodated in the chamber 35. The observation results from the observation device are the main controller 42, wafer measurement The tester 109 and the analysis system 107 are notified.
[0071] チャンバ 35は、図 11における +X側の壁面に形成された開口部 36と、— X側の壁 面に形成された開口部 37とを有している。開口部 36には、この開口部 36を開閉する シャツタ 36Aが設けられ、開口部 37には、この開口部 37を開閉するシャツタ 37Aが 設けられている。液浸露光されたウエノ、 Wは、開口部 36を介してチャンバ 35内に搬 送され、液体 '異物の除去処理がなされたウェハ Wは、開口部 37を介してチャンバ 3 5外に搬送される。各シャツタの開閉はメインコントローラ 42により制御される。  The chamber 35 has an opening 36 formed on the wall surface on the + X side in FIG. 11, and an opening 37 formed on the wall surface on the −X side. The opening 36 is provided with a shirter 36A for opening and closing the opening 36, and the opening 37 is provided with a shirter 37A for opening and closing the opening 37. The wafer W that has been subjected to immersion exposure is transferred into the chamber 35 through the opening 36, and the wafer W on which the liquid 'foreign matter has been removed is transferred out of the chamber 35 through the opening 37. The Opening and closing of each shirt is controlled by the main controller 42.
[0072] 液体吸引装置 39は、バルブ 38Aが設けられた流路 38を介してチャンバ 35に接続 されている。バルブ 38Aが開状態になると、チャンバ 35内の液体が液体吸引装置 39 によってチャンバ 35外に排出される。なお、液体 '異物の除去処理中は、バルブ 38 Aは開状態とされる。  [0072] The liquid suction device 39 is connected to the chamber 35 via a flow path 38 provided with a valve 38A. When the valve 38A is opened, the liquid in the chamber 35 is discharged out of the chamber 35 by the liquid suction device 39. Note that the valve 38 A is opened during the liquid 'foreign matter removal process.
[0073] 回転装置 32は、ホルダ 31に接続された軸 33と、ステージ装置 30の内部に配置さ れ軸 33を回転駆動するモータとを有し、ホルダ 31に保持されたウェハ Wを回転させ る。なお、ホルダ 31は、軸 33とともに不図示のホルダ駆動装置により、 Z軸方向、 θ X 方向及び Θ Y方向に駆動可能である。  The rotating device 32 has a shaft 33 connected to the holder 31 and a motor that is disposed inside the stage device 30 and drives the shaft 33 to rotate, and rotates the wafer W held by the holder 31. The The holder 31 can be driven in the Z-axis direction, θ X direction, and Θ Y direction by a holder driving device (not shown) together with the shaft 33.
[0074] 生成装置 60は、一例として図 12に示されるように、ホルダ 31に保持されたウェハ W に対向して配置され、たわみ進行波を発生させる弹性ステータ 61と、該弹性ステータ 61の +Z側の面上に配置され、前記たわみ進行波を励起する圧電素子を含む振動 体 62と、該振動体 62を支持する支持部材 63と、該支持部材 63を X軸方向、 Y軸方 向、 Z軸方向、 0 X方向、 θ Y方向及び θ Z方向に駆動する駆動機構 64とを有して いる。この駆動機構 64は、メインコントローラ 42により制御される。すなわち、メインコ ントローラ 42によって、弹性ステータ 61とウェハ Wとの間隔、及びウェハ Wに対する 弹性ステータ 61の傾斜角及び XY面内におけるウェハ Wに対する弹性ステータ 61 の位置などを調整することができる。  As shown in FIG. 12, as an example, the generation device 60 is disposed opposite to the wafer W held by the holder 31, and generates a flexible traveling wave. A vibrating body 62 including a piezoelectric element that is disposed on the Z-side surface and excites the bending traveling wave, a supporting member 63 that supports the vibrating body 62, and the supporting member 63 in the X-axis direction and the Y-axis direction. And a drive mechanism 64 for driving in the Z-axis direction, 0 X direction, θ Y direction, and θ Z direction. The drive mechanism 64 is controlled by the main controller 42. That is, the main controller 42 can adjust the distance between the inertial stator 61 and the wafer W, the inclination angle of the inertial stator 61 with respect to the wafer W, the position of the inertial stator 61 with respect to the wafer W in the XY plane, and the like.
[0075] 弹性ステータ 61は、一例として図 13に示されるように、ウェハ Wよりも一回り大きめ の略円形状の弾性部材である。この弹性ステータ 61の— Z側の面は撥水コートがな されている。そして、弹性ステータ 61の +Z側の面の周縁領域上に、所望のたわみ 進行波が得られるように圧電素子 62Aカ^ング状に配置されている。なお、弾性ステ ータ 61もリング状であっても良い。 The inertial stator 61 is a substantially circular elastic member that is slightly larger than the wafer W, as shown in FIG. 13 as an example. A water repellent coating is applied to the surface of the inertial stator 61 on the —Z side. Then, on the peripheral region of the surface on the + Z side of the inertial stator 61, the piezoelectric element 62A is arranged in a ring shape so as to obtain a desired bending traveling wave. In addition, elastic step The data 61 may also be ring-shaped.
[0076] 振動体 62の圧電素子はその厚み方向(ここでは、 Z軸方向)に均一に分極されて おり、たわみ振動の半波長ピッチの電極が複数個(以下、「電極群」ともいう)設けられ ている。そして、この電極群に共振周波数の電気信号が入力されると、たわみ振動の 定在波が励起される。これにより、一例として図 14に示されるように、たわみ進行波 B が発生し、該たわみ進行波 Bによって、弹性ステータ 61とウェハ Wとの間に音響場が 生じる。そして、この音響場の音響粘性流 Vにより、ウエノ、 Wに付着している液体 '異 物 Gが移動する。すなわち、生成装置 60は、ウェハ Wとは非接触状態で、ウェハ W に付着している液体 ·異物を動かすことができる。また、ウェハ Wの表面に凹部が形 成されているときに、凹部の内側に液体 '異物が入り込んでいても、その凹部の内側 に入り込んでいる液体 ·異物を、凹部の外側に出すことができる。ここでは、一例とし て図 15に示されるように、弹性ステータ 61の周方向を進行方向とするたわみ進行波 Bが発生する。そこで、音響粘性流 Vは、ウェハ Wの周方向を進行方向として流れる こととなる。なお、電極群は振動体 62の全面に設ける必要はなぐ一部にあれば良い 。この場合には、もう一組の電極群を設け、この電極群により励起される定在波の位 相差が π Ζ2 ( = ΐΖ4波長)となるように設定することにより、振動が励起され、たわ み進行波が発生する。 [0076] The piezoelectric element of the vibrating body 62 is uniformly polarized in the thickness direction (here, the Z-axis direction), and there are a plurality of electrodes having a half-wavelength pitch of flexural vibration (hereinafter also referred to as "electrode group"). It is provided. When an electrical signal having a resonance frequency is input to this electrode group, a standing wave of flexural vibration is excited. Accordingly, as shown in FIG. 14 as an example, a bending traveling wave B is generated, and an acoustic field is generated between the inertial stator 61 and the wafer W by the bending traveling wave B. Then, due to the acoustic viscous flow V in this acoustic field, the liquid “G” adhering to Ueno and W moves. That is, the generation apparatus 60 can move the liquid / foreign matter adhering to the wafer W in a non-contact state with the wafer W. In addition, when a recess is formed on the surface of the wafer W, even if a liquid 'foreign matter has entered the inside of the recess, the liquid / foreign matter that has entered the inside of the recess can be ejected to the outside of the recess. it can. Here, as an example, as shown in FIG. 15, a bending traveling wave B is generated with the circumferential direction of the inertial stator 61 as the traveling direction. Therefore, the acoustic viscous flow V flows with the circumferential direction of the wafer W as the traveling direction. It should be noted that the electrode group need only be provided in a part that does not need to be provided on the entire surface of the vibrating body 62. In this case, the vibration was excited by setting another electrode group and setting the phase difference of the standing wave excited by this electrode group to be π Ζ2 (= ΐΖ4 wavelength). Deflection traveling waves are generated.
[0077] たわみ進行波 Βの発生とともに、ホルダ 31を ΧΥ平面に対して傾斜させると、重力作 用とたわみ進行波による作用との相乗作用により、ウェハ Wに付着して 、る液体 ·異 物を良好に除去することができる。  [0077] When the holder 31 is tilted with respect to the heel plane along with the generation of the bending traveling wave wrinkles, the liquid / foreign matter adhering to the wafer W due to the synergistic effect of the gravity action and the action of the bending traveling waves. Can be removed satisfactorily.
[0078] また、たわみ進行波 Βの発生とともに、ウエノ、 Wを回転させると、遠心力が付加され 、ウェハ Wに付着している液体 ·異物を更に良く移動させることができる。この場合に 、一例として図 16に示されるように、ウェハ Wの回転方向 PRをたわみ進行波 Βの進 行方向と一致させると、音響粘性流 Vの方向と遠心力の方向とがほぼ一致し、ウェハ Wを比較的低速で回転させても、ウェハ Wに付着している液体 ·異物を良好に除去 することが可能となる。これにより、ウェハ Wへの負荷を低減させたり、回転装置 32の 消費電力を低減したり、回転装置 32の発熱を抑えたり、回転装置 32を小型化するこ とが可能となる。 [0079] ところで、たわみ進行波 Bの発生開始とウェハ Wの回転開始は、互いにほぼ同時に 行っても良いし、ウェハ Wの回転を開始した後に、たわみ進行波 Bの発生を開始して も良い。また、例えば、ウェハ Wの表面に形成された凹部の内側に液体 ·異物が入り 込んでいるときには、たわみ進行波 Bの発生を開始して力も所定時間経過後に、ゥェ ハ Wの回転を開始しても良い。この場合には、前記凹部の内側に入り込んでいる液 体'異物を、たわみ進行波 Bによりー且凹部の外側に移動させた後、ウェハ Wの回転 によりウェハ Wの表面から除去することができる。 Further, when the wafer and W are rotated along with the generation of the bending traveling wave, the centrifugal force is applied, and the liquid / foreign matter adhering to the wafer W can be moved better. In this case, as shown in FIG. 16 as an example, if the rotational direction PR of the wafer W is made to coincide with the traveling direction of the bending traveling wave Β, the direction of the acoustic viscous flow V and the direction of the centrifugal force substantially coincide. Even if the wafer W is rotated at a relatively low speed, the liquid / foreign matter adhering to the wafer W can be satisfactorily removed. As a result, it is possible to reduce the load on the wafer W, reduce the power consumption of the rotating device 32, suppress the heat generation of the rotating device 32, and reduce the size of the rotating device 32. [0079] By the way, the generation start of the deflection traveling wave B and the rotation start of the wafer W may be performed almost simultaneously with each other, or the generation of the deflection traveling wave B may be started after the rotation of the wafer W is started. . Also, for example, when a liquid or foreign substance enters the inside of the recess formed on the surface of the wafer W, the generation of the deflection traveling wave B is started and the rotation of the wafer W is started after a predetermined time has passed. You may do it. In this case, the liquid body foreign matter entering the inside of the recess can be removed from the surface of the wafer W by rotating the wafer W after being moved to the outside of the recess by the deflection traveling wave B. it can.
[0080] なお、ウェハ Wの中央付近に液体 '異物が付着している場合には、一例として図 17 に示されるように、ウェハ Wの回転中心と弹性ステータ 61の中心とをずらすと良 、。  [0080] When the liquid 'foreign matter adheres to the vicinity of the center of the wafer W, as shown in FIG. 17 as an example, the rotation center of the wafer W and the center of the inertia stator 61 may be shifted. .
[0081] また、ウェハ Wの回転とウェハ Wの傾斜とを併用しても良い。これにより、ウェハ W に付着している液体 ·異物を更に良好に除去することができる。  Further, the rotation of the wafer W and the inclination of the wafer W may be used in combination. As a result, the liquid / foreign matter adhering to the wafer W can be removed more satisfactorily.
[0082] そして、ウェハ Wから除去された液体は、液体吸引装置 39によってチャンバ 35外 に排出される。従って、チャンバ 35内の湿度が大きく変動することはない。また、シャ ッタ 36A及びシャツタ 37Aを開放したときに、湿った気体がチャンバ 35の外に放出さ れることちない。  Then, the liquid removed from the wafer W is discharged out of the chamber 35 by the liquid suction device 39. Therefore, the humidity in the chamber 35 does not vary greatly. Further, when the shutter 36A and the shirt 37A are opened, the moist gas is not released out of the chamber 35.
[0083] なお、上記弹性ステータ 61に代えて、一例として図 18 (A)及び図 18 (B)に示され るように、その Z側の面に複数の気体吹き出し口 71が形成された矩形形状の弾性 ステータ 161 Aを用いても良い。この場合には、複数の気体吹き出し口 71からウェハ Wの表面に向けて気体 kを吹き出す気体供給装置(図示省略)が更に設けられる。こ こでは、 Y軸方向に並ぶ一列の気体吹き出し口群を 1ブロックとし、 +X方向に第 1ブ ロック Bal、第 2ブロック Ba2、第 3ブロック Ba3、 、第 17ブロック Bal7とする。そし て、たわみ進行波 Bの進行に合わせて、第 1ブロック Balからの気体吹き出しを開始 し、次いで第 2ブロック Ba2からの気体吹き出しを開始し、以下、順次、第 3ブロック Ba 3、 · · · ·、第 17ブロック Bal7からの気体吹き出しを開始する。また、第 1ブロック Bal 力 の気体吹き出しを開始後、所定時間が経過すると、第 1ブロック Balからの気体 吹き出しを停止する。同様に、第 2ブロック Ba2からの気体吹き出しを開始後、所定時 間が経過すると、第 2ブロック Ba2からの気体吹き出しを停止する。以下、同様にして 、気体吹き出しを開始後、所定時間が経過したブロックは、その気体吹き出しを停止 する。これにより、ウェハ Wに付着している液体 ·異物をより短時間に除去することが 可能となる。なお、ブロック数は 17に限定されるものではない。この場合に、たわみ進 行波 Bの進行方向にウェハ W及び弹性ステータ 161 Aを傾斜させても良い。 Note that, instead of the inertia stator 61, as shown in FIG. 18 (A) and FIG. 18 (B) as an example, a rectangular shape in which a plurality of gas outlets 71 are formed on the Z-side surface. An elastic stator 161 A may be used. In this case, a gas supply device (not shown) for blowing out the gas k from the plurality of gas blowing ports 71 toward the surface of the wafer W is further provided. Here, a group of gas outlets aligned in the Y-axis direction is defined as one block, and the first block Bal, the second block Ba2, the third block Ba3, and the 17th block Bal7 are defined in the + X direction. Then, in accordance with the progress of the deflection traveling wave B, the gas blowing from the first block Bal is started, and then the gas blowing from the second block Ba2 is started, and the third block Ba 3,. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Only start 18 only; In addition, when a predetermined time has elapsed after the start of the first block Bal force gas blowing, the gas blowing from the first block Bal is stopped. Similarly, when a predetermined time has elapsed after the start of gas blowing from the second block Ba2, the gas blowing from the second block Ba2 is stopped. Hereinafter, in the same manner, after a predetermined time has elapsed after starting the gas blowing, the gas blowing is stopped. To do. As a result, the liquid / foreign matter adhering to the wafer W can be removed in a shorter time. The number of blocks is not limited to 17. In this case, the wafer W and the inertial stator 161A may be tilted in the traveling direction of the bending traveling wave B.
[0084] また、上記弹性ステータ 61に代えて、一例として図 19 (A)及び図 19 (B)に示され るように、その Z側の面に複数の吸引口 81が形成された矩形形状の弹性ステータ 161Bを用いても良い。この場合には、複数の吸引口 81からウェハ Wの表面に付着 している液体などを吸引する吸引装置(図示省略)が更に設けられる。ここでは、 Y軸 方向に並ぶ一列の吸引口群を 1ブロックとし、 +X方向に第 1ブロック Bbl、第 2ブロッ ク Bb2、第 3ブロック Bb3、 · · · ·、第 17ブロック Bbl7とする。そして、たわみ進行波 B の進行に合わせて、第 1ブロック Bblでの吸引を開始し、次いで第 2ブロック Bb2での 吸引を開始し、以下、順次、第 3ブロック Bb3、 · · · ·、第 17ブロック Bbl7での吸引を 開始する。また、第 1ブロック Bblでの吸引を開始後、所定時間が経過すると、第 1ブ ロック Bblでの吸引を停止する。同様に、第 2ブロック Bb2での吸引を開始後、所定 時間が経過すると、第 2ブロック Bb2での吸引を停止する。以下、同様にして、吸引を 開始後、所定時間が経過したブロックは、その吸引を停止する。これにより、ウェハ W に付着している液体 ·異物をより短時間に除去することが可能となる。なお、ブロック 数は 17に限定されるものではない。この場合に、たわみ進行波 Bの進行方向にゥェ ハ W及び弹性ステータ 161Bを傾斜させても良 、。  [0084] Further, instead of the inertia stator 61, as shown in FIG. 19 (A) and FIG. 19 (B) as an example, a rectangular shape in which a plurality of suction ports 81 are formed on the surface on the Z side. The inertia stator 161B may be used. In this case, a suction device (not shown) that sucks liquid adhering to the surface of the wafer W from the plurality of suction ports 81 is further provided. Here, a group of suction ports arranged in the Y-axis direction is defined as one block, and the first block Bbl, second block Bb2, third block Bb3,..., And 17th block Bbl7 are defined in the + X direction. Then, in accordance with the progress of the deflection traveling wave B, the suction in the first block Bbl is started, and then the suction in the second block Bb2 is started. Then, the third block Bb3,. Start suction with 17 blocks Bbl7. In addition, when a predetermined time has elapsed after the suction in the first block Bbl is started, the suction in the first block Bbl is stopped. Similarly, the suction in the second block Bb2 is stopped when a predetermined time elapses after the suction in the second block Bb2 is started. Thereafter, in the same manner, the suction is stopped for a block for which a predetermined time has elapsed after the start of suction. As a result, the liquid / foreign matter adhering to the wafer W can be removed in a shorter time. The number of blocks is not limited to 17. In this case, the wafer W and the inertia stator 161B may be inclined in the traveling direction of the flexural traveling wave B.
[0085] また、前記液体吸引装置 39に代えて、あるいは前記液体吸引装置 39とともに、チ ヤンバ 35内に乾燥した気体を供給する乾燥装置を設けても良い。これにより、ウェハ Wに付着している液体 LQの除去を促進することができる。  In addition, instead of the liquid suction device 39 or together with the liquid suction device 39, a drying device for supplying a dried gas into the chamber 35 may be provided. Thereby, removal of the liquid LQ adhering to the wafer W can be promoted.
[0086] 《半導体製造システムの動作》  [0086] << Operation of Semiconductor Manufacturing System >>
次に、上記のようにして構成された半導体製造システム 100の動作について図 20 〜図 24のフローチャートを用いて説明する。なお、ここでは、ウェハ処理工程と組立 工程について説明する。  Next, the operation of the semiconductor manufacturing system 100 configured as described above will be described with reference to the flowcharts of FIGS. Here, the wafer processing process and the assembly process will be described.
[0087] 最初のステップ 401では、ウェハ Wに対する成膜'レジスト処理がコータ 'デベロッ ノ 111にて行われる。この成膜'レジスト処理では、図 23のフローチャートで示される 処理 (ステップ 701〜ステップ 735)が行われる。 [0088] ステップ 701では、ウェハ Wはコータ 'デベロッパ 111に移送され、ウェハ W上に反 射防止膜が形成される。 [0087] In the first step 401, a film formation 'resist process for the wafer W is performed in the coater' develeno 111. In this film-forming / resist process, the process (step 701 to step 735) shown in the flowchart of FIG. 23 is performed. In Step 701, the wafer W is transferred to the coater / developer 111, and an antireflection film is formed on the wafer W.
[0089] 次のステップ 703では、コータ 'デベロッパ 111の計測装置によって、ウェハ W上の 反射防止膜が計測される。ここでは、一例として、反射防止膜の膜厚、該膜厚の変動 状態及び膜の平坦度のうちの少なくとも 1つを含む成膜状態が計測される。  In the next step 703, the antireflection film on the wafer W is measured by the measuring device of the coater / developer 111. Here, as an example, the film formation state including at least one of the film thickness of the antireflection film, the fluctuation state of the film thickness, and the flatness of the film is measured.
[0090] 次のステップ 705では、成膜状態の計測結果に基づ 、て、反射防止膜が正常であ る力否かが判断される。そして、反射防止膜が正常であれば、このステップ 705での 判断は肯定され、前記ステップ 711に移行する。一方、反射防止膜が正常でなけれ ば、ステップ 705での判断は否定され、ステップ 707に移行する。  In the next step 705, based on the measurement result of the film formation state, it is determined whether or not the antireflection film is normal. If the antireflection film is normal, the determination in step 705 is affirmed, and the process proceeds to step 711. On the other hand, if the antireflection film is not normal, the determination in step 705 is denied and the process proceeds to step 707.
[0091] このステップ 707では、反射防止膜の除去が行われる。  In Step 707, the antireflection film is removed.
[0092] 次のステップ 709では、反射防止膜の計測結果に基づ 、て反射防止膜の成膜条 件が補正される。そして、上記ステップ 701に戻る。反射防止膜の成膜条件は、膜材 料、成膜方法、 目標膜厚、膜厚均一性、成膜環境及び膜材料の塗布条件のうちの 少なくとも 1つを含む。  In the next step 709, the film formation condition of the antireflection film is corrected based on the measurement result of the antireflection film. Then, the process returns to step 701. The film formation conditions of the antireflection film include at least one of a film material, a film formation method, a target film thickness, film thickness uniformity, a film formation environment, and a film material application condition.
[0093] 以下、ステップ 705での判断が肯定されるまで、ステップ 701〜ステップ 709の処理 が繰り返される。そして、反射防止膜が正常であれば、ステップ 705での判断は肯定 され、ステップ 711に移行する。  [0093] Hereinafter, the processing of step 701 to step 709 is repeated until the determination in step 705 is affirmed. If the antireflection film is normal, the determination in step 705 is affirmed and the routine proceeds to step 711.
[0094] このステップ 711では、反射防止膜の計測結果及び成膜条件が、解析システム 10 7及びウェハ測定 '検査器 109などに送信される。ここで、成膜処理時の温度、湿度 又は気圧等の環境情報を含めた稼動状態の情報を送信するようにしても良!、。  In this step 711, the measurement result and film formation condition of the antireflection film are transmitted to the analysis system 107 and the wafer measurement / inspector 109. Here, it is also possible to send information on the operating state including environmental information such as temperature, humidity or pressure during the film formation process!
[0095] 次のステップ 713では、反射防止膜上にレジストが塗布される。  [0095] In the next step 713, a resist is applied on the antireflection film.
[0096] 次のステップ 715では、コータ 'デベロッパ 111の計測装置によって、ウェハ W上に おける膜 (反射防止膜 +レジスト膜)の状態が計測される。ここでは、一例として、ゥェ ハ W上における膜の膜厚、該膜厚の変動状態及び膜の平坦度のうちの少なくとも 1 つを含む膜の状態が計測される。  [0096] In the next step 715, the state of the film (antireflection film + resist film) on the wafer W is measured by the measuring device of the coater / developer 111. Here, as an example, the film state on the wafer W, the film state including at least one of the film thickness fluctuation state and the film flatness is measured.
[0097] 次のステップ 717では、膜の状態の計測結果に基づいて、ウェハ W上における膜 の状態が正常である力否かが判断される。そして、膜の状態が正常であれば、このス テツプ 717での判断は肯定され、前記ステップ 723に移行する。一方、膜の状態が正 常でなければ、ここでの判断は否定され、ステップ 719に移行する。 In the next step 717, it is determined whether or not the force on the wafer W is normal based on the measurement result of the film state. If the state of the film is normal, the determination at step 717 is affirmed, and the routine proceeds to step 723. On the other hand, the state of the membrane is positive If not, the determination here is denied and the routine goes to Step 719.
[0098] このステップ 719では、レジスト膜の除去が行われる。 In step 719, the resist film is removed.
[0099] 次のステップ 721では、膜の状態の計測結果に基づいてレジストの塗布条件が補 正される。そして、上記ステップ 713に戻る。  In the next step 721, the resist coating condition is corrected based on the measurement result of the film state. Then, the process returns to step 713 above.
[0100] 以下、ステップ 717での判断が肯定されるまで、ステップ 713〜ステップ 721の処理 が繰り返される。そして、膜の状態が正常であれば、ステップ 717での判断は肯定さ れ、ステップ 723に移行する。 [0100] Hereinafter, the processing from step 713 to step 721 is repeated until the determination in step 717 is affirmed. If the state of the film is normal, the determination at step 717 is affirmed, and the routine proceeds to step 723.
[0101] このステップ 723では、膜の状態の計測結果及びレジストの塗布条件力 解析シス テム 107及びウェハ測定 '検査器 109などに送信される。ここで、レジスド塗布処理の 際の温度、湿度又は気圧等の環境情報を含めた稼動状態の情報を送信するように しても良い。 In Step 723, the measurement result of the film state and the resist application condition force analysis system 107 and the wafer measurement 'inspector 109 are transmitted. Here, it is also possible to transmit operating state information including environmental information such as temperature, humidity, or atmospheric pressure during the resist coating process.
[0102] 次のステップ 725では、レジスト膜が塗布されたウェハ W上にトップコート膜が塗布 される。  [0102] In the next step 725, a top coat film is applied onto the wafer W to which a resist film has been applied.
[0103] 次のステップ 727では、コータ 'デベロッパ 111の計測装置によって、ウェハ W上に おける膜 (反射防止膜 +レジスト膜 +トップコート膜)の状態が計測される。ここでは、 一例として、ウェハ W上における膜の膜厚、該膜厚の変動状態及び膜の平坦度のう ちの少なくとも 1つを含む膜の状態が計測される。  In the next step 727, the state of the film (antireflection film + resist film + topcoat film) on the wafer W is measured by the measuring device of the coater / developer 111. Here, as an example, a film state including at least one of the film thickness on the wafer W, the variation state of the film thickness, and the flatness of the film is measured.
[0104] 次のステップ 729では、膜の状態の計測結果に基づいて、ウェハ上における膜の 状態が正常である力否かが判断される。膜の状態が正常であれば、ステップ 729で の判断は肯定され、前記ステップ 735に移行する。一方、膜の状態が正常でなけれ ば、ステップ 729での判断は否定され、ステップ 731に移行する。  In the next step 729, based on the measurement result of the film state, it is determined whether or not the force on the wafer is normal. If the state of the film is normal, the determination in step 729 is affirmed, and the process proceeds to step 735. On the other hand, if the state of the film is not normal, the determination in step 729 is denied and the process proceeds to step 731.
[0105] このステップ 731では、トップコート膜の除去が行われる。  [0105] In Step 731, the top coat film is removed.
[0106] 次のステップ 733では、膜の状態の計測結果に基づいてトップコートの塗布条件が 補正される。そして、上記ステップ 725に戻る。  In the next step 733, the topcoat application condition is corrected based on the measurement result of the film state. Then, the process returns to step 725.
[0107] 以下、ステップ 729での判断が肯定されるまで、ステップ 725〜ステップ 733の処理 が繰り返される。そして、膜の状態が正常であれば、ステップ 729での判断は肯定さ れ、ステップ 735に移行する。 [0107] Hereinafter, the processing of step 725 to step 733 is repeated until the determination in step 729 is affirmed. If the state of the film is normal, the determination at step 729 is affirmed, and the routine proceeds to step 735.
[0108] このステップ 735では、膜の状態の計測結果及びトップコートの塗布条件が解析シ ステム 107及びウェハ測定 '検査器 109などに送信される。ここで、トップコートの塗 布処理の際の温度、湿度又は気圧等の環境情報を含めた稼動状態の情報を送信 するようにしても良い。これによつて、成膜'レジスト処理が終了し、メインルーチン(図 20)のステップ 403にリターンする。 [0108] In this step 735, the measurement result of the film state and the coating condition of the top coat are analyzed. Stem 107 and wafer measurement 'sent to inspector 109 etc. Here, information on the operating state including environmental information such as temperature, humidity, or pressure during the top coat coating process may be transmitted. As a result, the film formation / resist process ends, and the process returns to step 403 of the main routine (FIG. 20).
[0109] このステップ 403では、液浸モニタの条件設定処理が露光装置本体 Sで行われる。  In step 403, the immersion monitor condition setting process is performed in the exposure apparatus body S.
この液浸モニタの条件設定処理では、図 24のフローチャートで示される処理 (ステツ プ 801〜ステップ 807)が行われる。なお、液浸モニタの条件設定処理は、作業者が 不図示の表示装置に表示される内容に応答して、すなわち対話形式で不図示の入 力装置を介して行っても良いし、露光工程管理コントローラ 103からの露光条件に応 じてメインコントローラ 42が行っても良!、。  In this immersion monitor condition setting process, the process shown in the flowchart of FIG. 24 (steps 801 to 807) is performed. The condition setting process of the immersion monitor may be performed in response to the content displayed on the display device (not shown) by the operator, that is, interactively via an input device (not shown), or the exposure process. Depending on the exposure conditions from the management controller 103, the main controller 42 can do it!
[0110] ステップ 801では、液浸モニタ装置 260の解析装置 263における解析方式が指定 される。ここでは、以下の(1)〜(3)の方式のうちの少なくとも 1つが指定され、解析装 置 263などに通知される。  [0110] In step 801, an analysis method in the analysis device 263 of the immersion monitoring device 260 is designated. Here, at least one of the following methods (1) to (3) is designated and notified to the analysis device 263 or the like.
[0111] (1) Z軸方向画像比較方式  [0111] (1) Z-axis direction image comparison method
Z軸方向画像比較方式とは、 Z軸方向における互いに異なる複数の位置の観察結 果を比較する方式である。具体的には、 6個のラインセンサ(267A〜267F)の出力 信号力もそれぞれ得られる 6つの画像情報を互いに比較し、例えば、ラインセンサ 26 7Cの出力信号力 得られた画像情報が他の 5つの画像情報と許容レベル以上に異 なる場合には、ウェハ Wの表面力も距離 d3の位置近傍に異物が存在していると判断 する。これは、すべてのラインセンサの観察対象位置に、同時に異物が存在する確 率が極めて低いことによる。なお、上記 6つの画像情報は、 XY平面内に関しては、そ れぞれ同じ位置での画像情報であることが好ましい。  The Z-axis direction image comparison method is a method of comparing observation results at a plurality of different positions in the Z-axis direction. Specifically, the output signal force of each of the six line sensors (267A to 267F) is also compared with each other, and for example, the output signal force of the line sensor 267C is obtained. If the image information differs from the allowable level by more than the allowable level, it is determined that the surface force of the wafer W is also in the vicinity of the distance d3. This is due to the extremely low probability that foreign matter is simultaneously present at the observation target positions of all line sensors. The six pieces of image information are preferably image information at the same position in the XY plane.
[0112] (2)参照画像比較方式  [0112] (2) Reference image comparison method
参照画像比較方式とは、予め実験あるいはシミュレーションなどによって取得されて V、る異物が存在しな!、ときの画像情報 (以下、「基準画像情報 A」と 、う)と観察結果と を比較する方式である。具体的には、前記 6つの画像情報のそれぞれと基準画像情 報 Aとを比較し、例えば、ラインセンサ 267Cの出力信号力 得られた画像情報と基 準画像情報 Aとの違 、が許容レベル以上の場合には、ウェハ Wの表面力も距離 d3 の位置近傍に異物が存在していると判断する。 The reference image comparison method compares the image information (hereinafter referred to as “reference image information A”) and the observation result obtained in advance by experiments or simulations, etc. It is a method. Specifically, each of the six pieces of image information is compared with the reference image information A. For example, the difference between the obtained image information and the reference image information A of the line sensor 267C is an allowable level. In the above case, the surface force of the wafer W is also the distance d3 It is determined that a foreign object exists in the vicinity of the position.
[0113] (3)特徴抽出方式  [0113] (3) Feature extraction method
特徴抽出方式は、予め実験あるいはシミュレーションなどによって取得されている、 気泡が存在するときの画像情報 (以下、「基準画像情報 B」 t 、う)及びパーチイクル が存在するときの画像情報 (以下、「基準画像情報 C」という)などの、異物が存在す るときの画像情報と観察結果とを比較する方式である。具体的には、前記 6つの画像 情報のそれぞれと、基準画像情報 B及び基準画像情報 Cなどとを比較する。そして、 例えば、ラインセンサ 267Cの出力信号力 得られた画像情報と基準画像情報 Bとが 予め設定されている範囲内で類似している場合には、ウェハ Wの表面力も距離 d3の 位置近傍に気泡が存在すると判断する。なお、気泡が存在するときの画像情報 (基 準画像情報 B)は、気泡の周辺外側は円状の明部が存在し、気泡の内側は暗部が ベースとなり周辺とは異なるパターンが存在するという特徴がある。  The feature extraction method includes image information when bubbles are present (hereinafter referred to as “reference image information B” t) and image information when particles are present (hereinafter referred to as “ This is a method that compares image information when there is a foreign object such as “reference image information C”) with observation results. Specifically, each of the six pieces of image information is compared with reference image information B, reference image information C, and the like. And, for example, when the image information obtained from the output signal force of the line sensor 267C and the reference image information B are similar within a preset range, the surface force of the wafer W is also close to the position of the distance d3. Judge that bubbles are present. Note that the image information (reference image information B) when there is a bubble is that there is a circular bright part on the outer periphery of the bubble, and there is a different pattern from the periphery on the inner side of the bubble. There are features.
[0114] なお、上記(1)〜(3)の各方式を適宜組み合わせても良い。  [0114] Each of the above methods (1) to (3) may be appropriately combined.
[0115] 次のステップ 803では、ウェハ W上に形成されるパターンの目標形状精度(目標線 幅精度)に応じて、液浸モニタ装置 260の解析感度が指定される。例えば、高い線幅 精度が要求される場合には、異物が微小あるいは少量であっても、異常と判断される ように、液浸モニタ装置 260の解析感度は高く設定される。一方、線幅精度が比較的 低くても許容される場合には、予め設定されているレベル以下の異物は、異物として 認識されないような液浸モニタ装置 260の解析感度に設定される。ここで指定された 内容は、解析装置 263などに通知される。また、ウェハ表面力も近いほど、異物がレ ジストに転写され易くなるため、液浸中の観察対象位置毎に、すなわち、ラインセン サ毎に、異常と判断する解析感度の設定を変えられる。  [0115] In the next step 803, the analysis sensitivity of the immersion monitoring device 260 is designated according to the target shape accuracy (target line width accuracy) of the pattern formed on the wafer W. For example, when high line width accuracy is required, the analysis sensitivity of the immersion monitoring device 260 is set high so that even if the foreign matter is minute or small, it is determined to be abnormal. On the other hand, if the line width accuracy is acceptable even if it is relatively low, the foreign substance having a level equal to or lower than a preset level is set to the analysis sensitivity of the immersion monitoring apparatus 260 so that it is not recognized as a foreign substance. The content specified here is notified to the analysis device 263 or the like. In addition, the closer the wafer surface force is, the easier it is to transfer foreign matter to the resist. Therefore, the setting of the analysis sensitivity for determining an abnormality can be changed for each observation target position during immersion, that is, for each line sensor.
[0116] 次のステップ 805では、液浸モニタ処理を行うタイミングが指定される。ここでは、液 浸モニタ処理を行うタイミングとしては、(1)所定の基板処理枚数毎、(2)所定のロット 処理数毎、(3)所定の時間間隔毎、(4)液浸領域の新規形成毎などがある。なお、( 1)〜 (4)の各タイミングを適宜組み合わせても良い。ここで指定された内容は、メイン コントローラ 42の作業用メモリに保存される。  In the next step 805, the timing for performing the immersion monitoring process is designated. Here, the timing of performing the immersion monitoring process is as follows: (1) every predetermined number of processed substrates, (2) every predetermined number of lots processed, (3) every predetermined time interval, and (4) new immersion area There is every formation. In addition, you may combine each timing of (1)-(4) suitably. The contents specified here are stored in the work memory of the main controller 42.
[0117] 次のステップ 807では、液浸モニタ装置 260での解析結果に基づくフィードバック 制御の内容が指定される。ここでは、フィードバック制御の内容として、(1)液浸領域 の液体 LQの全部ある ヽは一部交換、 (2)液浸領域への液体 LQの供給待ち時間の 変更、(3)液浸領域における液体 LQの安定化時間の変更、(4)液浸領域への液体 LQの供給量の変更、(5)液浸領域への液体 LQの供給速度の変更、(6)露光量、 露光スキャン速度及びフォーカスオフセット等の露光条件の変更、 (7)ウェハスキッ プ、(8)ロット処理の中断、(9)コータ 'デベロッパ 111での処理条件の変更、(10)ゥ ェハ測定 ·検査器 109での測定条件及び検査条件の変更などがある。なお、(1)〜( 10)の各フィードバック制御を適宜組み合わせても良い。ここで指定された内容は、 解析システム 107などに通知される。これによつて、液浸モニタの条件設定処理が終 了し、メインルーチン(図 20)のステップ 405にリターンする。 [0117] In the next step 807, feedback based on the analysis result of the immersion monitoring device 260 The content of the control is specified. Here, the contents of the feedback control are: (1) Partial replacement of all the liquid LQ in the liquid immersion area, (2) Change in the waiting time for supplying the liquid LQ to the liquid immersion area, (3) Liquid immersion area Change of liquid LQ stabilization time in (4) Change of supply amount of liquid LQ to the immersion area, (5) Change of supply speed of liquid LQ to the immersion area, (6) Exposure amount, exposure scan Change of exposure conditions such as speed and focus offset, (7) Wafer skip, (8) Interruption of lot processing, (9) Change of processing conditions at coater 'developer 111, (10) Wafer measurement / inspector 109 There are changes in measurement conditions and inspection conditions. In addition, you may combine each feedback control of (1)-(10) suitably. The contents specified here are notified to the analysis system 107 or the like. As a result, the condition setting process for the immersion monitor is completed, and the process returns to step 405 of the main routine (FIG. 20).
[0118] このステップ 405では、ウェハ Wは露光装置本体 Sに移送され、露光装置本体 Sに て液浸露光処理が行われる。ここでは、露光装置本体 Sは、投影光学系 PLと液浸領 域の液体 LQとを介して、レチクル Rを通過した露光光 ELをウェハ W上に照射し、レ チクル Rのパターン像をウェハ Wに投影する。  In this step 405, the wafer W is transferred to the exposure apparatus body S, and immersion exposure processing is performed on the exposure apparatus body S. Here, the exposure apparatus body S irradiates the wafer W with the exposure light EL that has passed through the reticle R via the projection optical system PL and the liquid LQ in the immersion region, and the pattern image of the reticle R is irradiated onto the wafer. Project to W.
[0119] 次のステップ 407では、上記液浸モニタの条件設定処理で指定されたタイミングで あるか否かが、メインコントローラ 42にて判断される。そして、指定されたタイミングで なければ、このステップ 407での判断は否定され、前記ステップ 417に移行する。一 方、指定されたタイミングであれば、ステップ 407での判断は肯定され、ステップ 409 に移行する。  [0119] In the next step 407, the main controller 42 determines whether or not it is the timing specified in the condition setting process of the immersion monitor. If it is not the designated timing, the determination in step 407 is denied, and the process proceeds to step 417. On the other hand, if it is the designated timing, the judgment in step 407 is affirmed and the routine proceeds to step 409.
[0120] このステップ 409では、液浸モニタ装置 260にて液浸モニタ処理が行われる。ここ では、メインコントローラ 42は、各ラインセンサの出力信号力も得られる画像情報が、 XY面内に関してはそれぞれ同じ位置となるように、液浸モニタ装置 260が保持され たウェハステージ WSTの位置情報をレーザ干渉計 17Wで計測しつつ、図 6に示さ れる X軸方向に基材 261が移動するように、ウェハステージ WSTを移動させる。  [0120] In step 409, immersion monitoring processing is performed by the immersion monitoring device 260. Here, the main controller 42 obtains the position information of the wafer stage WST on which the immersion monitoring device 260 is held so that the image information from which the output signal force of each line sensor can be obtained is the same position in the XY plane. While measuring with laser interferometer 17W, wafer stage WST is moved so that substrate 261 moves in the X-axis direction shown in FIG.
[0121] 次のステップ 411では、解析装置 263での解析結果が、メインコントローラ 42、解析 システム 107及びウェハ測定 '検査器 109などに送信される。  In the next step 411, the analysis result in the analysis device 263 is transmitted to the main controller 42, the analysis system 107, and the wafer measurement / inspector 109.
[0122] 次のステップ 413では、解析システム 107にて、解析装置 263から受信した解析結 果に基づいて異常の有無が判断される。そして、異常がなければ、このステップ 413 での判断は肯定され、前記ステップ 417に移行する。一方、一例として図 25に示され るように、液浸領域に気泡又はパーティクルなどの異物 NTが存在し、解析結果が異 常であれば、ステップ 413での判断は否定され、ステップ 415に移行する。 [0122] In the next step 413, the analysis system 107 determines whether there is an abnormality based on the analysis result received from the analysis device 263. If there is no abnormality, this step 413 The determination at is affirmed, and the routine goes to Step 417. On the other hand, as shown in FIG. 25 as an example, if a foreign substance NT such as a bubble or particle exists in the immersion area and the analysis result is abnormal, the determination in step 413 is denied and the process proceeds to step 415. To do.
[0123] このステップ 415では、上記ステップ 807で設定されたフィードバック制御の内容が 、解析システム 107からメインコントローラ 42に送信される。そして、露光装置本体 S では、解析システム 107から受信したフィードバック制御の内容が実行される。  In step 415, the content of the feedback control set in step 807 is transmitted from the analysis system 107 to the main controller 42. Then, in the exposure apparatus body S, the content of the feedback control received from the analysis system 107 is executed.
[0124] 次のステップ 417では、ウェハ Wは除去装置 Tに移送され、前述した液体'異物の 除去処理が行われる。  [0124] In the next step 417, the wafer W is transferred to the removing device T, and the above-described liquid / foreign substance removing process is performed.
[0125] 次のステップ 419では、液体'異物除去の処理条件及び処理結果 (観察装置の観 察結果)力 除去装置 Tから解析システム 107及びウェハ測定 '検査器 109などに送 信される。  [0125] In the next step 419, the processing conditions and processing results (observation results of the observation apparatus) of the liquid 'foreign matter removal are transmitted from the force removal apparatus T to the analysis system 107, the wafer measurement' inspector 109, and the like.
[0126] 次のステップ 421では、解析システム 107が、前記成膜'レジスト処理での各計測結 果、成膜条件及び各塗布条件、露光装置 105での液浸露光条件、液浸モニタ処理 でのモニタ結果、除去装置 Tでの液体'異物除去の処理条件及び処理結果、のうち の少なくとも 1つに基づ!、て、ウェハ測定'検査器 109によるウェハ Wの検査結果を 予測する。  [0126] In the next step 421, the analysis system 107 performs the measurement results in the film formation resist process, the film formation conditions and the application conditions, the immersion exposure conditions in the exposure apparatus 105, and the immersion monitor process. The inspection result of the wafer W by the wafer measurement / inspector 109 is predicted based on at least one of the monitoring result, the processing condition and the processing result for removing the foreign matter in the removal apparatus T!
[0127] なお、以下では、便宜上、「前記成膜 ·レジスト処理での各計測結果、成膜条件及 び各塗布条件、露光装置 105での液浸露光条件、液浸モニタ処理でのモニタ結果、 除去装置 Tでの液体'異物除去の処理条件及び処理結果、のうちの少なくとも 1つ」 を、「少なくとも 1つのウェハ処理条件 ·処理結果」とも 、う。  [0127] In the following, for the sake of convenience, "measurement results in the film formation / resist process, film formation conditions and application conditions, immersion exposure conditions in the exposure apparatus 105, monitor results in the immersion monitor process" “At least one of the processing conditions and processing results for removing the liquid foreign matter in the removing apparatus T” is also referred to as “at least one wafer processing condition / processing result”.
[0128] 例えば、予め取得されて 、る、前記成膜'レジスト処理での各計測結果、成膜条件 及び各塗布条件のうちの少なくとも 1つとウェハ測定 ·検査器 109によるウェハ検査 での異常検出との相関関係を参照し、前記成膜 'レジスト処理での各計測結果、成 膜条件及び各塗布条件のうちの少なくとも 1つに基づいてウェハ測定 '検査器 109に よるウェハ Wの検査結果を予測しても良 、。  [0128] For example, at least one of the measurement results, film formation conditions, and application conditions in the film formation / resist process acquired in advance and anomaly detection in wafer inspection by the wafer measurement / inspector 109 The wafer measurement based on at least one of the measurement results, the film formation conditions, and the coating conditions in the film forming process, and the wafer W inspection result by the inspector 109 You can predict it.
[0129] また、予め取得されている、前記液浸モニタ処理でのモニタ結果とウェハ測定 '検 查器 109によるウェハ検査での異常検出との相関関係を参照し、前記液浸モニタ処 理でのモニタ結果に基づいてウェハ測定 '検査器 109によるウェハ Wの検査結果を 予測しても良い。具体的には、相関関係に関する情報が登録されているデータべ一 ス(以下、便宜上「相関データベース」という)における、液浸領域内の異物の種類、 その位置、大きさ、形状及び数などの情報、及び光学素子 FLの汚染の位置、汚染 の程度などの情報力 露光パターンが受ける影響を導き出すことができる。そして、 液浸モニタ装置 260で得られた異物情報及び光学素子 FLの汚染情報から露光バタ ーンの欠陥を予測することができる。また、例えば、トップコート膜上の異物情報及び 膜内への液体 LQの浸み込み情報力も露光パターンの欠陥を予測することもできる。 [0129] Further, referring to the correlation between the monitoring result obtained in the liquid immersion monitoring process and the abnormality detection in the wafer inspection by the wafer measurement 'inspector 109, which has been acquired in advance, the liquid immersion monitoring process Wafer measurement based on the monitor result of 'Wafer W inspection result by inspector 109 You may predict. Specifically, the type, position, size, shape, and number of foreign matter in the immersion area in a database in which information on correlation is registered (hereinafter referred to as “correlation database” for convenience). Information and information power such as the position of contamination of the optical element FL and the degree of contamination It is possible to derive the influence of the exposure pattern. Then, the defect of the exposure pattern can be predicted from the foreign matter information obtained by the immersion monitoring device 260 and the contamination information of the optical element FL. In addition, for example, the foreign matter information on the top coat film and the penetration information power of the liquid LQ into the film can also predict exposure pattern defects.
[0130] また、予め取得されている、前記液体 ·異物除去の処理結果とウェハ測定 ·検査器 109によるウェハ検査での異常検出との相関関係を参照し、前記液体'異物除去の 処理結果に基づいてウェハ測定 '検査器 109によるウェハ Wの検査結果を予測して も良い。 Further, referring to the correlation between the liquid / foreign matter removal processing result acquired in advance and the abnormality detection in wafer inspection by the wafer measurement / inspector 109, the liquid / foreign matter removal processing result is obtained. Based on the wafer measurement 'inspector 109, the inspection result of wafer W may be predicted.
[0131] 次のステップ 423では、解析システム 107は、予測結果が「ウェハ測定 ·検査器 10 9によるウェハ検査でウェハ Wの異常が検出される」である力否かを判断する。そして 、予測結果が「ウェハ測定 '検査器 109によるウェハ検査でウェハ Wの異常が検出さ れない」であれば、このステップ 423での判断は肯定され、前記ステップ 501に移行 する。一方、予測結果が「ウェハ測定 '検査器 109によるウェハ検査でウエノ、 Wの異 常が検出される」であれば、ステップ 423での判断は否定され、ステップ 425に移行 する。  In the next step 423, the analysis system 107 determines whether or not the prediction result is “the abnormality of the wafer W is detected in the wafer inspection by the wafer measurement / inspector 109”. If the prediction result is “no abnormality of wafer W is detected by wafer inspection by wafer inspection by inspector 109”, the determination at this step 423 is affirmed and the routine proceeds to step 501. On the other hand, if the prediction result is “Wafer measurement and wafer inspection by inspector 109 detects an abnormality in Weno and W”, the determination in step 423 is denied and the process proceeds to step 425.
[0132] このステップ 425では、解析システム 107は、前記異常が回避できるように、コータ' デベロツバ 11 ]_での成膜条件及び塗布条件、露光装置 105での液浸露光条件及び 除去装置 Tでの液体'異物除去処理条件、のうちの少なくとも 1つの調整を指示する  [0132] In this step 425, the analysis system 107 uses the film forming conditions and coating conditions in the coater 'developer 11] _, the immersion exposure conditions in the exposure apparatus 105, and the removal apparatus T so that the abnormality can be avoided. Instruct to adjust at least one of the liquid's foreign matter removal treatment conditions
[0133] なお、以下では、便宜上、「コータ 'デベロツバ 111での成膜条件及び塗布条件、露 光装置 105での液浸露光条件及び除去装置 Tでの液体'異物除去処理条件、のう ちの少なくとも 1つ」を、「少なくとも 1つのウェハ処理条件」ともいう。 [0133] In the following, for convenience, the film forming conditions and coating conditions in the coater 'developer 111, the immersion exposure conditions in the exposure device 105, and the liquid' foreign matter removal processing conditions in the removal device T will be described. “At least one” is also referred to as “at least one wafer processing condition”.
[0134] なお、液浸露光条件とは、液体 LQを液浸領域に供給するときの供給条件、液体 L Qを液浸領域から回収するときの回収条件、ウェハ Wの移動条件、液浸領域の大き さ及び液浸領域の形状のうちの少なくとも 1つを含む。具体例として、メインコントロー ラ 42は、液浸領域を形成する液体 LQ中の気泡の発生を抑えるために、(1)液体供 給装置 11の脱気装置の脱気能力を高めたり、(2)供給口 12から供給される液体 LQ の単位時間当たりの供給量を調整したり、 (3)回収口 22を介した単位時間当たりの 回収量を調整する。液浸領域の大きさ及び形状の調整によっても、液浸領域での気 泡の発生、ウェハ W上に形成されて 、る膜内部への液体 LQの浸透 (膜と液体 LQと の接触時間に依存)を抑えることができる。 [0134] The immersion exposure conditions are the supply conditions for supplying the liquid LQ to the immersion area, the recovery conditions for recovering the liquid LQ from the immersion area, the moving conditions of the wafer W, the conditions for the immersion area. Includes at least one of size and shape of the immersion area. As a specific example, the main controller In order to suppress the generation of bubbles in the liquid LQ that forms the liquid immersion area, La 42 can either (1) increase the degassing capacity of the degassing device of the liquid supply device 11 or (2) supply from the supply port 12 Adjust the amount of liquid LQ supplied per unit time, or (3) adjust the amount recovered per unit time via the recovery port 22. By adjusting the size and shape of the immersion area, bubbles are generated in the immersion area, and the liquid LQ formed on the wafer W penetrates into the inside of the film (in the contact time between the film and the liquid LQ). Dependency).
[0135] 上記ウェハ Wの移動条件は、液浸領域の液体 LQに対するウェハ Wの移動速度、 加速度、減速度、移動方向、移動軌跡、移動距離、ウェハ Wの各位置が液体 LQ〖こ 浸されている時間及びフォーカス'レベリング条件のうちの少なくとも 1つを含む。  [0135] The movement condition of the wafer W described above is that the movement speed, acceleration, deceleration, movement direction, movement trajectory, movement distance, and each position of the wafer W with respect to the liquid LQ in the immersion area are immersed in the liquid LQ. Includes at least one of the current time and focus' leveling conditions.
[0136] また、液体 ·異物除去の処理条件とは、たわみ進行波のオン Zオフ条件、ウェハ W の回転速度、ウェハ Wの傾斜角度、前記弹性ステータ 161 Aが用いられるときには気 体の吹き出し条件、前記弹性ステータ 161Bが用いられるときには吸引条件、及び前 記乾燥装置が用いられるときには乾燥条件のうちの少なくとも 1つを含む。  [0136] The processing conditions for liquid / foreign matter removal include the on / off condition of the deflection traveling wave, the rotation speed of the wafer W, the inclination angle of the wafer W, and the blowing condition of the gas when the inertial stator 161A is used. When the inertial stator 161B is used, it includes at least one of suction conditions, and when the drying device is used, it includes at least one of drying conditions.
[0137] 次のステップ 501では、ウェハ測定 '検査器 109は、「少なくとも 1つのウェハ処理条 件'処理結果」に関する情報に基づいて、前記液浸露光されたウェハ Wを検査する ウェハ検査処理 1の検査条件を最適化する。ここでの検査条件は、ウェハ Wにおけ る検査位置及び検査感度の少なくとも一方を含む。  [0137] In the next step 501, the wafer measurement 'inspector 109 inspects the immersion-exposed wafer W based on the information on "at least one wafer processing condition' processing result". Wafer inspection processing 1 Optimize the inspection conditions. The inspection conditions here include at least one of an inspection position and inspection sensitivity on the wafer W.
[0138] 次のステップ 503では、ウェハ Wはウェハ測定.検査器 109に移送され、ウェハ測 定'検査器 109にてウェハ検査処理 1が行われる。ここでは、最適な検査条件に基づ V、てウェハ Wの外観検査が行われる。  In the next step 503, the wafer W is transferred to the wafer measurement / inspection instrument 109, and the wafer inspection process 1 is performed in the wafer measurement / inspection instrument 109. Here, the appearance inspection of the wafer W and the wafer W is performed based on the optimum inspection conditions.
[0139] 次のステップ 505では、ウェハ検査処理 1の検査結果が解析システム 107などに送 信される。  [0139] In the next step 505, the inspection result of the wafer inspection process 1 is transmitted to the analysis system 107 or the like.
[0140] 次のステップ 507では、解析システム 107は、ウェハ検査処理 1の検査結果に基づ いて、ウエノ、 Wに異常がある力否かを判断する。そして、異常がなければ、このステツ プ 507での判断は肯定され、前記ステップ 515に移行する。一方、ウェハ Wに異常 があれば、ステップ 507での判断は否定され、ステップ 509に移行する。  [0140] In the next step 507, the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 1. If there is no abnormality, the determination in step 507 is affirmed, and the routine proceeds to step 515. On the other hand, if there is an abnormality in wafer W, the determination in step 507 is denied, and the process proceeds to step 509.
[0141] このステップ 509では、解析システム 107は、ウェハ検査処理 1の検査結果に基づ いて、ウエノ、 W上の液体.異物がウェハ Wに悪影響を及ぼすおそれがある力否かを 判断する。ここでの判断結果は除去装置 Tに送信される。そして、ウェハ W上の液体 '異物がウェハ Wに悪影響を及ぼすおそれがなければ、このステップ 509での判断 は否定され、前記ステップ 513に移行する。一方、ウェハ W上の液体 '異物がウェハ Wに悪影響を及ぼすおそれがあれば、ステップ 509での判断は肯定され、ステップ 5 11に移行する。 [0141] In this step 509, the analysis system 107 determines whether or not the liquid on the wafer and the W. The foreign matter may have a bad influence on the wafer W based on the inspection result of the wafer inspection process 1. to decide. The determination result here is transmitted to the removing device T. If there is no possibility that the liquid on the wafer W has a bad influence on the wafer W, the determination at this step 509 is denied, and the routine proceeds to the step 513. On the other hand, if there is a possibility that the liquid 'foreign matter on the wafer W may adversely affect the wafer W, the determination in step 509 is affirmed, and the routine proceeds to step 511.
[0142] このステップ 511では、ウェハ Wが除去装置 Τに移送され、液体'異物除去処理が 再度行われる。  [0142] In this step 511, the wafer W is transferred to the removing device 、, and the liquid 'foreign matter removing process is performed again.
[0143] 次のステップ 513では、解析システム 107は、前記異常が回避できるように、「少な くとも 1つのウェハ処理条件」の調整を指示する。  [0143] In the next step 513, the analysis system 107 instructs adjustment of "at least one wafer processing condition" so that the abnormality can be avoided.
[0144] 次のステップ 515では、ウェハ Wはコータ 'デベロッパ 111に移送され、コータ 'デ ベロッパ 111にて ΡΕΒ処理が行われる。 In the next step 515, the wafer W is transferred to the coater / developer 111 and the coater / developer 111 performs the dredging process.
[0145] 次のステップ 517では、ウェハ測定 '検査器 109は、「少なくとも 1つのウェハ処理条 件'処理結果」に関する情報に基づいて、前記 ΡΕΒ処理がなされたウェハ Wを検査 するウェハ検査処理 2の検査条件を最適化する。ここでの検査条件は、ウェハ Wに おける検査位置及び検査感度の少なくとも一方を含む。 [0145] In the next step 517, the wafer measurement 'inspector 109 performs wafer inspection processing 2 for inspecting the wafer W that has been subjected to the above-described defect processing based on information on "at least one wafer processing condition' processing result". Optimize the inspection conditions. The inspection conditions here include at least one of the inspection position and inspection sensitivity on the wafer W.
[0146] 次のステップ 519では、ウェハ Wはウェハ測定.検査器 109に移送され、ウェハ測 定'検査器 109にてウェハ検査処理 2が行われる。ここでは、最適な検査条件に基づIn the next step 519, the wafer W is transferred to the wafer measurement / inspection instrument 109, and the wafer inspection process 2 is performed in the wafer measurement / inspection instrument 109. Here, based on the optimal inspection conditions
V、てウェハ Wの外観検査が行われる。 Visual inspection of V and wafer W is performed.
[0147] 次のステップ 521では、ウェハ検査処理 2の検査結果が解析システム 107などに送 信される。 In the next step 521, the inspection result of the wafer inspection process 2 is transmitted to the analysis system 107 or the like.
[0148] 次のステップ 523では、解析システム 107は、ウェハ検査処理 2の検査結果に基づ いて、ウエノ、 Wに異常がある力否かを判断する。そして、異常がなければ、このステツ プ 523での判断は肯定され、前記ステップ 527に移行する。一方、ウェハ Wに異常 があれば、ステップ 523での判断は否定され、ステップ 525に移行する。  [0148] In the next step 523, the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 2. If there is no abnormality, the determination in step 523 is affirmed, and the routine proceeds to step 527. On the other hand, if there is an abnormality in wafer W, the determination in step 523 is denied and the process proceeds to step 525.
[0149] このステップ 525では、解析システム 107は、前記異常が回避できるように、「少なく とも 1つのウェハ処理条件」の調整を指示する。  In step 525, the analysis system 107 instructs adjustment of “at least one wafer processing condition” so that the abnormality can be avoided.
[0150] 次のステップ 527では、ウェハ Wはコータ 'デベロッパ 111に移送され、コータ 'デ ベロッパ 111にて現像処理が行われる。 [0151] 次のステップ 601では、ウェハ測定 '検査器 109は、「少なくとも 1つのウェハ処理条 件 ·処理結果」に関する情報に基づいて、前記現像処理がなされたウェハ Wを検査 するウェハ検査処理 3の検査条件を最適化する。ここでの検査条件は、ウェハ Wに おける検査位置及び検査感度の少なくとも一方を含む。 In the next step 527, the wafer W is transferred to the coater / developer 111, and development processing is performed in the coater / developer 111. [0151] In the next step 601, the wafer measurement 'inspector 109 inspects the wafer W that has been subjected to the development processing based on the information related to "at least one wafer processing condition / processing result" 3 Optimize the inspection conditions. The inspection conditions here include at least one of the inspection position and inspection sensitivity on the wafer W.
[0152] 次のステップ 603では、ウェハ Wはウェハ測定.検査器 109に移送され、ウェハ測 定'検査器 109にてウェハ検査処理 3が行われる。ここでは、最適な検査条件に基づ V、てウェハ Wにおける露光パターン(レジストパターン)の検査が行われる。  In the next step 603, the wafer W is transferred to the wafer measurement / inspection device 109, and the wafer measurement / inspection device 109 performs wafer inspection processing 3. Here, the exposure pattern (resist pattern) on the wafer W is inspected based on the optimum inspection conditions.
[0153] 次のステップ 605では、ウェハ検査処理 3の検査結果が解析システム 107に送信さ れる。  In the next step 605, the inspection result of the wafer inspection process 3 is transmitted to the analysis system 107.
[0154] 次のステップ 607では、解析システム 107は、ウェハ検査処理 3の検査結果に基づ いて、ウエノ、 Wに異常がある力否かを判断する。そして、異常がなければ、このステツ プ 607での判断は肯定され、前記ステップ 611に移行する。一方、ウェハ Wに異常 があれば、ステップ 607での判断は否定され、ステップ 609に移行する。  [0154] In the next step 607, the analysis system 107 determines whether or not there is an abnormality in Ueno and W based on the inspection result of the wafer inspection process 3. If there is no abnormality, the determination in step 607 is affirmed, and the routine proceeds to step 611. On the other hand, if there is an abnormality in wafer W, the determination in step 607 is denied, and the process proceeds to step 609.
[0155] このステップ 609では、解析システム 107は、前記異常が回避できるように、「少なく とも 1つのウェハ処理条件」の調整を指示する。  In this step 609, the analysis system 107 instructs adjustment of “at least one wafer processing condition” so that the abnormality can be avoided.
[0156] 次のステップ 611では、解析システム 107は、各計測結果、解析結果、各処理条件 、各検査結果などを前記相関データベースに登録する。この相関データベースは、 前記ウェハ Wの検査結果を予測する際に参照される。また、ここでは、この相関デー タベースに基づいて、前記成膜'レジスト処理での各計測結果、成膜条件及び各塗 布条件のうちの少なくとも 1つと検査装置による検査での異常検出との相関関係、前 記液浸モニタ処理でのモニタ結果と検査装置による検査での異常検出との相関関係 、前記液体 ·異物除去の処理結果と検査装置による検査での異常検出との相関関係 などが取得される。  In the next step 611, the analysis system 107 registers each measurement result, analysis result, each processing condition, each inspection result, etc. in the correlation database. This correlation database is referred to when the inspection result of the wafer W is predicted. Further, here, based on this correlation database, correlation between at least one of each measurement result, film formation condition, and each coating condition in the above-mentioned film formation'resist process and anomaly detection in the inspection by the inspection apparatus. Correlation, correlation between the monitoring result in the liquid immersion monitoring process and abnormality detection in the inspection by the inspection apparatus, correlation between the processing result of the liquid / foreign matter removal and abnormality detection in the inspection apparatus Is done.
[0157] 次のステップ 613では、必要に応じて、エッチング装置 115によるエッチング処理、 酸ィ匕 ·イオン注入装置 119による不純物拡散処理、 CVD装置 113による配線処理、 CMP装置 117による平坦ィ匕処理などが行われる。  [0157] In the next step 613, if necessary, etching processing by the etching apparatus 115, impurity diffusion processing by the acid / ion implantation apparatus 119, wiring processing by the CVD apparatus 113, flatness processing by the CMP apparatus 117, etc. Is done.
[0158] 次のステップ 615では、そのウェハ Wに対する処理工程が終了した力否かを判断 する。処理工程が終了していなければ、ここでの判断は否定され、前記ステップ 401 に戻る。 [0158] In the next step 615, it is determined whether or not the processing process for the wafer W is completed. If the processing step is not completed, the determination here is denied and the step 401 is performed. Return to.
[0159] 以下、ステップ 615での判断が肯定されるまで、ステップ 401〜ステップ 615の処理 が繰り返される。そのウェハ Wに対する処理工程が終了すれば、ステップ 615での判 断が肯定され、ステップ 617に移行する。  [0159] Hereinafter, the processing of step 401 to step 615 is repeated until the determination in step 615 is affirmed. When the processing process for the wafer W is completed, the determination in step 615 is affirmed, and the process proceeds to step 617.
[0160] このステップ 617では、プロ一ビング処理が行われる。  [0160] In step 617, a probing process is performed.
[0161] 次のステップ 619では、不良が検出された力否かが判断される。そして、不良が検 出されなければ、ステップ 619での判断は否定され、前記ステップ 623に移行する。 一方、不良が検出されると、ステップ 619での判断は肯定され、ステップ 621に移行 する。  [0161] In the next step 619, it is determined whether or not a force has been detected. If no defect is detected, the determination at step 619 is denied, and the routine proceeds to step 623. On the other hand, if a defect is detected, the determination at step 619 is affirmed and the routine proceeds to step 621.
[0162] このステップ 621では、リペア処理が行われる。具体的には、冗長回路への置換処 理などが行われる。  [0162] In this step 621, a repair process is performed. Specifically, replacement processing with a redundant circuit is performed.
[0163] 次のステップ 623では、ダイシング処理が行われる。 [0163] In the next step 623, a dicing process is performed.
[0164] 次のステップ 625では、パッケージング処理及びボンディング処理が行われる。そし て、半導体製造システム 100の動作が終了する。  [0164] In the next step 625, a packaging process and a bonding process are performed. Then, the operation of the semiconductor manufacturing system 100 ends.
[0165] これまでの説明からわ力るように、本実施形態では、図 20〜図 24のフローチャート に対応するプログラムにおいて、本発明の第 1〜第 3のプログラムの一例が実行され 、図 20〜図 24のフローチャートに対応するプログラムが格納されている各フラッシュ メモリによって、本発明の記録媒体の一例が実現されて 、る。  [0165] As can be seen from the above description, in the present embodiment, examples of the first to third programs of the present invention are executed in the program corresponding to the flowcharts of Figs. An example of the recording medium of the present invention is realized by each flash memory storing a program corresponding to the flowchart of FIG.
[0166] 以上説明したように、本実施形態に係る半導体製造システム 100によると、ウェハ 測定 ·検査器 109は、「少なくとも 1つのウェハ処理条件 ·処理結果」に関する情報に 基づいて、液浸露光されたウェハ Wを検査するウェハ検査処理 1の検査条件、 PEB 処理がなされたウェハ Wを検査するウェハ検査処理 2の検査条件、及び現像処理が なされたウェハ Wを検査するウェハ検査処理 3の検査条件を、それぞれ最適化して いる。これにより、効率的なウェハ Wの良否検査が可能となる。従って、結果としてゥ ェハ Wに対する処理を効率良く行うことが可能となる。  As described above, according to the semiconductor manufacturing system 100 according to the present embodiment, the wafer measurement / inspector 109 is subjected to immersion exposure based on information on “at least one wafer processing condition / processing result”. Wafer Inspection Process 1 for Inspecting Wafer W Inspected, Wafer Inspection Process 2 for Inspecting Wafer W that has been PEB Processed, and Wafer Inspection Process 3 for Inspecting Wafer W that has Been Developed Are optimized respectively. As a result, the wafer W can be efficiently inspected. As a result, it is possible to efficiently process the wafer W.
[0167] また、解析システム 107は、「少なくとも 1つのウェハ処理条件 ·処理結果」に基づい て、ウェハ測定 '検査器 109によるウェハ Wの検査結果を予測している。そして、解 析システム 107は、予測結果が「ウェハ測定 '検査器 109によるウェハ検査でウェハ wの異常が検出される」であれば、その異常が回避できるように「少なくとも 1つのゥェ ハ処理条件」の調整を指示している。これにより、歩留まりを向上させることが可能と なる。 Further, the analysis system 107 predicts the inspection result of the wafer W by the wafer measurement / inspector 109 based on “at least one wafer processing condition / processing result”. Then, the analysis system 107 indicates that the predicted result is “wafer measurement” by wafer inspection by the inspector 109. If an abnormality in w is detected, it is instructed to adjust “at least one wafer processing condition” so that the abnormality can be avoided. As a result, the yield can be improved.
[0168] この場合に、解析システム 107は、予め取得されている相関関係を参照して、ゥェ ハ測定 '検査器 109によるウェハ Wの検査結果を予測している。これにより、予測精 度を高めることが可能となる。  [0168] In this case, the analysis system 107 predicts the inspection result of the wafer W by the wafer measurement 'inspector 109 with reference to the correlation acquired in advance. This makes it possible to improve the prediction accuracy.
[0169] また、解析システム 107は、ウェハ検査処理 1の検査結果に基づいて、ウェハ W上 の液体 .異物がウェハ wに悪影響を及ぼすおそれがある力否かを判断し、その判断 結果を除去装置 Tに送信している。そして、除去装置 Tは、ウェハ W上の液体'異物 力 sウェハ wに悪影響を及ぼすおそれがあれば、液体 ·異物除去処理を再度行ってい る。これにより、歩留まりを向上させることが可能となり、結果としてウエノ、 Wに対する 処理を効率良く行うことが可能となる。  [0169] Further, the analysis system 107 determines whether or not the liquid on the wafer W has a possibility of adversely affecting the wafer w based on the inspection result of the wafer inspection process 1, and removes the determination result. Transmitting to device T. The removal device T performs the liquid / foreign matter removal process again if there is a possibility of adversely affecting the liquid foreign matter force s the wafer w on the wafer W. As a result, it is possible to improve the yield, and as a result, it is possible to efficiently perform processing on Ueno and W.
[0170] この場合に、除去装置 Tは、ウェハ W上の液体'異物がウェハ Wに悪影響を及ぼす おそれがあれば、液体'異物除去の処理条件を調整することができる。従って、結果 としてウェハ wに対する処理を効率良く行うことが可能となる。  In this case, if the liquid “foreign matter” on the wafer W is likely to adversely affect the wafer W, the removing apparatus T can adjust the processing conditions for removing the liquid “foreign matter”. Therefore, as a result, it is possible to efficiently process the wafer w.
[0171] なお、上記実施形態では、レチクル Rが透過型の場合について説明した力 これに 限らず、反射型であっても良い。  In the above embodiment, the force described in the case where the reticle R is a transmissive type is not limited to this, and a reflective type may be used.
[0172] また、上記実施形態において、前記液浸モニタ装置 260を用いる代わりに、一例と して図 26に示されるように、ウェハ Wに前記 CCDセンサモジュール 262が設けられ ても良い。ここでは、露光開始ショット SSの手前に CCDセンサモジュール 262が設け られている。これにより、通常の露光シーケンス中に液浸状態をモニタできる。また、 前記ウェハステージ WST上の所定位置に前記 CCDセンサモジュール 262が設けら れても良い。この場合も、露光中に液浸モニタを行うことが可能である。  [0172] In the above embodiment, instead of using the immersion monitoring device 260, the CCD sensor module 262 may be provided on the wafer W as shown in FIG. 26 as an example. Here, a CCD sensor module 262 is provided before the exposure start shot SS. Thereby, the immersion state can be monitored during the normal exposure sequence. Further, the CCD sensor module 262 may be provided at a predetermined position on the wafer stage WST. In this case also, it is possible to perform immersion monitoring during exposure.
[0173] また、上記実施形態では、前記液浸領域を照明するために、液浸領域の周辺部に 前記照明用光源 15が設置されている場合について説明したが、これに限らず、前記 照明用光源 15に代えて、例えば、前記基材 261上に発光素子を設けても良い。また 、前記液浸モニタ装置 260のラインセンサとして前記露光光 ELに感度を有するもの が用いられるときには、前記露光光 ELを用 、て液浸領域を照明しても良!、。 [0174] また、上記実施形態において、前記ウェハ測定 '検査器 109に代えて、オフライン のウェハ測定.検査器が用いられても良い。 [0173] In the above-described embodiment, the case where the illumination light source 15 is installed in the periphery of the immersion area in order to illuminate the immersion area has been described. For example, a light emitting element may be provided on the substrate 261 instead of the light source 15 for use. In addition, when a line sensor of the immersion monitoring device 260 having sensitivity to the exposure light EL is used, the exposure light EL may be used to illuminate the immersion area. In the above embodiment, an off-line wafer measurement / inspection device may be used in place of the wafer measurement / inspection device 109.
[0175] また、上記実施形態にお!、て、前記液浸露光されたウェハ Wの外観検査を行う検 查装置と、前記 PEB処理がなされたウェハ Wの外観検査を行う検査装置と、前記現 像処理がなされたウェハ Wのパターン検査を行う検査装置とが、それぞれ異なる検 查装置であっても良い。  [0175] Also, in the above embodiment, the inspection apparatus that performs the appearance inspection of the wafer W that has been subjected to the immersion exposure, the inspection apparatus that performs the appearance inspection of the wafer W that has been subjected to the PEB treatment, The inspection apparatuses that perform pattern inspection of the wafer W that has been subjected to the image processing may be different inspection apparatuses.
[0176] また、上記実施形態において、前記解析システム 107で行われる処理の少なくとも 一部が前記ウェハ測定 '検査器 109で行われても良い。  In the above embodiment, at least a part of the processing performed by the analysis system 107 may be performed by the wafer measurement / inspector 109.
[0177] また、上記実施形態において、前記液浸モニタ装置 260の一次元ラインセンサに 代えて、エリアセンサを用いても良い。但し、 CCDセンサの面積、処理時間、消費電 力などを考慮すると、一次元ラインセンサを用いてスキャン撮像するほうが好ましい。  [0177] In the above embodiment, an area sensor may be used instead of the one-dimensional line sensor of the immersion monitoring device 260. However, taking into account the area of the CCD sensor, processing time, power consumption, etc., it is preferable to perform scanning imaging using a one-dimensional line sensor.
[0178] また、上記実施形態では、前記液浸モニタ装置 260が、一次元ラインセンサを 6個 有している場合について説明した力 これに限定されるものではない。さらに、上記 実施形態における各一次元ラインセンサの物平面位置は一例であり、これに限定さ れるものではない。  [0178] In the above embodiment, the force described in the case where the immersion monitoring apparatus 260 has six one-dimensional line sensors is not limited to this. Furthermore, the object plane position of each one-dimensional line sensor in the above embodiment is an example, and the present invention is not limited to this.
[0179] また、上記実施形態では、前記液浸モニタ装置 260が、 CCDセンサモジュール 26 2を 5個有している場合について説明した力 これに限定されるものではない。また、 各 CCDセンサモジュールの配置についても上記実施形態に限定されるものではな い。  Further, in the above embodiment, the force described in the case where the immersion monitoring apparatus 260 has five CCD sensor modules 26 2 is not limited to this. Further, the arrangement of each CCD sensor module is not limited to the above embodiment.
[0180] また、上記実施形態において、前記液浸モニタ装置 260の各マイクロレンズに代え て、マイクロレンズの周囲にリング状の電歪素子を配置し、該電歪素子の駆動電圧を 調整することによって焦点距離の調整ができる、焦点距離調整機能付マイクロレンズ を使用して、物平面位置をラインセンサ毎に設定しても良い。  [0180] In the above embodiment, instead of each microlens of the immersion monitoring device 260, a ring-shaped electrostrictive element is arranged around the microlens, and the drive voltage of the electrostrictive element is adjusted. The object plane position may be set for each line sensor by using a microlens with a focal length adjustment function that can adjust the focal length by using a microlens.
[0181] また、上記実施形態では、前記生成装置 60が 1個の弾性ステータを有する場合に ついて説明したが、 XY平面上に配置される複数の弾性ステータを有しても良 、。  [0181] In the above-described embodiment, the case where the generating device 60 has one elastic stator has been described, but a plurality of elastic stators arranged on the XY plane may be included.
[0182] また、上記実施形態では、前記液浸領域に満たされる液体 LQが純水の場合につ いて説明したが、これに限らず、前記露光光 ELに対して透過性を有し、できるだけ 屈折率が高ぐ温度変化による屈折率変化が少なぐ粘度が低ぐ前記光学素子 FL 及びフォトレジストに対して安定なものを用いることができる。候補としては、露光光に 対する透過性は良くないが、高屈折率のグリセロールなどがある。 [0182] In the above-described embodiment, the case where the liquid LQ filled in the liquid immersion region is pure water has been described. However, the present invention is not limited to this, and the liquid LQ is transmissive to the exposure light EL as much as possible. Optical element FL with low refractive index change due to temperature change with high refractive index and low viscosity In addition, a material that is stable with respect to a photoresist can be used. Candidates include glycerol, which has a high refractive index, although it does not have good transparency to exposure light.
[0183] また、上記実施形態では、液浸モニタの解析を前記液浸モニタ装置 260の解析装 置 263が行う場合について説明した力 これに限らず、例えば、前記液浸モニタ装置 260の各ラインセンサの出力信号に基づいて、メインコントローラ 42が液浸モニタの 解析を行っても良い。  Further, in the above embodiment, the force described for the case where the analysis device 263 of the immersion monitor device 260 performs the analysis of the immersion monitor is not limited to this. For example, each line of the immersion monitor device 260 Based on the output signal of the sensor, the main controller 42 may analyze the immersion monitor.
[0184] また、上記実施形態にお!、て、除去装置 Tは、露光処理後のウェハ Wだけでなぐ 露光処理前のウェハ Wも処理対象としても良い。すなわち、露光処理前のウェハ W に付着して 、るパーティクルなどの異物を除去するのに用いても良 、。  [0184] In addition, in the above embodiment, the removal apparatus T may use not only the wafer W after the exposure process but also the wafer W before the exposure process. In other words, it may be used to remove foreign matters such as particles adhering to the wafer W before the exposure processing.
[0185] また、上記実施形態では、前記露光装置本体 Sでの露光対象が半導体製造用の 半導体ウェハの場合について説明した力 これに限らず、例えば、ディスプレイデバ イス用のガラス基板、薄膜磁気ヘッド用のセラミックウエノ、、あるいは露光装置で用い られるマスク又はレチクルの原版 (合成石英、シリコンウエノ、)などであっても良い。す なわち、前記露光装置本体 Sは、半導体素子製造用の露光装置に限らず、例えば、 液晶表示素子製造用の露光装置、ディスプレイ製造用の露光装置、薄膜磁気ヘッド 製造用の露光装置、撮像素子製造用の露光装置、レチクル又はマスク製造用の露 光装置などであっても良い。  Further, in the above embodiment, the force described in the case where the exposure object in the exposure apparatus main body S is a semiconductor wafer for semiconductor manufacturing is not limited to this. For example, a glass substrate for a display device, a thin film magnetic head Or a mask or reticle original plate (synthetic quartz, silicon wafer) used in an exposure apparatus. In other words, the exposure apparatus body S is not limited to an exposure apparatus for manufacturing a semiconductor element, but includes, for example, an exposure apparatus for manufacturing a liquid crystal display element, an exposure apparatus for manufacturing a display, an exposure apparatus for manufacturing a thin film magnetic head, and an imaging device. It may be an exposure apparatus for element manufacture, an exposure apparatus for reticle or mask manufacture, or the like.
[0186] さらに、前記露光装置本体 Sでの露光対象の形状は、円形状に限定されるもので はなぐ例えば矩形状であっても良い。この場合には、前記液浸モニタ装置 260の基 材 261の形状も矩形状のものが用いられる。  Furthermore, the shape of the exposure target in the exposure apparatus main body S is not limited to a circular shape, but may be, for example, a rectangular shape. In this case, the base material 261 of the immersion monitoring device 260 is also rectangular.
[0187] また、上記実施形態では、前記半導体製造システム 100の露光装置が 1台の場合 について説明したが、これに限らず、露光装置が複数台あっても良い。  [0187] In the above embodiment, the case where the semiconductor manufacturing system 100 has one exposure apparatus has been described. However, the present invention is not limited to this, and a plurality of exposure apparatuses may be provided.
[0188] また、上記実施形態にお!、て、前記露光装置本体 Sは、レチクル Rとウエノ、 Wとを 走査方向に同期移動しつつレチクル Rに形成されたパターンをウェハ Wに露光する 走査型露光装置(いわゆるスキャニングステツノ )であっても良い。また、レチクル尺と ウエノ、 Wとを静止した状態でレチクル Rに形成されたパターンを一括露光し、ウェハ Wを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置であって も良い。さらに、ステップ'アンド'スティツチ方式の露光装置であっても良い。 [0189] また、前記露光装置本体 Sは、例えば、特開平 10— 163099号公報及び特開平 1 0— 214783号公報、並びにこれらに対応する米国特許第 6,590,634号明細書、特 表 2000— 505958号公報 (及び対応する米国特許第 5,969,441号明細書)などに 開示される、複数のウェハステージを備えたツインステージ型の露光装置であっても 良い。 In the above embodiment, the exposure apparatus body S exposes the pattern formed on the reticle R onto the wafer W while moving the reticle R, the wafer, and W synchronously in the scanning direction. It may be a mold exposure apparatus (so-called scanning steno). Further, a step-and-repeat type projection exposure apparatus that collectively exposes the pattern formed on the reticle R while the reticle scale, the wafer, and W are stationary, and sequentially moves the wafer W stepwise may be used. Further, a step 'and' stitch type exposure apparatus may be used. Further, the exposure apparatus main body S includes, for example, JP-A-10-163099 and JP-A-10-214783, and the corresponding US Pat. No. 6,590,634, JP 2000-505958 A. It may be a twin-stage type exposure apparatus provided with a plurality of wafer stages as disclosed in Japanese Patent Publication (and corresponding US Pat. No. 5,969,441).
[0190] なお、上記実施形態の露光装置本体 Sでは、光透過性の基板上に所定の遮光パ ターン (又は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 こ のマスクに代えて、例えば米国特許第 6, 778, 257号明細書に開示されているよう に、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン 、あるいは発光パターンを形成する電子マスク (又は可変成形マスク、例えば非発光 型画像表示素子(空間光変調器とも呼ばれる)の一種である DMD (Digital Micro-mi rror Device)などを含む)を用いても良い。また、露光装置は、国際公開第 2001/0 35168号パンフレットに開示されているように、干渉縞をウェハ W上に形成すること によって、ウェハ W上にデバイスパターンを形成する露光装置(リソグラフィシステム) であっても良い。  Note that in the exposure apparatus main body S of the above embodiment, a force using a light transmission mask in which a predetermined light shielding pattern (or phase pattern “dimming pattern”) is formed on a light transmissive substrate. Instead, as disclosed in, for example, US Pat. No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed ( Alternatively, a variable shaped mask, for example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (also called a spatial light modulator) may be used. The exposure apparatus is an exposure apparatus (lithography system) that forms a device pattern on a wafer W by forming interference fringes on the wafer W as disclosed in WO 2001/0 35168. It may be.
[0191] また、前記露光装置本体 Sは、例えば、特開平 6— 124873号公報、特開平 10— 3 03114号公報、米国特許第 5825043号明細書などに開示される、ウェハ Wの表面 全体が液体中に浸力つて 、る状態で露光を行う液浸露光装置であっても良 、。  [0191] Further, the exposure apparatus main body S has the entire surface of the wafer W disclosed in, for example, JP-A-6-124873, JP-A-10-303114, US Pat. No. 5825043, and the like. It may be an immersion exposure apparatus that performs exposure in a state where the immersion power is in the liquid.
[0192] また、上記実施形態では、局所液浸タイプの露光装置を例示したが、本発明の基 板処理方法及び基板処理システムのうちの一部、例えば成膜装置によって形成され た膜の成膜状況及び成膜装置の成膜条件の少なくとも一方に基づいて、検査条件 を最適化する基板処理方法及び基板処理システムなどは、液浸タイプでな 、露光装 置にも適用可能である。従って、露光装置は液浸タイプに限られない。  [0192] In the above-described embodiment, the local immersion type exposure apparatus has been exemplified. However, a part of the substrate processing method and the substrate processing system of the present invention, for example, the formation of a film formed by a film forming apparatus. The substrate processing method and the substrate processing system that optimize the inspection conditions based on at least one of the film condition and the film forming conditions of the film forming apparatus are not immersion type but can also be applied to the exposure apparatus. Therefore, the exposure apparatus is not limited to the immersion type.
[0193] 逆に、例えば、液浸モニタ処理は露光装置が液浸タイプである場合に特有の処理 であって、液浸タイプでな 、露光装置を用いた処理の中では実行されな 、処理であ る。よって、この液浸モニタ処理の処理結果を用いて測定 ·検査結果を予測し、引い ては、測定 '検査処理を最適化することは、露光装置が液浸タイプの露光装置である 場合に限られる。 [0194] ところが、デバイス製造工場の中においては、液浸タイプでない露光装置と液浸タ イブの露光装置が混在し、これらタイプの異なる露光装置の結果を共通の測定'検 查装置で検査する運用方法も考えられる。このような運用方法に対応して、本発明の 基板処理方法及び基板処理システムにお 、て、露光装置のタイプが液浸タイプであ る力否かに応じて、測定 '検査処理を変更するように構成しても良い。例えば液浸モ ユタ処理のように、液浸タイプでな ヽ露光装置を用いた処理の中では実行されな ヽ 処理に対しては、測定 ·検査処理結果を予測する際に、予測結果に液浸モニタ処理 結果を反映させるためのパラメータを省略して予測結果を求めることができるようにす れば良い。 [0193] Conversely, for example, the immersion monitoring process is specific to the case where the exposure apparatus is of the immersion type, and is not performed in the process using the exposure apparatus, which is not of the immersion type. It is. Therefore, the measurement / inspection result is predicted using the processing result of the immersion monitoring process, and the measurement 'inspection process is optimized only when the exposure apparatus is an immersion type exposure apparatus. It is done. [0194] However, in a device manufacturing factory, there are a mixture of non-immersion type exposure apparatuses and immersion type exposure apparatuses, and the results of these different types of exposure apparatuses are inspected with a common measurement and inspection apparatus. An operation method is also conceivable. Corresponding to such an operation method, in the substrate processing method and the substrate processing system of the present invention, the measurement 'inspection process is changed according to whether or not the exposure apparatus type is a liquid immersion type. You may comprise as follows. For example, for an immersion type process such as an immersion monitor process that is not performed in a process that uses an exposure apparatus, when the measurement / inspection process result is predicted, It suffices to omit the parameters for reflecting the immersion monitoring processing result so that the prediction result can be obtained.
[0195] また、例えば、液体'異物除去処理も露光装置が液浸タイプの露光装置であった場 合と、液浸タイプでない露光装置であった場合とでは処理内容が異なる。これに対し ては、測定 ·検査処理される基板が液浸タイプの露光装置で処理された基板か、液 浸タイプでな 、露光装置で処理された基板かの情報を受信し、この受信した情報に 応じて測定 '検査処理結果を予測するためのパラメータ設定を調整すれば良い。  Further, for example, the processing content of the liquid / foreign matter removing process differs between when the exposure apparatus is an immersion type exposure apparatus and when the exposure apparatus is a non-immersion type exposure apparatus. In response to this, information on whether the substrate to be measured / inspected is processed by an immersion type exposure apparatus or a substrate processed by an exposure apparatus that is not an immersion type is received. Measure according to the information 'Parameter settings for predicting the inspection process result can be adjusted.
[0196] また、上記実施形態では、本発明に係るプログラムは、各フラッシュメモリに記録さ れているが、他の記録媒体 (CD、光磁気ディスク、 DVD、メモリカード、 USBメモリ、 フレキシブルディスク等)に記録されていても良い。また、ネットワーク (LAN、イントラ ネット、インターネットなど)を介して本発明に係るプログラムを各フラッシュメモリに転 送しても良い。  [0196] In the above embodiment, the program according to the present invention is recorded in each flash memory, but other recording media (CD, magneto-optical disk, DVD, memory card, USB memory, flexible disk, etc.) ) May be recorded. Further, the program according to the present invention may be transferred to each flash memory via a network (LAN, intranet, Internet, etc.).
[0197] なお、上記実施形態で引用した露光装置などに関する全ての国際公開パンフレツ ト、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記 載の一部とする。  [0197] The disclosure of all the internationally disclosed pamphlets, US patent application publications and US patent specifications relating to the exposure apparatus and the like cited in the above embodiment is incorporated into the description of this specification. .
産業上の利用可能性  Industrial applicability
[0198] 以上説明したように、本発明の基板処理方法及び基板処理システムによれば、基 板に対する処理を効率良く行うのに適している。また、本発明のプログラム及び記憶 媒体によれば、基板処理システムに、基板に対する処理を効率良く行わせるのに適 している。 [0198] As described above, the substrate processing method and the substrate processing system of the present invention are suitable for efficiently performing processing on a substrate. Further, the program and the storage medium of the present invention are suitable for causing the substrate processing system to efficiently process a substrate.

Claims

請求の範囲 The scope of the claims
[1] 複数の処理装置を用いて基板に対する複数の処理を行い、少なくとも 1つの検査 装置を用いて前記基板の良否を検査する基板処理方法であって、  [1] A substrate processing method for performing a plurality of processes on a substrate using a plurality of processing apparatuses and inspecting the quality of the substrate using at least one inspection apparatus,
前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び該少 なくとも 1つの処理装置の稼動状態の、少なくとも一方に関する情報を前記少なくとも 1つの検査装置へ送信し、送信された前記情報に基づいて、前記少なくとも 1つの検 查装置における検査条件を最適化する工程を含む基板処理方法。  Information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device is transmitted to the at least one inspection device, and the transmitted information And a substrate processing method including a step of optimizing inspection conditions in the at least one inspection apparatus.
[2] 請求項 1に記載の基板処理方法において、  [2] In the substrate processing method according to claim 1,
前記少なくとも 1つの処理装置による処理結果及び該少なくとも 1つの処理装置の 稼動状態の少なくとも一方に基づいて、前記検査装置による検査で基板の異常が検 出されることを予測し、前記異常が回避できるように前記少なくとも 1つの処理装置に おける処理条件を調整する工程を、更に含む基板処理方法。  Based on at least one of the processing result of the at least one processing apparatus and the operating state of the at least one processing apparatus, it is predicted that an abnormality of the substrate will be detected by the inspection by the inspection apparatus, so that the abnormality can be avoided. A substrate processing method further comprising adjusting a processing condition in the at least one processing apparatus.
[3] 請求項 2に記載の基板処理方法において、 [3] In the substrate processing method according to claim 2,
前記少なくとも 1つの処理装置における処理条件を調整する工程では、前記予測 力 予め取得されている、前記少なくとも 1つの処理装置による処理結果及び該少な くとも 1つの処理装置の稼動状態の少なくとも一方と、前記検査装置による検査での 異常検出との相関関係を参照して行われる基板処理方法。  In the step of adjusting the processing condition in the at least one processing device, at least one of the processing result by the at least one processing device and the operating state of the at least one processing device, which is acquired in advance, the prediction power, A substrate processing method performed by referring to a correlation with abnormality detection in inspection by the inspection apparatus.
[4] 請求項 1に記載の基板処理方法において、 [4] In the substrate processing method according to claim 1,
前記複数の処理装置は、基板上に膜を形成する成膜装置を含み、  The plurality of processing apparatuses include a film forming apparatus that forms a film on a substrate,
前記検査条件を最適化する工程では、前記成膜装置によって形成された膜の成 膜状況及び前記成膜装置の成膜条件の少なくとも一方に基づいて、前記検査条件 の最適化が行われる基板処理方法。  In the step of optimizing the inspection conditions, the substrate processing in which the inspection conditions are optimized based on at least one of a film formation state of the film formed by the film formation apparatus and a film formation condition of the film formation apparatus. Method.
[5] 請求項 4に記載の基板処理方法において、 [5] The substrate processing method according to claim 4,
前記成膜状況は、膜厚、膜厚の変動状態及び膜の平坦度の少なくとも 1つを含み、 前記成膜条件は、膜材料、成膜方法、目標膜厚、膜厚均一性、成膜環境及び膜材 料の塗布条件の少なくとも 1つを含む基板処理方法。  The film formation state includes at least one of a film thickness, a film thickness variation state, and a film flatness. The film formation conditions include a film material, a film formation method, a target film thickness, a film thickness uniformity, and a film formation. A substrate processing method including at least one of an environment and a coating condition of a film material.
[6] 請求項 4又は 5に記載の基板処理方法にぉ 、て、 [6] The substrate processing method according to claim 4 or 5,
前記膜は、レジスト膜及びトップコート膜の少なくとも一方を含む基板処理方法。 The substrate processing method, wherein the film includes at least one of a resist film and a topcoat film.
[7] 請求項 4〜6の 、ずれか一項に記載の基板処理方法にお!、て、 [7] In the substrate processing method according to any one of claims 4 to 6!
前記成膜状況及び成膜条件の少なくとも一方に基づいて、前記検査装置による検 查で基板の異常が検出されることを予測し、前記異常が回避できるように前記成膜装 置における成膜条件を調整する工程を、更に含む基板処理方法。  Based on at least one of the film formation state and the film formation condition, it is predicted that the abnormality of the substrate is detected by the inspection by the inspection apparatus, and the film formation condition in the film formation apparatus is such that the abnormality can be avoided. The substrate processing method which further includes the process of adjusting.
[8] 請求項 7に記載の基板処理方法において、 [8] The substrate processing method according to claim 7,
前記成膜条件を調整する工程では、前記予測が、前記成膜状況及び成膜条件の 少なくとも一方と前記検査装置による検査での異常検出との相関関係を参照して行 われる基板処理方法。  The substrate processing method, wherein in the step of adjusting the film forming conditions, the prediction is performed with reference to a correlation between at least one of the film forming conditions and film forming conditions and abnormality detection in an inspection by the inspection apparatus.
[9] 請求項 3に記載の基板処理方法において、 [9] The substrate processing method according to claim 3,
前記複数の処理装置は、基板を液浸露光する液浸露光装置を含み、 前記検査装置を用いて前記液浸露光された基板を検査する露光検査工程と; 前記露光検査工程で基板に異常があることが検出された場合に、前記異常が回避 できるように前記複数の処理装置のうちの少なくとも 1つの処理装置における処理条 件を調整する工程と;を更に含み、  The plurality of processing apparatuses include an immersion exposure apparatus that performs immersion exposure on the substrate, and an exposure inspection process that inspects the substrate that has been subjected to immersion exposure using the inspection apparatus; Adjusting a processing condition in at least one processing device of the plurality of processing devices so that the abnormality can be avoided when it is detected;
前記検査条件を最適化する工程では、前記処理結果及び前記稼動状態の少なく とも一方に関する情報に基づいて、前記液浸露光された基板を検査する際の検査条 件を最適化する基板処理方法。  In the step of optimizing the inspection conditions, a substrate processing method for optimizing inspection conditions when inspecting the immersion-exposed substrate based on information on at least one of the processing result and the operating state.
[10] 請求項 9に記載の基板処理方法において、 [10] In the substrate processing method according to claim 9,
前記検査装置を用いて前記液浸露光後に行われる PEB処理がなされた基板を検 查する PEB検査工程と;  A PEB inspection process for inspecting a substrate subjected to PEB treatment performed after the immersion exposure using the inspection apparatus;
前記 PEB検査工程で基板に異常があることが検出された場合に、前記異常が回避 できるように前記複数の処理装置のうちの少なくとも 1つの処理装置における処理条 件を調整する工程と;を更に含み、  A step of adjusting processing conditions in at least one of the plurality of processing apparatuses so that the abnormality can be avoided when it is detected in the PEB inspection step that the substrate is abnormal. Including
前記検査条件を最適化する工程では、更に前記処理結果及び前記稼動状態の少 なくとも一方に関する情報に基づいて、前記 PEB処理がなされた基板を検査する際 の検査条件を最適化する基板処理方法。  In the step of optimizing the inspection conditions, the substrate processing method further optimizes the inspection conditions when inspecting the substrate subjected to the PEB processing based on information on at least one of the processing result and the operating state. .
[11] 請求項 10に記載の基板処理方法において、 [11] In the substrate processing method according to claim 10,
前記 PEB検査工程では、前記 PEB処理がなされた基板を、前記液浸露光された 基板を検査する検査装置とは別の検査装置を用いて検査する基板処理方法。 In the PEB inspection process, the substrate subjected to the PEB treatment was subjected to the immersion exposure. A substrate processing method for inspecting using an inspection apparatus different from an inspection apparatus for inspecting a substrate.
[12] 請求項 10又は 11に記載の基板処理方法にお!、て、  [12] In the substrate processing method according to claim 10 or 11,!
前記検査装置を用いて前記 PEB処理後に行われる現像処理がなされた基板を検 查する現像検査工程と;  A development inspection step of inspecting a substrate that has been subjected to the development processing performed after the PEB processing using the inspection device;
前記現像検査工程で基板に異常があることが検出された場合に、前記異常が回避 できるように前記複数の処理装置のうちの少なくとも 1つの処理装置における処理条 件を調整する工程と;を更に含み、  A step of adjusting processing conditions in at least one of the plurality of processing apparatuses so that the abnormality can be avoided when it is detected in the development inspection step that the substrate is abnormal. Including
前記検査条件を最適化する工程では、更に前記処理結果及び前記稼動状態の少 なくとも一方に関する情報に基づいて、前記現像処理がなされた基板を検査する際 の検査条件を最適化する基板処理方法。  In the step of optimizing the inspection conditions, the substrate processing method further optimizes the inspection conditions when inspecting the substrate subjected to the development processing based on information on at least one of the processing result and the operating state. .
[13] 請求項 12に記載の基板処理方法において、 [13] The substrate processing method according to claim 12,
前記現像検査工程では、前記現像処理がなされた基板を、前記液浸露光された基 板を検査する検査装置及び前記 PEB処理がなされた基板を検査する検査装置とは 別の検査装置を用いて検査する基板処理方法。  In the development inspection step, an inspection apparatus that inspects the substrate that has been subjected to the development process is inspected different from an inspection apparatus that inspects the substrate that has been subjected to immersion exposure and an inspection apparatus that inspects the substrate that has been subjected to the PEB process. Substrate processing method to be inspected.
[14] 請求項 12又は 13に記載の基板処理方法において、 [14] The substrate processing method according to claim 12 or 13,
前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び該少 なくとも 1つの処理装置の稼動状態の少なくとも一方と、前記露光検査工程の結果、 前記 PEB検査工程の結果及び前記現像検査工程の結果の少なくとも 1つを含む検 查結果と、を用いて、前記相関関係を求める工程を、更に含む基板処理方法。  At least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device, a result of the exposure inspection step, a result of the PEB inspection step, and the development inspection A substrate processing method further comprising a step of obtaining the correlation using a detection result including at least one of the results of the steps.
[15] 請求項 1に記載の基板処理方法にぉ 、て、 [15] The substrate processing method according to claim 1, wherein
前記複数の処理装置は、基板を液浸露光する液浸露光装置と、前記液浸露光装 置の内部及び外部の少なくとも一方に設けられ、基板上の液体及び異物の少なくと も一方を除去する液体'異物除去装置とを含み、  The plurality of processing apparatuses are provided in at least one of an immersion exposure apparatus that performs immersion exposure of the substrate and the immersion exposure apparatus, and removes at least one of the liquid and foreign matter on the substrate. Including a liquid 'foreign matter removing device,
前記検査条件を最適化する工程では、前記液浸露光処理シーケンス中のモニタ結 果及び前記液浸露光処理後に行われる前記液体 ·異物除去装置による液体及び異 物の除去処理結果の少なくとも一方に基づいて、前記検査条件の最適化が行われ る基板処理方法。  The step of optimizing the inspection condition is based on at least one of a monitoring result in the immersion exposure processing sequence and a liquid and foreign substance removal processing result by the liquid / foreign substance removal apparatus performed after the immersion exposure processing. A substrate processing method in which the inspection conditions are optimized.
[16] 請求項 15に記載の基板処理方法において、 前記液浸露光処理シーケンス中のモニタ結果に基づいて、前記検査装置による検 查で基板の異常が検出されることを予測し、前記異常が回避できるように前記液浸露 光装置における液浸露光条件を調整する工程、及び投影光学系の光学素子の汚染 を除去する工程の少なくとも 1つを、更に含む基板処理方法。 [16] The substrate processing method according to claim 15, Based on the monitoring result during the immersion exposure processing sequence, it is predicted that an abnormality of the substrate will be detected by the inspection by the inspection apparatus, and the immersion exposure in the immersion exposure apparatus so that the abnormality can be avoided. A substrate processing method further comprising at least one of a step of adjusting conditions and a step of removing contamination of an optical element of a projection optical system.
[17] 請求項 16に記載の基板処理方法において、 [17] The substrate processing method according to claim 16,
前記液浸露光条件を調整する工程では、前記予測が、予め取得されている、前記 液浸露光処理シーケンス中のモニタ結果と前記検査装置による検査での異常検出と の相関関係を参照して行われる基板処理方法。  In the step of adjusting the immersion exposure condition, the prediction is performed with reference to a correlation between a monitor result obtained in advance in the immersion exposure processing sequence and abnormality detection in the inspection by the inspection apparatus. Substrate processing method.
[18] 請求項 16又は 17に記載の基板処理方法において、  [18] The substrate processing method according to claim 16 or 17,
前記モニタ結果は、液浸領域内の異物の種類、その位置、大きさ、形状及び数な どの異物情報、及び光学素子の汚染の位置、汚染の程度などの光学素子汚染情報 のうちの少なくとも 1つを含む基板処理方法。  The monitoring result includes at least one of foreign matter information such as the type, position, size, shape and number of foreign matter in the immersion area, and optical element contamination information such as the location and degree of contamination of the optical element. Substrate processing method including two.
[19] 請求項 16〜18のいずれか一項に記載の基板処理方法において、 [19] In the substrate processing method according to any one of claims 16 to 18,
前記液浸露光条件は、液体の供給条件、液体の回収条件、基板の移動条件、液 浸領域の大きさ及び液浸領域の形状のうちの少なくとも 1つを含む基板処理方法。  The liquid immersion exposure conditions include at least one of a liquid supply condition, a liquid recovery condition, a substrate movement condition, a size of the liquid immersion area, and a shape of the liquid immersion area.
[20] 請求項 19に記載の基板処理方法において、 [20] The substrate processing method according to claim 19,
前記基板の移動条件は、液浸領域の液体に対する、基板の移動速度、加速度、減 速度、移動方向、移動軌跡、移動距離、基板の各位置が液体に浸されている時間、 フォーカス ·レべリング時間のうちの少なくとも 1つを含む基板処理方法。  The substrate movement conditions are as follows: substrate movement speed, acceleration, deceleration, movement direction, movement locus, movement distance, time during which each position of the substrate is immersed in the liquid, focus level A substrate processing method including at least one of ring times.
[21] 請求項 15に記載の基板処理方法において、 [21] The substrate processing method according to claim 15,
前記液体及び異物の除去処理結果に基づ 、て、前記検査装置による検査で基板 の異常が検出されることを予測し、前記異常が回避できるように前記液体 ·異物除去 装置における液体及び異物の少なくとも一方の除去処理条件を調整する工程を、更 に含む基板処理方法。  Based on the liquid and foreign matter removal processing result, it is predicted that an abnormality of the substrate will be detected in the inspection by the inspection device, and the liquid and foreign matter removal device in the liquid / foreign matter removal apparatus can be avoided so that the abnormality can be avoided. A substrate processing method further comprising a step of adjusting at least one removal processing condition.
[22] 請求項 21に記載の基板処理方法にぉ 、て、 [22] The substrate processing method according to claim 21, wherein
前記液体及び異物の少なくとも一方の除去処理条件を調整する工程では、前記予 測が、予め取得されている、前記除去処理結果と前記検査装置による検査での異常 検出との相関関係を参照して行われる基板処理方法。 In the step of adjusting the removal processing condition of at least one of the liquid and the foreign matter, the prediction is obtained by referring to the correlation between the removal processing result acquired in advance and abnormality detection in the inspection by the inspection apparatus. Substrate processing method to be performed.
[23] 請求項 21又は 22に記載の基板処理方法において、 [23] The substrate processing method according to claim 21 or 22,
前記液体及び異物の少なくとも一方の除去処理の処理条件は、前記液体'異物除 去装置における、たわみ進行波のオン'オフ条件、基板の回転速度、基板の傾斜角 度、気体の吹き出し条件、液体の吸引条件、液体の乾燥条件のうちの少なくとも 1つ を含む基板処理方法。  The processing conditions of at least one of the liquid and the foreign matter are as follows: in the liquid 'foreign matter removing device, the bending traveling wave is turned on / off, the substrate rotation speed, the substrate tilt angle, the gas blowing condition, the liquid Substrate processing method including at least one of the following suction conditions and liquid drying conditions.
[24] 請求項 1〜23のいずれか一項に記載の基板処理方法において、  [24] In the substrate processing method according to any one of claims 1 to 23,
前記検査条件は、基板における検査対象領域及び前記検査装置の検査感度の少 なくとも一方を含む基板処理方法。  The substrate processing method, wherein the inspection condition includes at least one of an inspection target region on the substrate and an inspection sensitivity of the inspection apparatus.
[25] 基板を液浸露光する液浸露光装置と、前記液浸露光装置の内部及び外部の少な くとも一方に設けられ、前記基板上の液体及び異物の少なくとも一方を除去する液体 •異物除去装置とを含む複数の処理装置を用いて前記基板に対する複数の処理を 行 、、少なくとも 1つの検査装置を用いて前記基板の良否を検査する基板処理方法 であって、  [25] An immersion exposure apparatus that performs immersion exposure of the substrate and a liquid that is provided in at least one of the inside and outside of the immersion exposure apparatus and that removes at least one of the liquid and foreign matter on the substrate. A substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including an apparatus, and inspecting the quality of the substrate using at least one inspection apparatus,
前記検査装置で前記液体及び異物の除去処理結果を検査した結果に基づいて基 板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるか 否かを判断する工程と;  Determining whether or not at least one of the liquid and foreign matter on the substrate may adversely affect the substrate based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device;
前記判断の結果情報を前記液体 ·異物除去装置へ送信する工程と;  Transmitting the determination result information to the liquid / foreign substance removing device;
前記判断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及 ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液体及び異物 の少なくとも一方の除去処理を行う工程と;を含む基板処理方法。  As a result of the determination, if there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the removal process of at least one of the liquid and the foreign matter is performed again according to the transmitted result information of the determination. And a substrate processing method.
[26] 基板を液浸露光する液浸露光装置と、前記液浸露光装置の内部及び外部の少な くとも一方に設けられ、前記基板上の液体及び異物の少なくとも一方を除去する液体 •異物除去装置とを含む複数の処理装置を用いて前記基板に対する複数の処理を 行 、、少なくとも 1つの検査装置を用いて前記基板の良否を検査する基板処理方法 であって、 [26] An immersion exposure apparatus that performs immersion exposure of the substrate and a liquid that is provided in at least one of the inside and outside of the immersion exposure apparatus and removes at least one of the liquid and the foreign matter on the substrate. A substrate processing method for performing a plurality of processes on the substrate using a plurality of processing apparatuses including an apparatus, and inspecting the quality of the substrate using at least one inspection apparatus,
前記検査装置で前記液体及び異物の除去処理結果を検査した結果に基づいて基 板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるか 否かを判断する工程と; 前記判断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及 ぼすおそれがある場合に、前記液体'異物除去装置に通知する工程と;を含む基板 処理方法。 Determining whether or not at least one of the liquid and foreign matter on the substrate may adversely affect the substrate based on the result of inspecting the liquid and foreign matter removal processing result by the inspection device; A step of notifying the liquid / foreign substance removing device when at least one of the liquid and the foreign substance on the substrate may adversely affect the substrate as a result of the determination.
[27] 請求項 9〜26の 、ずれか一項に記載の基板処理方法にお!、て、  [27] In the substrate processing method according to any one of claims 9 to 26!
前記少なくとも 1つの検査装置は、前記液浸露光によって基板上に形成されたバタ ーンに基づいて該基板の良否を検査するパターン検査装置を含む基板処理方法。  The at least one inspection apparatus includes a pattern inspection apparatus that inspects the quality of the substrate based on a pattern formed on the substrate by the immersion exposure.
[28] 請求項 1〜27のいずれか一項に記載の基板処理方法において、 [28] In the substrate processing method according to any one of claims 1 to 27,
前記少なくとも 1つの検査装置は、基板の外観に基づいて該基板の良否を検査す る外観検査装置を含む基板処理方法。  The substrate processing method, wherein the at least one inspection apparatus includes an appearance inspection apparatus that inspects the quality of the substrate based on the appearance of the substrate.
[29] 基板に対して複数の処理をそれぞれ行う複数の処理装置と; [29] a plurality of processing apparatuses that respectively perform a plurality of processes on the substrate;
前記基板の良否を検査する少なくとも 1つの検査装置と;を備え、  And at least one inspection device for inspecting the quality of the substrate.
前記少なくとも 1つの検査装置は、前記複数の処理装置のうちの少なくとも 1つの処 理装置による処理結果及び該少なくとも 1つの処理装置の稼動状態の少なくとも一 方に関する情報を受信し、受信した前記情報に基づいて検査条件を最適化する基 板処理システム。  The at least one inspection device receives information on a processing result by at least one processing device of the plurality of processing devices and at least one of operating states of the at least one processing device, and includes the received information in the received information. A substrate processing system that optimizes inspection conditions based on this.
[30] 請求項 29に記載の基板処理システムにお 、て [30] The substrate processing system according to claim 29, wherein
前記少なくとも 1つの処理装置による処理結果及び該少なくとも 1つの処理装置の 稼動状態の少なくとも一方に基づいて、前記検査装置による検査で前記基板の異常 が検出されることを予測し、前記異常が回避できるように前記少なくとも 1つの処理装 置に対して処理条件の調整を指示する調整指示装置を、更に備える基板処理シス テム。  Based on at least one of a processing result by the at least one processing apparatus and an operating state of the at least one processing apparatus, it is predicted that an abnormality of the substrate is detected in the inspection by the inspection apparatus, and the abnormality can be avoided. As described above, the substrate processing system further includes an adjustment instruction device that instructs the at least one processing device to adjust the processing conditions.
[31] 請求項 30に記載の基板処理システムにおいて、  [31] The substrate processing system according to claim 30,
前記調整指示装置は、予め取得されている、前記少なくとも 1つの処理装置による 処理結果及び該少なくとも 1つの処理装置の稼動状態の少なくとも一方と、前記検査 装置による検査での異常検出との相関関係を参照して、前記予測を行う基板処理シ ステム。  The adjustment instructing device correlates at least one of a processing result obtained by the at least one processing device and an operating state of the at least one processing device, which is acquired in advance, and an abnormality detection in the inspection by the inspection device. Referring to the substrate processing system for performing the prediction.
[32] 請求項 29に記載の基板処理システムにお 、て、  [32] The substrate processing system according to claim 29, wherein
前記複数の処理装置は、基板上に膜を形成する成膜装置を含み、 前記少なくとも 1つの検査装置は、前記成膜装置によって形成された膜の成膜状況 及び前記成膜装置の成膜条件の少なくとも一方に基づいて、前記検査条件を最適 化する基板処理システム。 The plurality of processing apparatuses include a film forming apparatus that forms a film on a substrate, The substrate processing system, wherein the at least one inspection apparatus optimizes the inspection conditions based on at least one of a film formation state of a film formed by the film formation apparatus and a film formation condition of the film formation apparatus.
[33] 請求項 32に記載の基板処理システムにお 、て、  [33] In the substrate processing system according to claim 32,
前記成膜状況は、膜厚、膜厚の変動状態及び膜の平坦度のうちの少なくとも 1つを 含み、  The film formation state includes at least one of a film thickness, a film thickness variation state, and a film flatness,
前記成膜条件は、膜材料、成膜方法、目標膜厚、膜厚均一性、成膜環境及び膜材 料の塗布条件のうちの少なくとも 1つを含む基板処理システム。  The film forming condition is a substrate processing system including at least one of a film material, a film forming method, a target film thickness, film thickness uniformity, a film forming environment, and a film material coating condition.
[34] 請求項 32又は 33に記載の基板処理システムにおいて、 [34] The substrate processing system according to claim 32 or 33,
前記膜は、レジスト膜及びトップコート膜の少なくとも一方を含む基板処理システム  The film processing system includes at least one of a resist film and a topcoat film.
[35] 請求項 32〜34のいずれか一項に記載の基板処理システムにおいて、 [35] The substrate processing system according to any one of claims 32 to 34,
前記成膜状況及び成膜条件の少なくとも一方に基づいて、前記検査装置による検 查で基板の異常が検出されることを予測し、前記異常が回避できるように前記成膜装 置に対して成膜条件の調整を指示する調整指示装置を、更に備える基板処理シス テム。  Based on at least one of the film formation state and the film formation condition, it is predicted that an abnormality of the substrate is detected by the inspection by the inspection apparatus, and the film formation apparatus is configured so that the abnormality can be avoided. A substrate processing system further comprising an adjustment instruction device for instructing adjustment of film conditions.
[36] 請求項 35に記載の基板処理システムにお ヽて、  [36] In the substrate processing system according to claim 35,
前記調整指示装置は、予め取得されている、前記成膜状況及び成膜条件の少なく とも一方と、前記検査装置による検査での異常検出との相関関係を参照して、前記 予測を行う基板処理システム。  The adjustment instruction apparatus refers to a substrate process that performs the prediction by referring to a correlation between at least one of the film formation state and film formation conditions acquired in advance and abnormality detection in the inspection by the inspection apparatus system.
[37] 請求項 31に記載の基板処理システムにお 、て、 [37] In the substrate processing system according to claim 31,
前記複数の処理装置は、基板を液浸露光する液浸露光装置を含み、  The plurality of processing apparatuses include an immersion exposure apparatus that performs immersion exposure on a substrate,
前記少なくとも 1つの検査装置は、前記液浸露光された基板を検査する露光検査 装置を含み、  The at least one inspection apparatus includes an exposure inspection apparatus that inspects the immersion-exposed substrate;
前記調整指示装置は、更に、前記露光検査装置で基板に異常があることが検出さ れた場合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1 つの処理装置に対して処理条件の調整を指示し、  The adjustment instructing device further applies to at least one processing device of the plurality of processing devices so that the abnormality can be avoided when the exposure inspection device detects that the substrate is abnormal. Instructed to adjust the processing conditions,
前記露光検査装置は、前記処理結果及び前記稼動状態の少なくとも一方に関す る情報に基づいて検査条件を最適化する基板処理システム。 The exposure inspection apparatus relates to at least one of the processing result and the operating state. Substrate processing system that optimizes inspection conditions based on information.
[38] 請求項 37に記載の基板処理システムにお 、て、  [38] In the substrate processing system according to claim 37,
前記少なくとも 1つの検査装置は、 PEB処理がなされた基板を検査する PEB検査 装置を含み、  The at least one inspection device includes a PEB inspection device for inspecting a substrate subjected to PEB processing,
前記調整指示装置は、更に、前記 PEB検査装置で基板に異常があることが検出さ れた場合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1 つの処理装置に対して処理条件の調整を指示し、  The adjustment instructing device further applies to at least one processing device of the plurality of processing devices so that the abnormality can be avoided when the PEB inspection device detects that the substrate is abnormal. Instructed to adjust the processing conditions,
前記 PEB検査装置は、前記処理結果及び前記稼動状態の少なくとも一方に関す る情報に基づいて検査条件を最適化する基板処理システム。  The PEB inspection apparatus is a substrate processing system that optimizes inspection conditions based on information on at least one of the processing result and the operating state.
[39] 請求項 38に記載の基板処理システムにお 、て、 [39] In the substrate processing system according to claim 38,
前記少なくとも 1つの検査装置は、現像処理がなされた基板を検査する現像検査 装置を含み、  The at least one inspection device includes a development inspection device that inspects a substrate that has been subjected to development processing,
前記調整指示装置は、更に、前記現像検査装置で基板に異常があることが検出さ れた場合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1 つの処理装置に対して処理条件の調整を指示し、  The adjustment instructing device further applies to at least one processing device of the plurality of processing devices so that the abnormality can be avoided when the development inspection device detects that the substrate is abnormal. Instructed to adjust the processing conditions,
前記現像検査装置は、前記処理結果及び前記稼動状態の少なくとも一方に関す る情報に基づいて検査条件を最適化する基板処理システム。  The development inspection apparatus optimizes inspection conditions based on information on at least one of the processing result and the operating state.
[40] 請求項 39に記載の基板処理システムにお 、て、 [40] In the substrate processing system according to claim 39,
前記調整指示装置は、更に、前記複数の処理装置のうちの少なくとも 1つの処理装 置による処理結果及び該少なくとも 1つの処理装置の稼動状態の少なくとも一方と、 前記露光検査装置の検査結果、前記 PEB検査装置の検査結果及び前記現像検査 装置の検査結果のうちの少なくとも 1つを含む検査結果と、を用いて、前記相関関係 を求める基板処理システム。  The adjustment instructing device further includes at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device, an inspection result of the exposure inspection device, and the PEB. A substrate processing system that obtains the correlation using an inspection result including at least one of an inspection result of the inspection apparatus and an inspection result of the development inspection apparatus.
[41] 請求項 29に記載の基板処理システムにお 、て、 [41] In the substrate processing system according to claim 29,
前記複数の処理装置は、前記基板を液浸露光する液浸露光装置と、前記液浸露 光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体及び異物 の少なくとも一方を除去する液体'異物除去装置とを含み、  The plurality of processing apparatuses are provided in at least one of an immersion exposure apparatus that performs immersion exposure of the substrate and the immersion exposure apparatus, and removes at least one of the liquid and foreign matter on the substrate. Including a liquid 'foreign matter removing device,
前記少なくとも 1つの検査装置は、前記液浸露光処理シーケンス中のモニタ結果及 び前記液浸露光処理後に行われる前記液体 ·異物除去装置による液体及び異物の 除去処理結果の少なくとも一方に基づいて、前記検査条件を最適化する基板処理 システム。 The at least one inspection apparatus is configured to monitor the results of the immersion exposure processing sequence and And a substrate processing system for optimizing the inspection conditions based on at least one of a liquid and foreign matter removal processing result by the liquid / foreign matter removing apparatus performed after the immersion exposure processing.
[42] 請求項 41に記載の基板処理システムにお 、て、  [42] The substrate processing system according to claim 41,
前記液浸露光処理シーケンス中のモニタ結果に基づいて、前記少なくとも 1つの検 查装置による検査で基板の異常が検出されることを予測し、前記異常が回避できるよ うに前記液浸露光装置に対して液浸露光条件の調整を指示する調整指示装置、及 び投影光学系の光学素子の汚染除去を指示する装置の少なくとも 1つを、更に備え る基板処理システム。  Based on the monitoring result during the immersion exposure processing sequence, it is predicted that an abnormality of the substrate will be detected by the inspection by the at least one inspection apparatus, and the immersion exposure apparatus is arranged so that the abnormality can be avoided. A substrate processing system further comprising at least one of an adjustment instruction device for instructing adjustment of immersion exposure conditions and an apparatus for instructing removal of contamination of optical elements of the projection optical system.
[43] 請求項 42に記載の基板処理システムにお 、て、 [43] In the substrate processing system according to claim 42,
前記調整指示装置は、予め取得されている、前記液浸露光処理シーケンス中のモ ニタ結果と前記検査装置による検査での異常検出との相関関係を参照して、前記予 測を行う基板処理システム。  The adjustment instructing device refers to a correlation between a monitoring result acquired in advance in the immersion exposure processing sequence and abnormality detection in an inspection by the inspection device, and performs the prediction. .
[44] 請求項 42又は 43に記載の基板処システムにお 、て、 [44] In the substrate processing system according to claim 42 or 43,
前記モニタ結果は、液浸領域内の異物の種類、その位置、大きさ、形状及び数な どの異物情報、及び光学素子の汚染の位置、汚染の程度などの光学素子汚染情報 のうちの少なくとも 1つを含む基板処理システム。  The monitoring result includes at least one of foreign matter information such as the type, position, size, shape and number of foreign matter in the immersion area, and optical element contamination information such as the location and degree of contamination of the optical element. Substrate processing system including two.
[45] 請求項 42〜44の!、ずれか一項に記載の基板処理システムにお!/、て、 [45] In the substrate processing system according to claim 42-44!
前記液浸露光条件は、液体の供給条件、液体の回収条件、基板の移動条件、液 浸領域の大きさ及び液浸領域の形状のうちの少なくとも 1つを含む基板処理システム  The liquid immersion exposure condition includes at least one of a liquid supply condition, a liquid recovery condition, a substrate movement condition, a size of the liquid immersion area, and a shape of the liquid immersion area.
[46] 請求項 45に記載の基板処理システムにお 、て、 [46] In the substrate processing system according to claim 45,
前記基板の移動条件は、液浸領域の液体に対する、基板の移動速度、加速度、減 速度、移動方向、移動軌跡、移動距離、基板の各位置が液体に浸されている時間、 フォーカス ·レべリング時間のうちの少なくとも 1つを含む基板処理システム。  The substrate movement conditions are as follows: substrate movement speed, acceleration, deceleration, movement direction, movement locus, movement distance, time during which each position of the substrate is immersed in the liquid, focus level A substrate processing system that includes at least one of the ring times.
[47] 請求項 41に記載の基板処理システムにお 、て、 [47] In the substrate processing system according to claim 41,
前記液体及び異物の除去処理結果に基づ 、て、前記検査装置による検査で基板 の異常が検出されることを予測し、前記異常が回避できるように前記液体 ·異物除去 装置に対して液体及び異物の少なくとも一方の除去処理条件の調整を指示する調 整指示装置を、更に備える基板処理システム。 Based on the liquid and foreign matter removal processing result, it is predicted that an abnormality of the substrate is detected by the inspection by the inspection apparatus, and the liquid / foreign matter removal is performed so that the abnormality can be avoided. A substrate processing system further comprising an adjustment instruction device that instructs the apparatus to adjust at least one of removal conditions of liquid and foreign matter.
[48] 請求項 47に記載の基板処理システムにお 、て、  [48] In the substrate processing system according to claim 47,
前記調整指示装置は、予め取得されている、前記除去処理結果と前記検査装置に よる検査での異常検出との相関関係を参照して、前記予測を行う基板処理システム。  The substrate processing system in which the adjustment instructing device performs the prediction with reference to a correlation between the removal processing result and abnormality detection in the inspection by the inspection device, which is acquired in advance.
[49] 請求項 47又は 48に記載の基板処理システムにお 、て、 [49] In the substrate processing system according to claim 47 or 48,
前記液体及び異物の少なくとも一方の除去処理の処理条件は、前記液体'異物除 去装置における、たわみ進行波のオン'オフ条件、基板の回転速度、基板の傾斜角 度、気体の吹き出し条件、液体の吸引条件、液体の乾燥条件のうちの少なくとも 1つ を含む基板処理システム。  The processing conditions of at least one of the liquid and the foreign matter are as follows: in the liquid 'foreign matter removing device, the bending traveling wave is turned on / off, the substrate rotation speed, the substrate tilt angle, the gas blowing condition, the liquid A substrate processing system including at least one of a suction condition and a liquid drying condition.
[50] 請求項 29〜49のいずれか一項に記載の基板処理システムにおいて、 [50] In the substrate processing system according to any one of claims 29 to 49,
前記検査条件は、基板における検査対象領域及び前記検査装置の検査感度の少 なくとも一方を含む基板処理システム。  The substrate processing system, wherein the inspection condition includes at least one of an inspection target region on the substrate and an inspection sensitivity of the inspection apparatus.
[51] 基板を液浸露光する液浸露光装置と; [51] an immersion exposure apparatus for immersion exposure of the substrate;
前記液浸露光装置の内部及び外部の少なくとも一方に設けられ、前記液浸露光が なされた基板上の液体及び異物の少なくとも一方を除去する液体'異物除去装置と; 前記液体'異物除去装置にて液体及び異物の少なくとも一方の除去処理がなされ た基板を検査する検査装置と;  A liquid 'foreign matter removing device provided at least one of the inside and outside of the immersion exposure device for removing at least one of the liquid and foreign matter on the substrate subjected to the immersion exposure; and the liquid' foreign matter removing device; An inspection apparatus for inspecting a substrate on which at least one of liquid and foreign matters has been removed;
前記検査装置での検査結果に基づ!、て基板上の液体及び異物の少なくとも一方 が該基板に悪影響を及ぼすおそれがある力否かを判断し、その判断の結果情報を 前記液体 ·異物除去装置に送信する判断装置と;を備え、  Based on the inspection result of the inspection apparatus, it is determined whether at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, and the information on the result of the determination is used to remove the liquid / foreign matter. A determination device for transmitting to the device; and
前記液体'異物除去装置は、基板上の液体及び異物の少なくとも一方が該基板に 悪影響を及ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液 体及び異物の少なくとも一方の除去処理を行う基板処理システム。  The liquid 'foreign matter removing device removes at least one of the liquid and the foreign matter again according to the transmitted result information of the judgment when at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate. Substrate processing system for processing.
[52] 基板を液浸露光する液浸露光装置と;  [52] an immersion exposure apparatus for immersion exposure of the substrate;
前記液浸露光装置の内部及び外部の少なくとも一方に設けられ、前記液浸露光が なされた基板上の液体及び異物の少なくとも一方を除去する液体'異物除去装置と; 前記液体'異物除去装置にて液体及び異物の少なくとも一方の除去処理がなされ た基板を検査する検査装置と; A liquid 'foreign matter removing device provided at least one of the inside and outside of the immersion exposure device for removing at least one of the liquid and foreign matter on the substrate subjected to the immersion exposure; and the liquid' foreign matter removing device; Removal of at least one of liquid and foreign matter is performed An inspection device for inspecting a damaged substrate;
前記検査装置での検査結果に基づ!、て基板上の液体及び異物の少なくとも一方 が該基板に悪影響を及ぼすおそれがあるカゝ否かを判断し、その判断の結果、基板上 の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがある場合に、 前記液体'異物除去装置に通知する判断装置と;を備える基板処理システム。  Based on the inspection result of the inspection apparatus, it is determined whether or not at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate. And a determination device that notifies the liquid 'foreign matter removing device when at least one of the foreign matters may adversely affect the substrate.
[53] 請求項 37〜52のいずれか一項に記載の基板処理システムにおいて、  [53] The substrate processing system according to any one of claims 37 to 52,
前記少なくとも 1つの検査装置は、前記液浸露光によって基板上に形成されたバタ ーンに基づいて該基板の良否を検査するパターン検査装置を含む基板処理システ ム。  The at least one inspection apparatus includes a pattern inspection apparatus that inspects the quality of the substrate based on a pattern formed on the substrate by the immersion exposure.
[54] 請求項 29〜53のいずれか一項に記載の基板処理システムにおいて、  [54] The substrate processing system according to any one of claims 29 to 53,
前記少なくとも 1つの検査装置は、基板の外観に基づいて該基板の良否を検査す る外観検査装置を含む基板処理システム。  The substrate processing system, wherein the at least one inspection apparatus includes an appearance inspection apparatus that inspects the quality of the substrate based on the appearance of the substrate.
[55] 基板に対して複数の処理をそれぞれ行う複数の処理装置と前記基板の良否を検 查する少なくとも 1つの検査装置とを備える基板処理システムに用 ヽられるプログラム であって、 [55] A program used in a substrate processing system including a plurality of processing apparatuses that respectively perform a plurality of processes on a substrate and at least one inspection apparatus that checks the quality of the substrate,
前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び該少 なくとも 1つの処理装置の稼動状態の、少なくとも一方に関する情報を前記少なくとも 1つの検査装置へ送信し、送信された前記情報に基づいて、前記少なくとも 1つの検 查装置における検査条件を最適化する手順を、前記基板処理システムのコンビユー タに実行させるプログラム。  Information on at least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device is transmitted to the at least one inspection device, and the transmitted information A program for causing a computer of the substrate processing system to execute a procedure for optimizing an inspection condition in the at least one inspection apparatus based on the above.
[56] 請求項 55に記載のプログラムにおいて、 [56] In the program of claim 55,
前記少なくとも 1つの処理装置による処理結果及び該少なくとも 1つの処理装置の 稼動状態の少なくとも一方に基づいて、前記検査装置による検査で基板の異常が検 出されることを予測し、前記異常が回避できるように前記少なくとも 1つの処理装置に おける処理条件を調整する手順を、前記コンピュータに更に実行させるプログラム。  Based on at least one of the processing result of the at least one processing apparatus and the operating state of the at least one processing apparatus, it is predicted that an abnormality of the substrate will be detected by the inspection by the inspection apparatus, so that the abnormality can be avoided. A program for causing the computer to further execute a procedure for adjusting a processing condition in the at least one processing device.
[57] 請求項 56に記載のプログラムにおいて、 [57] In the program of claim 56,
前記予測が、予め取得されている、前記少なくとも 1つの処理装置による処理結果 及び該少なくとも 1つの処理装置の稼動状態の少なくとも一方と、前記検査装置によ る検査での異常検出との相関関係を参照して行われるプログラム。 The prediction is acquired in advance by at least one of a processing result by the at least one processing device and an operating state of the at least one processing device, and the inspection device. A program that is executed with reference to the correlation with anomaly detection.
[58] 請求項 55に記載のプログラムにおいて、  [58] In the program of claim 55,
前記複数の処理装置は、基板上に膜を形成する成膜装置を含み、  The plurality of processing apparatuses include a film forming apparatus that forms a film on a substrate,
前記検査条件を最適化する手順として、前記成膜装置によって形成された膜の成 膜状況及び前記成膜装置の成膜条件の少なくとも一方に関する情報を前記少なくと も 1つの検査装置へ送信し、送信された前記情報に基づいて、前記少なくとも 1つの 検査装置における検査条件を最適化する手順を、前記コンピュータに実行させるプ ログラム。  As a procedure for optimizing the inspection conditions, information on at least one of the film formation state of the film formed by the film formation apparatus and the film formation conditions of the film formation apparatus is transmitted to the at least one inspection apparatus, A program for causing the computer to execute a procedure for optimizing inspection conditions in the at least one inspection device based on the transmitted information.
[59] 請求項 58に記載のプログラムにおいて、  [59] In the program of claim 58,
前記成膜状況は、膜厚、膜厚の変動状態及び膜の平坦度のうちの少なくとも 1つを 含み、  The film formation state includes at least one of a film thickness, a film thickness variation state, and a film flatness,
前記成膜条件は、膜材料、成膜方法、目標膜厚、膜厚均一性、成膜環境及び膜材 料の塗布条件のうちの少なくとも 1つを含むプログラム。  The film forming condition is a program including at least one of a film material, a film forming method, a target film thickness, a film thickness uniformity, a film forming environment, and a film material coating condition.
[60] 請求項 58又は 59に記載のプログラムにおいて、 [60] In the program according to claim 58 or 59,
前記膜は、レジスト膜及びトップコート膜の少なくとも一方を含むプログラム。  The film is a program including at least one of a resist film and a topcoat film.
[61] 請求項 58〜60のいずれか一項に記載のプログラムにおいて、 [61] In the program according to any one of claims 58 to 60,
前記成膜状況及び成膜条件の少なくとも一方に基づいて、前記検査装置による検 查で基板の異常が検出されることを予測し、前記異常が回避できるように前記成膜装 置における成膜条件を調整する手順を、前記コンピュータに更に実行させるプロダラ ム。  Based on at least one of the film formation state and the film formation condition, it is predicted that the abnormality of the substrate is detected by the inspection by the inspection apparatus, and the film formation condition in the film formation apparatus is such that the abnormality can be avoided. A program for causing the computer to further execute a procedure for adjusting
[62] 請求項 61に記載のプログラムにお 、て、  [62] In the program according to claim 61,
前記予測が、予め取得されている、前記成膜状況及び成膜条件の少なくとも一方と 前記検査装置による検査での異常検出との相関関係を参照して行われるプログラム  A program in which the prediction is performed with reference to a correlation between at least one of the film formation state and film formation conditions acquired in advance and abnormality detection in the inspection by the inspection apparatus
[63] 請求項 57に記載のプログラムにおいて、 [63] In the program of claim 57,
前記複数の処理装置は、基板を液浸露光する液浸露光装置を含み、  The plurality of processing apparatuses include an immersion exposure apparatus that performs immersion exposure on a substrate,
前記検査装置を用いて前記液浸露光された基板を検査する手順と;  A procedure for inspecting the immersion-exposed substrate using the inspection apparatus;
前記液浸露光された基板を検査する手順で基板に異常があることが検出された場 合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1つの処 理装置における処理条件を調整する手順と;を前記コンピュータに更に実行させ、 前記検査条件を最適化する手順では、前記処理結果及び前記稼動状態の少なく とも一方に関する情報に基づいて、前記液浸露光された基板を検査する際の検査条 件を最適化するプログラム。 When it is detected that there is an abnormality in the substrate in the procedure for inspecting the substrate subjected to immersion exposure A procedure for adjusting a processing condition in at least one processing device of the plurality of processing devices so that the abnormality can be avoided; and A program for optimizing inspection conditions when inspecting the immersion-exposed substrate based on information on at least one of the processing result and the operating state.
[64] 請求項 63に記載のプログラムにおいて、 [64] In the program of claim 63,
前記検査装置を用いて前記液浸露光後に行われる PEB処理がなされた基板を検 查する手順と;  A procedure for inspecting a substrate that has been subjected to PEB treatment performed after the immersion exposure using the inspection apparatus;
前記 PEB処理がなされた基板を検査する手順で基板に異常があることが検出され た場合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1つ の処理装置における処理条件を調整する手順と;を前記コンピュータに更に実行さ せ、  When it is detected that there is an abnormality in the substrate in the procedure for inspecting the substrate subjected to the PEB process, the processing condition in at least one of the plurality of processing apparatuses is set so that the abnormality can be avoided. Further executing the adjustment procedure; and
前記検査条件を最適化する手順では、更に前記処理結果及び前記稼動状態の少 なくとも一方に関する情報に基づいて、前記 PEB処理がなされた基板を検査する際 の検査条件を最適化するプログラム。  In the procedure for optimizing the inspection condition, a program for optimizing the inspection condition when inspecting the substrate subjected to the PEB process, based on information on at least one of the processing result and the operating state.
[65] 請求項 64に記載のプログラムにおいて、 [65] In the program of claim 64,
前記 PEB処理がなされた基板を検査する手順として、前記 PEB処理がなされた基 板を、前記液浸露光された基板を検査する検査装置とは別の検査装置を用いて検 查する手順を、前記コンピュータに実行させるプログラム。  As a procedure for inspecting the substrate subjected to the PEB treatment, a procedure for inspecting the substrate subjected to the PEB treatment using an inspection apparatus different from the inspection apparatus for inspecting the immersion exposed substrate, A program to be executed by the computer.
[66] 請求項 64又は 65に記載のプログラムにおいて、 [66] In the program according to claim 64 or 65,
前記検査装置を用いて前記 PEB処理後に行われる現像処理がなされた基板を検 查する手順と;  A procedure for inspecting a substrate that has been subjected to the development processing performed after the PEB processing using the inspection device;
前記現像処理がなされた基板を検査する手順で基板に異常があることが検出され た場合に、前記異常が回避できるように前記複数の処理装置のうちの少なくとも 1つ の処理装置における処理条件を調整する手順と;を前記コンピュータに更に実行さ せ、  When it is detected that there is an abnormality in the substrate in the procedure for inspecting the substrate that has been subjected to the development processing, processing conditions in at least one of the plurality of processing apparatuses are set so that the abnormality can be avoided. Further executing the adjustment procedure; and
前記検査条件を最適化する手順では、更に前記処理結果及び前記稼動状態の少 なくとも一方に関する情報に基づいて、前記現像処理がなされた基板を検査する際 の検査条件を最適化するプログラム。 In the procedure for optimizing the inspection conditions, when the substrate subjected to the development processing is further inspected based on information on at least one of the processing result and the operating state. A program that optimizes inspection conditions.
[67] 請求項 66に記載のプログラムにおいて、  [67] In the program of claim 66,
前記現像処理がなされた基板を検査する手順として、前記現像処理がなされた基 板を、前記液浸露光された基板を検査する検査装置及び前記 PEB処理がなされた 基板を検査する検査装置とは別の検査装置を用いて検査する手順を、前記コンビュ ータに実行させるプログラム。  As a procedure for inspecting the substrate subjected to the development process, an inspection apparatus for inspecting the substrate subjected to the liquid immersion exposure, an inspection apparatus for inspecting the substrate subjected to the PEB process, and an inspection apparatus for inspecting the substrate subjected to the PEB process A program for causing the computer to execute a procedure for inspecting using another inspection apparatus.
[68] 請求項 66又は 67に記載のプログラムにおいて、 [68] In the program according to claim 66 or 67,
前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び該少 なくとも 1つの処理装置の稼動状態の少なくとも一方と、前記液浸露光された基板を 検査する手順での検査結果、前記 PEB処理がなされた基板を検査する手順での検 查結果及び前記現像処理がなされた基板を検査する手順での検査結果の少なくと も 1つを含む検査結果と、を用いて、前記相関関係を求める手順を、前記コンビユー タに更に実行させるプログラム。  At least one of a processing result by at least one processing device of the plurality of processing devices and an operating state of the at least one processing device, and an inspection result in a procedure for inspecting the immersion-exposed substrate; And the inspection result including at least one of the inspection result in the procedure for inspecting the substrate subjected to PEB processing and the inspection result in the procedure for inspecting the substrate subjected to the development processing. A program for causing the computer to further execute a procedure for obtaining the value.
[69] 請求項 55に記載のプログラムにおいて、 [69] In the program of claim 55,
前記複数の処理装置は、基板を液浸露光する液浸露光装置と、前記液浸露光装 置の内部及び外部の少なくとも一方に設けられ、基板上の液体及び異物の少なくと も一方を除去する液体'異物除去装置とを含み、  The plurality of processing apparatuses are provided in at least one of an immersion exposure apparatus that performs immersion exposure of the substrate and the immersion exposure apparatus, and removes at least one of the liquid and foreign matter on the substrate. Including a liquid 'foreign matter removing device,
前記検査条件を最適化する手順では、前記液浸露光処理シーケンス中のモニタ結 果及び前記液浸露光処理後に行われる前記液体 ·異物除去装置による液体及び異 物の除去処理結果の少なくとも一方に基づいて、前記検査条件を最適化するプログ ラム。  The procedure for optimizing the inspection conditions is based on at least one of a monitoring result in the immersion exposure processing sequence and a liquid and foreign substance removal processing result by the liquid / foreign substance removing apparatus performed after the immersion exposure processing. And a program for optimizing the inspection conditions.
[70] 請求項 69に記載のプログラムにおいて、  [70] In the program of claim 69,
前記液浸露光処理シーケンス中のモニタ結果に基づいて、前記検査装置による検 查で基板の異常が検出されることを予測し、前記異常が回避できるように前記液浸露 光装置における液浸露光条件を調整する手順、及び投影光学系の光学素子の汚染 を除去する手順のうちの少なくとも 1つを、前記コンピュータに更に実行させるプログ ラム。  Based on the monitoring result during the immersion exposure processing sequence, it is predicted that an abnormality of the substrate will be detected by the inspection by the inspection apparatus, and the immersion exposure in the immersion exposure apparatus so that the abnormality can be avoided. A program that causes the computer to further execute at least one of a procedure for adjusting conditions and a procedure for removing contamination of optical elements of the projection optical system.
[71] 請求項 70に記載のプログラムにおいて、 前記予測が、予め取得されている、前記液浸露光処理シーケンス中のモニタ結果 と前記検査装置による検査での異常検出との相関関係を参照して行われるプロダラ ム。 [71] In the program of claim 70, A program in which the prediction is performed with reference to a correlation between a monitor result in the immersion exposure processing sequence acquired in advance and abnormality detection in an inspection by the inspection apparatus.
[72] 請求項 70又は 71に記載のプログラムにおいて、  [72] In the program according to claim 70 or 71,
前記モニタ結果は、液浸領域内の異物の種類、その位置、大きさ、形状及び数な どの異物情報、及び光学素子の汚染の位置、汚染の程度などの光学素子汚染情報 のうちの少なくとも 1つを含むプログラム。  The monitoring result includes at least one of foreign matter information such as the type, position, size, shape and number of foreign matter in the immersion area, and optical element contamination information such as the location and degree of contamination of the optical element. Including one.
[73] 請求項 70〜72のいずれか一項に記載のプログラムにおいて、 [73] In the program according to any one of claims 70 to 72,
前記液浸露光条件は、液体の供給条件、液体の回収条件、基板の移動条件、液 浸領域の大きさ及び液浸領域の形状のうちの少なくとも 1つを含むプログラム。  The liquid immersion exposure condition is a program including at least one of a liquid supply condition, a liquid recovery condition, a substrate movement condition, a size of the liquid immersion area, and a shape of the liquid immersion area.
[74] 請求項 73に記載のプログラムにおいて、 [74] In the program of claim 73,
前記基板の移動条件は、液浸領域の液体に対する、基板の移動速度、加速度、減 速度、移動方向、移動軌跡、移動距離、基板の各位置が液体に浸されている時間、 フォーカス'レべリング時間のうちの少なくとも 1つを含むプログラム。  The movement conditions of the substrate include the movement speed, acceleration, deceleration, movement direction, movement trajectory, movement distance, time during which each position of the substrate is immersed in the liquid, and the focus level. A program that includes at least one of the ring times.
[75] 請求項 69に記載のプログラムにおいて、 [75] In the program of claim 69,
前記液体及び異物の除去処理結果に基づ 、て、前記検査装置による検査で基板 の異常が検出されることを予測し、前記異常が回避できるように前記液体 ·異物除去 装置における液体及び異物の少なくとも一方の除去処理条件を調整する手順を、前 記コンピュータに更に実行させるプログラム。  Based on the liquid and foreign matter removal processing result, it is predicted that an abnormality of the substrate will be detected in the inspection by the inspection device, and the liquid and foreign matter removal device in the liquid / foreign matter removal apparatus can be avoided so that the abnormality can be avoided. A program that causes the computer to further execute a procedure for adjusting at least one removal processing condition.
[76] 請求項 75に記載のプログラムにおいて、 [76] In the program of claim 75,
前記予測が、予め取得されている、前記除去処理結果と前記検査装置による検査 での異常検出との相関関係を参照して行われるプログラム。  A program in which the prediction is performed with reference to a correlation between the removal processing result and abnormality detection in the inspection by the inspection apparatus, which is acquired in advance.
[77] 請求項 75又は 76に記載のプログラムにおいて、 [77] In the program according to claim 75 or 76,
前記液体及び異物の少なくとも一方の除去処理の処理条件は、前記液体'異物除 去装置における、たわみ進行波のオン'オフ条件、基板の回転速度、基板の傾斜角 度、気体の吹き出し条件、液体の吸引条件、液体の乾燥条件のうちの少なくとも 1つ を含むプログラム。  The processing conditions of at least one of the liquid and the foreign matter are as follows: in the liquid 'foreign matter removing device, the bending traveling wave is turned on / off, the substrate rotation speed, the substrate tilt angle, the gas blowing condition, the liquid A program that includes at least one of the following suction conditions and liquid drying conditions.
[78] 請求項 55〜77のいずれか一項に記載のプログラムにおいて、 前記検査条件は、基板における検査対象領域及び前記検査装置の検査感度の少 なくとも一方であるプログラム。 [78] In the program according to any one of claims 55 to 77, The program in which the inspection condition is at least one of an inspection target area on a substrate and an inspection sensitivity of the inspection apparatus.
[79] 基板を液浸露光する液浸露光装置と、前記液浸露光装置の内部及び外部の少な くとも一方に設けられ、前記基板上の液体及び異物の少なくとも一方を除去する液体 •異物除去装置とを含む複数の処理装置と前記基板の良否を検査する少なくとも 1つ の検査装置とを備える基板処理システムに用いられるプログラムであって、 [79] An immersion exposure apparatus that performs immersion exposure of the substrate, and a liquid that is provided in at least one of the inside and outside of the immersion exposure apparatus, and removes at least one of the liquid and foreign matter on the substrate. A program used for a substrate processing system comprising a plurality of processing apparatuses including an apparatus and at least one inspection apparatus for inspecting the quality of the substrate,
前記検査装置で前記液体及び異物の除去処理結果を検査した結果に基づいて基 板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるか 否かを判断する手順と;  A procedure for determining whether at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of the inspection of the liquid and foreign matter removal processing result by the inspection device;
前記判断の結果情報を前記液体 ·異物除去装置へ送信する手順と;  A procedure for transmitting the determination result information to the liquid / foreign substance removing device;
前記判断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及 ぼすおそれがある場合に、送信された判断の結果情報に応じて再度液体及び異物 の少なくとも一方の除去処理を行う手順と;を前記基板処理システムのコンピュータに 実行させるプログラム。  As a result of the determination, if there is a possibility that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the removal process of at least one of the liquid and the foreign matter is performed again according to the transmitted result information of the determination. A program for causing a computer of the substrate processing system to execute the following steps:
[80] 基板を液浸露光する液浸露光装置と、前記液浸露光装置の内部及び外部の少な くとも一方に設けられ、前記基板上の液体及び異物の少なくとも一方を除去する液体 •異物除去装置とを含む複数の処理装置と前記基板の良否を検査する少なくとも 1つ の検査装置とを備える基板処理システムに用いられるプログラムであって、  [80] An immersion exposure apparatus that performs immersion exposure of the substrate, and a liquid that is provided in at least one of the inside and outside of the immersion exposure apparatus, and removes at least one of the liquid and the foreign matter on the substrate. A program used for a substrate processing system comprising a plurality of processing apparatuses including an apparatus and at least one inspection apparatus for inspecting the quality of the substrate,
前記検査装置で前記液体及び異物の除去処理結果を検査した結果に基づいて基 板上の液体及び異物の少なくとも一方が該基板に悪影響を及ぼすおそれがあるか 否かを判断する手順と;  A procedure for determining whether at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate based on the result of the inspection of the liquid and foreign matter removal processing result by the inspection device;
前記判断の結果、基板上の液体及び異物の少なくとも一方が該基板に悪影響を及 ぼすおそれがある場合に、前記液体'異物除去装置に通知する手順と;を前記基板 処理システムのコンピュータに実行させるプログラム。  If the determination result indicates that at least one of the liquid and the foreign matter on the substrate may adversely affect the substrate, the liquid 'foreign matter removing device is notified to the computer of the substrate processing system. Program to make.
[81] 請求項 63〜80のいずれか一項に記載のプログラムにおいて、  [81] In the program according to any one of claims 63 to 80,
前記少なくとも 1つの検査装置は、前記液浸露光によって基板上に形成されたバタ ーンに基づいて該基板の良否を検査するパターン検査装置を含むプログラム。  The at least one inspection apparatus includes a pattern inspection apparatus that inspects the quality of the substrate based on a pattern formed on the substrate by the immersion exposure.
[82] 請求項 55〜81のいずれか一項に記載のプログラムにおいて、 前記少なくとも 1つの検査装置は、基板の外観に基づいて該基板の良否を検査す る外観検査装置を含むプログラム。 [82] In the program according to any one of claims 55 to 81, The at least one inspection device includes a visual inspection device that inspects the quality of the substrate based on the appearance of the substrate.
[83] 請求項 55〜82のいずれか一項に記載のプログラムが記録されたコンピュータ読み 取り可能な記録媒体。  [83] A computer-readable recording medium in which the program according to any one of claims 55 to 82 is recorded.
[84] 複数の処理装置で処理された基板の良否を検査する測定 '検査装置であって、 前記複数の処理装置のうちの少なくとも 1つの処理装置による処理結果及び少なく とも 1つの処理装置の稼動状態の、少なくとも一方に関する情報を受信する受信部を 備え、受信した前記情報に基づいて、検査条件を最適化する測定 ·検査装置。  [84] Measurement for inspecting the quality of a substrate processed by a plurality of processing apparatuses. This is an inspection apparatus, and the processing result of at least one processing apparatus of the plurality of processing apparatuses and the operation of at least one processing apparatus. A measurement / inspection apparatus comprising a receiving unit for receiving information on at least one of the states, and optimizing an inspection condition based on the received information.
[85] 請求項 84に記載の測定 ·検査装置において、 [85] In the measurement / inspection device according to claim 84,
前記複数の処理装置は、前記基板上に膜を形成する成膜処理装置を含み、 前記成膜処理装置によって形成された膜の成膜状況及び前記成膜処理装置の成 膜条件の少なくとも一方に基づいて、前記検査条件を最適化する測定 '検査装置。  The plurality of processing apparatuses include a film forming processing apparatus that forms a film on the substrate, and at least one of a film forming state of the film formed by the film forming processing apparatus and a film forming condition of the film forming processing apparatus. Based on the measurement 'inspection device to optimize the inspection conditions.
[86] 請求項 84に記載の測定 ·検査装置において、 [86] In the measurement / inspection device according to claim 84,
前記複数の処理装置は、前記基板を液浸露光する液浸露光装置と、前記液浸露 光装置の内部及び外部の少なくとも一方に設けられ、前記基板上の液体 ·異物を除 去する液体 ·異物除去装置とを含み、  The plurality of processing apparatuses are provided in an immersion exposure apparatus that performs immersion exposure on the substrate, and at least one of the inside and the outside of the immersion exposure apparatus, and the liquid on the substrate removes the foreign matter. A foreign matter removing device,
前記液浸露光処理シーケンス中のモニタ結果及び前記液浸露光後に行われる前 記液体 ·異物処理装置による液体 ·異物の除去処理結果の少なくとも一方に基づ 、 て、前記検査条件を最適化する測定 ·検査装置。  Measurement that optimizes the inspection condition based on at least one of the monitoring result during the immersion exposure processing sequence and the liquid / foreign matter removal processing result performed by the liquid / foreign matter processing apparatus after the immersion exposure. · Inspection equipment.
PCT/JP2007/051555 2006-02-03 2007-01-31 Substrate processing method, substrate processing system, program, and recording medium WO2007088872A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007556878A JP4998854B2 (en) 2006-02-03 2007-01-31 Substrate processing method, substrate processing system, program, and recording medium
US12/182,692 US7855784B2 (en) 2006-02-03 2008-07-30 Substrate processing method, substrate processing system, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-027045 2006-02-03
JP2006027045 2006-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/182,692 Continuation US7855784B2 (en) 2006-02-03 2008-07-30 Substrate processing method, substrate processing system, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2007088872A1 true WO2007088872A1 (en) 2007-08-09

Family

ID=38327443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051555 WO2007088872A1 (en) 2006-02-03 2007-01-31 Substrate processing method, substrate processing system, program, and recording medium

Country Status (5)

Country Link
US (1) US7855784B2 (en)
JP (1) JP4998854B2 (en)
KR (1) KR20080097991A (en)
TW (1) TW200737301A (en)
WO (1) WO2007088872A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054619A (en) * 2009-08-31 2011-03-17 Hitachi Kokusai Electric Inc Substrate treatment device
JP2014241412A (en) * 2014-06-30 2014-12-25 株式会社日立国際電気 Substrate processing apparatus, display method of the same, and program
CN112885732A (en) * 2021-03-02 2021-06-01 深圳鹏瑞智能科技有限公司 Multi-environment contrast type Micro LED epitaxial wafer defect measuring method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832107B1 (en) * 2007-02-15 2008-05-27 삼성전자주식회사 Contamination analysis unit and method, and reticle cleaning facility and method using the unit
JP5193112B2 (en) * 2009-03-31 2013-05-08 東レエンジニアリング株式会社 Inspection condition data generation method and inspection system for semiconductor wafer appearance inspection apparatus
US9418413B1 (en) * 2009-07-06 2016-08-16 Camtek Ltd. System and a method for automatic recipe validation and selection
CN102175133B (en) * 2011-02-25 2012-07-18 清华大学 Global metal film thickness measuring device
JP6307022B2 (en) 2014-03-05 2018-04-04 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and recording medium
NL2016982A (en) * 2015-07-16 2017-01-19 Asml Netherlands Bv An Inspection Substrate and an Inspection Method
NL2017837A (en) 2015-11-25 2017-06-02 Asml Netherlands Bv A Measurement Substrate and a Measurement Method
WO2018007119A1 (en) * 2016-07-04 2018-01-11 Asml Netherlands B.V. An inspection substrate and an inspection method
NL2019071A (en) 2016-07-07 2018-01-11 Asml Netherlands Bv An Inspection Substrate and an Inspection Method
US11923220B2 (en) * 2018-01-26 2024-03-05 Tokyo Electron Limited Substrate processing apparatus
JP7252322B2 (en) 2018-09-24 2023-04-04 エーエスエムエル ネザーランズ ビー.ブイ. Process tools and inspection methods
CN112466787A (en) * 2020-11-25 2021-03-09 上海果纳半导体技术有限公司 Wafer defect detection equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237347A (en) * 1984-05-11 1985-11-26 Nippon Kogaku Kk <Nikon> Apparatus for inspecting foreign matter
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2004271421A (en) * 2003-03-11 2004-09-30 Nikon Corp Foreign matter inspection device and method, and exposing device
JP2005017159A (en) * 2003-06-27 2005-01-20 Hitachi High-Technologies Corp Inspection recipe setting method in flaw inspection device and flaw inspecting method
JP2005123433A (en) * 2003-10-17 2005-05-12 Tokyo Electron Ltd Heat treatment apparatus, method for detecting and for removing foreign substance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525062B2 (en) * 2002-12-10 2010-08-18 株式会社ニコン Exposure apparatus, device manufacturing method, and exposure system
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
KR101377815B1 (en) * 2004-02-03 2014-03-26 가부시키가이샤 니콘 Exposure apparatus and method of producing device
KR101421915B1 (en) * 2004-06-09 2014-07-22 가부시키가이샤 니콘 Exposure system and device production method
US8134681B2 (en) * 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237347A (en) * 1984-05-11 1985-11-26 Nippon Kogaku Kk <Nikon> Apparatus for inspecting foreign matter
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2004271421A (en) * 2003-03-11 2004-09-30 Nikon Corp Foreign matter inspection device and method, and exposing device
JP2005017159A (en) * 2003-06-27 2005-01-20 Hitachi High-Technologies Corp Inspection recipe setting method in flaw inspection device and flaw inspecting method
JP2005123433A (en) * 2003-10-17 2005-05-12 Tokyo Electron Ltd Heat treatment apparatus, method for detecting and for removing foreign substance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054619A (en) * 2009-08-31 2011-03-17 Hitachi Kokusai Electric Inc Substrate treatment device
US8712568B2 (en) 2009-08-31 2014-04-29 Hitachi Kokusai Electric, Inc. Substrate processing apparatus and display method of substrate processing apparatus
JP2014241412A (en) * 2014-06-30 2014-12-25 株式会社日立国際電気 Substrate processing apparatus, display method of the same, and program
CN112885732A (en) * 2021-03-02 2021-06-01 深圳鹏瑞智能科技有限公司 Multi-environment contrast type Micro LED epitaxial wafer defect measuring method
CN112885732B (en) * 2021-03-02 2023-09-22 深圳鹏瑞智能科技股份有限公司 Multi-environment-contrast Micro LED epitaxial wafer flaw measurement method

Also Published As

Publication number Publication date
KR20080097991A (en) 2008-11-06
TW200737301A (en) 2007-10-01
JPWO2007088872A1 (en) 2009-06-25
US7855784B2 (en) 2010-12-21
JP4998854B2 (en) 2012-08-15
US20090059217A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4998854B2 (en) Substrate processing method, substrate processing system, program, and recording medium
JP5223668B2 (en) Adjustment method and substrate processing method
JP4665712B2 (en) Substrate processing method, exposure apparatus and device manufacturing method
JP5713085B2 (en) Exposure apparatus and device manufacturing method
US8272544B2 (en) Exposure apparatus, exposure method, and device fabrication method
WO2004053955A1 (en) Exposure system and device producing method
WO2006062188A1 (en) Exposure apparatus, exposure method and device manufacturing method
JP2009147374A (en) Lithography apparatus, and device manufacturing method
WO2008026593A1 (en) Exposure apparatus, device production method, cleaning method, and cleaning member
WO2007105645A1 (en) Exposure apparatus, maintenance method, exposure method and device manufacturing method
WO2008069211A1 (en) Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus and device manufacturing method
WO2005036621A1 (en) Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
JP2010153407A (en) Cleaning method and device, and exposure method and device
US20120062858A1 (en) Cleaning method, device manufacturing method, exposure apparatus, and device manufacturing system
WO2006062074A1 (en) Substrate processing method, exposure method, exposure apparatus, and method for manufacturing device
JP2009010289A (en) Lithography and method therefor
WO2010050240A1 (en) Exposure device, exposure method, and device manufacturing method
JP2009016422A (en) Cleaning unit, aligner, device manufacturing method, and cleaning method
US8111374B2 (en) Analysis method, exposure method, and device manufacturing method
JP2008258381A (en) Aligner, and manufacturing method of device
JP2005268412A (en) Aligner, manufacturing method thereof, and exposure method
US20080100811A1 (en) Exposure Apparatus and Device Manufacturing Method
JP2007081390A (en) Device for observation, device for measurement, device for exposure and method for exposure, method for producing device, substrate for producing device and device for positioning
KR20170113709A (en) Exposure apparatus, exposure method, exposure apparatus maintenance method, exposure apparatus adjustment method and device manufacturing method
TWI430040B (en) Analytical method, exposure method and component manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087016692

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007556878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07713726

Country of ref document: EP

Kind code of ref document: A1