JP4917795B2 - Biaxially stretched laminated film and method for producing the same - Google Patents

Biaxially stretched laminated film and method for producing the same Download PDF

Info

Publication number
JP4917795B2
JP4917795B2 JP2005334245A JP2005334245A JP4917795B2 JP 4917795 B2 JP4917795 B2 JP 4917795B2 JP 2005334245 A JP2005334245 A JP 2005334245A JP 2005334245 A JP2005334245 A JP 2005334245A JP 4917795 B2 JP4917795 B2 JP 4917795B2
Authority
JP
Japan
Prior art keywords
laminated film
layer
biaxially stretched
polyglycolic acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005334245A
Other languages
Japanese (ja)
Other versions
JP2006182018A (en
Inventor
一成 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2005334245A priority Critical patent/JP4917795B2/en
Publication of JP2006182018A publication Critical patent/JP2006182018A/en
Application granted granted Critical
Publication of JP4917795B2 publication Critical patent/JP4917795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明はポリアミド系積層フィルムおよびその製造方法に関し、特に、同時二軸延伸に先立って、未延伸フィルムを吸水させる際に、ポリグリコール酸からなる層が非晶状態を保たれるように吸水させる方法に関する。   The present invention relates to a polyamide-based laminated film and a method for producing the same, and in particular, when water is absorbed into an unstretched film prior to simultaneous biaxial stretching, water is absorbed so that the layer made of polyglycolic acid is maintained in an amorphous state. Regarding the method.

一般に、ポリアミド系樹脂フィルムは、機械特性、光学特性、熱的特性、ガスバリア性、強靱性、耐ピンホール性、耐屈曲性などに優れており、包装用途、特に食品包装用途を主体に広く使用されている。なかでもガスバリア性が要求される分野においては、ポリアミドにポリメタキシリレンジアジパミドまたはエチレン−酢酸ビニル共重合体けん化物を積層したフィルムが用いられている。しかし、これらの積層フィルムは、高湿度下においてガスバリア性が低下するという問題があり、水分活性の高い食品の包装用途には使用できないなど用途が限られていた。   In general, polyamide resin films are excellent in mechanical properties, optical properties, thermal properties, gas barrier properties, toughness, pinhole resistance, flex resistance, etc., and are widely used mainly for packaging applications, especially food packaging applications. Has been. In particular, in a field where gas barrier properties are required, a film in which polymetaxylylene adipamide or saponified ethylene-vinyl acetate copolymer is laminated on polyamide is used. However, these laminated films have a problem that the gas barrier property is lowered under high humidity, and their use is limited such that they cannot be used for packaging foods with high water activity.

一方、高湿度下でガスバリア性が低下しない新しい材料としてポリグリコール酸(PGA)が開発されつつあり、例えば特許文献1には、ポリグリコール酸と熱可塑性樹脂との多層フィルムが開示されている。しかしながら同文献には、熱可塑性樹脂としてポリアミドを用いる場合の多層フィルム作成方法として、パリソンをインフレーションする方法のみが記載され、工業的に適用可能な製造方法は開示されていなかった。   On the other hand, polyglycolic acid (PGA) is being developed as a new material whose gas barrier property does not deteriorate under high humidity. For example, Patent Document 1 discloses a multilayer film of polyglycolic acid and a thermoplastic resin. However, in this document, only a method for inflating a parison is described as a method for producing a multilayer film when polyamide is used as a thermoplastic resin, and an industrially applicable production method is not disclosed.

また、ポリアミド層とポリグリコール酸層とからなる多層フィルムを、未延伸フィルムを吸水させた後、同時二軸延伸する通常のポリアミドフィルム製造条件を適用して製造した場合、ポリグリコール酸の結晶性が非常に高いため、ポリグリコール酸層の結晶化が起こりやすく、延伸が困難になることがあった。
特開2003−305817号公報
In addition, when a multilayer film composed of a polyamide layer and a polyglycolic acid layer is produced by applying normal polyamide film production conditions in which an unstretched film is absorbed and then biaxially stretched simultaneously, the polyglycolic acid crystallinity Is very high, the polyglycolic acid layer is likely to be crystallized, and stretching may be difficult.
JP 2003-305817 A

本発明の課題は、ポリアミド層とポリグリコール酸層とからなる積層フィルムおよびその製造方法を提供することにあり、更に詳細には、同時二軸延伸に先立って積層フィルムを吸水させるにあたり、ポリグリコール酸を結晶化させないで吸水させる方法を提供することである。   An object of the present invention is to provide a laminated film composed of a polyamide layer and a polyglycolic acid layer and a method for producing the same, and more specifically, in absorbing the laminated film prior to simultaneous biaxial stretching, It is to provide a method of absorbing water without crystallizing the acid.

本発明者らは、上記課題を解決するため鋭意検討した結果、ポリアミドとポリグリコール酸との積層フィルムを特定の温度、時間で吸水させることによって、ポリグリコール酸を結晶化させることなく、ポリアミドを延伸に適した水分率まで吸水させることができることを見出し、本発明を完成した。すなわち、本発明の要旨は次のとおりである。
(1)主としてポリグリコール酸からなる層と、主としてポリアミドからなる層とが少なくとも1層ずつ積層された未延伸積層フィルムを、温水槽で吸水させた後、予熱、延伸および熱処理工程を含む同時二軸延伸をおこなう二軸延伸積層フィルムの製造方法であって、吸水時間(t秒)と、吸水温度におけるポリグリコール酸の半結晶化時間(tc秒)とが下記式を満足することを特徴とする二軸延伸積層フィルムの製造方法。
t<tc/2
20<t<300
(2)20℃、100%RH雰囲気下での酸素透過度が100ml/(m・day・MPa)以下である上記製造方法により製造された二軸延伸積層フィルム。
As a result of intensive studies to solve the above problems, the inventors of the present invention have made it possible to absorb polyamide at a specific temperature and time for a laminated film of polyamide and polyglycolic acid, without causing polyglycolic acid to crystallize. The inventors have found that water can be absorbed up to a moisture content suitable for stretching, and completed the present invention. That is, the gist of the present invention is as follows.
(1) An unstretched laminated film in which at least one layer mainly made of polyglycolic acid and a layer mainly made of polyamide are laminated is absorbed in a hot water tank, and then includes preheating, stretching and heat treatment steps. A method for producing a biaxially stretched laminated film in which axial stretching is performed , wherein the water absorption time (t seconds) and the polyglycolic acid half crystallization time (tc seconds) at the water absorption temperature satisfy the following formula: A method for producing a biaxially stretched laminated film.
t <tc / 2
20 <t <300
(2) A biaxially stretched laminated film produced by the above production method having an oxygen permeability of 100 ml / (m 2 · day · MPa) or less at 20 ° C. and 100% RH atmosphere.

同時二軸延伸に先立って未延伸フィルムを吸水させるときに特定の条件で吸水させることにより、ポリグリコール酸層を結晶化させることなく、ポリアミド層を延伸に適した水分率にコントロールすることができ、幅方向の物性の均一性に優れた延伸積層フィルムが容易に製造できる。したがって、本発明により製造された積層フィルムの産業上の利用価値は極めて高い。   By absorbing water under specific conditions when water is absorbed into an unstretched film prior to simultaneous biaxial stretching, the polyamide layer can be controlled to a moisture content suitable for stretching without crystallizing the polyglycolic acid layer. A stretched laminated film having excellent uniformity of physical properties in the width direction can be easily produced. Therefore, the industrial utility value of the laminated film produced by the present invention is extremely high.

次に本発明を詳細に説明する。本発明において、ポリグリコール酸とは、繰り返し構造(−O−CH−CO−)を60mol%以上含有する(共)重合体あるいはその混合物であり、好ましくは繰り返し構造(−O−CH−CO−)を80mol%以上含有する(共)重合体あるいはその混合物である。
ポリグリコール酸に共重合または混合する成分としては、ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)、ポリ(ブチレンサクシネートcoブチレンアジペート)等に代表されるジオールとジカルボン酸からなる脂肪族ポリエステルや、ポリ(乳酸)、ポリ(3ヒドロキシ酪酸)、ポリ(3ヒドロキシ吉草酸)、ポリ(6ヒドロキシカプロン酸)等のポリヒドロキシカルボン酸や、ポリ(εカプロラクトン)やポリ(δバレロラクトン)に代表されるポリ(ωヒドロキシアルカノエート)や、エチレングリコール、プロピレングリコール、ジエチレングリコールなどに代表されるアルキレングリコールや、ポリ(ブチレンサクシネートcoブチレンテレフタレート)やポリ(ブチレンアジペートcoブチレンテレフタレート)の他、ポリエステルアミド、ポリエステルカーボネート、ポリケトン、シュウ酸エチレン、澱粉等の多糖類等が挙げられる。
また、ポリグリコール酸には、フィルムの性能を損なわない範囲において、ポリオレフィン、エラストマー、アイオノマーなどの樹脂や、滑剤、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離型剤を配合することもできる。
Next, the present invention will be described in detail. In the present invention, polyglycolic acid is a (co) polymer or a mixture thereof containing 60 mol% or more of a repeating structure (—O—CH 2 —CO—), preferably a repeating structure (—O—CH 2 —). A (co) polymer containing 80 mol% or more of CO-) or a mixture thereof.
As a component to be copolymerized or mixed with polyglycolic acid, an aliphatic polyester composed of a diol and a dicarboxylic acid typified by poly (ethylene succinate), poly (butylene succinate), poly (butylene succinate cobutylene adipate) and the like And poly (lactic acid), poly (3-hydroxybutyric acid), poly (3-hydroxyvaleric acid), poly (6-hydroxycaproic acid) and other polyhydroxycarboxylic acids, poly (ε-caprolactone) and poly (δ valerolactone) Representative poly (ω-hydroxyalkanoates), alkylene glycols such as ethylene glycol, propylene glycol, diethylene glycol, poly (butylene succinate cobutylene terephthalate) and poly (butylene adipate cobutylene terephthalate) Other, polyesteramides, polyestercarbonates, polyketones, ethylene oxalate, polysaccharides starch and the like.
In addition, polyglycolic acid has a resin, such as polyolefin, elastomer, ionomer, lubricant, pigment, heat stabilizer, antioxidant, weathering agent, flame retardant, plasticizer, mold release, as long as the performance of the film is not impaired. An agent can also be blended.

本発明において、ポリアミドとは、その分子内にアミド結合(−CONH−)を有する溶融成形可能な熱可塑性樹脂であり、ポリカプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリアミノウンデカミド(ナイロン11)、ポリラウリルアミド(ナイロン12)および、これらの共重合体、混合物等が挙げられるが、特にナイロン6が好ましい。また、ポリアミドには、フィルムの性能を損なわない範囲においてタルク、シリカ、アルミナ、マグネシア、炭酸カルシウム、エチレンビスステアリルアミド、ステアリン酸カルシウム等の滑剤や、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離型剤を配合することもできる。   In the present invention, polyamide is a melt-moldable thermoplastic resin having an amide bond (—CONH—) in the molecule, and is composed of polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexa Examples include methylene sebacamide (nylon 610), polyaminoundecamide (nylon 11), polylauryl amide (nylon 12), and copolymers and mixtures thereof. Nylon 6 is particularly preferable. In addition, the polyamide has a lubricant, such as talc, silica, alumina, magnesia, calcium carbonate, ethylene bisstearylamide, calcium stearate, pigments, heat stabilizers, antioxidants, weathering agents, as long as the performance of the film is not impaired. A flame retardant, a plasticizer, and a mold release agent can also be mix | blended.

本発明の二軸延伸積層フィルムは、主としてポリグリコール酸からなる層(X)と、主としてポリアミドからなる層(Y)の少なくとも2種の層から構成される。X層におけるポリグリコール酸の含有量は80質量%以上が好ましく、90質量%以上がさらに好ましい。ポリグリコール酸の含有量が80質量%未満であると、ガスバリア性が低下する。一方、Y層におけるポリアミドの含有量は85質量%以上が好ましく、95質量%以上がさらに好ましい。ポリアミドの含有量が85質量%未満であると、強靭性や耐ピンホール性などのポリアミドの特徴が損なわれることがある。   The biaxially stretched laminated film of the present invention is composed of at least two types of layers, a layer (X) mainly composed of polyglycolic acid and a layer (Y) mainly composed of polyamide. The content of polyglycolic acid in the X layer is preferably 80% by mass or more, and more preferably 90% by mass or more. Gas barrier property falls that content of polyglycolic acid is less than 80 mass%. On the other hand, the polyamide content in the Y layer is preferably 85% by mass or more, and more preferably 95% by mass or more. If the polyamide content is less than 85% by mass, characteristics of the polyamide such as toughness and pinhole resistance may be impaired.

本発明の二軸延伸積層フィルムの代表的な層構成としては、得られる積層フィルムの強度・ガスバリア性等の物性や、フィルム製造時のフィルム破断やポリグリコール酸の低ガラス転移温度に起因するトラブルを回避するために、X層を外部表面層としないほうが望ましく、Y/X/Yの3層構成が好ましい。X層の厚みは総厚みの6〜40%であることが好ましく、さらに好ましくは10〜30%である。X層の厚みが総厚みの6%未満の場合、ガスバリア性が悪くなり、また、40%を超えると吸水時にポリグリコール酸の結晶化が起こりやすくなり、延伸性が悪くなる。   The typical layer structure of the biaxially stretched laminated film of the present invention includes troubles caused by physical properties such as strength and gas barrier properties of the obtained laminated film, film breakage during film production, and low glass transition temperature of polyglycolic acid. In order to avoid this, it is desirable that the X layer is not an external surface layer, and a three-layer structure of Y / X / Y is preferable. The thickness of the X layer is preferably 6 to 40% of the total thickness, and more preferably 10 to 30%. When the thickness of the X layer is less than 6% of the total thickness, the gas barrier property is deteriorated, and when it exceeds 40%, crystallization of polyglycolic acid is liable to occur at the time of water absorption and the stretchability is deteriorated.

また、本発明の二軸延伸積層フィルムの層構成として、接着剤からなるZ層を用いたY/Z/X/Z/Yの5層構成であることがさらに好ましい。Z層として用いる樹脂は、X層とY層との層間密着性の高いものであればよく、例えば、変性ポリオレフィン、エチレン−酢酸ビニル共重合体、アイオノマー、ポリウレタン、エポキシ樹脂等のポリマーが挙げられる。Z層の厚みは、0.5〜4μmであることが好ましく、さらに0.5〜2μmであることがさらに好ましい。この厚みが0.5μm未満では、接着性が不充分となるおそれがあり、塗布も困難である。この厚みが4μm超過では、コスト高であり経済的面から不利である。   Moreover, as a layer structure of the biaxially stretched laminated film of the present invention, a five-layer structure of Y / Z / X / Z / Y using a Z layer made of an adhesive is more preferable. The resin used as the Z layer only needs to have a high interlayer adhesion between the X layer and the Y layer, and examples thereof include polymers such as modified polyolefin, ethylene-vinyl acetate copolymer, ionomer, polyurethane, and epoxy resin. . The thickness of the Z layer is preferably 0.5 to 4 μm, and more preferably 0.5 to 2 μm. If the thickness is less than 0.5 μm, the adhesion may be insufficient, and application is difficult. If this thickness exceeds 4 μm, the cost is high, which is disadvantageous from an economical viewpoint.

本発明の二軸延伸積層フィルムの厚みは、各層の厚みが上記の範囲にあれば特に限定されないが、フレキシブルな包材として使用する場合、通常10〜50μmが好ましい。厚みが薄いと強度特性とガスバリア性の両立が困難となり、厚みが厚いと過剰性能となりコストパフォーマンスが悪化する。   The thickness of the biaxially stretched laminated film of the present invention is not particularly limited as long as the thickness of each layer is in the above range, but is usually preferably 10 to 50 μm when used as a flexible packaging material. If the thickness is thin, it is difficult to achieve both strength properties and gas barrier properties. If the thickness is thick, the performance becomes excessive and the cost performance deteriorates.

未延伸積層フィルムの製膜方法としては、公知の方法で行うことができる。たとえば、各層を構成する数種の樹脂を別々の押出機中で溶融し、フィードブロック内で多層構造に重ね合わせた後、ダイスより押出す方法(モノマニホールドタイプ)や、溶融した数種の樹脂をダイス中にて多層構造に重ね合わせて押出すマルチマニホールド法等を用いることができる。各層の厚み精度が高いことからマルチマニホールド法が好ましい。ダイスより共押出した後、冷却ロール上で急冷することにより未延伸積層フィルムが得られる。   As a method for forming an unstretched laminated film, a known method can be used. For example, several types of resin constituting each layer are melted in separate extruders, stacked on a multilayer structure in a feed block, and then extruded from a die (mono-manifold type), or several types of molten resin A multi-manifold method or the like can be used in which a multi-layer structure is extruded in a die in a die. The multi-manifold method is preferable because the thickness accuracy of each layer is high. After coextrusion from a die, an unstretched laminated film is obtained by quenching on a cooling roll.

本発明においては、上記未延伸積層フィルムを温水槽に導き、下記の条件で吸水処理を施すことが必要である。この吸水処理を施すことにより、ポリアミド層が可塑化されて延伸応力が低下し、次工程の同時二軸延伸が容易になる。また、延伸機の予熱ゾーンにおいて蒸発潜熱のためにポリグリコール酸層の温度上昇が抑制され、結晶化することを防止する効果も得られる。   In the present invention, it is necessary to introduce the unstretched laminated film into a hot water tank and perform water absorption treatment under the following conditions. By performing this water absorption treatment, the polyamide layer is plasticized, the stretching stress is reduced, and simultaneous biaxial stretching in the next step is facilitated. Moreover, the temperature rise of the polyglycolic acid layer is suppressed due to latent heat of vaporization in the preheating zone of the stretching machine, and an effect of preventing crystallization can be obtained.

本発明において、温水槽における吸水温度と吸水時間(t)は、ポリグリコール酸の半結晶化時間(tc)と密接な関係を有する。ここで半結晶化時間(tc)は次のとおり定義する。まずアルミニウムパンにポリグリコール酸を15mg秤取り、示差走査熱量測定(DSC)装置を使用し、270℃まで300℃/分の速度で加熱し融解させる。直ちに300℃/分の速度で測定温度まで冷却を行い、保持する。測定温度に達した時点で時間計測を開始し、そのDSC曲線で観測される結晶化の発熱ピークトップに達した時間を半結晶化時間と定義する。DSC装置としては、昇温速度が300℃/分以上、液体窒素・液体ヘリウム等を使用した冷却速度が300℃/分以上が可能な装置であればいずれでもよく、例えば、Perkin−Elmer社製DSCユニット DSC7等を用いることができる。   In the present invention, the water absorption temperature and the water absorption time (t) in the hot water tank are closely related to the semi-crystallization time (tc) of polyglycolic acid. Here, the half crystallization time (tc) is defined as follows. First, 15 mg of polyglycolic acid is weighed in an aluminum pan, and is heated to 270 ° C. at a rate of 300 ° C./min using a differential scanning calorimetry (DSC) device to melt. Immediately cool to the measurement temperature at a rate of 300 ° C./min and hold. Time measurement is started when the measurement temperature is reached, and the time at which the crystallization exothermic peak top observed in the DSC curve is reached is defined as the half crystallization time. The DSC apparatus may be any apparatus as long as the heating rate is 300 ° C./min or higher and the cooling rate using liquid nitrogen, liquid helium, or the like is 300 ° C./min or higher. For example, manufactured by Perkin-Elmer DSC unit DSC7 etc. can be used.

吸水時間(t)はその吸水温度におけるポリグリコール酸の半結晶化時間(tc)の1/2未満であることが必要である。吸水時間(t)をこの範囲に設定することにより吸水中にポリグリコール酸が延伸に供することができる程度に結晶化が抑えられる。また、同時に、吸水時間(t)は20〜300秒であることが必要である。吸水時間(t)が20秒未満では水分率が足りず延伸応力が高くなりボーイングが大きく、得られたフィルムの巾方向の物性が不均一になる。水分率を高めるためには高温で吸水させることになるが、半結晶化時間(tc)の1/2を超えてしまうため結晶化して延伸できない。吸水時間(t)が300秒を超える場合は、温水槽を長くするか通紙速度を遅くする必要があり、生産性に劣る。   The water absorption time (t) needs to be less than half of the polyglycolic acid half crystallization time (tc) at the water absorption temperature. By setting the water absorption time (t) within this range, crystallization can be suppressed to such an extent that polyglycolic acid can be subjected to stretching during water absorption. At the same time, the water absorption time (t) needs to be 20 to 300 seconds. When the water absorption time (t) is less than 20 seconds, the moisture content is insufficient, the stretching stress becomes high, the bowing becomes large, and the physical properties in the width direction of the obtained film become non-uniform. In order to increase the moisture content, water is absorbed at a high temperature. However, since it exceeds 1/2 of the half crystallization time (tc), it cannot be crystallized and stretched. When the water absorption time (t) exceeds 300 seconds, it is necessary to lengthen the hot water tank or slow down the sheet passing speed, which is inferior in productivity.

温水槽の温度は45〜75℃が好ましい。45℃未満ではポリアミドへの吸水速度が遅いため吸水時間を長くする必要があり不経済である。75℃を超えると、ポリグリコール酸ばかりか、ポリアミドも結晶化が進み、延伸が困難になる。   The temperature of the hot water tank is preferably 45 to 75 ° C. If it is less than 45 ° C., the water absorption rate to the polyamide is slow, so it is necessary to lengthen the water absorption time, which is uneconomical. If it exceeds 75 ° C., not only polyglycolic acid but also polyamide will be crystallized, making stretching difficult.

吸水後の未延伸積層フィルムの水分率は3〜9%が好ましい。未延伸積層フィルムの水分率とは、未延伸積層フィルム全体の中に含まれる水分の割合を指し、吸水後の未延伸積層フィルムから切り出したサンプル片の質量Wと、それを減圧下80℃で24時間乾燥した後の質量Wdから次式により求めたものである。水分率が3%未満であると延伸応力が高くなりボーイングが大きく、得られたフィルムの巾方向の物性が不均一になる。9%を超えるとネック延伸になりやすく厚み斑が生じやすい。
水分率(%)=(W−Wd)/W×100
The moisture content of the unstretched laminated film after water absorption is preferably 3 to 9%. The moisture content of the unstretched laminated film refers to the proportion of moisture contained in the whole unstretched laminated film, and the mass W of the sample piece cut out from the unstretched laminated film after water absorption, and at 80 ° C. under reduced pressure. It is obtained by the following formula from the mass Wd after drying for 24 hours. If the moisture content is less than 3%, the stretching stress becomes high, the bowing becomes large, and the physical properties in the width direction of the obtained film become non-uniform. If it exceeds 9%, neck stretching tends to occur and thickness spots are likely to occur.
Moisture content (%) = (W−Wd) / W × 100

このようにして吸水処理が施された未延伸積層フィルムは、通常の同時二軸延伸条件により容易に延伸されうる。すなわち、フィルムの端部をクリップで把持して50〜180℃の予熱温度および延伸温度で縦横方向にそれぞれ2.0〜4.0倍に延伸され、更に延伸フィルムは150〜220℃で熱処理が施されるともに、横方向に1〜8%弛緩処理が施される。予熱温度および延伸温度が50℃未満ではポリアミド層が延伸できず、180℃を超えた場合、吸水した水分の蒸発速度が速くなりすぎ、フィルム温度が高くなった結果、ポリグリコール酸層の結晶化が進み延伸困難になる。熱処理温度が150℃未満では収縮率が大きくなって寸法安定性が悪く、220℃を超えた場合には溶断するなどのトラブルにより操業性が低下する。   The unstretched laminated film subjected to the water absorption treatment in this way can be easily stretched under normal simultaneous biaxial stretching conditions. That is, the end of the film is gripped with a clip and stretched 2.0 to 4.0 times in the longitudinal and transverse directions at a preheating temperature of 50 to 180 ° C and a stretching temperature, respectively, and the stretched film is heat treated at 150 to 220 ° C. In addition, 1-8% relaxation treatment is applied in the lateral direction. When the preheating temperature and the stretching temperature are less than 50 ° C., the polyamide layer cannot be stretched. When the preheat temperature and the stretching temperature exceed 180 ° C., the evaporation rate of absorbed water becomes too fast and the film temperature becomes high. It becomes difficult to stretch. When the heat treatment temperature is less than 150 ° C., the shrinkage rate is increased and the dimensional stability is poor, and when it exceeds 220 ° C., the operability is lowered due to troubles such as fusing.

このようにして得られた二軸延伸積層フィルムは、ポリグリコール酸からなる層に欠陥がなく、20℃、100%RH雰囲気下での酸素透過度を100ml/(m・day・MPa)以下とすることができる。 The biaxially stretched laminated film thus obtained has no defects in the layer made of polyglycolic acid, and has an oxygen permeability of 100 ml / (m 2 · day · MPa) or less in an atmosphere of 20 ° C. and 100% RH. It can be.

次に、実施例により、本発明をさらに具体的に説明する。なお、実施例および比較例の評価に用いた原料および測定方法は次のとおりである。
(1)原料
ナイロン6:ユニチカ社製 A1030BRF
ポリグリコール酸:グリコリド20kgを、反応釜に仕込み、窒素ガスを吹き込みながら約30分間室温で乾燥した。次いで、触媒としてSnCl・6.5HOを4g添加し、窒素ガスを吹き込みながら170℃に2時間保持して重合した。重合終了後、反応釜を室温まで冷却し、反応釜から取出した塊状ポリマーを約3mm以下の細粒に粉砕し、約150℃、約0.1kPaで一晩減圧乾燥し、残存モノマーを除去してポリグリコール酸を得た。(各測定温度における半結晶化時間(tc):>10000秒(40℃)、2680秒(50℃)、320秒(60℃)、74秒(70℃)、44秒(80℃))
接着剤:住友化学工業社製 ボンドファースト2B
(2)測定法
(2−1)半結晶化時間(tc)
Perkin−Elmer社製DSC DSC7を用い、アルミニウムパンにポリグリコール酸を15mg秤取り、270℃まで300℃/分の速度で加熱し融解させた。直ちに300℃/分の速度で測定温度まで冷却を行い、保持した。測定温度に達した時点で時間計測を開始し、そのDSC曲線で観測される結晶化の発熱ピークトップに達した時間を半結晶化時間とした。
(2−2)水分率(%)
未吸水後の未延伸積層フィルムから切り出したサンプル片の質量Wと、それを減圧下80℃で24時間乾燥した後の質量Wdから次式により求めた。
水分率(%)=(W−Wd)/W×100
(2−3)厚み斑(%)
延伸フィルムの厚みを巾方向に5mm間隔で測定し、厚みの最大値Dmax、最小値Dmin、平均値Daveから次式により求めた。
厚み斑(%)=(Dmax−Dmin)÷Dave×100
(2−4)酸素透過度
Modern Control社製のOX−TRAN2/20を使用し、20℃、100%RHの条件で測定した。(単位:ml/(m・day・MPa)/(1枚厚み))
Next, the present invention will be described more specifically with reference to examples. In addition, the raw material and measurement method which were used for evaluation of an Example and a comparative example are as follows.
(1) Raw material nylon 6: A1030BRF manufactured by Unitika Ltd.
Polyglycolic acid: 20 kg of glycolide was charged into a reaction kettle and dried at room temperature for about 30 minutes while blowing nitrogen gas. Next, 4 g of SnCl 4 .6.5H 2 O was added as a catalyst, and polymerization was carried out by maintaining at 170 ° C. for 2 hours while blowing nitrogen gas. After completion of the polymerization, the reaction kettle is cooled to room temperature, and the bulk polymer taken out from the reaction kettle is pulverized into fine particles of about 3 mm or less and dried under reduced pressure at about 150 ° C. and about 0.1 kPa overnight to remove residual monomers. Thus, polyglycolic acid was obtained. (Semi-crystallization time (tc) at each measurement temperature:> 10000 seconds (40 ° C.), 2680 seconds (50 ° C.), 320 seconds (60 ° C.), 74 seconds (70 ° C.), 44 seconds (80 ° C.))
Adhesive: Bond First 2B manufactured by Sumitomo Chemical Co., Ltd.
(2) Measurement method (2-1) Half crystallization time (tc)
Using DSC DSC7 manufactured by Perkin-Elmer, 15 mg of polyglycolic acid was weighed in an aluminum pan and heated to 270 ° C. at a rate of 300 ° C./min to be melted. Immediately cooled to the measurement temperature at a rate of 300 ° C./min and held. Time measurement was started when the measurement temperature was reached, and the time when the exothermic peak top of crystallization observed in the DSC curve was reached was defined as the half crystallization time.
(2-2) Moisture content (%)
It calculated | required by following Formula from the mass Wd of the sample piece cut out from the unstretched laminated | multilayer film after non-water absorption, and the mass Wd after drying it at 80 degreeC under pressure reduction for 24 hours.
Moisture content (%) = (W−Wd) / W × 100
(2-3) Thickness spots (%)
The thickness of the stretched film was measured at intervals of 5 mm in the width direction, and was determined from the maximum value Dmax, minimum value Dmin, and average value Dave of the thickness by the following formula.
Thickness unevenness (%) = (Dmax−Dmin) ÷ Dave × 100
(2-4) Oxygen permeability OX-TRAN 2/20 manufactured by Modern Control was used and measured under the conditions of 20 ° C. and 100% RH. (Unit: ml / (m 2 · day · MPa) / (1 sheet thickness))

実施例1
3種5層用共押出Tダイを用いて、第1押出機よりナイロン6を250℃で押出し(Y層)、第2押出機よりポリグリコール酸を、温度250℃で押出し(X層)、第3押出機より接着剤を、温度250℃で押出し(Z層)、マルチマニホールドタイプのダイスにてY/Z/X/Z/Yの順に積層したフィルムを、表面温度10℃に温調した冷却ドラム上に密着させて急冷し、各層の厚みがY/Z/X/Z/Y=50/10/30/10/50μmで総厚み150μmの未延伸積層フィルムを得た。得られた未延伸積層フィルムを50℃に温調された水槽に導き、180秒間吸水処理を行った。このとき未延伸フィルムの吸水率は6.2%であった。予熱温度140℃、延伸温度140℃で縦方向に3倍、横方向に3.3倍に同時二軸延伸し、温度200℃、弛緩率5%で熱処理を行い厚さ15μmの二軸延伸積層フィルムを得た。得られたフィルムの酸素透過度を測定し、表1に示した。
Example 1
Using a coextrusion T die for 3 types and 5 layers, nylon 6 is extruded from the first extruder at 250 ° C. (Y layer), polyglycolic acid is extruded from the second extruder at a temperature of 250 ° C. (X layer), The adhesive was extruded from the third extruder at a temperature of 250 ° C. (Z layer), and the film laminated in the order of Y / Z / X / Z / Y with a multi-manifold type die was controlled to a surface temperature of 10 ° C. The film was brought into close contact with the cooling drum and quenched to obtain an unstretched laminated film having a thickness of each layer of Y / Z / X / Z / Y = 50/10/30/10/50 μm and a total thickness of 150 μm. The obtained unstretched laminated film was introduced into a water tank adjusted to 50 ° C. and subjected to water absorption treatment for 180 seconds. At this time, the water absorption of the unstretched film was 6.2%. A biaxially stretched laminate with a preheating temperature of 140 ° C and a stretching temperature of 140 ° C is simultaneously biaxially stretched 3 times in the longitudinal direction and 3.3 times in the transverse direction, and heat treated at a temperature of 200 ° C and a relaxation rate of 5%. A film was obtained. The oxygen permeability of the obtained film was measured and shown in Table 1.

実施例2〜4、比較例1〜4
吸水条件を表1のように変更した以外は実施例1と同様に行った。
Examples 2-4, Comparative Examples 1-4
The same procedure as in Example 1 was performed except that the water absorption conditions were changed as shown in Table 1.


Claims (4)

主としてポリグリコール酸からなる層と、主としてポリアミドからなる層とが少なくとも1層ずつ積層された未延伸積層フィルムを、温水槽で吸水させた後、予熱、延伸および熱処理工程を含む同時二軸延伸をおこなう二軸延伸積層フィルムの製造方法であって、吸水時間(t秒)と、吸水温度におけるポリグリコール酸の半結晶化時間(tc秒)とが下記式を満足することを特徴とする二軸延伸積層フィルムの製造方法。
t<tc/2
20<t<300
Primarily a layer comprising the polyglycolic acid, the unstretched laminated film in which a layer mainly composed of a polyamide are laminated one by at least one layer, after being water in a hot water bath, preheated and a simultaneous biaxial stretching comprising stretching and heat treatment step A method for producing a biaxially stretched laminated film, wherein the water absorption time (t seconds) and the polyglycolic acid half-crystallization time (tc seconds) at the water absorption temperature satisfy the following formula: A method for producing a stretched laminated film.
t <tc / 2
20 <t <300
吸水後の未延伸積層フィルムの水分率が3〜9%である請求項1記載の二軸延伸積層フィルムの製造方法。 The method for producing a biaxially stretched laminated film according to claim 1, wherein the moisture content of the unstretched laminated film after water absorption is 3 to 9%. 温水槽の温度が45〜75℃である請求項1または2記載の二軸延伸積層フィルムの製造方法。 The method for producing a biaxially stretched laminated film according to claim 1 or 2, wherein the temperature of the hot water tank is 45 to 75 ° C. 20℃、100%RH雰囲気下での酸素透過度が100ml/(m・day・MPa)以下である請求項1〜3のいずれかに記載の製造方法により製造された二軸延伸積層フィルム。 The biaxially stretched laminated film produced by the production method according to any one of claims 1 to 3, wherein the oxygen permeability in an atmosphere of 20 ° C and 100% RH is 100 ml / (m 2 · day · MPa) or less.
JP2005334245A 2004-12-01 2005-11-18 Biaxially stretched laminated film and method for producing the same Active JP4917795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334245A JP4917795B2 (en) 2004-12-01 2005-11-18 Biaxially stretched laminated film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004348565 2004-12-01
JP2004348565 2004-12-01
JP2005334245A JP4917795B2 (en) 2004-12-01 2005-11-18 Biaxially stretched laminated film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006182018A JP2006182018A (en) 2006-07-13
JP4917795B2 true JP4917795B2 (en) 2012-04-18

Family

ID=36735458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334245A Active JP4917795B2 (en) 2004-12-01 2005-11-18 Biaxially stretched laminated film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4917795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093872B2 (en) * 2004-12-01 2012-12-12 ユニチカ株式会社 Biaxially stretched film made of resin mainly composed of polyglycolic acid and method for producing the same
JP5558907B2 (en) * 2010-05-13 2014-07-23 帝人デュポンフィルム株式会社 Biaxially stretched polyester film
WO2013099692A1 (en) * 2011-12-28 2013-07-04 株式会社クレハ Laminate for stretch molding and stretched laminate using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4162802B2 (en) * 1999-05-12 2008-10-08 ユニチカ株式会社 Method for producing biaxially stretched polyamide film
JP2001113596A (en) * 1999-10-19 2001-04-24 Unitika Ltd Method of manufacturing biaxially oriented polyamide film
JP2003300293A (en) * 2002-04-09 2003-10-21 Kureha Chem Ind Co Ltd Gas-barrier multilayer structure and manufacturing method therefor
JP5100946B2 (en) * 2002-09-25 2012-12-19 株式会社クレハ Strongly stretched aliphatic polyester polymer molding

Also Published As

Publication number Publication date
JP2006182018A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
KR100451402B1 (en) Gas-barrier composite film
KR101506762B1 (en) Polylactic acid resin composition and film
KR101257521B1 (en) Stretched aromatic-polyamide film
KR102172596B1 (en) Polyamide film and its manufacturing method
JP5546349B2 (en) Process for producing stretched semi-aromatic polyamide film and stretched semi-aromatic polyamide film produced by the method
JP6032780B2 (en) Biaxially stretched polybutylene terephthalate film
JP2000505745A (en) Improved biaxial stretching of fluoropolymer films
JPS6049938A (en) Orientated film laminate of polyamide and ethylene vinyl alcohol
JP6842792B1 (en) Semi-aromatic polyamide film and its manufacturing method
JP5888933B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
JP4917795B2 (en) Biaxially stretched laminated film and method for producing the same
JP6588720B2 (en) Easy tear biaxially stretched polybutylene terephthalate film
KR102189429B1 (en) Biaxially stretched polyamide film and method for producing same
JP2008080687A (en) Manufacturing method of polyamide stretched film
JP2009234131A (en) Production process of biaxially stretched polyamide resin film
JP5093872B2 (en) Biaxially stretched film made of resin mainly composed of polyglycolic acid and method for producing the same
JP5937317B2 (en) Balloon packaging containing biaxially stretched polybutylene terephthalate film
JP7501048B2 (en) Biaxially oriented film
JP2008080690A (en) Polyamide stretched film and its manufacturing method
JPH1158490A (en) Manufacture of multilayer oriented polyamide film
JP2008094049A (en) Polyamide stretched film and its manufacturing method
JP2008080689A (en) Polyamide stretched film and its manufacturing method
JPH10278202A (en) Multilayered stretched polyamide film and its production
JP2022077210A (en) Polyamide-based biaxially stretched film and package
JP4967504B2 (en) Biaxially stretched polyester film laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150