KR100942301B1 - Laminating method and products made thereby - Google Patents

Laminating method and products made thereby Download PDF

Info

Publication number
KR100942301B1
KR100942301B1 KR1020090036399A KR20090036399A KR100942301B1 KR 100942301 B1 KR100942301 B1 KR 100942301B1 KR 1020090036399 A KR1020090036399 A KR 1020090036399A KR 20090036399 A KR20090036399 A KR 20090036399A KR 100942301 B1 KR100942301 B1 KR 100942301B1
Authority
KR
South Korea
Prior art keywords
paper
pulp
weight
biodegradable
pla
Prior art date
Application number
KR1020090036399A
Other languages
Korean (ko)
Inventor
이재식
Original Assignee
이재식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재식 filed Critical 이재식
Priority to KR1020090036399A priority Critical patent/KR100942301B1/en
Application granted granted Critical
Publication of KR100942301B1 publication Critical patent/KR100942301B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7379General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined degradable
    • B29C66/73791General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined degradable biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • B29K2503/08Mineral aggregates, e.g. sand, clay or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE: A method for laminating pulp or paper with biodegradable resin is provided to reduce environmental load, and to reduce damages due to environmental hormone and dioxin in combustion and waste of the paper or the pulp. CONSTITUTION: A method for laminating pulp or paper with biodegradable resin comprises the following steps: preparing a material which is manufactured by blending PLA materials 30 weight% ~ 40 weight%, aliphatic family biodegradable materials 50 weight% ~ 60 weight%, PLA 12 weight% ~ 20 weight% and muscovite 65 weight% ~ 73 weight%; extruding the material in 170°C ~ 200°C; extruding a pelletized aliphatic family biodegradable resin; and preheating the paper and the pulp.

Description

생분해성 수지를 종이 또는 펄프에 라미네이팅 하는 방법.{LAMINATING METHOD AND PRODUCTS MADE THEREBY}Laminating biodegradable resin on paper or pulp. {LAMINATING METHOD AND PRODUCTS MADE THEREBY}

본 발명은 지방족 폴리에스테르 조성물을 사용한 종이 코팅 및 제조 방법에 관한 것으로, 더욱 상세하게는 생분해성 나노복합수지(특허등록번호 제 10-0655914)를 첨가하여 라미네이팅 필름을 제조하고 이를 통해 라미네이팅 처리된 제품을 제조함으로써 생분해성 효율을 극대화시키고 또 제품의 완성도를 높이는 생분해성 수지를 종이 또는 펄프에 라미네이팅 하는 방법에 관한 것이다.The present invention relates to a paper coating and manufacturing method using an aliphatic polyester composition, and more particularly, to add a biodegradable nano-composite resin (Patent No. 10-0655914) to produce a laminated film and through the laminated product The present invention relates to a method of laminating a biodegradable resin on paper or pulp to maximize the biodegradability efficiency and increase the completeness of the product.

일반적으로 종이컵, 컵라면 및 아이스크림 용기, 일회용 화분용기, 우유팩, 포장케이스, 벽지 인테리어 시트와 같은 제품은 소재가 되는 종이나 펄프에 라미네이트 필름을 코팅 처리하여 사용한다.In general, products such as paper cups, cup noodle and ice cream containers, disposable flowerpots, milk cartons, packaging cases, wallpaper interior sheets are used by coating a laminate film on the paper or pulp material.

기존의 라미네이트 필름은 주로 PP나 PE를 사용하는데, 라미네이팅 처리된 제품들이 폐기되면 천연소재로 이루어진 종이나 펄프는 분해되지만 코팅된 라미네이트 필름은 비분해성 합성수지이므로 무려 20년 전후가 지나야 분해된다. 이는 또 종이나 펄프의 분해를 방해하는 역기능으로 작용한다.Conventional laminate film mainly uses PP or PE. When laminated products are discarded, natural paper or pulp is decomposed, but coated laminate film is non-degradable synthetic resin, so it does not decompose after about 20 years. It also acts as a dysfunction that interferes with the decomposition of paper and pulp.

그래서 국내 및 세계 여러 나라들은 환경부하를 최소화하기 위해 1회용품 사 용에 대한 규제가 강화되고 있다. As a result, regulations on the use of disposable products are being tightened in many countries in the world and in the world to minimize environmental load.

우리나라도 이러한 국제적 규제를 극복하기 위해, 퇴비화 호조건(온도 60℃, 습도 80% 활성화된 미생물) 하에 180일 이내에 분해가 이루어지는 생분해성 소재로 라미네이팅 처리한 제품을 얻고자 노력을 하고 있다. In order to overcome such international regulations, Korea is trying to obtain a product that is laminated with a biodegradable material that decomposes within 180 days under composting conditions (60 ° C temperature, 80% humidity-activated microorganism).

이러한 노력에 의해 광의적으로는 환경보존 및 온실가스 저감효과를 가질 수 있고, 협의적으로는 식품용기 대체효과로 수출 증대 및 폐기물 부담금 면제 효과 등으로 인한 경제적 이득을 취할 수 있을 것이다.By these efforts, the environmental protection and greenhouse gas reduction effect can be broadly achieved, and the economic benefits from the expansion of exports and the exemption of waste charges can be achieved through the substitution of food containers.

기존의 라미네이트 필름 제조용 생분해성 수지는 PLA(Poly Lactic Acid),PBS,PBA,PBSA 소재를 사용하여 종이나 펄프에 코팅을 하였다. 그러나 PLA는 브리틀(Britle)한 물성으로 종이와 쉽게 이형이 되고 라미네이팅이 된 종이로 컵이나 완제품을 성형 및 양면과 밑면을 접착할 때 PLA에 융점(175℃) 이하에서 실시되므로 접착면이 약하여 터지는 현상이 발생하는 문제가 있다.Conventional biodegradable resins for the manufacture of laminate films were coated on paper or pulp using PLA (Poly Lactic Acid), PBS, PBA, PBSA materials. However, PLA is brittle and easily releases from paper. Laminated paper is used for forming cups or finished products and bonding them to both sides and bottom. There is a problem that popping phenomenon occurs.

또한, 라미네이트 필름 제조용 생분해성 수지를 PBS나 PBA, PBSA를 사용하기도 하는데, 이는 종이나 펄프에 라미네이팅은 잘 되지만 컵이나 완제품 성형 및 양면과 밑면을 열접착 및 초음파 접착시 PLA 소재와 비슷하게 접착면이 터지거나 이형이 되어 불량률 발생이 많이 된다. In addition, PBS, PBA, and PBSA may be used as a biodegradable resin for producing a laminate film, which is well laminated on paper or pulp, but when the cup or finished product is formed and both sides and the bottom are thermally bonded and ultrasonically bonded, the adhesive surface is similar to the PLA material. Poor or mold release causes a lot of defects.

또한, 융점이 높은 PLA(175℃)소재와 융점이 낮은 PBS, PBSA,PBA(90℃ ~ 120℃) 소재 중 택1된 소재와 브랜딩이 되어도 PLA 소재와 PBS, PBSA, PBA 소재 중 택1된 소재와 분자구조상 상용성이 없어 사용이 어렵고 기존에 사용되던 Filler로 Talk나 CaCo3, TiO2는 강알칼리 계열로 첨가 사용시 물성을 급격히 저하되는 문제가 있다.In addition, PLA (175 ℃) material with a high melting point and PBS, PBSA, PBA (90 ℃ ~ 120 ℃) material of low melting point, even if the branding and the selected material selected from PLA material, PBS, PBSA, PBA material 1 It is difficult to use due to incompatibility due to material and molecular structure, and there is a problem in that physical properties of sharply degraded when used as a strong alkali-based filler such as Talk, CaCo3, and TiO2.

**

본 발명은 상기한 바와 같은 종래의 문제점을 해소하기 위해 창안한 것으로, 그 목적은, The present invention has been made in order to solve the conventional problems as described above, the object is,

지방족 폴리에스테르 수지인 PLA 소재와 PBS, PBSA, PBA 소재 중 택1된 소재와 분자 구조상 상용성이 우수하고 물성저하가 되지 않은 생분해성 나노복합수지를 사용하여 종이 및 펄프에 라미네이팅이 우수한 생분해성 종이 및 펄프를 제조하고 상기 제조된 생분해성 소재가 라미네이팅 된 종이 및 펄프를 사용한 완제품 성형 및 합지시 상기 PLA와 PBS, PBSA, PBA 중 택1된 소재와 생분해성 나노복합수지와 브랜딩 되어 종이 및 펄프에 라미네이팅 된 소재 중 PLA에 융점인 175℃ 이하에서 PBS, PBSA, PBA 중 택1된 소재에 융점(90℃ ~ 120℃) 이상에서 열접착을 할 때 접착면이 이형되거나 터지는 현상이 전혀 없는 생분해성 수지를 종이 또는 펄프에 라미네이팅 하는 방법을 제공하는데 있다. Biodegradable paper with excellent lamination on paper and pulp by using biodegradable nano-composite resin with excellent compatibility in molecular structure with PLA material selected from aliphatic polyester resin, PBS, PBSA, and PBA material And preparing pulp and forming and laminating the finished biodegradable material using laminated paper and pulp. The selected material among PLA, PBS, PBSA, and PBA and the biodegradable nanocomposite resin are branded with paper and pulp. Biodegradability with no releasing or bursting of adhesive surface at the time of thermal adhesion of the selected material among PBS, PBSA and PBA above the melting point (90 ℃ ~ 120 ℃) at PLA or below 175 ℃ It is to provide a method of laminating the resin to paper or pulp.

또한, 본 발명은, 상기 조성물을 사용한 종이 및 펄프에 라미네이팅 시 PLA 및 생분해성 나노복합 조성물은 열안정성 역할을 하고 PBS,PBA,PBSA 중 택1된 소재는 융점(90℃ ~ 120℃) 이상에서 라미네이팅이 되므로 종이 및 펄프의 입자 사이로 PBS,PBA,PBSA 중 택1된 소재가 흘러들어가 종이 및 펄프에 라미네이팅 된 생분해성 소재와 이형이 되지 않고 접착력이 탁월하도록 하는 생분해성 수지를 종이 또는 펄프에 라미네이팅 하는 방법을 제공하는데 있다.In addition, the present invention, PLA and biodegradable nanocomposite composition when laminating on paper and pulp using the composition plays a role of thermal stability and the selected material of PBS, PBA, PBSA is at the melting point (90 ℃ ~ 120 ℃) or more Laminating allows the biodegradable material, which is selected from PBS, PBA, PBSA, to flow between the particles of paper and pulp, and the biodegradable material laminated to the paper and pulp, and the adhesive is excellent without being released. To provide a way.

상기 목적을 달성하기 위한 본 발명은, 융점이 높은 PLA(175℃) 소재와 융점이 90℃ ~ 120℃가 되는 PBS, PBSA, PBA 소재 중 택1된 소재와, 기특허 출원되어 등록 된(특허 등록 번호 제 10-065591) 분자구조상 상용성이 우수하고 열 접착시 열안정 역할이 가능한 약산성 및 중성계열에 백운모를 활용한 생분해성 나노복합수지의 조성물을 활용한다. The present invention for achieving the above object is a PLA (175 ℃) material having a high melting point and PBS, PBSA, PBA material selected from the 90 ℃ ~ 120 ℃ melting point, and a patent application has been registered and registered (patent Registration No. 10-065591) The composition of biodegradable nanocomposite resin using mucovite is used for weak acidity and neutral series that have excellent compatibility in molecular structure and can play a role of thermal stability during thermal bonding.

또한, 압출 T다이 공법에 의한 라미네이팅 시 종이 및 펄프에 예열을 하되, PBS,PBA,PBSA 중 택1된 지방족 폴리에스테르 수지에 융점인 90℃ ~ 120℃와 동일한 온도로 예열을 하여 종이 및 펄프에 라미네이팅 된 생분해성 수지 조성물 중 2개에 냉각 포리싱롤 사이를 통과하는 PLA수지가 냉각 포리싱롤로 인한 Brittle한 특성이 나타나기 전에 융점이 낮은(90℃ ~ 120℃) PBS,PBA,PBSA 중 택1된 수지가 종이 및 펄프 입자 사이로 흘러들어 가게 한다. In addition, pre-heat the paper and pulp during lamination by extrusion T-die method, but preheat to paper and pulp at the same temperature as 90 ℃ ~ 120 ℃, which is melting point in aliphatic polyester resin selected from PBS, PBA, PBSA. Two of the laminated biodegradable resin compositions were selected from PBS, PBA, PBSA, which had a lower melting point (90 ° C to 120 ° C) before the PLA resin passing between the cooling processing rolls showed Brittle characteristics due to the cooling processing rolls. Allow resin to flow between paper and pulp particles.

Filler로 사용되는 약산성 및 중성계열의 생분해성 나노복합수지는 입도 사이즈 40㎛ ~ 0.1㎛에 백운모 파우더를 사용하여 열안정제 효과 및 상용성 확보를 할 수 있다. Weak acid and neutral biodegradable nanocomposite resins used as fillers can be used to ensure heat stabilizer effect and compatibility by using mica powder with particle size of 40㎛ ~ 0.1㎛.

또한, 라미네이팅 두께는 0.015mm ~ 0.07mm로 라미네이팅 되어도 PLA 특성상 열적 특성에 의한 형상 기억과 결정화 구조로 인해 기존에 사용되던 PP나 PE가 라미네이팅 된 종이 및 펄프보다 형태 유지가 탁월하게 이루어진다. In addition, even if the laminating thickness is laminated from 0.015mm to 0.07mm, the shape retention and crystallization structure due to the thermal properties due to the PLA characteristics is excellent in maintaining the shape than the PP or PE laminated paper and pulp used previously.

종이 펄프에 종이 평량은 50g ~ 500g까지 라미네이팅이 가능하다. 압출 T다 이 공법을 이용한 라미네이팅 시 종이 및 펄프가 접촉 롤은 우레탄 및 실리콘롤로하고 롤의 온도는 40℃ ~ 50℃로 하여 예열 된 종이 및 펄프(90℃ ~ 120℃)가 급냉이 되지 않게 하고 생분해성 수지가 접촉되는 롤은 스틸롤로 25℃ ~ 30℃로 온도조절을 하여 라미네이팅 한다.Paper basis weight in paper pulp can be laminated from 50g to 500g. The paper and pulp contact roll is made of urethane and silicon roll and the temperature of the roll is 40 ℃ ~ 50 ℃ for laminating using the extrusion method.The preheated paper and pulp (90 ℃ ~ 120 ℃) is not quenched. The rolls in contact with the biodegradable resin are laminated with a steel roll at a temperature of 25 ° C to 30 ° C.

종이 및 펄프에 라미네이팅 된 소재에 성형 및 완제품 접착시 온도조건은 열선이 직접 닿을 경우 100℃ ~ 120℃로 한다.When molding and finished products are adhered to laminated materials on paper and pulp, the temperature conditions should be 100 ℃ ~ 120 ℃ when direct contact with hot wire.

본 발명은 종이 및 펄프에 라미네이팅 된 소재를 코팅할 때 접착면이 이형되거나 터지는 현상이 전혀 발생되지 않는 장점이 있다.The present invention has the advantage that the adhesive surface is not released or burst at all when coating the laminated material on the paper and pulp.

또한, 본 발명은, 종이 및 펄프에 라미네이팅을 실시하면, PLA 및 생분해성 나노복합 조성물은 열안정성 역할을 하고 PBS,PBA,PBSA 중 택1된 소재는 융점(90℃ ~ 120℃) 이상에서 라미네이팅이 되므로 종이 및 펄프의 입자 사이로 PBS,PBA,PBSA 중 택1된 소재가 흘러들어가 종이 및 펄프에 라미네이팅 된 생분해성 소재와 이형이 되지 않고 접착력이 탁월한 장점이 있다. In addition, the present invention, when laminating on paper and pulp, PLA and biodegradable nanocomposite composition plays a role of thermal stability and the selected material of PBS, PBA, PBSA is laminating at a melting point (90 ℃ ~ 120 ℃) or more As a result, a material selected from PBS, PBA, and PBSA flows between the particles of paper and pulp, and has excellent adhesive strength without being released from the biodegradable material laminated on paper and pulp.

아울러 본 발명은, 폐기시 분해되므로 환경부하를 저감시키고, 연소 및 폐기시 환경 호르몬과 다이옥신으로 인한 피해를 줄 일수 있는 자연 친화적인 장점이 있다.In addition, the present invention has a natural friendly advantage that can be degraded during disposal to reduce the environmental load, and damage caused by environmental hormones and dioxins during combustion and disposal.

본 발명 라미네이트 필름 조성물은, PLA 소재 30중량% ~ 40중량%, PBS,PBA,PBSA, 중 택1된 지방족 생분해성 소재 50% ~ 60% 생분해성 나노복합수지 10중량% ~ 20중량%를 브랜딩하여 170℃ ~ 200℃에서 압출하여 이루어진다. 이때, 상기 생분해성 나노복합수지의 구성은 자체 중량대비 천연오일 중 팜유의 함량이 10중량% ~ 17중량% PLA 함량이 12중량% ~ 20중량% 입도사이즈 40㎛ ~ 0.1㎛에 백운모 함량이 65중량% ~ 73중량%로 구성된다. The laminate film composition of the present invention, 30% to 40% by weight of PLA material, PBS, PBA, PBSA, selected from the selected aliphatic biodegradable material 50% to 60% biodegradable nanocomposite resin 10% to 20% by weight By extrusion at 170 ℃ ~ 200 ℃. At this time, the composition of the biodegradable nanocomposite resin is the content of palm oil in natural oil 10% to 17% by weight PLA content of 12% to 20% by weight particle size 40㎛ ~ 0.1㎛ of the weight of the mica in 65 Weight percent to 73 weight percent.

이러한 라미네티트 필름 조성물을 종이 및 펄프에 라미네이팅 하는 방법은, PLA 소재 30중량% ~ 40중량%, PBS,PBA,PBSA 중 택1된 지방족 생분해성 소재 50% ~ 60% 생분해성 나노복합수지 10중량% ~ 20중량%를 브랜딩하여 170℃ ~ 200℃에서 압출하여 펠렛화 하는 단계;The method of laminating the laminated film composition on paper and pulp is 30% to 40% by weight of PLA material, 50% to 60% biodegradable nanocomposite material selected from PBS, PBA, and PBSA. Branding by weight to 20% by weight to extrude pelletized at 170 ℃ to 200 ℃;

상기 조성물에 의해 펠렛화 된 지방족 생분해성 수지를 T다이 방식으로 압출하는 단계;Extruding the aliphatic biodegradable resin pelletized by the composition by a T-die method;

종이 및 펄프에 예열을 주는 단계;Preheating the paper and pulp;

종이 및 펄프에 지방족 생분해성 수지를 라미네이팅 하는 단계; 로 이루어진다.Laminating aliphatic biodegradable resins on paper and pulp; Is made of.

이하 본 발명의 구성 및 라미네이팅 단계는 도면 참조하여 상세히 설명한다.Hereinafter, the configuration and laminating step of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 종이 및 펄프에 지방족 생분해성 수지를 라미네이팅 하기 위한 라미네이트 필름 조성물은 PLA소재 30중량% ~ 40중량%, PBS, PBA, PBSA 중 택1된 소재 50중량% ~ 60중량% 생분해성 나노복합수지 10중량% ~ 20중량% 구성된다.Laminate film composition for laminating aliphatic biodegradable resin on paper and pulp according to the present invention is 30% to 40% by weight of PLA material, 50% to 60% by weight of biodegradable material selected from PBS, PBA, PBSA 10% by weight to 20% by weight of the composite resin.

상기 소재를 컨파운딩하기 위하여 PLA의 융점인 170℃ ~ 200℃에서 압출한 후 Pellet화 한 후 T다이 방식으로 종이와 펄프에 라미네이팅 하여 생산된다.Extruded at 170 ℃ ~ 200 ℃ melting point of PLA to form the material, and then pelletized and produced by laminating on paper and pulp by the T-die method.

종이 및 펄프에 라미네이팅 하기 위한 지방족 생분해성 수지 조성물의 함량 실험 결과, 상기 PLA 함량이 30% 미만이면 종이 및 펄프에 라미네이팅 작업시 스틸롤에 PBS, PBA, PBSA 중 택1된 소재가 붙을 수 있고, PLA 소재가 40중량% 이상이면 종이 및 펄프에 라미네이팅이 되어도 PLA소재에 Brittle한 결정화 구조로 인한 특성으로 인해 종이 및 펄프와 이형이 될 수 있고, PBS, PBA, PBSA 중 택일된 소재가 50% 미만이면 종이 및 펄프 입자 사이로 PBS, PBA, PBSA 중 택1된 소재가 완벽하게 접착이 안 되거나 흘러들어 가지 않아 이형 될 수 있고 60% 이상이면 스틸롤에 붙을 수 있음을 확인하였다. As a result of the content test of aliphatic biodegradable resin composition for laminating on paper and pulp, when PLA content is less than 30%, the selected material from among PBS, PBA, and PBSA may adhere to the steel roll when laminating the paper and pulp. If the PLA material is more than 40% by weight, even if it is laminated on paper and pulp, due to the characteristics due to the brittle crystallization structure of the PLA material, it may be released from paper and pulp, and less than 50% of the selected materials among PBS, PBA, and PBSA It was confirmed that the selected material among PBS, PBA, and PBSA could not be completely adhered or flowed out between the paper and pulp particles, and could be released, and if it was 60% or more, it could be attached to the steel roll.

생분해성 나노복합수지 함량이 10중량% 미만이면 PLA소재와 PBS, PBA, PBSA 중 택1된 소재와 컨파운딩 할 때 상용성이 저하되어 라미네이팅이 되어도 종방향은 물성이 우수하나 횡방향으로 컨파운딩 된 수지가 분리되어 물성이 급격히 저하되고, 20% 이상이면 종이 및 펄프에 라미네이팅 두께를 0.015mm까지 구현하는데 어려움이 있다. 그러나 열합지 시 열안정성은 상승시키는 것으로 나타났다.If the content of biodegradable nanocomposite resin is less than 10% by weight, the compatibility is reduced when compounding with PLA or PBS, PBA, or PBSA selected material. The resin is separated and the physical properties are sharply lowered, and if it is 20% or more, it is difficult to realize the laminating thickness to 0.015 mm in paper and pulp. However, thermal stability was found to increase during thermal lamination.

T다이 방식에 라미네이팅 시 스크류 온도는 170℃ ~ 190℃로 하고 T다이 온도는 190℃ ~ 210℃로 조절하여 생산한다.When laminating in T-die method, screw temperature is 170 ℃ ~ 190 ℃ and T die temperature is controlled by 190 ℃ ~ 210 ℃.

또한, 종이 및 펄프와 라미네이팅 하기 위해 T다이 온도를 190℃ 미만으로 하면 컨파운딩 된 지방족 생분해성 수지가 종이 및 펄프 입자 사이로 흘러들어가는 양이 적거나 합지가 충분히 이루어 지지 않고 210℃ 이상이면 지방족 생분해성 수지의 특성상 인성 및 점성이 급격히 저하되어 라미네이팅 작업을 어렵게 하고 종방향으로 신율이 저하되어 부분적으로 두께 편차가 발생 될 수 있다. In addition, if the T-die temperature is lower than 190 ° C. for laminating with paper and pulp, the amount of the compounded aliphatic biodegradable resin flowing between the paper and pulp particles is small or the paper is not sufficiently formed. Due to the nature of the resin, the toughness and viscosity are sharply reduced, making the laminating work difficult, and the elongation is decreased in the longitudinal direction, which may cause partial thickness variation.

종이 및 펄프는 지방족 생분해성 수지와 라미네이팅 합지가 잘 되도록 고무 롤과 스틸롤 사이를 통과하기 전에 예열을 90℃ ~ 120℃로 한다. 상기 온도로 예열 된 종이 및 펄프에 지방족 생분해성 수지를 라미네이팅 하게 되면 비교예 1과 같이 라미네이팅 상태가 매우 양호한 상태를 나타내는 것을 볼 수 있다. The paper and pulp are preheated to 90 ° C. to 120 ° C. before passing between the rubber rolls and steel rolls so that the aliphatic biodegradable resins and the laminating laminates are well formed. When the aliphatic biodegradable resin is laminated on the paper and pulp preheated to the temperature, it can be seen that the laminating state shows a very good state as in Comparative Example 1.

(비교예 1) - 라미네이팅 합지를 분리하여 라미네이팅 상태를 보여주는 사진(필름과 종이 분리시 합지가 잘된 상태)(Comparative Example 1)-Photo showing laminating state by separating laminating paper (good lamination when separating film and paper)

Figure 112009025322210-pat00001
Figure 112009025322210-pat00001

이때, 종이 및 펄프의 예열온도가 90℃ 미만이면 비교예 2와 같이 PLA와 PBS, PBA, PBSA 중 택1된 소재와 라미네이팅 합지가 약하게 되거나, 종이 및 펄프 입자 사이로 컨파운딩 된 소재 중 PBS, PBA, PBSA 중 택1된 소재가 흘러들어가기 전에 PLA소재가 일부 결정화 구조가 진행되어 종이 및 펄프와 이형 될 수 있고 120℃ 이상이면 라미네이팅 합지는 우수하지만 스틸롤에 지방족 생분해성 수지가 붙을 수 있다.At this time, if the preheating temperature of paper and pulp is less than 90 ° C, lamination lamination is weakened between the selected material of PLA, PBS, PBA, and PBSA as in Comparative Example 2, or PBS and PBA among the materials that are compounded between paper and pulp particles. In addition, the PLA material may undergo some crystallization structure and release with paper and pulp before the selected material in PBSA flows. If the temperature is above 120 ° C, laminating lamination is excellent but aliphatic biodegradable resin may adhere to the steel roll.

(비교예 2) - 라미네이팅 된 지방족 생분해성 수지가 종이나 펄프로부터 분 리된 상태를 보여주는 사진(필름과 종이 분리시 합지가 되지 않고 이형이 되는 상태)(Comparative Example 2)-Photograph showing the laminated aliphatic biodegradable resin separated from paper or pulp.

Figure 112009025322210-pat00002
Figure 112009025322210-pat00002

비교예 3은 90℃ 이하로 예열 된 종이 및 펄프와 90℃~120℃로 예열 된 종이 및 펄프에 지방족 생분해성 수지를 라미네이팅 한 상태를 양자 비교한 것을 보여주는 사진으로서 90℃~120℃로 예열한 종이 및 펄프에 지방족 생분해성 수지를 라미네이팅 한 것이 효율이 매우 양호하게 나타난 것을 확인할 수 있다. 즉, 비교예 1과 비교예 2의 사진을 한눈에 확인할 수 있도록 결합한 사진이다.Comparative Example 3 is a photograph showing the comparison of lamination of aliphatic biodegradable resin on paper and pulp preheated to 90 ° C. or lower and paper and pulp preheated to 90 ° C. to 120 ° C., and preheated to 90 ° C. to 120 ° C. The lamination of aliphatic biodegradable resins on paper and pulp showed that the efficiency was very good. That is, it is a photograph combined so that the photograph of the comparative example 1 and the comparative example 2 can be confirmed at a glance.

(비교예 3)(좌측 비교예 1, 우측 비교예 2)(Comparative Example 3) (Left Comparative Example 1, Right Comparative Example 2)

Figure 112009025322210-pat00003
Figure 112009025322210-pat00003

한편, 90℃ ~ 120℃로 예열이 된 종이나 펄프 소재와 T다이 온도 190℃ ~ 210℃로 지방족 생분해성 수지가 압출되어 나올 때 우레탄이나 실리콘으로 구성된 고무롤과 스틸롤로 압착하여 지방족 생분해성 수지 두께를 0.015mm ~ 0.07mm로 압출 속도를 조절하여 두께조절을 한다.On the other hand, when aliphatic biodegradable resin is extruded out of paper or pulp material preheated at 90 ℃ ~ 120 ℃ and T-die temperature is 190 ℃ ~ 210 ℃, it is compressed by rubber roll made of urethane or silicone and steel roll, and the thickness of aliphatic biodegradable resin Adjust the thickness by adjusting the extrusion speed to 0.015mm ~ 0.07mm.

이때, 우레탄 및 실리콘으로 구성된 고무롤은 종이가 닫는 부분으로 하고 이때 고무롤의 온도는 40℃ ~ 50℃로 하고 스틸롤의 온도는 25℃ ~ 30℃로 한다. At this time, the rubber roll composed of urethane and silicone is a paper closing portion, wherein the temperature of the rubber roll is 40 ℃ ~ 50 ℃ and the temperature of the steel roll is 25 ℃ ~ 30 ℃.

고무롤의 온도가 40℃ 미만이면 예열 된 종이 및 펄프 온도(90℃ ~ 120℃)가 급냉이 되면 지방족 생분해성 수지가 종이 및 펄프와 라미네이팅이 원활하지 않고 컨파운딩 된 지방족 생분해성 수지 중 PLA 소재에 Brittle한 특성으로 라미네이팅 합지를 어렵게 할 수 있고, 고무롤 온도가 50℃ 이상이면 냉각속도를 방해하여 스틸롤의 수지가 달라붙을 수 있다. 컨파운딩 된 지방족 생분해성 수지는 스틸롤에 닫게 하고 스틸롤 온도는 25℃ ~ 30℃로 한다. If the temperature of the rubber roll is less than 40 ℃, when the preheated paper and pulp temperature (90 ℃ ~ 120 ℃) is quenched, the aliphatic biodegradable resin will not be smoothly laminated with paper and pulp, and the PLA material among the compounded aliphatic biodegradable resin Brittle properties can make the laminating paper difficult, and if the rubber roll temperature is 50 ℃ or more may interfere with the cooling rate may cause the resin of the steel roll to stick. The compounded aliphatic biodegradable resin is closed on a steel roll and the steel roll temperature is 25 ° C to 30 ° C.

스틸롤 온도가 25℃ 미만이면 컨파운딩 된 지방족 생분해성 수지 중 PLA 소재가 Brittle한 특성으로 라미네이팅 합지를 어렵게 하고 30℃ 이상이면 라미네이팅 합지는 잘 되지만 예열 된 종이 및 펄프 온도 90℃ ~ 120℃와 고무롤의 온도 50℃에서 T다이에서 압출되는 컨파운딩 된 지방족 생분해성 수지 온도 190℃ ~ 210℃의 온도가 냉각롤인 고무롤과 스틸롤을 통과한 종이나 펄프와 지방족 생분해성 수지가 라미네이팅 되어 합지된 온도가 PLA 수지에 유리전이 온도 55℃ 전후가 되어야 품질이 우수 하지만 30℃ 이상이면 스틸롤에 붙을 수 있다. If the steel roll temperature is less than 25 ℃, the PLA material of the compounded aliphatic biodegradable resin is Brittle, which makes the laminating lamination difficult.If it is over 30 ℃, the laminating lamination is good but the preheated paper and pulp temperature is 90 ℃ ~ 120 ℃ and rubber roll. Compounded aliphatic biodegradable resin extruded from T-die at a temperature of 50 ° C 190 ° C to 210 ° C is laminated on paper or pulp and aliphatic biodegradable resin that has passed through a rubber roll and steel roll Glass transition temperature of PLA resin should be around 55 ℃ to ensure good quality, but if it is over 30 ℃, it can stick to steel roll.

이때, 라미네이팅 합지 되어 나오는 온도 조건은 두께와 압출 속도로 제어할 수 있다.At this time, the temperature condition of the laminating lamination can be controlled by the thickness and the extrusion rate.

종이나 펄프와 지방족 생분해성 수지와 라미네이팅 된 소재는 컵이나 용기 모양에 따라 커팅 및 제단 후 열접착을 한다.Paper, pulp, aliphatic biodegradable resin, and laminated materials are heat-bonded after cutting and cutting, depending on the shape of the cup or container.

이때, 종이나 펄프에 지방족 생분해성 수지가 라미네이팅 된 소재에 성형 및 열접착 시 온도는 열선이 직접 닫는 경우 100℃ ~ 120℃로 한다. 이때 열선 온도가 100℃ 미만이면 컨파운딩 된 지방족 생분해성 수지 중 PBS, PBA, PBSA 중 택1된 소재가 융점 이하로 되어 접착력이 약하고 120℃ 이상이면 컨파운딩 된 지방족 생분해성 수지 중 PLA는 융점이하이지만 PBS, PBA, PBSA 중 택1된 소재가 융점이상이 되어 열선의 수지가 붙을 수 있다.At this time, the temperature during molding and heat bonding to the material laminated with aliphatic biodegradable resin on paper or pulp is 100 ℃ ~ 120 ℃ when the heating wire is directly closed. If the heating wire temperature is less than 100 ℃, the selected material among PBS, PBA, and PBSA of the compounded aliphatic biodegradable resin is below melting point, and the adhesion is weak. If the temperature is above 120 ℃, PLA is less than melting point. However, the selected material among PBS, PBA, and PBSA has a melting point or higher, and the resin of the hot wire may adhere.

Claims (8)

PLA 소재 30중량% ~ 40중량%와, 30% to 40% by weight of the PLA material, PBS, PBA, PBSA 중 택1된 지방족 생분해성 소재 50중량% ~ 60중량%와, 50% to 60% by weight of an aliphatic biodegradable material selected from PBS, PBA, and PBSA; 자체 중량대비 천연오일 중 팜유의 함량이 10중량% ~ 17중량%, PLA 함량이 12중량% ~ 20중량%, 입도사이즈 40㎛ ~ 0.1㎛에 백운모 함량이 65중량% ~ 73중량%로 이루어진 생분해성 나노복합수지 10중량% ~ 20중량%를 브랜딩하여 170℃ ~ 200℃에서 압출하여 펠렛화 하고,Biodegradation consisting of palm oil content of 10% to 17% by weight, PLA content of 12% to 20% by weight, particle size of 40㎛ to 0.1㎛, and biomass of 65% to 73% by weight 10% to 20% by weight of the nanocomposite resin is branded and extruded and pelletized at 170 ° C to 200 ° C, 상기 조성물에 의해 펠렛화 된 지방족 생분해성 수지와 90℃ ~ 120℃로 예열된 종이나 펄프 소재를 온도 190℃ ~ 210℃의 TDIE 로 압출하되, 종이 및 펄프는 온도 40℃ ~ 50℃의 고무롤과, 생분해성 수지는 온도 25℃ ~ 30℃의 스틸롤 접촉되도록 하면서 생분해성 수지의 두께가 0.015mm ~ 0.07mm를 이루도록 생분해성 수지를 종이 및 펄프에 라미네이팅 하는 것을 특징으로 하는 생분해성 수지를 종이 또는 펄프에 라미네이팅 하는 방법.The aliphatic biodegradable resin pelletized by the composition and the paper or pulp material preheated to 90 ° C. to 120 ° C. are extruded with a TDIE of 190 ° C. to 210 ° C., and the paper and pulp are made of a rubber roll having a temperature of 40 ° C. to 50 ° C. , The biodegradable resin is in contact with a steel roll at a temperature of 25 ℃ ~ 30 ℃ while the biodegradable resin is laminated on paper and pulp so that the thickness of the biodegradable resin is 0.015mm ~ 0.07mm paper or How to Laminate on Pulp. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090036399A 2009-04-27 2009-04-27 Laminating method and products made thereby KR100942301B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090036399A KR100942301B1 (en) 2009-04-27 2009-04-27 Laminating method and products made thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090036399A KR100942301B1 (en) 2009-04-27 2009-04-27 Laminating method and products made thereby

Publications (1)

Publication Number Publication Date
KR100942301B1 true KR100942301B1 (en) 2010-02-16

Family

ID=42083393

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090036399A KR100942301B1 (en) 2009-04-27 2009-04-27 Laminating method and products made thereby

Country Status (1)

Country Link
KR (1) KR100942301B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110423B1 (en) * 2011-10-20 2012-02-16 주식회사 성은바이오 Method of and apparatus for manufacturing paper coated with pla
KR20210122924A (en) * 2020-03-31 2021-10-13 주식회사 신세계푸드 Eco-friendly sheet, ice pack using the same and manufacturing method for the ice pack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016269A (en) * 1996-06-04 2000-03-25 크리스티나 코르피 Paper coated by polylactide and manufacturing method thereof
KR100833583B1 (en) * 2008-02-19 2008-05-30 에콜그린 주식회사 Nature-friendly biodegradable sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016269A (en) * 1996-06-04 2000-03-25 크리스티나 코르피 Paper coated by polylactide and manufacturing method thereof
KR100833583B1 (en) * 2008-02-19 2008-05-30 에콜그린 주식회사 Nature-friendly biodegradable sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110423B1 (en) * 2011-10-20 2012-02-16 주식회사 성은바이오 Method of and apparatus for manufacturing paper coated with pla
KR20210122924A (en) * 2020-03-31 2021-10-13 주식회사 신세계푸드 Eco-friendly sheet, ice pack using the same and manufacturing method for the ice pack
KR102347527B1 (en) * 2020-03-31 2022-01-06 주식회사 신세계푸드 Eco-friendly sheet, ice pack using the same and manufacturing method for the ice pack

Similar Documents

Publication Publication Date Title
US8604123B1 (en) Biodegradable polymer composition with calcium carbonate and methods and products using same
CN101367285B (en) Polyester film and methods for making same
CN107428967B (en) Polyethylene film
CN102407644A (en) Biodegradable multilayer composite polyethylene film and preparation method thereof
JP2015514819A (en) Basically thermoformable composition of biological origin and container formed therefrom
EP2346685B1 (en) Polymeric multi-layer substrates
CN107428968B (en) Polyethylene film
CN113561597A (en) Recyclable exquisite printing composite molding sheet and preparation method thereof
KR100942301B1 (en) Laminating method and products made thereby
JP5079268B2 (en) Method for preventing delamination of easily tearable stretched film
JP4970872B2 (en) Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material
CN113561596A (en) Composite forming sheet for delicate printing and preparation method thereof
JP2013103438A (en) Sheet and container using the same
KR101207564B1 (en) Packing case sheet for bean curd and preparing method thereof
TW202106515A (en) Polyethylene-based-resin multilayer film, deposition-coated film including same, layered product, and package
WO2022244712A1 (en) Laminate, packaging material, and container
CN112959782B (en) Completely degradable gas barrier air cushion film with excellent processing performance and preparation method thereof
CN115182202A (en) Full-biodegradable high-peeling-force paper aluminum composite packaging material and preparation method and application thereof
WO2007088833A1 (en) Process for thermoforming biodegradable laminated sheets
TW202237403A (en) Sealant film
CN111315805B (en) Polyethylene resin film
JP2022182524A (en) Method for manufacturing laminate, and laminate
US11472160B2 (en) Environment-friendly polymeric composites
CA3151269A1 (en) Recyclable, high barrier sheet and tray
JP2020176230A (en) Biodegradable adhesive and sheet

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121113

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150122

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee