WO2007088833A1 - Process for thermoforming biodegradable laminated sheets - Google Patents

Process for thermoforming biodegradable laminated sheets Download PDF

Info

Publication number
WO2007088833A1
WO2007088833A1 PCT/JP2007/051445 JP2007051445W WO2007088833A1 WO 2007088833 A1 WO2007088833 A1 WO 2007088833A1 JP 2007051445 W JP2007051445 W JP 2007051445W WO 2007088833 A1 WO2007088833 A1 WO 2007088833A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
laminated sheet
polyglycolic acid
thermoforming
polylactic acid
Prior art date
Application number
PCT/JP2007/051445
Other languages
French (fr)
Japanese (ja)
Inventor
Kanji Yoshimura
Juichi Wakabayashi
Norio Ozawa
Takehisa Suzuki
Original Assignee
Yoshimura Kasei Co., Ltd.
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshimura Kasei Co., Ltd., Kureha Corporation filed Critical Yoshimura Kasei Co., Ltd.
Priority to JP2007556858A priority Critical patent/JPWO2007088833A1/en
Publication of WO2007088833A1 publication Critical patent/WO2007088833A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/421Heating or cooling of preforms, specially adapted for thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Definitions

  • the present invention relates to a thermoforming method for a biodegradable laminated sheet in which a polyglycolic acid-based resin and a polylactic acid-based resin are laminated and integrated.
  • Polylactic acid is biodegradable by being decomposed by microorganisms and enzymes to become harmless to the human body, becoming lactic acid, carbon dioxide and water, and has attracted attention as an alternative to medical materials and general-purpose resins.
  • a container material prepared to maintain strength and decompose naturally after use, it can be expected to reduce the amount of used plastic discarded.
  • polylactic acid has low oxygen gas noreia, and therefore, when used as a food container that requires oxygen gas noreia, for example, it becomes a container unsuitable for long-term storage of food. Furthermore, since polylactic acid has a low water vapor property, when used in a container such as a dry food, it has a drawback that it is suitable for long-term storage due to moisture absorption or the like.
  • polyglycolic acid is known as a biodegradable resin, and has excellent noria properties such as oxygen gas barrier properties, carbon dioxide gas noria properties, and water vapor noria properties, as well as heat resistance and mechanical strength.
  • As a packaging material it is used alone or in combination with other resin materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-276078
  • the first problem of the present invention is to efficiently and quickly heat set (crystallization treatment) as a method for forming a composite material in which polylactic acid and polyglycolic acid are laminated by solving the above-mentioned problems.
  • heat set crystal treatment
  • the second object of the present invention is to obtain a biodegradable laminated sheet and a biodegradable container that have high noria properties and heat resistance that are obtained by such thermoforming.
  • a biodegradable laminated sheet in which a polylactic acid polymer layer is laminated and integrated on one side or both sides of a polyglycolic acid polymer layer is provided.
  • the laminated sheet is preheated to 60 to 160 ° C., and then the mold heated to 90 to 160 ° C. is pressed against the laminated sheet and held as it is for a predetermined time.
  • This is a method for thermoforming a biodegradable laminated sheet comprising crystallizing the polyglycolic acid polymer layer of the laminated sheet.
  • the mold temperature is set to 90 ° C during the pressure forming of the biodegradable laminated sheet in which the polyglycolic acid resin and the polylactic acid resin are laminated and integrated.
  • the predetermined time for keeping the heated mold pressed against the biodegradable laminated sheet as it is is 3 to 60 seconds.
  • a biodegradable container or other form of biodegradable mature molded body comprising the biodegradable laminated sheet obtained as described above is a mature molded body such as a dry heat type heat-set container, Heat resistance and strength are improved compared to containers molded with only a single layer of lactic acid, and both strength and noria are significantly improved.
  • the invention's effect is a dry heat type heat-set container, Heat resistance and strength are improved compared to containers molded with only a single layer of lactic acid, and both strength and noria are significantly improved.
  • thermoforming method of the present invention is biodegradable into a mold adjusted to a predetermined temperature at the time of pressure forming of a biodegradable laminated sheet in which a polyglycolic acid-based resin and a polylactic acid-based resin are laminated and integrated. Since the laminated sheet is pressed after a predetermined preheating, the biodegradable resin increases the barrier properties efficiently and in a short time without impairing the durability during use, and also improves the heat resistance. There is an advantage of a molding method. Further, according to this thermoforming method, it is possible to perform heat setting more efficiently than the dry heat method, and it is possible to produce a molded body such as a container that is excellent in noirality and heat resistance.
  • the polyglycolic acid polymer (also referred to as polyglycolic acid resin) used in the present invention has a repeating unit (glycolic acid unit) represented by the formula — (— 0—CH—CO 2) — Contains
  • It consists of a homopolymer or a copolymer.
  • the content of the repeating unit represented by the above formula in the polyglycolic acid polymer is 50% by weight or more, preferably 60% by weight or more, more preferably 80% by weight or more, The upper limit is 100 weight percent. If the content ratio of the repeating unit represented by the above formula is too small below the predetermined range, the barrier properties and heat resistance are reduced.
  • the polyglycolic acid resin contains a polymerization unit of a comonomer copolymerizable with glycolic acid to form a glycolic acid copolymer. be able to.
  • Comonomers include ethylene oxalate (ie, 1,4 dioxane-1, 2, 3 dione), lactides, and ratatones (eg, propiolatatatone, petit-latataton, pivalolatatone, valeratalatatane, methylvalerolatatone, strength Cyclic monomers such as prolatatatone), carbonates (such as trimethyl carbonate), ethers (such as 1,3 dioxane), ether esters (such as dioxanone), amides (such as prolatatam); lactic acid, 3- Hydroxycarboxylic acids such as hydroxypropanoic acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid or alkyl esters thereof; aliphatic diols such as ethylene glycol and 1,4 butanediol and fats such as succinic acid and adipic acid Group carboxylic acids or Can be used in substantially equimolar mixtures with their alkyl esters.
  • thermoplastic resin In order to adjust the crystallinity of the polyglycolic acid resin, a relatively small amount of other thermoplastic resin can be mixed to such an extent that the effects of the present invention are not impaired.
  • the other resin used in this case is preferably biodegradable, and of course, for the purpose of adjusting the molding processability and the physical properties of the sheet or molded product.
  • An additive such as an agent, an inorganic filler, and an ultraviolet absorber, a modifier, and the like can also be added.
  • the glycolic acid (co) polymer used in the present invention has a melt viscosity of 100 to 10,000 Pa'sec, more preferably 300 to 8000 Pa 'measured under conditions of a temperature of 270 ° C and a shear rate of 120 sec- 1. sec, particularly preferably in the range of 400 to 5000 Pa ′ sec.
  • the polylactic acid polymer used in the present invention is polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture of these polymers.
  • lactic acid examples include L-lactic acid, D-lactic acid, and mixtures thereof.
  • Other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid.
  • Typical examples include valeric acid and 6-hydroxycaproic acid.
  • the polylactic acid polymer layer can be mixed with another polymer material in an amount that does not impair the effects of the present invention.
  • the other resin in this case is biodegradable, and the molding cacheability of the polylactic acid polymer and the physical properties of the sheet-molded body are as follows. Additives such as plasticizers, lubricants, inorganic fillers, UV absorbers, modifiers, etc. may be added for the purpose of adjusting the viscosity.
  • a regrind (recovered, reground) product of the hard resin molding container of the present invention can be used as the polylactic acid polymer layer in the present invention.
  • the layer structure of the biodegradable laminated sheet according to the present invention is at least two or more layers composed of the above-mentioned A layer which is a polydaricholic acid polymer and a B layer which is mainly composed of a polylactic acid polymer. Is required, and preferably has a BZAZB configuration.
  • the specific configuration is not limited to this, but may be BZAZBZAZB or the like.
  • a C layer comprising the regrind (collected and reground) of the hard resin container of the present invention as a main component is laminated, and C / A / C, B / C / A / C / B, B / A / C , B / A / C / B And so on.
  • an adhesive layer can be appropriately interposed between the layers.
  • the adhesive layer used include maleic anhydride-modified polyolefin resin (Mitsubishi Chemical Corporation: Modic S525, XS533, F513, F533, Mitsui Chemicals: Admer NF550), glycidyl group-containing ethylene copolymer (Nippon Oil Co., Ltd.).
  • the thickness of the adhesive layer is 0.5 ⁇ : about LO / zm, which is very thin and the environmental load can be reduced by the small amount of use. Is possible.
  • an adhesive resin having good biodegradability is preferably used in the present invention.
  • a biodegradable laminate sheet obtained by laminating and integrating a polylactic acid polymer layer on one side or both sides of a polyglycolic acid polymer layer composed of the above materials. Can be produced by a commonly used well-known method.
  • a method of co-extrusion using a plurality of extruder force feed block methods or a multi-hold method, or laminating a single layer sheet having a polyglycolic acid polymer force and a single layer sheet having a polylactic acid polymer force By this method, a multi-layer structure can be formed.
  • the thickness of the biodegradable laminated sheet is not particularly limited and is appropriately selected according to the desired desired performance.
  • the total thickness after forming the container must be 100 m or more.
  • the total thickness after forming the container can be 100 ⁇ m or less.
  • the biodegradable laminated sheet obtained in this way can be formed into a desired molded body using thermoforming such as pressure forming or vacuum forming.
  • thermoforming such as pressure forming or vacuum forming.
  • the biodegradable laminated sheet is heated to 60 ° C. to 160 ° C. with a heater, then pressed against a mold heated to 90 to 160 ° C., then cooled and thermoformed.
  • the time for pressure contact with the mold during thermoforming is preferably 1 second to 10 minutes, more preferably 3 seconds to 60 seconds. It is.
  • the time for pressure contact with a general mold is preferably about 3 seconds (eg 3-4 seconds).
  • a preheated biodegradable laminated sheet is pressed against a mold at a predetermined temperature, and a container is thermoformed while being heat-set, that is, crystallized by pressure forming, as a comparative example.
  • a container is thermoformed while being heat-set, that is, crystallized by pressure forming, as a comparative example.
  • polyglycolic acid As polyglycolic acid (PGA), temperature 270 ° C, those of the homopolymer of melting viscosity measured at a shear rate 120 sec _1 is 900Pa'sec (glass transition temperature 38 ° C, melting point 221 ° C) ((Ltd.) Kureha Manufactured by PGA).
  • polylactic acid polylactic acid manufactured by Unitica Co., Ltd. having a melt viscosity of 1300 Pa'sec measured at a temperature of 200 ° C and a melting point of 162 ° C was used.
  • extrusion molding was performed by a T-die method to produce a multilayer sheet.
  • the layer structure was polylactic acid (275 ⁇ m) Z polyglycolic acid (50 ⁇ m) Z polylactic acid (275 ⁇ m).
  • Moldability by mold temperature and time for pressure contact with mold was confirmed.
  • the evaluation criteria are as follows: ⁇ : released, ⁇ : difficult to release, X: not released.
  • OX-TRAN2Z20 manufactured by Modern Control Co. in accordance with JIS-K7126B, measurement was performed while maintaining the inside of the container at a temperature of 23 ° C and a relative humidity of 80% at a temperature of 23 ° C and a relative humidity of 50%.
  • a cup was thermoformed in the same manner as in Example 1 except that the temperature of the female mold applied in the pressure forming in Example 1 was 30 ° C. or lower and the heating time was 10 seconds.
  • the evaluation tests (1) to (4) were performed on the obtained cup-type container.
  • Example 6 (mold temperature 100 ° C, time 10 seconds), oxygen gas permeability was measured with the cups obtained in Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4, and the results were obtained. Is also shown in Table 2.
  • Example 6 With respect to the oxygen gas permeability, the results of Example 6 and Comparative Example 4 in Table 2 indicate that the oxygen gas normality is greatly improved as compared with the polylactic acid monolayer.
  • oxygen gas in Example 6 compared to no heat set (Comparative Example 1), dry heat type heat set for 10 seconds (Comparative Example 2), and dry heat type heat set for 1 minute (Comparative Example 3). It can be seen that the performance is improved.
  • the oxygen gas normality of Example 6 is an oxygen gas permeability of 0.017 (cm 3 Zcup 'day atm), which can withstand use even when used in storage containers for foods, etc.
  • the thermoforming method of the biodegradable laminated sheet shown in the examples is oxygen gas permeability 0. 017 (cmVcup ⁇ day ⁇ atm) Excellent gas barrier that requires less than or equal to 017 (cmVcup ⁇ day ⁇ atm).
  • the laminated sheet is preheated to 60 to 160 ° C., and then the mold heated to 90 to 160 ° C. is pressed against the laminated sheet and kept as it is for a predetermined time. It was confirmed that the polyglycolic acid polymer layer of the laminated sheet was crystallized simultaneously with the molding, and the crystallinity, heat resistance, and oxygen gas permeability were improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A thermoforming process for shaping a composite material obtained by laminating polylactic acid and polyglycolic acid, wherein the biodegradable resins can be efficiently enhanced in gas barrier properties and heat resistance in a short time without being impaired in the durability in service. A process for thermoforming biodegradable laminated sheets which comprises laminating a polyglycolic acid film with a polylactic acid film on either or both sides of the polyglycolic acid film to prepare a biodegradable laminated sheet, preheating the laminated sheet to 60 to 160°C, pressing a metal mold heated to 90 to 160°C against the laminated sheet, and keeping the resulting system as such for 3 to 60 seconds to conduct both the forming of the sheet by hot pressing and the crystallization of the polyglycolic acid film constituting the laminate. According to the process, a biodegradable laminated sheet having prescribed layer constitution is subjected to prescribed preheating and then brought into contact with a metal mold under pressing, whereby the crystallization of the polyglycolic acid film is conducted more efficiently in the process than in a dry-heat process, which makes it possible to enhance the gas barrier properties and the heat resistance in a short time.

Description

明 細 書  Specification
生分解性積層シートの熱成形方法  Thermoforming method of biodegradable laminated sheet
技術分野  Technical field
[0001] この発明は、ポリグリコール酸系榭脂とポリ乳酸系榭脂を積層一体ィ匕した生分解性 積層シートの熱成形方法に関する。  The present invention relates to a thermoforming method for a biodegradable laminated sheet in which a polyglycolic acid-based resin and a polylactic acid-based resin are laminated and integrated.
背景技術  Background art
[0002] ポリ乳酸は、微生物や酵素により分解され、人体に無害な乳酸や二酸化炭素と水 になるという生分解性を示し、医療用材料や汎用樹脂の代替物として注目され、特に 使用時間に強度を保ち、使用後には自然に分解するように調製された容器の素材と して利用されると、使用済みプラスチックの廃棄量の減少が期待できる素材になる。  [0002] Polylactic acid is biodegradable by being decomposed by microorganisms and enzymes to become harmless to the human body, becoming lactic acid, carbon dioxide and water, and has attracted attention as an alternative to medical materials and general-purpose resins. When used as a container material prepared to maintain strength and decompose naturally after use, it can be expected to reduce the amount of used plastic discarded.
[0003] しかし、ポリ乳酸のみでプラスチック容器を成形すると、耐熱性や機械的強度に劣 るものになり、例えば食品等の容器として食品を温めるために熱湯を注ぐと、容器は 軟化して変形してしまう不具合も生じる。  [0003] However, if a plastic container is molded only from polylactic acid, it becomes inferior in heat resistance and mechanical strength. For example, when hot water is poured to warm food as a container for food, the container softens and deforms. The trouble which will be done also arises.
[0004] またポリ乳酸は、酸素ガスノリア性が低 、ため、例えば酸素ガスノリア性が要求さ れる食品容器として用いると、食品の長期保存に適さない容器になる。更に、ポリ乳 酸は、水蒸気ノリア性も低いため、乾燥食品などの容器に用いた場合には、吸湿等 により長期保存に適さな 、と 、う欠点もある。  [0004] In addition, polylactic acid has low oxygen gas noreia, and therefore, when used as a food container that requires oxygen gas noreia, for example, it becomes a container unsuitable for long-term storage of food. Furthermore, since polylactic acid has a low water vapor property, when used in a container such as a dry food, it has a drawback that it is suitable for long-term storage due to moisture absorption or the like.
[0005] 一方、ポリグリコール酸は生分解性榭脂として知られたものである力 酸素ガスバリ ァ性、炭酸ガスノリア性、水蒸気ノリア性などのノリア性に優れており、耐熱性や機 械的強度にも優れて ヽるので、包装材料などとしては単独または他の榭脂材料など と複合ィ匕して用いられている。  [0005] On the other hand, polyglycolic acid is known as a biodegradable resin, and has excellent noria properties such as oxygen gas barrier properties, carbon dioxide gas noria properties, and water vapor noria properties, as well as heat resistance and mechanical strength. As a packaging material, it is used alone or in combination with other resin materials.
[0006] また、ポリ乳酸系生分解性榭脂シートと紙などをラミネートして容器を成形する場合 に、容器の縁の部分などに皺が形成されずにポリ乳酸系榭脂がよく伸びるように、金 型温度を 100〜140°Cにとして圧空成形または真空成形する方法が知られている( 特許文献 1)。  [0006] In addition, when a container is formed by laminating a polylactic acid-based biodegradable resin sheet and paper or the like, the polylactic acid-based resin can be stretched well without forming wrinkles at the edges of the container. In addition, there is known a method of pressure forming or vacuum forming at a mold temperature of 100 to 140 ° C. (Patent Document 1).
[0007] 特許文献 1:特開 2003— 276078号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 2003-276078
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0008] 特許文献 1に記載された発明では、ポリ乳酸にラミネートされる他素材にっ 、ての 材質を改善するものではなぐ特にポリダリコール酸についての物性改善の条件は特 に示されてはいない。  [0008] In the invention described in Patent Document 1, the conditions for improving the physical properties of polydaricholic acid are not specifically shown, as it does not improve the quality of other materials laminated to polylactic acid. .
[0009] よって、この発明の第 1の課題は、上記した問題点を解決してポリ乳酸とポリグリコ 一ル酸を積層した複合素材の成形方法として、効率よく短時間でヒートセット (結晶化 処理をいう、以下同じ。)を行なってノリア性を高めると共に、耐熱性をも高められる 熱成形方法とすることである。  Therefore, the first problem of the present invention is to efficiently and quickly heat set (crystallization treatment) as a method for forming a composite material in which polylactic acid and polyglycolic acid are laminated by solving the above-mentioned problems. The same shall apply hereinafter) to improve the noria property and also to improve the heat resistance.
また、この発明の第 2の課題は、そのような熱成形によって得られるノリア性が高ぐ しカゝも耐熱性に優れた生分解性積層シートおよび生分解性容器を得ることである。 課題を解決するための手段  The second object of the present invention is to obtain a biodegradable laminated sheet and a biodegradable container that have high noria properties and heat resistance that are obtained by such thermoforming. Means for solving the problem
[0010] 上記の課題を解決するために、この発明ではポリグリコール酸系重合体層の片面 側または両面側にポリ乳酸系重合体層を積層一体ィ匕した生分解性積層シートを設 け、この積層シートを 60〜160°Cに予備加熱し、次いで前記積層シートに対して 90 〜 160°Cに加熱された金型を圧接させかつそのまま所定時間保持することにより、熱 圧成形と同時に前記積層シートのポリグリコール酸系重合体層を結晶化処理するこ とからなる生分解性積層シートの熱成形方法としたのである。 [0010] In order to solve the above-described problems, in the present invention, a biodegradable laminated sheet in which a polylactic acid polymer layer is laminated and integrated on one side or both sides of a polyglycolic acid polymer layer is provided. The laminated sheet is preheated to 60 to 160 ° C., and then the mold heated to 90 to 160 ° C. is pressed against the laminated sheet and held as it is for a predetermined time. This is a method for thermoforming a biodegradable laminated sheet comprising crystallizing the polyglycolic acid polymer layer of the laminated sheet.
[0011] 上記したこの発明の熱成形方法によれば、ポリグリコール酸系榭脂とポリ乳酸系榭 脂を積層一体ィ匕した生分解性積層シートの圧空成形時に、金型温度を 90°C〜160 °Cとし、この金型に所定の層構成の生分解性積層シートを所定の予備加熱後に圧接 させることで、乾熱方式に比べて効率的なヒートセットを行なうことができ、ヒートセット に要する時間を短縮することができる。  [0011] According to the thermoforming method of the present invention described above, the mold temperature is set to 90 ° C during the pressure forming of the biodegradable laminated sheet in which the polyglycolic acid resin and the polylactic acid resin are laminated and integrated. By setting the biodegradable laminated sheet having a predetermined layer structure to this mold at a temperature of ~ 160 ° C and pressing it after a predetermined preheating, an efficient heat setting can be performed compared to the dry heat method. Can be shortened.
熱成形効率が高 ヽ方法とするためには、生分解性積層シートに加熱した金型を圧 接させてそのまま保持する所定時間は、 3〜60秒とすることが好ま 、。  In order to obtain a method with high thermoforming efficiency, it is preferable that the predetermined time for keeping the heated mold pressed against the biodegradable laminated sheet as it is is 3 to 60 seconds.
[0012] このようにして得られる生分解性積層シートを構成素材とする生分解性容器その他 の形態の生分解性熟成形体は、乾熱式でヒートセットされた容器などの熟成形体や 、ポリ乳酸単層のみで成形された容器などに比べて耐熱性、強度が向上しており、し 力もノリア性も顕著に向上したものになる。 発明の効果 [0012] A biodegradable container or other form of biodegradable mature molded body comprising the biodegradable laminated sheet obtained as described above is a mature molded body such as a dry heat type heat-set container, Heat resistance and strength are improved compared to containers molded with only a single layer of lactic acid, and both strength and noria are significantly improved. The invention's effect
[0013] この発明の熱成形方法は、ポリグリコール酸系榭脂とポリ乳酸系榭脂を積層一体ィ匕 した生分解性積層シートの圧空成形時に、所定温度に調整された金型に生分解性 積層シートを所定の予備加熱後に圧接させるようにしたので、生分解性榭脂は使用 時の耐久性が損なわれることなぐ効率よく短時間でバリア性を高めると共に、耐熱性 をも高められる熱成形方法となる利点がある。また、この熱成形方法によれば、乾熱 方式よりも効率的にヒートセットを行うことができると共に、ノ リア性および耐熱性にも 優れた容器などの成形体を製造することができる。  [0013] The thermoforming method of the present invention is biodegradable into a mold adjusted to a predetermined temperature at the time of pressure forming of a biodegradable laminated sheet in which a polyglycolic acid-based resin and a polylactic acid-based resin are laminated and integrated. Since the laminated sheet is pressed after a predetermined preheating, the biodegradable resin increases the barrier properties efficiently and in a short time without impairing the durability during use, and also improves the heat resistance. There is an advantage of a molding method. Further, according to this thermoforming method, it is possible to perform heat setting more efficiently than the dry heat method, and it is possible to produce a molded body such as a container that is excellent in noirality and heat resistance.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] この発明に用いるポリグリコール酸系重合体 (ポリグリコール酸榭脂とも称される。) は、式—(— 0— CH— CO )—で表される繰り返し単位 (グリコール酸単位)を含有 [0014] The polyglycolic acid polymer (also referred to as polyglycolic acid resin) used in the present invention has a repeating unit (glycolic acid unit) represented by the formula — (— 0—CH—CO 2) — Contains
2  2
する単独重合体または共重合体からなるものである。  It consists of a homopolymer or a copolymer.
[0015] ポリグリコール酸系重合体中の上記の式で表される繰り返し単位の含有割合は、 5 0重量パーセント以上、好ましくは 60重量パーセント以上、より好ましくは 80重量パ 一セント以上であり、その上限は 100重量パーセントである。上記式で表される繰り返 し単位の含有割合が上記所定範囲未満に少なすぎると、バリア性や耐熱性が低下 するカゝらである。 [0015] The content of the repeating unit represented by the above formula in the polyglycolic acid polymer is 50% by weight or more, preferably 60% by weight or more, more preferably 80% by weight or more, The upper limit is 100 weight percent. If the content ratio of the repeating unit represented by the above formula is too small below the predetermined range, the barrier properties and heat resistance are reduced.
[0016] ポリグリコール酸榭脂には、上記の式で表されるグリコール酸単位にカ卩えて、グリコ ール酸と共重合可能なコモノマーの重合単位を含有させてグリコール酸共重合体と することができる。  [0016] In addition to the glycolic acid unit represented by the above formula, the polyglycolic acid resin contains a polymerization unit of a comonomer copolymerizable with glycolic acid to form a glycolic acid copolymer. be able to.
[0017] コモノマーとしては、シユウ酸エチレン(即ち、 1, 4 ジォキサン一 2, 3 ジオン)、 ラクチド類、ラタトン類 (例えば、プロピオラタトン、プチ口ラタトン、ピバロラタトン、バレ 口ラタトン、メチルバレロラタトン、力プロラタトン等)、カーボネート類 (例えばトリメチレ ンカーボネート等)、エーテル類 (例えば 1, 3 ジォキサンなど)、エーテルエステル 類 (例えばジォキサノン等)、アミド類 (力プロラタタム等)等の環状モノマー;乳酸、 3 ーヒドロキシプロパン酸、 4ーヒドロキシブタン酸、 6—ヒドロキシカプロン酸などのヒドロ キシカルボン酸またはそのアルキルエステル;エチレングリコール、 1, 4 ブタンジォ ール等の脂肪族ジオール類と、コハク酸、アジピン酸等の脂肪族カルボン酸類また はそのアルキルエステル類との実質的に等モルの混合物を用いることができる。 [0017] Comonomers include ethylene oxalate (ie, 1,4 dioxane-1, 2, 3 dione), lactides, and ratatones (eg, propiolatatatone, petit-latataton, pivalolatatone, valeratalatatane, methylvalerolatatone, strength Cyclic monomers such as prolatatatone), carbonates (such as trimethyl carbonate), ethers (such as 1,3 dioxane), ether esters (such as dioxanone), amides (such as prolatatam); lactic acid, 3- Hydroxycarboxylic acids such as hydroxypropanoic acid, 4-hydroxybutanoic acid and 6-hydroxycaproic acid or alkyl esters thereof; aliphatic diols such as ethylene glycol and 1,4 butanediol and fats such as succinic acid and adipic acid Group carboxylic acids or Can be used in substantially equimolar mixtures with their alkyl esters.
[0018] また、ポリグリコール酸榭脂に対し、結晶性を調節する等のため、他の熱可塑性榭 脂をこの発明の効果を阻害しない程度に比較的少量を混合することもできる。  [0018] In order to adjust the crystallinity of the polyglycolic acid resin, a relatively small amount of other thermoplastic resin can be mixed to such an extent that the effects of the present invention are not impaired.
[0019] その場合に用いる他の榭脂としては、生分解性を有するものであることが好ましい のは勿論であり、成形加工性、シートや成形体の物性を調整する目的で可塑剤、滑 剤、無機フィラー、紫外線吸収剤などの添加剤、改質剤などを添加することもできる。  [0019] The other resin used in this case is preferably biodegradable, and of course, for the purpose of adjusting the molding processability and the physical properties of the sheet or molded product, An additive such as an agent, an inorganic filler, and an ultraviolet absorber, a modifier, and the like can also be added.
[0020] この発明で使用するグリコール酸 (共)重合体は、温度 270°C及びせん断速度 120 sec—1の条件下で測定した溶融粘度力 100〜10000Pa' sec、より好ましくは 300 〜8000Pa' sec、特に好ましくは 400〜5000Pa' secの範囲にあることが好ましい。 [0020] The glycolic acid (co) polymer used in the present invention has a melt viscosity of 100 to 10,000 Pa'sec, more preferably 300 to 8000 Pa 'measured under conditions of a temperature of 270 ° C and a shear rate of 120 sec- 1. sec, particularly preferably in the range of 400 to 5000 Pa ′ sec.
[0021] 次に、この発明に用いるポリ乳酸系重合体は、ポリ乳酸または乳酸と他のヒドロキシ カルボン酸との共重合体、もしくはこれらの重合体の混合物である。  Next, the polylactic acid polymer used in the present invention is polylactic acid or a copolymer of lactic acid and another hydroxycarboxylic acid, or a mixture of these polymers.
[0022] 乳酸としては L 乳酸、 D 乳酸またはそれらの混合物が挙げられ、他のヒドロキシ カルボン酸としては、グリコール酸、 3—ヒドロキシ酪酸、 4—ヒドロキシ酪酸、 3—ヒドロ キシ吉草酸、 4ーヒドロキシ吉草酸、 6—ヒドロキシカプロン酸などが代表的なものとし て挙げられる。  [0022] Examples of lactic acid include L-lactic acid, D-lactic acid, and mixtures thereof. Other hydroxycarboxylic acids include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 3-hydroxyvaleric acid, 4-hydroxyvaleric acid. Typical examples include valeric acid and 6-hydroxycaproic acid.
[0023] そして、ポリ乳酸系重合体層には、他の高分子材料をこの発明の効果を阻害しな い程度の量を混合することができる。この場合の他の榭脂としては、生分解性を有す るものであることが好ましいのは勿論であり、またポリ乳酸系重合体の成形カ卩ェ性、シ ートゃ成形体の物性を調整する目的で可塑剤、滑剤、無機フィラー、紫外線吸収剤 などの添加剤、改質剤などを添加することもできる。  [0023] The polylactic acid polymer layer can be mixed with another polymer material in an amount that does not impair the effects of the present invention. Of course, it is preferable that the other resin in this case is biodegradable, and the molding cacheability of the polylactic acid polymer and the physical properties of the sheet-molded body are as follows. Additives such as plasticizers, lubricants, inorganic fillers, UV absorbers, modifiers, etc. may be added for the purpose of adjusting the viscosity.
[0024] また、この発明におけるポリ乳酸系重合体層としては、この発明の硬質榭脂成形容 器のリグラインド(回収、再粉砕)物を用いることもできる。  [0024] In addition, as the polylactic acid polymer layer in the present invention, a regrind (recovered, reground) product of the hard resin molding container of the present invention can be used.
[0025] この発明における生分解性積層シートの層構成は、上記ポリダリコール酸系重合体 力 なる A層と、ポリ乳酸系重合体を主成分とする B層からなる少なくとも 2層以上であ ることが必要であり、好ましくは BZAZBの構成である。  [0025] The layer structure of the biodegradable laminated sheet according to the present invention is at least two or more layers composed of the above-mentioned A layer which is a polydaricholic acid polymer and a B layer which is mainly composed of a polylactic acid polymer. Is required, and preferably has a BZAZB configuration.
[0026] 具体的な構成としては、これに限られるものではないが、 BZAZBZAZBなどと することもできる。またこの発明の硬質榭脂容器のリグラインド(回収、再粉砕)物を主 成分とする C層を積層し、 C/A/C, B/C/A/C/B, B/A/C, B/A/C/B などとすることもできる。 [0026] The specific configuration is not limited to this, but may be BZAZBZAZB or the like. In addition, a C layer comprising the regrind (collected and reground) of the hard resin container of the present invention as a main component is laminated, and C / A / C, B / C / A / C / B, B / A / C , B / A / C / B And so on.
[0027] また、上記いずれの場合にも層間に適宜に接着層を介在させることができる。用い られる接着層としては、例えば無水マレイン酸変性ポリオレフイン榭脂(三菱化学社 製:モディック S525、 XS533、 F513、 F533、三井ィ匕学社製:アドマー NF550)、グ リシジル基含有エチレンコポリマー(日本石油化学社製:レタスパール RA3150、住 友ィ匕学社製:ボンドファースト 2C、 E、 B)、熱可塑性ポリウレタン (クラレネ土製:クラミロ ン 1195L)、ポリアミド 'アイオノマー(三井デュポン社製: AM7926)、ポリアクリルイミ ド榭脂(ローム 'アンド'ハース社製: XHTA)などが挙げられる。  [0027] In any of the above cases, an adhesive layer can be appropriately interposed between the layers. Examples of the adhesive layer used include maleic anhydride-modified polyolefin resin (Mitsubishi Chemical Corporation: Modic S525, XS533, F513, F533, Mitsui Chemicals: Admer NF550), glycidyl group-containing ethylene copolymer (Nippon Oil Co., Ltd.). Chemical: Lettuce Pearl RA3150, Sumitomo Chemical Co., Ltd .: Bondfast 2C, E, B), Thermoplastic polyurethane (Kurarene clay: Chlamylon 1195L), Polyamide 'Ionomer (Mitsui DuPont: AM7926), Poly Acrylic imide resin (Rohm 'And' Haas Co., Ltd .: XHTA).
[0028] これらは生分解性には劣るものである力 接着層の厚さは 0. 5〜: LO /z m程度と非 常に薄ぐまた環境に対する負荷は使用量の少なさにより軽減することが可能である 。特に、生分解性の良好な接着性榭脂であれば、この発明において好適に用いられ るものになる。  [0028] These are inferior in biodegradability. The thickness of the adhesive layer is 0.5 ~: about LO / zm, which is very thin and the environmental load can be reduced by the small amount of use. Is possible. In particular, an adhesive resin having good biodegradability is preferably used in the present invention.
[0029] この発明にお 、て上記の材料を用いて構成されるポリグリコール酸系重合体層の 片面側または両面側にポリ乳酸系重合体層を積層し一体化した生分解性積層シー トは、通常用いられる周知な方法で製造することができる。  [0029] In the present invention, a biodegradable laminate sheet obtained by laminating and integrating a polylactic acid polymer layer on one side or both sides of a polyglycolic acid polymer layer composed of the above materials. Can be produced by a commonly used well-known method.
[0030] 例えば複数の押出し機力 フィードブロック方式ある 、はマルチマ-ホールド方式 によって共押出しする方法や、ポリグリコール酸系重合体力 なる単層シートとポリ乳 酸系重合体力 なる単層シートをラミネート加工する方法によって多層の層構成を形 成することができる。  [0030] For example, a method of co-extrusion using a plurality of extruder force feed block methods or a multi-hold method, or laminating a single layer sheet having a polyglycolic acid polymer force and a single layer sheet having a polylactic acid polymer force By this method, a multi-layer structure can be formed.
[0031] 生分解性積層シートの厚みについては、特に限定されることはなぐ目的とする所 望の性能に応じて適宜に選択される。例えば、硬質容器用に生分解性積層シートを 単独の素材として用いる場合には、容器成形後の総厚みとして 100 m以上にする ことが必要であるが、この発明の生分解性容器を紙容器等で補強する場合には、容 器成形後の総厚みを 100 μ m以下とすることもできる。  [0031] The thickness of the biodegradable laminated sheet is not particularly limited and is appropriately selected according to the desired desired performance. For example, when a biodegradable laminated sheet is used as a single material for a hard container, the total thickness after forming the container must be 100 m or more. In case of reinforcement with the like, the total thickness after forming the container can be 100 μm or less.
[0032] このようにして得られる生分解性積層シートは、圧空成形や真空成形等の熱成形を 用いて所望の成形体に形成することができる。好ましくは生分解性積層シートをヒー ターで 60°C〜160°Cに加熱し、ついで 90〜160°Cに加熱した金型に圧接させ、次 いで冷却して熱成形する。 [0033] 熱成形時に金型に圧接させる時間は、ポリグリコール酸系重合体の結晶化時間を 考慮して、 1秒〜 10分以内であることが好ましぐより好ましくは 3秒〜 60秒である。金 型の温度が 150°C以上では、離型し難くなる場合があるため、一般的な金型に圧接 させる時間は 3秒程度 (例えば 3〜4秒)が好まし 、。 [0032] The biodegradable laminated sheet obtained in this way can be formed into a desired molded body using thermoforming such as pressure forming or vacuum forming. Preferably, the biodegradable laminated sheet is heated to 60 ° C. to 160 ° C. with a heater, then pressed against a mold heated to 90 to 160 ° C., then cooled and thermoformed. [0033] In consideration of the crystallization time of the polyglycolic acid polymer, the time for pressure contact with the mold during thermoforming is preferably 1 second to 10 minutes, more preferably 3 seconds to 60 seconds. It is. When the mold temperature is 150 ° C or higher, it may be difficult to release the mold, so the time for pressure contact with a general mold is preferably about 3 seconds (eg 3-4 seconds).
実施例  Example
[0034] 以下の実施例では、予備加熱した生分解性積層シートを所定温度の金型に圧接さ せて圧空成形によりヒートセットすなわち結晶化処理をしながら容器を熱成形し、比 較例としては成形したヒートセット工程無し、または乾熱 (すなわち、非加圧状態での 加熱)式のヒートセットによる容器とポリ乳酸単層容器との比較を行なった。  [0034] In the following examples, a preheated biodegradable laminated sheet is pressed against a mold at a predetermined temperature, and a container is thermoformed while being heat-set, that is, crystallized by pressure forming, as a comparative example. Compared a polylactic acid single layer container with a molded heat set process without heat setting or with dry heat (that is, heating in a non-pressurized state).
[0035] [実施例 1〜12]  [0035] [Examples 1 to 12]
ポリグリコール酸(PGA)として、温度 270°C、せん断速度 120sec_1で測定した溶 融粘度が 900Pa'secのホモポリマー(ガラス転移温度 38°C、融点 221°C)のもの(( 株)クレハ製: PGA)を用いた。このポリグリコール酸 100重量部に対して、熱安定剤( 旭電ィ匕工業株式会社製:アデカスタブ AX— 71)を 0. 1重量%添加したものを押出し 成形材料に用いた。 As polyglycolic acid (PGA), temperature 270 ° C, those of the homopolymer of melting viscosity measured at a shear rate 120 sec _1 is 900Pa'sec (glass transition temperature 38 ° C, melting point 221 ° C) ((Ltd.) Kureha Manufactured by PGA). A material obtained by adding 0.1% by weight of a heat stabilizer (Asahi Denshi Kogyo Co., Ltd .: ADK STAB AX-71) to 100 parts by weight of this polyglycolic acid was used as an extrusion molding material.
[0036] ポリ乳酸としては、温度 200°Cで測定した溶融粘度が 1300Pa'sec、融点 162°Cの ュニチカ社製ポリ乳酸を用いた。  [0036] As polylactic acid, polylactic acid manufactured by Unitica Co., Ltd. having a melt viscosity of 1300 Pa'sec measured at a temperature of 200 ° C and a melting point of 162 ° C was used.
[0037] これらの榭脂材料を用いて Tダイ法により押出成形し、多層シートを作製した。層構 成は、ポリ乳酸(275 μ m) Zポリグリコール酸(50 μ m) Zポリ乳酸(275 μ m)であつ た。 [0037] Using these resin materials, extrusion molding was performed by a T-die method to produce a multilayer sheet. The layer structure was polylactic acid (275 μm) Z polyglycolic acid (50 μm) Z polylactic acid (275 μm).
[0038] このシートの上面および下面を 130°Cにセットされた電熱ヒーターの熱線を当てて 非加圧の状態で加熱し、次!、で軟化したシートに対して表 1に示す金型温度および ヒートセット時間の条件で 90°C〜 150°Cに加熱した雌型を 3〜 10秒間当ててカップ 型容器を圧空成形しながら同時に結晶化処理し、生分解性カップ型容器を得た。  [0038] The upper and lower surfaces of this sheet were heated in a non-pressurized state by applying the heating wire of an electric heater set at 130 ° C, and the mold temperature shown in Table 1 for the sheet softened in the following! A female mold heated to 90 ° C. to 150 ° C. under the conditions of the heat setting time was applied for 3 to 10 seconds, and the cup type container was subjected to crystallization treatment simultaneously with pressure forming to obtain a biodegradable cup type container.
[0039] 得られた生分解性カップ型容器に対して以下の試験法によって(1)成形性、(2)密 度 (結晶化度の目安として)、(3)耐熱性、(4)酸素ガス透過度について評価した。  [0039] (1) Formability, (2) Density (as a measure of crystallinity), (3) Heat resistance, (4) Oxygen The gas permeability was evaluated.
[0040] (1)成形性  [0040] (1) Formability
金型の温度、および金型に圧接させる時間による成形性 (金型からの成形容器の 離型性)を確認した。評価基準は以下の通りであり、〇:離型した、△:離型し難い、 X:離型せず、と記号で示した。 Moldability by mold temperature and time for pressure contact with mold (molding container from mold The releasability was confirmed. The evaluation criteria are as follows: ◯: released, Δ: difficult to release, X: not released.
[0041] (2)密度 [0041] (2) Density
JIS— K7112に準拠し、密度勾配管法により測定した。浸せき液として四塩化炭素 および 1, 2—ジクロロェタンの混合液を用いた。  Measured by the density gradient tube method in accordance with JIS-K7112. A mixture of carbon tetrachloride and 1,2-dichloroethane was used as the immersion liquid.
[0042] (3)耐熱性の試験 [0042] (3) Heat resistance test
i) 熱湯による容器の収縮  i) Shrinkage of container with hot water
容器に 100°Cの熱湯を注ぎ 30秒後に容器の収縮を観察した。評価は次に示す基 準で行なった。〇:収縮無し、 一部収縮、 X:大きく収縮  100 ° C hot water was poured into the container, and the container was observed for shrinkage after 30 seconds. Evaluation was performed according to the following criteria. ○: No contraction, partial contraction, X: Large contraction
ii)湯を注 、だ状態での落体試験  ii) Pouring hot water and falling body test
容器に 100°Cの熱湯を注ぎ 30秒後に、容器を 50cmの高さからコンクリートに落下 させ、変形の様子を観察した。評価は次に示す基準で行なった。  Pour hot water of 100 ° C into the container, and after 30 seconds, drop the container onto the concrete from a height of 50 cm and observe the deformation. Evaluation was performed according to the following criteria.
〇:変形なし、 Δ:一部変形、 X:大きく変形  ○: No deformation, Δ: Partial deformation, X: Large deformation
[0043] (4)酸素ガス透過度 [0043] (4) Oxygen gas permeability
モダンコントロール社製 OX— TRAN2Z20を用い、 JIS— K7126Bに準拠し、容 器内側を温度 23°C、相対湿度 80% 容器外側を温度 23°C、相対湿度 50%に保ち 測定を行なった。  Using OX-TRAN2Z20 manufactured by Modern Control Co., in accordance with JIS-K7126B, measurement was performed while maintaining the inside of the container at a temperature of 23 ° C and a relative humidity of 80% at a temperature of 23 ° C and a relative humidity of 50%.
[0044] [比較例 1] [0044] [Comparative Example 1]
実施例 1で圧空成形時に当てる雌型の温度を 30°C以下とし、加熱時間を 10秒にし たこと以外は実施例 1と全く同様にしてカップを熱成形して得た。得られたカップ型容 器に対して前記評価試験(1)〜 (4)を行なった。  A cup was thermoformed in the same manner as in Example 1 except that the temperature of the female mold applied in the pressure forming in Example 1 was 30 ° C. or lower and the heating time was 10 seconds. The evaluation tests (1) to (4) were performed on the obtained cup-type container.
[0045] [比較例 2] [0045] [Comparative Example 2]
比較例 1で成形したカップを、形状を維持するように固定しながら、 100°Cのオーブ ンで乾熱方式により 10秒間のヒートセットを行なつた。  While the cup molded in Comparative Example 1 was fixed so as to maintain its shape, it was heat-set for 10 seconds by a dry heat method at 100 ° C. oven.
[0046] [比較例 3] [0046] [Comparative Example 3]
比較例 1で成形したカップを、形状を維持するように固定しながら、 100°Cのオーブ ンで乾熱方式により 1分間のヒートセットを行なった。  While the cup molded in Comparative Example 1 was fixed so as to maintain its shape, heat setting was performed for 1 minute by a dry heat method at 100 ° C. in an oven.
[0047] [比較例 4] 実施例 1でポリグリコール酸層を除いたこと以外は実施例 1と同様にしてカップを得 た。 [0047] [Comparative Example 4] A cup was obtained in the same manner as in Example 1 except that the polyglycolic acid layer was removed in Example 1.
[0048] 以上のようにして得られた比較例 1〜4に関しても評価試験(1)〜 (4)によって成形 性を確認し、その結果を表 1、 2中に示した。  [0048] For Comparative Examples 1 to 4 obtained as described above, the moldability was confirmed by evaluation tests (1) to (4), and the results are shown in Tables 1 and 2.
[0049] 実施例および比較例に対して行なった評価試験の詳細については、以下の通りで ある。 [0049] Details of the evaluation tests performed on the examples and comparative examples are as follows.
実施例 1〜12に対しては成形性を確認し、実施例 1〜10、比較例 1、比較例 2、比 較例 3で得られたカップについては、ポリグリコール酸層の密度を測定し、その結果 を表 1中に併記した。  For Examples 1-12, the moldability was confirmed, and for the cups obtained in Examples 1-10, Comparative Example 1, Comparative Example 2, and Comparative Example 3, the density of the polyglycolic acid layer was measured. The results are also shown in Table 1.
実施例 1〜: LOおよび比較例 1〜4で得られたカップ型容器に対しては、耐熱性試 験を行ない、その結果を表 1中に併記した。  Examples 1 to: The cup-type containers obtained in LO and Comparative Examples 1 to 4 were subjected to a heat resistance test, and the results are also shown in Table 1.
実施例 6 (金型温度 100°C、時間 10秒)、比較例 1、比較例 2、比較例 3、比較例 4 で得られたカップにっ 、て酸素ガス透過度を測定し、その結果を表 2中に併記した。  Example 6 (mold temperature 100 ° C, time 10 seconds), oxygen gas permeability was measured with the cups obtained in Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4, and the results were obtained. Is also shown in Table 2.
[0050] [表 1] [0050] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0051] [表 2] 酸素ガス透過度 [0051] [Table 2] Oxygen gas permeability
( c m3/ c u p - d a y - a t m ) (cm 3 / cup-day-atm)
施例 6 0 . 0 1 7  Example 6 0. 0 1 7
比較例 1 0 . 0 2 4  Comparative Example 1 0. 0 2 4
比較例 2 0 . 0 2 5  Comparative Example 2 0. 0 2 5
比較例 3 0 . 0 2 0  Comparative Example 3 0. 0 2 0
比較例 4 0 . 9  Comparative Example 4 0.9
[0052] 表 1および表 2の結果からも明らかなように、成形性については、金型温度 150°C はポリ乳酸の融点に近いために圧接時間が長くなると離型不良となった。 As is clear from the results in Tables 1 and 2, regarding moldability, the mold temperature of 150 ° C. was close to the melting point of polylactic acid, so that the mold release was poor when the pressure contact time was long.
[0053] また、密度については、実施例 1〜: LOまでの密度を、比較例 1 (ヒートセットなし)と 比較すると、ポリグリコール酸層はヒートセットにより充分に結晶化していることがわか る。また比較例 2、 3 (乾熱式)と比較しても密度の値は大きくなつており結晶化度が高 いことがわ力る。  [0053] Regarding the density, when comparing the density up to Example 1 to LO with Comparative Example 1 (without heat setting), it can be seen that the polyglycolic acid layer is sufficiently crystallized by heat setting. . Compared with Comparative Examples 2 and 3 (dry heat type), the density value is large and the crystallinity is high.
[0054] 金型温度に関しては、温度が高いほど密度が高くなつており、時間に関しては 3秒 のヒートセットでも充分であることがわ力る。  [0054] Regarding the mold temperature, the higher the temperature, the higher the density. Regarding the time, it is obvious that a heat setting of 3 seconds is sufficient.
[0055] 耐熱性については、表 1より、実施例 1〜: LOはヒートセットによって充分に結晶化し ているため、熱湯による収縮がないことがわかる。金型温度 90°Cでは熱湯を注いだ 後の落体によって若干の変形が認められる。これは、密度の結果に表れている結晶 化度の差が影響したものと考えられる。これに対し比較例 1〜4には熱湯による収縮 が認められた。  [0055] With respect to heat resistance, it can be seen from Table 1 that Examples 1 to: LO is sufficiently crystallized by heat setting, so that there is no shrinkage due to hot water. At a mold temperature of 90 ° C, some deformation is observed due to the falling body after pouring hot water. This is thought to be due to the difference in crystallinity shown in the density results. On the other hand, in Comparative Examples 1 to 4, shrinkage due to hot water was observed.
[0056] 酸素ガス透過度については、表 2の実施例 6と比較例 4の結果より、ポリ乳酸単層に 比べ酸素ガスノ リア性が大きく向上していることがわかる。ヒートセットに関しても、ヒ ートセット無し (比較例 1)、乾熱式ヒートセット 10秒間(比較例 2)、乾熱式ヒートセット 1分間(比較例 3)、に比べて実施例 6の酸素ガスノ リア性が向上していることがわか る。  [0056] With respect to the oxygen gas permeability, the results of Example 6 and Comparative Example 4 in Table 2 indicate that the oxygen gas normality is greatly improved as compared with the polylactic acid monolayer. As for heat setting, oxygen gas in Example 6 compared to no heat set (Comparative Example 1), dry heat type heat set for 10 seconds (Comparative Example 2), and dry heat type heat set for 1 minute (Comparative Example 3). It can be seen that the performance is improved.
また実施例 6の酸素ガスノ リア性は、食品などの保存容器に用いても充分に使用 に耐える酸素ガス透過度の 0. 017 (cm3Zcup ' day atm)であり、し力も耐熱性につい ては、前述のように 100°Cの熱湯を注 、でも収縮せず変形のな 、ものであった。 従って、実施例に示された生分解性積層シートの熱成形方法は、酸素ガス透過度 0. 017 (cmVcup · day · atm)以下が要求される優れたガスバリア ·耐熱性の生分解 性食品容器などに適用できる熱成形方法であることがわ力つた。 In addition, the oxygen gas normality of Example 6 is an oxygen gas permeability of 0.017 (cm 3 Zcup 'day atm), which can withstand use even when used in storage containers for foods, etc. As mentioned above, hot water of 100 ° C was poured, but it did not shrink and was not deformed. Therefore, the thermoforming method of the biodegradable laminated sheet shown in the examples is oxygen gas permeability 0. 017 (cmVcup · day · atm) Excellent gas barrier that requires less than or equal to 017 (cmVcup · day · atm).
以上のことから、積層シートを 60〜160°Cに予備加熱し、次いで前記積層シートに 対して 90〜160°Cに加熱された金型を圧接させかつそのまま所定時間保持すること により、熱圧成形と同時に前記積層シートのポリグリコール酸系重合体層が結晶化さ れ、結晶化度、耐熱性、酸素ガス透過度が改善されていることが確認できた。  From the above, the laminated sheet is preheated to 60 to 160 ° C., and then the mold heated to 90 to 160 ° C. is pressed against the laminated sheet and kept as it is for a predetermined time. It was confirmed that the polyglycolic acid polymer layer of the laminated sheet was crystallized simultaneously with the molding, and the crystallinity, heat resistance, and oxygen gas permeability were improved.

Claims

請求の範囲 The scope of the claims
[1] ポリグリコール酸系重合体層の片面側または両面側にポリ乳酸系重合体層を積層 し一体化した生分解性積層シートを設け、この積層シートを 60〜160°Cに予備加熱 し、次 、で前記積層シートに対して 90〜 160°Cに加熱された金型を圧接させかつそ のまま所定時間保持することにより、熱圧成形と同時に前記積層シートのポリグリコー ル酸系重合体層を結晶化処理することからなる生分解性積層シートの熱成形方法。  [1] A biodegradable laminate sheet in which a polylactic acid polymer layer is laminated and integrated on one or both sides of the polyglycolic acid polymer layer is provided, and this laminate sheet is preheated to 60 to 160 ° C. Next, by pressing the mold heated to 90 to 160 ° C. against the laminated sheet and holding it for a predetermined time, the polyglycolic acid polymer of the laminated sheet is simultaneously formed with the hot pressing. A method for thermoforming a biodegradable laminated sheet comprising crystallizing a layer.
[2] 金型を圧接させて保持する所定時間が、 3〜60秒である請求項 1に記載の生分解 性積層シートの熱成形方法。  [2] The method for thermoforming a biodegradable laminated sheet according to claim 1, wherein the predetermined time for holding the mold in pressure contact is 3 to 60 seconds.
[3] ポリグリコール酸系重合体層の片面側または両面側にポリ乳酸系重合体層を積層 し一体ィ匕した生分解性積層シートからなり、請求項 1または 2に記載の熱成形方法で ポリダリコール酸系重合体層が結晶化処理されてなる生分解性熟成形体。  [3] The thermoforming method according to claim 1 or 2, comprising a biodegradable laminated sheet in which a polylactic acid polymer layer is laminated on one side or both sides of a polyglycolic acid polymer layer and integrated. A biodegradable mature molded article obtained by crystallizing a polydalicolate polymer layer.
[4] ポリグリコール酸系重合体層の片面側または両面側にポリ乳酸系重合体層を積層 し一体ィ匕した生分解性積層シートに対し、請求項 1または 2に記載の熱成形方法で ポリダリコール酸系重合体層が結晶化処理されてなる生分解性積層シートを構成素 材とする生分解性容器。  [4] The thermoforming method according to claim 1 or 2 for the biodegradable laminated sheet in which the polylactic acid polymer layer is laminated and integrated on one side or both sides of the polyglycolic acid polymer layer. A biodegradable container comprising, as a constituent material, a biodegradable laminated sheet obtained by crystallizing a polydalicolate polymer layer.
PCT/JP2007/051445 2006-01-31 2007-01-30 Process for thermoforming biodegradable laminated sheets WO2007088833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556858A JPWO2007088833A1 (en) 2006-01-31 2007-01-30 Thermoforming method of biodegradable laminated sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006022813 2006-01-31
JP2006-022813 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088833A1 true WO2007088833A1 (en) 2007-08-09

Family

ID=38327406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051445 WO2007088833A1 (en) 2006-01-31 2007-01-30 Process for thermoforming biodegradable laminated sheets

Country Status (3)

Country Link
JP (1) JPWO2007088833A1 (en)
TW (1) TW200744823A (en)
WO (1) WO2007088833A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096395A1 (en) * 2010-02-04 2011-08-11 株式会社クレハ Method for producing multilayered stretch-molded article
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
US8652617B2 (en) 2008-03-24 2014-02-18 Biovation, Llc Biolaminate composite assembly including polylactic acid and natural wax laminate layer, and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276078A (en) * 2002-03-22 2003-09-30 Yoshimura Kasei Kk Thermoforming method for polylactic acid biodegradable resin sheet
WO2003095558A1 (en) * 2002-05-08 2003-11-20 Dsm Ip Assets B.V. Glass fibre reinforced polycarbonate composition met improved toughness
JP2004345150A (en) * 2003-05-21 2004-12-09 Kanebo Ltd Method for manufacturing heat-set molded product
JP2005280361A (en) * 2005-04-15 2005-10-13 Mitsubishi Plastics Ind Ltd Production method of molded product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595019A (en) * 1982-07-02 1984-01-11 Toppan Printing Co Ltd Manufacture of heat-resisting container
JP2682638B2 (en) * 1988-04-26 1997-11-26 三井石油化学工業株式会社 Method for producing polyester resin molded article
KR20050004892A (en) * 2002-05-29 2005-01-12 구레하 가가쿠 고교 가부시키가이샤 Container of biodegradable heat-resistant hard resin molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276078A (en) * 2002-03-22 2003-09-30 Yoshimura Kasei Kk Thermoforming method for polylactic acid biodegradable resin sheet
WO2003095558A1 (en) * 2002-05-08 2003-11-20 Dsm Ip Assets B.V. Glass fibre reinforced polycarbonate composition met improved toughness
JP2004345150A (en) * 2003-05-21 2004-12-09 Kanebo Ltd Method for manufacturing heat-set molded product
JP2005280361A (en) * 2005-04-15 2005-10-13 Mitsubishi Plastics Ind Ltd Production method of molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
US8652617B2 (en) 2008-03-24 2014-02-18 Biovation, Llc Biolaminate composite assembly including polylactic acid and natural wax laminate layer, and related methods
WO2011096395A1 (en) * 2010-02-04 2011-08-11 株式会社クレハ Method for producing multilayered stretch-molded article

Also Published As

Publication number Publication date
JPWO2007088833A1 (en) 2009-06-25
TW200744823A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
KR100786005B1 (en) Multilayered aliphatic polyester film
WO1998003334A1 (en) Gas-barrier composite film
US20100330382A1 (en) Biaxially oriented polylactic acid film with improved moisture barrier
JP5675982B2 (en) Heat resistant food container and manufacturing method thereof
JP2010280910A (en) Molded article comprising lactic acid polymer composition and method for producing thermoformed article
JP2000505745A (en) Improved biaxial stretching of fluoropolymer films
JPWO2019049798A1 (en) Biodegradable acid-modified polyester resin and laminate
WO2007088833A1 (en) Process for thermoforming biodegradable laminated sheets
JP2013103438A (en) Sheet and container using the same
KR20220148885A (en) Multilayer polylactide-based structures and articles made therefrom
JP2008030332A (en) Molding
JP2009028988A (en) Polylactic acid based multiple-layered article excellent in gas barrier property
JP5139722B2 (en) Multilayer sheets and molded articles containing lactic acid polymers
JP2022182524A (en) Method for manufacturing laminate, and laminate
JP4917795B2 (en) Biaxially stretched laminated film and method for producing the same
JP6249695B2 (en) Modified ethylene-vinyl ester copolymer saponified resin composition and pellets comprising the same
KR100942301B1 (en) Laminating method and products made thereby
JP2021512807A (en) Manufacturing method of composite sheet with excellent workability and packaging container containing it
JP2008031376A (en) Lactate-based resin composition, molded article, thermally molded article and method for producing thermally molded article
JP2013199059A (en) Laminated film
WO2022075233A1 (en) Multilayer film and packaging material
JP6069846B2 (en) FOAM LAMINATE, PROCESS FOR PRODUCING THE SAME, FOAMED PAPER AND INSULATION CONTAINER USING THE SAME
JP5966478B2 (en) Foamed laminate, foamed paper, and heat insulating container using the same
TWI253882B (en) Mold release film
JP2023107433A (en) Method for manufacturing film and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707676

Country of ref document: EP

Kind code of ref document: A1